WO2015128922A1 - 容量式物理量検出装置 - Google Patents

容量式物理量検出装置 Download PDF

Info

Publication number
WO2015128922A1
WO2015128922A1 PCT/JP2014/006450 JP2014006450W WO2015128922A1 WO 2015128922 A1 WO2015128922 A1 WO 2015128922A1 JP 2014006450 W JP2014006450 W JP 2014006450W WO 2015128922 A1 WO2015128922 A1 WO 2015128922A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
fixed electrode
physical quantity
movable electrode
electrode
Prior art date
Application number
PCT/JP2014/006450
Other languages
English (en)
French (fr)
Inventor
黒田 啓介
岳志 森
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US15/114,777 priority Critical patent/US10088495B2/en
Priority to JP2016504872A priority patent/JP6371984B2/ja
Priority to DE112014006428.9T priority patent/DE112014006428T5/de
Publication of WO2015128922A1 publication Critical patent/WO2015128922A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups

Definitions

  • This disclosure relates to a capacitive physical quantity detection device that detects physical quantities such as acceleration, angular velocity, and pressure.
  • FIG. 4 is a schematic diagram of a conventional capacitive physical quantity detection device 100.
  • the conventional capacitive physical quantity detection device 100 includes a movable electrode 102 that is displaced according to acceleration, and a fixed electrode 103 that is disposed to face the movable electrode 102.
  • the capacitive physical quantity detection device 100 detects acceleration by detecting displacement of the movable electrode 102 caused by acceleration as a change in capacitance between the movable electrode 102 and the fixed electrode 103. That is, the movable electrode 102 is displaced by the electrostatic force generation means 104.
  • the capacitance detection unit 105 detects a change in capacitance between the movable electrode 102 and the fixed electrode 103 caused by this displacement.
  • the capacitance detection unit 105 determines whether or not the change in capacitance exceeds a predetermined threshold value, thereby determining whether or not the movable electrode is operating normally and disconnecting the signal path to the capacitance detection unit. Failure diagnosis is performed to determine whether or not As prior art document information related to this application, for example, Patent Document 1 is known.
  • the capacitive physical quantity detection device includes a sensor unit, a control circuit, and a CV conversion circuit.
  • the sensor unit has a movable electrode, a first fixed electrode, and a second fixed electrode.
  • the movable electrode is displaced according to a change in physical quantity.
  • the 1st fixed electrode is arrange
  • the second fixed electrode is disposed to face the second portion of the movable electrode.
  • the control circuit inputs signals between the movable electrode and the first fixed electrode and between the movable electrode and the second fixed electrode.
  • the CV conversion circuit receives a reference voltage and outputs a voltage corresponding to a change in capacitance between the movable electrode and the first fixed electrode and between the movable electrode and the second fixed electrode.
  • the control circuit inputs a first signal to the first fixed electrode, inputs a second signal having an opposite phase to the first signal to the second fixed electrode, In this period, the reference voltage is input to the first fixed electrode, and the second signal is input to the second fixed electrode.
  • FIG. 1 is a perspective view of a sensor portion of the acceleration sensor according to the present embodiment.
  • FIG. 2 is a circuit diagram of the acceleration sensor according to the present embodiment.
  • FIG. 3 is a diagram illustrating the relationship between the signal waveform of the carrier wave of the acceleration sensor and the opening / closing timing of the switch according to the present embodiment.
  • FIG. 4 is a schematic diagram of a conventional capacitive physical quantity detection device.
  • the conventional capacitive physical quantity detection device 100 displaces the movable electrode 102 during failure diagnosis, it may take time for failure diagnosis. For example, when the signal path to the capacitance detection unit 105 is disconnected, if a failure diagnosis is performed without displacing the movable electrode 102, the signal detected by the capacitance detection unit is zero. However, this is indistinguishable from the case where the input physical quantity is zero when the signal path is normal, so that a failure cannot be detected.
  • FIG. 1 is a perspective view of the sensor unit 1 of the acceleration sensor 30 according to the present embodiment.
  • FIG. 2 is a circuit diagram of the acceleration sensor 30 in the present embodiment.
  • the capacitive physical quantity detection device includes a sensor unit 1, a control circuit 24, and a CV conversion circuit 21.
  • the sensor unit 1 includes a movable electrode 2c, a first fixed electrode 3a, and a second fixed electrode 3b.
  • the movable electrode 2c is displaced according to a change in physical quantity.
  • the 1st fixed electrode 3a is arrange
  • the second fixed electrode 3b is disposed to face the second portion of the movable electrode 2c.
  • the control circuit 24 inputs signals between the movable electrode 2c and the first fixed electrode 3a and between the movable electrode 2c and the second fixed electrode 3b.
  • the CV conversion circuit 21 receives a reference voltage and outputs a voltage corresponding to a change in capacitance between the movable electrode 2c and the first fixed electrode 3a and between the movable electrode 2c and the second fixed electrode 3b. .
  • control circuit 24 inputs the first signal P1 to the first fixed electrode 3a and the second signal P2 having the opposite phase to the first signal to the second fixed electrode 3b.
  • the reference voltage is input to the first fixed electrode 3a and the second signal P2 is input to the second fixed electrode 3b.
  • the sensor unit 1 includes an acceleration sensor element 2, an upper lid 3, and a lower lid 4.
  • the acceleration sensor element 2 is sandwiched between the upper lid 3 and the lower lid 4.
  • the acceleration sensor element 2 includes a beam 2a, a beam 2b, a movable electrode 2c, and a frame portion 2d.
  • a fixed electrode 3 a (first fixed electrode) and a fixed electrode 3 b (second fixed electrode) are formed on the upper lid 3.
  • the fixed electrode 3a is disposed to face the first portion of the movable electrode 2c.
  • the fixed electrode 3b is disposed so as to face the second portion of the movable electrode 2c.
  • the movable electrode 2c and the fixed electrode 3a, and the movable electrode 2c and the fixed electrode 3b each constitute a capacitance.
  • the capacitance thereof changes in accordance with the displacement of the movable electrode 2c.
  • the detection circuit 20 to be described later detects acceleration based on a change in differential capacitance between the movable electrode 2c and the fixed electrode 3a and between the movable electrode 2c and the fixed electrode 3b.
  • the acceleration sensor 30 has a sensor unit 1 and a detection circuit 20.
  • the detection circuit 20 includes a CV conversion circuit 21, a signal processing circuit 22, a control circuit 24, and a determination circuit 25.
  • the control circuit 24 is a signal applying unit that periodically applies a signal between the movable electrode 2c and the fixed electrodes 3a and 3b.
  • the CV conversion circuit 21 includes an amplifier 21a, a capacitor 21b, and a switch 21c.
  • the CV conversion circuit 21 converts a change in differential capacitance between the movable electrode 2c and the fixed electrodes 3a and 3b into a voltage.
  • An inverting input terminal (first input terminal) of the amplifier 21a is connected to the movable electrode 2c.
  • a capacitor 21b and a switch 21c are connected between the inverting input terminal and the output terminal of the amplifier 21a.
  • the capacitor 21b and the switch 21c are connected in parallel with each other.
  • the reference voltage V0 is input to the non-inverting input terminal (second input terminal) of the amplifier 21a.
  • the reference voltage V0 is set to 0V for simplification.
  • the signal processing circuit 22 includes a sample and hold circuit 22a, an amplifier circuit 22b, and a low-pass filter 22c.
  • the sample hold circuit 22a samples (measures) the output voltage of the CV conversion circuit 21 and holds it for a certain period.
  • the amplifier circuit 22b amplifies the output voltage of the sample hold circuit 22a to a predetermined sensitivity.
  • the low-pass filter 22c extracts only a component in a predetermined frequency band from the output voltage of the amplifier circuit 22b, and outputs an acceleration detection signal.
  • the control circuit 24 generates and outputs carrier signals P1 and P2 and switch signals S1 and S2 based on the reference clock CLK and the failure diagnosis signal T, respectively.
  • the carrier wave signal P1 (first signal) is a signal with an amplitude of ⁇ V input to the fixed electrode 3a.
  • the carrier signal P2 (second signal) is a signal with an amplitude of ⁇ V input to the fixed electrode 3b.
  • the switch signal S1 is a signal for opening and closing the switch 21c.
  • the switch signal S2 is a signal for opening and closing the switch 221b.
  • the switches 21c and 221b are constituted by semiconductor switches or the like, and are closed when the switch signal from the control circuit 24 is at a high level.
  • FIG. 3 is a diagram showing the relationship between the signal waveform of the carrier wave of the acceleration sensor 30 and the switch opening / closing timing in the present embodiment.
  • P1 indicates a carrier wave signal P1 input to the fixed electrode 3a.
  • P2 indicates a carrier wave signal P2 input to the fixed electrode 3b.
  • Reference numeral 21c indicates the opening / closing timing of the switch 21c.
  • Reference numeral 221b indicates the opening / closing timing of the switch 221b.
  • the change in capacity according to the input physical quantity is measured (normal operation). Then, in the second period T3, T4, it is determined whether or not the signal path to the capacity detection means is disconnected (failure diagnosis operation). Thereby, failure diagnosis can be performed without displacing the movable electrode, and the time for failure diagnosis is shortened.
  • the carrier signal P1 and the carrier signal P2 are output from the control circuit 24.
  • the carrier signal P1 is a rectangular wave signal having a constant amplitude in which the high level (+ V) and the low level ( ⁇ V) change in the first periods T1 and T2.
  • the carrier signal P2 is a signal whose voltage level is inverted with respect to the carrier signal P1 in the first periods T1 and T2.
  • P1 represents a voltage signal applied to the fixed electrode 3a
  • P2 represents a voltage signal applied to the fixed electrode 3b.
  • the carrier signal P1 is + V and the carrier signal P2 is -V.
  • the switch signals S1 and S2 from the control circuit 24 cause the switch 21c to be closed (HIGH) and the switch 221b to be open (LOW).
  • the voltage V0 is applied to the non-inverting input terminal of the amplifier 21a, the voltage V0 is applied to the movable electrode 2c, and the charge in the capacitor 21b is discharged.
  • the switches 23a and 23b are not connected to the reference voltage V0, but are connected so as to input the carrier waves P1 and P2 to the movable electrode 2c.
  • This voltage is sampled and held by the sample and hold circuit 22a and output as an acceleration detection signal through the amplifier circuit 22b and the low-pass filter 22c. That is, the sample hold circuit 22a samples (measures) the output voltage of the amplifier 21a in the period T2, and holds the sampled voltage in other periods. Then, an acceleration detection signal is output through the amplifier circuit 22b and the low-pass filter 22c by the output voltage from the sample hold circuit 22a.
  • the output voltage of the CV conversion circuit 21 is ⁇ C2 ⁇ 2V / Cf.
  • the output of the CV conversion circuit 21 is zero. Therefore, by determining whether or not the output voltage of the CV conversion circuit 21 exceeds a predetermined threshold by the determination circuit 25, it can be determined whether or not the signal path is disconnected. Further, according to this configuration, even when the acceleration applied to the sensor unit 1 is zero, C2 does not become zero, so that the output voltage ( ⁇ C2 ⁇ 2V / Cf) of the CV conversion circuit 21 at normal time is disconnected. The output voltage (zero) of the CV conversion circuit 21 at the time can be determined.
  • the sample hold circuit 22a holds the voltage sampled (measured) at T2 in the first period. Therefore, fluctuations in the output voltage of the CV conversion circuit 21 during the failure diagnosis operation do not affect the measured acceleration value output from the acceleration sensor 30.
  • Fault diagnosis is performed by setting the sampling period of the sample hold circuit 22a or the data update period of the output of the acceleration sensor 30 to be longer than the combined period of the first period T1, T2 and the second period T3, T4. An acceleration detection signal can be obtained without interrupting the acceleration detection operation during the operation. That is, no extra time is required for failure diagnosis.
  • the capacity type physical quantity detection device of the present disclosure performs a normal operation of measuring a change in capacity according to the input physical quantity in the first period T1 and T2.
  • a failure diagnosis operation is performed to determine whether or not the signal path to the capacity detection unit is disconnected. Thereby, failure diagnosis can be performed without displacing the movable electrode, and the time for failure diagnosis can be shortened.
  • the capacitive physical quantity detection device of the present disclosure is useful as an acceleration sensor for vehicle control.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pressure Sensors (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

 容量式物理量検出装置は、センサ部と、制御回路と、CV変換回路とを備える。センサ部は、可動電極と、第1の固定電極と、第2の固定電極とを有する。CV変換回路は基準電圧を入力し、容量の変化に応じた電圧を出力する。制御回路は、第1の期間において、第1の固定電極に第1の信号を入力するとともに、第2の固定電極に第1の信号とは逆位相の第2の信号を入力し、第2の期間において、第1の固定電極に、基準電圧を入力するとともに、第2の固定電極に第2の信号を入力する。

Description

容量式物理量検出装置
 本開示は、加速度、角速度、圧力等の物理量を検出する容量式物理量検出装置に関する。
 図4は、従来の容量式物理量検出装置100の模式図である。従来の容量式物理量検出装置100は、加速度に応じて変位する可動電極102と、可動電極102に対向して配置された固定電極103と、を備えている。容量式物理量検出装置100は、加速度によって生じる可動電極102の変位を、可動電極102と固定電極103との間の静電容量の変化として検出することにより、加速度を検出している。すなわち、静電気力発生手段104により、可動電極102が変位する。この変位によって生じる可動電極102と固定電極103との間の静電容量の変化を、容量検出手段105が検出する。容量検出手段105は、この静電容量の変化が所定の閾値を越えるか否かを判定することにより、可動電極が正常に動作しているか否か、及び容量検出手段への信号経路が断線しているか否か、という故障診断を行う。なお、この出願に関連する先行技術文献情報としては、例えば、特許文献1が知られている。
特開平5-223844号公報
 容量式物理量検出装置は、センサ部と、制御回路と、CV変換回路と、を備える。
 センサ部は、可動電極と、第1の固定電極と、第2の固定電極と、を有する。可動電極は、物理量の変化に応じて変位する。第1の固定電極は、可動電極の第1の箇所に対向して配置されている。第2の固定電極は、可動電極の第2の箇所に対向して配置されている。
 制御回路は、可動電極と第1の固定電極との間および、可動電極と第2の固定電極との間に信号を入力する。
 CV変換回路は、基準電圧を入力し、可動電極と第1の固定電極との間および、可動電極と第2の固定電極との間の容量の変化に応じた電圧を出力する。
 制御回路は、第1の期間において、第1の固定電極に第1の信号を入力するとともに、第2の固定電極に第1の信号とは逆位相の第2の信号を入力し、第2の期間において、第1の固定電極に、基準電圧を入力するとともに、第2の固定電極に第2の信号を入力する。
図1は、本実施の形態における加速度センサのセンサ部の斜視図である。 図2は、本実施の形態における加速度センサの回路図である。 図3は、本実施の形態における加速度センサの搬送波の信号波形とスイッチの開閉のタイミングとの関係を示す図である。 図4は、従来の容量式物理量検出装置の模式図である。
 従来の容量式物理量検出装置100は、故障診断に際して可動電極102を変位させるために、故障診断に時間が掛かる場合がある。また、例えば容量検出手段105への信号経路が断線している場合、可動電極102を変位させずに故障診断を行おうとすると、容量検出手段が検出する信号はゼロとなる。しかし、これは信号経路が正常な場合において入力物理量がゼロだった場合と見分けがつかないので、故障を検出することが出来ない。
 (実施の形態)
 以下、本開示の容量式物理量検出装置の一例である加速度センサについて図面を参照しながら説明する。
 図1は、本実施の形態における加速度センサ30のセンサ部1の斜視図である。図2は、本実施の形態における加速度センサ30の回路図である。
 容量式物理量検出装置は、センサ部1と、制御回路24と、CV変換回路21と、を備える。
 センサ部1は、可動電極2cと、第1の固定電極3aと、第2の固定電極3bと、を有する。可動電極2cは、物理量の変化に応じて変位する。第1の固定電極3aは、可動電極2cの第1の箇所に対向して配置されている。第2の固定電極3bは、可動電極2cの第2の箇所に対向して配置されている。
 制御回路24は、可動電極2cと第1の固定電極3aとの間および、可動電極2cと第2の固定電極3bとの間に信号を入力する。
 CV変換回路21は基準電圧を入力し、可動電極2cと第1の固定電極3aとの間および、可動電極2cと第2の固定電極3bとの間の容量の変化に応じた電圧を出力する。
 制御回路24は、第1の期間において、第1の固定電極3aに第1の信号P1を入力するとともに、第2の固定電極3bに第1の信号とは逆位相の第2の信号P2を入力し、第2の期間において、第1の固定電極3aに、基準電圧を入力するとともに、第2の固定電極3bに第2の信号P2を入力する。
 以下、加速度センサ30の詳細を説明する。センサ部1は、加速度センサ素子2と、上蓋3と、下蓋4とを有している。加速度センサ素子2は、上蓋3と下蓋4との間に狭持されている。加速度センサ素子2は、梁2aと、梁2bと、可動電極2cと、枠部2dと、を有する。上蓋3に、固定電極3a(第1の固定電極)と、固定電極3b(第2の固定電極)が形成されている。固定電極3aは、可動電極2cの第1の箇所に対向して配置されている。固定電極3bは、可動電極2cの第2の箇所に対向して配置されている。
 可動電極2cと固定電極3a、および可動電極2cと固定電極3bは、それぞれ容量を構成している。可動電極2cが加速度を受けて変位すると、可動電極2cの変位に応じてそれらの容量が変化する。後述する検出回路20は、可動電極2cと固定電極3aとの間、及び、可動電極2cと固定電極3bとの間の差動容量の変化に基づいて加速度を検出する。
 加速度センサ30は、センサ部1と、検出回路20とを有している。検出回路20は、CV変換回路21と、信号処理回路22と、制御回路24と、判定回路25と、を有している。制御回路24は、可動電極2cと、固定電極3a、3bとの間に周期的に信号を印加する信号印加手段である。
 CV変換回路21は、増幅器21aと、コンデンサ21bと、スイッチ21cとを有する。CV変換回路21は、可動電極2cと、固定電極3a、3bとの差動容量の変化を電圧に変換する。増幅器21aの反転入力端子(第1の入力端子)は、可動電極2cに接続されている。増幅器21aの反転入力端子と出力端子との間には、コンデンサ21bおよびスイッチ21cが接続されている。コンデンサ21bとスイッチ21cは、互いに並列になるように接続されている。増幅器21aの非反転入力端子(第2の入力端子)には、基準電圧V0が入力される。以下、簡単化のために基準電圧V0を0Vとする。
 信号処理回路22は、サンプルホールド回路22aと、増幅回路22bと、ローパスフィルタ22cとを有している。サンプルホールド回路22aは、CV変換回路21の出力電圧をサンプリング(測定)して一定期間保持する。増幅回路22bは、サンプルホールド回路22aの出力電圧を所定の感度まで増幅する。ローパスフィルタ22cは、増幅回路22bの出力電圧から所定の周波数帯域の成分のみを取り出して、加速度検出信号を出力する。
 制御回路24は、基準クロックCLKと、故障診断信号Tに基づいて、搬送波信号P1、P2と、スイッチ信号S1、S2とをそれぞれ生成して出力する。搬送波信号P1(第1の信号)は、固定電極3aに入力する振幅±Vの信号である。搬送波信号P2(第2の信号)は、固定電極3bに入力する振幅±Vの信号である。スイッチ信号S1は、スイッチ21cを開閉させる信号である。スイッチ信号S2は、スイッチ221b、を開閉させる信号である。スイッチ21c、スイッチ221bは、半導体スイッチ等で構成されており、制御回路24からのスイッチ信号がハイレベルのとき閉の状態になる。
 加速度センサの動作を、図3を参照して説明する。図3は、本実施の形態における加速度センサ30の搬送波の信号波形とスイッチの開閉のタイミングとの関係を示す図である。P1は、固定電極3aに入力される搬送波信号P1を示している。P2は、固定電極3bに入力される搬送波信号P2を示している。21cは、スイッチ21cの開閉のタイミングを示している。221bは、スイッチ221bの開閉のタイミングを示している。
 第1の期間T1、T2において、入力された物理量に応じた容量の変化が測定される(通常動作)。そして、第2の期間T3、T4において、容量検出手段への信号経路が断線しているか否かが判定される(故障診断動作)。これにより、可動電極を変位させずに故障診断を行うことができ、故障診断の時間が短縮される。
 制御回路24から搬送波信号P1と、搬送波信号P2とが出力される。図3に示すように、搬送波信号P1は、第1の期間T1、T2において、ハイレベル(+V)とローレベル(-V)が変化する一定振幅の矩形波信号である。また、搬送波信号P2は、第1の期間T1、T2において、搬送波信号P1に対して電圧レベルが反転した信号である。
 まず、通常動作時の測定について図3を参照して説明する。ここで、P1は、固定電極3aに与えられる電圧信号を示し、P2は、固定電極3bに与えられる電圧信号を示している。
 第1の期間のT1では、搬送波信号P1は+V、搬送波信号P2は-Vになっている。また、制御回路24からのスイッチ信号S1、S2により、スイッチ21cは閉(HIGH)、スイッチ221bは開(LOW)になっている。このことにより、増幅器21aの非反転入力端子にV0の電圧が印加され、可動電極2cにV0の電圧が印加されるとともに、コンデンサ21bの電荷が放電される。なお、通常動作時の測定において、スイッチ23a、スイッチ23bは基準電圧V0に接続されず、搬送波P1、P2を可動電極2cに入力するように接続される。
 この状態において、可動電極2cと固定電極3aとの間には、Q1=-C1・Vという電荷がたまる。-の符号は、可動電極2cの固定電極3aと対向する側の表面に負の電荷がたまることを意味している。また、可動電極2cと固定電極3bとの間には、Q2=+C2・Vという電荷がたまる。+の符号は、可動電極2cの固定電極3bと対向する側の表面に正の電荷がたまることを意味している。可動電極2cの総電荷量はQ1とQ2の合計値となるので、Q1+Q2=(C2-C1)・Vとなる。
 第1の期間のT2において、搬送波信号P1、P2の電圧レベルが反転し、P1が-VとなりP2が+Vとなり、スイッチ21cが開くとともにスイッチ221bが閉じる。
 このとき、可動電極2cと固定電極3aとの間にはQ1’=+C1・Vという電荷がたまり、可動電極2cと固定電極3bとの間にはQ2’=-C2・Vという電荷がたまる。可動電極2cの総電荷量はQ1’とQ2’の合計値となるので、Q1’+Q2’=(C1-C2)・Vとなる。
 T1のときに可動電極2cにたまっていた電荷(Q1+Q2)とT2のときに可動電極2cにたまっていた電荷(Q1’+Q2’)との差ΔQは、ΔQ=(Q1+Q2)-(Q1’+Q2’)=-(C1-C2)・2Vとなる。
 ここで、差動容量C1、C2が異なっていると、ΔQという電荷が可動電極2cに生じるが、増幅器21aの作用によって可動電極2cの電圧はV0に保持されるため、ΔQの電荷は、コンデンサ21bの可動電極2c側にたまり、コンデンサ21bの反対側の電極には、逆の極性の電荷ΔQ’=(C1-C2)・2Vがたまる。その結果、コンデンサ21bの容量をCfとすると、増幅器21aの出力端子にΔQ’/Cf=(C1-C2)・2V/Cfという電圧が生じ、容量の差(C1-C2)に応じた電圧が出力される。
 この電圧はサンプルホールド回路22aにてサンプルホールド(sample and hold)され、増幅回路22b、ローパスフィルタ22cを介して加速度検出信号として出力される。すなわち、サンプルホールド回路22aは、T2の期間において増幅器21aの出力電圧をサンプリング(測定)し、それ以外の期間では、そのサンプリングした電圧を保持する。そして、このサンプルホールド回路22aからの出力電圧により、増幅回路22b、ローパスフィルタ22cを介して加速度検出信号が出力される。
 次に、故障診断時の動作について図3を参照して説明する。
 故障診断時においては、第2の期間のT3、T4において、スイッチ23aもしくはスイッチ23bのどちらかが基準電圧V0へ接続されるように切り替わる。
 例として、スイッチ23aが基準電圧V0へ接続される場合を説明する。この状態においては、第2の期間のT3において、可動電極2cと固定電極3aの電位はともにV0であり、電位差がゼロとなるため、電荷Q1もゼロとなる。一方、可動電極2cと固定電極3bとの間には、第1の期間のT1と同じようにQ2=+C2・Vという電荷がたまる。これより、可動電極2cの総電荷量は、Q1+Q2=0+C2・V=C2・Vとなる。
 第2の期間のT4においては、電荷Q1’は第2の期間のT3と同じくゼロであり、電荷Q2’は第1の期間のT2と同じくQ2’=-C2・Vとなる。これより、可動電極2cの総電荷量は、Q1’+Q2’=0-C2・V=-C2・Vとなる。
 T3のときに可動電極2cにたまっていた電荷(Q1+Q2)とT4のときに可動電極2cにたまっていた電荷(Q1’+Q2’)の差ΔQは、ΔQ=(Q1+Q2)-(Q1’+Q2’)=C2・2Vとなる。その結果、増幅器21aの出力端子に-ΔQ/Cf=-C2・2V/Cfという電圧が生じる。
 信号経路が正常な場合には、CV変換回路21の出力電圧が-C2・2V/Cfとなる。しかし、信号経路が断線している場合にはCV変換回路21の出力はゼロとなる。そのため、判定回路25によってCV変換回路21の出力電圧が所定の閾値を超えているか否かを判定することにより、信号経路が断線しているか否かを判定できる。また、本構成によると、センサ部1に印加される加速度がゼロの場合においても、C2はゼロにはならないので、正常時のCV変換回路21の出力電圧(-C2・2V/Cf)と断線時のCV変換回路21の出力電圧(ゼロ)とを判別できる。
 なお、故障診断時の第2の期間T3、T4において、サンプルホールド回路22aは、第1の期間のT2においてサンプリング(測定)した電圧を保持する。そのため、故障診断動作中のCV変換回路21の出力電圧の変動は、加速度センサ30から出力される加速度の測定値に影響を及ぼさない。サンプルホールド回路22aのサンプリング周期、あるいは加速度センサ30の出力のデータ更新周期を、第1の期間T1、T2と第2の期間T3、T4とを合わせた期間よりも長く設定することにより、故障診断動作中に加速度検出動作が中断される事なく、加速度検出信号が得られる。すなわち、故障診断のために余計な時間を必要としない。
 本開示の容量式物理量検出装置は、第1の期間T1、T2においては入力された物理量に応じた容量の変化を測定するという通常動作を行う。また、第2の期間T3、T4においては容量検出手段への信号経路が断線しているか否かを判定する故障診断動作を行う。これにより、可動電極を変位させずに故障診断を行うことができ、故障診断の時間が短縮できる。
 本開示の容量式物理量検出装置は、車両制御用の加速度センサ等として有用である。
1 センサ部
2 加速度センサ素子
2a,2b 梁
2c 可動電極
2d 枠部
3 上蓋
3a,3b 固定電極
4 下蓋
20 検出回路
21 CV変換回路
21a 増幅器
21b コンデンサ
21c,221b,23a,23b スイッチ
22 信号処理回路
22a サンプルホールド回路
22b 増幅回路
22c ローパスフィルタ
24 制御回路
25 判定回路
30 加速度センサ
100 容量式物理量検出装置
102 可動電極
103 固定電極
104 静電気力発生手段
105 容量検出手段

Claims (7)

  1.  物理量の変化に応じて変位する可動電極と、
     前記可動電極の第1の箇所に対向して配置された第1の固定電極と、
     前記可動電極の第2の箇所に対向して配置された第2の固定電極と、
    を有するセンサ部と、
    前記可動電極と前記第1の固定電極との間および、前記可動電極と前記第2の固定電極との間に信号を入力する制御回路と、
    基準電圧が入力され、前記可動電極と前記第1の固定電極との間および、前記可動電極と前記第2の固定電極との間の容量の変化に応じた電圧を出力するCV変換回路と、
    を備え、
    前記制御回路は、
    第1の期間において、前記第1の固定電極に第1の信号を入力するとともに、前記第2の固定電極に前記第1の信号とは逆位相の第2の信号を入力し、
    第2の期間において、前記第1の固定電極に、前記基準電圧を入力するとともに、前記第2の固定電極に前記第2の信号を入力する
    容量式物理量検出装置。
  2. 前記CV変換回路は増幅器を有し、
    前記増幅器の第1の入力端子は、前記可動電極に接続されている
    請求項1に記載の容量式物理量検出装置。
  3. 前記増幅器の第2の入力端子に、前記基準電圧が入力される
    請求項2に記載の容量式物理量検出装置。
  4. 前記CV変換回路に接続されたサンプルホールド回路を更に備え、
    前記サンプルホールド回路のサンプリング周期は、前記第1の期間と前記第2の期間とを合わせた期間よりも長い
    請求項1に記載の容量式物理量検出装置。
  5. 前記容量式物理量検出装置は、前記第1の期間と前記第2の期間とを合わせた期間よりも長いデータ更新周期を有する
    請求項1に記載の容量式物理量検出装置。
  6. 前記増幅器の前記第1の入力端子と出力端子との間に接続され、互いに並列に接続されたスイッチとコンデンサとをさらに有する
    請求項1に記載の容量式物理量検出装置。
  7. 前記物理量は加速度である
    請求項1に記載の容量式物理量検出装置。
PCT/JP2014/006450 2014-02-27 2014-12-25 容量式物理量検出装置 WO2015128922A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/114,777 US10088495B2 (en) 2014-02-27 2014-12-25 Capacitive physical quality detection device
JP2016504872A JP6371984B2 (ja) 2014-02-27 2014-12-25 容量式物理量検出装置
DE112014006428.9T DE112014006428T5 (de) 2014-02-27 2014-12-25 Kapazitive Vorrichtung zur Erfassung einer physikalischen Eigenschaft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014036319 2014-02-27
JP2014-036319 2014-02-27

Publications (1)

Publication Number Publication Date
WO2015128922A1 true WO2015128922A1 (ja) 2015-09-03

Family

ID=54008296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/006450 WO2015128922A1 (ja) 2014-02-27 2014-12-25 容量式物理量検出装置

Country Status (4)

Country Link
US (1) US10088495B2 (ja)
JP (1) JP6371984B2 (ja)
DE (1) DE112014006428T5 (ja)
WO (1) WO2015128922A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3144640A1 (en) * 2015-09-21 2017-03-22 ams AG Sensor arrangement and method for operation of a sensor
US10534015B2 (en) 2016-05-19 2020-01-14 Panasonic intellectual property Management co., Ltd Sensor and method for diagnosing sensor
US10948311B2 (en) 2017-10-25 2021-03-16 Panasonic Intellectual Property Management Co., Ltd. Electronic reliability enhancement of a physical quantity sensor
US11802885B2 (en) 2019-04-30 2023-10-31 Panasonic Intellectual Property Management Co., Ltd. Sensor processing system, sensor system, and sensor processing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08211093A (ja) * 1994-11-03 1996-08-20 Robert Bosch Gmbh 加速度センサの容量性信号を評価する回路装置
US6023960A (en) * 1997-12-17 2000-02-15 I/O Sensors, Inc. Method and apparatus for generation of test bitstreams and testing of closed loop transducers
JP2000081449A (ja) * 1998-06-30 2000-03-21 Denso Corp 容量式物理量検出装置
JP2009097932A (ja) * 2007-10-15 2009-05-07 Freescale Semiconductor Inc 容量型検出装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3162149B2 (ja) 1992-02-12 2001-04-25 株式会社日立製作所 静電容量式センサ
US5325065A (en) * 1992-05-18 1994-06-28 Motorola, Inc. Detection circuit with dummy integrator to compensate for switch charge insection and amplifier offset voltage
JP3262013B2 (ja) * 1997-02-24 2002-03-04 三菱電機株式会社 容量型センサインターフェース回路
JP2002040047A (ja) * 2000-07-25 2002-02-06 Denso Corp 容量型物理量検出センサ
JP3861652B2 (ja) * 2001-10-16 2006-12-20 株式会社デンソー 容量式物理量センサ
JP2004361388A (ja) * 2003-05-15 2004-12-24 Mitsubishi Electric Corp 容量型慣性力検出装置
JP4207154B2 (ja) * 2003-07-25 2009-01-14 株式会社デンソー スティッキング検査機能を有する静電容量式センサ装置及び検査方法並びにエアバッグシステム
JP4444004B2 (ja) * 2004-06-01 2010-03-31 株式会社デンソー 半導体力学量センサ
JP2006084400A (ja) * 2004-09-17 2006-03-30 Denso Corp 容量式物理量検出装置
JP2007178420A (ja) * 2005-11-30 2007-07-12 Denso Corp 容量式物理量センサおよびその診断方法
JP4765708B2 (ja) * 2006-03-23 2011-09-07 株式会社デンソー 容量式物理量センサ
JP4375579B2 (ja) * 2007-02-08 2009-12-02 株式会社デンソー 容量式物理量検出装置
JP2008216118A (ja) * 2007-03-06 2008-09-18 Denso Corp 力学量センサ
JP2011099833A (ja) * 2009-11-09 2011-05-19 Denso Corp 力学量検出装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08211093A (ja) * 1994-11-03 1996-08-20 Robert Bosch Gmbh 加速度センサの容量性信号を評価する回路装置
US6023960A (en) * 1997-12-17 2000-02-15 I/O Sensors, Inc. Method and apparatus for generation of test bitstreams and testing of closed loop transducers
JP2000081449A (ja) * 1998-06-30 2000-03-21 Denso Corp 容量式物理量検出装置
JP2009097932A (ja) * 2007-10-15 2009-05-07 Freescale Semiconductor Inc 容量型検出装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3144640A1 (en) * 2015-09-21 2017-03-22 ams AG Sensor arrangement and method for operation of a sensor
US10534015B2 (en) 2016-05-19 2020-01-14 Panasonic intellectual property Management co., Ltd Sensor and method for diagnosing sensor
US10921347B2 (en) 2016-05-19 2021-02-16 Panasonic Intellectual Property Management Co., Ltd. Sensor and method for diagnosing sensor
US10948311B2 (en) 2017-10-25 2021-03-16 Panasonic Intellectual Property Management Co., Ltd. Electronic reliability enhancement of a physical quantity sensor
US11802885B2 (en) 2019-04-30 2023-10-31 Panasonic Intellectual Property Management Co., Ltd. Sensor processing system, sensor system, and sensor processing method

Also Published As

Publication number Publication date
DE112014006428T5 (de) 2016-12-08
JPWO2015128922A1 (ja) 2017-03-30
US10088495B2 (en) 2018-10-02
US20160341760A1 (en) 2016-11-24
JP6371984B2 (ja) 2018-08-15

Similar Documents

Publication Publication Date Title
JP4178658B2 (ja) 容量式物理量検出装置
JP6088521B2 (ja) オンチップの中和キャパシタ及び線形作動を用いて自動キャリブレーションを行うことによる容量性変換器の線形性増大
US7795881B2 (en) Capacitive physical quantity detection device
JP4899781B2 (ja) 容量式力学量検出装置
JP6371984B2 (ja) 容量式物理量検出装置
US20050210980A1 (en) Capacitive acceleration sensor system
JP2007516410A (ja) 容量性測定用センサ、及び関連する測定方法
JP2009097932A (ja) 容量型検出装置
US20200400434A1 (en) Mems gyroscope with calibration of the scale factor in real time and calibration method thereof
US7119555B2 (en) Circuit for detecting difference in capacitance
EP3404422B1 (en) System including a capacitive transducer and an excitation circuit for such a transducer and a method for measuring acceleration with such a system
US7525322B2 (en) Capacitive physical quantity sensor and diagnosis method
JP2011107086A (ja) 静電容量検出回路、圧力検出装置、加速度検出装置、および、マイクロフォン用トランスデューサ
EP3144640B1 (en) Sensor arrangement and method for operation of a sensor
JPWO2015052926A1 (ja) 加速度センサ
US20130061675A1 (en) Acceleration measuring apparatus and acceleration measuring method
JP2005140657A (ja) 静電容量型センサの容量変化検出回路
JP2012242201A (ja) 容量式物理量検出装置
JP4269388B2 (ja) 容量式物理量検出装置
JP3804242B2 (ja) 静電サーボ式物理量検出装置
JP4150292B2 (ja) 異常検出機能を持つ静電容量式センサ装置
CN102778585A (zh) 传感装置
JP2005315805A (ja) センサシステム
JP4831083B2 (ja) 物理量センサ
JP6982725B2 (ja) センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884253

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016504872

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15114777

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014006428

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14884253

Country of ref document: EP

Kind code of ref document: A1