WO2015146944A1 - 有機ハイドライド製造装置 - Google Patents

有機ハイドライド製造装置 Download PDF

Info

Publication number
WO2015146944A1
WO2015146944A1 PCT/JP2015/058824 JP2015058824W WO2015146944A1 WO 2015146944 A1 WO2015146944 A1 WO 2015146944A1 JP 2015058824 W JP2015058824 W JP 2015058824W WO 2015146944 A1 WO2015146944 A1 WO 2015146944A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
cathode
electrolyte membrane
organic hydride
manufacturing apparatus
Prior art date
Application number
PCT/JP2015/058824
Other languages
English (en)
French (fr)
Inventor
重徳 光島
靖知 高桑
錦 善則
昭博 加藤
明義 真鍋
佐藤 康司
康太 三好
幸次郎 中川
大島 伸司
Original Assignee
国立大学法人横浜国立大学
ペルメレック電極株式会社
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人横浜国立大学, ペルメレック電極株式会社, Jx日鉱日石エネルギー株式会社 filed Critical 国立大学法人横浜国立大学
Priority to EP15769674.1A priority Critical patent/EP3124651B1/en
Priority to JP2016510361A priority patent/JP6487418B2/ja
Priority to US15/129,670 priority patent/US10202698B2/en
Priority to KR1020167026810A priority patent/KR102028915B1/ko
Priority to CA2944134A priority patent/CA2944134C/en
Priority to CN201580016639.1A priority patent/CN106133199A/zh
Priority to DK15769674.1T priority patent/DK3124651T3/da
Priority to ES15769674T priority patent/ES2727152T3/es
Publication of WO2015146944A1 publication Critical patent/WO2015146944A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/10Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of aromatic six-membered rings
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/04Regulation of the inter-electrode distance
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0809Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes employing two or more electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0815Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes involving stationary electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0824Details relating to the shape of the electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0877Liquid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to an organic hydride manufacturing apparatus that electrochemically hydrogenates organic hydride.
  • renewable energy is attracting attention as energy problems become serious.
  • renewable energy such as sunlight and wind power fluctuates and is unevenly distributed, it is difficult to transport and store with electric energy.
  • hydrogen is effective for transporting and storing renewable energy, but it is a gas at normal temperature and pressure and is not suitable for transporting or storing.
  • Organic hydrides using hydrocarbons such as cyclohexane, methylcyclohexane, and decalin, which are used as an alternative to transporting and storing hydrogen, are attracting attention. These organic hydrides are liquid at normal temperature and pressure and are easy to handle. Organic hydrides can be stored and transported as energy carriers instead of hydrogen by electrochemical hydrogenation and dehydrogenation.
  • renewable energy is hydrogen produced by water electrolysis, and toluene is hydrogenated in a hydrogenation reactor to methylcyclohexane.
  • toluene is hydrogenated in a hydrogenation reactor to methylcyclohexane.
  • hydrogen is directly added. The process can be simplified.
  • Patent Document 1 which is a conventional organic hydride production apparatus, the solid polymer electrolyte membrane is bonded not only to the cathode catalyst but also to the anode catalyst by the solid polymer electrolyte membrane, so that oxygen generated on the anode catalyst is generated.
  • the problem was that gas was likely to stay.
  • the present invention has been made in view of these problems, and an object thereof is to provide a technique capable of suppressing oxygen gas from staying on the anode catalyst of an organic hydride production apparatus.
  • An aspect of the present invention is an organic hydride manufacturing apparatus.
  • the organic hydride manufacturing apparatus includes a solid polymer electrolyte membrane having proton conductivity, and electrolytic hydrogenation provided on one surface of the solid polymer electrolyte membrane to reduce a hydride to generate a hydride.
  • An anode and an anode chamber that accommodates the anode and is supplied with an electrolytic solution, wherein a gap is formed between the anode and the electrolyte membrane.
  • the anode has a network structure with an aperture ratio of 30 to 70%, a power supply support material formed of an electron conductor, and the electrode catalyst held by the power supply support material; You may have.
  • the anode may have a rhombus-shaped opening shape with a distance in the short direction center of 0.1 to 4 mm and a distance in the length direction center of 0.1 to 6 mm.
  • the “short direction” and the “long direction” are terms for distinguishing the directions, and do not specify the distinction of the directions by the difference between the long and short.
  • the gap may be 0.02 to 0.2 mm.
  • the electrolytic solution may be sulfuric acid, phosphoric acid, nitric acid or hydrochloric acid having an ionic conductivity measured at 20 ° C. of 0.01 S / cm or more.
  • FIG. 1 shows a schematic configuration diagram of an organic hydride manufacturing apparatus 10 according to the embodiment.
  • the organic hydride manufacturing apparatus 10 has an electrochemical cell in which an anode 12 is provided on one surface of an electrolyte membrane 11 and a cathode including a cathode catalyst layer 13 and a cathode diffusion layer 14 is provided on the other surface of the electrolyte membrane 11.
  • anode 12 is provided on one surface of an electrolyte membrane 11
  • a cathode including a cathode catalyst layer 13 and a cathode diffusion layer 14 is provided on the other surface of the electrolyte membrane 11.
  • the electrolyte membrane 11 is formed of a material (ionomer) having proton conductivity, and selectively conducts protons while suppressing mixing and diffusion of substances between the cathode and the anode 12.
  • the thickness of the electrolyte membrane 11 is preferably 5 to 300 ⁇ m, more preferably 10 to 150 ⁇ m, and most preferably 20 to 100 ⁇ m. When the thickness of the electrolyte membrane 11 is less than 5 ⁇ m, the barrier property of the electrolyte membrane 11 is lowered, and cross leakage tends to occur. On the other hand, if the thickness of the electrolyte membrane 11 is greater than 500 ⁇ m, the ion transfer resistance becomes excessive, which is not preferable.
  • FIG. 2 is a diagram schematically showing the structure of the anode 12.
  • the anode 12 includes a power supply support material 200 and an electrode catalyst 220.
  • the power supply support material 200 has sufficient electrical conductivity for flowing current necessary for electrolysis, and has a substrate thickness of 0.1 mm to 2 mm because of the necessity of mechanical strength constituting the electrolytic cell. However, a plate-like material having a network structure is desirable.
  • the opening ratio of the opening portion with respect to the entire surface of the power feeding support material 200 is in the range of 30 to 70%. If the aperture ratio is less than 30%, the oxygen gas (bubbles) generated at the anode 12 cannot be removed quickly, resulting in an increase in cell resistance due to the so-called bubble effect.
  • the power supply support material 200 preferably has a rhombus-shaped opening shape in which the center distance S in the short direction is 0.1 to 4 mm and the center distance L in the long direction is 0.1 to 6 mm.
  • the short-direction center distance S is larger than 4 mm, or when the long-direction center distance L is larger than 6 mm, the current distribution in the electrolytic cell, particularly in the electrolyte membrane 11, becomes non-uniform. There is a possibility that the resistance increases and the electrolytic performance decreases.
  • the electrolytic performance may be improved, but the processing convenience Therefore, the thickness of the base material becomes thin and handling becomes inconvenient.
  • the power supply support material 200 can be made thicker.
  • the manufacturing cost of the power supply support material 200 and thus the anode 12 increases, making it difficult to use the power supply support material 200 in actual equipment.
  • the anode 12 which is a gas generating electrode it is preferable that the anode 12 which is a gas generating electrode is porous and excellent in corrosion resistance against an acidic electrolyte in order to avoid an increase in resistance due to bubbles and promote the supply of the electrolyte solution. Is preferably used. Since the expanded mesh has a three-dimensional structure after mesh processing, it is desirable to perform smoothing appropriately. When an expanded mesh is used as the power supply support material 200, the long direction is a slit direction when the expanded mesh is manufactured, and the short direction is a direction orthogonal to the slit.
  • the electrode catalyst 220 is held on the surface of the power supply support material 200.
  • a platinum group noble metal oxide-based catalyst is preferably used as the electrode catalyst 220 that generates oxygen while immersed in an acidic electrolyte.
  • iridium oxide-based electrode catalyst materials have little voltage loss and excellent durability.
  • an iridium oxide-based electrode catalyst in which a solid solution is formed with tantalum oxide is preferable as the electrode catalyst 220 because an increase in voltage loss in a system in which an organic substance is mixed is small.
  • a metal such as titanium used as the power supply support material 200 of the anode 12 is oxidized to form an insulating film. Therefore, it is preferable to apply a conductive valve metal such as tantalum or the like, an alloy layer thereof, a noble metal or a noble metal oxide coating 210 on at least the surface of the power supply support material 200 in contact with the electrode catalyst 220. Thereby, the electroconductivity between the electric power feeding support material 200 and the electrode catalyst 220 can be kept favorable.
  • Partition plate 16a having electron conductivity is disposed at the outermost part on the anode 12 side of the electrochemical cell.
  • Partition plate 16a is formed of a metal such as titanium, for example.
  • a spacer 17a is attached between the peripheral edge of the side surface of the anode 12 of the partition plate 16a and the electrolyte membrane 11, and a space surrounded by the partition plate 16a, the anode chamber side end spacer 17 and the electrolyte membrane 11 is the anode chamber 26. It has become.
  • the spacer 17a also serves as a sealing material that prevents the acidic electrolyte from leaking out of the anode chamber 26, and is desirably electronically insulating. Examples of the material of the spacer 17a include tetrafluoroethylene resin.
  • An acidic electrolyte inlet 19 is provided below the spacer 17a, and the acidic electrolyte is supplied from the acidic electrolyte inlet 19 to the anode chamber 26.
  • the acidic electrolyte include sulfuric acid, phosphoric acid, nitric acid or hydrochloric acid having an ionic conductivity measured at 20 ° C. of 0.01 S / cm or more. When the ionic conductivity is lower than 0.01 S / cm, it is difficult to obtain an industrially sufficient electrochemical reaction.
  • an acidic electrolyte outlet 20 is provided at the upper portion of the spacer 17a, and the acidic electrolyte stored in the anode chamber 26 is discharged out of the system via the acidic electrolyte outlet 20.
  • An anode supporting elastic body 23 is disposed between the anode 12 and the partition plate 16a, and the anode 12 is pressed against the electrolyte membrane 11 by the anode supporting elastic body 23.
  • the anode supporting elastic body 23 is made of, for example, a leaf spring or an electronic conductor having a coil structure. As described above, by providing the anode supporting elastic body 23 between the partition plate 16a constituting the anode chamber 26 and the anode 12, the structure for holding the anode 12 makes it possible to perform maintenance work such as replacement of the anode 12. Can be made easier.
  • an anode spacer 25 is interposed between the anode 12 and the electrolyte membrane 11, and the anode spacer 25 is configured to maintain a predetermined gap between the anode 12 and the electrolyte membrane 11.
  • the gap between the anode 12 and the electrolyte membrane 11 is preferably 0.02 mm or more and less than 1.0 mm, and more preferably 0.05 mm or more and 0.5 mm or less.
  • the anode supporting elastic body 23 is preferably formed of a material having acid resistance against the acidic electrolyte flowing from the acidic electrolyte inlet 19, and titanium or a titanium alloy is preferably used as the base material.
  • Various structures such as a V-shaped spring, an X-cross spring, a type of cushion coil, and an assembly of chatter fibers can be considered as the elastic body structure constituting the anode supporting elastic body 23.
  • the required surface pressure is appropriately selected in view of the contact resistance of each member.
  • the cathode catalyst layer 13 is composed of a noble metal-supported catalyst and a proton conductive ionomer, and the cathode and the membrane 11 are joined together to form a cathode-membrane assembly 15.
  • the cost required for maintenance can be minimized by replacing only the cathode-membrane assembly 15.
  • the cathode diffusion layer 14 is made of, for example, carbon paper or carbon cloth.
  • the cathode diffusion layer 14 is in contact with the cathode catalyst layer 13 having a matrix structure in which carbon supporting platinum or a platinum alloy is mixed with a catalyst and a proton conductive solid electrolyte.
  • Partition plate 16b having electron conductivity is disposed on the outermost part of the cathode of the electrochemical cell.
  • Partition plate 16b is formed of a metal such as stainless steel, for example.
  • a spacer 17 b is attached between the peripheral edge of the cathode of the partition plate 16 b and the electrolyte membrane 11, and a space surrounded by the partition plate 16 b, the spacer 17 b and the electrolyte membrane 11 is a cathode chamber 27.
  • the spacer 17b also serves as a sealing material that prevents the hydride and the organic substance including the hydride from leaking out of the cathode chamber 27, and is desirably electronically insulating.
  • tetrafluoroethylene resin can be used as a material for the spacer 17b.
  • a hydride inlet 21 is provided below the spacer 17b, and a hydride such as toluene is supplied from the hydride inlet 21 to the cathode chamber 27. Further, a hydride outlet 22 is provided on the upper portion of the spacer 17b, and an organic substance containing a hydride such as methylcyclohexane which is a hydride of toluene is discharged out of the system through the hydride outlet 22.
  • a cathode support 24 is disposed between the partition plate 16 b and the cathode diffusion layer 14.
  • the cathode support 24 receives the force pressed by the anode support elastic body 23 and ensures the electron conductivity between the partition plate 16 b and the cathode diffusion layer 14.
  • the cathode support 24 also forms a flow path for controlling the hydride and the hydride flow.
  • the organic hydride manufacturing apparatus described above by using an anode holding an electrode catalyst in a power supply support material having a network structure designed to have an opening size in an appropriate range, the electric electricity of water is formed on the electrode catalyst of the anode 12. Oxygen gas generated by the decomposition is less likely to stay. Thereby, an electrolysis reaction can be advanced more smoothly over a long period of time.
  • anode spacer 25 between the anode 12 and the electrolyte membrane 11 so that a predetermined gap is maintained between the anode 12 and the electrolyte membrane 11, the oxygen gas generated in the anode 12 is moved upward. Therefore, it is possible to further suppress the oxygen gas from staying on the electrode catalyst of the anode 12.
  • Example 1 A structure according to the organic hydride manufacturing apparatus (electrolytic cell) shown in FIG. Hereinafter, the details of the organic hydride manufacturing apparatus of Example 1 will be described.
  • NRE212CS manufactured by DuPont, thickness 50 ⁇ m
  • a cathode catalyst layer was formed on one side by spray coating to obtain a cathode-electrolyte membrane composite.
  • an ionomer Nafion (registered trademark) dispersion DE2020 manufactured by DuPont
  • PtRu / C catalyst TEC61E54E manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., Pt 23 wt%, Ru 27 wt%
  • the ink was added so as to have a weight of 1: 1 with the weight of carbon in the catalyst, and an ink for coating was prepared using a solvent as appropriate.
  • This ink is spray-coated on the electrolyte membrane so that the combined weight of Pt and Ru in the catalyst is 0.5 mg / cm ⁇ 2 per electrode area, and then the solvent component in the ink is dried at 80 ° C. Thus, a cathode catalyst layer was obtained.
  • a cathode diffusion layer SGL35BC (manufactured by SGL carbon) cut out in accordance with the electrode surface was bonded to the surface of the cathode catalyst layer, and heat bonded at 120 ° C. and 1 MPa for 2 minutes to form a cathode-electrolyte composite.
  • the cathode support portion of the structure is formed with a plurality of flow channels for liquid circulation on the surface in contact with the cathode diffusion layer.
  • One of the channels has a gap of 1 mm in width and 0.5 mm in channel height, has a straight shape with an interval of 1 mm between the channels, and the vertical direction and channel when installing the organic hydride manufacturing apparatus Were installed in parallel.
  • both ends of the flow path of the structure have a liquid header for liquid supply and discharge by integrating a plurality of flow paths, and are connected to a system path for supply and discharge of organic substances through this. did.
  • an expanded mesh having a short-direction center distance of 3.5 mm, a long-direction center distance of 6.0 mm, a plate thickness of 1.0 mm, a step width of 1.1 mm, and an aperture ratio of 42% was used (see Table 1). ).
  • the surface of the anode substrate was dry-blasted and then washed in a 20% aqueous sulfuric acid solution. Thereafter, the surface of the cleaned anode substrate was coated with a coating thickness of 2 ⁇ m at a substrate temperature of 150 ° C. and a vacuum degree of 1.0 ⁇ 10 ⁇ 2 Torr using an arc ion plating apparatus and a target JIS type 1 titanium disc made of pure titanium. Coated with.
  • the anode substrate thus obtained was coated with a mixed aqueous solution of iridium tetrachloride / tantalum pentachloride and then subjected to heat treatment at 550 ° C. in an electric furnace several times, whereby iridium oxide and tantalum oxide were repeated.
  • the anode was formed by forming an electrode catalyst layer made of a solid solution of 12 g / m 2 in terms of the amount of Ir metal per electrode area.
  • an elastic body having a shape in which flat springs having a pitch of 10 mm formed by processing a Ti plate having a thickness of 0.3 mm was used as the anode supporting elastic body. A small amount of platinum layer was formed on the anode contact surface of the flat spring.
  • These cell members that is, the cathode support, the cathode-electrolyte membrane composite, the anode spacer, the anode, and the anode support elastic body are laminated in this order, and the anode support elastic body is disposed between the partition plate on the anode side and the anode.
  • each layer was pressed in the form that the layers were in close contact with each other by the pressing force from the anode side within the fixed cell width.
  • the thickness of the anode spacer in other words, the gap between the electrolyte membrane and the anode is 0.05 mm.
  • Toluene was circulated in the cathode chamber of the organic hydride production apparatus thus obtained through a riser (from the bottom up along the vertical direction), and in the gap (anode chamber) between the anode and the anode-side partition plate.
  • a 5% sulfuric acid aqueous solution was also circulated through the riser, the negative electrode of the constant voltage power source was connected to the cathode, and the positive electrode was connected to the anode, and the following electrolytic reaction was carried out.
  • the circulation flow rate of each fluid was set so that the linear velocity was 1 m / min on the cathode side and 3 m / min on the anode side.
  • Example 2 In the organic hydride manufacturing apparatus of Example 2, as the anode substrate, the center distance in the short direction is 2.0 mm, the center distance in the long direction is 4.0 mm, the plate thickness is 0.6 mm, the step width is 0.6 mm, and the aperture ratio is 45%.
  • the configuration is the same as that of Example 1 except that the expanded mesh is used (see Table 1).
  • Example 3 The organic hydride manufacturing apparatus of Example 3 has the same configuration as that of Example 2 except that the gap between the electrolyte membrane and the anode is 0.2 mm (see Table 1).
  • Example 4 The organic hydride manufacturing apparatus of Example 4 is an expanded substrate having a short-direction center distance of 6.0 mm, a long-direction center distance of 10 mm, a plate thickness of 0.6 mm, a step width of 1.0 mm, and an aperture ratio of 60%.
  • the configuration is the same as in Example 1 except that a mesh is used and the gap between the electrolyte membrane and the anode is 0.02 mm (see Table 1).
  • the organic hydride manufacturing apparatus as Comparative Example 1 has the same configuration as the organic hydride manufacturing apparatus of Example 1 except that an electrode obtained by coating IrO 2 on a Ti fiber sintered sheet manufactured by Nippon Bekaert Co., Ltd. was used as the anode. did.
  • the porosity of the Ti sintered sheet is 65%, and the average pore diameter is about 30 mm.
  • Comparative Example 2 The organic hydride manufacturing apparatus of Comparative Example 2 has the same configuration as that of Example 1 except that the anode spacer is not provided and the electrolyte membrane and the anode are brought into close contact with each other (see Table 1).
  • the organic hydride manufacturing apparatus of Comparative Example 3 has a short-direction center distance of 3.0 mm, a long-direction center distance of 3.5 mm, a plate thickness of 1.0 mm, a step size of 1.1 mm, and an aperture ratio of 20% as an anode substrate.
  • the configuration is the same as that of Example 1 except that the expanded mesh is used (see Table 1).
  • the organic hydride manufacturing apparatus of Comparative Example 4 is an expanded substrate having a short-direction center distance of 8.0 mm, a long-direction center distance of 12 mm, a plate thickness of 1.0 mm, a step width of 1.1 mm, and an aperture ratio of 71%.
  • the configuration is the same as that of Example 1 except that a mesh is used (see Table 1).
  • Comparative Example 5 The organic hydride manufacturing apparatus of Comparative Example 5 has the same configuration as that of Example 2 except that the gap between the electrolyte membrane and the anode is 1.0 mm (see Table 1).
  • FIG. 3 shows the change in current density with time in the organic hydride manufacturing apparatus of Example 1 when 1.7 V is applied between the anode and the cathode by the constant voltage power source, and 1 between the anode and the cathode by the constant voltage power source.
  • the time-dependent change of the current density in the organic hydride manufacturing apparatus of the comparative example 1 when .75V is applied is shown.
  • Example 1 had a lower voltage between the anode and the cathode than Comparative Example 1, a higher current density than Comparative Example 1 was obtained.
  • Comparative Example 1 a large voltage drop was observed in the initial stage, and from the observation after the test was completed, residual bubbles were observed in the Ti fiber sintered sheet.
  • Example 1 Compared with the comparative example 1, since the oxygen gas generated on the anode side escapes to the upper part without staying in the vicinity of the electrode, the overvoltage increase mainly due to the anode side gas blocking does not occur and the Example 1 is low. It can be considered that a high current density was obtained even between the electrodes. Further, in Example 1, instantaneous hydrogen generation due to the unstable potential on the cathode side (decrease in Faraday efficiency with respect to organic substance reduction) was not observed, and the anode state during the electrolytic reaction was good, It was confirmed that the cathodic reaction also proceeded favorably.
  • the present invention can be used in an organic hydride manufacturing apparatus that electrochemically hydrogenates organic hydride.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

 本発明のある態様の有機ハイドライド製造装置10は、電解質膜11の一方の面にアノード12、電解質膜11の他方の面にカソード触媒層13とカソード拡散層14からなるカソードを設けた電気化学セルを有する。アノード12と電解質膜11との間にギャップが形成されている。アノード12が、開口率が30~70%の網目構造を有し、電子伝導体で形成された給電支持材料と、前記給電支持材料に保持された前記電極触媒とを有する。

Description

有機ハイドライド製造装置
 本発明は、電気化学的に有機ハイドライドの水素化を行う有機ハイドライド製造装置に関する。
 エネルギー問題が深刻する中で、再生可能エネルギーが注目されている。しかし、太陽光、風力等の再生可能エネルギーは変動があり、また偏在しているため、電気エネルギーでの輸送、貯蔵が難しい。そのため再生可能エネルギーの輸送、貯蔵には水素が有力であるが、常温常圧で気体であり輸送、貯蔵には適していない。
 水素の輸送、貯蔵の代わりになるシクロヘキサンやメチルシクロヘキサン、デカリン等の炭化水素を用いた有機ハイドライドが注目されている。これらの有機ハイドライドは、常温常圧で液体であり取扱いが容易である。有機ハイドライドを、電気化学的に水素付加、脱水素することにより水素の代わりにエネルギーキャリアとして貯蔵、運搬が可能になる。
 従来メチルシクロヘキサンなどの有機ハイドライドの製造には、再生可能エネルギーを水電解にて水素製造し、トルエンを水素化反応器で水素付加しメチルシクロヘキサンにするが、電解合成法では直接水素付加することでプロセスの簡略化ができる。
特開2012-72477
 従来型の有機ハイドライド製造装置である特許文献1では、前記固体高分子形電解質膜が前記カソード触媒のみならず、アノード触媒とも固体高分子電解質膜で接合するため、前記アノード触媒上で発生する酸素ガスが滞留し易いことが課題であった。
  本発明はこうした課題に鑑みてなされたものであり、その目的は、有機ハイドライド製造装置のアノード触媒上に酸素ガスが滞留することを抑制することができる技術の提供にある。
 本発明のある態様は、有機ハイドライド製造装置である。当該有機ハイドライド製造装置は、プロトン伝導性を有する固体高分子電解質膜と、前記固体高分子電解質膜の一方の面に設けられ、被水素化物を還元して水素化物を生成するための電解水素化触媒を含むカソードと、前記カソードを収容し、被水素化物が供給されるカソード室と、前記固体高分子電解質膜の他方の面に設けられ、水を酸化してプロトンを生成する電極触媒を含むアノードと、前記アノードを収容し、電解液が供給されるアノード室と、を備え、前記アノードと前記電解質膜との間にギャップが形成されていることを特徴とする。
 上記態様の有機ハイドライド製造装置において、前記アノードが、開口率30~70%の網目構造を有し、電子伝導体で形成された給電支持材料と、前記給電支持材料に保持された前記電極触媒とを有してもよい。前記アノードが短目方向中心間距離が0.1~4mm、長目方向中心間距離が0.1~6mmの菱形状の開口形状を有してもよい。ここで、「短目方向」「長目方向」とは、方向を区別するための用語であり、長短の差による方向の区別を特定するものではない。また、前記ギャップは、0.02~0.2mmであってもよい。また、前記電解液が、20℃で測定したイオン伝導度が0.01S/cm以上の硫酸、リン酸、硝酸又は塩酸であってもよい。
 なお、上述した各要素を適宜組み合わせたものも、本件特許出願によって特許による保護を求める発明の範囲に含まれうる。
 本発明によれば、有機ハイドライド製造装置のアノード触媒上に酸素ガスが滞留しにくくなる。
実施の形態に係る有機ハイドライド製造装置の概略構成図である。 アノードの構造を模式的に示す図である。 アノードとカソードとの間に1.7Vを印加したときの実施例1の有機ハイドライド製造装置の電流密度の経時変化とアノードとカソードとの間に1.75Vを印加したときの比較例1の有機ハイドライド製造装置の電流密度の経時変化を示すグラフである。
 以下、本発明の実施の形態を図面を参照して説明する。
 図1に実施の形態に係る有機ハイドライド製造装置10の概略構成図を示す。有機ハイドライド製造装置10は、電解質膜11の一方の面にアノード12、電解質膜11の他方の面にカソード触媒層13とカソード拡散層14からなるカソードを設けた電気化学セルを有する。以下、有機ハイドライド製造装置10の各部について詳細に説明する。
 電解質膜11は、プロトン伝導性を有する材料(イオノマー)で形成されており、プロトンを選択的に伝導する一方で、カソードとアノード12との間で物質が混合したり拡散することを抑制する。電解質膜11の厚さは、5~300μmが好ましく、10~150μmがより好ましく、20~100μmが最も好ましい。電解質膜11の厚さが5μm未満であると、電解質膜11のバリア性が低下し、クロスリークが生じやすくなる。また、電解質膜11の厚さが500μmより厚くなると、イオン移動抵抗が過大になるため好ましくない。
 図2は、アノード12の構造を模式的に示す図である。図2に示すように、アノード12は、給電支持材料200および電極触媒220を有する。給電支持材料200としては、電解に必要な電流を流すための十分な電気伝導性を有し、電解セルを構成する機械的強度の必要性から、0.1mmから2mmの基材厚さを有し、網目構造を持つ板状材料が望ましい。給電支持材料200の面全体に対する開口部分の開口率は30~70%の範囲である。当該開口率が30%未満であると、アノード12で発生する酸素ガス(気泡)の除去が速やかに行われないため、いわゆる気泡効果によるセル抵抗の増大を招く。一方、当該開口率が70%以上では、気泡の除去は速やかに進行するものの、有効な電極面積が減少し、見掛けの基材電気伝導性も低下し、セル全体の抵抗が増加し電解性能が低下する。給電支持材料200は、短目方向中心間距離Sが0.1~4mm、長目方向中心間距離Lが0.1~6mmの範囲内の菱形状の開口形状を有することが好ましい。短目方向中心間距離Sが4mmより大きい場合、または長目方向中心間距離Lが6mmより大きい場合には、電解セル内、特に電解質膜11内の電流分布が不均一になり、セル全体の抵抗が増加して電解性能が低下するおそれがある。一方、短目方向中心間距離Sが0.1mmより小さい場合、または長目方向中心間距離Lが0.1mmより小さい場合には、電解性能は向上する可能性があるものの、加工上の都合から基材の厚さが薄くなり取扱いが不便になる。これを補う目的で給電支持材料200を厚くすることもできるが、結果として給電支持材料200、ひいてはアノード12の製造価格が増大し、実機での利用が困難となる。
 ガス発生電極であるアノード12では気泡による抵抗の増大を避け、被電解液の供給を促進するため多孔体で酸性電解質に対する耐食性に優れていることが好ましいため、給電支持材料200としてチタン製エキスパンドメッシュが好ましく用いられる。エキスパンドメッシュは、メッシュ加工後に3次元的構造となるため、適切に平滑化処理を行うことが望ましい。給電支持材料200としてエキスパンドメッシュを用いる場合には、上記長目方向は、エキスパンドメッシュ製造時のスリットの方向であり、上記短目方向は、当該スリットに直交する方向である。
 電極触媒220は給電支持材料200の表面に保持されている。酸性電解液に浸漬された状態で酸素発生を行う電極触媒220として白金族貴金属酸化物系触媒が好ましく用いられる。中でも酸化イリジウム系の電極触媒材料は電圧損失が少なく、耐久性に優れている。特に、酸化タンタルと固溶体を形成した酸化イリジウム系の電極触媒は有機物が混入した系での電圧損失の増加が小さいため電極触媒220として好ましい。
 アノード12に酸性電解液が接すると、アノード12の給電支持材料200として用いられるチタンなどの金属が酸化し、絶縁性の皮膜を形成する。このため、少なくとも電極触媒220と接する給電支持材料200の表面に、導電性を有するタンタルなどの弁金属あるいはそれらの合金層、貴金属あるいはまた貴金属酸化物のコーティング210を施すことが好ましい。これにより、給電支持材料200と電極触媒220との間の導電性を良好に保つことができる。
 図1の説明に戻り、電気化学セルのアノード12側の最外部に電子伝導性を有する仕切り板16aが配設されている。仕切り板16aは、たとえば、チタンなどの金属で形成される。
 仕切り板16aのアノード12側面の周縁部と、電解質膜11との間にスペーサー17aが取り付けられており、仕切り板16a、アノード室側端部スペーサー17および電解質膜11で囲まれる空間がアノード室26となっている。スペーサー17aは、酸性電解液がアノード室26の外へ漏洩することを防ぐシール材を兼ねており、電子的に絶縁性であることが望ましい。スペーサー17aの材料としては、たとえば、4フッ化エチレン樹脂などが挙げられる。
 スペーサー17aの下部に酸性電解液入口19が設けられており、酸性電解液入口19からアノード室26に酸性電解液が供給される。酸性電解液として、20℃で測定したイオン伝導度が0.01S/cm以上の硫酸、リン酸、硝酸又は塩酸が挙げられる。当該イオン伝導度が0.01S/cmより低いと、工業的に十分な電気化学反応を得にくくなる。また、スペーサー17aの上部には酸性電解液出口20が設けられており、酸性電解液出口20を介してアノード室26に貯蔵されている酸性電解液が系外に排出される。
 アノード12と仕切り板16aとの間にはアノード支持用弾性体23が配置されており、アノード支持用弾性体23によってアノード12が電解質膜11に押し付けられる。アノード支持用弾性体23は、たとえば板バネやコイル構造の電子伝導体で形成される。このように、アノード室26を構成する仕切り板16aとアノード12との間にアノード支持用弾性体23を設けることで、アノード12を保持する構造とすることにより、アノード12の交換などのメンテナンス作業を容易にすることができる。また、アノード12と電解質膜11との間にアノードスペーサー25が介在しており、アノードスペーサー25によりアノード12と電解質膜11との間に所定のギャップが保たれるように構成されている。なお、アノード12と電解質膜11との間のギャップは、0.02mm以上1.0mm未満が好ましく、より好ましくは0.05mm以上0.5mm以下である。
 アノード支持用弾性体23は、酸性電解液入口19から流入する酸性電解液に対して耐酸性を有する材料で形成されることが好ましく、基材としてチタンまたはチタン合金が好ましく使用される。アノード支持用弾性体23を構成する弾性体構造としてはV字型スプリング、Xクロススプリング、クッションコイルのタイプやビビリ繊維の集合体など各種構造が考えられる。それぞれの必要面圧は各部材の接触抵抗を鑑みて、材料厚み等が適宜選択される。
 カソード触媒層13は貴金属担持触媒とプロトン伝導性のアイオノマーからなり、カソードと電解質膜11とが接合されることにより、カソード-膜接合体15が形成されている。本実施の形態では、カソードや電解質膜11が劣化した場合に、カソード-膜接合体15のみを交換することでメンテナンスに必要なコストを必要最低限にすることができる。
 カソード拡散層14は、たとえば、カーボンペーパーあるいはカーボンクロスで形成される。カソード拡散層14は、白金や白金合金を担持した炭素を触媒とプロトン伝導性固体電解質と混ざり合ったマトリクス構造のカソード触媒層13と接している。
 電気化学セルのカソードの最外部に電子伝導性を有する仕切り板16bが配設されている。仕切り板16bは、たとえば、ステンレスなどの金属で形成される。
 仕切り板16bのカソードの周縁部と、電解質膜11との間にスペーサー17bが取り付けられており、仕切り板16b、スペーサー17bおよび電解質膜11で囲まれる空間がカソード室27となっている。スペーサー17bは、被水素化物および水素化物を含む有機物がカソード室27の外へ漏洩することを防ぐシール材を兼ねており、電子的に絶縁性であることが望ましい。スペーサー17bの材料としては、たとえば、4フッ化エチレン樹脂が挙げられる。
 スペーサー17bの下部に被水素化物入口21が設けられており、被水素化物入口21からカソード室27にトルエンなどの被水素化物が供給される。また、スペーサー17bの上部には水素化物出口22が設けられており、水素化物出口22を介してトルエンの水素化物であるメチルシクロヘキサンなど水素化物を含む有機物が系外に排出される。
 仕切り板16bとカソード拡散層14の間にカソード支持体24が配設されている。カソード支持体24は、アノード支持用弾性体23により押し付けられる力を受け止めて、仕切り板16bとカソード拡散層14の間の電子伝導性を確保する。カソード支持体24は被水素化物と水素化物の流れを制御する流路も形成している。
 以上説明した有機ハイドライド製造装置によれば、開口寸法が適度な範囲に設計された網目構造を有する給電支持材料に電極触媒を保持したアノードを用いることにより、アノード12の電極触媒上に水の電気分解によって生じた酸素ガスが滞留しにくくなる。これにより、電解反応をよりスムースに長期間にわたり進行させることができる。
 また、アノード12と電解質膜11との間にアノードスペーサー25を設け、アノード12と電解質膜11との間に所定のギャップが保たれる構成とすることにより、アノード12で発生した酸素ガスが上方に移動しやすくなるため、アノード12の電極触媒上に酸素ガスが滞留することをより一層抑制することができる。
 以下、本発明の実施例を説明するが、これら実施例は、本発明を好適に説明するための例示に過ぎず、なんら本発明を限定するものではない。
<実施例1>
 図1に示す有機ハイドライド製造装置(電解セル)に準じた構造を実施例1とした。以下、実施例1の有機ハイドライド製造装置の詳細について説明する。
 電解質膜としてNRE212CS(DuPont製、厚さ50μm)を用い、この片面にスプレー塗布法によりカソード触媒層を形成し、カソード-電解質膜複合体とした。カソード触媒層の形成にあたっては、まずPtRu/C触媒TEC61E54E(田中貴金属工業製、Pt23重量%、Ru27重量%)粉末にアイオノマーNafion(登録商標)分散液DE2020(DuPont製)を、乾燥後の重量が触媒中のカーボン重量と1:1の重量になるよう添加して、適宜溶媒を用いて塗布用のインクを調製した。このインクを、電解質膜上に、触媒中のPtとRuを合わせた重量が電極面積あたり0.5mg/cm-2となるようにスプレー塗布し、ついで80℃にてインク中の溶媒成分を乾燥してカソード触媒層を得た。
 カソード触媒層表面に、電極面に合わせて切り抜いたカソード拡散層SGL35BC(SGLカーボン製)を貼合し、120℃、1MPaにて2分間熱接合を行い、カソード-電解質複合体を形成した。
 カソード仕切り板とカソード支持体を接合した構造体として、カーボン/エポキシ樹脂をモールド成型したカーボン系構造体を用いた。前記構造体のカソード支持体部分はカソード拡散層に接する面に液体流通のための流路を複数形成してある。この流路1本は、幅1mm、流路高さ0.5mmの空隙部を有し、流路間の間隔1mmのストレート形状であり、有機ハイドライド製造装置を設置する際の鉛直方向と流路が平行となるように設置した。また、前記構造体の流路の両端は、複数の流路を統合して液体供給および排出のための液体ヘッダーを有しており、これを介して有機物の供給および排出用の系路に接続した。
 アノード基板として、短目方向中心間距離3.5mm、長目方向中心間距離6.0mm、板厚1.0mm、刻み幅1.1mm、開口率42%のエキスパンドメッシュを使用した(表1参照)。アノード基板の表面に乾式ブラスト処理、ついで20%硫酸水溶液中での洗浄処理を行った。その後、洗浄したアノード基板の表面を、アークイオンプレーティング装置と純チタン材のターゲットJIS1種チタン円板を用い、基板温度150℃、真空度1.0×10-2Torrにてコーティング厚さ2μmで被覆した。このようにして得たアノード基板に対して、四塩化イリジウム/五塩化タンタルの混合水溶液を塗布し、ついで電気炉にて550℃の熱処理を施す操作を複数回繰返すことにより、酸化イリジウムと酸化タンタルとの固溶体よりなる電極触媒層を、電極面積当たりのIr金属量換算で12g/mとなるよう形成したものをアノードとした。
 アノード支持用弾性体として厚さ0.3mmのTi板を加工した10mmピッチの平バネを並べた形状とした弾性体を用いた。平バネのアノード接触面には、微量の白金層を形成した。
 これらのセル部材、すなわちカソード支持体、カソード-電解質膜複合体、アノードスペーサー、アノード、アノード支持用弾性体をこの順に積層し、アノード側の仕切り板とアノードとの間にアノード支持用弾性体を挿入することで、固定されたセル幅内でアノード側からの押しつけ力によって各層が密着する形で押圧されるようにした。なお、アノードスペーサーの厚さ、言い換えると、電解質膜とアノードとの間のギャップは、0.05mmである。
 このようにして得られた有機ハイドライド製造装置のカソード室にトルエンをライザー(鉛直方向に沿って下から上)で流通させ、またアノードとアノード側の仕切り板と間の空隙部(アノード室)に5%硫酸水溶液を同じくライザーで流通し、定電圧電源の負極をカソード、正極をアノードに接続して、以下の電解反応を実施した。各流体の循環流速は、線速度としてカソード側が1m/min、アノード側が3m/minとなるようにした。
Figure JPOXMLDOC01-appb-T000001
<実施例2>
 実施例2の有機ハイドライド製造装置は、アノード基板として、短目方向中心間距離2.0mm、長目方向中心間距離4.0mm、板厚0.6mm、刻み幅0.6mm、開口率45%のエキスパンドメッシュを使用したこと以外は、実施例1と同様な構成である(表1参照)。
<実施例3>
 実施例3の有機ハイドライド製造装置は、電解質膜とアノードとの間のギャップを0.2mmとしたこと以外は、実施例2と同様な構成である(表1参照)。
<実施例4>
 実施例4の有機ハイドライド製造装置は、アノード基板として、短目方向中心間距離6.0mm、長目方向中心間距離10mm、板厚0.6mm、刻み幅1.0mm、開口率60%のエキスパンドメッシュを使用し、電解質膜とアノードとの間のギャップを0.02mmとしたこと以外は、実施例1と同様な構成である(表1参照)。
<比較例1>
 比較例1となる有機ハイドライド製造装置は、アノードとして日本べカルト社製Ti繊維焼結シートにIrOをコーティングした電極を用いたことを除いて実施例1の有機ハイドライド製造装置と同様な構成とした。Ti焼結シートの多孔度は65%、平均孔径は約30mmである。
<比較例2>
 比較例2の有機ハイドライド製造装置は、アノードスペーサーを設けず、電解質膜とアノードとを密着させたこと以外は、実施例1と同様な構成である(表1参照)。
<比較例3>
 比較例3の有機ハイドライド製造装置は、アノード基板として、短目方向中心間距離3.0mm、長目方向中心間距離3.5mm、板厚1.0mm、刻み幅1.1mm、開口率20%のエキスパンドメッシュを使用したこと以外は、実施例1と同様な構成である(表1参照)。
<比較例4>
 比較例4の有機ハイドライド製造装置は、アノード基板として、短目方向中心間距離8.0mm、長目方向中心間距離12mm、板厚1.0mm、刻み幅1.1mm、開口率71%のエキスパンドメッシュを使用したこと以外は、実施例1と同様な構成である(表1参照)。
<比較例5>
 比較例5の有機ハイドライド製造装置は、電解質膜とアノードとの間のギャップを1.0mmとしたこと以外は、実施例2と同様な構成である(表1参照)。
(性能評価)
 図3に、定電圧電源によりアノードとカソードとの間に1.7Vを印加したときの実施例1の有機ハイドライド製造装置における電流密度の経時変化と定電圧電源によりアノードとカソードとの間に1.75Vを印加したときの比較例1の有機ハイドライド製造装置における電流密度の経時変化を示す。実施例1の方が比較例1よりアノードとカソードとの間の電圧が低いにもかかわらず、比較例1より高い電流密度が得られた。また、比較例1では初期に大きな電圧低下が認められ、試験終了後の観察から、Ti繊維焼結シート内に気泡の残留が認められた。このことから、実施例1は比較例1に比べて、アノード側で発生する酸素ガスが電極近傍に滞留することなく上部へ抜けるために、主としてアノード側ガスブロッキングに伴う過電圧上昇が起こらず、低い極間電圧でも高い電流密度が得られたと考察できる。また、実施例1において、カソード側の電位が不安定になることによる瞬時的な水素発生(有機物還元に対するファラデー効率の低下)は見られず、電解反応中のアノード状態が良好であることによって、カソード反応も好ましく進行していることが確認された。
 実施例2~5、比較例2~4の各有機ハイドライド製造装置について、定電圧電源によりアノードとカソードとの間に1.7Vを印加してから60分経過後の電流密度を計測した。各有機ハイドライド製造装置について得られた電流密度を表1に示す。
 実施例1~4の各有機ハイドライド製造装置では、60分経過後の電流密度が比較例1に比べて顕著に増大することが確認された。
 比較例2のように、電解質膜とアノードとの間にギャップがない場合には、実施例1に比べて電流密度が低下することが確認された。
 比較例3、4のように、エキスパンドメッシュの開口率が30~70%の範囲から外れている場合には、十分な電流密度が得られないことが確認された。
 比較例5のように、電解質膜とアノードとの間にギャップが1.0mmになると、ギャップが広がりすぎ、十分な電流密度が得られないことが確認された。
 本発明は、上述の実施の形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうるものである。
10 有機ハイドライド製造装置、11 電解質膜、12 アノード、13 カソード触媒層、14 カソード拡散層、15 カソード-膜接合体、16a 仕切り板、16b 仕切り板、17a スペーサー、17b スペーサー、19 酸性電解液入口、20 酸性電解液出口、21 被水素化物入口、22 水素化物出口、23 アノード支持用弾性体、24 カソード支持体、25 アノードスペーサー、26 アノード室、27 カソード室
 本発明は、電気化学的に有機ハイドライドの水素化を行う有機ハイドライド製造装置に利用可能である。

Claims (5)

  1.  プロトン伝導性を有する固体高分子電解質膜と、
     前記固体高分子電解質膜の一方の面に設けられ、被水素化物を還元して水素化物を生成するための電解水素化触媒を含むカソードと、
     前記カソードを収容し、被水素化物が供給されるカソード室と、
     前記固体高分子電解質膜の他方の面に設けられ、水を酸化してプロトンを生成する電極触媒を含むアノードと、
     前記アノードを収容し、電解液が供給されるアノード室と、
     を備え、
     前記アノードと前記電解質膜との間にギャップが形成されていることを特徴とする有機ハイドライド製造装置。
  2.  前記アノードが、開口率30~70%の網目構造を有し、電子伝導体で形成された給電支持材料と、前記給電支持材料に保持された前記電極触媒と、を有する請求項1に記載の有機ハイドライド製造装置。
  3.  前記アノードが短目方向中心間距離が0.1~4mm、長目方向中心間距離が0.1~6mmの菱形状の開口形状を有する請求項1または2に記載の有機ハイドライド製造装置。
  4.  前記ギャップは、0.02~0.2mmである請求項1乃至3のいずれか1項に記載の有機ハイドライド製造装置。
  5.  前記電解液が、20℃で測定したイオン伝導度が0.01S/cm以上の硫酸、リン酸、硝酸又は塩酸である請求項1乃至3のいずれか1項に記載の有機ハイドライド製造装置。
PCT/JP2015/058824 2014-03-28 2015-03-24 有機ハイドライド製造装置 WO2015146944A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP15769674.1A EP3124651B1 (en) 2014-03-28 2015-03-24 Device for manufacturing organic hydride
JP2016510361A JP6487418B2 (ja) 2014-03-28 2015-03-24 有機ハイドライド製造装置
US15/129,670 US10202698B2 (en) 2014-03-28 2015-03-24 Device for manufacturing organic hydride
KR1020167026810A KR102028915B1 (ko) 2014-03-28 2015-03-24 유기하이드라이드 제조장치
CA2944134A CA2944134C (en) 2014-03-28 2015-03-24 Device for producing organic hydride
CN201580016639.1A CN106133199A (zh) 2014-03-28 2015-03-24 有机氢化物制造装置
DK15769674.1T DK3124651T3 (da) 2014-03-28 2015-03-24 Indretning til fremstilling af organisk hydrid
ES15769674T ES2727152T3 (es) 2014-03-28 2015-03-24 Dispositivo para fabricar hidruro orgánico

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014069716 2014-03-28
JP2014-069716 2014-03-28

Publications (1)

Publication Number Publication Date
WO2015146944A1 true WO2015146944A1 (ja) 2015-10-01

Family

ID=54195457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058824 WO2015146944A1 (ja) 2014-03-28 2015-03-24 有機ハイドライド製造装置

Country Status (9)

Country Link
US (1) US10202698B2 (ja)
EP (1) EP3124651B1 (ja)
JP (1) JP6487418B2 (ja)
KR (1) KR102028915B1 (ja)
CN (1) CN106133199A (ja)
CA (1) CA2944134C (ja)
DK (1) DK3124651T3 (ja)
ES (1) ES2727152T3 (ja)
WO (1) WO2015146944A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170314145A1 (en) * 2014-11-21 2017-11-02 National University Corporation Yokohama National University Apparatus for producing organic hydride and method for producing organic hydride using same
WO2018037774A1 (ja) * 2016-08-23 2018-03-01 国立大学法人横浜国立大学 カソード、有機ハイドライド製造用電解セル及び有機ハイドライドの製造方法
US11248302B2 (en) 2019-12-25 2022-02-15 Kabushiki Kaisha Toshiba Electrolytic device and electrolysis method
JP7424134B2 (ja) 2020-03-17 2024-01-30 三菱マテリアル株式会社 複合チタン部材、および、水電解用電極、水電解装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6400410B2 (ja) * 2014-09-25 2018-10-03 国立大学法人横浜国立大学 有機ケミカルハイドライド製造用電解セル
JP6954561B2 (ja) * 2017-05-23 2021-10-27 国立大学法人横浜国立大学 有機ハイドライド製造装置
KR20190083546A (ko) 2018-01-04 2019-07-12 (주)엘켐텍 전기화학적 수소화 반응기 및 이것을 이용한 수소화물의 제조방법
JP7244058B2 (ja) * 2019-02-05 2023-03-22 Leシステム株式会社 電解液製造装置及び電解液の製造方法
NL2023775B1 (en) * 2019-09-05 2021-05-12 Univ Delft Tech Compact electrochemical stack using corrugated electrodes
WO2023018439A1 (en) 2021-08-09 2023-02-16 Verdagy, Inc. Electrochemical cell with gap between electrode and membrane, and methods to use and manufacture thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4956952A (ja) * 1972-10-06 1974-06-03
JPS5891178A (ja) * 1981-11-25 1983-05-31 Osaka Soda Co Ltd 隔膜式電解方法
JP2012107331A (ja) * 2010-10-26 2012-06-07 Frd:Kk 水電解システム
WO2013111585A1 (ja) * 2012-01-24 2013-08-01 Jx日鉱日石エネルギー株式会社 電気化学還元装置および、芳香族炭化水素化合物または含窒素複素環式芳香族化合物の水素化体の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4105514A (en) * 1977-06-27 1978-08-08 Olin Corporation Process for electrolysis in a membrane cell employing pressure actuated uniform spacing
JPH07284773A (ja) * 1994-04-18 1995-10-31 Hoshizaki Electric Co Ltd 電解装置
JP3375904B2 (ja) * 1999-02-10 2003-02-10 株式会社神戸製鋼所 オゾン水発生装置
JP2012072477A (ja) 2010-09-30 2012-04-12 Hitachi Ltd 有機ハイドライド製造装置
EP2660356A4 (en) * 2010-12-28 2014-07-09 Jx Nippon Oil & Energy Corp ORGANIC COMPOUND HYDROGENATION DEVICE AND HYDROGENATION METHOD
MY162026A (en) 2011-12-26 2017-05-31 Permelec Electrode Ltd Anode for oxygen generation and manufacturing method for the same
JP6400410B2 (ja) * 2014-09-25 2018-10-03 国立大学法人横浜国立大学 有機ケミカルハイドライド製造用電解セル
JP6539285B2 (ja) * 2014-11-10 2019-07-03 国立大学法人横浜国立大学 酸素発生用アノード
JP6501141B2 (ja) * 2014-11-21 2019-04-17 国立大学法人横浜国立大学 有機ハイドライド製造装置およびこれを用いた有機ハイドライドの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4956952A (ja) * 1972-10-06 1974-06-03
JPS5891178A (ja) * 1981-11-25 1983-05-31 Osaka Soda Co Ltd 隔膜式電解方法
JP2012107331A (ja) * 2010-10-26 2012-06-07 Frd:Kk 水電解システム
WO2013111585A1 (ja) * 2012-01-24 2013-08-01 Jx日鉱日石エネルギー株式会社 電気化学還元装置および、芳香族炭化水素化合物または含窒素複素環式芳香族化合物の水素化体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3124651A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170314145A1 (en) * 2014-11-21 2017-11-02 National University Corporation Yokohama National University Apparatus for producing organic hydride and method for producing organic hydride using same
EP3222754A4 (en) * 2014-11-21 2018-08-22 National University Corporation Yokohama National University Apparatus for producing organic hydride and method for producing organic hydride using same
US11035045B2 (en) * 2014-11-21 2021-06-15 National University Corporation Yokohama National University Apparatus for producing organic hydride and method for producing organic hydride using same
WO2018037774A1 (ja) * 2016-08-23 2018-03-01 国立大学法人横浜国立大学 カソード、有機ハイドライド製造用電解セル及び有機ハイドライドの製造方法
US11248302B2 (en) 2019-12-25 2022-02-15 Kabushiki Kaisha Toshiba Electrolytic device and electrolysis method
JP7424134B2 (ja) 2020-03-17 2024-01-30 三菱マテリアル株式会社 複合チタン部材、および、水電解用電極、水電解装置

Also Published As

Publication number Publication date
US20170130344A1 (en) 2017-05-11
ES2727152T3 (es) 2019-10-14
JPWO2015146944A1 (ja) 2017-04-13
CA2944134C (en) 2019-07-09
CN106133199A (zh) 2016-11-16
KR20170012199A (ko) 2017-02-02
DK3124651T3 (da) 2019-05-13
KR102028915B1 (ko) 2019-10-07
EP3124651A4 (en) 2017-05-31
EP3124651B1 (en) 2019-03-06
EP3124651A1 (en) 2017-02-01
JP6487418B2 (ja) 2019-03-20
CA2944134A1 (en) 2015-10-01
US10202698B2 (en) 2019-02-12

Similar Documents

Publication Publication Date Title
JP6487418B2 (ja) 有機ハイドライド製造装置
JP6539285B2 (ja) 酸素発生用アノード
WO2016080505A1 (ja) 有機ハイドライド製造装置およびこれを用いた有機ハイドライドの製造方法
JP6400410B2 (ja) 有機ケミカルハイドライド製造用電解セル
JP6786426B2 (ja) 電気化学還元装置及び芳香族炭化水素化合物の水素化体の製造方法
US20220333257A1 (en) Organic hydride production device
JP5072652B2 (ja) 水電解装置
JP6086873B2 (ja) 電気化学還元装置および、芳香族炭化水素化合物の水素化体の製造方法
JP5350717B2 (ja) 水電解装置及びその製造方法
JP2023128449A (ja) カソード、膜電極接合体及び有機ハイドライド製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769674

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016510361

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2944134

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15129670

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167026810

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015769674

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015769674

Country of ref document: EP