WO2015137263A1 - 耐水性に優れた窒化アルミニウム粉末 - Google Patents

耐水性に優れた窒化アルミニウム粉末 Download PDF

Info

Publication number
WO2015137263A1
WO2015137263A1 PCT/JP2015/056770 JP2015056770W WO2015137263A1 WO 2015137263 A1 WO2015137263 A1 WO 2015137263A1 JP 2015056770 W JP2015056770 W JP 2015056770W WO 2015137263 A1 WO2015137263 A1 WO 2015137263A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum nitride
aln powder
surface treatment
water resistance
nitride powder
Prior art date
Application number
PCT/JP2015/056770
Other languages
English (en)
French (fr)
Inventor
大野 秀樹
雄一郎 川端
昭子 岩▲崎▼
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to JP2016507502A priority Critical patent/JP6378315B2/ja
Publication of WO2015137263A1 publication Critical patent/WO2015137263A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3731Ceramic materials or glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to an aluminum nitride powder excellent in water resistance, and more particularly to a surface treatment agent used to obtain such aluminum nitride and a heat dissipation composite material containing the aluminum nitride powder. Related.
  • the thermal interface material is a material for relieving the thermal resistance of the path that dissipates the heat generated by the semiconductor element to the heat sink, the housing, etc., and includes various forms such as a sheet, gel, grease, heat dissipation substrate, and semiconductor encapsulation material. Is used.
  • this thermal interface material is a composite material in which a thermally conductive filler is dispersed in a resin such as epoxy and silicone, and silica and alumina are often used as the filler.
  • a thermally conductive filler is dispersed in a resin such as epoxy and silicone
  • silica and alumina are often used as the filler.
  • the thermal conductivity of silica and alumina is about 1 W / mK and about 30 W / mK, respectively, and the thermal conductivity of the composite material using alumina remains at about 1 to 3 W / mK.
  • thermal interface materials are required to have higher thermal conductivity.
  • Patent Document 1 has an aluminum oxide film or a phosphoric acid-based film.
  • Patent Document 2 proposes a method of treating an aluminum nitride powder with phosphoric acid, a metal salt of phosphoric acid or an organic phosphoric acid having an organic group having 12 or less carbon atoms.
  • the water resistance of aluminum nitride can not be sufficiently improved, and in particular, the high water resistance required for applications such as a heat dissipation substrate in which a circuit and a resin are in direct contact and a semiconductor sealing material is satisfied. I can not do it.
  • the water resistance can be greatly improved, but in this case, the properties essentially required for aluminum nitride, such as the thermal conductivity, are reduced.
  • the corrosion amount to the circuit is concerned, and therefore the elution amount is required to be as low as possible. ing.
  • aluminum nitride has a problem in affinity with the resin, and the viscosity becomes too high when mixed with the resin, so a large amount of aluminum nitride can not be compounded into the resin, and a void is formed between the resin and the resin. It has a problem that it is generated and the thermal conductivity does not increase.
  • the object of the present invention is to show the aluminum nitride powder not only showing excellent water resistance by the surface treatment with a phosphorus compound but also suppressing the elution of phosphorus and effectively preventing the reduction of the thermal conductivity due to the surface treatment.
  • Another object of the present invention is to provide an aluminum nitride powder in which thickening when blended into a resin is also effectively suppressed.
  • Still another object of the present invention is to provide a heat dissipation composite material having a high thermal conductivity, which is compounded with the surface treatment agent used to obtain the above aluminum nitride powder and the above aluminum nitride powder. It is in.
  • the present inventors surface-treat aluminum nitride powder with an alkyl phosphonic acid so that the carbon content is in a certain range, thereby achieving water resistance.
  • the elution amount of phosphorus can be suppressed, and the decrease in the thermal conductivity due to the surface treatment can be effectively suppressed, and in particular, the longer the alkyl group used in the alkylphosphonic acid used, the water resistance is improved.
  • the inventors have found that the present invention can be further improved and the elution amount of phosphorus can be suppressed to a smaller amount, and the present invention has been completed.
  • an aluminum nitride powder which is surface-treated with an alkylphosphonic acid and contains carbon in an amount of 0.4 to 2.0% by mass.
  • the aluminum nitride powder of the present invention is (1) The amount of elution of phosphorus is suppressed to 5 ppm or less when 1 g of the aluminum nitride powder is immersed in 50 g of ion-exchanged water and held in a sealed container at 120 ° C. for 24 hours; (2) When 2 g of the aluminum nitride powder is immersed in 100 g of deionized water and kept at 120 ° C. in a sealed container, the water resistance time indicated by the time when the pH reaches 10 is 6 hours or more.
  • the water resistance be further enhanced by adjusting the carbon number of the alkyl group of the alkylphosphonic acid used, in particular, for example, (3)
  • the water resistance time is 2 days or more, Moreover, (4) The water resistance time is 5 days or more, Is preferred.
  • a surface treatment agent for aluminum nitride powder comprising alkylphosphonic acid.
  • the number of carbon atoms of the alkyl group possessed by the alkylphosphonic acid is in the range of 10 to 30, particularly 14 to 30, Is preferred.
  • a heat dissipating composite material comprising the aforementioned aluminum nitride powder and a resin.
  • the aluminum nitride (AlN) powder of the present invention which is surface-treated with an alkylphosphonic acid exhibits excellent water resistance and, as shown in the examples described later, 100 g of ion-exchanged water of 2 g of this AlN powder Water immersion time indicated by the time when the pH reaches 10 is 6 hours or more, and the carbon number of the alkyl group of the alkyl phosphonic acid is increased.
  • the water resistance time can be 2 days or more, and further 5 days or more.
  • the AlN powder of the present invention is surface-treated with an alkylphosphonic acid, the elution of phosphorus is effectively suppressed.
  • 1 g of this AlN powder is immersed in 50 g of ion exchange water, and the elution amount of phosphorus is suppressed to 5 ppm or less when held in a sealed container at 120 ° C. for 24 hours.
  • this phosphorus elution amount can be suppressed to 4 ppm or less, and further to 3 ppm or less.
  • the amount of the alkylphosphonic acid treated is small (the carbon content of the AlN powder is 0.4 to 2.0% by mass), so the thermal conductivity decreases due to the surface treatment and the viscosity increases Can be effectively suppressed.
  • the AlN powder of the present invention can be mixed with a resin to impart high thermal conductivity as a heat dissipation composite material, hydrolysis by moisture can be effectively suppressed, and stable high thermal conductivity over a long period of time In addition, corrosion of the circuit due to elution of phosphorus is effectively prevented.
  • the AlN powder of the present invention is obtained by surface treatment using an alkyl phosphonic acid, and the AlN powder (ie, raw material AlN powder) to be subjected to the surface treatment is not particularly limited and known aluminum nitride Powder is used.
  • a method of producing AlN used as a raw material there are a direct nitriding method, a reduction nitriding method, a vapor phase synthesis method and the like, but in the present invention, as a raw material AlN powder, one manufactured by any method can be used. .
  • such raw material AlN powder may have an aluminum oxide layer formed on the particle surface, and the formation of the aluminum oxide layer is suitable for obtaining good water resistance.
  • the reduction nitriding method it is essential to remove residual carbon in the oxidation step following the nitriding step, and an aluminum oxide layer can be formed during this step. Is formed. It is possible to form Further, in the direct nitriding method and the vapor phase synthesis method, there is a grinding step after the nitriding step, and the surface newly generated at the time of grinding reacts with oxygen in the atmosphere to form an aluminum oxide layer. However, the aluminum oxide layer formed in this manner may not be sufficient to obtain high water resistance, and in such a case, the aluminum oxide layer can be obtained by leaving the ground aluminum nitride powder in the air.
  • the desired aluminum oxide layer is formed by heating the ground aluminum nitride powder at 400 ° C. to 1000 ° C., preferably 500 ° C. to 900 ° C. in an oxygen-containing atmosphere. It is possible to form.
  • alkyl phosphonic acid is used as a surface treatment agent.
  • R is an alkyl group, And the above-mentioned alkyl group R may be linear or branched.
  • alkylphosphonic acids examples include propylphosphonic acid, butylphosphonic acid, pentylphosphonic acid, hexylphosphonic acid, heptylphosphonic acid, octylphosphonic acid, nonylphosphonic acid, decylphosphonic acid, undecylphosphonic acid, dodecylphosphonic acid Acid, tridecylphosphonic acid, tetradecylphosphonic acid, pentadecylphosphonic acid, hexadecylphosphonic acid, heptadecylphosphonic acid, octadecylphosphonic acid, nonadecylphosphonic acid, icosylphosphonic acid, henicosylphosphonic acid, docosylphosphonic acid, Tricosyl phosphonic acid, tetracosyl phosphonic acid, pentacosyl phosphonic acid, hexacosyl phosphonic acid, heptacosyl phosphonic acid, octacosyl phosphonic
  • alkylsulfonic acids regardless of whether the alkyl group R is linear or branched, it has 10 to 30, in particular 14 to 30, and most preferably 14 carbon atoms. It is preferably in the range of ⁇ 20.
  • the water resistance can be improved and the elution amount of phosphorus can be reduced.
  • the water resistance time measured by the above-mentioned method is 6 hours or more, particularly about 6 hours to 1 day, as described above
  • the phosphorus elution amount measured by the method can be suppressed to 5 ppm or less.
  • the surface is treated with an alkyl phosphonic acid having 10 or more carbon atoms in the alkyl group, the water resistance time is improved to 2 days or more, and the amount of eluted phosphorus is reduced by 4 ppm or less.
  • the water resistance time is further improved to 5 days or more, and the phosphorus elution amount is further reduced to 3 ppm or less.
  • the water resistance time is 6 days or more when the carbon number of the alkyl group is 16 or more, and the water resistance time is largely 11 days or more when the carbon number is 18 or more It can be seen that it is extended, and the elution amount of phosphorus is also extremely reduced to 2 ppm or less.
  • the present inventors assume that such a phenomenon may be caused by the fact that water easily penetrates the interface between AlN and alkyl phosphonic acid if the alkyl chain is too short, and high water resistance becomes difficult to obtain. ing. That is, the penetration of water not only reduces the water resistance but also makes it easier for the alkyl phosphonic acid to detach from the AlN surface, and as a result, the elution amount of phosphorus also increases.
  • the number of carbon atoms increases and the alkyl chain lengthens, water hardly penetrates into the interface between AlN and alkyl phosphonic acid. As a result, not only the water resistance improves but also the elution of phosphorus can be suppressed low. It seems to be possible.
  • the thermal conductivity of the alkyl group R of the alkylphosphonic acid is longer than necessary, the thermal conductivity is reduced, and for example, it tends to be difficult to express high thermal conductivity by mixing with a resin.
  • the thermal conductivity of a general organic substance is much lower than that of AlN, the longer the alkyl chain, the larger the coating thickness of the organic substance (alkyl group) on the AlN surface.
  • the present inventors speculate that the thermal resistance at the interface between the AlN particles and the resin also increases.
  • the carbon number of the alkyl group R of the alkyl phosphonic acid be in the above range in order to improve the water resistance, suppress the elution of phosphorus, and secure a higher thermal conductivity. It becomes.
  • the phenomenon which the carbon number of the alkyl group of the alkyl phosphonic acid used as a surface treatment agent exerts on water resistance or the elution property of phosphorus does not apply at all to phosphoric acid type compounds, such as phosphoric acid ester.
  • phosphoric acid type compounds such as phosphoric acid ester.
  • surface treatment is performed using a phosphate ester, only a water resistance time of about 1 day can be obtained, and furthermore, the elution amount of phosphorus can not be suppressed to 5 ppm or less. It is confirmed that this is the same even if the carbon number of the alkyl group of the phosphoric acid compound is increased (see Comparative Examples 7 to 9 described later).
  • the surface treatment of the raw material AlN powder using the alkylphosphonic acid described above can be carried out by contacting the powder with an alkylphosphonic acid by a dry method or a wet method.
  • the amount of alkyl phosphonic acid used for surface treatment is such that the carbon content in the finally obtained surface-treated aluminum nitride powder is in the range of 0.4 to 2.0% by mass, in particular 0.5 to 1.8% by mass.
  • the contact method dry method and wet method
  • the contact conditions, etc. it is set appropriately. That is, when the carbon content in the surface-treated AlN powder obtained is less than the above range, good water resistance can not be obtained, and when it is more than the above range, the surface-treated AlN powder is dispersed in a resin. The thermal conductivity of the composite material may be reduced.
  • the carbon content of the powder before surface treatment and the powder after surface treatment should be calcined in an oxygen stream and the carbon content determined using a carbon analyzer from the amount of CO and CO 2 gas generated. (For detailed conditions, see Examples).
  • the amount of alkyl phosphonic acid having an alkyl group having 8 or less carbon atoms is the total alkyl phosphonic acid.
  • the amount is 30 parts by weight or less, and particularly preferably 20 parts by weight or less.
  • the surface treatment is performed by mixing the raw material AlN powder and the alkyl phosphonic acid under no solvent.
  • the raw material powder and the alkylphosphonic acid are mixed in a predetermined solvent, and the obtained dispersion is dried.
  • surface treatment is performed by a wet method. The use of a small amount of alkyl phosphonic acid is advantageous for industrial use because the surface treatment can be carried out uniformly.
  • the solvent used is not particularly limited as long as it does not adversely affect the surface treatment, but in general, the following may be used alone or in the form of a mixed solvent of two or more Are preferably used.
  • water Alcohols such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol and isobutanol; Esters of methyl formate, ethyl formate, propyl formate, butyl formate, methyl acetate, ethyl acetate, propyl acetate, butyl acetate etc; Acetone, ketones such as methyl ethyl ketone; Dioxane, diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monoethyl
  • the amount of the solvent used is not particularly limited, but generally 70 to 300 parts by mass, in particular 80 to 200 parts by mass, per 100 parts by mass of the raw material AlN powder.
  • the contact between the raw material AlN powder and the alkylphosphonic acid under the above-mentioned solvent is carried out, for example, by adding the raw material AlN powder into the solvent and stirring to make a slurry, adding the alkylphosphonic acid thereto and mixing and stirring It can also be carried out by adding AlN powder and alkyl phosphonic acid in a solvent and mixing and stirring. Furthermore, raw material AlN powder is added to a solvent solution of alkyl phosphonic acid and mixed You can also
  • the ratio of median diameter / primary particle diameter of AlN powder is 5.0 or less, particularly 4 It is preferable to mix and disperse under strong stirring conditions so as to be not more than 0, most preferably not more than 3.0.
  • the median diameter is a particle size corresponding to the median value in the particle size distribution curve of the powder, for example, by particle size distribution measurement using a commercially available laser diffraction scattering type particle size distribution analyzer (eg, Nikkiso Co., Ltd., model "MT3300", etc.) It can be asked.
  • the primary particle size means the number average value of the particles of the minimum unit constituting the powder, and can be known from, for example, an image by a scanning electron microscope. Specifically, the powder is photographed at a magnification of 2,000 or 10,000 using a commercially available scanning electron microscope (for example, model "JSM-5300" manufactured by JEOL Ltd., etc.) The method of measuring the size of any 100 particles and taking the average value is simple.
  • the above-mentioned median diameter / primary particle size ratio means the number of primary particles forming secondary particles (aggregates), and by making this ratio within the above range, the surface treatment of alkylphosphonic acid is uniformly effective. Be done.
  • a disperser for example, high pressure disperser
  • a homogenizer for example, a sulfate, a sulfate, a sulfate, a sulfate, a sulfate, a sulfate, a sulfate, a sulfate, a sulfate, a sulfate, a sulfate, a wet ball mill, a wet vibration ball mill, a wet bead mill, a nanomizer, and a collision disperser (for example, high pressure disperser) are preferably used.
  • the mixing and stirring time is set to such an extent that the carbon content in the obtained surface-treated aluminum nitride powder falls within the above-mentioned range.
  • the obtained slurry is heated to a temperature range of 80 ° C. to 300 ° C. depending on the type of the solvent used.
  • drying and drying the target surface treatment is performed, and an aluminum nitride powder with improved water resistance can be obtained.
  • Such drying is not limited to this, but is generally carried out by an atmospheric pressure oven, a vacuum oven, a spray dryer, a medium fluid dryer, a rocking mixer equipped with a drying mechanism, a pro shear mixer, or the like.
  • the raw material AlN powder when used by the wet method as described above, may be gradually hydrolyzed, so the treatment should be completed within 72 hours, particularly within 48 hours. Is desirable.
  • the AlN powder (hereinafter sometimes referred to as water resistant aluminum nitride powder) of the present invention obtained by surface treatment using alkylphosphonic acid as a treating agent has a carbon content of 0.4 to 2.0 mass. %, In particular in the range of 0.5 to 1.8% by weight, with good water resistance.
  • the water resistance time is 6 hours or more, and depending on the number of carbon atoms of the alkyl group of the alkylsulfonic acid used, it may be as long as 1 day or more, further 2 days or more, or 5 days or more.
  • the elution amount of phosphorus is also suppressed to 5 ppm or less, and the elution amount of this water resistant AlN powder is 4 ppm or less, particularly 3 ppm or less, further 2 ppm or less depending on the carbon number of the alkyl group of the alkyl sulfonic acid used. It is also reduced to the following, and metal corrosion by elution of phosphorus can be effectively prevented. For example, when it is mixed with a resin and used as a heat radiation composite material, corrosion of a circuit that is in direct contact with it can be effectively avoided.
  • the decrease in the thermal conductivity due to the surface treatment is effectively avoided in connection with the improvement of the water resistance with a small amount of surface treatment, and therefore, the compound is added to the resin High thermal conductivity can be imparted.
  • the water resistant AlN powder of the present invention is suitably used as a heat dissipating composite material by mixing with a resin by utilizing its high thermal conductivity. Although it does not restrict
  • Polyethylene Polypropylene, Ethylene-propylene copolymer, polymethylpentene, Polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, Ethylene-vinyl acetate copolymer, polyvinyl alcohol, Polyacetal, fluorocarbon resin (polyvinylidene fluoride, Polytetrafluoroethylene etc.), Polyethylene terephthalate, polybutylene terephthalate, Polyethylene 2,6 naphthalate, polystyrene, Polyacrylonitrile, styrene-acrylonitrile copolymer, ABS resin, polyphenylene ether (PPE) resin, Modified PPE resin, aliphatic polyamides, aromatic polyamides, Polyimide, polyamide imide, Polymethacrylic acids (polymethacrylic acid esters such as polymethyl methacrylate), Polyacrylic acids, polycarbonate, Polyphenylene sulfide, polysulfone,
  • the water resistant AlN powder of the present invention is mixed with the above resin, it is of course possible to use other relatively high thermal conductivity fillers such as alumina, boron nitride and magnesium oxide in combination, Since the water resistant AlN powder of the present invention has the highest thermal conductivity, the content of the water resistant AlN powder in the composite material is at least 20% by mass, particularly 40, in order to obtain a composite material having good heat dissipation. It is preferable to make it more than mass%. Further, from the viewpoint of the moldability of the composite material, the content of the water-resistant AlN powder is preferably 95% by mass or less, particularly 90% by mass or less.
  • the composite material as described above is suitably used as a heat dissipating member for efficiently dissipating heat generated from semiconductor components mounted on home appliances, automobiles, laptop personal computers, etc. It is used in the form of heat dissipating gel, heat dissipating sheet, phase change sheet, adhesive and so on. Moreover, it can be used also as an insulating layer used for various substrates, such as a metal base substrate, a printed circuit board, a flexible substrate, etc., a semiconductor sealing agent, an underfill, a case, a radiation fin, etc.
  • the thermal conductivity of the cured body of the composite material using the water resistant AlN powder of the present invention is not particularly limited, but it is desirable to be as high as possible in order to efficiently dissipate the heat generated from semiconductor parts and the like. It is preferable that it is more than.
  • Water resistance of AlN powder (water resistance time); Place 2 g of AlN powder and 100 g of ion-exchanged water in a 120 ml polytetrafluoroethylene sealed container (PFA pressure-resistant jar: made by Freon Industry Co., Ltd.) and leave at 120 ° C. for 6 hours, 12 hours, 24 hours
  • the time until pH reached 10 or more was defined as water resistance time, and was recorded as less than 6 hours, 6 hours or more and less than 12 hours, 12 hours or more and less than 24 hours, 1 day or more.
  • Viscosity of the composite material After mixing 2.0 g of AlN powder and 0.91 g of epoxy resin (ZX-1059: manufactured by Nippon Steel Chemical Co., Ltd.) in a mortar, a composite material is obtained at 25.5 ° C. using a rheometer (AR 2000 ex: manufactured by TA Instruments) The viscosity was measured.
  • the cured sample was removed from the mold and polished using a rotary grinder so that the thickness of the sample was between 1.0 and 1.1 mm.
  • the thermal conductivity of this sample was measured by a thermal conductivity meter (PS-7: manufactured by Rigaku Denki Co., Ltd.).
  • Carbon content of water resistant AlN powder With respect to the AlN powder before surface treatment and the AlN powder (water-resistant AlN powder) after surface treatment, carbon analysis is carried out at 1350 ° C. in an oxygen stream until no CO 2 gas is generated, and carbon analysis from the generated CO 2 gas amount
  • the carbon content was quantified using an apparatus (for example, EMIA-110: manufactured by Horiba, Ltd.), and the carbon content of the water resistant AlN powder was calculated by the following equation.
  • Carbon content (A-B) / C A: Carbon amount after surface treatment
  • B Carbon amount before surface treatment
  • C Mass of AlN powder after surface treatment That is, this carbon amount indicates the ratio of carbon amount increased by surface treatment with alkyl phosphonic acid It corresponds to the amount of processing.
  • Phosphorus elution amount After charging 1 g of AlN powder and 50 g of water into a sealed container, the container was allowed to stand at 120 ° C. for 24 hours. Solid-liquid separation is performed using a centrifugal separator (SN-1050: manufactured by Azwan Co., Ltd.), and thereafter, solid components are further removed using a filter, and the obtained eluate is appropriately diluted to obtain a 1% nitric acid solution And The nitric acid solution was subjected to luminescence analysis using an ICP emission analyzer (iCAP 6500: manufactured by Thermo Scientific) to quantify the elution amount of phosphorus, which was displayed as the concentration (ppm) in the eluate.
  • ICP emission analyzer ICP emission analyzer
  • AlN powder having the following physical properties was prepared.
  • AlN powder H BET specific surface area 2.6 m 2 / g, grade H manufactured by Tokuyama AlN powder UM: BET specific surface area 1.1 m 2 / g, UM manufactured by Toyo Aluminum Co., Ltd.
  • AlN powder JD BET specific surface area 2.2 m 2 / g, JD manufactured by Toyo Aluminum Co., Ltd.
  • alkyl phosphonic acid used in the experiment all products manufactured by Wako Pure Chemical Industries, Ltd. were used, and as the ultrasonic cleaner, USD-2R manufactured by As One Corporation was used.
  • Example 1 In a sample bottle, 0.6 g of decylphosphonic acid and 30 g of isopropanol (IPA-SE manufactured by Tokuyama) were sealed and mixed, and then ultrasonic irradiation was performed for 10 minutes with an ultrasonic cleaner heated to 40.degree. Next, 30 g of AlN powder H was added to the above sample bottle, sealed, and shaken for 1 minute to mix. Next, the mixture was subjected to ultrasonic irradiation for 10 minutes in an ultrasonic cleaner heated to 40 ° C., and then the slurry in the sample bottle was transferred to a petri dish and vacuum dried in an oven at 200 ° C. for 3 hours .
  • IPA-SE isopropanol
  • Table 1 The types, properties and amounts of the AlN powder and surface treatment agent used in the above surface treatment are shown in Table 1, and the water resistance of the obtained surface treated AlN powder, the elution amount of phosphorus, and this surface treated AlN powder are used.
  • Table 2 shows the viscosity and thermal conductivity of the composite materials prepared.
  • Example 2 Put 0.75g of dodecyl phosphonic acid, 20g of water and 15g of ethanol (reagent special grade: manufactured by Wako Pure Chemical Industries, Ltd.) in a sample bottle, seal tightly and mix, and then sonicate for 10 minutes with an ultrasonic cleaner heated to 40 ° C. went. Next, 30 g of AlN powder H is added to a sample bottle, the container is tightly sealed, shaken for 1 minute, mixed, and subjected to ultrasonic irradiation for 10 minutes in an ultrasonic cleaner heated to 40 ° C. And vacuum dried.
  • ethanol solvent special grade: manufactured by Wako Pure Chemical Industries, Ltd.
  • Table 1 The types, properties and amounts of the AlN powder and surface treatment agent used in the above surface treatment are shown in Table 1, and the water resistance of the obtained surface treated AlN powder, the elution amount of phosphorus, and this surface treated AlN powder are used.
  • Table 2 shows the viscosity and thermal conductivity of the composite materials prepared.
  • Example 3 0.60 g of dodecylphosphonic acid, 21 g of water and 9 g of isopropanol (IPA-SE: manufactured by Tokuyama) are sealed in a sample bottle, mixed, and then subjected to ultrasonic irradiation for 10 minutes in an ultrasonic cleaner heated to 40 ° C. The Next, 30 g of AlN powder UM is added to a sample bottle, and after plugging, the mixture is shaken for 1 minute, mixed, and subjected to ultrasonic irradiation for 10 minutes in an ultrasonic cleaner heated to 40 ° C. Vacuum dried.
  • IPA-SE isopropanol
  • Table 1 The types, properties and amounts of the AlN powder and surface treatment agent used in the above surface treatment are shown in Table 1, and the water resistance of the obtained surface treated AlN powder, the elution amount of phosphorus, and this surface treated AlN powder are used.
  • Table 2 shows the viscosity and thermal conductivity of the composite materials prepared.
  • Example 4 In a sample bottle, 0.45 g of dodecylphosphonic acid and 30 g of isopropanol (IPA-SE: manufactured by Tokuyama) were sealed and mixed, and then ultrasonic irradiation was performed for 10 minutes in an ultrasonic cleaner heated to 40.degree. Next, 30 g of AlN powder JD was added to a sample bottle, and after plugging, the mixture was shaken for 1 minute and mixed. After performing ultrasonic irradiation for 10 minutes with an ultrasonic cleaner heated to 40 ° C., vacuum drying was performed in the same manner as in Example 1.
  • IPA-SE isopropanol
  • Table 1 The types, properties and amounts of the AlN powder and surface treatment agent used in the above surface treatment are shown in Table 1, and the water resistance of the obtained surface treated AlN powder, the elution amount of phosphorus, and this surface treated AlN powder are used.
  • Table 2 shows the viscosity and thermal conductivity of the composite materials prepared.
  • Example 5 0.54 g of tetradecylphosphonic acid and 30 g of water were put in a sample bottle, sealed tightly, mixed, and subjected to ultrasonic irradiation for 10 minutes using an ultrasonic cleaner heated to 50 ° C. Next, 15 g of AlN powder H and 15 g of AlN powder UM are added to a sample bottle, sealed, shaken for 1 minute, mixed, and subjected to ultrasonic irradiation for 10 minutes in an ultrasonic cleaner heated to 50 ° C. Vacuum drying was performed in the same manner as 1.
  • Table 1 The types, properties and amounts of the AlN powder and surface treatment agent used in the above surface treatment are shown in Table 1, and the water resistance of the obtained surface treated AlN powder, the elution amount of phosphorus, and this surface treated AlN powder are used.
  • Table 2 shows the viscosity and thermal conductivity of the composite materials prepared.
  • Example 6 0.30 g of hexadecylphosphonic acid, 24 g of water and 6 g of isopropanol (IPA-SE: manufactured by Tokuyama) are sealed in a sample bottle and mixed, and then ultrasonicated for 10 minutes in an ultrasonic cleaner heated to 70 ° C. went. Next, 15 g of AlN powder H and 15 g of AlN powder UM are added to a sample bottle, sealed, shaken for 1 minute, mixed, and subjected to ultrasonic irradiation for 10 minutes in an ultrasonic cleaner heated to 50 ° C. Vacuum drying was performed in the same manner as 1.
  • IPA-SE isopropanol
  • Table 1 The types, properties and amounts of the AlN powder and surface treatment agent used in the above surface treatment are shown in Table 1, and the water resistance of the obtained surface treated AlN powder, the elution amount of phosphorus, and this surface treated AlN powder are used.
  • Table 2 shows the viscosity and thermal conductivity of the composite materials prepared.
  • Example 7 0.60 g of hexadecylphosphonic acid, 24 g of water and 16 g of methanol (reagent special grade: manufactured by Wako Pure Chemical Industries, Ltd.) are put in a sample bottle, sealed and mixed, and then ultrasonically irradiated for 10 minutes with an ultrasonic cleaner heated to 70 ° C. Did. Next, 30 g of AlN powder H is added to a sample bottle, and after plugging, the mixture is shaken for 1 minute, mixed, and subjected to ultrasonic irradiation for 10 minutes in an ultrasonic cleaner heated to 50 ° C. Vacuum dried.
  • Table 1 The types, properties and amounts of the AlN powder and surface treatment agent used in the above surface treatment are shown in Table 1, and the water resistance of the obtained surface treated AlN powder, the elution amount of phosphorus, and this surface treated AlN powder are used.
  • Table 2 shows the viscosity and thermal conductivity of the composite materials prepared.
  • Example 8 A sample bottle was filled with 0.75 g of hexadecylphosphonic acid and 40 g of water, sealed tightly, mixed, and subjected to ultrasonic irradiation for 10 minutes using an ultrasonic cleaner heated to 70 ° C. Next, 30 g of AlN powder H is added to a sample bottle, the container is tightly sealed, shaken for 1 minute, mixed, and subjected to ultrasonic irradiation for 10 minutes in an ultrasonic cleaner heated to 50 ° C. Vacuum dried. The types, properties and amounts of the AlN powder and surface treatment agent used in the above surface treatment are shown in Table 1, and the water resistance of the obtained surface treated AlN powder, the elution amount of phosphorus, and this surface treated AlN powder are used. Table 2 shows the viscosity and thermal conductivity of the composite materials prepared.
  • Example 9 0.27 g of octadecyl phosphonic acid (manufactured by Wako Pure Chemical Industries, Ltd.) and 40 g of water were put in a sample bottle and sealed up and mixed, and then ultrasonic irradiation was performed for 10 minutes with an ultrasonic cleaner heated to 80.degree. Next, 30 g of AlN powder H is added to a sample bottle, and after plugging, the mixture is shaken for 1 minute, mixed, and subjected to ultrasonic irradiation for 10 minutes in an ultrasonic cleaner heated to 50 ° C. Vacuum dried.
  • Table 1 The types, properties and amounts of the AlN powder and surface treatment agent used in the above surface treatment are shown in Table 1, and the water resistance of the obtained surface treated AlN powder, the elution amount of phosphorus, and this surface treated AlN powder are used.
  • Table 2 shows the viscosity and thermal conductivity of the composite materials prepared.
  • Example 10 0.36 g of octadecyl phosphonic acid, 30 g of water and 10 g of ethanol (reagent special grade: manufactured by Wako Pure Chemical Industries, Ltd.) are put in a sample bottle, sealed and mixed, and then ultrasonicated for 10 minutes with an ultrasonic cleaner heated to 80 ° C. went. Next, 30 g of AlN powder H is added to a sample bottle, and after plugging, the mixture is shaken for 1 minute, mixed, and subjected to ultrasonic irradiation for 10 minutes in an ultrasonic cleaner heated to 50 ° C. Vacuum dried.
  • Table 1 The types, properties and amounts of the AlN powder and surface treatment agent used in the above surface treatment are shown in Table 1, and the water resistance of the obtained surface treated AlN powder, the elution amount of phosphorus, and this surface treated AlN powder are used.
  • Table 2 shows the viscosity and thermal conductivity of the composite materials prepared.
  • Example 11 In a sample bottle, 0.45 g of octadecylphosphonic acid, 30 g of water and 10 g of isopropanol (IPA-SE: manufactured by Tokuyama) are sealed and mixed, and then subjected to ultrasonic irradiation for 10 minutes in an ultrasonic cleaner heated to 50 ° C. The Next, 30 g of AlN powder JD is added to a sample bottle, and after plugging, the mixture is shaken for 1 minute, mixed, and ultrasonically irradiated for 10 minutes with an ultrasonic cleaner (USD-2R: manufactured by As One Corporation) heated to 50 ° C. Then, it was vacuum dried in the same manner as in Example 1.
  • IPA-SE isopropanol
  • Table 1 The types, properties and amounts of the AlN powder and surface treatment agent used in the above surface treatment are shown in Table 1, and the water resistance of the obtained surface treated AlN powder, the elution amount of phosphorus, and this surface treated AlN powder are used.
  • Table 2 shows the viscosity and thermal conductivity of the composite materials prepared.
  • Example 12 0.60 g of butyl phosphonic acid and 30 g of water were put in a sample bottle, sealed tightly, mixed, and subjected to ultrasonic irradiation for 10 minutes in an ultrasonic cleaner heated to 40 ° C. Next, 30 g of AlN powder H is added to a sample bottle, and after sealing, it is shaken for 1 minute, mixed, and subjected to ultrasonic irradiation for 10 minutes in an ultrasonic cleaner heated to 40 ° C. Vacuum dried.
  • the types, properties and amounts of the AlN powder and surface treatment agent used in the above surface treatment are shown in Table 1, and the water resistance of the obtained surface treated AlN powder, the elution amount of phosphorus, and this surface treated AlN powder are used. Table 2 shows the viscosity and thermal conductivity of the composite materials prepared.
  • Example 13 0.30 g of octyl phosphonic acid and 30 g of water were put in a sample bottle, sealed tightly and mixed, and then ultrasonic irradiation was performed for 10 minutes in an ultrasonic cleaner heated to 40 ° C. Next, 30 g of AlN powder H is added to a sample bottle, and after sealing, it is shaken for 1 minute, mixed, and subjected to ultrasonic irradiation for 10 minutes in an ultrasonic cleaner heated to 40 ° C. Vacuum dried.
  • the types, properties and amounts of the AlN powder and surface treatment agent used in the above surface treatment are shown in Table 1, and the water resistance of the obtained surface treated AlN powder, the elution amount of phosphorus, and this surface treated AlN powder are used. Table 2 shows the viscosity and thermal conductivity of the composite materials prepared.
  • Example 14 0.45 g of octylphosphonic acid and 30 g of water were put in a sample bottle, sealed tightly and mixed, and then ultrasonic irradiation was performed for 10 minutes in an ultrasonic cleaner heated to 40.degree. Next, 30 g of AlN powder H is added to a sample bottle, the container is tightly sealed, shaken for 1 minute, mixed, and subjected to ultrasonic irradiation for 10 minutes in an ultrasonic cleaner heated to 40 ° C. And vacuum dried.
  • the types, properties and amounts of the AlN powder and surface treatment agent used in the above surface treatment are shown in Table 1, and the water resistance of the obtained surface treated AlN powder, the elution amount of phosphorus, and this surface treated AlN powder are used. Table 2 shows the viscosity and thermal conductivity of the composite materials prepared.
  • Comparative Example 1 The water resistance measured for the AlN powder H prepared for surface treatment and the viscosity and thermal conductivity of the composite material produced using this AlN powder H are shown in Table 1.
  • Comparative Example 2 The physical properties and amounts of the AlN powder JD prepared for surface treatment are shown in Table 1, and the measured water resistance and the viscosity and thermal conductivity of the composite material produced using this AlN powder JD are shown in Table 2.
  • Comparative Example 3 0.12 g of dodecyl phosphonic acid and 30 g of water were put in a sample bottle, sealed tightly and mixed, and then ultrasonic irradiation was performed for 10 minutes in an ultrasonic cleaner heated to 40 ° C. Next, 30 g of AlN powder H is added to the above sample bottle and sealed tightly, shaken for 1 minute, mixed, and subjected to ultrasonic irradiation for 10 minutes in an ultrasonic cleaner heated to 40 ° C. And vacuum dried.
  • the types, properties and amounts of the AlN powder and surface treatment agent used in the above surface treatment are shown in Table 1, and the water resistance of the obtained surface treated AlN powder, the elution amount of phosphorus, and this surface treated AlN powder are used. Table 2 shows the viscosity and thermal conductivity of the composite materials prepared.
  • Comparative Example 4 1.50 g of dodecyl phosphonic acid and 30 g of ethanol (reagent special grade: manufactured by Wako Pure Chemical Industries, Ltd.) were put in a sample bottle, sealed tightly, mixed, and subjected to ultrasonic irradiation for 10 minutes in an ultrasonic cleaner. Next, 30 g of AlN powder H was added to the above sample bottle and sealed up, mixed by shaking for 1 minute, and subjected to ultrasonic irradiation for 10 minutes with an ultrasonic cleaner, and then vacuum dried in the same manner as Example 1. .
  • Table 1 The types, properties and amounts of the AlN powder and surface treatment agent used in the above surface treatment are shown in Table 1, and the water resistance of the obtained surface treated AlN powder, the elution amount of phosphorus, and this surface treated AlN powder are used.
  • Table 2 shows the viscosity and thermal conductivity of the composite materials prepared.
  • Comparative Example 5 0.09 g of octadecyl phosphonic acid and 30 g of ethanol (reagent special grade: manufactured by Wako Pure Chemical Industries, Ltd.) were put in a sample bottle, sealed tightly and mixed, and then ultrasonic irradiation was performed for 10 minutes with an ultrasonic cleaner. Next, 30 g of AlN powder H was added to the above sample bottle and sealed tightly, shaken for 1 minute, mixed, subjected to ultrasonic irradiation for 10 minutes with an ultrasonic cleaner, and vacuum dried in the same manner as in Example 1.
  • Table 1 The types, properties and amounts of the AlN powder and surface treatment agent used in the above surface treatment are shown in Table 1, and the water resistance of the obtained surface treated AlN powder, the elution amount of phosphorus, and this surface treated AlN powder are used.
  • Table 2 shows the viscosity and thermal conductivity of the composite materials prepared.
  • Comparative Example 6 After putting 1.20 g of octadecyl phosphonic acid and 30 g of ethanol (reagent special grade: manufactured by Wako Pure Chemical Industries, Ltd.) in a sample bottle, the container was sealed and mixed, and then ultrasonic irradiation was performed for 10 minutes with an ultrasonic cleaner. Next, 30 g of aluminum nitride powder H was added to the above sample bottle and tightly sealed, shaken for 1 minute, mixed, and subjected to ultrasonic irradiation for 10 minutes with an ultrasonic cleaner, and then vacuum dried in the same manner as Example 1. .
  • Table 1 The types, properties and amounts of the AlN powder and surface treatment agent used in the above surface treatment are shown in Table 1, and the water resistance of the obtained surface treated AlN powder, the elution amount of phosphorus, and this surface treated AlN powder are used.
  • Table 2 shows the viscosity and thermal conductivity of the composite materials prepared.
  • Comparative Example 7 Phoslex A-8 manufactured by SC Organic Chemical Co., Ltd. was prepared as 2-ethylhexyl phosphoric acid. 0.60 g of the above-mentioned 2-ethylhexyl phosphoric acid and 30 g of ethanol (reagent special grade: manufactured by Wako Pure Chemical Industries, Ltd.) were put in a sample bottle, sealed tightly and mixed, and then ultrasonic irradiation was performed for 10 minutes with an ultrasonic cleaner.
  • Comparative Example 8 As a dodecyl phosphoric acid, ML-200 manufactured by Toho Chemical Co., Ltd. was prepared. After putting 0.45 g of the above-mentioned dodecyl phosphoric acid and 30 g of ethanol (reagent special grade: manufactured by Wako Pure Chemical Industries, Ltd.) in a sample bottle, the container was tightly capped and mixed, and then ultrasonic irradiation was performed for 10 minutes with an ultrasonic cleaner.
  • ethanol solvent special grade: manufactured by Wako Pure Chemical Industries, Ltd.
  • AlN powder H is added to a sample bottle and sealed tightly, shaken for 1 minute, mixed, and subjected to ultrasonic irradiation for 10 minutes with an ultrasonic cleaner, and then the slurry in the sample bottle is transferred to a petri dish Vacuum drying was performed at 200 ° C. for 3 hours.
  • Table 1 The types, properties and amounts of the AlN powder and surface treatment agent used in the above surface treatment are shown in Table 1, and the water resistance of the obtained surface treated AlN powder, the elution amount of phosphorus, and this surface treated AlN powder are used.
  • Table 2 shows the viscosity and thermal conductivity of the composite materials prepared.
  • Comparative Example 9 Phoslex A-18 manufactured by SC Organic Chemical Co., Ltd. was prepared as octadecyl phosphate. 0.60 g of the above octadecyl phosphoric acid and 30 g of ethanol (reagent special grade: manufactured by Wako Pure Chemical Industries, Ltd.) were put in a sample bottle, sealed tightly and mixed, and then ultrasonic irradiation was performed for 10 minutes with an ultrasonic cleaner.
  • AlN powder H is added to a sample bottle and sealed tightly, shaken for 1 minute, mixed, and subjected to ultrasonic irradiation for 10 minutes with an ultrasonic cleaner, and then the slurry in the sample bottle is transferred to a petri dish Vacuum drying was performed at 200 ° C. for 3 hours.
  • Table 1 The types, properties and amounts of the AlN powder and surface treatment agent used in the above surface treatment are shown in Table 1, and the water resistance of the obtained surface treated AlN powder, the elution amount of phosphorus, and this surface treated AlN powder are used.
  • Table 2 shows the viscosity and thermal conductivity of the composite materials prepared.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

本発明の窒化アルミニウム粉末は、アルキルホスホン酸により表面処理され、炭素を0.4~2.0質量%の量で含んでいる。この窒化アルミニウム粉末は、リン系化合物によっての表面処理によって優れた耐水性を示すばかりか、リンの溶出も抑制され、表面処理による熱伝導率の低下も有効に回避されている。

Description

耐水性に優れた窒化アルミニウム粉末
 本発明は、耐水性に優れた窒化アルミニウム粉末に関するものであり、より詳細には、このような窒化アルミニウムを得るために使用される表面処理剤及び該窒化アルミニウム粉末を含む放熱用複合材料にも関する。
 近年、半導体デバイスのパワー密度上昇に伴い、放熱材料にはより高度な放熱特性が求められている。デバイスの放熱を実現する材料としては、サーマルインターフェースマテリアルと呼ばれる材料があり、その使用量は急速に拡大している。
 サーマルインターフェースマテリアルとは、半導体素子の発生する熱をヒートシンクまたは筐体等に逃がす経路の熱抵抗を緩和するための材料であり、シート、ゲル、グリース、放熱基板、半導体封止材など多様な形態が用いられている。一般に、このサーマルインターフェースマテリアルは熱伝導性のフィラーを、エポキシ、シリコーンの様な樹脂に分散した複合材料で、フィラーとしてはシリカやアルミナが多く用いられている。しかし、シリカ、アルミナの熱伝導率は各々1W/mK、30W/mK程度であり、アルミナを用いた複合材料でも、その熱伝導率は1~3W/mK程度に留まっている。
 しかし、上述のように近年の半導体デバイスのパワー密度上昇により、サーマルインターフェースマテリアルには、より高い熱伝導率が求められるようになって来た。
 このため近年では、熱伝導率の高い窒化アルミニウムをフィラーとするサーマルインターフェースマテリアルが開発されつつある。しかし、窒化アルミニウムには、その表面が水と反応して加水分解するという問題がある
 このような問題を解決するための手段として、特許文献1には、酸化アルミニウム被膜もしくはリン酸系被膜を有する窒化アルミニウム粉末を、有機珪素系カップリング剤、有機燐酸系カップリング剤またはホスフェート基含有の有機チタン系カップリング剤で処理する方法が提案されている。
 また、特許文献2には、リン酸、リン酸の金属塩又は炭素数が12以下の有機基を有する有機リン酸で窒化アルミニウム粉末を処理する方法が提案されている。
 しかし、これらの処理では、窒化アルミニウムの耐水性を十分に向上させることができず、特に回路と樹脂が直接接する放熱基板、半導体封止材等の用途で要求されている高い耐水性を満足することができない。例えば、処理剤を多量に使用すれば、耐水性を大きく向上させることはできても、この場合には、熱伝導率など、窒化アルミニウムに本質的に要求されている特性が低下してしまう。
 また、処理剤として、リン酸などのリン系化合物により処理された窒化アルミニウム粉末を用いた場合には、回路に対する腐食性が懸念されるため、その溶出量は可及的に低い事が要求されている。
 更に、窒化アルミニウムは樹脂との親和性に問題があり、樹脂との混合時に粘度が高くなりすぎるため、多量の窒化アルミニウムを樹脂に配合することができず、また、樹脂との間にボイドが発生してしまい、熱伝導率が高くならない等の問題点を有している。
特開平7-33415号公報 WO2012/147999
 従って、本発明の目的は、リン系化合物によっての表面処理によって優れた耐水性を示すばかりか、リンの溶出も抑制され、表面処理による熱伝導率の低下も有効に回避されている窒化アルミニウム粉末を提供することにある。
 本発明の他の目的は、樹脂に配合したときの増粘も有効に抑制されている窒化アルミニウム粉末を提供することにある。
 本発明のさらに他の目的は、上記の窒化アルミニウム粉末を得るために使用される表面処理剤、及び上記窒化アルミニウム粉末が配合されており、高い熱伝導率を有する放熱用複合材料を提供することにある。
 本発明者等は、上記目的を達成すべく鋭意検討を重ねた結果、窒化アルミニウム粉末を、炭素含量が一定の範囲となるように、アルキルホスホン酸を用いて表面処理することにより、耐水性を大きく向上させると同時に、リンの溶出量を抑制し、しかも、表面処理による熱伝導率の低下も有効に抑制することができ、特に、用いるアルキルホスホン酸が有するアルキル基が長いほど、耐水性をより向上させ且つリンの溶出量をより少なく抑制できることを見出し、本発明を完成させるに至った。
 本発明によれば、アルキルホスホン酸により表面処理され、炭素を0.4~2.0質量%の量で含んでいる窒化アルミニウム粉末が提供される。
 本発明の窒化アルミニウム粉末は、
(1)前記窒化アルミニウム粉末1gを50gのイオン交換水に浸漬し、密封容器中で120℃、24時間保持した時のリンの溶出量が5ppm以下に抑制されていること、
(2)前記窒化アルミニウム粉末2gを100gのイオン交換水に浸漬し、密封容器中で120℃に保持したとき、pHが10に到達する時間で示される耐水時間が6時間以上であること、
という特性を有しており、特に、用いるアルキルホスホン酸のアルキル基の炭素数の調整により、耐水性がより高められていることが好ましく、例えば、
(3)前記耐水時間が2日以上であること、
さらには、
(4)前記耐水時間が5日以上であること、
が好ましい。
 本発明によれば、また、アルキルホスホン酸からなる窒化アルミニウム粉末用表面処理剤が提供される。
 かかる表面処理剤においては、
(5)前記アルキルホスホン酸が有するアルキル基の炭素数が10~30、特に14~30の範囲にあること、
が好ましい。
 本発明によれば、さらに、前述した窒化アルミニウム粉末と樹脂とを含む放熱用複合材料が提供される。
 アルキルホスホン酸により表面処理されている本発明の窒化アルミニウム(AlN)粉末は、優れた耐水性を示し、後述する実施例にも示されているように、このAlN粉末2gを100gのイオン交換水に浸漬し、密封容器中で120℃に保持したとき、pHが10に到達する時間で示される耐水時間が6時間以上であり、アルキルホスホン酸のアルキル基の炭素数を多くしていくことにより、この耐水時間を2日以上、さらには5日以上とすることができる。
 また、本発明のAlN粉末は、アルキルホスホン酸により表面処理されているにもかかわらず、リンの溶出が有効に抑制されている。例えば、このAlN粉末1gを50gのイオン交換水に浸漬し、密封容器中で120℃、24時間保持した時のリンの溶出量は5ppm以下に抑制されており、アルキルホスホン酸のアルキル基の炭素数を多くしていくことにより、このリン溶出量を、4ppm以下、さらには3ppm以下に抑制することができる。
 さらに、本発明では、アルキルホスホン酸の処理量が少ないため(AlN粉末の炭素含量が0.4~2.0質量%)、表面処理による熱伝導率の低下や樹脂に配合したときの増粘も有効に抑制することができる。
 従って、本発明のAlN粉末は、樹脂と混合して放熱用複合材料として高い熱伝導性を付与することができ、湿分による加水分解も有効に抑制され、長期にわたって安定して高い熱伝導性を示すばかりか、リンの溶出による回路の腐食なども有効に防止される。
<原料窒化アルミニウム粉末>
 本発明のAlN粉末は、アルキルホスホン酸を用いての表面処理により得られるものであるが、この表面処理に供されるAlN粉末(即ち、原料AlN粉末)は、特に限定されず公知の窒化アルミニウム粉末が用いられる。
 原料として用いるAlNの製造方法としては、直接窒化法、還元窒化法、気相合成法などがあるが、本発明において、原料AlN粉末としては、いずれの方法により製造されたものを用いることができる。
 また、このような原料AlN粉末は、その粒子表面に酸化アルミニウム層が形成されているものであってもよく、酸化アルミニウム層の形成は、良好な耐水性を得るために好適である。
 例えば、還元窒化法では、窒化工程に続く酸化工程にて残留カーボンを除去することが必須であり、この工程中に酸化アルミニウム層を形成することができる。が形成される。を形成させることが可能である。
 また、直接窒化法および気相合成法では、窒化工程後に粉砕工程があり、粉砕時に新たに生成する表面が雰囲気中の酸素と反応して酸化アルミニウム層が形成される。但し、このようにして形成される酸化アルミニウム層は高い耐水性を得るためには不十分な場合があり、その様な時には、粉砕後の窒化アルミニウム粉末を大気中に放置することにより酸化アルミニウム層を形成することも可能である。さらに、酸化アルミニウム層を形成する好ましい方法としては、粉砕後の窒化アルミニウム粉末を酸素含有雰囲気中で400℃~1000℃、好ましくは500℃~900℃で加熱することにより、所望の酸化アルミニウム層を形成することが可能である。
<アルキルホスホン酸>
 本発明では、アルキルホスホン酸を表面処理剤として使用する。
 このアルキルホスホン酸は、下記式(1);
  R-P(=O)(OH)  (1)
  式中、
   Rはアルキル基である、
で表される有機リン系化合物であり、上記のアルキル基Rは、直鎖状であっても分岐鎖状であってもよい。
 このようなアルキルホスホン酸の例としては、プロピルホスホン酸、ブチルホスホン酸、ペンチルホスホン酸、ヘキシルホスホン酸、ヘプチルホスホン酸、オクチルホスホン酸、ノニルホスホン酸、デシルホスホン酸、ウンデシルホスホン酸、ドデシルホスホン酸、トリデシルホスホン酸、テトラデシルホスホン酸、ペンタデシルホスホン酸、ヘキサデシルホスホン酸、ヘプタデシルホスホン酸、オクタデシルホスホン酸、ノナデシルホスホン酸、イコシルホスホン酸、ヘンイコシルホスホン酸、ドコシルホスホン酸、トリコシルホスホン酸、テトラコシルホスホン酸、ペンタコシルホスホン酸、ヘキサコシルホスホン酸、ヘプタコシルホスホン酸、オクタコシルホスホン酸などが挙げられる。
 本発明においては、上記のアルキルスルホン酸の中でも、アルキル基Rが、直鎖状であるか分岐状であるかにかかわらず、その炭素数が10~30、特に14~30、最適には14~20の範囲にあることが好ましい。
 即ち、このアルキル基Rの炭素数が長くなるほど、耐水性を向上させ且つリンの溶出量を少なくすることができる。例えば、アルキルの炭素数が4~8程度のアルキルホスホン酸を用いて表面処理した場合には、前述した方法で測定した耐水時間が6時間以上、特に6時間~1日程度であり、前述した方法で測定したリン溶出量を5ppm以下に抑制することができる。しかるに、アルキル基の炭素数が10以上のアルキルホスホン酸を用いて表面処理した場合には、耐水時間を2日以上に向上させ、リン溶出量は4ppm以下により低減され、さらに、アルキル基の炭素数が14以上のアルキルホスホン酸を用いて表面処理した場合には、耐水時間は5日以上にさらに向上し、リン溶出量は3ppm以下にさらに大きく低減されることとなる。実際、後述する実施例の実験結果によれば(表1参照)、アルキル基の炭素数が16以上で耐水時間は6日以上となり、炭素数が18以上では耐水時間は、11日以上に大きく延びており、リンの溶出量も2ppm以下と極めて大きく低減されていることが判る。
 このような現象は、アルキル鎖が短すぎると、AlNとアルキルホスホン酸との界面に水が侵入しやすくなり、高い耐水性が得にくくなるために生じるものではないかと本発明者等は推定している。
 即ち、水の侵入により、耐水性の低下ばかりか、アルキルホスホン酸がAlN表面から脱離し易くなり、この結果、リンの溶出量も多くなってしまう。しかるに、炭素数が多くなり、アルキル鎖が長くなると、AlNとアルキルホスホン酸との界面に水が浸入しにくくなり、この結果、耐水性が向上するばかりか、リンの溶出性も低く抑えることが可能になるものと思われる。
 また、アルキルホスホン酸のアルキル基Rの炭素数が必要以上に長くなると、熱伝導率が低下してしまい、例えば、樹脂と混合して高い熱伝導性を発現させることが困難となってしまう傾向がある。
 即ち、一般の有機物の熱伝導率は、AlNよりはるかに低いことから理解されるように、アルキル鎖が長くなると、AlN表面での有機物(アルキル基)の被覆厚さが大きくなり、この結果、このAlN粒子と樹脂との界面での熱抵抗も大きくなってしまうためと本発明者等は推察している。
 従って、本発明では、アルキルホスホン酸のアルキル基Rの炭素数が上記範囲にあることが、耐水性を向上させ、リンの溶出を抑制し、さらに高い熱伝導率を確保するという点で好ましいこととなる。
 尚、表面処理剤として用いるアルキルホスホン酸のアルキル基の炭素数が耐水性やリンの溶出性に及ぼす現象は、リン酸エステル等のリン酸系化合物には全く当てはまらない。例えば、リン酸エステルを用いて表面処理を行った場合、1日程度の耐水時間しか得られず、さらに、リンの溶出量を5ppm以下に抑制することはできない。これは、リン酸系化合物が有するアルキル基の炭素数を長くしても同じであることを確認している(後述する比較例7~9参照)。
 このようなリン酸系化合物とアルキルホスホン酸と相違は、明確に解明されているわけではないが、おそらく、AlN表面に存在する塩基性点の触媒作用により、AlN表面に担持されたリン酸系化合物が、僅かな水分の存在によって加水分解してしまうが、アルキルホスホン酸では、このような加水分解が生じ難いため、このような相違が生じるものと思われる。
<アルキルホスホン酸による表面処理>
 上述したアルキルホスホン酸を用いての原料AlN粉末の表面処理は、この粉末に、乾式法或いは湿式法でアルキルホスホン酸を接触させることにより行うことができる。
 表面処理に用いるアルキルホスホン酸の量は、最終的に得られる表面処理窒化アルミニウム粉末における炭素含量が、0.4~2.0質量%、特に、0.5~1.8質量%の範囲となるように、採用する接触方法(乾式法及び湿式法)及び接触条件などに応じて適宜設定される。
 即ち、得られる表面処理AlN粉末における炭素含量が上記範囲よりも少ないと、良好な耐水性を得ることができず、上記範囲よりも多いと、この表面処理AlN粉末を樹脂に分散させたときの複合材料の熱伝導率が低下する恐れがある。
 尚、上記の炭素含量は、表面処理前の粉末と表面処理後の粉末について、酸素気流中で焼成し、発生したCO,CO2ガス量から炭素分析装置を用いて炭素含有量を定量することにより(詳細な条件は実施例参照)、算出することができる。
 尚、この表面処理に2種以上のアルキルホスホン酸を混合して使用することも可能であるが、上記で説明したように、このアルキルホスホン酸のアルキル鎖が長いほど高い耐水性が得られる。従って、複数のアルキルホスホン酸を使用する場合は、アルキル鎖が短いものの使用量を少なくすることが望ましく、例えば、炭素数8以下のアルキル基を有するアルキルホスホン酸の使用量は、全アルキルホスホン酸の量を100質量部としたとき、30重量部以下、特に20重量部以下であることが望ましい。
 ところで、乾式法では、無溶媒下で、原料AlN粉末とアルキルホスホン酸とを混合することにより、表面処理が行われる。また、湿式法では、所定の溶媒中で、原料粉末とアルキルホスホン酸とを混合し、得られた分散液を乾燥することにより行われる。
 一般的には、湿式法により表面処理が行われる。少量のアルキルホスホン酸の使用により、均一に表面処理を行うことができるため、工業的に有利だからである。
 湿式法により表面処理を行う場合、用いる溶媒としては、表面処理に悪影響を与えない限り特に制限されないが、一般的には、以下のものが、単独で或いは2種以上を混合した混合溶媒の形で好適に使用される。
   水;
   メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブタノール等のアルコール類;
   ギ酸メチル、ギ酸エチル、ギ酸プロピル、ギ酸ブチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル類;
   アセトン、メチルエチルケトンなどのケトン類;
   ジオキサン、ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテルなどのエーテル類;
   メチレンクロライド、クロロホルムなどの含ハロゲン類;
 上記溶媒の使用量は、特に制限されないが、一般的には、原料AlN粉末100質量部当り、70~300質量部、特に80~200質量部である。
 上記溶媒下での原料AlN粉末とアルキルホスホン酸との接触は、例えば、原料AlN粉末を溶媒中に添加し、撹拌してスラリー状とし、これにアルキルホスホン酸を添加して混合撹拌することにより行うこともできるし、溶媒中に、AlN粉末とアルキルホスホン酸とを添加して混合撹拌することによっても行うことができ、さらには、アルキルホスホン酸の溶媒溶液に原料AlN粉末を添加して混合することもできる。
 また、上記のようにして、溶媒中で原料アルミニウム粉末とアルキルスルホン酸とを混合分散して両者を接触させる場合、AlN粉末のメジアン径/一次粒子径の比が、5.0以下、特に4.0以下、最も好適には3.0以下となるように、強撹拌条件下で混合分散せしめることが好適である。
 上記メジアン径は、粉末の粒径分布曲線における中央値に相当する粒径であり、例えば市販のレーザー回折散乱式粒度分布計(例えば日機装(株)、型式「MT3300」など)による粒度分布測定によって求めることができる。また、一次粒径は、粉末を構成する最小単位の粒子の個数平均値を意味し、例えば走査型電子顕微鏡による画像から知ることができる。具体的には、市販の走査型電子顕微鏡(例えば日本電子(株)製、型式「JSM-5300」など)を用いて倍率2千倍または1万倍において粉体の撮影を行い、視野内の任意の100個の粒子の大きさを測定してその平均値をとる方法によることが簡単である。また、比表面積から算出することもできる。
 即ち、上記のメジアン径/一次粒子径比は、二次粒子(凝集体)を形成する一次粒子の数を意味し、この比を上記範囲とすることでアルキルホスホン酸に表面処理が均一に効果的に行われる。
 従って、上記のような強撹拌を行うために、混合撹拌装置として、ディスパーザー、ホモジナイザー、超音波分散機、湿式ボールミル、湿式振動ボールミル、湿式ビーズミル、ナノマイザー、及び衝突分散機(例えば高圧分散機)などが好適に使用される。
 混合撹拌時間は、得られる表面処理窒化アルミニウム粉末における炭素含量前述した範囲となる程度に設定される。
 上記のようにして溶媒下で原料AlN粉末とアルキルホスホン酸との混合撹拌が行われた後、得られたスラリーを、用いた溶媒の種類に応じて、80℃~300℃の温度範囲に加熱して乾燥することにより、目的とする表面処理が行われ、耐水性が向上した窒化アルミニウム粉末を得ることができる。
 このような乾燥は、これに限定されるものではないが、一般に、常圧オーブン、減圧オーブン、スプレードライヤー、媒体流動乾燥機、乾燥機構を備えた揺動ミキサー、プロシェアミキサーなどにより行われる。
 尚、上記のようにして湿式法により表面処理を行う場合、含水溶媒を用いるときには、原料AlN粉末が徐々に加水分解するおそれがあるため、72時間以内、特に48時間以内に処理を完了させることが望ましい。
<表面処理窒化アルミニウム粉末>
 このようにアルキルホスホン酸を処理剤として用いての表面処理により得られる本発明のAlN粉末(以下、耐水性窒化アルミニウム粉末と呼ぶことがある)は、炭素含量が0.4~2.0質量%、特に0.5~1.8質量%の範囲にあり、良好な耐水性を有する。
 例えば、その耐水時間は、6時間以上であり、用いるアルキルスルホン酸のアルキル基の炭素数によっては、1日以上、さらには2日以上と長く、5日以上のものもある。
 また、この耐水性AlN粉末は、リンの溶出量も5ppm以下に抑制されており、さらに、この溶出量も用いるアルキルスルホン酸のアルキル基の炭素数によって、4ppm以下、特に3ppm以下、さらには2ppm以下にも低減されており、リンの溶出による金属腐食を有効に防止することができる。例えば、樹脂に配合して放熱用複合材料として用いたとき、これが直接接触する回路の腐食を有効に回避することができる。
 さらに、本発明の耐水性AlN粉末は、少ない表面処理量で耐水性が向上していることに関連して、表面処理による熱伝導率の低下が有効に回避されており、従って、樹脂に配合して高い熱伝導性を付与することができる。
<放熱用複合材料>
 本発明の耐水性AlN粉末は、その高い熱伝導率を利用して、樹脂と混合して放熱用複合材料として好適に使用される。
 このような目的に使用される樹脂としては、特に制限されるものではないが、以下の熱可塑性樹脂が代表的である。
  ポリエチレン、ポリプロピレン、
  エチレン-プロピレン共重合体、ポリメチルペンテン、
  ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、
  エチレン-酢酸ビニル共重合体、ポリビニルアルコール、
  ポリアセタール、フッ素樹脂(ポリフッ化ビニリデン、
 ポリテトラフルオロエチレン等)、
  ポリエチレンテレフタレート、ポリブチレンテレフタレート、
  ポリエチレン2,6ナフタレート、ポリスチレン、
  ポリアクリロニトリル、スチレン-アクリロニトリル共重合体、
  ABS樹脂、ポリフェニレンエーテル(PPE)樹脂、
  変性PPE樹脂、脂肪族ポリアミド類、芳香族ポリアミド類、
  ポリイミド、ポリアミドイミド、
  ポリメタクリル酸類(ポリメタクリル酸メチル等のポリメタクリル酸エステル)、
  ポリアクリル酸類、ポリカーボネート、
  ポリフェニレンスルフィド、ポリサルホン、
  ポリエーテルサルホン、ポリエーテルニトリル、
  ポリエーテルケトン、ポリエーテルエーテルケトン、
  ポリケトン、液晶ポリマー、アイオノマーなど。
 勿論、熱可塑性樹脂以外にも、エポキシ類、アクリル類、ウレタン類、シリコーン類、フェノール類、イミド類、熱硬化型変性PPE類、および熱硬化型PPE類などの熱硬化性樹脂を使用することもできる。
 上記の様な樹脂に本発明の耐水性AlN粉末を混合して用いる場合、アルミナ、窒化ホウ素、酸化マグネシウム等の他の熱伝導率の比較的高いフィラーを併用することも勿論可能であるが、本発明の耐水性AlN粉末は最も高い熱伝導率を有するため、良好な放熱性を有する複合材料を得るためには、複合材料中の耐水性AlN粉末の含有量は20質量%以上、特に40質量%以上とすることが好ましい。また、複合材料の成型性の観点から、この耐水性AlN粉末の含有量は95質量%以下、特に90質量%以下が好適である。
 上記のような複合材料は、家電製品、自動車、ノート型パーソナルコンピュータなどに搭載される半導体部品からの発熱を効率よく放熱するための放熱部材として好適に使用され、用途に応じて、放熱グリース、放熱ゲル、放熱シート、フェイズチェンジシート、接着剤などの形態で使用される。またメタルベース基板、プリント基板、フレキシブル基板などの各種基板に用いられる絶縁層や、半導体封止剤、アンダーフィル、筐体、放熱フィンなどとしても使用することができる。
 本発明の耐水性AlN粉末を用いた複合材料の硬化体の熱伝導率は特に限定されないが、半導体部品等からの発熱を効率よく放熱するためにはなるべく高い方が望ましく、1.0W/mK以上であることが好ましい。
 以下、実施例および用途例によって本発明を具体的に説明するが、本発明はこれらの例に限定されるものではない。
 以下の実験で用いた試験方法を以下に示す。
AlN粉末の耐水性(耐水時間);
 AlN粉末2gとイオン交換水100gを容量120mlのポリテトラフルオロエチレン製密封容器(PFA耐圧ジャー:フロン工業社製)に入れ、120℃で静置し、6時間後、12時間後、24時間後およびそれ以降の水のpHをpH試験紙にて測定した。
 pH10以上となるまでの時間を耐水時間とし、6時間未満、6時間以上12時間未満、12時間以上24時間未満、1日およびそれ以上の日数として記録した。
複合材料の粘度;
 AlN粉末2.0gとエポキシ樹脂(ZX-1059:新日鉄化学社製)0.91gを乳鉢で混合した後、レオメーター(AR2000ex:TA Instruments社製)を用い、25.5℃にて複合材料の粘度を測定した。
複合材料の熱伝導率;
 AlN粉末2.00gと、エポキシ樹脂(JER807:三菱化学社製)0.37gおよびエポキシ樹脂硬化剤(JERキュア113:三菱化学社製)0.12gとを乳鉢で混合した後、直径15mmの穴のあいた厚さ15mmのポリテトラフルオロエチレン製モールドに充填した。
 このポリテトラフルオロエチレン板の両面からPETフィルムと厚さ1mmのポリテトラフルオロエチレン板で挟み、熱プレス器(アズワン社製)を用い80℃、20MPaにて3時間加熱した。
 モールドから硬化したサンプルを取出し、回転研磨機を用いてサンプルの厚さが1.0~1.1mmの間となるように研磨した。
 このサンプルの熱伝導率を熱伝導率計(PS-7:理学電気株式会社製)にて測定した。
耐水性AlN粉末の炭素含量;
 表面処理前のAlN粉末と表面処理後のAlN粉末(耐水性AlN粉末)について、酸素気流中、1350℃にて、CO2ガスが発生しなくなるまで焼成し、発生したCO2ガス量から炭素分析装置(例えば、EMIA-110:堀場製作所社製)を用いて炭素含有量を定量し、下記式により、耐水性AlN粉末の炭素含量を算出した。
  炭素含有量=(A-B)/C
   A:表面処理後の炭素量
   B:表面処理前の炭素量
   C:表面処理後のAlN粉末の質量
 即ち、この炭素量は、アルキルホスホン酸による表面処理によって増加した炭素量の割合を示し、表面処理量に対応する。
リンの溶出量;
 AlN粉末1gおよび水50gを密封容器に投入後、120℃にて24時間静置した。遠心分離器(SN-1050:アズワン社製)を用いて固液分離を行い、この後、フィルターを用いて更に固体成分を除去し、得られた溶出液を適宜希釈し、1%の硝酸溶液とした。
 この硝酸溶液をICP発光分析装置(iCAP 6500:Thermo Scientific社製)にて発光分析し、リンの溶出量を定量し、上記溶出液における濃度(ppm)として表示した。
 以下の実験において、以下の物性のAlN粉末を用意した。
  AlN粉末H:
    BET比表面積2.6m/g,トクヤマ社製グレードH
  AlN粉末UM:
    BET比表面積1.1m/g,東洋アルミニウム社製UM
  AlN粉末JD:
    BET比表面積2.2m/g,東洋アルミニウム社製JD
 また、実験に用いたアルキルホスホン酸としては、全て和光純薬者製のものを使用し、超音波洗浄機としては、アズワン社製USD-2Rを用いた。
<実施例1>
 デシルホスホン酸0.6g、イソプロパノール(トクヤマ社製IPA-SE)30gをサンプル瓶に入れて密栓し混合後、40℃に加熱した超音波洗浄機にて10分間超音波照射を行った。
 次いで、AlN粉末H30gを、上記のサンプル瓶に加えて密栓後、1分間振って混合した。次いで、40℃に加熱した超音波洗浄機にて、この混合液に10分間超音波照射を行った後、サンプル瓶内のスラリーをシャーレに移し、オーブンにて200℃にて3時間真空乾燥した。
 上記の表面処理に用いたAlN粉末及び表面処理剤の種類、その物性及び量を表1に示し、得られた表面処理AlN粉末の耐水性、リンの溶出量、並びにこの表面処理AlN粉末を用いて作製した複合材料の粘度と熱伝導率を表2に示す。
<実施例2>
 ドデシルホスホン酸0.75g、水20gおよびエタノール(試薬特級:和光純薬社製)15gをサンプル瓶に入れて密栓し混合後、40℃に加熱した超音波洗浄機にて10分間超音波照射を行った。
 次いで、AlN粉末H30gをサンプル瓶に加えて密栓後、1分間振って混合し、さらに、40℃に加熱した超音波洗浄機にて10分間超音波照射を行った後、実施例1と同様にして真空乾燥した。
 上記の表面処理に用いたAlN粉末及び表面処理剤の種類、その物性及び量を表1に示し、得られた表面処理AlN粉末の耐水性、リンの溶出量、並びにこの表面処理AlN粉末を用いて作製した複合材料の粘度と熱伝導率を表2に示す。
<実施例3>
 ドデシルホスホン酸0.60g、水21gおよびイソプロパノール9g(IPA-SE:トクヤマ社製)をサンプル瓶に入れて密栓し混合後、40℃に加熱した超音波洗浄機にて10分間超音波照射を行った。
 次いで、AlN粉末UM30gをサンプル瓶に加えて密栓後、1分間振って混合し、さらに40℃に加熱した超音波洗浄機にて10分間超音波照射を行った後、実施例1と同様にして真空乾燥した。
 上記の表面処理に用いたAlN粉末及び表面処理剤の種類、その物性及び量を表1に示し、得られた表面処理AlN粉末の耐水性、リンの溶出量、並びにこの表面処理AlN粉末を用いて作製した複合材料の粘度と熱伝導率を表2に示す。
<実施例4>
 ドデシルホスホン酸0.45g、イソプロパノール30g(IPA-SE:トクヤマ社製)をサンプル瓶に入れて密栓し混合後、40℃に加熱した超音波洗浄機にて10分間超音波照射を行った。
 次いで、AlN粉末JD30gをサンプル瓶に加えて密栓後、1分間振って混合した。40℃に加熱した超音波洗浄機にて10分間超音波照射を行った後、実施例1と同様にして真空乾燥した。
 上記の表面処理に用いたAlN粉末及び表面処理剤の種類、その物性及び量を表1に示し、得られた表面処理AlN粉末の耐水性、リンの溶出量、並びにこの表面処理AlN粉末を用いて作製した複合材料の粘度と熱伝導率を表2に示す。
<実施例5>
 テトラデシルホスホン酸0.54g、水30gをサンプル瓶に入れて密栓し混合後、50℃に加熱した超音波洗浄機を用いて10分間超音波照射を行った。
 次いで、AlN粉末H15gおよびAlN粉末UM15gをサンプル瓶に加えて密栓後、1分間振って混合し、さらに、50℃に加熱した超音波洗浄機にて10分間超音波照射を行った後、実施例1と同様にして真空乾燥を行った。
 上記の表面処理に用いたAlN粉末及び表面処理剤の種類、その物性及び量を表1に示し、得られた表面処理AlN粉末の耐水性、リンの溶出量、並びにこの表面処理AlN粉末を用いて作製した複合材料の粘度と熱伝導率を表2に示す。
<実施例6>
 ヘキサデシルホスホン酸0.30g、水24gおよびイソプロパノール6g(IPA-SE:トクヤマ社製)をサンプル瓶に入れて密栓し混合後、70℃に加熱した超音波洗浄機にて10分間超音波照射を行った。
 次いで、AlN粉末H15gおよびAlN粉末UM15gをサンプル瓶に加えて密栓後、1分間振って混合し、さらに、50℃に加熱した超音波洗浄機にて10分間超音波照射を行った後、実施例1と同様にして真空乾燥を行った。
 上記の表面処理に用いたAlN粉末及び表面処理剤の種類、その物性及び量を表1に示し、得られた表面処理AlN粉末の耐水性、リンの溶出量、並びにこの表面処理AlN粉末を用いて作製した複合材料の粘度と熱伝導率を表2に示す。
<実施例7>
 ヘキサデシルホスホン酸0.60g、水24gおよびメタノール(試薬特級:和光純薬社製)16gをサンプル瓶に入れて密栓し混合後、70℃に加熱した超音波洗浄機にて10分間超音波照射を行った。
 次いで、AlN粉末H30gをサンプル瓶に加えて密栓後、1分間振って混合し、さらに50℃に加熱した超音波洗浄機にて10分間超音波照射を行った後、実施例1と同様にして真空乾燥した。
 上記の表面処理に用いたAlN粉末及び表面処理剤の種類、その物性及び量を表1に示し、得られた表面処理AlN粉末の耐水性、リンの溶出量、並びにこの表面処理AlN粉末を用いて作製した複合材料の粘度と熱伝導率を表2に示す。
<実施例8>
 ヘキサデシルホスホン酸0.75g、水40gをサンプル瓶に入れて密栓し混合後、70℃に加熱した超音波洗浄機を用いて10分間超音波照射を行った。
 ついで、AlN粉末H30gをサンプル瓶に加えて密栓後、1分間振って混合し、さらに50℃に加熱した超音波洗浄機にて10分間超音波照射を行った後、実施例1と同様にして真空乾燥した。
 上記の表面処理に用いたAlN粉末及び表面処理剤の種類、その物性及び量を表1に示し、得られた表面処理AlN粉末の耐水性、リンの溶出量、並びにこの表面処理AlN粉末を用いて作製した複合材料の粘度と熱伝導率を表2に示す。
<実施例9>
 オクタデシルホスホン酸(和光純薬社製)0.27g、水40gをサンプル瓶に入れて密栓し混合後、80℃に加熱した超音波洗浄機にて10分間超音波照射を行った。
 次いで、AlN粉末H30gをサンプル瓶に加えて密栓後、1分間振って混合し、さらに50℃に加熱した超音波洗浄機にて10分間超音波照射を行った後、実施例1と同様にして真空乾燥した。
 上記の表面処理に用いたAlN粉末及び表面処理剤の種類、その物性及び量を表1に示し、得られた表面処理AlN粉末の耐水性、リンの溶出量、並びにこの表面処理AlN粉末を用いて作製した複合材料の粘度と熱伝導率を表2に示す。
<実施例10>
 オクタデシルホスホン酸0.36g、水30gおよびエタノール(試薬特級:和光純薬社製)10gをサンプル瓶に入れて密栓し混合後、80℃に加熱した超音波洗浄機にて10分間超音波照射を行った。
 次いで、AlN粉末H30gをサンプル瓶に加えて密栓後、1分間振って混合し、さらに50℃に加熱した超音波洗浄機にて10分間超音波照射を行った後、実施例1と同様にして真空乾燥した。
 上記の表面処理に用いたAlN粉末及び表面処理剤の種類、その物性及び量を表1に示し、得られた表面処理AlN粉末の耐水性、リンの溶出量、並びにこの表面処理AlN粉末を用いて作製した複合材料の粘度と熱伝導率を表2に示す。
<実施例11>
 オクタデシルホスホン酸0.45g、水30gおよびイソプロパノール(IPA-SE:トクヤマ社製)10gをサンプル瓶に入れて密栓し混合後、50℃に加熱した超音波洗浄機にて10分間超音波照射を行った。
 次いで、AlN粉末JD30gをサンプル瓶に加えて密栓後、1分間振って混合し、さらに、50℃に加熱した超音波洗浄機(USD-2R:アズワン社製)にて10分間超音波照射を行った後、実施例1と同様にして真空乾燥した。
 上記の表面処理に用いたAlN粉末及び表面処理剤の種類、その物性及び量を表1に示し、得られた表面処理AlN粉末の耐水性、リンの溶出量、並びにこの表面処理AlN粉末を用いて作製した複合材料の粘度と熱伝導率を表2に示す。
<実施例12>
 ブチルホスホン酸0.60g、水30gをサンプル瓶に入れて密栓し混合後、40℃に加熱した超音波洗浄機にて10分間超音波照射を行った。
 次いで、AlN粉末H30gをサンプル瓶に加えて密栓後、1分間振って混合し、さらに40℃に加熱した超音波洗浄機にて10分間超音波照射を行った後、実施例1と同様にして真空乾燥した。
 上記の表面処理に用いたAlN粉末及び表面処理剤の種類、その物性及び量を表1に示し、得られた表面処理AlN粉末の耐水性、リンの溶出量、並びにこの表面処理AlN粉末を用いて作製した複合材料の粘度と熱伝導率を表2に示す。
<実施例13>
 オクチルホスホン酸0.30g、水30gをサンプル瓶に入れて密栓し混合後、40℃に加熱した超音波洗浄機にて10分間超音波照射を行った。
 次いで、AlN粉末H30gをサンプル瓶に加えて密栓後、1分間振って混合し、さらに40℃に加熱した超音波洗浄機にて10分間超音波照射を行った後、実施例1と同様にして真空乾燥した。
 上記の表面処理に用いたAlN粉末及び表面処理剤の種類、その物性及び量を表1に示し、得られた表面処理AlN粉末の耐水性、リンの溶出量、並びにこの表面処理AlN粉末を用いて作製した複合材料の粘度と熱伝導率を表2に示す。
<実施例14>
 オクチルホスホン酸0.45g、水30gをサンプル瓶に入れて密栓し混合後、40℃に加熱した超音波洗浄機にて10分間超音波照射を行った。
 次いで、AlN粉末H30gをサンプル瓶に加えて密栓後、1分間振って混合し、さらに、40℃に加熱した超音波洗浄機にて10分間超音波照射を行った後、実施例1と同様にして真空乾燥した。
 上記の表面処理に用いたAlN粉末及び表面処理剤の種類、その物性及び量を表1に示し、得られた表面処理AlN粉末の耐水性、リンの溶出量、並びにこの表面処理AlN粉末を用いて作製した複合材料の粘度と熱伝導率を表2に示す。
<比較例1>
 表面処理のために用意したAlN粉末Hについて、測定した耐水性及びこのAlN粉末Hを用いて作製した複合材料の粘度と熱伝導率を表1に示す。
<比較例2>
 表面処理のために用意したAlN粉末JDについて、その物性及び量を表1に示し、測定した耐水性及びこのAlN粉末JDを用いて作製した複合材料の粘度と熱伝導率を表2に示す。
<比較例3>
 ドデシルホスホン酸0.12g、水30gをサンプル瓶に入れて密栓し混合後、40℃に加熱した超音波洗浄機にて10分間超音波照射を行った。
 次いで、AlN粉末H30gを上記サンプル瓶に加えて密栓後、1分間振って混合し、さらに、40℃に加熱した超音波洗浄機にて10分間超音波照射を行った後、実施例1と同様にして真空乾燥した。
 上記の表面処理に用いたAlN粉末及び表面処理剤の種類、その物性及び量を表1に示し、得られた表面処理AlN粉末の耐水性、リンの溶出量、並びにこの表面処理AlN粉末を用いて作製した複合材料の粘度と熱伝導率を表2に示す。
<比較例4>
 ドデシルホスホン酸1.50g、エタノール(試薬特級:和光純薬社製)30gをサンプル瓶に入れて密栓し混合後、超音波洗浄機にて10分間超音波照射を行った。
 次いで、AlN粉末H30gを上記サンプル瓶に加えて密栓後、1分間振って混合し、さらに、超音波洗浄機にて10分間超音波照射を行った後、実施例1と同様にして真空乾燥した。
 上記の表面処理に用いたAlN粉末及び表面処理剤の種類、その物性及び量を表1に示し、得られた表面処理AlN粉末の耐水性、リンの溶出量、並びにこの表面処理AlN粉末を用いて作製した複合材料の粘度と熱伝導率を表2に示す。
<比較例5>
 オクタデシルホスホン酸0.09g、エタノール(試薬特級:和光純薬社製)30gをサンプル瓶に入れて密栓し混合後、超音波洗浄機にて10分間超音波照射を行った。
 次いで、AlN粉末H30gを上記サンプル瓶に加えて密栓後、1分間振って混合し、さらに超音波洗浄機にて10分間超音波照射を行った後、実施例1と同様にして真空乾燥した。
 上記の表面処理に用いたAlN粉末及び表面処理剤の種類、その物性及び量を表1に示し、得られた表面処理AlN粉末の耐水性、リンの溶出量、並びにこの表面処理AlN粉末を用いて作製した複合材料の粘度と熱伝導率を表2に示す。
<比較例6>
 オクタデシルホスホン酸1.20g、エタノール(試薬特級:和光純薬社製)30gをサンプル瓶に入れて密栓し混合後、超音波洗浄機にて10分間超音波照射を行った。
 次いで、窒化アルミニウム粉末H30gを上記サンプル瓶に加えて密栓後、1分間振って混合し、さらに超音波洗浄機にて10分間超音波照射を行った後、実施例1と同様にして真空乾燥した。
 上記の表面処理に用いたAlN粉末及び表面処理剤の種類、その物性及び量を表1に示し、得られた表面処理AlN粉末の耐水性、リンの溶出量、並びにこの表面処理AlN粉末を用いて作製した複合材料の粘度と熱伝導率を表2に示す。
<比較例7>
 2-エチルヘキシルリン酸として、SC有機化学社製のPhoslexA-8を用意した。
 上記の2-エチルヘキシルリン酸0.60g、エタノール(試薬特級:和光純薬社製)30gをサンプル瓶に入れて密栓し混合後、超音波洗浄機にて10分間超音波照射を行った。
 次いで、窒化アルミニウム粉末H30gを上記サンプル瓶に加えて密栓後、1分間振って混合し、さらに超音波洗浄機にて10分間超音波照射を行った後、サンプル瓶内のスラリーをシャーレに移し、オーブンにて80℃にて13時間乾燥した。
 上記の表面処理に用いたAlN粉末及び表面処理剤の種類、その物性及び量を表1に示し、得られた表面処理AlN粉末の耐水性、リンの溶出量、並びにこの表面処理AlN粉末を用いて作製した複合材料の粘度と熱伝導率を表2に示す。
<比較例8>
 ドデシルリン酸として、東邦化学社製ML-200を用意した。
 上記のドデシルリン酸0.45g、エタノール(試薬特級:和光純薬社製)30gをサンプル瓶に入れて密栓し混合後、超音波洗浄機にて10分間超音波照射を行った。
 次いで、AlN粉末H30gをサンプル瓶に加えて密栓後、1分間振って混合し、超音波洗浄機にて10分間超音波照射を行った後、サンプル瓶内のスラリーをシャーレに移し、オーブンにて200℃にて3時間真空乾燥を行った。
 上記の表面処理に用いたAlN粉末及び表面処理剤の種類、その物性及び量を表1に示し、得られた表面処理AlN粉末の耐水性、リンの溶出量、並びにこの表面処理AlN粉末を用いて作製した複合材料の粘度と熱伝導率を表2に示す。
<比較例9>
 オクタデシルリン酸として、SC有機化学社製PhoslexA-18を用意した。
 上記のオクタデシルリン酸0.60g、エタノール(試薬特級:和光純薬社製)30gをサンプル瓶に入れて密栓し混合後、超音波洗浄機にて10分間超音波照射を行った。
 次いで、AlN粉末H30gをサンプル瓶に加えて密栓後、1分間振って混合し、超音波洗浄機にて10分間超音波照射を行った後、サンプル瓶内のスラリーをシャーレに移し、オーブンにて200℃にて3時間真空乾燥を行った。
 上記の表面処理に用いたAlN粉末及び表面処理剤の種類、その物性及び量を表1に示し、得られた表面処理AlN粉末の耐水性、リンの溶出量、並びにこの表面処理AlN粉末を用いて作製した複合材料の粘度と熱伝導率を表2に示す。
 尚、表1,2において使用されている略語の意味は、次のとおりである。
  Ex:実施例
  Com:比較例
  Dav:平均粒径
  BET:BET比表面積
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

Claims (9)

  1.  アルキルホスホン酸により表面処理され、炭素を0.4~2.0質量%の量で含んでいる窒化アルミニウム粉末。
  2.  前記窒化アルミニウム粉末1gを50gのイオン交換水に浸漬し、密封容器中で120℃、24時間保持した時のリンの溶出量が5ppm以下に抑制されている請求項1に記載の窒化アルミニウム粉末。
  3.  前記窒化アルミニウム粉末2gを100gのイオン交換水に浸漬し、密封容器中で120℃に保持したとき、pHが10に到達する時間で示される耐水時間が6時間以上である請求項2に記載の窒化アルミニウム粉末。
  4.  前記耐水時間が2日以上である請求項3に記載の窒化アルミニウム粉末。
  5.  前記耐水時間が5日以上である請求項4に記載の窒化アルミニウム粉末。
  6.  アルキルホスホン酸からなる窒化アルミニウム粉末用表面処理剤。
  7.  前記アルキルホスホン酸が有するアルキル基の炭素数が10~30の範囲にある請求項6に記載の窒化アルミニウム粉末用表面処理剤。
  8.  前記アルキルホスホン酸が有するアルキル基の炭素数が14~30の範囲にある請求項7に記載の窒化アルミニウム粉末用表面処理剤。
  9.  請求項1に記載の窒化アルミニウム粉末と樹脂とを含む放熱用複合材料。
PCT/JP2015/056770 2014-03-13 2015-03-09 耐水性に優れた窒化アルミニウム粉末 WO2015137263A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016507502A JP6378315B2 (ja) 2014-03-13 2015-03-09 耐水性に優れた窒化アルミニウム粉末

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-049977 2014-03-13
JP2014049977 2014-03-13

Publications (1)

Publication Number Publication Date
WO2015137263A1 true WO2015137263A1 (ja) 2015-09-17

Family

ID=54071708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056770 WO2015137263A1 (ja) 2014-03-13 2015-03-09 耐水性に優れた窒化アルミニウム粉末

Country Status (2)

Country Link
JP (1) JP6378315B2 (ja)
WO (1) WO2015137263A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017088459A (ja) * 2015-11-13 2017-05-25 株式会社トクヤマ 耐水性窒化アルミニウム粉末
WO2018122145A1 (de) * 2016-12-28 2018-07-05 Robert Bosch Gmbh Elektronikmodul, verfahren
CN110088039A (zh) * 2017-03-07 2019-08-02 株式会社德山 不含粗大粒子的氮化铝粉末
CN113120872A (zh) * 2021-04-19 2021-07-16 哈尔滨科友半导体产业装备与技术研究院有限公司 一种pvt法使用的氮化铝粉末的预处理方法
CN116477585A (zh) * 2023-03-10 2023-07-25 四川大学 一种提高氮化铝粉体耐水性的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01164710A (ja) * 1987-12-21 1989-06-28 Inax Corp チッ化アルミニウム粉体の安定化法
WO2012147999A1 (ja) * 2011-04-28 2012-11-01 株式会社トクヤマ 耐水性窒化アルミニウムの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01164710A (ja) * 1987-12-21 1989-06-28 Inax Corp チッ化アルミニウム粉体の安定化法
WO2012147999A1 (ja) * 2011-04-28 2012-11-01 株式会社トクヤマ 耐水性窒化アルミニウムの製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017088459A (ja) * 2015-11-13 2017-05-25 株式会社トクヤマ 耐水性窒化アルミニウム粉末
WO2018122145A1 (de) * 2016-12-28 2018-07-05 Robert Bosch Gmbh Elektronikmodul, verfahren
CN110114873A (zh) * 2016-12-28 2019-08-09 罗伯特·博世有限公司 电子模块及方法
US10872833B2 (en) 2016-12-28 2020-12-22 Robert Bosch Gmbh Electronic module, method
CN110114873B (zh) * 2016-12-28 2023-04-28 罗伯特·博世有限公司 电子模块及方法
CN110088039A (zh) * 2017-03-07 2019-08-02 株式会社德山 不含粗大粒子的氮化铝粉末
CN110088039B (zh) * 2017-03-07 2022-05-10 株式会社德山 不含粗大粒子的氮化铝粉末
CN113120872A (zh) * 2021-04-19 2021-07-16 哈尔滨科友半导体产业装备与技术研究院有限公司 一种pvt法使用的氮化铝粉末的预处理方法
CN116477585A (zh) * 2023-03-10 2023-07-25 四川大学 一种提高氮化铝粉体耐水性的方法
CN116477585B (zh) * 2023-03-10 2024-02-23 四川大学 一种提高氮化铝粉体耐水性的方法

Also Published As

Publication number Publication date
JPWO2015137263A1 (ja) 2017-04-06
JP6378315B2 (ja) 2018-08-22

Similar Documents

Publication Publication Date Title
JP5965899B2 (ja) 耐水性窒化アルミニウムの製造方法
JP6378315B2 (ja) 耐水性に優れた窒化アルミニウム粉末
JP6169466B2 (ja) 表面修飾粒子
TW201927689A (zh) 六方晶氮化硼粉末及其製造方法以及使用其之組成物及散熱材
US9340661B2 (en) Coated magnesium oxide particles, method for the production thereof, heat-releasing filler, and resin composition
TWI745158B (zh) 含矽氧化物被覆氮化鋁粒子的製造方法及放熱性樹脂組成物的製造方法
JP7419938B2 (ja) 珪素含有酸化物被覆窒化アルミニウム粒子
EP2957601A1 (en) Resin composition and method for producing same, and highly thermally conductive resin molded article
KR20230118810A (ko) 소수성 질화알루미늄 분말 및 그 제조 방법
JP6516656B2 (ja) 耐水性窒化アルミニウム粉末
JP5755977B2 (ja) 高熱伝導性樹脂組成物
TW201827382A (zh) 矽氧系混成聚合物被覆氮化鋁填料
Qi et al. Surface treatments of hexagonal boron nitride for thermal conductive epoxy composites
JP2014189793A (ja) 表面改質無機フィラー、その製造方法、多層プリント配線板用ビルドアップフィルム組成物、およびこれを含む多層プリント配線板
JP2020073625A (ja) シリカ被覆窒化アルミニウム粒子分散樹脂組成物の製造方法、その硬化物からなるシートの製造方法、およびシートを備えるパワーデバイスの製造方法
WO2023167315A1 (ja) 中空無機粒子、該中空無機粒子を含む樹脂組成物、該樹脂組成物を用いた半導体用パッケージ、および前記中空無機粒子の製造方法
JP2020073621A (ja) シリカ被覆窒化アルミニウム粒子分散樹脂組成物の製造方法、その硬化物からなるシートの製造方法、およびシートを備えるパワーデバイスの製造方法
WO2021193690A1 (ja) 絶縁性フィラー及びその製造方法、該絶縁性フィラーを含む絶縁材及びその製造方法
TWI834900B (zh) 含矽氧化物被覆氮化鋁粒子之製造方法及含矽氧化物被覆氮化鋁粒子
WO2022085477A1 (ja) 熱伝導性フィラー、熱伝導性複合材料、ワイヤーハーネス、および熱伝導性フィラーの製造方法
JP6721219B2 (ja) 窒化ホウ素フィラ―、樹脂組成物、フィルム、窒化ホウ素フィラ―の製造方法
JP2015193493A (ja) 高比重アルミナおよびその製造方法
JP2022178874A (ja) 酸化マグネシウム粒子、樹脂組成物、および酸化マグネシウム粒子の製造方法
WO2023140006A1 (ja) 熱伝導性シリコーン組成物および半導体装置
JP2022183821A (ja) 表面被覆六方晶窒化ホウ素粒子を製造する方法、及び表面被覆六方晶ホウ素粒子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15761821

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016507502

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15761821

Country of ref document: EP

Kind code of ref document: A1