WO2015139436A1 - 一种高解析度有机发光二极管显示器件及制造用掩膜板 - Google Patents

一种高解析度有机发光二极管显示器件及制造用掩膜板 Download PDF

Info

Publication number
WO2015139436A1
WO2015139436A1 PCT/CN2014/086935 CN2014086935W WO2015139436A1 WO 2015139436 A1 WO2015139436 A1 WO 2015139436A1 CN 2014086935 W CN2014086935 W CN 2014086935W WO 2015139436 A1 WO2015139436 A1 WO 2015139436A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixels
sub
pixel
mask
display device
Prior art date
Application number
PCT/CN2014/086935
Other languages
English (en)
French (fr)
Inventor
田朝勇
郎丰伟
Original Assignee
四川虹视显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川虹视显示技术有限公司 filed Critical 四川虹视显示技术有限公司
Publication of WO2015139436A1 publication Critical patent/WO2015139436A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels

Definitions

  • the present invention relates to the field of organic light emitting diode (OLED) display technology, and relates to a pixel arrangement structure of an OLED display panel, and in particular to a high resolution organic light emitting diode display device panel structure and a mask for manufacturing the OLED panel.
  • OLED organic light emitting diode
  • OLED displays are recognized by the industry as being behind liquid crystal displays (LCDs) because of their thinness, active illumination, fast response speed, wide viewing angle, rich color and high brightness, low power consumption, high temperature resistance and many other advantages.
  • LCDs liquid crystal displays
  • the third generation display technology can be widely used in terminal products such as smartphones, tablets, and televisions.
  • recent personal mobile products such as smart phones on the market have put forward higher and higher resolution requirements on the display screen.
  • the screen resolution ie, pixel density
  • the arrangement of the illuminating pixels generally adopts an RGB strip arrangement similar to that of the LCD, as shown in a of FIG.
  • the arrangement requires evaporation of the organic luminescent material.
  • the opening of the fine metal mask (FMM) and the connecting bridge (ribs connecting the adjacent openings) are very small, so that not only the masking (MASK) processing is very difficult, but also MASK alignment accuracy, MASK shadow, MASK deformation Other factors will seriously affect the evaporation of the organic light-emitting material to form a fine colored pixel pattern.
  • the object of the present invention is to solve the problem that the existing OLED display pixel arrangement structure is difficult to make a high-resolution OLED due to problems such as processing difficulty and alignment accuracy of the mask when using the existing manufacturing process.
  • the panel proposes a high-resolution OLED device that can reduce the processing precision of the mask and a mask dedicated to the fabrication of the OLED device.
  • the technical solution of the present invention is: a high-resolution organic light-emitting diode display device comprising a pixel group arranged in a matrix, a single pixel group comprising four pixels, and the single pixel includes red, green and blue three-color sub-pixels Pixels; red, green, and blue three-color sub-pixels are arranged in a shape of a pixel, and the red, green, and blue sub-pixels of adjacent pixels in the pixel group are off. Symmetrical to the common edge of the pixel.
  • pixels in the pixel group are arranged in a field shape, and four pixels in the pixel group are symmetric with respect to a common edge of the pixel.
  • sub-pixels of the same color are arranged in a field shape every four groups.
  • red, green, and blue color sub-pixels are equal in area in a single pixel.
  • the area ratios of the red, green and blue sub-pixels in a single pixel may also be determined by the luminous efficiency and driving conditions of the respective luminescent materials.
  • the spacing between adjacent pixel groups is equal to the spacing between pixels in the pixel group.
  • the red, green and blue sub-pixels in the pixel are all rectangular regions, and the sum of the widths of the two sub-pixels arranged in the longitudinal direction is consistent with the length of the laterally arranged sub-pixels.
  • a pitch between two sub-pixels vertically arranged in the pixel is equal to a pitch between two sub-pixels vertically arranged between adjacent pixels.
  • a high-resolution organic light-emitting diode display device manufacturing mask comprising an opening and a bridge, the opening is identical to a region composed of all adjacent sub-pixels of the same color, and the bridge corresponds to all non-opening corresponding color
  • the area composed of pixels is consistent.
  • the opening corresponds to at least four sub-pixels.
  • the high-resolution organic light-emitting diode display device of the present invention has a "pin" shape in accordance with red, green, and blue light-emitting sub-pixels, and sub-pixels of the same color are arranged in a "field" shape every four groups. Pixel arrangement.
  • the preparation method is based on the mature FMM technology in the industry, but due to the aforementioned special pixel arrangement, the MASK used for vapor-depositing the organic light-emitting material adopts a mesh-like design, and each opening corresponds to four sub-pixels.
  • the same size of the MASK opening and the connection bridge are larger, which can reduce the requirements of the process technology, and is beneficial to improve the product yield; more importantly, the size of the MASK opening and connecting bridge Compared with the prior art, the technical solution of the present invention can produce a higher resolution OLED display screen, reaching nearly 600 ppi. Therefore, the invention can prepare a high-resolution OLED display screen based on the mature FMM technology in the industry, or, in the case of the same resolution, can reduce the requirements on the MASK processing and the OLED display process process, and is beneficial to improving the product yield.
  • the present invention has 1/3 more sub-pixels than PenTile RGB in the same display size, the same number of pixels, the same production technology and production process conditions as compared with the PenTile RGB technology.
  • the invention has no color distortion, edge sawtooth and image grid or particle phenomenon, and the display of fine content is clear, and the MASK shadow is only 50% of PenTile RGB; and the invention compares with PenTile RGB at the same resolution to make the same resolution.
  • the MASK difficulty and the requirement for MASK alignment accuracy are significantly reduced, and the aperture ratio is improved.
  • the highest resolution of the present invention is significantly improved under the same production process and technical conditions, and the image driving of the present invention is still a general driving method, Need special correction algorithm.
  • a and b are two existing OLED sub-pixel arrangement modes
  • FIG. 2 is a schematic structural diagram of a high-resolution OLED device according to an embodiment of the present invention.
  • FIG. 3 is a schematic view showing the structure of a mask used for vapor-depositing a color of the OLED device shown in FIG. 2;
  • FIG. 4 is a schematic view showing the structure of a mask used for vapor-depositing a color of the OLED device shown in FIG. 2;
  • FIG. 5 is a schematic structural view of a mask used for vapor-depositing a color of the OLED device shown in FIG. 2;
  • Figure 6 is a schematic view of evaporation
  • a high-resolution organic light-emitting diode display device of the present embodiment includes a pixel group 1 arranged in a matrix, a single pixel group 1 includes four pixels 2, and a single pixel 2 includes red, green, and blue.
  • the three-color sub-pixels; the red, green, and blue three-color sub-pixels are arranged in a shape of a pixel, and the red, green, and blue three-color sub-pixels of adjacent pixels in the pixel group are symmetric with respect to a common edge of the pixel.
  • the red, green, and blue three-color sub-pixel area ratios in a single pixel 2 are determined by the luminous efficiency and driving conditions of the respective luminescent materials.
  • the red, green, and blue color sub-pixel areas in a single pixel 2 may be equal.
  • the pitch between adjacent pixel groups 1 is equal to the pitch between pixels 2 in pixel group 1.
  • the red, green, and blue sub-pixels in the pixel 2 are all rectangular regions, and the sum of the widths of the two sub-pixels arranged in the longitudinal direction coincides with the length of the laterally arranged sub-pixels.
  • the pitch between the two sub-pixels vertically arranged in the pixel 2 is equal to the pitch between the two sub-pixels arranged vertically in the adjacent pixel 2.
  • the spacing between the pixel group 1 and the pixel group 1 and between the pixels 2 in the pixel group 1 and the sub-pixels in the pixel 2 can be uniform and no more than one sub-pixel pitch, so that the arrangement is uniform and the light is emitted. The effect is good.
  • the pixel is equally divided into six equal parts in three rows and two columns, one of the sub-pixels occupies two equally divided regions of the first row, and the other two sub-pixels occupy the first and second columns respectively, leaving two equally divided regions. .
  • the sub-pixel region is divided by the structure, so that the aperture ratios of the three color sub-pixels are uniform and evenly distributed on the panel, and the sub-pixels of the same color in different pixels are adjacent to each other, so that the same aperture can be shared when the mask is fabricated. Reduce the difficulty of making masks. In the same way, the resolution of the fabricated organic light emitting diode display device can be effectively improved under the condition that the fabrication precision of the mask is constant.
  • the mask for manufacturing a high-resolution organic light-emitting diode display device of the present embodiment includes an opening and a bridge, and the existing The difference between the masks is that the openings 4 of the embodiment are identical to the regions of all adjacent sub-pixels of the same color, that is, consistent with the field-shaped regions 3, and the openings 4 correspond to at least four sub-pixels, the bridge 5 It is consistent with the area composed of all the sub-pixels of the color corresponding to the opening.
  • the opening 4 is identical to the area of all adjacent sub-pixels of the horizontal arrangement in which the color is the same in the pixel 2
  • the width of the opening 4 is the sum of the widths of the two sub-pixels.
  • an OLED display device in which a red, green, and blue illuminating sub-pixel is in a "pin" shape and a sub-pixel of the same color is arranged in a "tada” shape every four groups and a device for manufacturing the same are provided.
  • the mask plate achieves the purpose of producing a high-resolution organic light-emitting diode display. It has a good application value.
  • OLED is a new third-generation flat panel display technology and involves key common technologies, so it has high technical value.
  • the OLED display device of the embodiment is composed of pixels arranged in a matrix of a plurality of rows and columns, each pixel including a red sub-pixel R, a green sub-pixel G, and a blue sub-pixel B, RGB sub-pixels
  • the pixels are in a "pin" shape and the sub-pixels of the same color are arranged in a "field” shape every four groups.
  • two sub-pixels of each illuminating pixel are arranged side by side in the longitudinal direction, and the third sub-image is laterally arranged and forms a "pin"-shaped structure with the other two sub-pixels, in particular, each adjacent two rows of pixels, wherein one row of pixels
  • the sub-pixels of the other row of pixels are arranged in an inverted "pin” shape, and the left and right positions of the two sub-pixels arranged vertically are alternately interchanged for each adjacent two columns of pixels, for example R is arranged on the left side of one pixel, G is arranged on the right side, G is arranged on the left side of the other pixel, and R is arranged on the right side, and vice versa.
  • the high-resolution organic light-emitting diode display device described in this embodiment is based on the mature FMM technology in the industry, but due to the aforementioned special pixel arrangement, the MASK used for vapor-depositing the organic light-emitting material is as shown in FIG. 3 to FIG.
  • the holes and the openings are connected by bridges in horizontal and vertical directions, and each of the openings corresponds to four sub-pixels. It should be noted that the difference between FIG. 3 and FIG. 4 is due to the difference in the arrangement of the edge pixels.
  • the masks of FIGS. 3 and 4 have the same structure, and the mask of FIG. 5 is opened.
  • the hole structure is in a form consistent with the corresponding laterally arranged identical color sub-pixel regions.
  • each MASK opening corresponds to four adjacent red sub-pixels, and the opening sizes H1 and H2 are twice the width and height of the red sub-pixel, respectively (corresponding to the prior art MASK opening). 4 times the hole area), the horizontal spacing B1 of the adjacent openings of MASK is one pixel width (equivalent to 1.5 times the width of the prior art MASK bridge), and the vertical spacing B2 is 2/3 of the height of one pixel (equivalent to the current There are technical MASK bridge widths).
  • the MASK of the green sub-pixel is similar to the MASK of the red sub-pixel.
  • the MASK of the blue sub-pixel is a strip-shaped opening, but the opening width H2 is twice the width of the blue sub-pixel (equivalent to twice the width of the prior art MASK opening), and the vertical spacing B2 of the adjacent opening It is 4/3 of a pixel height (equivalent to twice the width of the prior art MASK bridge). It is well known that the larger the size of MASK opening and connecting bridge, the easier MASK processing, the smaller the requirement of MASK alignment accuracy and MASK shadow when evaporating organic materials, and the wider the connecting bridge, the less deformable MASK is. Further, the MASK of the mesh opening is less deformable than the MASK of the strip opening, which is capable of preparing a high solution based on the FMM technique. The key to grading the colorized pixel pattern of OLED display devices.
  • the MASK aperture is facing the red sub-pixel, and the green and blue sub-pixels are MASK blocks, so that the red luminescent material evaporated from the crucible can be accurately deposited only in the red sub-pixel area; after the red luminescent material is evaporated, another MASK is used and the aperture is aligned with another color.
  • the sub-pixels, and so on, perform evaporation of the RGB three primary color materials to form a colored pixel pattern.
  • the blue sub-pixels of each illuminating pixel are arranged horizontally, and the red and green sub-pixels are vertically arranged.
  • the first column of pixels is arranged with red sub-pixels on the left side, the green sub-pixels are arranged on the right side, the green sub-pixels are arranged on the left side of the second column of pixels, the red sub-pixels are arranged on the right side, and the pixels of each column are alternately analogized;
  • the pixels are in an upright "good” shape, and the sub-pixels of the second row of pixels are in inverted "pin” shape, and each row of pixels is alternately analogized; the area ratio of the three sub-pixels can be determined according to the luminous efficiency and driving conditions of the respective luminescent materials.
  • three sub-pixels and the like are set in area.
  • the blue MASK opening shown in Fig. 5 is strip-shaped, and each opening width includes two Blue subpixel.
  • the opening sizes H1 and H2 of the red and green MASK are about 51 um and 34 um, respectively, and the MASK bridges B1 and B2 are also about 51 um and 34 um, respectively.
  • the MASK opening and the vertical and horizontal have a wide connecting bridge, Therefore, the effect of MASK deformation is also small; although the blue MASK is a strip-shaped opening, similarly, the opening and the connecting bridge are also large in size, and the opening width H2 is about 34 um, and the connecting bridge width B2 is about 68 um. Therefore, by using the pixel arrangement and vapor deposition MASK, a colorized pixel pattern of a 500 ppi or higher resolution organic light emitting diode display device can be prepared based on a mature FMM vacuum evaporation technique, thereby enabling high resolution organic light emission to be produced. Diode display.
  • the 500 ppi organic light-emitting diode display device requires only about 17 um of open-drain width for the vapor-deposited MASK, and the bridge width is about 34 um, and the industry's highest level of MASK opening for mass production.
  • the limit dimensions of the bridge and the bridge are about 28um and 30um respectively, so the strip-shaped MASK processing of this specification is very difficult, and when the organic light-emitting material is evaporated, the MASK deformation, the MASK shadow and the MASK alignment have a great influence, so it cannot be used. To produce such a high-resolution organic light-emitting diode display display device).
  • the process flow of coloring pixel patterns of the pixel arrangement type organic light emitting diode display device is prepared by using the MASK.
  • the red MASK opening is facing the red sub-pixel, while the green and blue sub-pixels are blocked by MASK, so that the red luminescent material evaporated from the crucible is accurately deposited only on the red sub-image.
  • MASK translates the distance of one pixel to align the opening with the green sub-pixel.
  • the blue MASK is used and the aperture is facing the blue sub-pixel.
  • the sub-pixels of the same color of the upper, lower, left and right adjacent pixels are arranged in groups of four, so that one MASK opening can evaporate four pixels, which is larger than the conventional RGB array MASK opening and bridge width.
  • Mesh-like MASK so using existing production processes and technologies, it can achieve higher pixel density.
  • one pixel still includes three sub-pixels and the same sub-pixels have a pitch of no more than one pixel pitch, so there is no display defect of PenTile RGB.
  • the present invention has 1/3 more sub-pixels than PenTile RGB in the same display size, the same number of pixels, the same production technology and production process conditions as compared with the PenTile RGB technology.
  • the invention has no color distortion, edge sawtooth and image grid or particle phenomenon, and the display of fine content is clear, and the MASK shadow is only 50% of PenTile RGB; and the invention compares with PenTile RGB at the same resolution to make the same resolution.
  • the MASK difficulty and the requirement for MASK alignment accuracy are significantly reduced, and the aperture ratio is improved.
  • the highest resolution of the present invention is significantly improved under the same production process and technical conditions, and the image driving of the present invention is still a general driving method, A special correction algorithm is required.
  • the order of arrangement of the red, green, and blue sub-pixels is not limited to the embodiment.
  • the red sub-pixels may be arranged laterally, and the green and blue sub-pixels may also be used.
  • the method of arranging the pixels in a longitudinal direction, and the like, and the OLED display device of the pixel arrangement is not limited to the use of the FMM vacuum evaporation technology to prepare a colorized pixel pattern, such as LITI or inkjet printing technology, etc.;
  • the arrangement is also not limited to use for an organic light emitting diode display device, and can also be used for other display devices such as an LCD.
  • the preparation method of the invention is based on the mature FMM technology in the industry, but due to the aforementioned special pixel arrangement, the MASK used for vapor-depositing the organic light-emitting material adopts a mesh-like design, and each opening corresponds to four sub-pixels. Thus, in the case of the same resolution, the size of the MASK opening and the connecting bridge are larger.
  • High-resolution OLED display can be prepared based on the mature FMM technology in the industry, or, in the case of the same resolution, the requirements for MASK processing and OLED display process technology can be reduced, which is beneficial to improve product yield. Suitable for a wide range of applications in the industry.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

一种高解析度OLED显示器件及制造用掩膜板,显示器件中单个像素单元包括四个像素,单个像素包括红、绿、蓝三色子像素;红、绿、蓝三色子像素在像素中按品字形排布,像素单元中相邻像素的红、绿、蓝三色子像素关于像素的公共边缘对称。基于FMM技术,掩膜板每一个开孔对应四个子像素,能够制备高解析度的OLED显示屏,或者,在解析度相同的情况下,有利于提高产品良率。

Description

一种高解析度有机发光二极管显示器件及制造用掩膜板 技术领域
本发明属于有机发光二极管(OLED)显示技术领域,涉及OLED显示面板的像素排列结构,具体涉及一种高解析度的有机发光二极管显示器件面板结构以及用于制造所述OLED面板的掩膜板。
背景技术
有机发光二极管(OLED)显示器以其轻薄、主动发光、快响应速度、广视角、色彩丰富及高亮度、低功耗、耐高低温等众多优点而被业界公认为是继液晶显示器(LCD)之后的第三代显示技术,可以广泛用于智能手机、平板电脑、电视等终端产品。但是近期市场上的智能手机等个人移动产品对显示屏提出了越来越高的分辨率要求,屏幕解析度(即像素密度)已高达400ppi,甚至以后的发展趋势将超过500ppi,这对OLED现有技术形成了巨大的挑战。因为OLED现有技术,其发光像素的排列方式一般采用与LCD类似的RGB条状排列,如图1中a所示,当屏幕解析度在300ppi以上时,这种排列方式要求蒸镀有机发光材料所用的精细金属掩模板(FMM)的开口及连接桥(连接相邻开孔的肋骨)均非常细小,致使不但掩模板(MASK)加工难度非常大,而且MASK对位精度、MASK阴影、MASK变形等因素将严重影响有机发光材料蒸镀形成精细的彩色化像素图案。行业内为解决该问题,韩国三星等领先企业虽也提出了“PenTile RGB”的像素排列方式,如图1中b所示,但该排列方式存在图像串扰加重、莫尔效应明显、斜线锯齿恶化及需特别的驱动方法等问题;甚至也提出了采用LITI(激光热转印)等新技术取代FMM技术制备彩色化像素图案,但这些新技术需增加生产设备和原材料、增加制程工序、增加额外的制程工艺,且目前技术不成熟,还不能用于量产或量产时良率低下。即便如此,这些技术解决方案仍难以生产450ppi以上的超高解析度OLED显示屏。
发明内容
本发明的目的是为了解决现有的有机发光二极管显示像素排列结构方式在采用现有的制作工艺生产时,由于掩膜板加工难度及对位精度等问题,很难做出高解析度的OLED面板,提出了一种可以降低对掩膜板加工精度的限制的高解析度OLED器件以及专用于所述OLED器件制造的掩膜板。
本发明的技术方案为:一种高解析度有机发光二极管显示器件,包括呈矩阵排布的像素组,单个所述像素组包括四个像素,单个所述像素包括红、绿、蓝三色子像素;红、绿、蓝三色子像素在像素中按品字形排布,所述像素组中相邻像素的红、绿、蓝三色子像素关 于像素的公共边缘对称。
进一步的,所述像素组中四个像素按田字形排布,所述像素组中四个像素关于像素的公共边缘对称。
进一步的,相同颜色的子像素每四个一组呈田字形排布。
进一步的,单个所述像素中红、绿、蓝三色子像素面积相等。
进一步的,单个所述像素中红、绿、蓝三色子像素面积比也可由各自发光材料的发光效率及驱动条件确定。
进一步的,相邻像素组间的间距与像素组中像素间的间距相等。
进一步的,所述像素中红、绿、蓝三色子像素均为矩形区域,且纵向排列的两个子像素的宽度之和与横向排列的子像素的长度一致。
进一步的,所述像素中纵向排列的两个子像素间的间距与相邻像素间的纵向排列的两个子像素间的间距相等。
一种高解析度有机发光二极管显示器件制造用掩膜板,包括开孔和桥,所述开孔与颜色相同的所有相邻子像素组成的区域一致,桥与所有非开孔对应颜色的子像素组成的区域一致。
进一步的,所述开孔至少对应四个子像素。
本发明的有益效果:本发明的高解析度有机发光二极管显示器件,按照红、绿、蓝发光子像素呈“品”字形且相同颜色的子像素每四个一组呈“田”字形排列的像素排列方式。其制备方法基于业内成熟的FMM技术,但由于前述特别的像素排列方式,蒸镀有机发光材料所用的MASK采用网孔状设计,且每一个开孔对应四个子像素。这样在解析度相同的情况下,MASK开孔及连接桥的尺寸均更大,可以降低对制程工艺的要求,有利于提高产品良率;更重要的是,在MASK开孔及连接桥的尺寸与现有技术相当的情况下,本发明所述技术方案可以生产更高解析度的OLED显示屏,达到近600ppi。因此本发明能够基于业内成熟的FMM技术制备高解析度的OLED显示屏,或者,在解析度相同的情况下,可以降低对MASK加工及OLED显示屏制程工艺的要求,有利于提高产品良率。根据实验显示,本发明与PenTile RGB技术相比,在相同的显示尺寸内,相同的像素数、相同的生产技术与生产工艺条件下,本发明的子像素数比PenTile RGB多1/3,同时本发明无色彩失真、边缘锯齿和图像网格或颗粒现象,对精细内容的显示清晰,MASK阴影只有PenTile RGB的50%;而本发明在相同解析度下与PenTile RGB对比,制作相同解析度的MASK难度及对MASK对位精度的要求明显降低,开口率提高;同时在相同生产工艺与技术条件下,本发明的最高解析度明显提高,而本发明的图像驱动仍为通用的驱动方法,不需要特别的修正 算法。
附图说明
图1中a和b分别为两种现有的OLED子像素排列方式;
图2为本发明一实施例的高解析度OLED器件结构原理图;
图3为蒸镀图2所示OLED器件某一颜色使用的掩膜板结构示意图;
图4为蒸镀图2所示OLED器件某一颜色使用的掩膜板结构示意图;
图5为蒸镀图2所示OLED器件某一颜色使用的掩膜板结构示意图;
图6为蒸镀示意图;
图中:1.像素组,2.像素,3.田字形区域,4.开孔,5.桥。
具体实施方式
本发明的以下实施例是依据本发明的原理而设计,本发明技术方案保护的范围包括但不限于以下具体实施例的范围,下面结合附图和具体的实施例对本发明作进一步的阐述。
如图2所示,本实施例的一种高解析度有机发光二极管显示器件,包括呈矩阵排布的像素组1,单个像素组1包括四个像素2,单个像素2包括红、绿、蓝三色子像素;红、绿、蓝三色子像素在像素中按品字形排布,像素组中相邻像素的红、绿、蓝三色子像素关于像素的公共边缘对称。
像素组1中四个像素2按田字形排布,像素组1中四个像素2关于像素的公共边缘对称。同时相同颜色的子像素每四个一组也呈田字形排布。单个像素2中红、绿、蓝三色子像素面积比由各自发光材料的发光效率及驱动条件确定。单个像素2中红、绿、蓝三色子像素面积可以相等。相邻像素组1间的间距与像素组1中像素2间的间距相等。像素2中红、绿、蓝三色子像素均为矩形区域,且纵向排列的两个子像素的宽度之和与横向排列的子像素的长度一致。像素2中纵向排列的两个子像素间的间距与相邻像素2间的纵向排列的两个子像素间的间距相等。可以使像素组1与像素组1之间,像素组1中的像素2之间,像素2中的子像素之间的间距都可以达到统一且不超过一个子像素间距,使其排列均匀,发光效果好。
如果像素按三行两列等分为六等分,则其中一子像素占据第一行的两个等分区域,另外两个子像素分别占据第一列和第二列剩下两个等分区域。采用此结构划分子像素区域,使得三种颜色子像素的开口率一致且在面板上均匀分布,同时不同像素中相同颜色的子像素彼此相邻,使得掩膜板制作时可以共用同一开孔,降低了掩膜板制作难度。同理,在掩膜板制作精度不变的情况下,可以有效提高制作的有机发光二极管显示器件解析度。
本实施例的高解析度有机发光二极管显示器件制造用掩膜板,包括开孔和桥,与现有 掩膜板的不同在于,本实施例的开孔4与颜色相同的所有相邻子像素组成的区域一致,即与所述的田字形区域3一致,开孔4至少对应四个子像素,桥5与所有非开孔对应颜色的子像素组成的区域一致。而开孔4与像素2中颜色相同的横向排列的所有相邻子像素组成的区域一致时,开孔4的宽度为两个子像素的宽度之和。
本实施例提供红、绿、蓝发光子像素呈“品”字形且相同颜色的子像素每四个一组呈“田”字形排列的像素排列方式的有机发光二极管显示器件及制造这种器件的掩膜板,达到生产高解析度有机发光二极管显示屏的目的。具有很好的应用价值,同时因OLED属于新兴的第三代平板显示技术,且涉及关键共性技术,故具有很高的技术价值。
具体的,本实施例的有机发光二极管显示器件由多行和多列呈矩阵排列的像素组成,每个像素包括一个红色子像素R、一个绿色子像素G和一个蓝色子像素B,RGB子像素呈“品”字形且相同颜色的子像素每四个一组呈“田”字形排列。具体地说,每个发光像素的其中两个子像素纵向并排排列,第3个子像横向排列并与另两个子像素形成“品”字形结构,特别地,每相邻两行像素,其中一行像素的子像素呈正立的“品”字形排列时,另一行像素的子像素则呈倒立的“品”字形排列,每相邻两列像素,其纵向排列的两个子像素的左右位置交替互换,例如一个像素的左边排列R,右边排列G,则另一个像素的左边排列G,右边排列R,反之亦然。
本实施例所述的高解析度有机发光二极管显示器件基于业内成熟的FMM技术,但由于前述特别的像素排列方式,蒸镀有机发光材料所用的MASK如图3至图5所示,网状开孔,开孔之间在水平与垂直方向均通过桥相连,且每一个开孔对应四个子像素。需要说明的是,图3、图4的不同是因为其边缘像素排列不同所致,当面板区域足够大时,图3、图4的掩膜板具有相同的结构,图5掩膜板的开孔结构为与对应的横向排列的相同颜色子像素区域一致的形式。以红色子像素的MASK为例,每个MASK开孔对应相邻的四个红色子像素,开孔尺寸H1和H2分别为红色子像素宽度和高度的两倍(相当于现有技术的MASK开孔面积的4倍),MASK相邻开孔的水平间距B1为一个像素宽度(相当于现有技术的MASK桥宽的1.5倍),垂直间距B2为一个像素高度的2/3(相当于现有技术的MASK桥宽)。绿色子像素的MASK与红色子像素的MASK类似。蓝色子像素的MASK为条状开孔,但开孔宽度H2为蓝色子像素宽度的两倍(相当于现有技术的MASK开孔宽度的两倍),相邻开孔的垂直间距B2为一个像素高度的4/3(相当于现有技术的MASK桥宽的两倍)。众所周知,MASK开孔和连接桥的尺寸越大,MASK加工越容易,蒸镀有机材料时对MASK对位精度的要求及MASK阴影的影响也越小,且连接桥越宽,MASK越不易变形,进一步地,网状开孔的MASK比条状开孔的MASK更不易变形,这是本发明能够基于FMM技术制备高解 析度OLED显示器件的彩色化像素图案的关键。
如图6所示,当蒸镀本实施例的有机发光二极管显示器件的某种颜色的子像素时(以红色为例),使MASK开孔正对红色子像素,而绿、蓝子像素被MASK遮挡,这样从坩锅蒸发出的红色发光材料就可以精确地只沉积在红色子像素区;红色发光材料蒸镀完成后,再用另一张MASK并使其开孔对准另一颜色的子像素,以此类推完成RGB三基色材料的蒸镀,从而形成彩色化像素图案。鉴于本发明所述制备方法是基于业内成熟的FMM真空蒸镀技术,本领域的普通技术人员对该技术应该理解,因此在此不再详述。
为了进一步说明本实施例的有机发光二极管显示器件的结构,下面结合附图和具体实例做进一步说明,如图2所示,每一个发光像素的蓝色子像素横向排列,红、绿子像素纵向排列;第一列像素的左边排列红色子像素,右边排列绿色子像素,第二列像素的左边排列绿色子像素,右边排列红色子像素,各列像素以此交替类推;第一行像素的子像素呈正立的“品”字形,第二行像素的子像素呈倒立的“品”字形,各行像素以此交替类推;三种子像素的面积比例可根据各自发光材料的发光效率及驱动条件决定,实施例中设定三种子像素等面积。图3、图4所示红、绿MASK为网孔状,每一个开孔对应四个红色或绿色子像素;图5所示蓝色MASK开孔为条状,每个开孔宽度包括两个蓝色子像素。以解析度为500ppi的有机发光二极管显示器件为例,红、绿MASK的开孔尺寸H1和H2分别约为51um和34um,MASK桥B1和B2也分别约为51um和34um,这种规格的MASK不但现有加工技术能够保证,而且因MASK开孔大,用来蒸镀有机发光材料时,MASK阴影和MASK对位影响较小,进一步地,因MASK开孔纵横都有较宽的连接桥,因此MASK变形影响也较小;蓝色MASK虽为条状开孔,但类似地,开孔及连接桥尺寸也都较大,其开孔宽度H2约为34um,连接桥宽度B2约为68um。因此,采用所述像素排列方式及蒸镀MASK,可以基于成熟的FMM真空蒸镀技术制备500ppi甚至更高解析度的有机发光二极管显示器件的彩色化像素图案,从而能够生产高解析度的有机发光二极管显示屏。(如采用传统的RGB条状排列,500ppi的有机发光二极管显示器件所需蒸镀MASK的开孔宽度仅约17um,连接桥宽度约34um,而业界用于量产的最高技术水平的MASK开孔和连接桥的极限尺寸分别约28um和30um,因此这种规格的条状MASK加工非常困难,且用来蒸镀有机发光材料时,MASK变形、MASK阴影及MASK对位影响非常大,因此不能用来生产这种高解析度的有机发光二极管显示显示器件)。
基于成熟的FMM真空蒸镀技术,用所述MASK制备所述像素排列方式的有机发光二极管显示器件的彩色化像素图案的工艺流程。首先使红色MASK的开孔正对红色子像素,而绿、蓝子像素被MASK遮挡,使从坩锅蒸发出的红色发光材料精确地只沉积在红色子像 素区;红色发光材料蒸镀完成后,MASK平移一个像素的距离使开孔对准绿色子像素,绿色发光材料蒸镀完成后,再用蓝色MASK并使其开孔正对蓝色子像素,以此完成RGB三基色材料的蒸镀,从而形成彩色化像素图案。鉴于本领域的普通技术人员对FMM真空蒸镀技术应该理解,因此在此不再详述。
本发明中上下左右相邻像素的相同颜色的子像素呈四个一组集中排列,因而一个MASK开孔可以蒸镀四个像素,比传统RGB排列的MASK开孔及桥宽更大且可采用网孔状MASK,所以采用现有的生产工艺和技术,却可以达更高的像素密度。同时一个像素仍包括三个子像素且相同子像素的间距不超过一个像素间距,因此没有PenTile RGB的显示缺陷。
根据实验显示,本发明与PenTile RGB技术相比,在相同的显示尺寸内,相同的像素数、相同的生产技术与生产工艺条件下,本发明的子像素数比PenTile RGB多1/3,同时本发明无色彩失真、边缘锯齿和图像网格或颗粒现象,对精细内容的显示清晰,MASK阴影只有PenTile RGB的50%;而本发明在相同解析度下与PenTile RGB对比,制作相同解析度的MASK难度及对MASK对位精度的要求明显降低,开口率提高;同时在相同生产工艺与技术条件下,本发明的最高解析度明显提高,而本发明的图像驱动仍为通用的驱动方法,不需要特别的修正算法。
本领域的普通技术人员应该理解,本发明所述像素排列方式中,红、绿、蓝子像素的排列顺序不限于实施例,比如也可以采用将红色子像素横向排列,而绿、蓝子像素纵向排列的方式等,且所述像素排列方式的有机发光二极管显示器件也不限于采用FMM真空蒸镀技术制备彩色化像素图案,比如也可以采用LITI或喷墨印刷技术等;本发明所述像素排列方式也不限于用于有机发光二极管显示器件,也可用于LCD等其他显示器件。
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。
工业应用性
本发明制备方法基于业内成熟的FMM技术,但由于前述特别的像素排列方式,蒸镀有机发光材料所用的MASK采用网孔状设计,且每一个开孔对应四个子像素。这样在解析度相同的情况下,MASK开孔及连接桥的尺寸均更大。能够基于业内成熟的FMM技术制备高解析度的OLED显示屏,或者,在解析度相同的情况下,可以降低对MASK加工及OLED显示屏制程工艺的要求,有利于提高产品良率。适合产业上广泛应用。

Claims (10)

  1. 一种高解析度有机发光二极管显示器件,其特征在于:包括呈矩阵排布的像素组,单个所述像素组包括四个像素,单个所述像素包括红、绿、蓝三色子像素;红、绿、蓝三色子像素在像素中按品字形排布,所述像素组中相邻像素的红、绿、蓝三色子像素关于像素的公共边缘对称。
  2. 根据权利要求1所述的高解析度有机发光二极管显示器件,其特征在于:所述像素组中四个像素按田字形排布,所述像素组中四个像素关于像素的公共边缘对称。
  3. 根据权利要求1所述的高解析度有机发光二极管显示器件,其特征在于:相同颜色的子像素每四个一组呈田字形排布。
  4. 根据权利要求1所述的高解析度有机发光二极管显示器件,其特征在于:单个所述像素中红、绿、蓝三色子像素面积相等。
  5. 根据权利要求1所述的高解析度有机发光二极管显示器件,其特征在于:单个所述像素中红、绿、蓝三色子像素面积比由各自发光材料的发光效率及驱动条件确定。
  6. 根据权利要求1所述的高解析度有机发光二极管显示器件,其特征在于:相邻像素组间的间距与像素组中像素间的间距相等。
  7. 根据权利要求1所述的高解析度有机发光二极管显示器件,其特征在于:所述像素中红、绿、蓝三色子像素均为矩形区域,且纵向排列的两个子像素的宽度之和与横向排列的子像素的长度一致。
  8. 根据权利要求7所述的高解析度有机发光二极管显示器件,其特征在于:所述像素中纵向排列的两个子像素间的间距与相邻像素间的纵向排列的两个子像素间的间距相等。
  9. 一种高解析度有机发光二极管显示器件制造用掩膜板,包括开孔和桥,其特征在于:所述开孔与颜色相同的所有相邻子像素组成的区域一致,桥与所有非开孔对应颜色的子像素组成的区域一致。
  10. 根据权利要求9所述的高解析度有机发光二极管显示器件制造用掩膜板,其特征在于:所述开孔至少对应四个子像素。
PCT/CN2014/086935 2014-03-18 2014-09-19 一种高解析度有机发光二极管显示器件及制造用掩膜板 WO2015139436A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410100733.2 2014-03-18
CN201410100733.2A CN103872091A (zh) 2014-03-18 2014-03-18 一种高解析度oled器件及制造用掩膜板

Publications (1)

Publication Number Publication Date
WO2015139436A1 true WO2015139436A1 (zh) 2015-09-24

Family

ID=50910450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086935 WO2015139436A1 (zh) 2014-03-18 2014-09-19 一种高解析度有机发光二极管显示器件及制造用掩膜板

Country Status (2)

Country Link
CN (2) CN103872091A (zh)
WO (1) WO2015139436A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111312750A (zh) * 2019-11-01 2020-06-19 深圳市华星光电半导体显示技术有限公司 像素排布结构、oled显示面板及其制备方法
CN112382649A (zh) * 2020-11-13 2021-02-19 昆山国显光电有限公司 像素排布结构、掩膜板组件及显示面板

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103872091A (zh) * 2014-03-18 2014-06-18 四川虹视显示技术有限公司 一种高解析度oled器件及制造用掩膜板
US11004905B2 (en) 2014-09-11 2021-05-11 Boe Technology Group Co., Ltd. Display panel and display device
CN104269411B (zh) * 2014-09-11 2018-07-27 京东方科技集团股份有限公司 显示面板、有机发光二极管显示器和显示装置
US11711958B2 (en) 2014-09-11 2023-07-25 Boe Technology Group Co., Ltd. Display panel and display device
CN104361862A (zh) * 2014-11-28 2015-02-18 京东方科技集团股份有限公司 阵列基板及其驱动方法、显示面板、显示装置
CN104464644A (zh) 2015-01-05 2015-03-25 京东方科技集团股份有限公司 一种像素结构、显示面板和显示装置
CN104600096B (zh) * 2015-01-12 2018-03-30 上海天马有机发光显示技术有限公司 一种oled像素阵列结构及一种掩模板
CN104766875B (zh) * 2015-03-30 2019-12-13 昆山工研院新型平板显示技术中心有限公司 一种共用蓝光发光层的像素排布方式及有机电致发光装置
CN104916661B (zh) 2015-04-21 2018-09-11 京东方科技集团股份有限公司 像素结构、掩膜板、有机电致发光显示面板及显示装置
CN106898629B (zh) * 2015-12-18 2020-02-11 昆山工研院新型平板显示技术中心有限公司 一种具有高分辨率的oled显示装置及其制备方法
CN106935616B (zh) * 2015-12-30 2019-09-17 昆山工研院新型平板显示技术中心有限公司 Amoled显示屏及精密金属掩膜板
CN105552104A (zh) * 2016-01-05 2016-05-04 京东方科技集团股份有限公司 Oled像素阵列、制备oled像素阵列的方法、oled显示面板和显示装置
CN106449723A (zh) * 2016-11-24 2017-02-22 四川长虹电器股份有限公司 一种可提高显示器件分辨率的像素排列结构及制造方法
CN106711173B (zh) * 2016-12-05 2020-09-22 Tcl科技集团股份有限公司 一种oled显示屏幕及其oled像素排布结构
CN106816461A (zh) * 2017-03-05 2017-06-09 成都爱可信科技有限公司 一种amoled显示器件及其制造方法
CN107068731B (zh) * 2017-06-09 2019-11-19 京东方科技集团股份有限公司 像素排列结构、显示面板、显示装置和掩模板
CN110349994A (zh) * 2018-04-02 2019-10-18 上海和辉光电有限公司 一种oled显示面板
CN110767682B (zh) * 2018-10-31 2022-10-21 苏州清越光电科技股份有限公司 显示屏及显示终端
CN110277434B (zh) * 2019-06-28 2022-05-17 武汉天马微电子有限公司 一种有机电致发光显示面板及显示装置
CN110690266A (zh) * 2019-10-31 2020-01-14 广州番禺职业技术学院 一种像素结构及其渲染方法、显示装置
CN110931639A (zh) * 2019-11-26 2020-03-27 武汉华星光电半导体显示技术有限公司 可提高像素分辨率的像素排列显示设备与蒸镀方法
CN111261689A (zh) 2020-02-07 2020-06-09 武汉华星光电半导体显示技术有限公司 一种oled显示面板及oled显示装置
CN111370455B (zh) * 2020-03-18 2022-11-01 深圳市华星光电半导体显示技术有限公司 像素排列结构、显示面板及显示装置
CN111834422A (zh) * 2020-06-17 2020-10-27 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法、显示面板的缺陷修补方法
CN113611723A (zh) * 2020-07-28 2021-11-05 广东聚华印刷显示技术有限公司 像素结构及显示器件

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040062154A (ko) * 2002-12-31 2004-07-07 엘지.필립스 엘시디 주식회사 컬러필터를 포함하는 액정표시장치
US20090121983A1 (en) * 2007-11-13 2009-05-14 Samsung Electronics Co., Ltd. Organic light emitting diode display and method for manufacturing the same
CN102830450A (zh) * 2011-06-13 2012-12-19 广东中显科技有限公司 全彩顶部发光型有机电致发光显示器的彩色滤色片
CN203085546U (zh) * 2012-10-31 2013-07-24 四川虹视显示技术有限公司 一种oled像素排列结构
CN103872091A (zh) * 2014-03-18 2014-06-18 四川虹视显示技术有限公司 一种高解析度oled器件及制造用掩膜板
CN103928498A (zh) * 2014-04-23 2014-07-16 何东阳 有关于一种amoled高分辨率的显示器件
CN104009066A (zh) * 2013-12-31 2014-08-27 昆山工研院新型平板显示技术中心有限公司 一种像素结构及采用该像素结构的有机发光显示器
CN104037200A (zh) * 2013-12-31 2014-09-10 昆山国显光电有限公司 一种像素结构及采用该像素结构的有机发光显示器
CN104037190A (zh) * 2013-03-04 2014-09-10 群创光电股份有限公司 彩色有机发光二极管显示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101257734B1 (ko) * 2010-09-08 2013-04-24 엘지디스플레이 주식회사 유기전계발광 표시장치
CN104037197B (zh) * 2013-12-31 2017-06-16 昆山国显光电有限公司 一种像素结构及采用该像素结构的有机发光显示器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040062154A (ko) * 2002-12-31 2004-07-07 엘지.필립스 엘시디 주식회사 컬러필터를 포함하는 액정표시장치
US20090121983A1 (en) * 2007-11-13 2009-05-14 Samsung Electronics Co., Ltd. Organic light emitting diode display and method for manufacturing the same
CN102830450A (zh) * 2011-06-13 2012-12-19 广东中显科技有限公司 全彩顶部发光型有机电致发光显示器的彩色滤色片
CN203085546U (zh) * 2012-10-31 2013-07-24 四川虹视显示技术有限公司 一种oled像素排列结构
CN104037190A (zh) * 2013-03-04 2014-09-10 群创光电股份有限公司 彩色有机发光二极管显示装置
CN104009066A (zh) * 2013-12-31 2014-08-27 昆山工研院新型平板显示技术中心有限公司 一种像素结构及采用该像素结构的有机发光显示器
CN104037200A (zh) * 2013-12-31 2014-09-10 昆山国显光电有限公司 一种像素结构及采用该像素结构的有机发光显示器
CN103872091A (zh) * 2014-03-18 2014-06-18 四川虹视显示技术有限公司 一种高解析度oled器件及制造用掩膜板
CN103928498A (zh) * 2014-04-23 2014-07-16 何东阳 有关于一种amoled高分辨率的显示器件

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111312750A (zh) * 2019-11-01 2020-06-19 深圳市华星光电半导体显示技术有限公司 像素排布结构、oled显示面板及其制备方法
CN112382649A (zh) * 2020-11-13 2021-02-19 昆山国显光电有限公司 像素排布结构、掩膜板组件及显示面板
CN112382649B (zh) * 2020-11-13 2022-10-14 昆山国显光电有限公司 像素排布结构、掩膜板组件及显示面板

Also Published As

Publication number Publication date
CN104393012A (zh) 2015-03-04
CN103872091A (zh) 2014-06-18

Similar Documents

Publication Publication Date Title
WO2015139436A1 (zh) 一种高解析度有机发光二极管显示器件及制造用掩膜板
EP3091577B1 (en) Pixel structure and organic light-emitting display using pixel structure
TWI741192B (zh) 像素結構、oled顯示幕以及蒸鍍掩膜板
US7934968B2 (en) Method of fabricating pixel structure
WO2016169387A1 (zh) 像素结构、掩膜板、有机电致发光显示面板及显示装置
TWI618237B (zh) 用於oled顯示幕的像素結構及其金屬光罩板
CN104282710B (zh) 像素结构及其金属掩模
CN109148543B (zh) 一种像素结构及显示面板
US20190131358A1 (en) Oled array substrate and manufacturing method thereof, and display device
TWI663592B (zh) 像素結構、掩膜板及顯示裝置
CN107086239A (zh) 像素结构及其制备方法和显示装置
WO2017118003A1 (zh) Oled像素阵列、制备oled像素阵列的方法、oled显示面板和显示装置
WO2020124693A1 (zh) Oled像素结构
TW201635258A (zh) 畫素結構
CN106229300B (zh) 像素结构及制作方法
WO2019041958A1 (zh) 一种像素结构及oled显示面板
CN104659064A (zh) 有机发光二极管显示器像素排列结构及显示装置
WO2019227926A1 (zh) 像素排列结构、显示面板及掩膜版组件
WO2018161704A1 (zh) 一种显示器件及其制造方法
CN104992959A (zh) Oled像素排列结构及显示装置
CN204424258U (zh) 一种高分辨像素排布结构
CN103820756A (zh) 一种oled像素图案蒸镀方法及掩膜板
WO2022241963A1 (zh) 像素排列结构、金属掩膜板以及有机发光显示装置
WO2020056910A1 (zh) 像素排列结构和显示面板
CN204289457U (zh) 一种高分辨像素排布方式

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14885871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14885871

Country of ref document: EP

Kind code of ref document: A1