WO2015129737A1 - 有機エレクトロルミネッセンスモジュール及びスマートデバイス - Google Patents

有機エレクトロルミネッセンスモジュール及びスマートデバイス Download PDF

Info

Publication number
WO2015129737A1
WO2015129737A1 PCT/JP2015/055372 JP2015055372W WO2015129737A1 WO 2015129737 A1 WO2015129737 A1 WO 2015129737A1 JP 2015055372 W JP2015055372 W JP 2015055372W WO 2015129737 A1 WO2015129737 A1 WO 2015129737A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
organic electroluminescence
electrical connection
panel
layer
Prior art date
Application number
PCT/JP2015/055372
Other languages
English (en)
French (fr)
Inventor
夏樹 山本
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2016505257A priority Critical patent/JP6477683B2/ja
Priority to US15/119,782 priority patent/US9985628B2/en
Priority to CN201580009923.6A priority patent/CN106030845B/zh
Publication of WO2015129737A1 publication Critical patent/WO2015129737A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K17/962Capacitive touch switches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04102Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04104Multi-touch detection in digitiser, i.e. details about the simultaneous detection of a plurality of touching locations, e.g. multiple fingers or pen and finger
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K17/9627Optical touch switches
    • H03K17/9631Optical touch switches using a light source as part of the switch
    • H03K2017/9634Optical touch switches using a light source as part of the switch using organic light emitting devices, e.g. light emitting polymer [OEP] or OLED
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to an organic electroluminescence module having a touch detection function and a smart device having the same.
  • a light emitting diode Light Emitting Diode, hereinafter abbreviated as LED
  • an organic light emitting diode Organic Light Emitting Diode, hereinafter, an organic electroluminescence element, an organic EL
  • OLED Organic Light Emitting Diode
  • the LED light source using the light guide plate is a main display (for example, a liquid crystal device (Liquid Crystal), etc.) of a smart device (for example, a smartphone, a tablet, etc.) that has been widely used worldwide since, for example, around 2008, in addition to general illumination.
  • Display: LCD LCD
  • Such an LED light source is used not only as a main display but also as a backlight of a common function key button provided at the lower part of the smart device.
  • buttons are provided with three types of marks indicating, for example, “Home” (displayed with a square mark, etc.), “Back” (displayed with an arrow mark, etc.), and “Search” (displayed with a magnifying glass mark, etc.). May have been.
  • a dot-shaped deflection pattern is formed in advance on the light guide plate according to the pattern shape of the mark to be displayed, and on the side of the light guide plate, the light guide plate
  • the LED light source which irradiates light to the side end surface is provided.
  • the light emitted from the LED light source enters from the side end face of the light guide plate, and the incident light is totally reflected in the front direction of the light guide plate by the deflection reflection surface of the deflection pattern.
  • light is emitted from the front side of the light guide plate in a predetermined pattern, and when the light guide plate is viewed from the front, the pattern appears to emit light (see, for example, Patent Document 1).
  • the dielectric constant is larger than the air layer of the same shape at a position avoiding a site such as an icon between a flexible printed circuit (hereinafter abbreviated as FPC) in which a sensor electrode is formed and a surface panel.
  • FPC flexible printed circuit
  • organic EL panel surface-emitting organic electroluminescence panel
  • organic EL panel exhibit a display function by printing a mark or the like in advance on the cover glass side and arranging the mark on the back side of the corresponding part.
  • a touch function is indispensable when using a smart device, and it is necessary to place a capacitive touch detection type device for touch detection on the back side of the cover glass until reaching the display unit and the common function key unit. It has become customary.
  • a film / film type touch sensor is often used which is enlarged to the same size as the cover glass and laminated.
  • a glass / glass type may be used.
  • an electrostatic capacitance method is often employed in recent years.
  • a method called “mutual capacitance method” having a fine electrode pattern in each of the x-axis and y-axis directions is adopted. In this method, it is possible to detect two or more touches called “multi-touch”.
  • the electrode for touch detection has a simple shape composed of a solid pattern on one surface.
  • the anode, cathode, or metal foil layer used for protection constituting the organic EL element has an adverse effect on the detection of the change in capacitance of the above-described capacitance method. Therefore, when an electrostatic touch function is imparted to the organic EL panel, there is a great restriction on the installation of the touch function, for example, an assembly on the light emitting surface side of the organic EL element is necessary. The method of providing such an assembly has a problem because it requires an additional procurement of a touch device, which imposes an economical load.
  • a technique for providing a capacitance detection circuit in an FPC used for mounting an organic EL panel or LED is known.
  • a capacitance detection circuit is known. Is disposed on the side opposite to the light emitting surface of the organic EL element. As a result, the FPC is disposed on the side opposite to the light emitting surface.
  • this arrangement has a configuration as shown in FIG. 8 described later, there is a problem that the touch detection accuracy of an FPC having a capacitance detection circuit is extremely low.
  • the FPC in order to avoid the FPC as described above being arranged on the back surface of the organic EL panel, as shown in FIG. 9 described later, it is possible to arrange the FPC outside the area of the organic EL panel.
  • the light emission position and the circuit position for touch detection are distant, or the area of the entire organic EL module is increased, so that the smart device that requires a small format can be used. Problems such as obstacles to application occur.
  • organic EL element that is a light-emitting device and a wiring material are stacked in a compact manner to achieve downsizing and thinning, high touch detection accuracy, and suitability for smart devices (hereinafter referred to as organic EL). Development of abbreviated as module) is required.
  • the present invention has been made in view of the above-described problems and situations, and its solution is to achieve a small format and thin film, an organic electroluminescence module having high touch detection accuracy and suitability for a smart device. And providing a smart device including the same.
  • the inventor is an organic electroluminescence module in which an organic electroluminescence panel and an electrical connection unit are stacked, and the electrical connection unit is disposed on a flexible substrate.
  • the organic electroluminescence module characterized by being electrically connected to the connection electrode portion of To achieve the type of and thinning, high touch detection accuracy was found to be able to provide an organic electroluminescent module having a suitability to the smart device.
  • An organic electroluminescence module in which an organic electroluminescence panel and an electrical connection unit are laminated,
  • the electrical connection unit has a capacitive detection circuit part on the flexible substrate and a wiring part on the back side,
  • the electrical connection unit is disposed on the light emitting surface side of the organic electroluminescence panel,
  • the electrical connection unit has a light transmission part, and has a bent part provided with two or more cut parts on at least one side of the light transmission part, In the bent portion, a land portion constituting the detection circuit portion and a connection electrode portion of the organic electroluminescence panel are electrically connected.
  • An organic electroluminescence module characterized by that.
  • the capacitance type detection circuit section constituting the electrical connection unit is disposed on a peripheral portion of the light-transmitting opening, a pair of opposing sides, or at least one side.
  • Item 4 The organic electroluminescence module according to Item 3.
  • the electrical connection unit is arranged on a light emitting surface side of the organic electroluminescence panel and in a region overlapping with the organic electroluminescence panel. Any one of items 1 to 4 The organic electroluminescence module described.
  • the member that electrically connects the land portion constituting the detection circuit and the connection electrode portion of the organic electroluminescence panel is an anisotropic conductive film, a conductive paste, or a metal paste.
  • the organic electroluminescence module according to any one of items 1 to 6.
  • a smart device comprising the organic electroluminescence module according to any one of items 1 to 8.
  • the above-described means of the present invention can provide an organic electroluminescence module that achieves downsizing and thinning, has high touch detection accuracy, and is suitable for a smart device, and a smart device including the organic electroluminescence module.
  • the constitutional feature of the organic EL module of the present invention is that an electric connection unit having a capacitance type detection circuit part on the flexible substrate and a wiring part on the back side is arranged on the light emitting side of the organic EL panel, An opening is formed in a region where the organic EL panel is disposed, and a bent portion having two or more cut portions is formed on at least one side of the opening, and the bent portion is formed on the organic EL panel.
  • a large area is required by electrically connecting the land part constituting the detection circuit part of the bent part and the connection electrode part located on the back side of the organic EL panel by bending to the back side (lower part)
  • a capacitive touch detection circuit unit can be arranged between the glass substrate for the touch panel and the organic EL panel, and the touch detection accuracy can be greatly improved.
  • Schematic bottom view showing an example of the configuration of the organic EL panel constituting the organic EL module Schematic sectional view showing an example of the configuration of the organic EL panel constituting the organic EL module
  • Schematic sectional view showing an example of the configuration of the electrical connection unit (FPC: flexible printed circuit) on the BB cut surface Schematic top view used to explain the size of the components of the electrical connection unit
  • Schematic top view showing an example of the configuration of the organic EL module of the present invention Schematic sectional view showing an example of the configuration of the organic EL module of the present invention along the AA section
  • the organic EL module of the present invention is a laminate of an organic EL panel and an electrical connection unit
  • the electrical connection unit has a capacitive detection circuit part on a flexible substrate and a wiring part on the back side, and is disposed on the light emitting surface side of the organic EL panel
  • the electrical connection unit has a light transmission part, and has a bent part provided with two or more cut parts on at least one side of the light transmission part, In the bent portion, the land portion constituting the detection circuit portion and the connection electrode portion of the organic EL panel are electrically connected.
  • the bent portion is formed on the surface side opposite to the light emitting surface of the organic EL panel from the viewpoint that the effect intended by the present invention can be further expressed.
  • This is a particularly preferable aspect because it is possible to further promote thinning and obtain higher touch detection accuracy.
  • the electrical connection unit has a light transmissive opening in a region overlapping with the organic EL panel from the viewpoint of realizing a small format.
  • the electrostatic capacitance type detection circuit unit constituting the electrical connection unit is arranged in a peripheral portion of the light-transmitting opening portion according to the specifications of the smart device to be applied. It can arrange
  • the electrical connection unit when the electrical connection unit is arranged on the light emitting surface side of the organic EL panel and in a region overlapping with the organic EL panel, high touch detection accuracy can be obtained, and small formatting can be achieved. This is preferable in that it can be realized.
  • the organic EL element constituting the organic EL panel has a pair of planar electrodes at opposing positions.
  • the member that electrically connects the land portion constituting the detection circuit and the connection electrode portion of the organic EL panel it is easy for the member that electrically connects the land portion constituting the detection circuit and the connection electrode portion of the organic EL panel to be composed of an anisotropic conductive film, a conductive paste, or a metal paste. It is preferable from the viewpoint that the connection electrode portion and the land portion can be reliably and reliably connected.
  • representing a numerical range is used in the sense that numerical values described before and after the numerical value range are included as a lower limit value and an upper limit value.
  • Organic EL module has a configuration in which at least an organic EL panel and an electrical connection unit are laminated, (1)
  • the electrical connection unit has a capacitive detection circuit portion on the flexible substrate and a wiring portion on the back surface side.
  • the electrical connection unit is disposed on the light emitting surface side of the organic EL panel, (3)
  • the electrical connection unit has a light transmission part, and has a bent part provided with two or more cut parts on at least one side of the light transmission part, (4)
  • the land portion constituting the detection circuit portion and the connection electrode portion of the organic EL panel are electrically connected at the bent portion.
  • FIG. 1A is a schematic bottom view showing an example of the configuration of an organic EL panel constituting the organic EL module
  • FIG. 1B is a schematic sectional view showing an example of a detailed configuration of the organic EL panel constituting the organic EL module
  • FIG. 2 is a schematic cross-sectional view showing an example of the configuration of the organic EL element constituting the organic EL panel.
  • FIG. 1A is a schematic view of an organic EL panel (1) viewed from the bottom side.
  • the organic EL panel (1) has a light emitting region (3) of an organic EL element on a transparent substrate (4), and A sealing structure portion (2) having a peripheral portion made of a sealing member is formed. Furthermore, the connection electrode part (5) is drawn out from the end part of the light emitting region (3) of the organic EL element, and a member that is electrically connected to a land part constituting a detection circuit part of the electrical connection unit described later is provided. Via an external drive circuit.
  • FIG. 1B is a schematic cross-sectional view taken along the line AA of the organic EL panel (1) described with reference to FIG. 1A, and displays the upper surface side of the paper surface as the light emitting surface (L).
  • the light emitting region (3) of the organic EL element is formed on the transparent substrate (4), and the periphery thereof is sealed with the sealing component (2), and the end of the transparent substrate (4)
  • a cathode or an anode is drawn out as a connection electrode portion (5) from an end portion of the light emitting region (3) of the organic EL element.
  • the organic EL element constituting the organic EL panel (1) of FIG. 2 from the upper surface side, the transparent substrate (4), and the anode (52) and the organic functional layer group 1 (53A) at the lower part thereof.
  • the cathode (55) is laminated
  • the anode (52) is formed to the edge part of the transparent base material (4), and forms the connection electrode part (5).
  • the outer peripheral portion of the light emitting region (3) is sealed with a sealing adhesive (56), and a sealing member (57) is arranged on the surface thereof, and harmful gases (oxygen, moisture, etc.) from the external environment Is prevented from penetrating into the light emitting region (3).
  • the light emitting surface (L) is the upper side of the paper surface, the transparent substrate (4), the anode (52), and the organic functional layer group located on the surface side from the light emitting layer (54). It is preferable that 1 (53A) is made of a material having high light transmittance.
  • the electrical connection unit according to the present invention is also called an FPC (flexible printed circuit), and mainly has a capacitance type detection circuit portion on one surface side of a flexible substrate and a wiring portion on the other surface side. It is the composition which is.
  • the electrical connection unit has a light transmission part, and has a bent part provided with two or more cut parts on at least one side of the light transmission part. is doing.
  • the electrical connection unit has a light-transmitting opening at least in a region overlapping with the organic EL panel.
  • FIGS. 3A and 3C are schematic cross-sectional views illustrating an example of the configuration of the electrical connection unit (FPC), respectively. is there.
  • a capacitance-type detection circuit section (11A) is formed on the surface side of the flexible substrate (F), and a “B” -shaped configuration is opened at the center. Touch detection is performed by this detection circuit unit (11A).
  • the back surface side wiring (11B) shown with the broken line for connecting with drive IC is provided in the back surface side of a flexible substrate (F).
  • a light transmission part (T, also referred to as an opening part) is formed in a region where the organic EL panel is arranged, and on one side (left side part in FIG. 3A) of the opening part (T), Cuts (10) are made in two places at the top and bottom to form a cut part (6).
  • a land portion (8) for connection via a member electrically connected to the connection electrode of the organic EL panel is formed on the surface of the cut portion (6).
  • FIG. 3B is a cross-sectional view of the electrical connection unit (FPC) taken along the AA plane shown in FIG. 3A.
  • the detection for detecting the capacitive touch is performed on the upper surface side of the flexible substrate (F).
  • a circuit portion (11A) is formed.
  • the opening part (T) is provided, the notch part (6) is formed in the left end part of the opening part (T), and the land part (8) is provided in the surface side.
  • a back side wiring (11B) for connecting to the driving IC is provided, and the land part (8) and the back side wiring (11B) formed on the notch part (6) are Are electrically connected through a through hole (9).
  • a cut portion (6) having a structure bent to the lower side is formed in a part of the opening (T) of the electrical connection unit (FPC), so that the following FIGS. 5A to 5C are used.
  • an electrical connection unit (FPC) can be disposed on the upper surface side of the organic EL panel, and the touch detection accuracy can be greatly improved.
  • FIGS. 3A and 3B described above is a region overlapping with a sealing structure portion (2) of the organic EL panel (1) as shown in FIGS. 3)
  • the detection circuit portion (11A) can be formed up to a position in the vicinity, the size of the electrical connection unit (FPC) can be reduced, and a small format display method is possible.
  • the flexible substrate (F) constituting the electrical connection unit (FPC) is not particularly limited as long as it is a plastic material that is transparent and flexible, and has sufficient mechanical strength.
  • Polyimide resin (PI), Polycarbonate resin, polyethylene terephthalate resin (PET), polyethylene naphthalate resin (PEN), cycloolefin resin (COP) and the like can be mentioned, and polyimide resin (PI), polyethylene terephthalate resin (PET), polyethylene naphthalate resin are preferable. (PEN) is preferred.
  • the detection circuit unit (11A) and the back surface side wiring (11B) are preferably made of a conductive metal material, and examples thereof include gold, silver, copper, and ITO. It is preferable to form with copper.
  • FIG. 3C is a cross-sectional view taken along the line BB of the electrical connection unit (FPC) described in FIG. 3A.
  • FPC electrical connection unit
  • a circuit portion (11A) is formed, and a back surface side wiring (11B) is formed on the back surface side, which are electrically connected through a through hole (9).
  • a double-sided copper-clad plate using polyimide resin (PI) as a flexible substrate (F) is used.
  • PI polyimide resin
  • a first copper layer (corresponding to 11A) having a thickness of 12 ⁇ m and a second copper layer (corresponding to 11B) having a thickness of 12 ⁇ m are provided as necessary.
  • cover layers are provided on both sides.
  • a transparent polyethylene terephthalate film or the like is used, and is applied to the surface of each copper layer through an adhesive layer by a heat laminating method or the like.
  • the copper layer on which the resist pattern is formed is etched by being immersed in an etching solution or by applying an etching solution by showering to form a desired copper wiring pattern on both sides.
  • a through hole for electrically connecting the wiring on the front and back surfaces is formed.
  • a drill hole is formed at the formation position of the through hole, and a copper plating process is performed on the inner surface of the hole to obtain a first copper layer (corresponding to 11A) and a second copper layer (corresponding to 11B). Electrical connection at the location.
  • a hole is made at a desired position using a pinnacle die or the like to form an opening (T), a cut (10), and a cut (6).
  • the size of each part of the electrical connection unit (FPC) is appropriately set to a desired size depending on the size of a device to be applied, for example, a smart device. Will be described with reference to FIG.
  • FIG. 4 is a schematic top view for explaining the size of the components of the electrical connection unit (FPC).
  • L1 corresponding to one unit (one pixel) of the organic EL module (MD) is generally within a range of 10 to 40 mm, and preferably within a range of 15 to 25 mm.
  • the vertical width L2 is generally in the range of 3 to 15 mm, and preferably in the range of 5 to 10 mm.
  • the short side L3 on the inner side of the “B” type of the capacitance type detection circuit portion (11A) formed on the surface side of the flexible substrate is generally in the range of 2 to 10 mm, preferably 3 to 8 mm. Within range.
  • the long side L4 is generally in the range of 8 to 25 mm, and preferably in the range of 10 to 20 mm.
  • the length L5 of the bent portion (6) is in the range of 1 to 8 mm, preferably in the range of 2 to 6 mm.
  • the organic EL module (MD) of the present invention comprises a combination of the above-described organic EL panel (1) and an electrical connection unit (FPC), and the electrical connection unit (FPC) is an organic EL according to the present invention.
  • the connection electrode portion (5) of the organic EL panel (1) are electrically connected.
  • 5A to 5C are a schematic top view and a schematic cross-sectional view showing an example of the configuration of the organic EL module (MD) of the present invention.
  • the organic EL module (MD) has a capacitive detection circuit section (11A) and a back surface on the flexible substrate (F) on the upper surface section on the light emitting surface side of the organic EL panel (1).
  • An electrical connection unit (FPC) having a wiring part (11B) on the side is arranged.
  • a notch (6) is formed in the opening (T) of the electrical connection unit (FPC), and a land portion (8) for connecting to the connection electrode portion (5) of the organic EL panel (1) is formed on the upper surface thereof.
  • the land portion (8) is connected to a drive IC (not shown) disposed on the back side of the electrical connection unit (FPC) through the through hole (9). (11B).
  • the organic EL panel (1) and the electrical connection unit (FPC) are electrically connected in the form shown in FIG. 5B.
  • FIG. 5B shows a cross-sectional view taken along the line AA of the organic EL module (MD) described in FIG. 5A.
  • an electrical connection unit (FPC) having a notch (6) in the opening is arranged, and between the electrical connection unit (FPC) and the notch (6), on the lower surface side.
  • the organic EL panel (1) having the connection electrode (5) is sandwiched.
  • the electrical connection unit (FPC) is at least a region overlapping the sealing structure portion (2) of the organic EL panel (1) and a position near the light emitting region (3) of the organic EL element. 11A) is preferably formed.
  • the land portion (8) formed on the cut portion (6) of the electrical connection unit (FPC) and the connection electrode portion (5) of the organic EL panel (1) are electrically connected. It is connected by the member (7) to connect.
  • the member (7) to be electrically connected is not particularly limited as long as it is a member having conductivity, but is preferably an anisotropic conductive film (ACF), a conductive paste, or a metal paste. is there.
  • ACF anisotropic conductive film
  • a conductive paste or a metal paste. is there.
  • anisotropic conductive film examples include a layer having fine conductive particles having conductivity mixed with a thermosetting resin.
  • the conductive particle-containing layer that can be used in the present invention is not particularly limited as long as it is a layer containing conductive particles as an anisotropic conductive member, and can be appropriately selected according to the purpose.
  • the conductive particles that can be used as the anisotropic conductive member according to the present invention can be appropriately selected depending on the purpose, and examples thereof include metal particles and metal-coated resin particles.
  • Examples of commercially available ACFs include low-temperature curing ACFs that can also be applied to resin films, such as MF-331 (manufactured by Hitachi Chemical).
  • the metal particles include nickel, cobalt, silver, copper, gold, and palladium. These may be used individually by 1 type and may use 2 or more types together. Among these, nickel, silver, and copper are preferable. In order to prevent these surface oxidations, particles having gold or palladium on the surface may be used. Furthermore, you may use what gave the metal film and the insulating film with the organic substance on the surface.
  • metal-coated resin particles examples include particles in which the surface of the resin core is coated with any metal of nickel, copper, gold, and palladium. Similarly, particles obtained by applying gold or palladium to the outermost surface of the resin core may be used. Further, a resin core whose surface is coated with a metal protrusion or an organic material may be used.
  • metal paste a commercially available metal nanoparticle paste, such as a silver particle paste, a silver-palladium particle paste, a gold particle paste, a copper particle paste, or the like, can be appropriately selected and used.
  • the metal paste include silver pastes for organic EL element substrates sold by Daiken Chemical Co., Ltd.
  • FIG. 5C shows a cross-sectional view of the organic EL module (MD) shown in FIG.
  • 6A to 6C are schematic top views showing various shapes of the capacitance type detection circuit section (11A) of the electrical connection unit (FPC).
  • FIG. 6A shows the shape of a typical capacitance type detection circuit section (11A), which has the opening (T) illustrated in FIGS. 3A to 3C, FIG. 4, and FIGS. 5A to 5C
  • FIG. 6B shows an example in which the portion (11A) is continuously formed in a “B” shape
  • FIG. 6B shows detection circuit portions (11A1 and 11A2 independently on the left and right sides of the flexible substrate (F).
  • 6C is an example in which the detection circuit portion (11A2) is formed on one side of the opening so as to cover the organic EL panel, and these detection circuit portions (11A) are formed.
  • 11A1 and 11A2) can be selected according to the purpose and application of the touch detection function.
  • the organic EL element constituting the organic EL panel includes a transparent substrate (4) from the upper surface side, an anode (52), and an organic functional layer group 1 (53A) below the transparent substrate (4).
  • the cathode (55) is laminated
  • the connection electrode part (5) is provided in the edge part of the anode (52), and is connected to the electrical connection unit (FPC) through the said connection electrode (5).
  • Transparent substrate examples of the transparent substrate (4) applicable to the organic EL device according to the present invention include transparent materials such as glass and plastic. Examples of the transparent transparent substrate (4) preferably used include glass, quartz, and a resin film.
  • the glass material examples include silica glass, soda lime silica glass, lead glass, borosilicate glass, and alkali-free glass.
  • a physical treatment such as polishing, a coating made of an inorganic material or an organic material, or these coatings, if necessary.
  • a combined hybrid coating can be formed.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate pro Cellulose esters such as pionate (CAP), cellulose acetate phthalate, cellulose nitrate and their derivatives, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether Ketone, polyimide, polyethersulfone (PES), polyphenylene sulfide, poly Cyclones such as luphones, polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic and polyarylates, Arton (trade name, manufactured by JSR) and Appel (trade
  • a gas barrier layer may be provided on the transparent substrate (4) described above, if necessary.
  • any material that has a function of suppressing intrusion of water or oxygen that causes deterioration of the organic EL element may be used.
  • an inorganic substance such as silicon oxide, silicon dioxide, or silicon nitride may be used. Can be used.
  • anode examples of the anode constituting the organic EL element include metals such as Ag and Au, alloys containing metal as a main component, CuI or indium-tin composite oxide (ITO), and metal oxides such as SnO 2 and ZnO.
  • metals such as Ag and Au
  • alloys containing metal as a main component CuI or indium-tin composite oxide (ITO)
  • metal oxides such as SnO 2 and ZnO.
  • a metal or a metal-based alloy is preferable, and silver or a silver-based alloy is more preferable.
  • the purity of silver is preferably 99% or more. Further, palladium (Pd), copper (Cu), gold (Au), or the like may be added to ensure the stability of silver.
  • the transparent anode is a layer composed mainly of silver, but specifically, it may be formed of silver alone or an alloy containing silver (Ag).
  • Such alloys include silver / magnesium (Ag / Mg), silver / copper (Ag / Cu), silver / palladium (Ag / Pd), silver / palladium / copper (Ag / Pd / Cu), silver -Indium (Ag.In) etc. are mentioned.
  • the anode constituting the organic EL device according to the present invention is a transparent anode composed mainly of silver and having a thickness in the range of 2 to 20 nm.
  • the thickness is preferably in the range of 4 to 12 nm.
  • a thickness of 20 nm or less is preferable because the absorption component and reflection component of the transparent anode can be kept low and high light transmittance can be maintained.
  • the layer composed mainly of silver means that the silver content in the transparent anode is 60% by mass or more, preferably the silver content is 80% by mass or more, More preferably, the silver content is 90% by mass or more, and particularly preferably the silver content is 98% by mass or more.
  • transparent in the transparent anode according to the present invention means that the light transmittance at a wavelength of 550 nm is 50% or more.
  • the transparent anode may have a configuration in which a layer composed mainly of silver is divided into a plurality of layers as necessary.
  • a base layer may be provided at the lower portion from the viewpoint of improving the uniformity of the silver film of the transparent anode to be formed.
  • a base layer it is a layer containing the organic compound which has a nitrogen atom or a sulfur atom, and the method of forming a transparent anode on the said base layer is a preferable aspect.
  • the organic EL device has a structure in which two or more organic functional layer units each composed of an organic functional layer group and a light emitting layer are laminated between an anode and a cathode, and two or more organic functions It is possible to adopt a structure in which the layer units are separated by an intermediate electrode layer unit having independent connection terminals for obtaining electrical connection.
  • the light emitting layer constituting the organic EL element preferably has a structure containing a phosphorescent light emitting compound as a light emitting material.
  • This light emitting layer is a layer that emits light by recombination of electrons injected from the electrode or the electron transport layer and holes injected from the hole transport layer, and the light emitting portion is in the layer of the light emitting layer. Alternatively, it may be the interface between the light emitting layer and the adjacent layer.
  • Such a light emitting layer is not particularly limited in its configuration as long as the light emitting material contained satisfies the light emission requirements. Moreover, there may be a plurality of layers having the same emission spectrum and emission maximum wavelength. In this case, it is preferable to have a non-light emitting intermediate layer between the light emitting layers.
  • the total thickness of the light emitting layers is preferably in the range of 1 to 100 nm, and more preferably in the range of 1 to 30 nm because a lower driving voltage can be obtained.
  • the sum total of the thickness of a light emitting layer is the thickness also including the said intermediate
  • the light emitting layer as described above is prepared by using a known method such as a vacuum evaporation method, a spin coating method, a casting method, an LB method (Langmuir-Blodget, Langmuir Blodgett method) and an ink jet method. Can be formed.
  • a known method such as a vacuum evaporation method, a spin coating method, a casting method, an LB method (Langmuir-Blodget, Langmuir Blodgett method) and an ink jet method. Can be formed.
  • a plurality of light emitting materials may be mixed, and a phosphorescent light emitting material and a fluorescent light emitting material (also referred to as a fluorescent dopant or a fluorescent compound) may be mixed and used in the same light emitting layer.
  • the structure of the light-emitting layer preferably includes a host compound (also referred to as a light-emitting host) and a light-emitting material (also referred to as a light-emitting dopant compound), and emits light from the light-emitting material.
  • ⁇ Host compound> As the host compound contained in the light emitting layer, a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1 is preferable. Further, the phosphorescence quantum yield is preferably less than 0.01. Moreover, it is preferable that the volume ratio in the layer is 50% or more among the compounds contained in a light emitting layer.
  • a known host compound may be used alone, or a plurality of types of host compounds may be used.
  • a plurality of types of host compounds it is possible to adjust the movement of charges, and the efficiency of the organic electroluminescent device can be improved.
  • a plurality of kinds of light emitting materials described later it is possible to mix different light emission, thereby obtaining an arbitrary light emission color.
  • the host compound used in the light emitting layer may be a conventionally known low molecular compound or a high molecular compound having a repeating unit, and a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). )
  • Examples of host compounds applicable to the present invention include, for example, JP-A Nos. 2001-257076, 2001-357777, 2002-8860, 2002-43056, 2002-105445, 2002-352957, 2002-231453, 2002-234888, 2002-260861, 2002-305083, US Patent Application Publication No. 2005/0112407, US Patent Application Publication No. 2009/0030202, International Publication No. 2001/039234, International Publication No. 2008/056746, International Publication No. 2005/089025, International Publication No. 2007/063754, International Publication No. 2005/030900, International Publication 200th / No. 086,028, WO 2012/023947, can be mentioned JP 2007-254297, JP-European compounds described in Japanese Patent No. 2034538 Pat like.
  • a phosphorescent compound also referred to as a phosphorescent compound, a phosphorescent material, or a phosphorescent dopant
  • a fluorescent compound both a fluorescent compound or a fluorescent material
  • a phosphorescent compound is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.), and the phosphorescence quantum yield is 0 at 25 ° C.
  • a preferred phosphorescence quantum yield is 0.1 or more, although it is defined as 0.01 or more compounds.
  • the phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7.
  • the phosphorescence quantum yield in the solution can be measured using various solvents, but when using a phosphorescent compound in the present invention, the phosphorescence quantum yield is 0.01 or more in any solvent. Should be achieved.
  • the phosphorescent compound can be appropriately selected from known compounds used for the light-emitting layer of a general organic EL device, but preferably contains a group 8 to 10 metal in the periodic table of elements. More preferred are iridium compounds, more preferred are iridium compounds, osmium compounds, platinum compounds (platinum complex compounds) or rare earth complexes, and most preferred are iridium compounds.
  • At least one light emitting layer may contain two or more phosphorescent compounds, and the concentration ratio of the phosphorescent compound in the light emitting layer varies in the thickness direction of the light emitting layer. It may be an embodiment.
  • preferred phosphorescent compounds include organometallic complexes having Ir as a central metal. More preferably, a complex containing at least one coordination mode of a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond, and a metal-sulfur bond is preferable.
  • the phosphorescent compound described above (also referred to as a phosphorescent metal complex) is described in, for example, Organic Letter, vol. 16, 2579-2581 (2001), Inorganic Chemistry, Vol. 30, No. 8, pp. 1685-1687 (1991), J. Am. Am. Chem. Soc. , 123, 4304 (2001), Inorganic Chemistry, Vol. 40, No. 7, pages 1704-1711 (2001), Inorganic Chemistry, Vol. 41, No. 12, pages 3055-3066 (2002) , New Journal of Chemistry. 26, 1171 (2002), European Journal of Organic Chemistry, Vol. 4, pages 695-709 (2004), and methods disclosed in the references and the like described in these documents Can be synthesized.
  • Fluorescent compounds include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, stilbene dyes. And dyes, polythiophene dyes, and rare earth complex phosphors. (Organic functional group) Next, each layer constituting the organic functional layer unit will be described in the order of a charge injection layer, a hole transport layer, an electron transport layer, and a blocking layer.
  • the charge injection layer is a layer provided between the electrode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance.
  • the organic EL element and its industrialization front line June 30, 1998, NT. The details are described in Volume 2, Chapter 2, “Electrode Materials” (pages 123 to 166) (hereinafter referred to as Reference 1) of “S. There is.
  • the charge injection layer is present between the anode and the light emitting layer or the hole transport layer in the case of a hole injection layer, and between the cathode and the light emitting layer or the electron transport layer in the case of an electron injection layer.
  • the present invention is characterized in that the charge injection layer is disposed adjacent to the transparent electrode. When used in an intermediate electrode, it is sufficient that at least one of the adjacent electron injection layer and hole injection layer satisfies the requirements of the present invention.
  • the hole injection layer is a layer disposed adjacent to the anode, which is a transparent electrode, in order to lower the driving voltage and improve the luminance of light emission, and details thereof are described in Reference Document 1.
  • the details of the hole injection layer are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, etc.
  • materials used for the hole injection layer include: , Porphyrin derivatives, phthalocyanine derivatives, oxazole derivatives, oxadiazole derivatives, triazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, hydrazone derivatives, stilbene derivatives, polyarylalkane derivatives, triarylamine derivatives, carbazole derivatives, Indolocarbazole derivatives, isoindole derivatives, acene derivatives such as anthracene and naphthalene, fluorene derivatives, fluorenone derivatives, polyvinylcarbazole, aromatic amines introduced into the main chain or side chain Child material or oligomer, polysilane, a conductive polymer or oligomer
  • Examples of the triarylamine derivative include benzidine type represented by ⁇ -NPD (4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl), and MTDATA (4,4 ′, 4 ′′).
  • Examples include a starburst type represented by -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine), a compound having fluorene or anthracene in the triarylamine-linked core.
  • hexaazatriphenylene derivatives such as those described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as a hole transport material.
  • the electron injection layer is a layer provided between the cathode and the light emitting layer for lowering the driving voltage and improving the light emission luminance.
  • the cathode is composed of the transparent electrode according to the present invention, It is provided adjacent to the transparent electrode, and the details are described in the above-mentioned reference 1.
  • JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like Specific examples of materials preferably used for the electron injection layer are as follows. Metals represented by strontium and aluminum, alkali metal compounds represented by lithium fluoride, sodium fluoride, potassium fluoride, etc., alkali metal halide layers represented by magnesium fluoride, calcium fluoride, etc. Examples thereof include an alkaline earth metal compound layer typified by magnesium, a metal oxide typified by molybdenum oxide and aluminum oxide, and a metal complex typified by lithium 8-hydroxyquinolate (Liq).
  • Metals represented by strontium and aluminum alkali metal compounds represented by lithium fluoride, sodium fluoride, potassium fluoride, etc.
  • the transparent electrode in this invention is a cathode
  • organic materials such as a metal complex
  • the electron injection layer is preferably a very thin film, and depending on the constituent material, the layer thickness is preferably in the range of 1 nm to 10 ⁇ m.
  • the hole transport layer is made of a hole transport material having a function of transporting holes.
  • the hole injection layer and the electron blocking layer also have the function of a hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has any of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
  • triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives
  • Examples include stilbene derivatives, silazane derivatives, aniline copolymers, conductive polymer oligomers, and thiophene oligomers.
  • hole transport material those described above can be used, but porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds can be used, and in particular, aromatic tertiary amine compounds can be used. preferable.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (abbreviation: TPD), 2,2-bis (4-di-p-tolylaminophenyl) propane, 1,1 -Bis (4-di-p-tolylaminophenyl) cyclohexane, N, N, N ', N'-tetra-p-tolyl-4,4'-diaminobiphenyl, 1,1-bis (4-di-p -Tolylaminophenyl) -4-phenylcyclohexane, bis (4-dimethylamino-2-methylphenyl) phenylmethane, bis (4-di-p
  • the hole transport material may be formed by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, and an LB method (Langmuir Brodget, Langmuir Brodgett method). Thus, it can be formed by thinning.
  • the layer thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the hole transport layer may have a single layer structure composed of one or more of the above materials.
  • the p property can be increased by doping impurities into the material of the hole transport layer.
  • Examples thereof include JP-A-4-297076, JP-A-2000-196140, 2001-102175 and J.P. Appl. Phys. 95, 5773 (2004), and the like.
  • the electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer can be provided as a single layer structure or a stacked structure of a plurality of layers.
  • an electron transport material (also serving as a hole blocking material) constituting a layer portion adjacent to the light emitting layer is used as an electron transporting material. What is necessary is just to have the function to transmit.
  • any one of conventionally known compounds can be selected and used. Examples include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane, anthrone derivatives, and oxadiazole derivatives.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as a material for the electron transport layer. It can. Furthermore, a polymer material in which these materials are introduced into a polymer chain, or a polymer material having these materials as a polymer main chain can also be used.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (abbreviation: Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8- Quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (abbreviation: Znq), etc. and the central metal of these metal complexes
  • a metal complex replaced with In, Mg, Cu, Ca, Sn, Ga, or Pb can also be used as a material for the electron transport layer.
  • the electron transport layer can be formed by thinning the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, and an LB method.
  • the thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the electron transport layer may have a single structure composed of one or more of the above materials.
  • the blocking layer includes a hole blocking layer and an electron blocking layer, and is a layer provided as necessary in addition to the constituent layers of the organic functional layer unit 3 described above. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. Hole blocking (hole block) layer and the like.
  • the hole blocking layer has a function of an electron transport layer in a broad sense.
  • the hole blocking layer is made of a hole blocking material that has a function of transporting electrons but has a very small ability to transport holes, and recombines electrons and holes by blocking holes while transporting electrons. Probability can be improved.
  • the structure of an electron carrying layer can be used as a hole-blocking layer as needed.
  • the hole blocking layer is preferably provided adjacent to the light emitting layer.
  • the electron blocking layer has a function of a hole transport layer in a broad sense.
  • the electron blocking layer is made of a material that has the ability to transport holes and has a very small ability to transport electrons. By blocking holes while transporting holes, the probability of recombination of electrons and holes is improved. Can be made.
  • the structure of a positive hole transport layer can be used as an electron blocking layer as needed.
  • the layer thickness of the hole blocking layer applied to the present invention is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
  • the cathode is an electrode film that functions to supply holes to the organic functional layer group and the light emitting layer, and a metal, an alloy, an organic or inorganic conductive compound, or a mixture thereof is used. Specifically, gold, aluminum, silver, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, indium, lithium / aluminum mixture, rare earth metal, ITO, ZnO, TiO Oxide semiconductors such as 2 and SnO 2 .
  • the cathode can be produced by forming a thin film of these conductive materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the second electrode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • sealing member examples of the sealing means used for sealing the organic EL element include a method in which a sealing member, a cathode, and a transparent substrate are bonded with an adhesive.
  • the sealing member may be disposed so as to cover the display area of the organic EL element, and may be concave or flat. Further, transparency and electrical insulation are not particularly limited.
  • a glass plate, a polymer plate, a film, a metal plate, a film, etc. examples include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate examples include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • the metal plate include one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • the sealing member a polymer film and a metal film can be preferably used from the viewpoint of reducing the thickness of the organic EL element. Furthermore, the polymer film has a water vapor transmission rate of 1 ⁇ 10 ⁇ 3 g / m 2 .multidot.m at a temperature of 25 ⁇ 0.5 ° C. and a relative humidity of 90 ⁇ 2% RH measured by a method according to JIS K 7129-1992.
  • the oxygen permeability measured by a method according to JIS K 7126-1987 is preferably 1 ⁇ 10 ⁇ 3 ml / m 2 ⁇ 24 h ⁇ atm (1 atm is 1.01325 ⁇ 10 5 a Pa) equal to or lower than a temperature of 25 ⁇ 0.5 ° C.
  • water vapor permeability at a relative humidity of 90 ⁇ 2% RH is preferably not more than 1 ⁇ 10 -3 g / m 2 ⁇ 24h.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorocarbon or silicon oil is injected in the gas phase and liquid phase. It is preferable to do. Further, the gap between the sealing member and the display area of the organic EL element can be evacuated, or a hygroscopic compound can be sealed in the gap.
  • An anode, an organic functional layer group 1, a light emitting layer, an organic functional layer group 2 and a cathode are laminated on a transparent substrate to form a laminate.
  • a transparent substrate is prepared, and a thin film made of a desired electrode material, for example, an anode material is deposited on the transparent substrate so as to have a thickness of 1 ⁇ m or less, preferably in the range of 10 to 200 nm.
  • the anode is formed by a method such as sputtering.
  • a connection electrode portion connected to an external power source is formed at the anode end portion.
  • a hole injection layer and a hole transport layer constituting the organic functional layer group 1, a light emitting layer, an electron transport layer constituting the organic functional layer group 2 and the like are sequentially laminated thereon.
  • each of these layers includes spin coating, casting, inkjet, vapor deposition, and printing, but vacuum vapor deposition is easy because a homogeneous layer is easily obtained and pinholes are difficult to generate.
  • the method or spin coating method is particularly preferred.
  • different formation methods may be applied for each layer.
  • the vapor deposition conditions vary depending on the type of compound used, but generally a boat heating temperature of 50 to 450 ° C. and a degree of vacuum of 1 ⁇ 10 ⁇ 6 to 1 ⁇ 10 ⁇ 2 Pa. It is desirable to appropriately select the respective conditions within the range of a deposition rate of 0.01 to 50 nm / second, a substrate temperature of ⁇ 50 to 300 ° C., and a layer thickness of 0.1 to 5 ⁇ m.
  • a cathode is formed thereon by an appropriate forming method such as vapor deposition or sputtering. At this time, the cathode is patterned in a shape in which terminal portions are drawn from the upper side of the organic functional layer group to the periphery of the transparent substrate while maintaining an insulating state with respect to the anode by the organic functional layer group.
  • the transparent base material, the anode, the organic functional layer group, the light emitting layer, and the cathode are sealed with a sealing material. That is, a sealing member covering at least the organic functional layer group is provided on the transparent substrate with the terminal portions of the anode and the cathode exposed.
  • FIG. 7 is a schematic configuration diagram illustrating an example of a smart device including the organic EL module of the present invention.
  • the smart device 100 of the present invention includes the organic EL module (MD) having the touch detection function described in FIGS. 1 to 6, the liquid crystal display device (120), and the like.
  • a conventionally known liquid crystal display device can be used as the liquid crystal display device (120).
  • FIG. 7 shows a state in which the organic EL module (MD) of the present invention emits light, and light emission of various display patterns (111) is visually recognized when viewed from the front side.
  • the various display patterns (111) are not visually recognized.
  • the shape of the display pattern (111) shown in FIG. 7 is an example and is not limited thereto, and may be any figure, character, pattern, or the like.
  • the “display pattern” means a design (design or pattern in the figure), characters, images, etc. displayed by light emission of the organic EL element.
  • the transparent substrate (4) on which the anode (52) composed of ITO is formed is ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • Each of the deposition crucibles in the vacuum deposition apparatus was filled with an optimal amount of the constituent material of each layer.
  • a crucible made of a resistance heating material made of molybdenum or tungsten was used as the evaporation crucible.
  • the deposition crucible containing the following compound M-4 was energized and heated, and the anode (52) of the transparent substrate (4) was deposited at a deposition rate of 0.1 nm / second.
  • An electron injection layer having a thickness of 15 nm was provided by evaporation.
  • the following compound M-2 was vapor-deposited in the same manner, an electron transport layer having a layer thickness of 40 nm was provided, and organic functional layer group 1 (53A) was laminated.
  • a polysilazane-containing liquid is applied onto a 125 ⁇ m-thick polyethylene terephthalate film (manufactured by Teijin DuPont Films Ltd., ultra-high transparency PET Type K), treated with an excimer lamp, and then subjected to a gas barrier.
  • a layer was formed to obtain a transparent sealing member (57) with a gas barrier layer.
  • Adhesion of the transparent sealing member uses an epoxy-based thermosetting adhesive (Elephan CS manufactured by Yodogawa Paper Co., Ltd.) as the sealing adhesive (56), and in a glove box having an oxygen concentration of 10 ppm or less and a moisture concentration of 10 ppm or less , 80 ° C., 0.04 MPa load, reduced pressure (1 ⁇ 10 ⁇ 3 MPa or less) suction for 20 seconds, press for 20 seconds toward the organic EL element 101, the gas barrier layer of the transparent sealing member was vacuum-pressed so as to be on the organic EL element side.
  • an epoxy-based thermosetting adhesive Elephan CS manufactured by Yodogawa Paper Co., Ltd.
  • the adhesive layer is cured by heating on a hot plate at 110 ° C. for 30 minutes, and the size of the transparent substrate (4) is 8.3 mm ⁇ with the configuration shown in FIGS. 1A and 1B.
  • An organic EL panel 1 having a size of 10.5 mm, a size of the sealing component (2) of 8.3 mm ⁇ 5.6 mm, and a light emitting region (3) of the organic EL element of 4.0 mm ⁇ 5.0 mm was produced.
  • a 12 ⁇ m thick first copper layer (corresponding to 11A) and a 12 ⁇ m thick second copper layer (corresponding to 11B) are formed on both sides of a 38 ⁇ m thick polyimide (PI) film. ) was used.
  • a photoresist material is applied onto the copper layers on both sides of the double-sided copper-clad plate, and double-sided exposure is performed through a mask material so as to form the wiring patterns shown in FIGS. 3A to 3C, and then a development step, and A resist pattern was formed on the front and back surfaces through an unnecessary resist stripping process.
  • the copper layer was immersed in an etching solution to form a capacitance type detection circuit portion (11A) shown in FIGS. 3A to 3C on both sides and a wiring portion (11B) on the back side.
  • a drill hole is formed at the position where the through hole (9) is formed, and the surface of the hole is subjected to copper plating, so that a capacitance detection circuit portion (corresponding to 11A) and a wiring portion on the back surface (corresponding to 11B) ) was electrically connected.
  • the size of each component shown in FIG. 4 of the electrical connection unit (FPC) 1 is as follows.
  • the land part (8) of the electrical connection unit (FPC) 1 and the connection electrode part (5) of the organic EL panel (1) 1 are made of an anisotropic conductive film (ACF) as a member (7) to be electrically connected. Connected.
  • ACF anisotropic conductive film
  • CP920AM-16AC manufactured by Dexerials
  • ACF temporary bonding was performed using an ACF bonding apparatus LD-02 (manufactured by Ohashi Seisakusho).
  • the land portion (8) of the electrical connection unit was aligned, and then the main pressure bonding was performed using an ACF pressure bonding machine BD-02 (manufactured by Ohashi Seisakusho) under the conditions of 2 MPa, 135 ° C., and 15 sec.
  • ACF pressure bonding machine BD-02 manufactured by Ohashi Seisakusho
  • the organic EL panel 1 (1) was disposed at the bottom of the glass substrate (20), and the electrical connection unit (FPC) 2 produced above was disposed at the bottom.
  • a member (10) for electrically connecting the connection electrode portion (5) of the organic EL panel (1) at the opposing position and the capacitance type detection circuit portion (11A) of the electric connection unit (FPC) As 7
  • an anisotropic conductive film (ACF) was used for connection.
  • the size of the electrical connection unit (FPC) 3 (L2 described in FIG. 4) was twice that of the electrical connection unit (FPC) 1.
  • the organic EL module of the present invention is an organic EL module that achieves small formatting and thinning, has high touch detection accuracy, and is suitable for smart devices, and can be suitably used for various smart devices such as smartphones and tablets. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 本発明の課題は、小型化及び薄膜化を達成し、タッチ検出精度が高く、スマートデバイスへの適性を有する有機ELモジュールと、それを具備したスマートデバイスを提供することである。 本発明の有機ELモジュールは、有機ELパネルと、電気接続ユニットとを積層した構成であって、前記電気接続ユニットは、フレキシブル基板上に静電容量型の検出回路部を有し、前記電気接続ユニットは、前記有機ELパネルの発光面側に配置され、前記電気接続ユニットが光透過部を有し、前記電気接続ユニットの前記光透過部に有する少なくとも一つの辺側に、2か所以上の切り込み部を設けた折り曲がり部を有し、前記折り曲がり部で、前記検出回路部を構成するランド部と、前記有機ELパネルの接続電極部が電気的に接続されていることを特徴とする。

Description

有機エレクトロルミネッセンスモジュール及びスマートデバイス
 本発明は、タッチ検出機能を有する有機エレクトロルミネッセンスモジュールと、それを具備したスマートデバイスに関する。
 従来、平面状の光源体としては、導光板を用いた発光ダイオード(Light Emitting Diode、以下、LEDと略記する。)や、有機発光ダイオード(Organic Light Emitting Diode、以下、有機エレクトロルミネッセンス素子、有機EL素子又はOLEDともいう。)等が挙げられる。
 導光板を用いたLED光源は、一般照明の他、例えば、2008年ごろから、世界的に普及してきているスマートデバイス(例えば、スマートフォン、タブレット等)のメインディスプレイ(例えば、液晶表示装置(Liquid Crystal Display:LCD))のバックライトとして急速に使用されてきている。
 このようなLED光源は、メインディスプレイのみならず、スマートデバイスの下部に設けられている共通機能キーボタンのバックライトとしても使用されている。
 共通機能キーボタンには、例えば、「ホーム」(四角形などのマークで表示)、「戻る」(矢印マークなどで表示)、「検索」(虫眼鏡マークなどで表示)を示す3種類のマークが設けられている場合がある。
 このような共通機能キーボタンとしては、視認性向上の観点から、表示するマークのパターン形状に応じて、あらかじめ導光板にドット形状の偏向パターンが形成され、当該導光板の側方に、導光板の側端面に光を照射するLED光源が設けられて構成されている。このような共通機能キーボタンにおいては、LED光源から出射した光が導光板の側端面から入射し、当該入射光が偏向パターンの偏向反射面によって導光板の正面方向へ全反射される。これにより、所定のパターンで導光板の正面側から光が出射されて、導光板を正面から見たときに当該パターンで発光して見えるようになる(例えば、特許文献1参照。)。
 また、LED光源を用いた静電容量式情報入力ユニットとして、センサー電極の感度を高めで、センサー回路による静電容量の変化の検出を確実にし、使用者の入力操作を安定して処理することを目的として、センサー電極が形成されたフレキシブルプリント回路(以下、FPCと略記する。)と、表面パネルとの間に、アイコン等の部位を回避する位置に、同形状の空気層よりも誘電率の高い接着剤層を設けることにより、静電容量を検出する検出電極の精度を向上させる方法が開示されている(例えば、特許文献2参照。)。
 一方、より低消費電力化、発光輝度の均一性向上を目的として、面発光型の有機エレクトロルミネッセンスパネル(以下、有機ELパネルと略記する。)を利用しようという動きもある。これらの有機ELパネルは、カバーガラス側へマーク等をあらかじめ印刷しておき、その該当部分裏側に配置されることで表示機能を発現する。
 また、スマートデバイスの利用に際してはタッチ機能が必須であり、ディスプレイ部および共通機能キー部にいたるまで、タッチ検出のための静電容量型のタッチ検出型デバイスをカバーガラス裏面側へ配置するのが通例となっている。
 このタッチ検出デバイスとしては、フィルム/フィルム型のタッチセンサーを、カバーガラスと同等のサイズまで拡大させてラミネートしたものが使われることが多い。特に、厚さに制約がないような機種の場合には、ガラス/ガラスタイプのものが用いられることもある。タッチの検出方式としては、近年は静電容量方式のものが採用されることが多い。メインディスプレイ向けには、投影型静電容量方式の中でも、「相互容量方式」と呼ばれる、x軸、y軸方向それぞれに精細な電極パターンを有する方式が採用される。当該方式では、いわゆる「マルチタッチ」と呼ばれる2点以上のタッチ検出が可能となる。
 このようなタッチセンサーを利用するため、これまでは共通機能キーの部分には、タッチ機能を持たない発光デバイスが使用されていた。しかしながら、近年、いわゆる「インセル」型、又は「オンセル」型のディスプレイが登場したことにより、共通機能キー用の発光デバイスに、独自のタッチ検出機能を設けることが強く求められてきた。
 その一方で、共通機能キーのような部分については、上記で述べたようなマルチタッチは必要なく、On/Offを検出可能な静電容量方式の中でも、「自己容量方式」と呼ばれる方式を採用することで充分に要求機能を満たすことができる。この自己容量方式の場合、タッチ検出用の電極は、一面のベタパターン等から構成される単純な形状となる。
 面発光型の有機ELパネルの場合、有機EL素子を構成している陽極、陰極、又は保護のために利用されるメタルホイル層が上記の静電容量方式の静電容量の変化の検出に悪影響を与えるため、有機ELパネルに静電タッチ機能を付与する場合は、有機EL素子の発光面側へのアセンブリが必要など、タッチ機能の設置には大きな制約があった。このようなアセンブリを設ける方法では、タッチデバイスを追加調達する必要が生じるため、経済的な負荷を負うことになり、問題を抱えている。
 上記問題に対し、有機ELパネルやLEDを実装するために用いられるFPCに、静電容量検出用の回路を設ける技術が知られているが、有機ELパネルの場合、静電容量検出用の回路を構成する電極面が、有機EL素子の発光面とは反対側を配置されており、その結果、FPCは発光面とは反対側の位置に配置されることになる。しかしながら、この配置では、後述の図8に示すような構成となるため、静電容量の検出回路を有するFPCのタッチ検出精度が極めて低くなるという問題があった。
 また、上記のようなFPCが有機ELパネルの裏面に配置されることを避けるため、後述の図9に示すように、有機ELパネルの領域外にFPCを配置させる方法も可能ではあるが、このような構成をとった場合には、発光位置とタッチ検出用の回路位置が遠くなってしまうこと、又は有機ELモジュール全体の面積が大型化することにより、スモールフォーマットが要求されるスマートデバイスへの適用に障害となる等の問題が発生する。
 従って、発光デバイスである有機EL素子と配線材料がコンパクトに積層されて、小型化及び薄膜化を達成し、タッチ検出精度が高く、スマートデバイスへの適性を有する有機エレクトロルミネッセンスモジュール(以下、有機ELモジュールと略記する。)の開発が求められている。
特開2012-194291号公報 特開2013-065429号公報
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、スモールフォーマット化及び薄膜化を達成し、タッチ検出精度が高く、スマートデバイスへの適性を有する有機エレクトロルミネッセンスモジュールと、それを具備したスマートデバイスを提供することである。
 本発明者は、上記課題を解決すべく、鋭意検討を進めた結果、有機エレクトロルミネッセンスパネルと、電気接続ユニットとを積層した有機エレクトロルミネッセンスモジュールであって、前記電気接続ユニットが、フレキシブル基板上に静電容量型の検出回路部と裏面側に配線部を有し、前記電気接続ユニットは、前記有機エレクトロルミネッセンスパネルの発光面側に配置され、前記電気接続ユニットが光透過部を有し、当該光透過部の少なくとも一つの辺側に、2か所以上の切り込み部を設けた折り曲がり部を有し、前記折り曲がり部で、前記検出回路部を構成するランド部と、前記有機エレクトロルミネッセンスパネルの接続電極部とが電気的に接続されていることを特徴とする有機エレクトロルミネッセンスモジュールにより、小型化及び薄膜化を達成し、タッチ検出精度が高く、スマートデバイスへの適性を有する有機エレクトロルミネッセンスモジュールを提供できることを見出した。
 すなわち、本発明に係る課題は、以下の手段により解決される。
 1.有機エレクトロルミネッセンスパネルと、電気接続ユニットとを積層した有機エレクトロルミネッセンスモジュールであって、
 前記電気接続ユニットは、フレキシブル基板上に静電容量型の検出回路部と裏面側に配線部を有し、
 前記電気接続ユニットは、前記有機エレクトロルミネッセンスパネルの発光面側に配置され、
 前記電気接続ユニットが光透過部を有し、当該光透過部の少なくとも一つの辺側に、2か所以上の切り込み部を設けた折り曲がり部を有し、
 前記折り曲がり部で、前記検出回路部を構成するランド部と、前記有機エレクトロルミネッセンスパネルの接続電極部とが電気的に接続されている、
ことを特徴とする有機エレクトロルミネッセンスモジュール。
 2.前記折り曲がり部が、前記有機エレクトロルミネッセンスパネルの発光面とは反対側の面側に形成されていることを特徴とする第1項に記載の有機エレクトロルミネッセンスモジュール。
 3.前記電気接続ユニットが、少なくとも前記有機エレクトロルミネッセンスパネルと重なる領域に、光透過性の開口部を有することを特徴とする第1項又は第2項に記載の有機エレクトロルミネッセンスモジュール。
 4.前記電気接続ユニットを構成する前記静電容量型の検出回路部が、前記光透過性の開口部の周辺部、一対の対向するそれぞれの辺側、又は少なくとも一方の辺側に配置されていることを特徴とする第3項に記載の有機エレクトロルミネッセンスモジュール。
 5.前記電気接続ユニットが、前記有機エレクトロルミネッセンスパネルの発光面側で、かつ当該有機エレクトロルミネッセンスパネルと重なる領域に配置されていることを特徴とする第1項から第4項までのいずれか一項に記載の有機エレクトロルミネッセンスモジュール。
 6.前記有機エレクトロルミネッセンスパネルを構成する有機エレクトロルミネッセンス素子が、対向する位置に面状の一対の電極を有することを特徴とする第1項から第5項までのいずれか一項に記載の有機エレクトロルミネッセンスモジュール。
 7.前記検出回路を構成するランド部と、前記有機エレクトロルミネッセンスパネルの接続電極部とを電気的に接続する部材が、異方性導電膜、導電性ペースト、又は金属ペーストであることを特徴とする第1項から第6項までのいずれか一項に記載の有機エレクトロルミネッセンスモジュール。
 8.複数の前記有機エレクトロルミネッセンスパネルが並列配置されていることを特徴とする第1項から第7項までのいずれか一項に記載の有機エレクトロルミネッセンスモジュール。
 9.第1項から第8項までのいずれか一項に記載の有機エレクトロルミネッセンスモジュールを具備していることを特徴とするスマートデバイス。
 本発明の上記手段により、小型化及び薄膜化を達成し、タッチ検出精度が高く、スマートデバイスへの適性を有する有機エレクトロルミネッセンスモジュールと、それを具備したスマートデバイスを提供することができる。
 本発明で規定する構成からなる有機ELモジュールの技術的特徴とその効果の発現機構は、以下のとおりである。
 本発明の有機ELモジュールの構成上の特徴は、有機ELパネルの発光側の上部に、フレキシブル基板上に静電容量型の検出回路部と裏面側に配線部を有する電気接続ユニットを配置し、有機ELパネルが配置されている領域に開口部を形成し、その開口部の少なくとも一辺部に2か所以上の切り込み部を設けた折り曲がり部を形成し、その折り曲がり部を有機ELパネルの裏面側(下部)まで折り曲げて、折り曲がり部の検出回路部を構成するランド部と、有機ELパネルの背面側に位置する接続電極部を電気的に接続させることにより、大面積を必要とすることなく、またタッチパネル用のガラス基板と有機ELパネルの間に、静電容量型のタッチ検出用回路部を、配置することができ、タッチ検出精度を飛躍的に向上することができた。
有機ELモジュールを構成する有機ELパネルの構成の一例を示す概略底面図 有機ELモジュールを構成する有機ELパネルの構成の一例を示す概略断面図 有機ELパネルを構成する有機EL素子の構成の一例を示す概略断面図 電気接続ユニット(FPC:フレキシブルプリント回路)の構成の一例を示す概略上面図 電気接続ユニット(FPC:フレキシブルプリント回路)のA-A切断面における構成の一例を示す概略断面図 電気接続ユニット(FPC:フレキシブルプリント回路)のB-B切断面における構成の一例を示す概略断面図 電気接続ユニットの構成部位のサイズを説明に用いる概略上面図 本発明の有機ELモジュールの構成の一例を示す概略上面図 本発明の有機ELモジュールのA-A切断面における構成の一例を示す概略断面図 本発明の有機ELモジュールのB-B切断面における構成の一例を示す概略断面図 電気接続ユニットの静電容量型の検出回路部の形状の一例を示す概略上面図 電気接続ユニットの静電容量型の検出回路部の形状の他の一例を示す概略上面図 電気接続ユニットの静電容量型の検出回路部の形状の他の一例を示す概略上面図 本発明の有機ELモジュールを具備したスマートデバイスの一例を示す概略構成図 比較例の有機ELモジュールの構成の一例を示す概略断面図 比較例の有機ELモジュールの構成の他の一例を示す概略上面図
 本発明の有機ELモジュールは、有機ELパネルと、電気接続ユニットとを積層し、
前記電気接続ユニットは、フレキシブル基板上に静電容量型の検出回路部と裏面側に配線部を有して、前記有機ELパネルの発光面側に配置され、
 前記電気接続ユニットが光透過部を有し、当該光透過部の少なくとも一つの辺側に、2か所以上の切り込み部を設けた折り曲がり部を有し、
 前記折り曲がり部で、前記検出回路部を構成するランド部と、前記有機ELパネルの接続電極部とが電気的に接続されていることを特徴とする。この特徴は、請求項1から請求項9までの請求項に係る発明に共通する技術的特徴である。
 本発明の実施態様としては、本発明の目的とする効果をより発現できる観点から、前記折り曲がり部が、前記有機ELパネルの発光面とは反対側の面側に形成されていることが、薄膜化をより推進し、より高いタッチ検出精度を得ることができ、特に好ましい態様である。
 また、前記電気接続ユニットが、有機ELパネルと重なる領域に、光透過性の開口部を有する構成とすることが、スモールフォーマット化を実現することができる点で好ましい。
 また、本発明の有機ELモジュールにおいては、電気接続ユニットを構成する前記静電容量型の検出回路部を、適用するスマートデバイスの仕様に応じて、光透過性の開口部の周辺部、一対の対向するそれぞれの辺側、又は少なくとも一方の辺側に配置することができる。
 また、前記電気接続ユニットが、前記有機ELパネルの発光面側で、かつ当該有機ELパネルと重なる領域に配置する構成とすることが、高いタッチ検出精度を得ることができると共に、スモールフォーマット化を実現することができる点で好ましい。
 前記有機ELパネルを構成する有機EL素子が、対向する位置に面状の一対の電極を有する構成であることが好ましい。
 また、前記検出回路を構成するランド部と、前記有機ELパネルの接続電極部とを電気的に接続する部材が、異方性導電膜、導電性ペースト、又は金属ペーストで構成することが、容易にかつ確実に接続電極部とランド部の接続を行うことができる観点から好ましい。
 スマートデバイスの機能の多様化に対応する観点から、有機ELパネルが並列して複数個配置されている構成であることが好ましい態様である。
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、数値範囲を表す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用している。
 《有機ELモジュール》
 本発明の有機ELモジュールは、少なくとも有機ELパネルと、電気接続ユニットとを積層した構成からなり、
 (1)電気接続ユニットは、フレキシブル基板上に静電容量型の検出回路部と裏面側に配線部を有し、
 (2)電気接続ユニットは、有機ELパネルの発光面側に配置され、
 (3)電気接続ユニットが光透過部を有し、当該光透過部の少なくとも一つの辺側に、2か所以上の切り込み部を設けた折り曲がり部を有し、
 (4)折り曲がり部で、検出回路部を構成するランド部と、有機ELパネルの接続電極部とが電気的に接続されている構成されていることを特徴とする。
 有機ELモジュールの全体構成を説明する前に、初めに、有機ELモジュールを構成する有機ELパネルと、電気接続ユニットの構成の詳細について、図を交えて説明する。なお、以下の説明で、各構成要素のあとの括弧内に記載の数字は、各図に記載した各構成要素の符号を表す。
 〔有機ELパネルの構成〕
 図1Aは、有機ELモジュールを構成する有機ELパネルの構成の一例を示す概略底面図であり、図1Bは、有機ELモジュールを構成する有機ELパネルの詳細な構成の一例を示す概略断面図であり、図2は、有機ELパネルを構成する有機EL素子の構成の一例を示す概略断面図である。
 図1Aは、有機ELパネル(1)を底面側から見た概略図であり、有機ELパネル(1)は、透明基材(4)上に、有機EL素子の発光領域(3)と、その周辺部を封止部材で構成されている封止構造部(2)が形成されている。更に、有機EL素子の発光領域(3)の端部から接続電極部(5)が引き出されていて、後述する電気接続ユニットの検出回路部を構成するランド部と、電気的に接続する部材を介して、外部駆動回路と接続される。
 図1Bは、上記図1Aで説明した有機ELパネル(1)のA-A切断面における概略断面図であり、紙面の上面側が発光面(L)となるように表示している。図1Bにおいて、透明基材(4)上に有機EL素子の発光領域(3)が構成され、その周辺部を封止構成部(2)で封止し、透明基材(4)の端部には、有機EL素子の発光領域(3)の端部から、陰極又は陽極が、接続電極部(5)として引き出されている。
 図2の有機ELパネル(1)を構成する有機EL素子の概略断面図においては、上面側から、透明基材(4)と、その下部に、陽極(52)、有機機能層群1(53A、例えば、正孔注入層、正孔輸送層等から構成される。)、発光層(54)、有機機能層群2(53B、例えば、電子輸送層、電子注入層等から構成される。)及び陰極(55)が積層されて、発光領域(3)を構成している。また、陽極(52)は、透明基材(4)の端部まで形成され、接続電極部(5)を形成している。発光領域(3)の外周部は、封止用接着剤(56)により封止され、その表面には、封止部材(57)が配置され、外部環境からの有害ガス(酸素、水分等)の発光領域(3)への浸透を防止している。図2に記載の構成においては、発光面(L)は、紙面の上部側であり、発光層(54)から表面側に位置する透明基材(4)、陽極(52)、有機機能層群1(53A)は光透過性の高い材料により構成されていることが好ましい態様である。
 なお、有機ELパネルの具体的な構成要素及び製造方法の詳細については、後述する。
 〔電気接続ユニット〕
 本発明に係る電気接続ユニットは、FPC(フレキシブルプリント回路)ともいい、主に、フレキシブル基板の一方の面側に静電容量型の検出回路部と、他方の面側に配線部を有している構成である。
 更に、構成上の特徴としては、電気接続ユニット(FPC)が光透過部を有し、当該光透過部の少なくとも一つの辺側に、2か所以上の切り込み部を設けた折り曲がり部を有している。
 加えて、電気接続ユニットが、少なくとも有機ELパネルと重なる領域に、光透過性の開口部を有することが好ましい態様である。
 図3Aは、電気接続ユニット(FPC:フレキシブルプリント回路)の構成の一例を示す概略上面図であり、図3B及び図3Cは、それぞれ電気接続ユニット(FPC)の構成の一例を示す概略断面図である。
 図3Aに示す電気接続ユニット(FPC)では、フレキシブル基板(F)の表面側に、静電容量型の検出回路部(11A)が、中央部が開口されている「ロ」の字型の構成で設けられており、この検出回路部(11A)によりタッチ検出をする。また、フレキシブル基板(F)の裏面側には、駆動ICと接続するための破線で示してある裏面側配線(11B)を有している。
 電気接続ユニット(FPC)には、有機ELパネルを配置する領域に、光透過部(T、開口部ともいう)を形成し、この開口部(T)の一辺(図3Aでは左辺部)に、上下2か所に切り込み(10)を入れ、切り込み部(6)を形成している。この切り込み部(6)の表面には、有機ELパネルの接続電極と電気的に接続する部材を介して接続するためのランド部(8)が形成されている。
 図3Bは、図3Aで記載したA-A切断面における電気接続ユニット(FPC)の断面図を示しており、フレキシブル基板(F)の上面側には静電容量型のタッチ検出のための検出回路部(11A)が形成されている。また、開口部(T)が設けられており、開口部(T)の左端部に、切り込み部(6)が形成され、その表面側にはランド部(8)が設けられている。フレキシブル基板(F)の裏面側には、駆動ICに接続するための裏面側配線(11B)が設けられ、切り込み部(6)上に形成したランド部(8)と裏面側配線(11B)は、スルーホール(9)を介して電気的に接続されている。
 本発明においては、電気接続ユニット(FPC)の開口部(T)の一部に、下部側に折り曲げられた構造を有する切り込み部(6)を構成することにより、後述の図5A~図5Cで説明するように、有機ELパネルの上面側に、電気接続ユニット(FPC)を配置することができ、タッチ検出精度を大幅に向上することができる。
 更に、上記図3A及び図3Bで示す構造により、後述する図5A~図5Cで示すような有機ELパネル(1)の封止構造部(2)と重なる領域で、有機EL素子の発光領域(3)近傍の位置まで検出回路部(11A)を形成することができ、電気接続ユニット(FPC)サイズを小さくすることができ、スモールフォーマット化された表示方式が可能となった。
 電気接続ユニット(FPC)を構成するフレキシブル基板(F)としては、透明でフレキシブル性を有し、かつ十分な機械的強度を備えたプラスチック材料であれば特に制限はなく、ポリイミド樹脂(PI)、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂(PET)、ポリエチレンナフタレート樹脂(PEN)、シクロオレフィン樹脂(COP)等が挙げられるが、好ましくは、ポリイミド樹脂(PI)、ポリエチレンテレフタレート樹脂(PET)、ポリエチレンナフタレート樹脂(PEN)が好ましい。
 検出回路部(11A)と裏面側配線(11B)は、導電性を有する金属材料で構成されていることが好ましく、例えば、金、銀、銅、ITO等を挙げることができるが、本発明では、銅により形成することが好ましい。
 図3Cは、図3Aで記載した電気接続ユニット(FPC)のB-B切断面における断面図を示しており、フレキシブル基板(F)の上面側には静電容量型のタッチ検出のための検出回路部(11A)が形成され、裏面側には裏面側配線(11B)が形成され、それらは、スルーホール(9)を介して電気的に接続されている。
 (電気接続ユニット(FPC)の作製方法)
 次いで、電気接続ユニット(FPC)の形成方法の一例を説明する。
 電気接続ユニット(FPC)としては、ポリイミド樹脂(PI)をフレキシブル基板(F)とする両面銅張版を使用する。例えば、厚さが38μmのポリイミド(PI)フィルムの両面に、厚さ12μmの第1銅層(11Aに相当)と厚さ12μmの第2銅層(11Bに相当)を有し、必要に応じて、各銅層表面を保護するために、両面にカバー層が設けられる。カバー層は、透明なポリエチレンテレフタレートフィルムなどが使用され、接着剤層を介して、熱ラミネート方法等により、各銅層表面に付与される。
 次いで、各銅層に、図3A~図3Cに示すような導電性の回路パターンを形成する方法について説明する。
 PIフィルムの両面に設けた銅層上に、フォトレジスト材料等を塗布する、又はドライレジストフィルムをラミネートした後、所望の配線パターンとなるように、マスク材等を介して露光し、次いで現像、不要のレジストの剥離処理を経て、レジストパターンを形成する。
 次いで、レジストパターンを形成した銅層に対し、エッチング液への浸漬、又はシャワーリングによりエッチング液を付与することによりエッチングを行い、両面に所望の銅配線パターンを形成する。
 その後、表裏面の配線を電気的に接続するためのスルーホールを形成する。まず、スルーホールの形成位置にドリル穴を形成し、その穴の内部表面に銅メッキ処理を施して、第1銅層(11Aに相当)と第2銅層(11Bに相当)を、必要な位置で電気的に接続する。
 最後に、ピナクルダイ等を用いて所望の位置に穴を開け、開口部(T)、切り込み(10)、切り込み部(6)を形成する。
 (電気接続ユニット(FPC)の各部位のサイズ)
 本発明に係る電気接続ユニット(FPC)の各部位のサイズについては、適用するデバイス、例えば、スマートデバイスの大きさにより、適宜所望のサイズに設定されるが、代表的な電気接続ユニットの構成部位のサイズについて、図4を用いて説明する。
 図4は、電気接続ユニット(FPC)の構成部位のサイズを説明する概略上面図である。
 図4において、有機ELモジュール(MD)の1ユニット分(1画素分)に相当するL1としては、おおむね10~40mmの範囲内であり、好ましくは15~25mmの範囲内である。縦幅であるL2は、おおむね3~15mmの範囲内であり、好ましくは5~10mmの範囲内である。フレキシブル基板の表面側に形成する静電容量型の検出回路部(11A)の「ロ」型の内部側の短辺側L3は、おおむね2~10mmの範囲内であり、好ましくは3~8mmの範囲内である。また、長辺側L4は、おおむね8~25mmの範囲内であり、好ましくは10~20mmの範囲内である。折り曲がり部(6)の長さL5としては、1~8mmの範囲内であり、好ましくは2~6mmの範囲内である。
 〔有機ELモジュールの作製〕
 次いで、上記有機ELパネル(1)と電気接続ユニット(FPC)を用いた有機ELモジュール(MD)の作製方法について説明する。
 本発明の有機ELモジュール(MD)は、上記説明した有機ELパネル(1)と、電気接続ユニット(FPC)とを組み合わせた構成からなり、電気接続ユニット(FPC)は、本発明に係る有機ELパネル(1)の発光面(L)側に配置され、前記説明した電気接続ユニット(FPC)の切り込み部(6)で、電気接続ユニット(FPC)の検出回路部を構成するランド部(8)と、有機ELパネル(1)の接続電極部(5)とが電気的に接続されている構成であることを特徴とする。
 図5A~図5Cは、本発明の有機ELモジュール(MD)の構成の一例を示す概略上面図及び概略断面図である。
 図5Aに示すように、有機ELモジュール(MD)は、有機ELパネル(1)の発光面側の上面部に、フレキシブル基板(F)上に静電容量型の検出回路部(11A)と裏面側に配線部(11B)を有ししている電気接続ユニット(FPC)を配置して構成されている。
 電気接続ユニット(FPC)の開口部(T)には切り込み部(6)が形成され、その上面には、有機ELパネル(1)の接続電極部(5)と接続するためのランド部(8)を有し、当該ランド部(8)は、スルーホール(9)を介して、電気接続ユニット(FPC)の裏面側に配置されている駆動IC(不図示)と接続するための裏面側配線(11B)に接続されている。
 有機ELパネル(1)と電気接続ユニット(FPC)とは、図5Bに示すような形態で電気的に接続されている。
 図5Bは、図5Aで記載した有機ELモジュール(MD)のA-A切断面における断面図を示している。
 発光面(L)側には、開口部に切り込み部(6)を有する電気接続ユニット(FPC)を配置し、電気接続ユニット(FPC)と、切り込み部(6)との間に、下面側に接続電極(5)を有する有機ELパネル(1)を挟持した配置構成とする。この時、電気接続ユニット(FPC)は、少なくとも有機ELパネル(1)の封止構造部(2)と重なる領域で、かつ有機EL素子の発光領域(3)近傍の位置までに検出回路部(11A)を形成することが好ましい。
 図5Bに示すように、電気接続ユニット(FPC)の切り込み部(6)上に形成されたランド部(8)と、有機ELパネル(1)の接続電極部(5)とは、電気的に接続する部材(7)により接続されている。
 電気的に接続する部材(7)としては、導電性を備えた部材であれば特に制限はないが、異方性導電膜(ACF)、導電性ペースト、又は金属ペーストであることが好ましい態様である。
 異方性導電膜(ACF)とは、例えば、熱硬化性樹脂に混ぜ合わせた導電性を持つ微細な導電性粒子を有する層を挙げることができる。本発明に用いることができる導電性粒子含有層としては、異方性導電部材としての導電性粒子を含有する層であれば、特に制限はなく、目的に応じて適宜選択することができる。本発明に係る異方性導電部材として用いることができる導電性粒子としては、目的に応じて適宜選択することができ、例えば、金属粒子、金属被覆樹脂粒子などが挙げられる。市販されているACFとしては、例えば、MF-331(日立化成製)などの、樹脂フィルムにも適用可能な低温硬化型のACFを挙げることができる。
 金属粒子としては、例えば、ニッケル、コバルト、銀、銅、金、パラジウムなどが挙げられる。これらは、一種単独で使用してもよいし、二種以上を併用してもよい。これらの中でも、ニッケル、銀、銅が好ましい。これらの表面酸化を防ぐ目的で、表面に金、パラジウムを施した粒子を用いてもよい。更に、表面に金属突起や有機物で絶縁被膜を施したものを用いてもよい。
 金属被覆樹脂粒子としては、例えば、樹脂コアの表面をニッケル、銅、金、及びパラジウムのいずれかの金属を被覆した粒子が挙げられる。同様に、樹脂コアの最外表面に金、パラジウムを施した粒子を用いてもよい。更に、樹脂コアの表面に金属突起や有機物で絶縁皮膜を施したものを用いてもよい。
 また、金属ペーストとしては、市販されている金属ナノ粒子ペーストである、銀粒子ペースト、銀-パラジウム粒子ペースト、金粒子ペースト、銅粒子ペースト等を適宜選択して用いることができる。金属ペーストとしては、例えば、大研化学社から販売されている有機EL素子基板用銀ペースト(例えば、CA-6178、CA-6178B、CA-2500E、CA-2503-4、CA-2503N、CA-271等、比抵抗値:15~30mΩ・cm、スクリーン印刷法で形成、硬化温度:120~200℃)、LTCC用ペースト(PA-88(Ag)、TCR-880(Ag)、PA-Pt(Ag・Pt))、ガラス基板用銀ペースト(US-201、UA-302、焼成温度:430~480℃)等を挙げることができる。
 図5Cは、図5Aで記載した有機ELモジュール(MD)のB-B切断面における断面図を示している。
 次いで、本発明の有機ELモジュール(MD)の構成要素である電気接続ユニット(FPC)の静電容量型の検出回路部(11A)の形状について説明する。
 図6A~図6Cは、電気接続ユニット(FPC)の静電容量型の検出回路部(11A)の各種形状を示す概略上面図である。
 図6Aは、代表的な静電容量型の検出回路部(11A)の形状で、図3A~図3C、図4、図5A~図5Cで例示した開口部(T)を有し、検出回路部(11A)を「ロ」の字型に連続的に形成した例を示しており、図6Bは、フレキシブル基板(F)の左右対向辺側に、それぞれ独立して検出回路部(11A1及び11A2)を形成した例を示してあり、図6Cは、開口部の一方の辺側で、有機ELパネルを覆う形態で検出回路部(11A2)を形成した例であり、これらの検出回路部(11A、11A1及び11A2)の形状は、タッチ検出機能の目的や用途に応じて選択することができる。
 《有機EL素子の構成及び製造方法》
 有機ELパネルを構成する有機EL素子は、例えば、前記図2で例示したように、上面側から、透明基材(4)と、その下部に、陽極(52)、有機機能層群1(53A、例えば、正孔注入層、正孔輸送層等から構成される。)、発光層(54)、有機機能層群2(53B、例えば、電子輸送層、電子注入層等から構成される。)及び陰極(55)が積層されて、発光領域(3)を構成している。また、陽極(52)の端部には、接続電極部(5)が設けられて、当該接続電極(5)を介して、電気接続ユニット(FPC)に接続されている。
 以下に、有機EL素子の構成の代表例を示す。
 (i)陽極/正孔注入輸送層/発光層/電子注入輸送層/陰極
 (ii)陽極/正孔注入輸送層/発光層/正孔阻止層/電子注入輸送層/陰極
 (iii)陽極/正孔注入輸送層/電子阻止層/発光層/正孔阻止層/電子注入輸送層/陰極
 (iv)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
 (v)陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子注入層/陰極
 (vi)陽極/正孔注入層/正孔輸送層/電子阻止層/発光層/正孔阻止層/電子輸送層/電子注入層/陰極
 更に、発光層間には非発光性の中間層を有していてもよい。中間層は電荷発生層であってもよく、マルチフォトンユニット構成であってもよい。
 本発明に適用可能な有機EL素子の概要については、例えば、特開2013-157634号公報、特開2013-168552号公報、特開2013-177361号公報、特開2013-187211号公報、特開2013-191644号公報、特開2013-191804号公報、特開2013-225678号公報、特開2013-235994号公報、特開2013-243234号公報、特開2013-243236号公報、特開2013-242366号公報、特開2013-243371号公報、特開2013-245179号公報、特開2014-003249号公報、特開2014-003299号公報、特開2014-013910号公報、特開2014-017493号公報、特開2014-017494号公報等に記載されている構成を挙げることができる。
 更に、有機EL素子を構成する各層について説明する。
 〔透明基材〕
 本発明に係る有機EL素子に適用可能な透明基板(4)としては、例えば、ガラス、プラスチック等の透明材料を挙げることができる。好ましく用いられる透明な透明基板(4)としては、ガラス、石英、樹脂フィルムを挙げることができる。
 ガラス材料としては、例えば、シリカガラス、ソーダ石灰シリカガラス、鉛ガラス、ホウケイ酸塩ガラス、無アルカリガラス等が挙げられる。これらのガラス材料の表面には、隣接する層との密着性、耐久性、平滑性の観点から、必要に応じて、研磨等の物理的処理、無機物又は有機物からなる被膜や、これらの被膜を組み合わせたハイブリッド被膜を形成することができる。
 樹脂フィルムを構成材料としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類及びそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル及びポリアリレート類、アートン(商品名JSR社製)及びアペル(商品名三井化学社製)等のシクロオレフィン系樹脂等を挙げることができる。
 有機EL素子においては、上記説明した透明基板(4)上に、必要に応じて、ガスバリアー層を設ける構成であってもよい。
 ガスバリアー層を形成する材料としては、水分や酸素など、有機EL素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素などの無機物を用いることができる。更に、ガスバリアー層の脆弱性を改良するため、これら無機層と有機材料からなる有機層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
 (陽極)
 有機EL素子を構成する陽極としては、Ag、Au等の金属又は金属を主成分とする合金、CuI、又はインジウム-スズの複合酸化物(ITO)、SnO及びZnO等の金属酸化物を挙げることができるが、金属又は金属を主成分とする合金であることが好ましく、更に好ましくは、銀又は銀を主成分とする合金である。
 透明陽極を、銀を主成分として構成する場合、銀の純度としては、99%以上であることが好ましい。また、銀の安定性を確保するためにパラジウム(Pd)、銅(Cu)及び金(Au)等が添加されていてもよい。
 透明陽極は銀を主成分として構成されている層であるが、具体的には、銀単独で形成しても、又は銀(Ag)を含有する合金から構成されていてもよい。そのような合金としては、例えば、銀・マグネシウム(Ag・Mg)、銀・銅(Ag・Cu)、銀・パラジウム(Ag・Pd)、銀・パラジウム・銅(Ag・Pd・Cu)、銀・インジウム(Ag・In)などが挙げられる。
 上記陽極を構成する各構成材料の中でも、本発明に係る有機EL素子を構成する陽極としては、銀を主成分として構成し、厚さが2~20nmの範囲内にある透明陽極であることが好ましいが、更に好ましくは厚さが4~12nmの範囲内である。厚さが20nm以下であれば、透明陽極の吸収成分及び反射成分が低く抑えられ、高い光透過率が維持されるため好ましい。
 本発明でいう銀を主成分として構成されている層とは、透明陽極中の銀の含有量が60質量%以上であることをいい、好ましくは銀の含有量が80質量%以上であり、より好ましくは銀の含有量が90質量%以上であり、特に好ましくは銀の含有量が98質量%以上である。また、本発明に係る透明陽極でいう「透明」とは、波長550nmでの光透過率が50%以上であることをいう。
 透明陽極においては、銀を主成分として構成されている層が、必要に応じて複数の層に分けて積層された構成であっても良い。
 また、本発明においては、陽極が、銀を主成分として構成する透明陽極である場合には、形成する透明陽極の銀膜の均一性を高める観点から、その下部に、下地層を設けることが好ましい。下地層としては、特に制限はないが、窒素原子又は硫黄原子を有する有機化合物を含有する層であることが好ましく、当該下地層上に、透明陽極を形成する方法が好ましい態様である。
 〔中間電極〕
 本発明に係る有機EL素子においては、陽極と陰極との間に、有機機能層群と発光層から構成される有機機能層ユニットを二つ以上積層した構造を有し、二つ以上の有機機能層ユニット間を、電気的接続を得るための独立した接続端子を有する中間電極層ユニットで分離した構造をとることができる。
 〔発光層〕
 有機EL素子を構成する発光層は、発光材料としてリン光発光化合物が含有されている構成が好ましい。
 この発光層は、電極又は電子輸送層から注入された電子と、正孔輸送層から注入された正孔とが再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接する層との界面であってもよい。
 このような発光層としては、含まれる発光材料が発光要件を満たしていれば、その構成には特に制限はない。また、同一の発光スペクトルや発光極大波長を有する層が複数層あってもよい。この場合、各発光層間には非発光性の中間層を有していることが好ましい。
 発光層の厚さの総和は、1~100nmの範囲内にあることが好ましく、より低い駆動電圧を得ることができることから1~30nmの範囲内がさらに好ましい。なお、発光層の厚さの総和とは、発光層間に非発光性の中間層が存在する場合には、当該中間層も含む厚さである。
 以上のような発光層は、後述する発光材料やホスト化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法(ラングミュア・ブロジェット、Langmuir Blodgett法)及びインクジェット法等の公知の方法により形成することができる。
 また発光層は、複数の発光材料を混合してもよく、リン光発光材料と蛍光発光材料(蛍光ドーパント、蛍光性化合物ともいう)とを同一発光層中に混合して用いてもよい。発光層の構成としては、ホスト化合物(発光ホスト等ともいう)及び発光材料(発光ドーパント化合物ともいう。)を含有し、発光材料より発光させることが好ましい。
 〈ホスト化合物〉
 発光層に含有されるホスト化合物としては、室温(25℃)におけるリン光発光のリン光量子収率が0.1未満の化合物が好ましい。さらにリン光量子収率が0.01未満であることが好ましい。また、発光層に含有される化合物の中で、その層中での体積比が50%以上であることが好ましい。
 ホスト化合物としては、公知のホスト化合物を単独で用いてもよく、又は、複数種のホスト化合物を用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機電界発光素子を高効率化することができる。また、後述する発光材料を複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。
 発光層に用いられるホスト化合物としては、従来公知の低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でもよい。
 本発明に適用可能なホスト化合物としては、例えば、特開2001-257076号公報、同2001-357977号公報、同2002-8860号公報、同2002-43056号公報、同2002-105445号公報、同2002-352957号公報、同2002-231453号公報、同2002-234888号公報、同2002-260861号公報、同2002-305083号公報、米国特許出願公開第2005/0112407号明細書、米国特許出願公開第2009/0030202号明細書、国際公開第2001/039234号、国際公開第2008/056746号、国際公開第2005/089025号、国際公開第2007/063754号、国際公開第2005/030900号、国際公開第2009/086028号、国際公開第2012/023947号、特開2007-254297号公報、欧州特許第2034538号明細書等に記載されている化合物を挙げることができる。
 〈発光材料〉
 本発明で用いることのできる発光材料としては、リン光発光性化合物(リン光性化合物、リン光発光材料又はリン光発光ドーパントともいう。)及び蛍光発光性化合物(蛍光性化合物又は蛍光発光材料ともいう。)が挙げられる。
 〈リン光発光性化合物〉
 リン光発光性化合物とは、励起三重項からの発光が観測される化合物であり、具体的には室温(25℃)にてリン光発光する化合物であり、リン光量子収率が25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
 上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は、種々の溶媒を用いて測定できるが、本発明においてリン光発光性化合物を用いる場合、任意の溶媒のいずれかにおいて、上記リン光量子収率として0.01以上が達成されればよい。
 リン光発光性化合物は、一般的な有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができるが、好ましくは元素の周期表で8~10族の金属を含有する錯体系化合物であり、さらに好ましくはイリジウム化合物、オスミウム化合物、白金化合物(白金錯体系化合物)又は希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。
 本発明においては、少なくとも一つの発光層が、二種以上のリン光発光性化合物が含有されていてもよく、発光層におけるリン光発光性化合物の濃度比が発光層の厚さ方向で変化している態様であってもよい。
 本発明に使用できる公知のリン光発光性化合物の具体例としては、以下の文献に記載されている化合物等が挙げられる。
 Nature 395,151(1998)、Appl.Phys.Lett.78,1622(2001)、Adv.Mater.19,739(2007)、Chem.Mater.17,3532(2005)、Adv.Mater.17,1059(2005)、国際公開第2009/100991号、国際公開第2008/101842号、国際公開第2003/040257号、米国特許出願公開第2006/835469号明細書、米国特許出願公開第2006/0202194号明細書、米国特許出願公開第2007/0087321号明細書、米国特許出願公開第2005/0244673号明細書等に記載の化合物を挙げることができる。
 また、Inorg.Chem.40,1704(2001)、Chem.Mater.16,2480(2004)、Adv.Mater.16,2003(2004)、Angew.Chem.lnt.Ed.2006,45,7800、Appl.Phys.Lett.86,153505(2005)、Chem.Lett.34,592(2005)、Chem.Commun.2906(2005)、Inorg.Chem.42,1248(2003)、国際公開第2009/050290号、国際公開第2009/000673号、米国特許第7332232号明細書、米国特許出願公開第2009/0039776号、米国特許第6687266号明細書、米国特許出願公開第2006/0008670号明細書、米国特許出願公開第2008/0015355号明細書、米国特許第7396598号明細書、米国特許出願公開第2003/0138657号明細書、米国特許第7090928号明細書等に記載の化合物を挙げることができる。
 また、Angew.Chem.lnt.Ed.47,1(2008)、Chem.Mater.18,5119(2006)、Inorg.Chem.46,4308(2007)、Organometallics 23,3745(2004)、Appl.Phys.Lett.74,1361(1999)、国際公開第2006/056418号、国際公開第2005/123873号、国際公開第2005/123873号、国際公開第2006/082742号、米国特許出願公開第2005/0260441号明細書、米国特許第7534505号明細書、米国特許出願公開第2007/0190359号明細書、米国特許第7338722号明細書、米国特許第7279704号明細書、米国特許出願公開第2006/103874号明細書等に記載の化合物も挙げることができる。
 さらには、国際公開第2005/076380号、国際公開第2008/140115号、国際公開第2011/134013号、国際公開第2010/086089号、国際公開第2012/020327号、国際公開第2011/051404号、国際公開第2011/073149号、特開2009-114086号公報、特開2003-81988号公報、特開2002-363552号公報等に記載の化合物も挙げることができる。
 本発明においては、好ましいリン光発光性化合物としてはIrを中心金属に有する有機金属錯体が挙げられる。さらに好ましくは、金属-炭素結合、金属-窒素結合、金属-酸素結合、金属-硫黄結合の少なくとも1つの配位様式を含む錯体が好ましい。
 上記説明したリン光発光性化合物(リン光発光性金属錯体ともいう)は、例えば、Organic Letter誌、vol3、No.16、2579~2581頁(2001)、Inorganic Chemistry,第30巻、第8号、1685~1687頁(1991年)、J.Am.Chem.Soc.,123巻、4304頁(2001年)、Inorganic Chemistry,第40巻、第7号、1704~1711頁(2001年)、Inorganic Chemistry,第41巻、第12号、3055~3066頁(2002年)、New Journal of Chemistry.,第26巻、1171頁(2002年)、European Journal of Organic Chemistry,第4巻、695~709頁(2004年)、さらにこれらの文献中に記載されている参考文献等に開示されている方法を適用することにより合成することができる。
 〈蛍光発光性化合物〉
 蛍光発光性化合物としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素又は希土類錯体系蛍光体等が挙げられる。
〔有機機能層群〕
 次いで、有機機能層ユニットを構成する各層について、電荷注入層、正孔輸送層、電子輸送層及び阻止層の順に説明する。
 (電荷注入層)
 電荷注入層は、駆動電圧低下や発光輝度向上のために、電極と発光層の間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)(以下、参考文献1と称する。)にその詳細が記載されており、正孔注入層と電子注入層とがある。
 電荷注入層としては、一般には、正孔注入層であれば、陽極と発光層又は正孔輸送層との間、電子注入層であれば陰極と発光層又は電子輸送層との間に存在させることができるが、本発明においては、透明電極に隣接して電荷注入層を配置させることを特徴とする。また、中間電極で用いられる場合は、隣接する電子注入層及び正孔注入層の少なくとも一方が、本発明の要件を満たしていれば良い。
 正孔注入層は、駆動電圧低下や発光輝度向上のために、透明電極である陽極に隣接して配置される層であり、上記参考文献1にその詳細が記載されている。
 正孔注入層は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、正孔注入層に用いられる材料としては、例えば、ポルフィリン誘導体、フタロシアニン誘導体、オキサゾール誘導体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、ヒドラゾン誘導体、スチルベン誘導体、ポリアリールアルカン誘導体、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、イソインドール誘導体、アントラセンやナフタレン等のアセン系誘導体、フルオレン誘導体、フルオレノン誘導体、及びポリビニルカルバゾール、芳香族アミンを主鎖又は側鎖に導入した高分子材料又はオリゴマー、ポリシラン、導電性ポリマー又はオリゴマー(例えば、PEDOT(ポリエチレンジオキシチオフェン):PSS(ポリスチレンスルホン酸)、アニリン系共重合体、ポリアニリン、ポリチオフェン等)等が挙げられる。
 トリアリールアミン誘導体としては、α-NPD(4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル)に代表されるベンジジン型や、MTDATA(4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン)に代表されるスターバースト型、トリアリールアミン連結コア部にフルオレンやアントラセンを有する化合物等が挙げられる。
 また、特表2003-519432号公報や特開2006-135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体も同様に正孔輸送材料として用いることができる。
 電子注入層は、駆動電圧低下や発光輝度向上のために、陰極と発光層との間に設けられる層のことであり、陰極が本発明に係る透明電極で構成されている場合には、当該透明電極に隣接して設けられ、上記参考文献1にその詳細が記載されている。
 電子注入層は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、電子注入層に好ましく用いられる材料の具体例としては、ストロンチウムやアルミニウム等に代表される金属、フッ化リチウム、フッ化ナトリウム、フッ化カリウム等に代表されるアルカリ金属化合物、フッ化マグネシウム、フッ化カルシウム等に代表されるアルカリ金属ハライド層、フッ化マグネシウムに代表されるアルカリ土類金属化合物層、酸化モリブデン、酸化アルミニウム等に代表される金属酸化物、リチウム8-ヒドロキシキノレート(Liq)等に代表される金属錯体等が挙げられる。また、本発明における透明電極が陰極の場合は、金属錯体等の有機材料が特に好適に用いられる。電子注入層はごく薄い膜であることが望ましく、構成材料にもよるが、その層厚は1nm~10μmの範囲が好ましい。
 (正孔輸送層)
 正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層及び電子阻止層も正孔輸送層の機能を有する。正孔輸送層は単層又は複数層設けることができる。
 正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、導電性高分子オリゴマー及びチオフェンオリゴマー等が挙げられる。
 正孔輸送材料としては、上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物を用いることができ、特に芳香族第3級アミン化合物を用いることが好ましい。
 芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル、N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(略称:TPD)、2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン、1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン、N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル、1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン、ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン、ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン、N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル、N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル、4,4′-ビス(ジフェニルアミノ)クオードリフェニル、N,N,N-トリ(p-トリル)アミン、4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン、4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン、3-メトキシ-4′-N,N-ジフェニルアミノスチルベンゼン及びN-フェニルカルバゾール等が挙げられる。
 正孔輸送層は、上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法及びLB法(ラングミュア・ブロジェット、Langmuir Blodgett法)等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の層厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmの範囲である。この正孔輸送層は、上記材料の一種又は二種以上からなる一層構造であってもよい。
 また、正孔輸送層の材料に不純物をドープすることにより、p性を高くすることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報及びJ.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
 このように、正孔輸送層のp性を高くすると、より低消費電力の素子を作製することができるため好ましい。
 (電子輸送層)
 電子輸送層は、電子を輸送する機能を有する材料から構成され、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は、単層構造又は複数層の積層構造として設けることができる。
 単層構造の電子輸送層及び積層構造の電子輸送層において、発光層に隣接する層部分を構成する電子輸送材料(正孔阻止材料を兼ねる)としては、カソードより注入された電子を発光層に伝達する機能を有していれば良い。このような材料としては、従来公知の化合物の中から任意のものを選択して用いることができる。例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン、アントロン誘導体及びオキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送層の材料として用いることができる。さらにこれらの材料を高分子鎖に導入した高分子材料又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(略称:Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(略称:Znq)等及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送層の材料として用いることができる。
 電子輸送層は、上記材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法及びLB法等の公知の方法により、薄膜化することで形成することができる。電子輸送層の層厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmの範囲内である。電子輸送層は上記材料の一種又は二種以上からなる単一構造であってもよい。
 (阻止層)
 阻止層としては、正孔阻止層及び電子阻止層が挙げられ、上記説明した有機機能層ユニット3の各構成層の他に、必要に応じて設けられる層である。例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層等を挙げることができる。
 正孔阻止層とは、広い意味では、電子輸送層の機能を有する。正孔阻止層は、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、電子輸送層の構成を必要に応じて、正孔阻止層として用いることができる。正孔阻止層は、発光層に隣接して設けられていることが好ましい。
 一方、電子阻止層とは、広い意味では、正孔輸送層の機能を有する。電子阻止層は、正孔を輸送する機能を有しつつ、電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。本発明に適用する正孔阻止層の層厚としては、好ましくは3~100nmの範囲であり、さらに好ましくは5~30nmの範囲である。
 〔陰極〕
 陰極は、有機機能層群や発光層に正孔を供給するために機能する電極膜であり、金属、合金、有機又は無機の導電性化合物若しくはこれらの混合物が用いられる。具体的には、金、アルミニウム、銀、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、インジウム、リチウム/アルミニウム混合物、希土類金属、ITO、ZnO、TiO及びSnO等の酸化物半導体などが挙げられる。
 陰極は、これらの導電性材料を蒸着やスパッタリング等の方法により薄膜を形成させて作製することができる。また、第2電極としてのシート抵抗は、数百Ω/□以下が好ましく、膜厚は通常5nm~5μm、好ましくは5~200nmの範囲で選ばれる。
 なお、有機EL素子が、陰極側からも発光光Lを取り出す、両面発光型の場合には、光透過性の良好な陰極を選択して構成すればよい。
 〔封止部材〕
 有機EL素子を封止するのに用いられる封止手段としては、例えば、封止部材と、陰極及び透明基板とを接着剤で接着する方法を挙げることができる。
 封止部材としては、有機EL素子の表示領域を覆うように配置されていればよく、凹板状でも、平板状でもよい。また透明性及び電気絶縁性は特に限定されない。
 具体的には、ガラス板、ポリマー板、フィルム、金属板、フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属又は合金が挙げられる。
 封止部材としては、有機EL素子を薄膜化することできる観点から、ポリマーフィルム及び金属フィルムを好ましく使用することができる。さらに、ポリマーフィルムは、JIS K 7129-1992に準拠した方法で測定された温度25±0.5℃、相対湿度90±2%RHにおける水蒸気透過度が、1×10-3g/m・24h以下であることが好ましく、さらには、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3ml/m・24h・atm(1atmは、1.01325×10Paである)以下であって、温度25±0.5℃、相対湿度90±2%RHにおける水蒸気透過度が、1×10-3g/m・24h以下であることが好ましい。
 封止部材と有機EL素子の表示領域(発光領域)との間隙には、気相及び液相では窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また、封止部材と有機EL素子の表示領域との間隙を真空とすることや、間隙に吸湿性化合物を封入することもできる。
 〔有機EL素子の製造方法〕
 有機EL素子の製造方法としては、透明基材上に、陽極、有機機能層群1、発光層、有機機能層群2及び陰極を積層して積層体を形成する。
 まず、透明基材を準備し、該透明基材上に、所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10~200nmの範囲内の膜厚になるように、蒸着やスパッタリング等の方法により形成させ、陽極を形成する。同時に、陽極端部に、外部電源と接続する接続電極部を形成する。
 次に、この上に、有機機能層群1を構成する正孔注入層及び正孔輸送層、発光層、有機機能層群2を構成する電子輸送層等を順に積層する。
 これらの各層の形成は、スピンコート法、キャスト法、インクジェット法、蒸着法、印刷法等があるが、均質な層が得られやすく、かつ、ピンホールが生成しにくい等の点から、真空蒸着法又はスピンコート法が特に好ましい。更に、層ごとに異なる形成法を適用しても良い。これらの各層の形成に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50~450℃、真空度1×10-6~1×10-2Pa、蒸着速度0.01~50nm/秒、基板温度-50~300℃、層厚0.1~5μmの範囲内で、各条件を適宜選択することが望ましい。
 以上のようにして有機機能層群2を形成した後、この上部に陰極を蒸着法やスパッタ法などの適宜の形成法によって形成する。この際、陰極は、有機機能層群によって陽極に対して絶縁状態を保ちつつ、有機機能層群の上方から透明基板の周縁に端子部分を引き出した形状にパターン形成する。
 陰極の形成後、これら透明基材、陽極、有機機能層群、発光層及び陰極を封止材で封止する。すなわち、陽極及び陰極の端子部分を露出させた状態で、透明基材上に、少なくとも有機機能層群を覆う封止部材を設ける。
 《スマートデバイス》
 図7は、本発明の有機ELモジュールを具備したスマートデバイスの一例を示す概略構成図である。
 本発明のスマートデバイス100は、図1~図6で説明したタッチ検出機能を有する有機ELモジュール(MD)と、液晶表示装置(120)等を備えて構成されている。液晶表示装置(120)としては、従来公知の液晶表示装置を用いることができる。
 図7では、本発明の有機ELモジュール(MD)が発光している状態を示しており、正面側から見て各種の表示パターン(111)の発光が視認される。有機ELモジュール(MD)が非発光状態である場合には、各種表示パターン(111)が視認されない。なお、図7に示される表示パターン(111)の形状は、一例であってこれらに限られるものでなく、いずれの図形、文字、模様等であっても良い。ここで、「表示パターン」とは、有機EL素子の発光により表示される図案(図の柄や模様)、文字、画像等をいう。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「%」の表示を用いるが、特に断りがない限り「体積%」を表す。
 《有機ELモジュール1の作製:本発明》
 〔有機ELパネル1の作製〕
 図1A、図1B及び図2に示すように、8.3mm×10.5mm、厚さ125μmの透明基材(4、ポリエチレンテレフタレートフィルム、帝人デュポンフィルム株式会社製、極高透明品PET Type K、以下、PETフィルムと略記する。)上に、発光領域(3)に相当する位置に4.0mm×5.0mmのサイズのITO(インジウムチンオキシド)を150nmの厚さで透明基材(4)上にパターニングを行い、陽極(52)を形成し、さらに図1A、図1B及び図2に示すようにITOにより、接続電極部(5)を形成した。
 次いで、ITOから構成される陽極(52)を形成した透明基材(4)をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った後、この透明基材を市販の真空蒸着装置の基板ホルダーに固定した。
 真空蒸着装置内の蒸着用るつぼの各々に、各層の構成材料を最適の量で充填した。蒸着用るつぼは、モリブデン製又はタングステン製の抵抗加熱用材料で作製されたものを用いた。
 真空度1×10-4Paまで減圧した後、下記化合物M-4の入った蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒で透明基材(4)の陽極(52)上に蒸着し、層厚15nmの電子注入層を設けた。次いで、下記化合物M-2を同様にして蒸着し、層厚40nmの電子輸送層を設けて、有機機能層群1(53A)を積層した。
 次いで、下記化合物BD-1、化合物GD-1、RD-1、化合物H-1及び化合物H-2を、化合物BD-1が5%、化合物GD-1が17%、RD-1が0.8%の濃度になるように蒸着速度0.1nm/秒で共蒸着し、層厚30nmの白色発光の発光層(54)を形成した。
 次いで、下記化合物E―1を蒸着速度0.1nm/秒で蒸着して、層厚30nmの電子輸送層(有機機能層群2(53B))を形成した。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 さらに、LiFを厚さ1.5nmで形成した後に、アルミニウムを蒸着して層厚110nmの陰極(55)を形成した。
 次いで、前記透明基板と同様に、厚さ125μmのポリエチレンテレフタレートフィルム(帝人デュポンフィルム株式会社製、極高透明品PET Type K)上に、ポリシラザン含有液を塗布し、エキシマランプで処理してガスバリアー層を形成して、ガスバリアー層付の透明の封止部材(57)を得た。
 透明封止部材の接着は、封止用接着剤(56)としてエポキシ系熱硬化型接着剤(巴川製紙所社製エレファンCS)を用い、酸素濃度10ppm以下、水分濃度10ppm以下のグローブボックス内で、80℃、0.04MPa荷重下、減圧(1×10-3MPa以下)吸引を20秒、プレスを20秒の条件で、有機EL素子101に向けて、透明封止部材が有するガスバリアー層が有機EL素子側になるように真空プレスした。
 その後、グローブボックス内で、110℃のホットプレート上で30分間加熱して接着層を熱硬化させ、図1A及び図1Bに示す構成で、透明基材(4)のサイズが、8.3mm×10.5mm、封止構成部(2)のサイズが8.3mm×5.6mm、有機EL素子の発光領域(3)が4.0mm×5.0mmからなる有機ELパネル1を作製した。
 〔電気接続ユニット(FPC)1の作製〕
 図3A~図3Cに記載の構成からなる電気接続ユニット(FPC)1を作製した。
 電気接続ユニット(FPC)の原版として、厚さが38μmのポリイミド(PI)フィルムの両面に、厚さ12μmの第1銅層(11Aに相当)と厚さ12μmの第2銅層(11Bに相当)を形成した両面銅張版を使用した。
 次いで、両面銅張版の両面の銅層上に、フォトレジスト材料を塗布し、図3A~図3Cに記載の配線パターンとなるように、マスク材を介して両面露光し、次いで現像工程、及び不要のレジストの剥離処理工程を経て、表面及び裏面にレジストパターンを形成した。
 次いで、銅層をエッチング液に浸漬することにより、両面に図3A~図3Cに記載の静電容量型の検出回路部(11A)と、裏面側に配線部(11B)を形成した。
 次いで、スルーホール(9)の形成位置にドリル穴を形成し、その穴表面に銅メッキ処理を施して、静電容量型の検出回路部(11Aに相当)と裏面の配線部(11Bに相当)を、電気的に接続した。
 最後に、ピナクルダイを用いて、図3A~図3Cに記載の構造からなる位置に穴を開け、開口部(T)、切り込み(10)、切り込み部(6)を形成した。
 電気接続ユニット(FPC)1の図4に示した各構成部のサイズは、以下のとおりである。
 L1:18mm
 L2:7mm
 L3:5mm
 L4:14mm
 L5:4mm
 〔有機ELモジュール(MD)1の組み立て〕
 上記作製した電気接続ユニット(FPC)1と有機ELパネル(1)1を用い、図5A~図5Cに記載の構成からなる有機ELモジュール(MD)1を作製した。
 電気接続ユニット(FPC)1のランド部(8)と有機ELパネル(1)1の接続電極部(5)は、電気的に接続する部材(7)として、異方性導電膜(ACF)を用いて接続した。異方性導電膜としては、CP920AM-16AC(デクセリアルズ社製)を使用し、まず有機ELパネル1の接続電極部に、上記ACFを80℃、0.2MPaの条件で仮貼合した。ACF仮貼合は、ACF貼り付け装置LD-02(大橋製作所社製)を用いて行った。次に、電気接続ユニットのランド部(8)を位置合わせし、その後、ACF圧着機BD-02(大橋製作所社製)を用い、2MPa、135℃、15secの条件で本圧着を行った。
 〔有機ELモジュール1を具備したスマートメディアの評価〕
 上記作製した有機ELモジュール(MD)1をスマートメディアに組み入れた結果、スモールフォーマット化ができ、スマートメディアに確実に組み入れることができ、かつ優れたタッチ検出性を実現することができた。
 《有機ELモジュール2の作製:比較例1》
 〔電気接続ユニット(FPC)2の作製〕
 電気接続ユニット(FPC)1の作製において、切り込み(10)及び切り込み部(6)の形成を行わなかった以外は同様にして、電気接続ユニット(FPC)2を作製した。
 〔有機ELモジュール2の組み立て〕
 図8に記載のガラス基材/有機ELパネル(1)1/電気接続ユニット(FPC)2の順で積層した有機ELモジュール(MD)2を作製した。
 具体的には、ガラス基板(20)の下部に、前記有機ELパネル1(1)を配置し、その下部に上記作製した電気接続ユニット(FPC)2を配置した。次いで、対向する位置にある有機ELパネル(1)の接続電極部(5)と、電気接続ユニット(FPC)の静電容量型の検出回路部(11A)とを、電気的に接続する部材(7)として、異方性導電膜(ACF)を用いて接続した。
 〔有機ELモジュール2を具備したスマートメディアの評価〕
 上記作製した有機ELモジュール2をスマートメディアに組み入れた結果、スモールフォーマット化はある程度できたが、ガラス基材と電気接続ユニット(FPC)との間に有機ELパネル(1)が存在しているため、タッチ検出精度が極めて低く、ノイズの発生もあり、正確にタッチ機能を発現させることができなかった。具体的には、有機ELモジュール2にカソード電極層が介在しており、タッチ時の自己容量変化が検出不可能なレベルとなり、周囲のノイズに埋もれて、容量変化分の絶対値を検出できなかった。
 《有機ELモジュール3の作製:比較例2》
 〔電気接続ユニット(FPC)3の作製〕
 電気接続ユニット(FPC)1の作製において、切り込み(10)及び切り込み部(6)の形成を行わなかったと共に、静電容量型の検出回路部(11A)が有機ELパネル1と重なる部分がなく、有機ELパネル1の外周部に配置した以外は同様にして、図9に示す電気接続ユニット(FPC)3を作製した。
 電気接続ユニット(FPC)3のサイズ(図4に記載のL2)は、電気接続ユニット(FPC)1の2倍であった。
 〔有機ELモジュール3の組み立て〕
 上記作製した電気接続ユニット(FPC)3と有機ELパネル1を用い、図9に記載の構成で、ガラス基材/電気接続ユニット(FPC)3/有機ELパネル1/の順で積層した有機ELモジュール3を作製した。
 〔有機ELモジュール3を具備したスマートメディアの評価〕
 上記作製した有機ELモジュール2をスマートメディアに組み入れた結果、ある程度のタッチ検出機能を得ることはできたが、1画素あたりのサイズが、有機ELモジュール1に対して大型化されており、スマートメディアへの組み入れに対し、サイズ上の問題があった。特に、メインディスプレイ部への機械的干渉の問題があることが明らかとなった。
 本発明の有機ELモジュールは、スモールフォーマット化及び薄膜化を達成し、タッチ検出精度が高く、スマートデバイスへの適性を有する有機ELモジュールであり、スマートフォンやタブレット等の各種スマートデバイスに好適に利用できる。
 1 有機エレクトロルミネッセンスパネル、有機ELパネル
 2 封止構造部
 3 (有機EL素子の)発光領域
 4 透明基材
 5 接続電極部
 6 切り込み部
 7 電気的に接続する部材
 8 ランド部
 9 スルーホール
 10 切り込み
 11A、11A1、11A2 静電容量型の検出回路部
 11B 裏面側配線
 20 ガラス基板
 52 陽極
 53A 有機機能層群1
 53B 有機機能層群2
 54 発光層
 55 陰極
 56 封止用接着剤
 57 封止部材
 100 スマートデバイス
 111 表示パターン
 120 液晶表示装置
 F フレキシブル基板
 FPC 電気接続ユニット(フレキシブルプリント回路)
 L 発光面
 MD 有機エレクトロルミネッセンスモジュール、有機ELモジュール
 T 光透過部(開口部)

Claims (9)

  1.  有機エレクトロルミネッセンスパネルと、電気接続ユニットとを積層した有機エレクトロルミネッセンスモジュールであって、
     前記電気接続ユニットは、フレキシブル基板上に静電容量型の検出回路部を有し、
     前記電気接続ユニットは、前記有機エレクトロルミネッセンスパネルの発光面側に配置され、
     前記電気接続ユニットが光透過部を有し、当該光透過部の少なくとも一つの辺側に、2か所以上の切り込み部を設けた折り曲がり部を有し、
     前記折り曲がり部で、前記検出回路部を構成するランド部と、前記有機エレクトロルミネッセンスパネルの接続電極部とが電気的に接続されている、
    ことを特徴とする有機エレクトロルミネッセンスモジュール。
  2.  前記折り曲がり部が、前記有機エレクトロルミネッセンスパネルの発光面とは反対側の面側に形成されていることを特徴とする請求項1に記載の有機エレクトロルミネッセンスモジュール。
  3.  前記電気接続ユニットが、少なくとも前記有機エレクトロルミネッセンスパネルと重なる領域に、光透過性の開口部を有することを特徴とする請求項1又は請求項2に記載の有機エレクトロルミネッセンスモジュール。
  4.  前記電気接続ユニットを構成する前記静電容量型の検出回路部が、前記光透過性の開口部の周辺部、一対の対向するそれぞれの辺側、又は少なくとも一方の辺側に配置されていることを特徴とする請求項3に記載の有機エレクトロルミネッセンスモジュール。
  5.  前記電気接続ユニットが、前記有機エレクトロルミネッセンスパネルの発光面側で、かつ当該有機エレクトロルミネッセンスパネルと重なる領域に配置されていることを特徴とする請求項1から請求項4までのいずれか一項に記載の有機エレクトロルミネッセンスモジュール。
  6.  前記有機エレクトロルミネッセンスパネルを構成する有機エレクトロルミネッセンス素子が、対向する位置に面状の一対の電極を有することを特徴とする請求項1から請求項5までのいずれか一項に記載の有機エレクトロルミネッセンスモジュール。
  7.  前記検出回路を構成するランド部と、前記有機エレクトロルミネッセンスパネルの接続電極部とを電気的に接続する部材が、異方性導電膜、導電性ペースト、又は金属ペーストであることを特徴とする請求項1から請求項6までのいずれか一項に記載の有機エレクトロルミネッセンスモジュール。
  8.  複数の前記有機エレクトロルミネッセンスパネルが並列配置されていることを特徴とする請求項1から請求項7までのいずれか一項に記載の有機エレクトロルミネッセンスモジュール。
  9.  請求項1から請求項8までのいずれか一項に記載の有機エレクトロルミネッセンスモジュールを具備していることを特徴とするスマートデバイス。
PCT/JP2015/055372 2014-02-28 2015-02-25 有機エレクトロルミネッセンスモジュール及びスマートデバイス WO2015129737A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016505257A JP6477683B2 (ja) 2014-02-28 2015-02-25 有機エレクトロルミネッセンスモジュール及びスマートデバイス
US15/119,782 US9985628B2 (en) 2014-02-28 2015-02-25 Organic electroluminescence module and smart device
CN201580009923.6A CN106030845B (zh) 2014-02-28 2015-02-25 有机电致发光模块及智能设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014037796 2014-02-28
JP2014-037796 2014-02-28

Publications (1)

Publication Number Publication Date
WO2015129737A1 true WO2015129737A1 (ja) 2015-09-03

Family

ID=54009052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055372 WO2015129737A1 (ja) 2014-02-28 2015-02-25 有機エレクトロルミネッセンスモジュール及びスマートデバイス

Country Status (4)

Country Link
US (1) US9985628B2 (ja)
JP (1) JP6477683B2 (ja)
CN (1) CN106030845B (ja)
WO (1) WO2015129737A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047134A1 (ja) * 2015-09-17 2017-03-23 コニカミノルタ株式会社 有機エレクトロルミネッセンスモジュール、スマートデバイス及び照明装置
CN107168568A (zh) * 2016-03-08 2017-09-15 辛纳普蒂克斯公司 用于边缘区域感测的单层传感器电极布局
WO2018101385A1 (ja) * 2016-11-30 2018-06-07 コニカミノルタ株式会社 電子機器

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6425114B2 (ja) * 2014-07-02 2018-11-21 Tianma Japan株式会社 折り畳み式表示装置及び電気機器
CN104360768B (zh) * 2014-11-10 2018-02-13 京东方科技集团股份有限公司 触摸显示模组和电子显示产品
WO2017103737A1 (en) 2015-12-18 2017-06-22 Semiconductor Energy Laboratory Co., Ltd. Display panel, input/output device, data processing device, and method for manufacturing display panel
US10020351B2 (en) * 2016-06-24 2018-07-10 Lg Display Co., Ltd. Electroluminescence display device
CN107154463B (zh) * 2017-05-27 2019-03-15 京东方科技集团股份有限公司 有机电致发光器件、oled基板和显示装置
JP6556812B2 (ja) * 2017-11-28 2019-08-07 Nissha株式会社 ハードコート付フィルムタイプタッチセンサとこれを用いたフレキシブルディバイス
CN108415609B (zh) * 2018-03-29 2020-08-04 安徽华米信息科技有限公司 触控屏、触控检测方法及可穿戴设备
CN109032417B (zh) * 2018-08-09 2021-09-03 武汉华星光电半导体显示技术有限公司 显示模组及电子装置
KR20210072200A (ko) * 2019-12-06 2021-06-17 삼성디스플레이 주식회사 표시 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004212717A (ja) * 2003-01-06 2004-07-29 Seiko Epson Corp 入力装置付電気光学装置及び電子機器
JP2011013511A (ja) * 2009-07-03 2011-01-20 Casio Computer Co Ltd 保護板付き電子部材
WO2013121667A1 (ja) * 2012-02-13 2013-08-22 ソニー株式会社 表示装置
JP2014013266A (ja) * 2012-07-03 2014-01-23 Sharp Corp 表示装置及びその製造方法
JP2014021845A (ja) * 2012-07-20 2014-02-03 Japan Display Inc 表示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5255547B2 (ja) * 2009-10-13 2013-08-07 アルプス電気株式会社 静電容量式タッチパッド入力装置
JP5664369B2 (ja) 2011-03-15 2015-02-04 オムロン株式会社 面光源装置
US9470941B2 (en) * 2011-08-19 2016-10-18 Apple Inc. In-cell or on-cell touch sensor with color filter on array
JP2013065429A (ja) 2011-09-16 2013-04-11 Nec Casio Mobile Communications Ltd 静電容量式情報入力ユニット、携帯型端末装置、及び静電容量式情報入力ユニットの製造方法
KR101935552B1 (ko) * 2012-06-27 2019-04-08 삼성디스플레이 주식회사 가요성 표시 패널 및 상기 가요성 표시 패널을 포함하는 표시 장치
US9287329B1 (en) * 2014-12-30 2016-03-15 Lg Display Co., Ltd. Flexible display device with chamfered polarization layer
KR102542963B1 (ko) * 2016-02-04 2023-06-13 삼성디스플레이 주식회사 표시 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004212717A (ja) * 2003-01-06 2004-07-29 Seiko Epson Corp 入力装置付電気光学装置及び電子機器
JP2011013511A (ja) * 2009-07-03 2011-01-20 Casio Computer Co Ltd 保護板付き電子部材
WO2013121667A1 (ja) * 2012-02-13 2013-08-22 ソニー株式会社 表示装置
JP2014013266A (ja) * 2012-07-03 2014-01-23 Sharp Corp 表示装置及びその製造方法
JP2014021845A (ja) * 2012-07-20 2014-02-03 Japan Display Inc 表示装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047134A1 (ja) * 2015-09-17 2017-03-23 コニカミノルタ株式会社 有機エレクトロルミネッセンスモジュール、スマートデバイス及び照明装置
JPWO2017047134A1 (ja) * 2015-09-17 2018-06-28 コニカミノルタ株式会社 有機エレクトロルミネッセンスモジュール、スマートデバイス及び照明装置
CN107168568A (zh) * 2016-03-08 2017-09-15 辛纳普蒂克斯公司 用于边缘区域感测的单层传感器电极布局
WO2018101385A1 (ja) * 2016-11-30 2018-06-07 コニカミノルタ株式会社 電子機器

Also Published As

Publication number Publication date
CN106030845A (zh) 2016-10-12
JP6477683B2 (ja) 2019-03-06
US9985628B2 (en) 2018-05-29
US20170063374A1 (en) 2017-03-02
CN106030845B (zh) 2017-09-22
JPWO2015129737A1 (ja) 2017-03-30

Similar Documents

Publication Publication Date Title
JP6477683B2 (ja) 有機エレクトロルミネッセンスモジュール及びスマートデバイス
KR101821921B1 (ko) 유기 일렉트로루미네센스 모듈, 스마트 디바이스 및 조명 장치
JP6365665B2 (ja) 有機エレクトロルミネッセンスモジュール、スマートデバイス及び照明装置
JP6319434B2 (ja) 有機エレクトロルミネッセンスモジュール、スマートデバイス及び照明装置
WO2017098758A1 (ja) 光学式指紋認証装置
JP6245102B2 (ja) 有機エレクトロルミネッセンスモジュール及び有機エレクトロルミネッセンスモジュールの製造方法
WO2017168823A1 (ja) ユーザーインターフェースモジュール及びスマートデバイス
JP6801664B2 (ja) 有機エレクトロルミネッセンスモジュール、スマートデバイス及び照明装置
JP6741062B2 (ja) 有機エレクトロルミネッセンスモジュール、スマートデバイス及び照明装置
JP2016099921A (ja) 有機エレクトロルミネッセンスモジュール、並びにこれを備えたスマートデバイス及び照明装置
WO2016181704A1 (ja) 有機エレクトロルミネッセンスモジュール及びスマートデバイス
WO2015151855A1 (ja) 有機エレクトロルミネッセンスモジュール及び情報機器
WO2018123887A1 (ja) パッシブマトリックス型有機エレクトロルミネッセンスディスプレイ及びタッチ検出方法
WO2018168617A1 (ja) 面発光装置
WO2016098397A1 (ja) 電気接続部材、有機エレクトロルミネッセンスモジュール及び有機エレクトロルミネッセンスモジュールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15756003

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016505257

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15119782

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15756003

Country of ref document: EP

Kind code of ref document: A1