WO2017118003A1 - Oled像素阵列、制备oled像素阵列的方法、oled显示面板和显示装置 - Google Patents

Oled像素阵列、制备oled像素阵列的方法、oled显示面板和显示装置 Download PDF

Info

Publication number
WO2017118003A1
WO2017118003A1 PCT/CN2016/093224 CN2016093224W WO2017118003A1 WO 2017118003 A1 WO2017118003 A1 WO 2017118003A1 CN 2016093224 W CN2016093224 W CN 2016093224W WO 2017118003 A1 WO2017118003 A1 WO 2017118003A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixel
pixels
adjacent
pixel array
Prior art date
Application number
PCT/CN2016/093224
Other languages
English (en)
French (fr)
Inventor
李冬伟
Original Assignee
京东方科技集团股份有限公司
鄂尔多斯市源盛光电有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 鄂尔多斯市源盛光电有限责任公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/520,475 priority Critical patent/US20180090545A1/en
Publication of WO2017118003A1 publication Critical patent/WO2017118003A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0242Compensation of deficiencies in the appearance of colours

Definitions

  • the present invention relates to the field of organic electroluminescence, and in particular to an OLED pixel array, a method of fabricating the OLED pixel array, an OLED display panel including the OLED pixel array, and a display device.
  • the flat panel display includes various types such as an LCD display, an OLED display, a PDP display, and an electronic ink display.
  • Organic light-emitting diode (OLED) displays are recognized by the industry as being behind liquid crystal displays (LCDs) because of their thinness, active illumination, fast response speed, wide viewing angle, rich color and high brightness, low power consumption, high temperature resistance and many other advantages.
  • LCDs liquid crystal displays
  • the third generation display technology can be widely used in terminal products such as smartphones, tablets, and televisions.
  • a well-established technology of OLEDs is to prepare a color pixel pattern by using a fine metal mask (FMM) to vapor-deposit an organic light-emitting material in a standard red, green, and blue (hereinafter sometimes abbreviated as RGB) sub-pixel.
  • FMM fine metal mask
  • RGB red, green, and blue
  • color mixing may occur between adjacent heterochromatic sub-pixels, especially between R and G sub-pixels, which seriously affects display performance.
  • Pentile pixel array Another way to increase the resolution is to use a so-called Pentile pixel array.
  • Pentile pixel array there are no pixels composed of three sub-pixels of red, green and blue, but sub-pixels composed of red-green pixels and sub-pixels composed of blue-green pixels, and one pixel is borrowed. The color of the sub-pixels that are missing in adjacent pixels to achieve full color. Since the Pentile pixel array contains only two sub-pixels per pixel, it can produce higher pixel densities with the same sub-pixel size compared to standard RGB pixel arrays. However, the array mode needs to borrow sub-pixels of adjacent pixels, and chromatic aberration, color edges, dark spots, and the like often appear to seriously affect the display effect during display.
  • the present invention provides the following contents:
  • An OLED pixel array comprising a plurality of pixel units arranged in a juxtaposition type in a row direction of the pixel array, each pixel unit being composed of one of an R sub-pixel, a G sub-pixel, and a B sub-pixel Composition, in each pixel unit, the B sub-pixel is an intermediate sub-pixel, the R sub-pixel and the G sub-pixel are end sub-pixels, and adjacent end sub-pixels of two adjacent pixel units are the same seed pixel.
  • [7] A method for producing the pixel array according to any one of [1] to [6], wherein the method is R, G, and B sub-pixels are deposited by mask evaporation, and the mask evaporation method uses an R mask, a G mask, and a B mask to vapor-deposit R, G, and B sub-pixels, respectively. among them,
  • a display device comprising the display panel according to [10].
  • a first aspect of the present invention provides an OLED pixel array including a plurality of pixel units arranged in a juxtaposition type in a row direction of the pixel array, each pixel unit being composed of an R sub-pixel, a G sub-pixel, and Each of the B sub-pixels is composed of one sub-pixel, wherein the B sub-pixel is an intermediate sub-pixel, the R sub-pixel and the G sub-pixel are end sub-pixels, and adjacent end sub-pixels of two adjacent pixel units are the same Seed pixel.
  • the pixel array of the present invention first avoids the appearance of adjacent R, G sub-pixels.
  • the occurrence of color mixture between red and green sub-pixels is the most harmful, which seriously reduces the display effect.
  • the pixel array of the present invention is prepared by the mask evaporation method by the method of the present invention, two R and G sub-pixels are evaporated in one mask (R or G mask) opening, thereby using a mask having the same opening size.
  • the modulo can get smaller R, G sub-pixels, which can get smaller pixel units. Increase the resolution.
  • the pixel array of the present invention can be fabricated using R, G masks with larger openings and wider connecting bridges.
  • Such a mask has better mechanical properties than a mask having a small opening and a thin connecting bridge, so that the deformation of the mask and the disadvantages caused thereby can be effectively prevented.
  • the spacing between adjacent R-end sub-pixels is less than the spacing between adjacent R-G sub-pixels in a standard RGB pixel array having the highest resolution prepared using a fine metal mask evaporation process.
  • the spacing between adjacent G-end sub-pixels is less than the spacing between adjacent R-G sub-pixels in the highest resolution standard RGB pixel array prepared using a fine metal mask evaporation process.
  • the spacing between adjacent R-end sub-pixels and/or the spacing between adjacent G-end sub-pixels may be as low as 10 [mu]m.
  • the spacing between them can each be smaller than the spacing between adjacent R-G sub-pixels in a standard RGB array. Thereby, the white space between the sub-pixels is reduced within the same length. Accordingly, the arrangement of sub-pixels is more compact and the resolution can be improved.
  • the spacing between the B sub-pixel and the end sub-pixel adjacent thereto is greater than the sub-pixel size in the standard RGB array having the same sub-pixel size as the sub-pixel size of the pixel array and the sub-pixel adjacent thereto Pitch.
  • the spacing between the B sub-pixels and the adjacent sub-pixels is increased, the probability of occurrence of color mixing can be further reduced without changing the B-mask.
  • the spacing between the B sub-pixels and the end sub-pixels adjacent thereto ensures that no color mixing occurs in the B sub-pixels evaporated by the mask evaporation method.
  • the R, G, B sub-pixels are each aligned, or the B sub-pixels are aligned and the R and G sub-pixels are alternately arranged.
  • the above two ways of constructing an overall RGB pixel array are advantageous in terms of preparation and display effects.
  • R mask, G mask and B mask respectively evaporate R, G and B sub-pixels on the back panel, wherein the back panel is formed with a pixel defining layer arranged according to the pixel array, An opening on the R reticle, wherein the red organic luminescent material is evaporated at two adjacent R end sub-pixel positions of adjacent pixel units corresponding to the pixel defining layer to form the two adjacent R ends a sub-pixel; evaporating a green organic luminescent material at two adjacent G-end sub-pixel positions of adjacent pixel units corresponding to the pixel defining layer through an opening on the G reticle to form the two phases And adjacent to the G-end sub-pixel; and forming a B-sub-pixel by evaporating a blue organic light-emitting material at a B sub-pixel
  • two identical seed pixels can be vapor-deposited in one end sub-pixel mask opening, thereby improving resolution.
  • the spacing of the two same seed pixels can be closer than the spacing between the different seed pixels, further improving the resolution.
  • the mask is a fine metal mask.
  • an OLED display panel using the pixel array of the first aspect of the invention is provided.
  • a display device using the above OLED display panel is provided.
  • Figure 1 shows a schematic of an evaporation standard prior art standard RGB pixel array.
  • Figure 2 shows a schematic diagram of vapor deposition of a pixel array of the present invention.
  • Figure 3 is a schematic illustration of the arrangement in a row of a pixel array of the present invention.
  • 4A-C specifically show the case when the R, B, and G sub-pixels are evaporated, respectively.
  • Figure 5A schematically shows the spacing between sub-pixels of a standard RGB pixel array.
  • Fig. 5B schematically shows the spacing between sub-pixels of the pixel array of the present invention.
  • Figure 5C schematically illustrates one embodiment of the spacing between sub-pixels of a standard RGB pixel array.
  • Figure 5D schematically illustrates one embodiment of the spacing between sub-pixels of a pixel array of the present invention.
  • 6A and 6B show an example of a two-dimensional arrangement of the pixel array of the present invention.
  • the OLED pixel array is composed of pixel units, and each pixel unit includes sub-pixels of three colors of red, green, and blue (ie, R sub-pixels, G sub-pixels). Pixel, B subpixel).
  • the sub-pixels and the pixel cells are side by side, thereby forming pixel rows in which the R, G, and B sub-pixels are sequentially arranged in a loop.
  • the fine metal mask is a high-precision mask having fine openings thereon.
  • the shielding effect of the occlusion region of the mask is used to block two sub-pixels in the R/G/B sub-pixel (such as occluding the R sub-pixel and the G sub-pixel), and deposition by evaporation method corresponds to another
  • the host material of the light-emitting layer of a sub-pixel of a color (such as a B sub-pixel), that is, a mask evaporation method.
  • R, G, and B sub-pixels were deposited using R, G, and B masks, respectively, to obtain a final pixel array.
  • the resolution of one of the important parameters of the display device can be related to the following two factors. First, the size of each sub-pixel. The smaller the sub-pixel, the more sub-pixels per unit area, and the higher the resolution. However, the size of the sub-pixel depends on the opening size of the mask used for evaporation. When the resolution reaches 300 ppi or more, the RGB sub-pixel cyclic juxtaposition type of pixel arrangement requires that the opening of the fine metal mask and the connecting bridge (ribs connecting adjacent openings) are very small.
  • the opening size of the fine metal mask is a factor that limits the improvement in resolution.
  • the spacing between each sub-pixel Assuming that the sub-pixel size is constant, the pixel density is the largest when the sub-pixels are closely adjacent. However, this is only an ideal situation. In addition, in actual production, a certain margin must be left between the sub-pixels to reduce the chance of color mixing. The larger the white space, the less likely the color mixing will occur, but correspondingly, the less dense the sub-pixels are, the lower the resolution. Therefore, the width of the white space is another factor that limits the resolution.
  • the bridge between the openings on the fine reticle also has an effect on the resolution.
  • the opening on the reticle is made denser for the purpose of increasing the resolution, the ribs are correspondingly narrowed, so that the reticle is easily deformed by other factors, such as sinking due to gravity, and the shadow of the reticle is also affected.
  • the impact has led to a series of problems including the creation of color mixing.
  • Figure 1 shows a schematic of an evaporation standard prior art standard RGB pixel array.
  • R, G, B sub-pixels are sequentially arranged in a loop.
  • Figure 1 shows a schematic diagram when vapor-depositing B sub-pixels.
  • the connecting bridge of the fine metal mask covers the R sub-pixel and the G sub-pixel, and evaporates the B sub-pixel in the opening.
  • R, G, The B sub-pixels are drawn to have substantially the same width and substantially the same pitch. In fact, the width may vary with the R, G, B sub-pixel luminescent materials.
  • the blue organic light-emitting material has a weaker light emission than the red and green organic light-emitting materials, and therefore the B sub-pixel is generally the widest among the three sub-pixels.
  • the white space between the sub-pixels is also related to the color mixing characteristics of the sub-pixels on both sides. The color mixture between the R sub-pixel and the G sub-pixel is most harmful to the display effect, and therefore, the margin required between the general R sub-pixel and the G sub-pixel is large.
  • the selected comparison object when compared to a standard RGB pixel array, is "the highest resolution standard RGB pixel array prepared using a fine metal mask evaporation method" unless otherwise specified.
  • the meaning of the term is that as the level of the process increases, the resolution of the standard RGB pixel array, the level of color mixing, the performance of its fine metal mask, and the like, may be further improved.
  • the pixel array of the present invention still exhibits advantages for standard RGB pixel arrays at exactly the same level of technology.
  • FIG. 2 shows a schematic diagram of vapor deposition of a pixel array of the present invention.
  • the arrangement of the pixel array of the present invention is as shown in FIG.
  • Each pixel unit is composed of one of R, G, and B sub-pixels.
  • the intermediate sub-pixel of each pixel unit is a B sub-pixel, and the end sub-pixels on one side are R groups of pixels, and the end sub-pixels on the other side are G sub-pixels.
  • the adjacent end sub-pixels of two adjacent pixel units are the same, that is, an R-R sub-pixel pair and a G-G sub-pixel pair are formed.
  • each pixel unit is still a complete pixel unit with RGB three colors, unlike the Pentile method, which needs to borrow the color of the adjacent pixel unit.
  • the R sub-pixel and the G sub-pixel are not adjacent.
  • the color mixture between the R sub-pixel and the G sub-pixel is most harmful to the display effect.
  • color mixing of R and G sub-pixels is avoided.
  • FIGS. 4A and 4C specifically show the case when the R, B, and G sub-pixels are evaporated.
  • the gray portion in the figure indicates the connecting bridge between the openings of the mask.
  • FIGS. 4A and 4C when the R sub-pixel and the G sub-pixel are evaporated, two sub-pixels are evaporated in one opening of the mask.
  • the size of the opening on the R and G reticle can be steamed. About twice the opening used for the same size R, G sub-pixels in a standard RGB array.
  • two sub-pixels can be prepared with openings of the same size as before. This solves the problem that the aperture size limits the resolution to some extent.
  • the bridge between the openings covers 4 sub-pixels instead of covering only 2 sub-pixels like the bridge in the mask used to evaporate the standard RGB array.
  • the connection bridge between the two openings of the R mask covers two B sub-pixels and two G sub-pixels, while the connection bridge between the two openings of the R mask in a standard RGB RGB pixel array is only covered.
  • the width of the connecting bridge can also be about twice that of the connecting bridge for the standard RGB array, so that it is less likely to be sunken by gravity or deformed by other factors.
  • the number of sub-pixels between two B sub-pixels is still two.
  • the B sub-pixel is always made the widest because of the performance problem of the blue organic light-emitting material. Therefore, the opening size of the B mask is not a major factor limiting the current FMM process. As R and G sub-pixels of smaller width are produced, the opening of the B mask still has the potential to be made smaller, thereby increasing the resolution.
  • the pixel array of the present invention is also advantageous in that the spacing between adjacent homochromatic sub-pixels can be reasonably reduced, and the spacing between the B sub-pixels and the R sub-pixels or G sub-pixels can be reasonably increased.
  • FIG. 5A in a standard RGB pixel array, the spacing between different color sub-pixels may be c. Of course, the spacing between three sets of adjacent sub-pixels (ie, R-G, G-B, B-R) may also be different.
  • FIG. 5A shows the case where the pitch is c.
  • Fig. 5B shows the case of the pixel array of the present invention. Since two adjacent end sub-pixels are homochromatic sub-pixels, there is no problem of color mixing between them.
  • the spacing between them can be less than c, i.e., a ⁇ c. If the B-R pitch and the B-G pitch remain unchanged compared to FIG. 5A, the pitch between the pixel unit and the pixel unit may be smaller than the original R-G pitch. Therefore, more pixel units are arranged on the same length, thereby increasing the resolution of the pixel array.
  • Those skilled in the art can flexibly adjust the spacing between the adjacent end sub-pixels according to actual needs. For example, only the spacing between the R sub-pixels may be reduced, or only the spacing between the G sub-pixels may be reduced, or the two spacings may be reduced to different extents. This is easily done by those skilled in the art.
  • the spacing between the B sub-pixel and the adjacent sub-pixel can also be appropriately increased, as shown in FIG. 5B.
  • it can be b, where b>c.
  • b can be flexibly valued such that the overall resolution is still greater than or equal to the resolution of the standard RGB pixel array as a basis for comparison.
  • An advantage of the b value being greater than the c value is that the chance of color mixing between the B sub-pixel and the adjacent sub-pixel is further reduced due to the increase in the pitch between the sub-pixels.
  • the spacing between the B sub-pixels and the adjacent end sub-pixels ensures that no color mixing occurs in the B sub-pixels evaporated by the mask evaporation method.
  • FIG. 5C a common white space between standard RGB pixel arrays under the prior art conditions is shown in FIG. 5C, the spacing between R and G sub-pixels is 26 ⁇ m, between G and B sub-pixels and B. The spacing between the sub-pixels and the R sub-pixels is 27.5 ⁇ m.
  • FIG. 5D An embodiment of the invention is illustrated in Figure 5D, wherein the spacing between the R and R sub-pixels and the G and G sub-pixels is 10 ⁇ m, and the spacing between the R and B sub-pixels and the B and G sub-pixels is 35.5 ⁇ m.
  • the total amount of white space is the same, both being 81 ⁇ m, but between the B sub-pixel and the R and G sub-pixels
  • the spacing increases, leaving more white, and the chance of color mixing drops to a very small size.
  • the spacing between R sub-pixels or between G sub-pixels of the same color can be reduced, and/or the B sub-pixel and the adjacent sub-pixel can be increased. Spacing, thereby increasing resolution and/or avoiding color mixing.
  • a row of pixels can be expanded into an entire array of pixels.
  • B sub-pixels are aligned, or B sub-pixels are aligned and R and G sub-pixels are alternately arranged.
  • the pixel array of the present invention can have the following advantages over the juxtaposed standard RGB pixel array, but is not limited thereto:
  • each opening of the R, G mask can be prepared with two smaller sub-pixels, and with the reduction of the B sub-pixels, higher resolution can be obtained.
  • the spacing between adjacent sub-pixels of the same color can be smaller than the R-G sub-pixel spacing in a standard juxtaposed RGB pixel array, so that higher resolution can be obtained.
  • the B sub-pixels are spaced more apart from the adjacent R and G sub-pixels, which can reduce the color mixture.
  • each pixel unit is a pixel unit having three colors of RGB, and the display effect is good.
  • the pixel alignment method of the present invention provides an excellent solution for improving resolution, reducing color mixing, improving the performance of a fine metal mask, making preparation and cleaning of a fine metal mask easier.
  • the method for preparing the pixel array of the present invention described in the present invention is still a mask evaporation method.
  • the mask evaporation method of the present invention vaporizes two R sub-pixels (or G sub-pixels) in the same opening of the R mask (or G mask).
  • the method of the present invention thus avoids mixing of R, G sub-pixels.
  • the method of the present invention can produce a higher resolution OLED pixel array at the same level of mask fabrication. Conversely, at the same level of resolution, the method of the present invention requires less level of mask fabrication.
  • the method of the invention still uses a fine metal mask commonly used in the art.
  • vapor deposition of the pixel array of the present invention is less prone to color mixing and can improve resolution.
  • color mixing is less likely to occur and the demanding requirements for fine metal masks are reduced. Since there is no color mixing problem between the same kind of end sub-pixels, as long as the spacing between the B sub-pixels and the R and G sub-pixels is appropriately increased, the color mixing problem can be completely avoided without lowering the resolution.
  • two sub-pixels are evaporated by the same opening on the R or G mask, for example, by directly depositing an organic material onto two adjacent sub-pixels. Depositing the organic luminescent material from the same opening onto the two sub-pixels naturally forms two separate sub-pixels. The spacing between the two sub-pixels is determined by the pitch of the previously formed PDL (pixel defining layer) on the backplane.
  • PDL pixel defining layer
  • the R sub-pixels and/or the G sub-pixels at both ends of the display panel may still be two, that is, the pixel arrangement is, for example, R-RBG-GBR-...-RBG-GBR-R, and the edge of the panel is R.
  • the (or G) sub-pixel does not emit light as a dummy area. In this way, the edge sub-pixel can still be used when it is evaporated.
  • the mask opening does not create the problem that the panel edge subpixels again require a small mask opening.
  • the mask can be adjusted according to actual conditions and needs to achieve the desired preparation effect.
  • the adjustments include, but are not limited to, changing the spacing between sub-pixels and adjusting the reticle opening size and the bridge width.
  • By adjusting one or more of effects such as increasing resolution, increasing white space, reducing color mixing, and preventing deformation of the mask can be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有机发光二极管(OLED)像素阵列,包括多个像素单元,所述像素单元在所述像素阵列的行方向呈并置型排列,每个像素单元由R子像素、G子像素和B子像素各一个组成,在各像素单元中,B子像素是中间子像素,R子像素和G子像素是端部子像素,且两个相邻像素单元的相邻端部子像素是同种子像素。提供一种以精细金属掩模蒸镀该像素阵列的方法,其中相邻像素单元的相邻同色子像素在同一掩模开口中蒸镀,该方法具有避免混色、提高分辨率、利于掩模操作等优点。还提供了使用该像素阵列的OLED显示面板和显示装置。

Description

OLED像素阵列、制备OLED像素阵列的方法、OLED显示面板和显示装置 发明领域
本发明涉及有机电致发光领域,具体涉及OLED像素阵列、制备该OLED像素阵列的方法、包含该OLED像素阵列的OLED显示面板、以及显示装置。
背景技术
平板显示包括LCD显示、OLED显示、PDP显示、电子墨水显示等多种。有机发光二极管(OLED)显示器以其轻薄、主动发光、快响应速度、广视角、色彩丰富及高亮度、低功耗、耐高低温等众多优点而被业界公认为是继液晶显示器(LCD)之后的第三代显示技术,可以广泛用于智能手机、平板电脑、电视等终端产品。
OLED现有成熟的技术是采用精细金属掩模板(Fine Metal Mask,FMM)按标准红绿蓝(以下有时简称为RGB)子像素有序排列蒸镀有机发光材料来制备彩色像素图案。在该方法中,相邻的异色子像素之间,尤其是R、G子像素之间,可能发生混色,严重影响显示性能。此外,受到精细金属掩模板开口及连接桥大小的限制,难以达到300ppi以上的分辨率。
近期LCD显示器分辨率已达到400ppi以上,甚至以后的发展趋势将超过500ppi,这对OLED的现有技术形成了巨大的挑战。
行业内针对FMM技术面临的问题,韩国三星等领先企业虽也积极研究以LITI(激光热转印)为代表的新技术以期能够生产高解析度的OLED显示屏,但这些新技术仍有诸多不足之处,目前还不能用于量产或量产时良率低下。比如需增加制程工序和额外的制程工艺而导致生产效率较低;需要增加设备和原材料,甚至需要开发特别的原材料,导致投资和成本增加等。即便如此,这些新技术仍难以生产450ppi以上的超高解析度显示屏。
另一种试图增高分辨率的方法是采用所谓的Pentile像素阵列。在Pentile像素阵列中,没有由红绿蓝三个子像素构成的像素,而是包括由红绿像素构成的子像素和由蓝绿像素构成的子像素,并且一个像素通过借用 相邻像素中的其所缺少的子像素的颜色来达到全彩色的目的。Pentile像素阵列由于每个像素只含有两个子像素,所以与标准RGB像素阵列相比,可以以相同的子像素大小产生更高的像素密度。然而该阵列方式需要借用相邻像素的子像素,在显示时常出现色差、彩边、暗点等严重影响显示效果的问题。
因此,针对利用FMM蒸镀法制备高分辨率、高显示质量OLED显示屏的方法,仍存在改进的需要。
发明内容
针对以上问题,本发明提供了以下内容:
[1]一种OLED像素阵列,包括多个像素单元,所述像素单元在所述像素阵列的行方向呈并置型排列,每个像素单元由R子像素、G子像素和B子像素各一个组成,在各像素单元中,B子像素是中间子像素,R子像素和G子像素是端部子像素,且两个相邻像素单元的相邻端部子像素是同种子像素。
[2]根据[1]所述的像素阵列,其中相邻R端部子像素之间的间距和/或相邻G端部子像素之间的间距小于使用精细金属掩模蒸镀法制备的分辨率最高的标准RGB像素阵列中相邻R-G子像素之间的间距。
[3]根据[1]或[2]所述的像素阵列,其中相邻R端部子像素之间的间距和/或相邻G端部子像素之间的间距低至10μm。
[4]根据[1]至[3]中任一项所述的像素阵列,其中B子像素和与其相邻的端部子像素之间的间距大于使用精细金属掩模蒸镀法制备的分辨率最高的标准RGB像素阵列中B子像素和与其相邻的子像素之间的间距。
[5]根据[1]至[4]中任一项所述的像素阵列,其中B子像素和与其相邻的端部子像素之间的间距确保通过掩模蒸镀法蒸镀的B子像素不发生混色。
[6]根据[1]至[5]中任一项所述的像素阵列,其中在行与行之间,R、G、B子像素是各自对齐的,或者B子像素是对齐的且R和G子像素是交替排列的。
[7]一种用于制备[1]至[6]中任一项所述像素阵列的方法,所述方法通 过掩模蒸镀法蒸镀R、G和B子像素,所述掩模蒸镀法使用R掩模板,G掩模板和B掩模板在背板上分别蒸镀R、G和B子像素,其中,
所述背板上形成有按照所述像素阵列排布的像素定义层,
通过所述R掩模板上的开口,在对应于所述像素定义层的相邻像素单元的两个相邻R端部子像素位置蒸镀红色有机发光材料,形成所述两个相邻R端部子像素;
通过所述G掩模板上的开口,在对应于所述像素定义层的相邻像素单元的两个相邻G端部子像素位置蒸镀绿色有机发光材料,形成所述两个相邻G端部子像素;
并且通过所述B掩模板上的开口,在对应于所述像素定义层的B子像素位置蒸镀蓝色有机发光材料,形成所述B子像素。
[8]根据[7]所述的方法,其中所述掩模板是精细金属掩模板。
[9]根据[8]所述的方法,其中通过设置各精细金属掩模板的开口和连接桥的宽度,确保蒸镀得到的像素阵列不发生子像素之间的混色。
[10]一种OLED显示面板,所述显示面板使用[1]至[6]中任一项所述的像素阵列。
[11]一种显示装置,所述显示装置包含[10]所述的显示面板。
本发明的第一方面提供了一种OLED像素阵列,包括多个像素单元,所述像素单元在所述像素阵列的行方向呈并置型排列,每个像素单元由R子像素、G子像素和B子像素各一个组成,在各像素单元中,B子像素是中间子像素,R子像素和G子像素是端部子像素,且两个相邻像素单元的相邻端部子像素是同种子像素。
本发明的像素阵列首先避免了相邻的R、G子像素的出现。在OLED显示领域,红绿子像素之间发生混色产生的危害最大,严重降低显示效果。本显示阵列中不存在相邻的红绿子像素,也就不会发生红绿子像素之间的混色。
当采用本发明的方法利用掩模蒸镀法制备本发明的像素阵列时,在一个掩模(R或G掩模)开口中蒸镀两个R、G子像素,从而使用开口大小相同的掩模可以获得更小的R、G子像素,也就可以获得更小的像素单元, 提高分辨率。
反之,若R、G子像素的大小保持不变,本发明的像素阵列可以用更大开口和更宽连接桥的R、G掩模制备。这样的掩模力学性能优于开口小、连接桥细的掩模,从而可以有效防止掩模变形及因此带来的缺点。
优选地,相邻R端部子像素之间的间距小于使用精细金属掩模蒸镀法制备的分辨率最高的标准RGB像素阵列中相邻R-G子像素之间的间距。优选地,相邻G端部子像素之间的间距小于使用精细金属掩模蒸镀法制备的分辨率最高的标准RGB像素阵列中相邻R-G子像素之间的间距。优选地,相邻R端部子像素之间的间距和/或相邻G端部子像素之间的间距可以低至10μm。
由于本发明的同种端部子像素之间不存在混色问题,它们之间的间距可以各自比标准RGB阵列中相邻的R-G子像素之间的间距小。从而在相同长度内,子像素之间的留白减少。相应地,子像素的排布更紧凑,可以提高分辨率。
优选地,B子像素和与其相邻的端部子像素之间的间距大于子像素大小与所述像素阵列的子像素大小相同的标准RGB阵列中B子像素和与其相邻的子像素之间的间距。
若B子像素与相邻子像素之间的间距增大,可以在无需变动B掩模的情况下,进一步降低混色发生的几率。
优选地,B子像素和与其相邻的端部子像素之间的间距确保通过掩模蒸镀法蒸镀的B子像素不发生混色。
优选地,在行与行之间,R、G、B子像素是各自对齐的,或者B子像素是对齐的且R和G子像素是交替排列的。上述两种构成整体RGB像素阵列的方式在制备和显示效果方面是有利的。
本发明的另一个方面提供了一种用于制备权利要求1所述像素阵列的方法,所述方法通过掩模蒸镀法蒸镀R、G和B子像素,所述掩模蒸镀法使用R掩模板,G掩模板和B掩模板在背板上分别蒸镀R、G和B子像素,其中,所述背板上形成有按照所述像素阵列排布的像素定义层,通过所述R掩模板上的开口,在对应于所述像素定义层的相邻像素单元的两个相邻R端部子像素位置蒸镀红色有机发光材料,形成所述两个相邻R端部 子像素;通过所述G掩模板上的开口,在对应于所述像素定义层的相邻像素单元的两个相邻G端部子像素位置蒸镀绿色有机发光材料,形成所述两个相邻G端部子像素;并且通过所述B掩模板上的开口,在对应于所述像素定义层的B子像素位置蒸镀蓝色有机发光材料,形成所述B子像素。
通过上述蒸镀方法,可以在一个端部子像素掩模开口中蒸镀两个同种子像素,从而提高分辨率。同时,所述两个同种子像素的间距可以比异种子像素之间的间距更加接近,进一步提高分辨率。
优选地,所述掩模板是精细金属掩模板。
更优选地,通过设置各精细金属掩模板的开口和连接桥的宽度,确保蒸镀得到的像素阵列不发生子像素之间的混色。
在本发明的又一个方面,提供了使用本发明第一方面所述的像素阵列的OLED显示面板。
在本发明的又一个方面,提供了使用上述OLED显示面板的显示装置。
附图说明
图1显示了蒸镀现有技术中标准RGB像素阵列的示意图。
图2显示了蒸镀本发明的像素阵列的示意图。
图3是本发明的像素阵列的一行中的排布方式的示意图。
图4A-C分别具体示出了蒸镀R、B和G子像素时的情况。
图5A示意性显示了标准RGB像素阵列的子像素之间的间距。
图5B示意性显示了本发明的像素阵列的子像素之间的间距。
图5C示意性地显示了标准RGB像素阵列的子像素之间的间距的一个实施方案。
图5D示意性显示了本发明的像素阵列的子像素之间的间距的一个实施方案。
图6A和图6B显示了本发明的像素阵列的二维排布方式的实例。
具体实施方案
在现有技术的标准RGB像素阵列中,OLED像素阵列由像素单元组成,每个像素单元包括红、绿、蓝三种颜色的子像素(即R子像素、G子 像素、B子像素)。在阵列的一行中,子像素之间和像素单元之间均为并置型(side by side),从而形成其中R、G、B子像素顺序循环排列的像素行。
精细金属掩模板是高精度的掩模板,其上具有细小开口。为了制备像素阵列,利用掩模板遮挡区域的屏蔽作用将R/G/B子像素中的两种子像素遮挡住(如遮挡R子像素和G子像素),通过蒸镀的方法沉积对应于另一种颜色的子像素(如B子像素)的发光层的主体材料,此即掩模蒸镀法。分别使用R、G、B掩模板蒸镀R、G、B子像素,得到最终的像素阵列。
显示器件的重要参数之一分辨率(单位为ppi,每平方英寸像素数)可以与以下两个因素有关。第一,每个子像素的大小。子像素越小,单位面积中子像素数就越多,从而分辨率越高。但是,子像素的大小取决于蒸镀所用的掩模板的开口大小。当分辨率达到300ppi以上时,上述RGB子像素循环并置型的像素排列方式要求精细金属掩模板的开口及连接桥(连接相邻开口的肋骨(rib))均非常细小。然而,当掩模板的开口变得更小后,不但会造成掩模板的成本提高,制作工艺(主要是刻蚀和焊接工艺)以及清洗的难度显著增加,更会造成使用掩模时对位精度下降,导致制备出的R、G、B子像素之间混色现象严重,生产良率降低。所以,精细金属掩模的开口大小是限制分辨率提高的一个因素。第二,各子像素之间的间距。假设子像素大小一定,则当子像素之间紧密相邻时,像素密度最大。然而这只是理想情况。此外,实际生产中,子像素之间必须留有一定的留白(margen),以减小混色发生的机会。留白越大,混色越不易发生,但相应地,子像素排布越不紧密,分辨率越低。所以,留白的宽度是限制分辨率提高的另一个因素。
精细掩模板上开口之间的连接桥也对分辨率的提高有影响。当为了分辨率提高而使掩模板上开口更密时,肋部相应地也变窄,从而掩模板容易受其他因素影响而变形,例如会因为重力下沉,并且掩模板的阴影也随之受到影响,导致包括产生混色在内的一系列问题。
图1显示了蒸镀现有技术中标准RGB像素阵列的示意图。在标准RGB像素阵列的一行中,R、G、B子像素顺序循环排列。图1显示的是蒸镀B子像素时的示意图。其中精细金属掩模板的连接桥遮住R子像素和G子像素,并在开口中蒸镀B子像素。在图中,为了简明的目的,将R、G、 B子像素绘制成宽度基本相同且间距基本相同。实际上,随着R、G、B子像素发光材料的不同,其宽度可以不同。一般而言,蓝色有机发光材料与红色、绿色有机发光材料相比,发光较弱,因此通常B子像素在三种子像素中最宽。此外,在各子像素之间的留白也与其两侧子像素混色特性有关。R子像素和G子像素之间的混色对显示效果危害最大,因此,一般R子像素和G子像素之间要求的留白较大。
为了说明本发明的优势,当与标准RGB像素阵列比较时,若无特别说明,选取的比较对象都是“使用精细金属掩模蒸镀法制备的分辨率最高的标准RGB像素阵列”。该术语的含义在于,随着工艺水平的提高,标准RGB像素阵列的分辨率、混色水平、其精细金属掩模的性能等等均可能进一步提高。然而,本发明的像素阵列在完全相同的工艺水平下,仍然显示出对于标准RGB像素阵列的优势。换言之,本发明的像素阵列和相应的制备方法的进步不来自于对于精细掩模加工、有机发光材料、蒸镀工艺等通用技术水平的改进,而是固有地具有相对于标准RGB像素阵列的优点。
图2显示了蒸镀本发明的像素阵列的示意图。本发明的像素阵列的排布方式如图3所示。每个像素单元均由R、G、B子像素各一个构成。每个像素单元的中间子像素为B子像素,一侧的端部子像素为R组像素,另一侧的端部子像素为G子像素。两个相邻像素单元的相邻的端部子像素相同,即形成R-R子像素对和G-G子像素对。或者说,本发明的像素阵列的各行中,不是标准的-RGB-RGB-RGB-,而是-RBG-GBR-RBG-GBR-。重要的是,尽管两个同种端部子像素是相邻的,但是它们各自单独发光。也就是说,每个像素单元仍是完整具备RGB三色的像素单元,而不像Pentile方式需要借用相邻像素单元的颜色。
在本发明的像素阵列中,R子像素和G子像素不相邻。R子像素与G子像素之间发生混色对显示效果的危害最大。通过本发明的像素阵列,避免了发生R、G子像素的混色。
图4A-C具体示出了蒸镀R、B和G子像素时的情况。图中的灰色部分表示的是掩模板的开口之间的连接桥。由图4A和4C中可见,在蒸镀R子像素和G子像素时,在掩模板的一个开口中蒸镀两个子像素。
可见,使用本发明的像素阵列,R、G掩模板上的开口大小可以为蒸 镀标准RGB阵列中相同大小R、G子像素所用的开口的大约两倍。另一方面,以与之前相同大小的开口,可以制备两个子像素。这在一定程度上解决了开口大小限制分辨率提高的问题。此外,开口之间的连接桥覆盖4个子像素,而不是像蒸镀标准RGB阵列所用掩模板中的连接桥那样仅覆盖2个子像素。例如,R掩模板的两个开口之间的连接桥遮盖了两个B子像素和两个G子像素,而标准的RGBRGB式像素阵列中R掩模板的两个开口之间的连接桥仅遮盖一个B子像素和一个G子像素。因此,当子像素大小相同时,连接桥的宽度也可以为用于标准RGB阵列的连接桥的大约两倍,从而不易发生因重力下沉或因其他因素变形。
如图4B所示,两个B子像素之间的子像素个数仍为两个。不过,在现有技术中,因为蓝色有机发光材料的性能问题,B子像素总是做成最宽的。因此,B掩模板的开口大小并不是限制当前FMM工艺的主要因素。随着制出宽度更小的R、G子像素,B掩模的开口仍有潜力做得更小,从而提高分辨率。
本发明的像素阵列的优势还在于,相邻同色子像素之间的间距可以合理减小,且B子像素与R子像素或G子像素之间的间距可以合理增大。
如在前文提到的,颜色不同的两个相邻子像素之间需要有留白,以避免混色发生,或至少将混色发生的机会减小至可接受的范围。如图5A所示,在标准RGB像素阵列中,不同颜色子像素之间的间距可以均为c。当然,三组相邻子像素(即R-G,G-B,B-R)之间的间距也可能不同。为简单起见,图5A示出了间距均为c的情况。与之相比,图5B示出了本发明的像素阵列的情况。由于两个相邻的端部子像素是同色子像素,因此,它们之间不存在发生混色的问题。因此,它们之间的间距(图5B中表示为a)可以小于c,即a<c。假如B-R间距和B-G间距与图5A相比仍保持不变,则像素单元与像素单元之间的间距可以比原来的R-G间距更小。因此,在相同长度上排布了更多像素单元,从而提高了像素阵列的分辨率。本领域技术人员可以根据实际需要灵活调整同种相邻端部子像素之间的间距。例如,可以仅使R子像素之间的间距减小,或者仅使G子像素之间的间距减小,或者两种间距减小不同的程度。这对本领域技术人员来说是容易做到的。同时,B子像素与相邻子像素之间的间距也可以适当增大,如图5B 所示,可以为b,其中b>c。b可以灵活取值,使得总体分辨率仍然大于或等于作为比较基准的标准RGB像素阵列的分辨率。b值大于c值的优点在于,由于子像素间间距增大,进一步减小了B子像素与相邻子像素发生混色的机会。理想的情况是,B子像素和与其相邻的端部子像素之间的间距确保通过掩模蒸镀法蒸镀的B子像素不发生混色。
更具体地,图5C中示出了在现有技术条件下的标准RGB像素阵列之间的常见留白情况,R和G子像素之间的间距为26μm,G和B子像素之间及B和R子像素之间的间距为27.5μm。图5D中示出了本发明的一种实施方案,其中R和R子像素及G和G子像素之间的间距为10μm,而R和B子像素及B和G子像素之间的间距为35.5μm。在图示的相同大小包含R、G、B子像素各一个的像素单元(虚线之间的部分)中,留白总量相同,均为81μm,但B子像素与R、G子像素之间的间距增大,留白更多,发生混色的几率降至非常微小。
可见,相比于标准RGB像素阵列,利用本发明的像素阵列,可以减小同色的R子像素之间或G子像素之间的间距,和/或增加B子像素与相邻子像素之间的间距,从而提高分辨率和/或避免混色。
可以将一行像素扩展为整个像素阵列。优选的方式有:在行与行之间,R、G、B子像素是各自对齐的,或者B子像素是对齐的且R和G子像素是交替排列的。
归纳起来,相比于并置型标准RGB像素阵列,本发明的像素阵列可以具有以下优点,但不限于此:
(1)R、G子像素不相邻,完全避免发生R、G混色。
(2)当蒸镀分辨率相同,同样大小的R、G、B子像素时,R、G掩模板的开口较大,连接桥较宽,可以降低R、G掩模板的制备、使用(例如对位)和清洁等过程中的困难。
(3)在相同的掩模制备水平下,R、G掩模的每个开口可以制备两个更小的子像素,配合减小B子像素,可以获得更高的分辨率。
(4)在相同的混色水平下,同色相邻的端部子像素之间的间距可以小于标准并置型RGB像素阵列中R-G子像素间距,从而可以获得更高的分辨率。
(5)在相同B掩模下,B子像素与相邻的R、G子像素间距更大,可以减轻混色。
(6)本发明的像素阵列中,相邻的端部子像素分属不同像素单元,单独发光,因此每个像素单元都是完整具有RGB三色的像素单元,显示效果好。
总之,本发明的像素排列方法为提高分辨率、减少混色、改善精细金属掩模的性能、使精细金属掩模的制备和清理更加容易等方面提供了出色的解决方案。
本发明所述的用于制备本发明的像素阵列的方法仍是掩模蒸镀法。但由于本发明的像素阵列的独特构造,本发明的掩模蒸镀法在R掩模板(或G掩模板)的同一个开口中蒸镀两个R子像素(或G子像素)。本发明的方法因此可以避免R、G子像素混色。此外,本发明的方法可以在相同的掩模板制造水平下,制备分辨率更高的OLED像素阵列。反之,在相同分辨率水平下,本发明的方法对于掩模板制造水平的要求较低。
优选地,本发明的方法仍使用本领域常用的精细金属掩模。
在同等精细金属掩模制造水平下,蒸镀本发明的像素阵列不易发生混色并且可以提高分辨率。而在制备同等分辨率像素阵列的情况下,不易发生混色且降低了对精细金属掩模的苛刻要求。由于同种端部子像素之间没有混色问题,因此只要适当增加B子像素与R、G子像素之间的间距,就可以在不降低分辨率的前提下彻底避免混色问题。
在本发明的方法中,通过R或G掩模上的同一开口蒸镀两个子像素,例如可以直接向两个相邻子像素上蒸镀有机材料来完成。从同一个开口向两个子像素上沉积有机发光材料自然地形成两个单独的子像素。两个子像素之间的间距由背板上事先已形成的PDL(像素定义层)的间距决定。在上述蒸镀步骤中,即使两个相邻同种端部子像素的蒸镀过程中发生了相互的干扰,由于两个子像素颜色相同,因而并不会引起混色的问题,每个子像素仍然发出纯的红光或绿光。
在显示面板两端的R子像素和/或G子像素可以仍为两个,即其像素排列方式为例如R-RBG-GBR-...-RBG-GBR-R,这时面板最边缘的R(或G)子像素作为哑(dummy)区不发光。这样,该边缘子像素蒸镀时仍可使用大 的掩模开口,因此不会产生面板边缘子像素再次需要小掩模开口的问题。
在本发明的方法可以根据实际情况和需要,对掩模板进行调整,达到预期的制备效果。所述调整包括但不限于改变子像素之间的间距和调节掩模板开口大小和连接桥宽度。通过调整,可以达到提高分辨率、增大留白、减轻混色,防止掩模板变形等效果中的一种或多种。
以上的具体说明仅是为了说明的目的,而非限制本发明。本领域技术人员有能力根据本说明书公开的内容,采用本发明的像素阵列和本发明的制备像素阵列的方法,取得各种有利效果。不脱离本公开精神的各种改进均落在本发明的范围之内。

Claims (11)

  1. 一种OLED像素阵列,包括多个像素单元,所述像素单元在所述像素阵列的行方向呈并置型排列,每个像素单元由R子像素、G子像素和B子像素各一个组成,在各像素单元中,B子像素是中间子像素,R子像素和G子像素是端部子像素,且两个相邻像素单元的相邻端部子像素是同种子像素。
  2. 根据权利要求1所述的像素阵列,其中相邻R端部子像素之间的间距和/或相邻G端部子像素之间的间距小于使用精细金属掩模蒸镀法制备的分辨率最高的标准RGB像素阵列中相邻R-G子像素之间的间距。
  3. 根据权利要求1或2所述的像素阵列,其中相邻R端部子像素之间的间距和/或相邻G端部子像素之间的间距低至10μm。
  4. 根据权利要求1至3中任一项所述的像素阵列,其中B子像素和与其相邻的端部子像素之间的间距大于使用精细金属掩模蒸镀法制备的分辨率最高的标准RGB像素阵列中B子像素和与其相邻的子像素之间的间距。
  5. 根据权利要求1至4中任一项所述的像素阵列,其中B子像素和与其相邻的端部子像素之间的间距确保通过掩模蒸镀法蒸镀的B子像素不发生混色。
  6. 根据权利要求1至5中任一项所述的像素阵列,其中在行与行之间,R、G、B子像素是各自对齐的,或者B子像素是对齐的且R和G子像素是交替排列的。
  7. 一种用于制备权利要求1至6中任一项所述像素阵列的方法,所述方法通过掩模蒸镀法蒸镀R、G和B子像素,所述掩模蒸镀法使用R掩模板,G掩模板和B掩模板在背板上分别蒸镀R、G和B子像素,其中,
    所述背板上形成有按照所述像素阵列排布的像素定义层,
    通过所述R掩模板上的开口,在对应于所述像素定义层的相邻像素单元的两个相邻R端部子像素位置蒸镀红色有机发光材料,形成所述两个相邻R端部子像素;
    通过所述G掩模板上的开口,在对应于所述像素定义层的相邻像素单元的两个相邻G端部子像素位置蒸镀绿色有机发光材料,形成所述两个相邻G端部子像素;
    并且通过所述B掩模板上的开口,在对应于所述像素定义层的B子像素位置蒸镀蓝色有机发光材料,形成所述B子像素。
  8. 根据权利要求7所述的方法,其中所述掩模板是精细金属掩模板。
  9. 根据权利要求8所述的方法,其中通过设置各精细金属掩模板的开口和连接桥的宽度,确保蒸镀得到的像素阵列不发生子像素之间的混色。
  10. 一种OLED显示面板,所述OLED显示面板使用权利要求1至6中任一项所述的像素阵列。
  11. 一种显示装置,所述显示装置包含权利要求10所述的OLED显示面板。
PCT/CN2016/093224 2016-01-05 2016-08-04 Oled像素阵列、制备oled像素阵列的方法、oled显示面板和显示装置 WO2017118003A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/520,475 US20180090545A1 (en) 2016-01-05 2016-08-04 Oled pixel array, method for preparing oled pixel array, oled display panel and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610005064.X 2016-01-05
CN201610005064.XA CN105552104A (zh) 2016-01-05 2016-01-05 Oled像素阵列、制备oled像素阵列的方法、oled显示面板和显示装置

Publications (1)

Publication Number Publication Date
WO2017118003A1 true WO2017118003A1 (zh) 2017-07-13

Family

ID=55831187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/093224 WO2017118003A1 (zh) 2016-01-05 2016-08-04 Oled像素阵列、制备oled像素阵列的方法、oled显示面板和显示装置

Country Status (3)

Country Link
US (1) US20180090545A1 (zh)
CN (1) CN105552104A (zh)
WO (1) WO2017118003A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11066738B2 (en) 2018-03-30 2021-07-20 Kunshan Go-Visionox Opto-Electronics Co., Ltd. Mask plates and display panels

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105552104A (zh) * 2016-01-05 2016-05-04 京东方科技集团股份有限公司 Oled像素阵列、制备oled像素阵列的方法、oled显示面板和显示装置
US20230276685A9 (en) * 2016-08-26 2023-08-31 Najing Technology Corporation Limited Manufacturing method for light emitting device, light emitting device, and hybrid light emitting device
CN108288630A (zh) * 2017-01-09 2018-07-17 昆山国显光电有限公司 Oled像素排列结构及蒸镀掩膜板
CN107359283B (zh) * 2017-07-18 2019-03-29 广州新视界光电科技有限公司 阵列基板的制备方法、阵列基板、显示面板及显示装置
CN108986676A (zh) * 2018-07-25 2018-12-11 京东方科技集团股份有限公司 掩模板、oled显示基板及其制作方法、显示装置
CN111199995B (zh) 2018-11-20 2023-05-26 乐金显示有限公司 可伸缩显示装置
CN110660834B (zh) * 2019-09-29 2022-04-29 京东方科技集团股份有限公司 像素结构、显示面板、显示装置及制作方法
CN110931639A (zh) * 2019-11-26 2020-03-27 武汉华星光电半导体显示技术有限公司 可提高像素分辨率的像素排列显示设备与蒸镀方法
CN113178461A (zh) * 2021-04-07 2021-07-27 武汉华星光电半导体显示技术有限公司 像素结构及掩膜板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001109401A (ja) * 1999-10-06 2001-04-20 Matsushita Electric Ind Co Ltd 色画素配列パターン並びに電極パターン及びそれを用いた電極マスク
US20070290955A1 (en) * 2006-06-14 2007-12-20 Rohm Co., Ltd. Organic electroluminescent display device and manufacturing method thereof
CN103872091A (zh) * 2014-03-18 2014-06-18 四川虹视显示技术有限公司 一种高解析度oled器件及制造用掩膜板
CN104330954A (zh) * 2014-08-25 2015-02-04 京东方科技集团股份有限公司 掩膜版、掩膜版组、像素的制作方法及像素结构
CN105140421A (zh) * 2015-07-27 2015-12-09 京东方科技集团股份有限公司 掩膜板组及制作电致发光层的方法、显示面板及驱动方法
CN105552104A (zh) * 2016-01-05 2016-05-04 京东方科技集团股份有限公司 Oled像素阵列、制备oled像素阵列的方法、oled显示面板和显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8154700B2 (en) * 2007-12-28 2012-04-10 E.I. Du Pont De Nemours And Company Electronic device having electrodes and organic active regions and processes of forming the same
CN103280162B (zh) * 2013-05-10 2015-02-18 京东方科技集团股份有限公司 显示基板及其驱动方法、显示装置
TWI506774B (zh) * 2013-07-01 2015-11-01 Ye Xin Technology Consulting Co Ltd 畫素結構及其金屬光罩
TWI604600B (zh) * 2013-07-19 2017-11-01 群創光電股份有限公司 有機電激發光顯示面板
TW201507130A (zh) * 2013-08-05 2015-02-16 Ye Xin Technology Consulting Co Ltd 有機發光二極體顯示面板
CN103715227A (zh) * 2013-12-26 2014-04-09 京东方科技集团股份有限公司 一种显示面板及其驱动方法和显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001109401A (ja) * 1999-10-06 2001-04-20 Matsushita Electric Ind Co Ltd 色画素配列パターン並びに電極パターン及びそれを用いた電極マスク
US20070290955A1 (en) * 2006-06-14 2007-12-20 Rohm Co., Ltd. Organic electroluminescent display device and manufacturing method thereof
CN103872091A (zh) * 2014-03-18 2014-06-18 四川虹视显示技术有限公司 一种高解析度oled器件及制造用掩膜板
CN104330954A (zh) * 2014-08-25 2015-02-04 京东方科技集团股份有限公司 掩膜版、掩膜版组、像素的制作方法及像素结构
CN105140421A (zh) * 2015-07-27 2015-12-09 京东方科技集团股份有限公司 掩膜板组及制作电致发光层的方法、显示面板及驱动方法
CN105552104A (zh) * 2016-01-05 2016-05-04 京东方科技集团股份有限公司 Oled像素阵列、制备oled像素阵列的方法、oled显示面板和显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11066738B2 (en) 2018-03-30 2021-07-20 Kunshan Go-Visionox Opto-Electronics Co., Ltd. Mask plates and display panels

Also Published As

Publication number Publication date
US20180090545A1 (en) 2018-03-29
CN105552104A (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
WO2017118003A1 (zh) Oled像素阵列、制备oled像素阵列的方法、oled显示面板和显示装置
US10901314B2 (en) Pixel arrangement structure, organic light emitting device, display device and mask
EP3091577B1 (en) Pixel structure and organic light-emitting display using pixel structure
WO2015139436A1 (zh) 一种高解析度有机发光二极管显示器件及制造用掩膜板
TWI676165B (zh) 像素結構及包含所述像素結構的顯示面板
US7934968B2 (en) Method of fabricating pixel structure
TWI585726B (zh) 畫素結構
TWI506774B (zh) 畫素結構及其金屬光罩
WO2016169387A1 (zh) 像素结构、掩膜板、有机电致发光显示面板及显示装置
WO2019041938A1 (zh) 像素结构、oled 显示屏以及蒸镀掩膜版
JP7005657B2 (ja) 画素構造及びoled表示パネル
TWI663592B (zh) 像素結構、掩膜板及顯示裝置
WO2018196496A1 (zh) 像素结构驱动方法
CN104037202A (zh) 一种amoled显示器件及其子像素结构的制备方法
CN107086239A (zh) 像素结构及其制备方法和显示装置
CN107680990B (zh) 像素排列结构、像素结构、制作方法及显示方法
CN106229300B (zh) 像素结构及制作方法
CN104576696A (zh) 一种像素结构及采用该像素结构的有机发光显示器
CN104659064A (zh) 有机发光二极管显示器像素排列结构及显示装置
CN106469743A (zh) 像素结构、oled显示面板及其制作方法
WO2018161704A1 (zh) 一种显示器件及其制造方法
CN104425547B (zh) 一种有机发光显示器及其制作方法
WO2022134815A1 (zh) 像素排布结构、精密金属掩膜版组和显示装置
CN109326623A (zh) 一种像素排列结构、显示面板及显示装置
CN109148547A (zh) 像素排列结构和显示面板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15520475

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883136

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16883136

Country of ref document: EP

Kind code of ref document: A1