WO2015141839A1 - 積層体及び、その製造方法 - Google Patents

積層体及び、その製造方法 Download PDF

Info

Publication number
WO2015141839A1
WO2015141839A1 PCT/JP2015/058555 JP2015058555W WO2015141839A1 WO 2015141839 A1 WO2015141839 A1 WO 2015141839A1 JP 2015058555 W JP2015058555 W JP 2015058555W WO 2015141839 A1 WO2015141839 A1 WO 2015141839A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
copper alloy
nitride
concentration
alloy layer
Prior art date
Application number
PCT/JP2015/058555
Other languages
English (en)
French (fr)
Inventor
高村 博
矢作 政隆
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54144800&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015141839(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to JP2016508828A priority Critical patent/JP6038389B2/ja
Publication of WO2015141839A1 publication Critical patent/WO2015141839A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent

Definitions

  • the present invention relates to a laminate formed by laminating a metal layer containing copper and a ceramic substrate, and a method for producing the same, and in particular, to ensure a required bonding strength between the metal layer and the ceramic substrate. .
  • the power device fixes a laminated body in which a metal layer made of copper or the like that functions as a heat sink is bonded to at least one surface, usually both surfaces of a ceramic substrate, on a base plate (heat radiating plate).
  • the power semiconductor element and its control circuit are formed on the laminate.
  • alumina (Al 2 O 3 ) that can be directly bonded to the metal layer is generally used as the material of the ceramic substrate to be bonded to the metal layer made of copper or the like.
  • a nitride ceramic substrate such as aluminum nitride (AlN) having excellent thermal conductivity as described in Patent Documents 1 to 3 and the like.
  • a thin film bonding layer made of Ti or the like is formed in advance on the surface of a Cu conductor layer (metal layer) or an aluminum nitride substrate by vapor deposition, sputtering, plating, or the like. It is manufactured by bonding an aluminum nitride substrate or a copper layer via a bonding layer.
  • the above-mentioned bonding layer formed between the aluminum nitride substrate having poor wettability with the metal and the Cu conductor layer effectively bonds the aluminum nitride substrate and the Cu conductor layer.
  • the heat generated by the semiconductor element or the like can be effectively dissipated by the aluminum nitride substrate that has better thermal conductivity than alumina that has been used for a long time.
  • JP-A 64-84648 Japanese Patent Laid-Open No. 5-18477 JP-A-5-218229
  • An object of the present invention is to solve such a problem.
  • the object of the present invention is to bond a metal layer mainly made of copper and a nitride ceramic substrate sufficiently firmly, and It is providing the laminated body which can reduce a manufacturing man-hour, and its manufacturing method.
  • the inventor has found that it is difficult to directly bond a nitride ceramic substrate such as aluminum nitride and a Cu metal layer by comparison with alumina, and the Ti nitride between the aluminum nitride substrate and the Cu metal layer as described above.
  • a bonding layer such as a copper alloy layer
  • the Cu metal layer a copper alloy layer containing a predetermined element, such a copper alloy layer and nitride ceramics It has been found that the substrate can be effectively bonded without the intervention of the bonding layer.
  • the laminate of the present invention has a nitride ceramic substrate and a copper alloy layer laminated on at least one surface of the nitride ceramic substrate, and the copper alloy layer includes: Si, Mn, Ni, Ti, Al, Ce, Ga, In, P, As, Sb, Nb, Cr, Fe, Li, Be, Mg, Zn, Ge, Co, Mo, B, C, Sn, Y, It contains at least one element selected from Pr, Nd, Sm, Zr, Bi, V, W, Tl, Ca, Sr, Ba, and Hf.
  • the copper alloy layer is made of a copper alloy plate or a copper alloy foil.
  • it is preferably 0.0001% by mass or more, preferably 0.001% by mass or more, and 0.01% by mass or more.
  • it is 0.5% by mass or more, preferably 99.5% by mass or less, preferably 95% by mass or less, preferably 90% by mass or less, and 80% by mass or less.
  • 70 quality % Preferably less, and preferably preferably not more than 50 mass%, 40 mass% or less.
  • the copper alloy layer contains at least one element selected from Si, Mn, Ni, Ti, Zr, Ce, and Hf.
  • the Si concentration is 0.0001 to 3.0 mass%
  • Mn the Mn concentration is 0.0001 to 95 mass%
  • Ni the Ni concentration is 0.0001 to 95% by mass
  • Ti the Ti concentration is 0.0001 to 8.5% by mass
  • Zr the Zr concentration is 0. 0.0001 to 60% by mass in the case of containing Ce, and 0.0001 to 60% by mass of Hf in the case of containing Hf. preferable.
  • the copper alloy layer contains two or more elements selected from Si, Mn, Ni, Ti, Zr, Ce, and Hf, select from the Si, Mn, Ni, Ti, Zr, Ce, and Hf
  • the total concentration of the two or more kinds of elements is preferably 0.0001 to 99.5% by mass in order to make the bonding strength between the nitride ceramic substrate and the copper alloy layer more appropriate. It is preferably from ⁇ 95% by mass, preferably from 0.0005 to 70% by mass, and preferably from 0.0005 to 50% by mass.
  • the nitride ceramic substrate is mainly composed of aluminum nitride, silicon nitride, titanium nitride, boron nitride, indium nitride or gallium nitride, or a composite material of titanium carbide and titanium nitride, or It is preferable that the main component is a composite material of boron nitride and silicon carbide.
  • the nitride ceramic substrate when the nitride ceramic substrate is mainly composed of aluminum nitride, the nitride ceramic substrate further contains one or more elements selected from the group consisting of Ca, Y, and O, and Ca
  • the Ca concentration is 0.0001 to 3% by mass.
  • the Y concentration is 0.0001 to 10% by mass. It may be 0001 to 20% by mass.
  • the O-containing concentration of the nitride ceramic substrate is preferably 0.0001 to 20% by mass.
  • the thickness of the copper alloy layer can be 1 ⁇ m to 7000 ⁇ m
  • the thickness of the nitride ceramic substrate can be 1 ⁇ m to 7000 ⁇ m.
  • the peel strength between the copper alloy layer and the nitride ceramic substrate is preferably 15 kN / m or more.
  • the heat dissipating body of the present invention has any one of the above laminated bodies.
  • the power device of the present invention has any one of the above laminates.
  • the element of the present invention has any one of the above laminates.
  • the electronic component of the present invention has any one of the above laminates.
  • the electronic device of the present invention has any one of the above-described laminates.
  • the vehicle of this invention has said power device or said element, or said electronic component.
  • the copper alloy layer is made of Si, Mn, Ni, Ti, Al, Ce, Ga, In, P, As, Sb, Nb, Cr, Fe, Li, Be, Mg, Zn, Ge, Co, Mo, B, C, Sn, Y, Pr, Nd, Sm, Zr, Bi, V, W, It contains at least one element selected from Tl, Ca, Sr, Ba, and Hf, and the copper alloy layer is laminated on at least one surface of the nitride ceramic substrate by thermocompression bonding.
  • it is preferably 0.0001% by mass or more, preferably 0.001% by mass or more, and 0.01% by mass or more.
  • it is 0.5% by mass or more, preferably 99.5% by mass or less, preferably 95% by mass or less, preferably 90% by mass or less, and 80% by mass or less.
  • 70 quality % Preferably less, and preferably preferably not more than 50 mass%, 40 mass% or less.
  • the copper alloy layer preferably contains at least one element selected from Si, Mn, Ni, Ti, Zr, Ce, and Hf, and in this case, the copper alloy layer
  • Si is contained
  • Mn is contained
  • Mn is 0.0001 to 95% by mass
  • Ni is contained
  • the Ni concentration is 0.0001 to 95% by mass
  • Ti is contained
  • Zr is contained
  • the Zr concentration is 0.0001 to 8.0% by mass.
  • Ce concentration is preferably 0.0001 to 60% by mass
  • Hf concentration is preferably 0.0001 to 20% by mass.
  • the copper alloy layer contains two or more elements selected from Si, Mn, Ni, Ti, Zr, Ce, and Hf, select from the Si, Mn, Ni, Ti, Zr, Ce, and Hf
  • the total concentration of the two or more kinds of elements is preferably 0.0001 to 99.5% by mass in order to make the bonding strength between the nitride ceramic substrate and the copper alloy layer more appropriate. It is preferably from ⁇ 95% by mass, preferably from 0.0005 to 70% by mass, and preferably from 0.0005 to 50% by mass.
  • the manufacturing method of the present invention when the copper alloy layer and the nitride ceramic substrate are bonded, 0.6 N / mm 2 to 1 at a temperature of 800 to 1000 ° C. in a nitrogen or argon atmosphere or in a vacuum. It is preferable to join the copper alloy layer and the nitride ceramic substrate by applying a pressure of 5 N / mm 2 .
  • the laminated nitride ceramic substrate and the copper alloy layer laminated on the surface of the nitride ceramic substrate are directly joined, or a roughened layer, a heat-resistant layer, and a rust-proof layer.
  • bonding is indirectly performed through only one or more layers selected from the group consisting of a chromate treatment layer and a silane coupling treatment layer. Therefore, a bonding layer such as Ti does not have to exist between the copper alloy layer and the nitride ceramic substrate.
  • direct bonding means that the composition of the copper alloy layer itself or the surface of the copper alloy layer made of an oxide thereof, and the composition of the nitride ceramic substrate itself or the substrate surface made of an oxide thereof are different from each other. It means that they are fixed to each other in contact with each other without intervening layers composed of the composition. In other words, this means that there may be an oxide film between the copper alloy layers and the nitride ceramic substrate that are laminated to each other, but there is no other layer having a composition other than those.
  • a rust preventive layer made of an organic material or the like may be formed on the surface of the copper alloy layer, for example, at least on the nitride ceramic substrate side of the copper alloy layer so as not to have a large adverse effect on the bonding strength.
  • One or more layers selected from the group of a generally used roughening treatment layer, heat-resistant layer, rust prevention layer, chromate treatment layer, and silane coupling treatment layer may be applied to the surface.
  • the copper alloy layer and the nitride ceramic layer pass through only one or more layers selected from the group consisting of a roughening treatment layer, a heat-resistant layer, a rust prevention layer, a chromate treatment layer, and a silane coupling treatment layer. And indirectly joined.
  • the metal layer to be laminated on the nitride ceramic substrate is a copper alloy layer containing the above-described elements, so that the copper alloy layer and the nitride ceramic can be joined with a required strength, Since a process for forming a bonding layer as in the technique is not required, the number of manufacturing steps can be reduced.
  • a laminate according to an embodiment of the present invention includes a nitride ceramic substrate and a copper alloy layer such as a copper alloy foil laminated on at least one surface of the nitride ceramic substrate.
  • a copper alloy layer such as a copper alloy foil laminated on at least one surface of the nitride ceramic substrate.
  • Cu, Si, Mn, Ni, Ti, Al, Ce, Ga, In, P, As, Sb, Nb, Cr, Fe, Li, Be, Mg, Zn, Ge, Co, Mo, B, C , Sn, Y, Pr, Nd, Sm, Zr, Bi, V, W, Tl, Ca, Sr, Ba, and Hf are contained.
  • Cu is a main component in a copper alloy layer.
  • it is preferably 0.0001% by mass or more, preferably 0.001% by mass or more, and 0.01% by mass or more.
  • the copper alloy layer may contain a compound such as nitride or oxide, an inorganic substance, a metal containing an element other than the elements described above, an element other than those described above, and the like.
  • the nitride ceramic substrate means a ceramic substrate containing nitride.
  • the nitride concentration of the nitride ceramic substrate is preferably 50% by mass or more, preferably 60% by mass or more, preferably 70% by mass or more, preferably 80% by mass or more, preferably 90% by mass or more, preferably 95% by mass. That's it.
  • the ceramic substrate may be a sintered body and / or a substrate including a polycrystalline body and / or a single crystal body, and may be a sintered body and / or a polycrystalline body and / or Alternatively, it may be a substrate made of a single crystal, and is a concept including a metal or compound or semiconductor or conductor substrate obtained by vapor phase growth or epitaxial growth.
  • the nitride is N, Si, Mn, Ni, Ti, Al, Ce, Ga, In, P, As, Sb, Nb, Cr, Fe, Li, Be, Mg, Zn, Ge, Co, B , C, Sn, Y, Pr, Nd, Sm, Zr, Bi, V, W, Tl, Ca, B, Sr, Hf and a compound containing one or more elements selected from the group consisting of Ba and Ba Is preferred.
  • the nitride is N, Si, Mn, Ni, Ti, Al, Ce, Ga, In, P, As, Sb, Nb, Cr, Fe, Li, Be, Mg, Zn, Ge, Co, B , C, Sn, Y, Pr, Nd, Sm, Zr, Bi, V, W, Tl, Ca, B, Sr, Hf and a compound composed of one or more elements selected from the group consisting of Ba and Ba Is more preferable.
  • the nitride is more preferably a compound containing N and one or more elements selected from the group consisting of Si, Al, B, Ga, In, and Ti.
  • the nitride is more preferably a compound composed of N and one or more elements selected from the group consisting of Si, Al, B, Ga, In, and Ti.
  • the nitride ceramic substrate is made of aluminum nitride (AlN), silicon nitride (Si 3 N 4 ), titanium nitride (TiN), nitride nitride from the viewpoint of effectively dissipating the semiconductor element and the like by increasing thermal conductivity.
  • Main component is boron (BN), indium nitride (InN) or gallium nitride (GaN), or a composite material of titanium carbide and titanium nitride (TiC-TiN), or a composite material of boron nitride and silicon carbide ( It is preferably made of a material mainly composed of (BN—SiC).
  • the nitride ceramic substrate is made of aluminum nitride (AlN), silicon nitride (Si 3 N 4 ), titanium nitride (TiN), boron nitride (BN), indium nitride (InN), and gallium nitride (GaN). It is preferable to include one or more selected nitrides. Among these, aluminum nitride and silicon nitride are both excellent in thermal conductivity, and aluminum nitride has a low coefficient of thermal expansion, and is preferably used as a ceramic substrate for this type of laminate. Silicon nitride is preferable from the viewpoint of productivity because it has high strength and is difficult to break during manufacturing.
  • the nitride ceramic substrate is mainly composed of aluminum nitride or silicon nitride
  • its concentration in the case of aluminum nitride, the total concentration of nitrogen and aluminum is taken as the concentration of aluminum nitride.
  • the lower limit of the concentration of nitrogen and silicon is the concentration of silicon nitride.
  • the upper limit of the aluminum nitride or silicon nitride concentration is not particularly required, but can be, for example, 100% by mass or less, 99.999% by mass or less, 99.99% by mass or less, or 99.9% by mass or less. .
  • the nitride ceramic substrate mainly made of aluminum nitride may contain one or more elements selected from the group consisting of Ca, Y, and O.
  • the Ca concentration can be 0.0001 to 3% by mass
  • the Y concentration can be 0.0001 to 10% by mass.
  • the O concentration can be, for example, 0.0001 to 20% by mass, preferably 0.005 to 15% by mass, and more preferably 0.01 to 10% by mass.
  • “having A as a main component” means that A is 50% by mass or more, more preferably 60% by mass or more, and more preferably 70% by mass or more.
  • the concentration of nitride is the sum of the concentration of nitrogen and the concentration of elements other than nitrogen constituting the nitride.
  • the inventor made the copper metal layer into a copper alloy layer by making the copper metal layer a copper alloy layer containing an element that brings about bonding between aluminum nitride and copper, such as titanium described above. It was thought that the element contained included could form a compound with the nitride ceramic substrate and realize the bonding between the copper alloy layer and the nitride ceramic substrate.
  • the same simulation was performed for the interface state between titanium copper alloy (Cu—Ti) containing 3.1% by mass of Ti and aluminum nitride, and the result shown in FIG. 4 was obtained. . From the simulation results shown in FIG. 4, it is considered that TiN is formed by Ti contained in the titanium-copper alloy and N of aluminum nitride, and this effectively works for joining the titanium-copper alloy and aluminum nitride.
  • the inventor examined elements that form a compound (nitride) in combination with nitrogen and can be contained in a copper alloy, and are elements that form a nitride and are dissolved in Cu.
  • elements to be performed Si, Mn, Ni, Ti, Al, Ce, Ga, In, P, As, Sb, Nb, Fe, Li, Be, Mg, Zn, Ge, Cr, Co, B, C, Sn, Mo, Hf, and elements that form nitrides and do not dissolve or hardly dissolve in Cu, but have an elemental phase diagram with Cu (that is, a compound with Cu exists)
  • Elements include Y, Pr, Nd, Sm, Zr, Bi, V, W, Tl, Ca, Sr, and Ba. Therefore, not only Ti but also copper alloys containing these elements are nitride ceramics. Used for copper alloy layers to be bonded to substrates I thought that it is possible.
  • the copper alloy layer bonded to at least one surface of the nitride ceramic substrate is Si, Mn, Ni, Ti, Al, Ce, Ga, In, P, As, Sb, Nb, Cr. , Fe, Li, Be, Mg, Zn, Ge, Co, B, C, Sn, Mo, Y, Pr, Nd, Sm, Zr, Bi, V, W, Tl, Ca, Sr, Ba, Hf It may contain at least one kind of element.
  • it is preferably 0.0001% by mass or more, preferably 0.001% by mass or more, and 0.01% by mass or more.
  • it is 0.5% by mass or more, preferably 99.5% by mass or less, preferably 95% by mass or less, preferably 90% by mass or less, and 80% by mass or less.
  • 70 quality % Preferably less, and preferably preferably not more than 50 mass%, 40 mass% or less.
  • the copper alloy layer is made of Si, Mn, Ni, Ti, Zr, Ce, and Hf.
  • the lower limit value of the Si concentration is preferably 0.0001% by mass, more preferably 0.05% by mass, more preferably 0.1% by mass, more preferably Is 0.2% by mass.
  • the upper limit value of the Si concentration is preferably 3.0% by mass, particularly preferably 2.7% by mass, more preferably 2.4% by mass, and even more preferably 2.0% by mass.
  • the lower limit of the Mn concentration is 0.0001% by mass, more preferably 0.05% by mass, more preferably 0.1% by mass, more preferably 0.2% by mass.
  • the upper limit of the Mn concentration is preferably 95% by mass, more preferably 80% by mass, more preferably 50% by mass, more preferably 40% by mass, and more preferably 30% by mass.
  • the lower limit of the Ni concentration is 0.0001% by mass, more preferably 0.05% by mass, more preferably 0.1% by mass, more preferably 0.2% by mass.
  • the upper limit of the Ni concentration is preferably 95% by mass, more preferably 80% by mass, more preferably 50% by mass, more preferably 40% by mass, and more preferably 30% by mass.
  • the lower limit of the Ti concentration is preferably 0.0001% by mass, more preferably 0.05% by mass, more preferably 0.1% by mass, and more preferably 0.00%. 2% by mass.
  • the upper limit of the Ti concentration is preferably 8.5% by mass, more preferably 8.0% by mass, more preferably 7.7% by mass, and more preferably 7.5% by mass.
  • the Zr concentration can be 0.0001 to 8.0% by mass, preferably 0.01 to 7.0% by mass, more preferably 0.05 to 5%. 0.0% by mass.
  • the Ce concentration can be, for example, 0.0001 to 60% by mass, preferably 0.001 to 50% by mass, more preferably 0.01 to 40% by mass. More preferably, the content is 0.01 to 10% by mass, and more preferably 0.01 to 5% by mass.
  • the Hf concentration can be, for example, 0.0001 to 20% by mass, preferably 0.001 to 15% by mass, more preferably 0.01 to 10% by mass. More preferably, the content is 0.01 to 8% by mass, and more preferably 0.01 to 5% by mass.
  • the copper alloy layer contains two or more elements selected from Si, Mn, Ni, Ti, Zr, Ce, and Hf, select from the Si, Mn, Ni, Ti, Zr, Ce, and Hf
  • the total concentration of the two or more kinds of elements is preferably 0.0001 to 99.5% by mass in order to make the bonding strength between the nitride ceramic substrate and the copper alloy layer more appropriate. It is preferably from ⁇ 95% by mass, preferably from 0.0005 to 70% by mass, and preferably from 0.0005 to 50% by mass.
  • the composition and oxides of the copper alloy layer and the nitride ceramic substrate, as well as the heat-resistant layer and the rust-proof layer are provided.
  • a Ti-only layer or the like which is different from the chromate treatment layer and the silane coupling treatment layer, may not exist.
  • a process for forming another bonding layer or the like between the copper alloy layer and the nitride ceramic substrate becomes unnecessary, and the number of manufacturing steps can be reduced.
  • equipment, materials, and the like for performing sputtering and the like for forming the bonding layer and the like are unnecessary, and the manufacturing cost can be reduced.
  • the copper alloy layer and the nitride ceramic substrate are not affected between the copper alloy layer and the nitride ceramic substrate so long as the degree of bonding between the copper alloy layer and the nitride ceramic substrate is not greatly affected.
  • Elements from the substrate and / or oxides thereof, as well as a roughened layer, a heat-resistant layer, a rust-proof layer, a chromate-treated layer, a silane coupling-treated layer and the like may be present.
  • one or more layers selected from the group of roughening treatment layer, heat-resistant layer, rust prevention layer, chromate treatment layer, silane coupling treatment layer are present between the copper alloy layer and the nitride ceramic substrate.
  • the thickness of one or more layers selected from the group of the roughening treatment layer, the heat-resistant layer, the rust prevention layer, the chromate treatment layer and the silane coupling treatment layer is 0.7 ⁇ m or less in total, preferably 0.5 ⁇ m or less. can do.
  • one or more layers selected from the group of a roughening treatment layer, a heat resistant layer, a rust prevention layer, a chromate treatment layer, and a silane coupling treatment layer exist between the copper alloy layer and the nitride ceramic substrate.
  • the total adhesion amount of one or more layers selected from the group of the roughening treatment layer, the heat-resistant layer, the rust prevention layer, the chromate treatment layer, and the silane coupling treatment layer is 70000 ⁇ g / dm 2 or less, preferably 40000 ⁇ g. / dm 2 or less, preferably 20000 ⁇ g / dm 2 or less, preferably 10000 / dm 2 or less, preferably to 5000 [mu] g / dm 2 or less. If such a layer has such a thickness or adhesion amount, it does not adversely affect the bonding between the copper alloy layer and the nitride ceramic layer.
  • a strong bonding with a nitride ceramic substrate can be realized by including an element capable of forming nitride by removing nitrogen from aluminum nitride in the copper alloy layer.
  • an element capable of forming nitride by removing nitrogen from aluminum nitride in the copper alloy layer Using, for example, aluminum nitride as a reference, Ce, Ti, Zr, and Hf, which have a low Gibbs energy and are stable as a nitride, are considered effective. From this viewpoint, it is preferable that the copper alloy layer contains at least one element selected from Ce, Ti, Zr, and Hf.
  • Such a laminate in which the nitride ceramic substrate and the copper alloy layer are laminated with each other can have a peel strength between the copper alloy layer and the nitride ceramic substrate of 15 kN / m or more. It can be used effectively for devices and the like.
  • the peel strength is preferably 20 kN / m or more, and more preferably 30 kN / m or more.
  • the thickness of the copper alloy layer can be 0.01 ⁇ m to 7000 ⁇ m, or can be 0.1 ⁇ m to 7000 ⁇ m, or can be 1 ⁇ m to 7000 ⁇ m. Can do.
  • the thickness of the copper alloy layer is preferably 5 ⁇ m to 2000 ⁇ m, more preferably 10 ⁇ m to 1500 ⁇ m, more preferably 20 ⁇ m to 1200 ⁇ m, more preferably 50 ⁇ m to 1100 ⁇ m, more preferably 100 ⁇ m to 1050 ⁇ m, preferably Is 200 ⁇ m or more and 1000 ⁇ m or less.
  • the nitride ceramic substrate may have a thickness of 1 ⁇ m to 15000 ⁇ m, 1 ⁇ m to 7000 ⁇ m, preferably 5 ⁇ m to 2000 ⁇ m, more preferably 10 ⁇ m to 1500 ⁇ m, more preferably 20 ⁇ m to 1200 ⁇ m, more preferably The thickness can be 50 ⁇ m or more and 1100 ⁇ m or less, more preferably 100 ⁇ m or more and 1050 ⁇ m or less, and more preferably 200 ⁇ m or more and 1000 ⁇ m or less.
  • the surface roughness Ra of the copper alloy layer at least the bonding surface with the nitride ceramic substrate (that is, the surface of the copper alloy layer laminated on the nitride ceramic substrate).
  • the lower limit of the surface roughness Ra is not particularly preferred, but can be, for example, 0.001 ⁇ m or more, 0.005 ⁇ m or more, 0.007 ⁇ m or more.
  • the surface roughness of the copper alloy layer can be adjusted, for example, by cold rolling while controlling the surface roughness of the rolling roll and / or the oil film equivalent during rolling.
  • the surface roughness Ra of the nitride ceramic substrate at least the bonding surface with the copper alloy layer can be 3.0 ⁇ m or less, preferably Is 2.5 ⁇ m or less, more preferably 2.0 ⁇ m or less, more preferably 1.7 ⁇ m or less, and more preferably 1.5 ⁇ m or less.
  • the surface roughness of the nitride ceramic substrate can be adjusted by shot blasting or the like.
  • the heat dissipating body, power device, element, electronic component, and electronic apparatus have the laminate as described above.
  • the radiator is an object having a heat dissipation function, and includes a heat sink, a heat sink, a semiconductor element having a heat dissipation function, an element having a heat dissipation function, and the like.
  • the heat radiator may have any shape.
  • a radiator is a band, plate, foil, strip, wire, rod, rectangular parallelepiped, cube, cone, cylinder, curve, circuit, wiring, polygon, square, circle, plane or curved surface, or a shape composed of a plane and a curved surface, etc. You may have the shape of.
  • the vehicle of embodiment of this invention has said power device or an element, or an electronic component.
  • An example of a method by which the laminate described above can be manufactured is as follows. First, containing Cu, Si, Mn, Ni, Ti, Al, Ce, Ga, In, P, As, Sb, Nb, Cr, Fe, Li, Be, Mg, Zn, Ge, Co, Mo, B Copper alloy layer containing at least one element selected from C, Sn, Y, Pr, Nd, Sm, Zr, Bi, V, W, Tl, Ca, Sr, Ba, and Hf, and aluminum nitride Alternatively, silicon nitride and other nitride ceramic substrates are prepared.
  • the electrical conductivity and thermal conductivity of a copper alloy layer can be made more favorable, it is preferable that Cu contained in a copper alloy layer is a main component.
  • the copper alloy layer is Si, Mn, Ni, Ti, Zr, Ce, which is stable as a copper alloy and can realize strong direct bonding with nitride ceramics, as described above. It is preferable to contain at least one element selected from Hf.
  • the copper alloy layer is bonded to at least one surface, generally both surfaces, of the nitride ceramic substrate by thermocompression bonding without any other composition layer except for the oxide or the anticorrosive layer.
  • the temperature condition is preferably 800 to 1000 ° C., more preferably 850 to 950 ° C., and preferably from 0.6 N / mm 2 to both sides of the nitride ceramic substrate and the copper alloy layer stacked on each other.
  • the nitride ceramic substrate and the copper alloy layer are bonded to each other by solid phase bonding or the like by applying a pressure of 1.5 N / mm 2 .
  • the above pressure can be applied, for example, for 0.083 hours to 5 hours, preferably 0.167 hours to 4 hours, more preferably 0.5 to 3 hours.
  • the bonding here is preferably performed in a nitrogen or argon atmosphere or in a vacuum.
  • a vacuum means that the ambient pressure is 5.0 ⁇ 10 ⁇ 3 Torr or less, preferably 7.0 ⁇ 10 ⁇ 4 Torr or less, more preferably 3.0 ⁇ 10 ⁇ 4 Torr or less, more preferably This refers to the condition where the pressure is 5.0 ⁇ 10 ⁇ 5 Torr or less.
  • the above-mentioned element contained in the copper alloy layer forms a compound with the element of the nitride ceramic substrate at the interface between the copper alloy layer and the nitride ceramic substrate.
  • the layer and the nitride ceramic substrate are bonded sufficiently firmly with a required strength.
  • the copper alloy layer and the nitride ceramic substrate can be joined without performing vapor deposition, sputtering, plating, or other treatment, effectively increasing the number of man-hours resulting from the process of performing such treatment. Therefore, the laminate can be easily manufactured at a low cost.
  • vapor deposition, sputtering, plating, and other treatments may be performed on the copper alloy layer or the nitride ceramic substrate.
  • thermocompression bonding if the temperature at the time of thermocompression bonding is too low, there is a risk of poor bonding. On the other hand, if the temperature is too high, the copper alloy layer may melt and be damaged. Further, if the pressure applied to the laminated nitride ceramic substrate and the copper alloy layer is too low, bonding will be poor, and if the pressure is too high, the nitride ceramic substrate or the copper alloy layer may be damaged.
  • the copper alloy layer may have any shape.
  • a copper alloy layer is a band, plate, foil, strip, wire, rod, rectangular parallelepiped, cube, cone, cylinder, curve, circuit, wiring, polygon, square, circle, plane or curved surface, or a plane and curved surface Or the like.
  • the copper alloy layer according to the present invention is preferably a copper alloy plate or a copper alloy foil.
  • the copper alloy layer according to the present invention includes a rolled copper alloy plate, a rolled copper alloy foil produced by rolling, and an electrolytic copper alloy plate and an electrolytic copper alloy formed by wet plating such as electrolytic plating and electroless plating.
  • a foil is preferred.
  • the electrolytic foil was prepared by using an electrolytic foil manufacturing apparatus in which an electrode (anode) was disposed around an electrolytic cell, a titanium cathode rotating drum, and a distance of about 5 mm around the drum under the following conditions. It was manufactured by performing deposition by electroplating until the thickness described in Table 2 was reached.
  • Electrolytic foils of Examples 6 and 32 were manufactured under the following conditions.
  • Electrolytic foils of Examples 9 and 35 were manufactured under the following conditions. ⁇ Plating solution composition> Copper concentration: 60-120 g / L Nickel concentration: 1-10g / L ⁇ Plating conditions> Plating solution temperature: 45-80 ° C Current density: 1-10 A / dm 2 pH: 1 to 4
  • the electrolytic foil of Comparative Example 2 was produced under the following conditions. ⁇ Plating solution composition> Copper concentration: 80-100g / L Sulfuric acid concentration: 70-90g / L ⁇ Plating conditions> Plating solution temperature: 45 to 65 ° C Current density: 50 to 70 A / dm 2
  • Example 46 (Method of forming rust prevention layer and chromate treatment layer)
  • the thickness of the formed anticorrosive film is 50 to 500 mm.
  • Anti-rust treatment liquid > Benzotriazole 0.1% by mass Benzotriazole monoethanolamine salt 0.2% by mass Isopropyl alcohol 10% by mass Remaining water
  • Example 47 after forming a rust prevention layer on the surface of the side laminated
  • Niride ceramic substrate As the nitride ceramics laminated on the copper alloy layer in each of Examples 1 to 20, 44 to 55 and Comparative Examples 1 to 8, AlN as a commercially available product was used.
  • a 2 O 3 powder having an average particle size of 1.5 ⁇ m was added to the mixture, and pulverized and mixed using a ball mill to prepare raw materials.
  • 6% by weight of paraffin wax was added to the raw material and granulated, followed by press molding at a pressure of 1000 kg / cm 2 to obtain a green compact of 45 mm ⁇ 45 mm ⁇ 3 mm.
  • This green compact was first degreased by heating to 300 ° C. in a nitrogen gas atmosphere. Thereafter, the degreased green compact was housed in a carbon mold and sintered at 1800 ° C. for 0.5 hours in a nitrogen gas atmosphere to produce a nitride ceramic substrate mainly composed of AlN.
  • TiC ⁇ TiN (cermet), TiN, Si 3 N 4 , BN, BN ⁇ SiC, InN, and GaN as nitride ceramics laminated on the copper alloy layer in each of Examples 24 to 30 and 34 to 40, respectively. The following were used. The thickness was adjusted by polishing or the like as necessary.
  • TiC ⁇ TiN (cermet), Si 3 N 4 , BN, BN ⁇ SiC, and GaN, commercially available products were used.
  • TiN was prepared by heating a pure titanium plate (Ti concentration 99% by mass or more) at 1000 ° C. in nitrogen containing 1 vol% hydrogen.
  • InN was produced according to the procedures described in the following (1) to (6) to obtain indium nitride.
  • the sapphire substrate is organically cleaned, and a sapphire substrate having a refractory metal molybdenum deposited on the back surface is placed on a substrate heater in an MBE growth chamber maintained in a vacuum in order to improve the temperature rise property of the substrate. Then, the temperature of the substrate is raised to about 800 ° C. and held as it is for 30 minutes, and the surface of the sapphire substrate is cleaned at a high temperature.
  • the substrate is irradiated with nitrogen radicals obtained by decomposing nitrogen gas with RF plasma at the same temperature to nitride the surface of the sapphire substrate for 30 minutes, thereby forming thin aluminum nitride on the surface.
  • nitrogen radicals obtained by decomposing nitrogen gas with RF plasma at the same temperature to nitride the surface of the sapphire substrate for 30 minutes, thereby forming thin aluminum nitride on the surface.
  • the shutter of the In cell is opened, and the InN buffer layer is grown to a film thickness of 10 nm with the substrate temperature kept at 350 ° C.
  • the shutter of the In cell is closed, the shutter of the RF plasma cell is opened, and the substrate is heated to 470 ° C. while continuing to irradiate only the nitrogen radicals on the sample surface.
  • the substrate temperature reaches 470 ° C.
  • the shutter of the In cell is opened, and the InN layer is grown until the film thickness reaches 2000 nm at the substrate temperature of 470 ° C.
  • the concentration of each element in the copper alloy layer and the nitride ceramic substrate is generally determined after the copper alloy layer or the nitride ceramic substrate is cut or pulverized. Alternatively, it can be quantified by an atomic absorption method after dissolution using a solution (for example, nitric acid, hydrofluoric acid, hydrochloric acid, or a mixed acid thereof) used for dissolving the nitride ceramic substrate.
  • a solution for example, nitric acid, hydrofluoric acid, hydrochloric acid, or a mixed acid thereof
  • the copper alloy layer or nitride ceramic substrate was cut or pulverized, and a LECO O / N simultaneous analyzer (TC-300, TC -400, TC-436, TC-500, etc.).
  • a LECO O / N simultaneous analyzer TC-300, TC -400, TC-436, TC-500, etc.
  • peel strength test was conducted to evaluate the bonding strength between the copper alloy layer and the nitride ceramic substrate of the laminate thus produced.
  • one end of the copper plate protrudes to the outside of the substrate by about 5 mm, and the bonding area is 10 mm ⁇ 10 mm, and this is pulled up 90 degrees at a speed of 50 mm / min.
  • the force per unit width (peeling strength) required for the calculation was calculated and evaluated.
  • Table 1 Here, when the peel strength is less than 10 kN / m, it is a defective product, and when the peel strength is 10 kN / m or more and less than 15 kN / m, it is evaluated as a general strength.
  • the peel strength is 15 kN / m or more and less than 20 kN / m, it is suitable for use as a laminate.
  • the peel strength is 20 kN / m or more and less than 30 kN / m, it is better. It is considered good.
  • the said peel strength was measured.
  • the comparative example and Example whose thickness of a copper alloy layer is smaller than 0.15 mm after carrying out copper plating and making thickness thick to 0.15 mm, the said peel strength was measured.
  • the comparative example and Example whose thickness of a copper alloy layer is larger than 0.15 mm after making the thickness of a copper alloy layer into 0.15 mm by etching, the said peel strength was measured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Laminated Bodies (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

 この発明の積層体は、窒化物セラミックス基板と、該窒化物セラミックス基板の少なくとも一方の表面に積層された銅合金層とを有し、前記銅合金層が、Si、Mn、Ni、Ti、Al、Ce、Ga、In、P、As、Sb、Nb、Cr、Fe、Li、Be、Mg、Zn、Ge、Co、Mo、B、C、Sn、Y、Pr、Nd、Sm、Zr、Bi、V、W、Tl、Ca、Sr、Ba、Hfから選択される少なくとも一種類の元素を含有するものである。

Description

積層体及び、その製造方法
 この発明は、銅を含む金属層とセラミックス基板とを積層してなる積層体及び、その製造方法に関するものであり、特には、金属層とセラミックス基板との所要の接合強度を確保するものである。
 近年、自動車の電装化が進む傾向にあり、なかでも電気自動車が実用化されるに至っている。このような中、大電流が用いられるパワーデバイス等の素子が開発されており、当該電気自動車等に使用されつつある。
 ここで、パワーデバイスは、セラミックス基板の少なくとも一方の表面、通常は両面のそれぞれに、ヒートシンクとして機能する銅製等の金属層が接合されてなる積層体を、ベース板(放熱板)上に固定し、そして、積層体上に、パワー半導体素子及び、その制御回路が形成されて構成される。
 かかる積層体では一般に、銅等からなる金属層に接合させるセラミックス基板の材質として、当該金属層との直接接合が可能なアルミナ(Al23)が用いられていたが、このアルミナ製セラミックス基板に代えて、特許文献1~3等に記載されているような、優れた熱伝導性を有する窒化アルミニウム(AlN)等の窒化物セラミックス基板とすることが有効である。
 特許文献1~3に記載された積層体は、Cu導体層(金属層)又は窒化アルミニウム基板の表面に、蒸着、スパッタリングもしくはめっき等により、Ti等からなる薄膜の接合層を予め形成し、その接合層を介して、窒化アルミニウム基板又は銅層を接合することにより製造されるものである。
 これによれば、金属との濡れ性に乏しい窒化アルミニウム基板と、Cu導体層との間に形成した上記の接合層が、窒化アルミニウム基板とCu導体層とを有効に接合させることになる。その結果として、以前から使用されてきたアルミナに比して熱伝導性に優れる窒化アルミニウム基板により、半導体素子等が発する熱を有効に放散させることができる。
特開昭64―84648号公報 特開平5―18477号公報 特開平5―218229号公報
 ところで、上記の特許文献1~3に記載されたいずれの技術も、積層体を製造するに当り、Cu導体層と窒化アルミニウム基板との接合に先立って、それらの間にTi等の接合層を形成するため、Cu導体層もしくは窒化アルミニウム基板に、蒸着、スパッタリングないしめっきを施す必要がある。それに起因して、製造工数の増大を余儀なくされて、積層体を安価かつ簡易に製造することができないという問題があった。
 この発明は、このような問題を解決することを課題とするものであり、それの目的とするところは、主として銅からなる金属層と、窒化物セラミックス基板とを十分強固に接合するとともに、その製造工数を削減することのできる積層体及び、その製造方法を提供することにある。
 発明者は、アルミナとの比較により、窒化アルミニウム等の窒化物セラミックス基板とCu金属層との直接接合が困難となる理由や、上述したような、窒化アルミニウム基板とCu金属層との間にTi等の接合層を設けるとそれらを接合可能になるメカニズム等について鋭意検討した結果、Cu金属層を、所定の元素を含有する銅合金層とすることにより、そのような銅合金層と窒化物セラミックス基板とを、上記の接合層の介在なしに有効に接合できることを見出した。
 このような新たな知見に基き、この発明の積層体は、窒化物セラミックス基板と、該窒化物セラミックス基板の少なくとも一方の表面に積層された銅合金層とを有し、前記銅合金層が、Si、Mn、Ni、Ti、Al、Ce、Ga、In、P、As、Sb、Nb、Cr、Fe、Li、Be、Mg、Zn、Ge、Co、Mo、B、C、Sn、Y、Pr、Nd、Sm、Zr、Bi、V、W、Tl、Ca、Sr、Ba、Hfから選択される少なくとも一種類の元素を含有するものである。
 ここで好ましくは、前記銅合金層が銅合金板または銅合金箔からなるものとする。
 また、銅合金層に含まれる、Si、Mn、Ni、Ti、Al、Ce、Ga、In、P、As、Sb、Nb、Cr、Fe、Li、Be、Mg、Zn、Ge、Co、Mo、B、C、Sn、Y、Pr、Nd、Sm、Zr、Bi、V、W、Tl、Ca、Sr、Ba、Hfから選択される一種類以上の元素の合計の濃度は、窒化物セラミックス基板と銅合金層との接合強度をより適切にするため、0.0001質量%以上であることが好ましく、0.001質量%以上であることが好ましく、0.01質量%以上であることが好ましく、0.5質量%以上であることが好ましく、99.5質量%以下であることが好ましく、95質量%以下であることが好ましく、90質量%以下であることが好ましく、80質量%以下であることが好ましく、70質量%以下であることが好ましく、50質量%以下であることが好ましく、40質量%以下であることが好ましい。
 この発明の積層体では、前記銅合金層が、特に、Si、Mn、Ni、Ti、Zr、Ce、Hfから選択される少なくとも一種類の元素を含有するものとすることが好ましい。ここで、銅合金層が、Siを含有する場合はSi濃度が0.0001~3.0質量%であり、Mnを含有する場合はMn濃度が0.0001~95質量%あり、であり、Niを含有する場合はNi濃度が0.0001~95質量%であり、Tiを含有する場合はTi濃度が0.0001~8.5質量%であり、Zrを含有する場合はZr濃度が0.0001~8.0質量%であり、Ceを含有する場合はCe濃度が0.0001~60質量%であり、Hfを含有する場合はHf濃度が0.0001~20質量%であることが好ましい。
 また、銅合金層がSi、Mn、Ni、Ti、Zr、Ce、Hfから選択される二種類以上の元素を含有する場合、当該のSi、Mn、Ni、Ti、Zr、Ce、Hfから選択される二種類以上の元素の合計の濃度は、窒化物セラミックス基板と銅合金層との接合強度をより適切にするため、0.0001~99.5質量%であることが好ましく、0.0005~95質量%であることが好ましく、0.0005~70質量%であることが好ましく、0.0005~50質量%であることが好ましい。
 またこの発明の積層体では、前記窒化物セラミックス基板が、窒化アルミニウム、窒化珪素、窒化チタン、窒化ホウ素、窒化インジウム又は窒化ガリウムを主成分とし、あるいは、炭化チタンと窒化チタンとの複合材料、又は、窒化ホウ素と炭化ケイ素との複合材料を主成分とするものであることが好ましい。
 ここで、前記窒化物セラミックス基板が窒化アルミニウムを主成分とするものである場合、その窒化物セラミックス基板がさらに、Ca、Y、Oからなる群から選択される一種以上の元素を含有し、Caを含む場合には、Ca濃度は0.0001~3質量%であり、Yを含む場合にはY濃度は0.0001~10質量%であり、Oを含む場合には、O濃度は0.0001~20質量%であるものとすることができる。
 また前記窒化物セラミックス基板のO含有濃度は0.0001~20質量%であることが好ましい。
 なおこの発明では、たとえば、前記銅合金層の厚みを、1μm~7000μmとし、前記窒化物セラミックス基板の厚みを、1μm~7000μmとすることができる。
 ここにおいて、この発明の積層体では、前記銅合金層と前記窒化物セラミックス基板との剥離強度は、15kN/m以上であることが好ましい。
 またこの発明の放熱体は、上記のいずれかの積層体を有するものである。またこの発明のパワーデバイスは、上記のいずれかの積層体を有するものである。またこの発明の素子は、上記のいずれかの積層体を有するものである。また、この発明の電子部品は、上記のいずれかの積層体を有するものである。また、この発明の電子機器は、上記のいずれかの積層体を有するものである。また、この発明の車両は、上記のパワーデバイスまたは上記の素子または上記の電子部品を有するものである。
 また、この発明の積層体の製造方法では、銅合金層と窒化物セラミックス基板との積層体を製造するに当り、前記銅合金層が、Si、Mn、Ni、Ti、Al、Ce、Ga、In、P、As、Sb、Nb、Cr、Fe、Li、Be、Mg、Zn、Ge、Co、Mo、B、C、Sn、Y、Pr、Nd、Sm、Zr、Bi、V、W、Tl、Ca、Sr、Ba、Hfから選択される少なくとも一種類の元素を含有するものとし、窒化物セラミックス基板の少なくとも一方の表面に、前記銅合金層を、熱圧着により積層させる。
 また、銅合金層に含まれる、Si、Mn、Ni、Ti、Al、Ce、Ga、In、P、As、Sb、Nb、Cr、Fe、Li、Be、Mg、Zn、Ge、Co、Mo、B、C、Sn、Y、Pr、Nd、Sm、Zr、Bi、V、W、Tl、Ca、Sr、Ba、Hfから選択される一種類以上の元素の合計の濃度は、窒化物セラミックス基板と銅合金層との接合強度をより適切にするため、0.0001質量%以上であることが好ましく、0.001質量%以上であることが好ましく、0.01質量%以上であることが好ましく、0.5質量%以上であることが好ましく、99.5質量%以下であることが好ましく、95質量%以下であることが好ましく、90質量%以下であることが好ましく、80質量%以下であることが好ましく、70質量%以下であることが好ましく、50質量%以下であることが好ましく、40質量%以下であることが好ましい。
 この製造方法でもまた、前記銅合金層が、特に、Si、Mn、Ni、Ti、Zr、Ce、Hfから選択される少なくとも一種類の元素を含有することが好ましく、この場合、該銅合金層が、Siを含有する場合はSi濃度が0.0001~3.0質量%であり、Mnを含有する場合はMn濃度が0.0001~95質量%あり、Niを含有する場合はNi濃度が0.0001~95質量%であり、Tiを含有する場合はTi濃度が0.0001~8.5質量%であり、Zrを含有する場合はZr濃度が0.0001~8.0質量%であり、Ceを含有する場合はCe濃度が0.0001~60質量%であり、Hfを含有する場合はHf濃度が0.0001~20質量%であることが好ましい。
 また、銅合金層がSi、Mn、Ni、Ti、Zr、Ce、Hfから選択される二種類以上の元素を含有する場合、当該のSi、Mn、Ni、Ti、Zr、Ce、Hfから選択される二種類以上の元素の合計の濃度は、窒化物セラミックス基板と銅合金層との接合強度をより適切にするため、0.0001~99.5質量%であることが好ましく、0.0005~95質量%であることが好ましく、0.0005~70質量%であることが好ましく、0.0005~50質量%であることが好ましい。
 この発明の製造方法では、前記銅合金層と前記窒化物セラミックス基板とを接合するに際し、窒素またはアルゴン雰囲気中または真空中で、800~1000℃の温度の下、0.6N/mm2~1.5N/mm2の圧力を作用させることにより、前記銅合金層と前記窒化物セラミックス基板とを接合することが好ましい。
 なおこの発明では、積層体の窒化物セラミックス基板と、その窒化物セラミックス基板の表面に積層された銅合金層とが、直接的に接合され、又は、粗化処理層、耐熱層、防錆層、クロメート処理層、シランカップリング処理層の群から選択される一つ以上の層だけを介して間接的に接合されることになる。従って、銅合金層と窒化物セラミックス基板との間には、Ti等の接合層が存在しなくてもよい。
 ここでいう「直接的に接合」とは、銅合金層自体の組成又はその酸化物からなる銅合金層表面と、窒化物セラミックス基板自体の組成又はその酸化物からなる基板表面とが、他の組成からなる層の介在なしに接触した状態で相互に固着されることをいう。すなわち、相互に積層された銅合金層と窒化物セラミックス基板との間には、その酸化皮膜は存在することがあっても、それら以外の組成からなる他の層が存在しないことを意味する。
 また、銅合金層の表面には、たとえば有機物による防錆層等が形成されることがあるので、接合の強さに大きな悪影響を及ぼさない程度に、銅合金層の少なくとも窒化物セラミックス基板側の表面には、一般的に用いられる粗化処理層、耐熱層、防錆層、クロメート処理層、シランカップリング処理層の群から選択される一つ以上の層を施してもよい。この場合は、銅合金層と窒化物セラミックス層とが、粗化処理層、耐熱層、防錆層、クロメート処理層、シランカップリング処理層の群から選択される一つ以上の層だけを介して間接的に接合される。
 この発明によれば、窒化物セラミックス基板に積層させる金属層を、上述した元素を含有する銅合金層としたことにより、該銅合金層と窒化物セラミックスとを所要の強度で接合できるとともに、従来技術のような接合層を形成する工程を要しないので、製造工数を削減することができる。
1000℃の温度条件の下での、酸素の量の変化に対するアルミナと銅との界面状態を示すグラフである。 1000℃の温度条件の下での、酸素の量の変化に対する窒化アルミニウムと銅との界面状態を示すグラフである。 1000℃の温度条件の下での、酸素の量の変化に対する窒化アルミニウムとチタンとの界面状態を示すグラフである。 1000℃の温度条件の下での、酸素の量の変化に対する窒化アルミニウムとチタン銅合金との界面状態を示すグラフである。
 以下に、この発明の実施形態について詳細に例示説明する。
 この発明の一の実施形態に係る積層体は、窒化物セラミックス基板と、その窒化物セラミックス基板の少なくとも一方の表面に積層された銅合金箔等の銅合金層とを備え、この銅合金層が、Cuの他、Si、Mn、Ni、Ti、Al、Ce、Ga、In、P、As、Sb、Nb、Cr、Fe、Li、Be、Mg、Zn、Ge、Co、Mo、B、C、Sn、Y、Pr、Nd、Sm、Zr、Bi、V、W、Tl、Ca、Sr、Ba、Hfから選択される少なくとも一種類の元素を含有するものである。なお、銅合金層の導電率や熱伝導率をより良好なものとすることができるため、銅合金層において、Cuが主成分であることが好ましい。
 また、銅合金層に含まれる、Si、Mn、Ni、Ti、Al、Ce、Ga、In、P、As、Sb、Nb、Cr、Fe、Li、Be、Mg、Zn、Ge、Co、Mo、B、C、Sn、Y、Pr、Nd、Sm、Zr、Bi、V、W、Tl、Ca、Sr、Ba、Hfから選択される一種類以上の元素の合計の濃度は、窒化物セラミックス基板と銅合金層との接合強度をより適切にするため、0.0001質量%以上であることが好ましく、0.001質量%以上であることが好ましく、0.01質量%以上であることが好ましく、0.5質量%以上であることが好ましく、99.5質量%以下であることが好ましく、95質量%以下であることが好ましく、90質量%以下であることが好ましく、80質量%以下であることが好ましく、70質量%以下であることが好ましく、50質量%以下であることが好ましく、40質量%以下であることが好ましい。
 また、銅合金層は窒化物や酸化物等の化合物や無機物、上述した元素以外の元素を含む金属、上述以外の元素等を含んでもよい。
 本発明では窒化物セラミックス基板とは、窒化物を含むセラミックス基板を意味する。窒化物セラミックス基板の窒化物の濃度は好ましくは50質量%以上、好ましくは60質量%以上、好ましくは70質量%以上、好ましくは80質量%以上、好ましくは90質量%以上、好ましくは95質量%以上である。窒化物セラミックス基板の窒化物の濃度の上限は設ける必要は無いが、典型的には、100質量%以下、99.999質量%以下、99.99質量%以下、99.9質量%以下とすることができる。ここで、本願ではセラミックス基板は焼結体、及び/又は、多結晶体、及び/又は、単結晶体を含む基板であってもよく、焼結体、及び/又は、多結晶体、及び/又は、単結晶体からなる基板であってもよく、気相成長やエピタキシャル成長により得られる金属または化合物または半導体または導体の基板を含む概念である。
 また、前記窒化物はNと、Si、Mn、Ni、Ti、Al、Ce、Ga、In、P、As、Sb、Nb、Cr、Fe、Li、Be、Mg、Zn、Ge、Co、B、C、Sn、Y、Pr、Nd、Sm、Zr、Bi、V、W、Tl、Ca、B、Sr、HfおよびBaからなる群から選択される一種以上の元素とを含む化合物であることが好ましい。
 また、前記窒化物はNと、Si、Mn、Ni、Ti、Al、Ce、Ga、In、P、As、Sb、Nb、Cr、Fe、Li、Be、Mg、Zn、Ge、Co、B、C、Sn、Y、Pr、Nd、Sm、Zr、Bi、V、W、Tl、Ca、B、Sr、HfおよびBaからなる群から選択される一種以上の元素とからなる化合物であることがより好ましい。
 また、前記窒化物はNと、Si、Al、B、Ga、InおよびTiからなる群から選択される一種以上の元素とを含む化合物であることがより好ましい。
 また、前記窒化物はNと、Si、Al、B、Ga、InおよびTiからなる群から選択される一種以上の元素とからなる化合物であることがより好ましい。
 ここで、窒化物セラミックス基板は、熱伝導性を高めて半導体素子等を有効に放熱させるとの観点から、窒化アルミニウム(AlN)、窒化珪素(Si34)、窒化チタン(TiN)、窒化ホウ素(BN)、窒化インジウム(InN)又は窒化ガリウム(GaN)を主成分とし、あるいは、炭化チタンと窒化チタンとの複合材料(TiC-TiN)、又は、窒化ホウ素と炭化ケイ素との複合材料(BN-SiC)を主体とする材質からなることが好ましい。また、窒化物セラミックス基板は、窒化アルミニウム(AlN)、窒化珪素(Si34)、窒化チタン(TiN)、窒化ホウ素(BN)、窒化インジウム(InN)および窒化ガリウム(GaN)からなる群から選択される一種以上の窒化物を含むことが好ましい。
 なかでも、窒化アルミニウム及び窒化珪素はいずれも熱伝導率に優れ、しかも、窒化アルミニウムは熱膨張率が低く、この種の積層体のセラミックス基板として用いることが好適である。また、窒化珪素は、強度が高く、製造時に破損しにくいため、生産性の観点から好ましい。
 窒化物セラミックス基板が窒化アルミニウムもしくは窒化珪素を主成分とする場合、その濃度(窒化アルミニウムの場合、窒素の濃度とアルミニウムの濃度を合計した濃度を窒化アルミニウムの濃度とする。また、窒化珪素の場合、窒素の濃度と珪素の濃度を合計した濃度を窒化珪素の濃度とする。)の下限は、50質量%以上、より好ましくは60質量%以上、より好ましくは70質量%以上とすることができる。また、窒化アルミニウムもしくは窒化珪素の濃度の上限は特に設ける必要は無いが、例えば100質量%以下、99.999質量%以下、99.99質量%以下、99.9質量%以下とすることができる。また、主として窒化アルミニウムからなる窒化物セラミックス基板は、Ca、Y、Oからなる群から選択される一種以上の元素を含有するものであってもよい。ここで、Caを含有する場合は、Ca濃度は0.0001~3質量%とすることができ、また、Yを含有する場合は、Y濃度は0.0001~10質量%とすることができる。また、O濃度は、たとえば0.0001~20質量%、好ましくは0.005~15質量%、より好ましくは0.01~10質量%とすることができる。
 本願において、例えば、Aを「主成分とする」とは、Aを50質量%以上、より好ましくは60質量%以上、より好ましくは70質量%以上であることを意味する。また、窒化物の濃度は、窒素の濃度と、窒化物を構成する窒素以外の元素の濃度との合計の濃度とする。
 このような窒化物セラミックス基板は、優れた熱伝導性を有する一方で、従来から用いられているような純Cu金属層との濡れ性に乏しく、一般に純Cu金属層と直接的に接合することは困難である。
 このことに対し、発明者は以下の検討を行った。
(アルミナと銅との界面状態の検討)
 アルミナ(Al23)製のセラミックス基板は、純Cu金属層と所要の強度で直接接合することが可能である。この理由を検討するため、1000℃の温度条件の下、酸素の量に応じて、アルミナと銅との界面で安定する各物質量の変化をシミュレーションした結果を、図1にグラフで示す。ここで、横軸は酸素の量を示し、縦軸は物質量を規格化した指標を示す。いずれも数値が大きいほど量が多いことを意味する。また、図1上に記載されている「Al23+Cu+<Alpha>*2」は物質量を規格化した指標で表した場合に、Al23が1、Cuが1、O2がAlpha(図1の横軸)で存在する場合の、各物質量をシミュレーションした結果であることを意味する。
 図1に示すところから、アルミナと銅との界面では、酸素の量の増減に伴い、Cu単体及びAl23が減少又は増加する一方で、CuとAl23とで形成される複合酸化物(CuAl23)の量が増加又は減少することが解かり、この複合化合物が、アルミナと銅との密着力を向上させ、それらの接合に寄与していると考えられる。
(窒化アルミニウムと銅との界面状態の検討)
 一方、窒化物セラミックスの代表例としての窒化アルミニウム(AlN)のセラミックス基板は、純Cu金属層と直接的に接合することが難しい。窒化アルミニウムと銅との同様のシミュレーション結果を図2にグラフに示す。
 図2に示すところでは、酸素の量に関わらず、窒化アルミニウムと銅との間では化合物が形成されず、これにより、窒化アルミニウムと銅との接合が困難になると考えられる。
(窒化アルミニウムと銅との間にチタンを介在させた場合の界面状態の検討)
 窒化アルミニウムのセラミックス基板と純Cu金属層との間に、その表面へのスパッタリング等によってチタン接合層を形成した場合は、そのチタン接合層を介して、窒化アルミニウムのセラミックス基板と純Cu金属層とが接合されることになる。この場合の窒化アルミニウムとチタンとの界面状態を同様に図3にグラフで示す。
 図3によれば、窒化アルミニウムとチタンとの界面には、TiNが形成されており、酸素の量が増加するに従って、このTiNの量が増加する。また、酸素の量が増加するにつれて減少するが、窒化アルミニウムとチタンとの界面にはTiAl3も、形成されることになる。チタンを介在させることにより、これらの化合物が形成されて、窒化アルミニウムと銅とが接合されると考えられる。
 以上の検討に基き、発明者は、Cu金属層を、上述したチタンのような、窒化アルミニウムと銅との接合をもたらす元素を銅に含有させた銅合金層とすることにより、銅合金層に含まれる当該元素が、窒化物セラミックス基板との化合物を形成して、銅合金層と窒化物セラミックス基板との接合を実現できると考えた。
 このことを検証するため、Tiを3.1質量%で含有するチタン銅合金(Cu-Ti)と窒化アルミニウムとの界面状態につき、同様のシミュレーションを行ったところ、図4に示す結果を得た。
 図4に示すシミュレーション結果から、チタン銅合金に含まれるTiと、窒化アルミニウムのNでTiNが形成され、これが、チタン銅合金と窒化アルミニウムとの接合に有効に働くと考えられる。
 また発明者は、窒素と結びついて化合物(窒化物)を形成する元素であって、かつ銅合金に含有させることのできる元素を検討し、窒化物を形成する元素であってかつCuに固溶する元素として、Si、Mn、Ni、Ti、Al、Ce、Ga、In、P、As、Sb、Nb、Fe、Li、Be、Mg、Zn、Ge、Cr、Co、B、C、Sn、Mo、Hfがあり、また、窒化物を形成する元素であって、かつCuに固溶はしないかまたはほとんど固溶しないがCuとの状態図が存在する元素(すなわちCuとの化合物が存在する元素)として、Y、Pr、Nd、Sm、Zr、Bi、V、W、Tl、Ca、Sr、Baがあることから、Tiだけでなく、これらの元素を含有する銅合金は、窒化物セラミックス基板と接合される銅合金層に用いることができると考えた。
 この知見により、この発明では、窒化物セラミックス基板の少なくとも一方の表面に接合させる銅合金層が、Si、Mn、Ni、Ti、Al、Ce、Ga、In、P、As、Sb、Nb、Cr、Fe、Li、Be、Mg、Zn、Ge、Co、B、C、Sn、Mo、Y、Pr、Nd、Sm、Zr、Bi、V、W、Tl、Ca、Sr、Ba、Hfから選択される少なくとも一種類の元素を含有するものとすることができる。
 また、銅合金層に含まれる、Si、Mn、Ni、Ti、Al、Ce、Ga、In、P、As、Sb、Nb、Cr、Fe、Li、Be、Mg、Zn、Ge、Co、Mo、B、C、Sn、Y、Pr、Nd、Sm、Zr、Bi、V、W、Tl、Ca、Sr、Ba、Hfから選択される一種類以上の元素の合計の濃度は、窒化物セラミックス基板と銅合金層との接合強度をより適切にするため、0.0001質量%以上であることが好ましく、0.001質量%以上であることが好ましく、0.01質量%以上であることが好ましく、0.5質量%以上であることが好ましく、99.5質量%以下であることが好ましく、95質量%以下であることが好ましく、90質量%以下であることが好ましく、80質量%以下であることが好ましく、70質量%以下であることが好ましく、50質量%以下であることが好ましく、40質量%以下であることが好ましい。
 特に、これらのなかでも、Si、Mn、Ni、Ti、Zr、Ce、Hfは、窒化物セラミックス基板との接合性等の観点から好ましいので、銅合金層は、Si、Mn、Ni、Ti、Zr、Ce、Hfから選択される少なくとも一種類の元素を含有することが好適である。
 たとえば、銅合金層がSiを含有する場合は、そのSi濃度の下限値は、好ましくは0.0001質量%、より好ましくは0.05質量%とし、より好ましくは0.1質量%、より好ましくは0.2質量%とする。また、Si濃度の上限値は、3.0質量%、なかでも2.7質量%とすることが好ましく、特に2.4質量%、さらには2.0質量%がより一層好適である。
 銅合金層がMnを含有する場合は、そのMn濃度の下限値は0.0001質量%、より好ましくは0.05質量%、より好ましくは0.1質量%、より好ましくは0.2質量%とする。Mn濃度の上限値は、好ましくは95質量%、より好ましくは80質量%、より好ましくは50質量%、より好ましくは40質量%、より好ましくは30質量%とする。
 銅合金層がNiを含有する場合は、そのNi濃度の下限値は0.0001質量%、より好ましくは0.05質量%、より好ましくは0.1質量%、より好ましくは0.2質量%とする。Ni濃度の上限値は、好ましくは95質量%、より好ましくは80質量%、より好ましくは50質量%、より好ましくは40質量%、より好ましくは30質量%とする。
 銅合金層がTiを含有する場合は、そのTi濃度の下限値は、好ましくは0.0001質量%、より好ましくは0.05質量%、より好ましくは0.1質量%、より好ましくは0.2質量%とする。Ti濃度の上限値は、好ましくは8.5質量%、より好ましくは8.0質量%、より好ましくは7.7質量%、より好ましくは7.5質量%とする。
 銅合金層がZrを含有する場合は、そのZr濃度は0.0001~8.0質量%とすることができ、好ましくは0.01~7.0質量%、より好ましくは0.05~5.0質量%である。
 銅合金層がCeを含有する場合は、そのCe濃度は、たとえば0.0001~60質量%とすることができ、好ましくは0.001~50質量%、より好ましくは0.01~40質量%、より好ましくは0.01~10質量%、より好ましくは0.01~5質量%とする。
 銅合金層がHfを含有する場合は、そのHf濃度は、たとえば0.0001~20質量%とすることができ、好ましくは0.001~15質量%、より好ましくは0.01~10質量%、より好ましくは0.01~8質量%、より好ましくは0.01~5質量%とする。
 また、銅合金層がSi、Mn、Ni、Ti、Zr、Ce、Hfから選択される二種類以上の元素を含有する場合、当該のSi、Mn、Ni、Ti、Zr、Ce、Hfから選択される二種類以上の元素の合計の濃度は、窒化物セラミックス基板と銅合金層との接合強度をより適切にするため、0.0001~99.5質量%であることが好ましく、0.0005~95質量%であることが好ましく、0.0005~70質量%であることが好ましく、0.0005~50質量%であることが好ましい。
 この積層体では、銅合金層と窒化物セラミックス基板とを接合させることができるので、銅合金層と窒化物セラミックス基板との間には、それらの組成及び酸化物並びに、耐熱層、防錆層、クロメート処理層、シランカップリング処理層とは異なる、たとえばTiのみの層等が存在しなくてもよいことになる。
 それにより、銅合金層と窒化物セラミックス基板との間に他の接合層等を形成するための工程が不要となって、製造工数を減らすことができる。また、接合層等を形成するためのスパッタリング等を行う設備、材料等も不要となって製造コストを小さく抑えることができる。
 なお、この積層体では、銅合金層と窒化物セラミックス基板との間には、銅合金層と窒化物セラミックス基板との接合の程度に大きな悪影響を及ぼさない範囲で、銅合金層と窒化物セラミックス基板からの元素及び/またはその酸化物並びに、粗化処理層、耐熱層、防錆層、クロメート処理層、シランカップリング処理層等が存在してもよい。
 銅合金層と窒化物セラミックス基板との間に、粗化処理層、耐熱層、防錆層、クロメート処理層、シランカップリング処理層の群から選択される一つ以上の層が存在する場合は、その粗化処理層、耐熱層、防錆層、クロメート処理層、シランカップリング処理層の群から選択される一つ以上の層の厚みは合計0.7μm以下、好ましくは0.5μm以下とすることができる。また、銅合金層と窒化物セラミックス基板との間に、粗化処理層、耐熱層、防錆層、クロメート処理層、シランカップリング処理層の群から選択される一つ以上の層が存在する場合は、その粗化処理層、耐熱層、防錆層、クロメート処理層、シランカップリング処理層の群から選択される一つ以上の層の合計付着量は70000μg/dm2以下、好ましくは40000μg/dm2以下、好ましくは20000μg/dm2以下、好ましくは10000μg/dm2以下、好ましくは5000μg/dm2以下とすることができる。かかる層がこの程度の厚みまたは付着量であれば、銅合金層と窒化物セラミックス層との接合には悪影響を及ぼさない。
 また発明者は、窒化アルミニウムから窒素を奪って窒化物を形成し得る元素を、銅合金層に含有させることにより、窒化物セラミックス基板との強固な接合を実現できるとの考えの下、窒化物のエリンガムダイアグラムを用いて、たとえば窒化アルミニウムを基準とし、生成ギブスエネルギーが低く窒化物として安定するCe、Ti、Zr、Hfが有効であると考えた。
 この観点からは、銅合金層が、Ce、Ti、Zr、Hfから選択される少なくとも一種類の元素を含有することが好ましい。
 このような窒化物セラミックス基板と銅合金層とが互いに積層されてなる積層体は、銅合金層と窒化物セラミックス基板との剥離強度を15kN/m以上とすることができ、これにより、たとえばパワーデバイス等に有効に用いることができる。この剥離強度は20kN/m以上であることが好ましく、さらには30kN/m以上であることがより好ましい。
 なお、このような積層体では、たとえば、銅合金層の厚みを、0.01μm~7000μmとすることができ、または、0.1μm~7000μmとすることができ、または、1μm~7000μmとすることができる。銅合金層の厚みは、5μm以上2000μm以下とすることが好ましく、より好ましくは10μm以上1500μm以下、より好ましくは20μm以上1200μm以下、より好ましくは50μm以上1100μm以下、より好ましくは100μm以上1050μm以下、好ましくは200μm以上1000μm以下とする。
 また、前記窒化物セラミックス基板の厚みは、1μm~15000μm、1μm~7000μmとすることができ、好ましくは5μm以上2000μm以下、より好ましくは10μm以上1500μm以下、より好ましくは20μm以上1200μm以下、より好ましくは50μm以上1100μm以下、より好ましくは100μm以上1050μm以下、より好ましくは200μm以上1000μm以下とすることができる。
 また、より強固な接合を実現するとの観点から、銅合金層の、少なくとも窒化物セラミックス基板との接合表面(すなわち、銅合金層の窒化物セラミックス基板に積層する側の表面)の表面粗さRaは、0.30μm以下とすることができ、好ましくは0.25μm以下、より好ましくは0.20μm以下、より好ましくは0.15μm以下とする。この表面粗さRaの下限の好ましい値は特にないが、たとえば、0.001μm以上、0.005μm以上、0.007μm以上とすることができる。
 銅合金層の上記表面粗さは、たとえば、圧延ロールの表面粗さ及び/又は圧延時の油膜当量を制御して冷間圧延をすることによって調整することが可能である。
 窒化物セラミックス基板の、少なくとも銅合金層との接合表面(すなわち、窒化物セラミックス基板の銅合金層を積層する側の表面)の表面粗さRaは、3.0μm以下とすることができ、好ましくは2.5μm以下、より好ましくは2.0μm以下、より好ましくは1.7μm以下、より好ましくは1.5μm以下とする。
 この窒化物セラミックス基板の表面粗さは、ショットブラスト等によって調整可能である。
 この発明の実施形態の放熱体、パワーデバイス、素子、電子部品、電子機器は、上述したような積層体を有するものである。なおここで、放熱体は放熱機能を有する物体であり、放熱板、ヒートシンク、放熱機能を有する半導体素子や、放熱機能を有する素子等を含む。また、放熱体はどのような形状を有してもよい。例えば放熱体は帯、板、箔、条、線、棒、直方体、立方体、円錐、円筒、曲線、回路、配線、多角形、四角、円形、平面または曲面あるいは平面と曲面で構成される形状等の形状を有していてもよい。
 そして、この発明の実施形態の車両は、上記のパワーデバイスまたは素子または電子部品を有するものである。
 以上に述べた積層体を製造することのできる方法の一例は以下のとおりである。
 はじめに、Cuを含有し、Si、Mn、Ni、Ti、Al、Ce、Ga、In、P、As、Sb、Nb、Cr、Fe、Li、Be、Mg、Zn、Ge、Co、Mo、B、C、Sn、Y、Pr、Nd、Sm、Zr、Bi、V、W、Tl、Ca、Sr、Ba、Hfから選択される少なくとも一種類の元素を含有する銅合金層、及び、窒化アルミニウムもしくは窒化珪素その他の窒化物セラミックス基板をそれぞれ用意する。なお、銅合金層の導電率や熱伝導率をより良好なものとすることができるため、銅合金層に含まれるCuは主成分であることが好ましい。
 この場合、銅合金層は、上記の元素のなかでも、先述したように、銅合金として安定し、かつ窒化物セラミックスとの強固な直接接合を実現できるSi、Mn、Ni、Ti、Zr、Ce、Hfから選択される少なくとも一種類の元素を含有することが好ましい。
 次いで、窒化物セラミックス基板の少なくとも一方の表面、一般には両面に、上記の銅合金層を、それらの酸化物や防錆層等を除く他の組成の層の介在なしに、熱圧着により接合させる。
 ここでは、温度条件を、好ましくは800~1000℃、より好ましくは850~950℃とし、互いに重ね合せた窒化物セラミックス基板と銅合金層を挟んで両側から、好ましくは0.6N/mm2~1.5N/mm2の圧力を作用させて、それらの窒化物セラミックス基板と銅合金層とを相互に、固相接合等によって接合する。上記の圧力は、たとえば、0.083時間~5時間、好ましくは0.167時間~4時間、より好ましくは0.5~3時間にわたって作用させることができる。
 またここでの接合は、窒素もしくはアルゴン雰囲気中または真空中で行うことが好ましい。ここでいう真空中とは、周囲の圧力が5.0×10-3Torr以下、好ましくは7.0×10-4Torr以下、より好ましくは3.0×10-4Torr以下、より好ましくは5.0×10-5Torr以下の圧力である条件をいう。
 このことによれば、たとえば、銅合金層と窒化物セラミックス基板との界面で、銅合金層に含まれる上記の元素が、窒化物セラミックス基板の元素との化合物を形成すること等により、銅合金層と窒化物セラミックス基板とが所要の強度で十分強固に接合されることになる。
 その結果として、蒸着、スパッタリング、めっきその他の処理を施すことなしに、銅合金層と窒化物セラミックス基板を接合できるので、そのような処理を施す工程を経ることに起因する工数の増大を有効に防止することができ、積層体を安価にして容易に製造することができる。なお、蒸着、スパッタリング、めっきその他の処理を銅合金層または窒化物セラミックス基板に行ってもよい。
 ここで、熱圧着時の温度が低すぎると、接合不良となるおそれがあり、この一方で、温度が高すぎると、銅合金層が溶融し、損傷する可能性がある。また、重ね合せた窒化物セラミックス基板と銅合金層に作用される圧力が低すぎると、接合不良となり、また、当該圧力が高すぎると窒化物セラミックス基板または銅合金層が損傷する場合がある。
 なお、銅合金層はどのような形状を有していてもよい。例えば銅合金層は帯、板、箔、条、線、棒、直方体、立方体、円錐、円筒、曲線、回路、配線、多角形、四角、円形、平面または曲面あるいは平面と曲面で構成される形状等の形状を有していてもよい。
 なお、本発明に係る銅合金層は、銅合金板や銅合金箔であることが好ましい。また本発明に係る銅合金層は、圧延加工により製造された圧延銅合金板、圧延銅合金箔や、電解めっきや無電解めっき等の湿式めっきにより形成された、電解銅合金板、電解銅合金箔であることが好ましい。銅合金板や銅合金箔を用いることで、窒化物セラミックス基板へスパッタリング等の方法により、銅合金層を形成するよりも、生産性が高く、製造コストを低減することができる。
 次に、この発明の積層体を試作し、その性能を評価したので以下に説明する。但し、ここでの説明は単なる例示を目的とするものであって、それに限定されることを意図するものではない。
(製造条件)
 表1、表2に示す組成及び形態、厚みの銅合金層を、同表に示す組成の窒化物セラミックス基板に重ね合わせ、0.98N/mm2の圧力を作用させて窒素中(圧力:760Torr)またはアルゴン中(圧力:760Torr)または真空中(圧力:3.0×10-4Torr)で830℃の温度で10分間にわたって加熱して積層させた。
 実施例14、16、40は窒素中にて上記加熱・積層を行い、実施例15はアルゴン中にて上記加熱・積層を行い、実施例14~16及び40以外は真空中にて上記加熱・積層を行った。
(圧延箔)
 なお、圧延箔は表1、表2に記載の組成となるように成分を調整した後に、溶解・鋳造を行ってインゴットを製造した後に、表1、表2の板厚となるまで焼鈍と圧延を繰り返し行うことで製造した。
(電解箔)
 また、電解箔は電解槽とチタン製の陰極回転ドラムとドラムの周囲に5mm程度の極間距離を置いて電極(アノード)を配置した電解箔製造装置を用いて、以下の条件で表1、表2の記載の厚みとなるまで電気めっきによる析出を行って製造した。
 実施例6、32の電解箔は下記の条件で製造した。
<めっき液組成>
NaCN:10~30g/L
NaOH:40~100g/L
CuCN:60~120g/L
Zn(CN)2:5~40g/L
<めっき条件>
めっき液温度:60~80℃
電流密度:1~10A/dm2
pH:10~13
 実施例9、35の電解箔は下記の条件で製造した。
<めっき液組成>
銅濃度:60~120g/L
ニッケル濃度:1~10g/L
<めっき条件>
めっき液温度:45~80℃
電流密度:1~10A/dm2
pH:1~4
 比較例2の電解箔は下記の条件で製造した。
<めっき液組成>
銅濃度:80~100g/L
硫酸濃度:70~90g/L
<めっき条件>
めっき液温度:45~65℃
電流密度:50~70A/dm2
(防錆層、クロメート処理層の形成方法)
 なお、実施例46については、銅合金層の窒化物セラミックス基板に積層される側の表面に以下の条件で防錆処理を行い、防錆層を形成した銅合金層を用いた。形成された防錆皮膜の厚みは50~500Åである。
<防錆処理液>
ベンゾトリアゾール0.1質量%
ベンゾトリアゾール・モノエタノールアミン塩0.2質量%
イソプロピルアルコール10質量%
残部水
<防錆処理条件>
防錆処理液温度:30℃
処理(浸漬)時間:60秒
 また、実施例47については、銅合金層の窒化物セラミックス基板に積層される側の表面に以下の条件で防錆層を形成した後、クロメート処理層を形成した銅合金層を用いた。
<防錆層>
・めっき液
Zn:5~50g/L
Ni:5~50g/L
・めっき条件
pH:2.5~4
温度:30~60℃
電流密度:0.5~5A/dm2
めっき時間:6~60秒
・付着量
Zn:300~1500μg/dm2
Ni:300~1500μg/dm2
<クロメート処理層>
・クロメート処理液
2Cr27:2~10g/L
NaOH:10~50g/L
ZnSO4 ・7H2O:0.05~10g/L
・クロメート処理条件
pH:7~13
浴温:20~80℃
電流密度:0.05~5 A/dm2
時間:5~50秒
・付着量
Cr付着量:15~100μg/dm2
Zn付着量:30~200μg/dm2
(窒化物セラミックス基板)
 実施例1~20、44~55及び、比較例1~8のそれぞれで銅合金層に積層させた窒化物セラミックスとしてのAlNは、一般に市販されているものを用いた。
 実施例21~23、31~33、41~43のそれぞれで銅合金層に積層させた窒化物セラミックスとしてのAlNは下記のものを用いた。
 平均粒径1.4μmのAlN粉末に、Yを含む実施例においては、Y源として平均粒径0.8μmのY23粉末を用い、Caを含む実施例においてはCa源として平均粒径1.8μmのCaO粉末を用い、表2に記載のY濃度、Ca濃度となるように、Y23粉末とCaO粉末を添加し、また実施例43においては表2のO濃度となるように平均粒径1.5μmのA23粉末を添加し、ボールミルを用いて粉砕、混合して原料調整した。
 次ぎにこの原料にパラフィンワックス6重量%を添加して造粒した後、1000kg/cm2の圧力でプレス成形し、45mm×45mm×3mmの圧粉体とした。この圧粉体を窒素ガス雰囲気中で、まず300℃まで加熱して脱脂した。
 その後、前記脱脂済み圧粉体をカーボン型中に収納し、窒素ガス雰囲気中、1800℃で0.5時間常圧焼結することでAlNを主体とした窒化物セラミックス基板を製造した。
 実施例24~30及び34~40のそれぞれで銅合金層に積層させた窒化物セラミックスとしてのTiC・TiN(サーメット)、TiN、Si34、BN、BN・SiC、InN、GaNとしてはそれぞれ下記のものを用いた。なお、必要に応じて研磨等を行い厚みを調節した。
 TiC・TiN(サーメット)、Si34、BN、BN・SiC、GaNについてはそれぞれ、一般に市販されているものを用いた。
 TiNについては、純チタンの板(Ti濃度99質量%以上)を、1vol%の水素を含んだ窒素中で1000℃で加熱することで作製した。
 InNについては、下記(1)~(6)に記載した手順に従って製造して窒化インジウムを得た。
(1)サファイア基板を有機洗浄し、基板の昇温性を改善するために裏面に高融点金属モリブデンを蒸着したサファイア基板を、真空に保たれているMBE成長室内の基板ヒーターに設置する。そして、基板を800℃程度まで昇温して、そのまま30分間保持し、サファイア基板表面の高温クリーニングを行う。その後、同温度で基板にRFプラズマで窒素ガスを分解して得た窒素ラジカルを照射してサファイア基板表面を30分間窒化し、表面に薄い窒化アルミニウムを形成する。
(2)RFプラズマセルのシャッターを閉じて基板表面への窒素ラジカルの照射を中断し、基板温度を350℃まで降温する。
(3)その後、GaセルとRFプラズマセルのシャッターを同時に開けて、GaNバッファ層を膜厚20nmとなるまで成長させる。
(4)Gaセルのシャッターを閉じると同時にInセルのシャッターを開き、基板温度350℃のままで、InNバッファ層を膜厚10nmとなるまで成長させる。
(5)InNバッファ層の成長終了後、Inセルのシャッターを閉じ、RFプラズマセルのシャッターを開け、窒素ラジカルだけを試料表面に照射しつづけながら基板を470℃に昇温する。
(6)基板温度が470℃に達したらInセルのシャッターを開き、基板温度470℃でInN層を膜厚2000nmとなるまで成長させる。
(各濃度の測定方法)
 なお、以上に述べた実施例及び比較例において、銅合金層および窒化物セラミックス基板中の各元素の濃度は、銅合金層または窒化物セラミックス基板を切断または粉砕した後、一般的に銅合金層または窒化物セラミックス基板を溶かすために用いられる液(例えば硝酸、フッ酸、塩酸またはこれらを混合した酸等)を用いて溶解を行った後に、原子吸光法により定量することができる。また、銅合金層および窒化物セラミックス基板中の酸素濃度、窒素濃度については、銅合金層または窒化物セラミックス基板を切断または粉砕し、LECO社製のO/N同時分析計(TC-300、TC-400、TC-436、TC-500等)にて定量することができる。酸素濃度、窒素濃度が高い場合には、測定する試料の量を少なく(例えば0.01~0.1g等)して、酸素濃度、窒素濃度を測定すると良い。
(剥離強度の評価方法)
 このようにして作製した積層体で銅合金層と窒化物セラミックス基板の接合強度を評価するためにピ-ル強度試験を行った。ピ-ル強度試験は、銅板の一端部が基板の外部に5mm程度突出するように、また、接合面積を10mm×10mmとして接合し、これを50mm/minの速度で90度上方に引張り上げるのに要する単位幅当りの力(剥離強度)を算出し、評価した。この結果を表1に示す。
 ここで剥離強度は、10kN/m未満の場合は不良品であり、10kN/m以上15kN/m未満の場合は一般的な大きさの強度であると評価する。また、剥離強度が15kN/m以上20kN/m未満の場合は、積層体として用いるに適しており、20kN/m以上30kN/m未満の場合はより良く、さらに、30kN/m以上の場合はさらに良いと考えられる。
 なお、銅合金層の厚みが0.15mmよりも小さい比較例、実施例については、銅めっきをして厚みを厚くして0.15mmとした後に、上記ピール強度を測定した。また、銅合金層の厚みが0.15mmよりも大きい比較例、実施例についてはエッチングにより銅合金層の厚みを薄くして0.15mmとした後に、上記ピール強度を測定した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び表2に示すところから、所定の元素を含有する銅合金層とした実施例1~55では、15kN/m以上の剥離強度が発揮されていることから、銅合金層と窒化物セラミックス基板とが十分に接合されていることが解かる。一方、所定の元素を含有しない銅合金層とした比較例1~8では、銅合金層が窒化物セラミックス基板とそもそも接合しなかった。
 従って、実施例1~55のような銅合金層は、窒化物セラミックス基板と積層させて、パワーデバイス等の積層体に用いることができることが解った。

Claims (17)

  1.  窒化物セラミックス基板と、該窒化物セラミックス基板の少なくとも一方の表面に積層された銅合金層とを有し、前記銅合金層が、Si、Mn、Ni、Ti、Al、Ce、Ga、In、P、As、Sb、Nb、Cr、Fe、Li、Be、Mg、Zn、Ge、Co、Mo、B、C、Sn、Y、Pr、Nd、Sm、Zr、Bi、V、W、Tl、Ca、Sr、Ba、Hfから選択される少なくとも一種類の元素を含有する、積層体。
  2.  前記銅合金層が銅合金板または銅合金箔からなる、請求項1に記載の積層体。
  3.  前記銅合金層が、Si、Mn、Ni、Ti、Zr、Ce、Hfから選択される少なくとも一種類の元素を含有し、該銅合金層が、Siを含有する場合はSi濃度が0.0001~3.0質量%であり、Mnを含有する場合はMn濃度が0.0001~95質量%あり、Niを含有する場合はNi濃度が0.0001~95質量%であり、Tiを含有する場合はTi濃度が0.0001~8.5質量%であり、Zrを含有する場合はZr濃度が0.0001~8.0 質量%であり、Ceを含有する場合はCe濃度が0.0001~60質量%であり、Hfを含有する場合はHf濃度が0.0001~20質量%である、請求項1又は2に記載の積層体。
  4.  前記窒化物セラミックス基板が、窒化アルミニウム、窒化珪素、窒化チタン、窒化ホウ素、窒化インジウム又は窒化ガリウムを主成分とし、あるいは、炭化チタンと窒化チタンとの複合材料、又は、窒化ホウ素と炭化ケイ素との複合材料を主成分としてなる、請求項1~3のいずれか一項に記載の積層体。
  5.  窒化アルミニウムを主成分とする前記窒化物セラミックス基板が、Ca、Y、Oからなる群から選択される一種以上の元素を含有し、Caを含む場合には、Ca濃度は0.0001~3質量%であり、Yを含む場合にはY濃度は0.0001~10質量%であり、Oを含む場合には、O濃度は0.0001~20質量%である、請求項4に記載の積層体。
  6.  前記窒化物セラミックス基板のO含有濃度が0.0001~20質量%である、請求項1~4のいずれか一項に記載の積層体。
  7.  前記銅合金層の厚みを、1μm~7000μmとし、前記窒化物セラミックス基板の厚みを、1μm~7000μmとしてなる、請求項1~6のいずれか一項に記載の積層体。
  8.  前記銅合金層と前記窒化物セラミックス基板との剥離強度が15kN/m以上である、請求項1~7のいずれか一項に記載の積層体。
  9.  請求項1~8のいずれか一項に記載の積層体を有する放熱体。
  10.  請求項1~8のいずれか一項に記載の積層体を有するパワーデバイス。
  11.  請求項1~8のいずれか一項に記載の積層体を有する素子。
  12.  請求項1~8のいずれか一項に記載の積層体を有する電子部品。
  13.  請求項1~8のいずれか一項に記載の積層体を有する電子機器。
  14.  請求項10に記載のパワーデバイスまたは請求項11に記載の素子または請求項12に記載の電子部品を有する車両。
  15.  銅合金層と窒化物セラミックス基板との積層体を製造するに当り、前記銅合金層が、Si、Mn、Ni、Ti、Al、Ce、Ga、In、P、As、Sb、Nb、Cr、Fe、Li、Be、Mg、Zn、Ge、Co、Mo、B、C、Sn、Y、Pr、Nd、Sm、Zr、Bi、V、W、Tl、Ca、Sr、Ba、Hfから選択される少なくとも一種類の元素を含有するものとし、窒化物セラミックス基板の少なくとも一方の表面に、前記銅合金層を、熱圧着により積層させる、積層体の製造方法。
  16.  前記銅合金層が、Si、Mn、Ni、Ti、Zr、Ce、Hfから選択される少なくとも一種類の元素を含有し、該銅合金層が、Siを含有する場合はSi濃度が0.0001~3.0質量%であり、Mnを含有する場合はMn濃度が0.0001~95質量%あり、Niを含有する場合はNi濃度が0.0001~95質量%であり、Tiを含有する場合はTi濃度が0.0001~8.5質量%であり、Zrを含有する場合はZr濃度が0.0001~8.0質量%であり、Ceを含有する場合はCe濃度が0.0001~60質量%であり、Hfを含有する場合はHf濃度が0.0001~20質量%である、請求項15に記載の積層体の製造方法。
  17.  前記銅合金層と前記窒化物セラミックス基板とを接合するに際し、窒素もしくはアルゴン雰囲気中または真空中で、800~1000℃の温度の下、0.6N/mm2~1.5N/mm2の圧力を作用させることにより、前記銅合金層と前記窒化物セラミックス基板とを接合する、請求項15又は16に記載の積層体の製造方法。
PCT/JP2015/058555 2014-03-20 2015-03-20 積層体及び、その製造方法 WO2015141839A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016508828A JP6038389B2 (ja) 2014-03-20 2015-03-20 積層体及び、その製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-058384 2014-03-20
JP2014058384 2014-03-20

Publications (1)

Publication Number Publication Date
WO2015141839A1 true WO2015141839A1 (ja) 2015-09-24

Family

ID=54144800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058555 WO2015141839A1 (ja) 2014-03-20 2015-03-20 積層体及び、その製造方法

Country Status (3)

Country Link
JP (2) JP6038389B2 (ja)
TW (1) TW201601903A (ja)
WO (1) WO2015141839A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105624454A (zh) * 2016-02-02 2016-06-01 王增琪 一种高强度高过滤通量合金构件的制备方法
WO2018159590A1 (ja) * 2017-02-28 2018-09-07 三菱マテリアル株式会社 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
JP2018140929A (ja) * 2017-02-28 2018-09-13 三菱マテリアル株式会社 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
JP2020001390A (ja) * 2018-06-27 2020-01-09 ベイパー テクノロジーズ、インコーポレイテッド 銅系の抗菌性pvdコーティング
WO2020045403A1 (ja) * 2018-08-28 2020-03-05 三菱マテリアル株式会社 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、及び、絶縁回路基板の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201601903A (zh) * 2014-03-20 2016-01-16 Jx Nippon Mining & Metals Corp 積層體及其製造方法
CN107868656A (zh) * 2016-09-26 2018-04-03 罗宇晴 导热铝料的组成物及其制造方法
JP6526888B1 (ja) * 2018-08-01 2019-06-05 Jx金属株式会社 セラミックス層と銅粉ペースト焼結体の積層体
EP4071128B1 (en) * 2019-12-02 2024-03-27 Mitsubishi Materials Corporation Copper/ceramic bonded body, insulating circuit board, method for producing copper/ceramic bonded body, and method for producing insulating circuit board
CN112359247B (zh) * 2020-11-16 2021-11-09 福州大学 一种Cu-Hf-Si-Ni-Ce铜合金材料及其制备方法
CN115124362B (zh) * 2022-06-20 2023-07-18 昆明冶金研究院有限公司北京分公司 陶瓷覆铜板及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6484648A (en) * 1987-09-28 1989-03-29 Kyocera Corp Aluminum nitride substrate for semiconductor device
JPH04163946A (ja) * 1990-10-29 1992-06-09 Toshiba Corp セラミック回路基板
JPH05171317A (ja) * 1991-12-17 1993-07-09 Tokin Corp AlN基板メタライズ材料
JPH10247698A (ja) * 1997-03-04 1998-09-14 Sumitomo Kinzoku Electro Device:Kk 絶縁性放熱板

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4237459B2 (ja) * 2002-09-26 2009-03-11 Dowaホールディングス株式会社 金属−セラミックス接合体の製造方法
TW201601903A (zh) * 2014-03-20 2016-01-16 Jx Nippon Mining & Metals Corp 積層體及其製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6484648A (en) * 1987-09-28 1989-03-29 Kyocera Corp Aluminum nitride substrate for semiconductor device
JPH04163946A (ja) * 1990-10-29 1992-06-09 Toshiba Corp セラミック回路基板
JPH05171317A (ja) * 1991-12-17 1993-07-09 Tokin Corp AlN基板メタライズ材料
JPH10247698A (ja) * 1997-03-04 1998-09-14 Sumitomo Kinzoku Electro Device:Kk 絶縁性放熱板

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105624454A (zh) * 2016-02-02 2016-06-01 王增琪 一种高强度高过滤通量合金构件的制备方法
KR102459745B1 (ko) 2017-02-28 2022-10-26 미쓰비시 마테리알 가부시키가이샤 구리/세라믹스 접합체, 절연 회로 기판, 및, 구리/세라믹스 접합체의 제조 방법, 절연 회로 기판의 제조 방법
WO2018159590A1 (ja) * 2017-02-28 2018-09-07 三菱マテリアル株式会社 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
JP2018140929A (ja) * 2017-02-28 2018-09-13 三菱マテリアル株式会社 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
KR20190123727A (ko) * 2017-02-28 2019-11-01 미쓰비시 마테리알 가부시키가이샤 구리/세라믹스 접합체, 절연 회로 기판, 및, 구리/세라믹스 접합체의 제조 방법, 절연 회로 기판의 제조 방법
US10818585B2 (en) 2017-02-28 2020-10-27 Mitsubishi Materials Corporation Copper/ceramic joined body, insulated circuit board, method for producing copper/ceramic joined body, and method for producing insulated circuit board
JP2020001390A (ja) * 2018-06-27 2020-01-09 ベイパー テクノロジーズ、インコーポレイテッド 銅系の抗菌性pvdコーティング
JP7409791B2 (ja) 2018-06-27 2024-01-09 ベイパー テクノロジーズ、インコーポレイテッド 銅系の抗菌性pvdコーティング
WO2020044594A1 (ja) * 2018-08-28 2020-03-05 三菱マテリアル株式会社 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、及び、絶縁回路基板の製造方法
JPWO2020045403A1 (ja) * 2018-08-28 2021-08-12 三菱マテリアル株式会社 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、及び、絶縁回路基板の製造方法
JP7008188B2 (ja) 2018-08-28 2022-01-25 三菱マテリアル株式会社 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、及び、絶縁回路基板の製造方法
CN112654593A (zh) * 2018-08-28 2021-04-13 三菱综合材料株式会社 铜-陶瓷接合体、绝缘电路基板、铜-陶瓷接合体的制造方法及绝缘电路基板的制造方法
CN112654593B (zh) * 2018-08-28 2022-11-11 三菱综合材料株式会社 铜-陶瓷接合体、绝缘电路基板、铜-陶瓷接合体的制造方法及绝缘电路基板的制造方法
WO2020045403A1 (ja) * 2018-08-28 2020-03-05 三菱マテリアル株式会社 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、及び、絶縁回路基板の製造方法

Also Published As

Publication number Publication date
TW201601903A (zh) 2016-01-16
JPWO2015141839A1 (ja) 2017-04-13
JP6038389B2 (ja) 2016-12-07
JP6511424B2 (ja) 2019-05-15
JP2017043101A (ja) 2017-03-02

Similar Documents

Publication Publication Date Title
JP6038389B2 (ja) 積層体及び、その製造方法
JP5698947B2 (ja) 電子機器用放熱板およびその製造方法
JP5517196B2 (ja) 超電導化合物用基板及びその製造方法
US10497637B2 (en) Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink
EP2455949B1 (en) Metal laminated substrate for use as an oxide superconducting wire material, and manufacturing method therefor
JP6734033B2 (ja) 無酸素銅板、無酸素銅板の製造方法およびセラミック配線基板
JP5828014B2 (ja) 半導体素子形成用金属積層基板の製造方法及び半導体素子形成用金属積層基板
WO2009139472A1 (ja) パワーモジュール用基板、パワーモジュール、及びパワーモジュール用基板の製造方法
US20090078570A1 (en) Target/backing plate constructions, and methods of forming target/backing plate constructions
TW201541570A (zh) 接合體、電源模組用基板、電源模組及接合體之製造方法
EP3279936A1 (en) Method for manufacturing substrate for power module with heat sink
JP5030633B2 (ja) Cr−Cu合金板、半導体用放熱板及び半導体用放熱部品
JP6244142B2 (ja) 超電導線材用基板及びその製造方法、並びに超電導線材
JP2012144767A (ja) 複合部材、放熱部材、半導体装置、及び複合部材の製造方法
TW201617300A (zh) 陶瓷/鋁接合體之製造方法、電源模組用基板之製造方法及陶瓷/鋁接合體、電源模組用基板
JP5606920B2 (ja) エピタキシャル成長膜形成用高分子積層基板およびその製造方法
JP4840173B2 (ja) 熱欠陥発生がなくかつ密着性に優れた液晶表示装置用積層配線および積層電極並びにそれらの形成方法
JP5918920B2 (ja) 超電導化合物用基板及びその製造方法
CN116705752A (zh) 高循环性能陶瓷覆金属板及其制备方法和芯片散热模块
JP2011082350A (ja) 電子機器用放熱基板部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15765247

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2016508828

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 15765247

Country of ref document: EP

Kind code of ref document: A1