WO2015122435A1 - 海水電解システム及び電解液注入方法 - Google Patents

海水電解システム及び電解液注入方法 Download PDF

Info

Publication number
WO2015122435A1
WO2015122435A1 PCT/JP2015/053767 JP2015053767W WO2015122435A1 WO 2015122435 A1 WO2015122435 A1 WO 2015122435A1 JP 2015053767 W JP2015053767 W JP 2015053767W WO 2015122435 A1 WO2015122435 A1 WO 2015122435A1
Authority
WO
WIPO (PCT)
Prior art keywords
seawater
line
flow rate
main
injection
Prior art date
Application number
PCT/JP2015/053767
Other languages
English (en)
French (fr)
Inventor
宏幸 高波
達也 松村
水谷 洋
Original Assignee
三菱重工環境・化学エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工環境・化学エンジニアリング株式会社 filed Critical 三菱重工環境・化学エンジニアリング株式会社
Priority to CN201580006031.0A priority Critical patent/CN105939969B/zh
Priority to KR1020167020739A priority patent/KR101891906B1/ko
Publication of WO2015122435A1 publication Critical patent/WO2015122435A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • C02F1/4674Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation with halogen or compound of halogens, e.g. chlorine, bromine
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4611Fluid flow
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46145Fluid flow
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/04Flow arrangements
    • C02F2301/046Recirculation with an external loop

Definitions

  • the present invention relates to a seawater electrolysis system including a seawater electrolysis apparatus that generates sodium hypochlorite by electrolyzing seawater, and an electrolytic solution injection method.
  • a conventional seawater electrolysis system 101 includes a liquid receiving tank 6 that receives and reacts with seawater, a seawater electrolyzer 7 that electrolyzes seawater W to generate sodium hypochlorite, and seawater.
  • This is a recycling system having a recycling line 10 (circulation line) for circulating the electrolytically treated water E (electrolytic solution) generated in the electrolyzer 7.
  • the seawater electrolysis apparatus 7 has a configuration in which an anode and a cathode as electrodes are arranged in an electrolytic cell 8 forming a cylindrical body, and seawater W is circulated in the electrolytic cell 8. Since chloride ions and hydroxide ions exist in the seawater W, when current is passed between the anode and the cathode, chlorine is generated at the anode and sodium hydroxide is generated at the cathode. Then, by reacting chlorine and sodium hydroxide, sodium hypochlorite having an effect of suppressing adhesion of marine organisms is produced.
  • Main seawater M (intake seawater) that is seawater used in the plant P is introduced into the main seawater line 3 by a plurality of main seawater pumps 2.
  • Seawater W is supplied to the seawater electrolysis system 101 by the seawater supply pump 4.
  • the electrolytically treated water E containing sodium hypochlorite generated by the seawater electrolyzer 7 is introduced into the main seawater line 3 through the injection line 13.
  • the output of the DC power supply 9 of the seawater electrolysis device 7 with respect to the change amount.
  • the concentration of sodium hypochlorite in the infusion was adjusted by changing the current value. That is, as shown in line a of FIG. 4, the output current value C (A) of the DC power supply device 9 was adjusted at the point D when the number of main seawater pumps decreased.
  • the chlorine concentration LRTEC (mg / l) of the electrolytically treated water E in the recycle line 10 gradually decreases.
  • the flow rate CLSFR (m 3 / h) of the electrolyzed water E injected into the main seawater line 3 through the injection line 13 is constant as shown by the line c.
  • the chlorine concentration CCl of the electrolyzed water E that is the injection liquid becomes a set value corresponding to the output current value.
  • the chlorine concentration of the injected liquid cannot be instantaneously handled. There was a problem that the chlorine concentration in seawater at the injection point temporarily exceeded the set value.
  • the present invention aims to keep the chlorine concentration of the main seawater constant by adjusting the flow rate of the electrolyte containing chlorine introduced into the main seawater line in the recycle type seawater electrolysis system.
  • a seawater electrolysis system includes a recycle line through which seawater circulates, a seawater electrolyzer for electrolyzing seawater in the middle of the recycle line, and a part of the electrolyte from the recycle line.
  • An injection line that supplies the main seawater line through which the main seawater flows, and a flow rate adjusting valve that is provided in the injection line and adjusts the amount of electrolyte injected by the flow rate of the main seawater.
  • the flow rate of the electrolyte containing chlorine can be adjusted by providing the flow rate adjusting valve in the injection line.
  • the chlorine concentration of the main seawater can be kept constant.
  • the flow rate adjustment valve may be configured to reduce the electrolyte injection amount as the flow rate of the main seawater decreases.
  • Such a configuration can prevent chlorine from being excessively injected into the main seawater line when the flow rate of the main seawater decreases.
  • the seawater electrolysis system may include a branch line that branches a part of seawater of a seawater supply line that supplies seawater to the recycle line to the injection line. According to such a configuration, by introducing seawater into the injection line via the branch line, scale accumulation due to a decrease in the flow rate of the injection line can be prevented.
  • the seawater electrolysis system has a seawater branch flow rate adjustment valve that adjusts the flow rate of seawater flowing through the branch line, and the seawater branch flow rate adjustment valve increases the seawater branch flow rate as the flow rate of the main seawater decreases. Also good. According to such a configuration, it is possible to prevent scale accumulation due to a decrease in the flow rate of the injection line even when the amount of electrolyte injection decreases as the flow rate of the main seawater decreases.
  • the seawater branch flow rate adjustment valve may be configured to increase the seawater branch flow rate so that the flow velocity of the fluid flowing through the injection line is equal to or higher than a predetermined value. According to such a configuration, since the flow velocity of the fluid flowing through the injection line is ensured, scale deposition due to a decrease in the flow rate of the injection line can be prevented.
  • the flow rate of the main seawater may be detected by the number of main seawater pumps that supply seawater to the main seawater line. According to such a configuration, the flow rate of the main seawater can be detected more easily.
  • the main seawater flow rate may be detected by driving power of a main seawater pump that supplies seawater to the main seawater line. According to such a configuration, the flow rate of the main seawater can be detected more accurately.
  • the residual chlorine content of the wastewater from the main seawater line may be monitored, and the electrolyte injection amount may be reduced when the residual chlorine content exceeds a predetermined value. According to such a configuration, residual chlorine contained in the waste water can be reduced.
  • an electrolytic solution injection method includes a seawater supply step of supplying seawater to an annular recycle line, and electrolyzing the seawater in the middle of the recycle line so that the electrolyte is supplied to the recycle line. Circulate in the electrolyte solution, circulate the electrolyte solution through the injection line, inject the electrolyte solution into the main seawater line through which the main seawater flows, and inject the electrolyte solution according to the flow rate of the main seawater And an injection amount adjusting step for adjusting the amount.
  • the injection amount adjusting step may be configured to reduce the electrolyte injection amount with a decrease in the flow rate of the main seawater.
  • the electrolyte solution injection method may include a seawater branching step of supplying a part of the seawater supplied in the seawater supply step to the injection line.
  • the seawater branching step may be configured to increase the seawater branching flow rate with a decrease in the flow rate of the main seawater.
  • the seawater branch flow rate in the seawater branching step, may be increased so that the flow velocity of the fluid flowing through the injection line is equal to or higher than a predetermined value.
  • the flow rate of the main seawater may be detected by the number of main seawater pumps that supply seawater to the main seawater line.
  • the flow rate of the main seawater may be detected by driving power of a main seawater pump that supplies seawater to the main seawater line.
  • the electrolyte injection method in the injection amount adjustment step, the residual chlorine content of the waste water from the main seawater line is monitored, and the electrolyte injection amount when the residual chlorine content exceeds a predetermined value. It is good also as a structure which decreases.
  • the flow rate of the electrolyte solution containing chlorine can be adjusted by adjusting the flow rate of the fluid flowing through the injection line.
  • the chlorine concentration of the main seawater can be kept constant.
  • FIG. 1 is a schematic diagram showing an outline of a seawater electrolysis system 1 according to an embodiment of the present invention.
  • the seawater electrolysis system 1 takes seawater W from a main seawater line 3 which is a water intake channel through which the main seawater M circulates, electrolyzes the seawater W by a seawater electrolyzer 7, and then electrolyzes water E (electrolyte).
  • This is a system for injecting into the main seawater line 3.
  • the main seawater M of the main seawater line 3 is used by being introduced into a plant P such as a thermal power and nuclear power plant, a seawater desalination plant, a chemical plant, and a steelmaking plant.
  • This seawater electrolysis system 1 is an annular recycling line that circulates a seawater supply pump 4 for introducing seawater W necessary for electrolysis, a liquid receiving tank 6, a seawater electrolyzer 7, and electrolytically treated water E (seawater W). 10 (circulation flow path) and an injection line 13 for injecting the electrolyzed water E circulating through the recycle line 10 into the main seawater line 3.
  • Main seawater M is introduced into the main seawater line 3 by a plurality of main seawater pumps 2 (intake pumps).
  • the flow rate of the main seawater M introduced into the main seawater line 3 varies according to the number of operating main seawater pumps 2.
  • the recycling line 10 includes a first recycling line 11 and a second recycling line 12.
  • the seawater supply pump 4 may be configured to pump the seawater W from the main seawater line 3 or may be configured to pump the seawater W directly from the ocean.
  • the liquid receiving tank 6 is a tank that stores the electrolytically treated water E circulating in the system and the seawater W supplied from the seawater supply pump 4.
  • the seawater electrolyzer 7 electrolyzes the seawater W in the middle of the recycle line 10.
  • the seawater electrolyzer 7 has an electrolytic cell 8 and a DC power supply device 9.
  • the seawater electrolyzer 7 generates sodium hypochlorite (chlorine, sodium hypochlorite) by electrolyzing the seawater W.
  • the electrolytic bath 8 includes a plurality of electrodes (not shown), an inlet 15 for introducing the electrolytically treated water E into the electrolytic bath 8, and an outlet 16 for discharging the electrolytically treated water E from the inside of the electrolytic bath 8. ,have.
  • the DC power supply device 9 supplies a current for electrolysis of the seawater W.
  • the DC power supply device 9 for example, a configuration including a DC power supply and a constant current control circuit can be adopted.
  • the DC power source is a power source that outputs DC power, and may be configured to rectify and output AC power output from the AC power source to DC, for example.
  • the seawater supply pump 4 and the liquid receiving tank 6 are connected by a seawater supply line 5.
  • the seawater supply line 5 may be provided with a strainer for preventing entry of foreign substances that hinder electrolysis.
  • the liquid receiving tank 6 and the inlet 15 of the electrolytic tank 8 are connected by a first recycle line 11. That is, the electrolytically treated water E in the liquid receiving tank 6 is introduced into the electrolytic tank 8 through the first recycle line 11.
  • An injection pump 17 is provided on the first recycle line 11. The injection pump 17 supplies the electrolytically treated water E that circulates to the electrolytic cell 8 and transfers the electrolytically treated water E to the injection line 13.
  • the second recycle line 12 connects the outlet 16 of the electrolytic cell 8 and the liquid receiving tank 6. That is, the electrolytically treated water E generated by the seawater electrolyzer 7 is introduced into the liquid receiving tank 6 through the second recycle line 12.
  • An injection nozzle (not shown) is provided at the downstream end of the injection line 13. By providing the injection nozzle, sodium hypochlorite generated by the seawater electrolyzer 7 can be efficiently diffused into the main seawater line 3.
  • the flow rate sensor 18 is a sensor that detects the flow rate of the electrolytically treated water E flowing through the injection line 13.
  • the flow rate adjusting valve 19 is a valve provided on the downstream side of the flow rate sensor 18 in the injection line 13. The flow rate of the electrolytically treated water E flowing through the injection line 13 can be controlled using the flow rate adjusting valve 19 and the flow rate sensor 18.
  • a branch line 21 (backup line) for introducing the seawater W supplied by the seawater supply pump 4 directly into the injection line 13 is provided. That is, the seawater electrolysis system 1 of the present embodiment can branch directly to the injection line 13 without sending the seawater W flowing through the seawater supply line 5 to the liquid receiving tank 6.
  • a seawater branch flow rate adjustment valve 22 for adjusting the flow rate of the seawater W flowing through the branch line 21 is provided.
  • the main seawater line 3 is provided with a main seawater flow rate sensor 24 that detects the flow rate of the main seawater M flowing through the main seawater line 3.
  • a residual chlorine measuring device 25 that measures the concentration of residual chlorine is provided downstream of the main seawater line 3 into which the used main seawater M discharged from the plant P flows.
  • the seawater electrolysis system 1 also injects sodium hypochlorite (chlorine) contained in the electrolyzed water E and seawater W introduced into the main seawater line 3 based on the flow rate of the main seawater M flowing through the main seawater line 3.
  • a control device (not shown) that performs control to keep the rate constant is provided.
  • the control device has a function of adjusting the output current value of the DC power supply device 9 based on the flow rate of the main seawater M.
  • the control device reduces sodium hypochlorite generated in the seawater electrolyzer 7, thereby reducing the main seawater.
  • control is performed to increase sodium hypochlorite generated in the seawater electrolyzer 7.
  • control device has a function of controlling the flow rate (electrolyte injection amount) of the electrolytically treated water E flowing through the injection line 13 based on the flow rate of the main seawater M flowing through the main seawater line 3.
  • the control device adjusts the flow rate of the electrolytically treated water E by the flow rate adjusting valve 19 in order to keep the chlorine concentration in the main seawater M at the target value.
  • the control device detects the flow rate of the main seawater M based on the number of operating main seawater pumps 2 to adjust the output current value of the DC power supply device 9 and adjusts the flow rate of the electrolyzed water E flowing through the injection line 13. .
  • the control device adjusts the output current value and the flow rate of the electrolyzed water E when the number of operating main seawater pumps 2 fluctuates.
  • the control device has a function of increasing the flow rate of the seawater W flowing through the branch line 21 by operating the seawater branch flow rate adjustment valve 22 as the flow rate of the main seawater M decreases.
  • Main seawater M is introduced into the main seawater line 3 by the main seawater pump 2.
  • the main seawater M is introduced into the plant P and used, for example, for cooling the furnace.
  • a part of the seawater W flowing through the main seawater line 3 is introduced into the liquid receiving tank 6 through the seawater supply line 5.
  • the electrolytic solution circulation process the seawater W is introduced into the first recycling line 11, the electrolytic cell 8, and the second recycling line 12 and circulated.
  • seawater W is introduced into the electrolytic cell 8 via the first recycle line 11. Thereby, the electrode in the electrolytic cell 8 is immersed in the seawater W.
  • Electrolysis is performed on the seawater W when current flows through the seawater W between the electrodes. That is, at the anode, as shown in the following formula (1), electrons e are taken from chloride ions in the seawater W, oxidation occurs, and chlorine is generated. 2Cl ⁇ ⁇ Cl 2 + 2e ⁇ (1) On the other hand, at the cathode, as shown in the following equation (2), electrons are given to the water in the seawater W to cause reduction, and hydroxide ions and hydrogen gas are generated. 2H 2 O + 2e ⁇ ⁇ 2OH ⁇ + H 2 (2)
  • the hydroxide ions generated at the cathode react with sodium ions in the seawater W to generate sodium hydroxide.
  • sodium hypochlorite having an inhibitory effect on the adhesion of marine organisms is generated.
  • concentration of sodium hypochlorite is preferably 2,500 to 5,000 ppm because the chloride ion concentration of seawater W is increased to 30,000 to 40,000 mg / l.
  • the electrolyzed seawater W flows out from the outlet 16 of the electrolytic cell 8 together with hydrogen gas as electrolytically treated water E, and is stored in the liquid receiving tank 6 through the second recycling line 12.
  • the electrolytically treated water E stored in the liquid receiving tank 6 is introduced into the injection line 13 by the injection pump 17 and then injected into the main seawater line 3. That is, the electrolytically treated water E containing sodium hypochlorite is injected into the main seawater line 3 through the water injection line when the water injection pump is operated.
  • part of the seawater W flowing through the seawater supply line 5 is introduced into the injection line 13 via the branch line 21. That is, a part of the seawater W in the seawater supply line 5 is used as backup seawater that supplements the flow rate of the electrolytically treated water E flowing through the injection line 13 without being supplied to the liquid receiving tank 6.
  • the control device adjusts the output current value of the DC power supply device 9 according to the flow rate of the main seawater M. Specifically, as shown in line a of FIG. 2, at time D when the number of main seawater pumps 2 decreases, the current value C so as to decrease sodium hypochlorite generated in the seawater electrolyzer 7. (A) is controlled. As a result, the chlorine concentration LRTEC (mg / l) of the electrolytically treated water E in the liquid receiving tank 6 (in the recycle line 10) gradually decreases as shown by the line b in FIG. That is, the chlorine concentration does not decrease rapidly.
  • the control device adjusts the flow rate of the electrolytically treated water E flowing through the injection line 13 according to the flow rate of the main seawater M. Specifically, as shown in the line c in FIG. 2, when the number of the main seawater pumps 2 decreases, the flow rate CLSFR (of the electrolyzed water E introduced into the main seawater line 3 through the injection line 13 at the time point D.
  • the flow rate adjustment valve 19 is controlled so that m 3 / h) decreases. That is, since the chlorine concentration of the electrolyzed water E circulating in the recycle line 10 cannot cope with a rapid decrease in the flow rate of the main seawater M, the control device throttles the flow rate of the electrolyzed water E flowing through the injection line 13.
  • the control device increases the flow rate of the seawater W flowing through the branch line 21 so as to compensate for the flow rate of the electrolyzed water E that has been reduced by the decrease in the flow rate of the main seawater M. .
  • the injection flow rate IFR (m 3 / h) becomes substantially constant as shown by the line e in FIG.
  • the flow rate of the seawater W flowing through the injection line 13 does not need to be substantially constant, and the flow rate of the fluid may be 0.7 m / s or more.
  • the control device monitors the residual chlorine content detected by the residual chlorine measuring device 25, and reduces the injection amount of the electrolyte when the residual chlorine content becomes a predetermined value or more.
  • the flow rate of the electrolytically treated water E containing sodium hypochlorite can be adjusted by providing the flow rate adjusting valve 19 in the injection line 13. Thereby, the chlorine concentration of the main seawater M can be kept constant.
  • the seawater branch flow rate adjusting valve 22 increases the seawater branch flow rate as the flow rate of the main seawater M decreases, the flow rate of the injection line 13 even when the electrolyte injection amount decreases as the flow rate of the main seawater M decreases. Scale accumulation due to the decrease can be prevented.
  • seawater branch flow rate adjustment valve 22 increases the seawater branch flow rate so that the flow rate of the fluid flowing through the injection line 13 is equal to or higher than a predetermined value, the flow rate of the fluid flowing through the injection line 13 is ensured. Scale accumulation due to a decrease in the flow rate of the line 13 can be prevented.
  • the flow rate of the main seawater M can be detected more easily.
  • residual chlorine contained in the wastewater can be reduced.
  • the seawater branch flow rate adjustment valve 22 provided in the branch line 21 can adjust the flow rate of the seawater W flowing through the branch line 21, but is not limited thereto.
  • a configuration may be adopted in which a constant flow valve is provided in the branch line 21 and the constant flow seawater W is introduced into the injection line 13 through the branch line 21.
  • the flow rate of the main seawater M may be detected by the driving power of the main seawater pump 2 instead of the number of operating main seawater pumps 2. Thereby, the flow volume of the main seawater M can be detected more correctly. Further, the flow rate of the main seawater M may be detected by the main seawater flow rate sensor 24.
  • the flow rate of the electrolyte solution containing chlorine can be adjusted by adjusting the flow rate of the fluid flowing through the injection line.
  • the chlorine concentration of the main seawater can be kept constant.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

 この海水電解システム(1)は、海水(W)が循環するリサイクルライン(10)と、リサイクルライン(10)の途中で海水(W)を電気分解する海水電解装置(7)と、リサイクルライン(10)から一部の電解液(E)を主海水(M)が流れる主海水ライン(3)へ供給する注入ライン(13)と、注入ライン(13)に設けられて、主海水(M)の流量により電解液注入量を調整する流量調整弁(19)と、を有する。

Description

海水電解システム及び電解液注入方法
 本発明は、海水に電気分解を施すことで次亜塩素酸ナトリウムを発生させる海水電解装置を備えた海水電解システム、及び電解液注入方法に関する。
 本願は、2014年2月13日に、日本に出願された特願2014-025425号に基づき優先権を主張し、その内容をここに援用する。
 従来、海水を多量に使用する火力発電所、原子力発電所、海水淡水化プラント、化学プラント等においては、その取水口や配管、復水器、各種冷却器などの海水と接する部分の藻類や貝類の付着繁殖が課題となっている。
 この課題を解決するために、天然の海水に電気分解を施すことで次亜塩素酸ナトリウム(塩素、次亜塩素酸ソーダ)を生成し、次亜塩素酸ナトリウムを含む電解液を取水口中に注入することにより海洋生物の付着を抑制する海水電解システムが提案されている(例えば特許文献1参照)。
 図3に示すように、従来の海水電解システム101は、海水を受け入れ溜めるとともに反応させる受液槽6と、海水Wを電気分解して次亜塩素酸ナトリウムを発生させる海水電解装置7と、海水電解装置7にて生成された電解処理水E(電解液)を循環させるリサイクルライン10(循環ライン)を有するリサイクル方式である。
 海水電解装置7は、筒状体をなす電解槽8内に電極としての陽極・陰極が配置された構成であり、電解槽8内に海水Wが流通される。海水W中には塩化物イオン及び水酸化イオンが存在するため、陽極・陰極間に電流を通電させると、陽極では塩素が生成され、陰極では水酸化ナトリウムが生成される。そして、塩素と水酸化ナトリウムが反応することによって、海洋生物の付着抑制効果を有する次亜塩素酸ナトリウムが生成される。
 プラントPにて使用される海水である主海水M(取水海水)は、複数の主海水ポンプ2によって主海水ライン3に導入される。海水電解システム101には、海水供給ポンプ4によって海水Wが供給される。
 そして、海水電解装置7によって生成された次亜塩素酸ナトリウムを含む電解処理水Eは、注入ライン13を介して主海水ライン3に導入される。これにより、プラントPにおいては、その取水口や配管、復水器、各種冷却器などの海水と接する部分の藻類や貝類の付着繁殖が抑制される。
特開平10-85750号公報
 ところで、従来の海水電解システム101においては、主海水ポンプ2の稼働台数減少によって取水される主海水Mの流量が変化する場合、その変化量に対して海水電解装置7の直流電源装置9の出力電流値を変化させて注入液の次亜塩素酸ナトリウムの濃度を調整していた。
 即ち、図4のラインaに示すように、主海水ポンプの台数が減少した時点Dで直流電源装置9の出力電流値C(A)を調整していた。これにより、ラインbに示すように、リサイクルライン10内の電解処理水Eの塩素濃度LRTEC(mg/l)が徐々に減少する。一方、注入ライン13を介して主海水ライン3に注入される電解処理水Eの流量CLSFR(m/h)は、ラインcに示すように一定である。
 これにより、ラインfに示すように、リサイクルライン10を有するリサイクル方式の海水電解システム101では、注入液である電解処理水Eの塩素濃度CClが出力電流値に見合った設定値となるまでに、長時間を有する。即ち、例えば、主海水ポンプ2の稼働台数が減少して主海水Mの流量が急に減少した場合、注入液の塩素濃度が瞬時的に対応しきれないため、図4にEIで示すように、一時的に注入点での海水中の塩素濃度が設定値より超過するという課題があった。
 本発明は、リサイクル方式の海水電解システムにおいて、主海水ラインに導入される塩素を含む電解液の流量を調整することにより、主海水の塩素濃度を一定に保つことを目的とする。
 本発明の第一の態様によれば、海水電解システムは、海水が循環するリサイクルラインと、前記リサイクルラインの途中で海水を電気分解する海水電解装置と、前記リサイクルラインから一部の電解液を主海水が流れる主海水ラインへ供給する注入ラインと、前記注入ラインに設けられて、前記主海水の流量により電解液注入量を調整する流量調整弁と、を有する。
 このような構成によれば、注入ラインに流量調整弁を設けたことによって、塩素を含む電解液の流量を調整することができる。これにより、主海水の塩素濃度を一定に保つことができる。
 上記海水電解システムにおいて、前記流量調整弁は、前記主海水の流量減少に伴って前記電解液注入量を減少させる構成としてもよい。
 このような構成によれば、主海水の流量が減少した場合に、塩素が主海水ラインに過剰に注入されることを防止することができる。
 上記海水電解システムにおいて、前記リサイクルラインへ海水を供給する海水供給ラインの海水の一部を前記注入ラインへ分岐する分岐ラインを有する構成としてもよい。
 このような構成によれば、分岐ラインを介して注入ラインに海水を導入することによって、注入ラインの流量低下によるスケール堆積を防止することができる。
 上記海水電解システムにおいて、前記分岐ラインを流れる海水の流量を調整する海水分岐流量調整弁を有し、前記海水分岐流量調整弁は前記主海水の流量減少に伴って海水分岐流量を増加させる構成としてもよい。
 このような構成によれば、主海水の流量減少に伴い電解液注入量が減少した場合においても注入ラインの流量低下によるスケール堆積を防止することができる。
 上記海水電解システムにおいて、前記海水分岐流量調整弁は、前記注入ラインを流れる流体の流速が所定値以上になるように海水分岐流量を増加させる構成としてもよい。
 このような構成によれば、注入ラインを流れる流体の流速が確保されるため、注入ラインの流量低下によるスケール堆積を防止することができる。
 上記海水電解システムにおいて、前記主海水の流量は前記主海水ラインに海水を供給する主海水ポンプの台数によって検知される構成としてもよい。
 このような構成によれば、より容易に主海水の流量を検知することができる。
 上記海水電解システムにおいて、前記主海水の流量は前記主海水ラインに海水を供給する主海水ポンプの駆動電力により検知する構成としてもよい。
 このような構成によれば、より正確に主海水の流量を検知することができる。
 上記海水電解システムにおいて、前記主海水ラインからの排水の残留塩素含有量を監視し、前記残留塩素含有量が所定値以上となった場合に電解液注入量を減少させる構成としてもよい。
 このような構成によれば、排水に含まれる残留塩素を低減することができる。
 本発明の第二の態様によれば、電解液注入方法は、環状のリサイクルラインに海水を供給する海水供給工程と、前記リサイクルラインの途中で前記海水を電気分解して電解液を前記リサイクルラインにて循環させる電解液循環工程と、注入ラインを介して前記リサイクルラインから一部の電解液を主海水が流れる主海水ラインへ供給する電解液注入工程と、前記主海水の流量により電解液注入量を調整する注入量調整工程と、を有する。
 上記電解液注入方法において、前記注入量調整工程においては、前記主海水の流量減少に伴って前記電解液注入量を減少させる構成としてもよい。
 上記電解液注入方法において、前記海水供給工程において供給される海水の一部を前記注入ラインへ供給する海水分岐工程を有する構成としてもよい。
 上記電解液注入方法において、前記海水分岐工程においては、前記主海水の流量減少に伴って海水分岐流量を増加させる構成としてもよい。
 上記電解液注入方法において、前記海水分岐工程においては、前記注入ラインを流れる流体の流速が所定値以上になるように前記海水分岐流量を増加させる構成としてもよい。
 上記電解液注入方法において、前記主海水の流量は前記主海水ラインに海水を供給する主海水ポンプの台数によって検知する構成としてもよい。
 上記電解液注入方法において、前記主海水の流量は前記主海水ラインに海水を供給する主海水ポンプの駆動電力により検知する構成としてもよい。
 上記電解液注入方法において、前記注入量調整工程においては、前記主海水ラインからの排水の残留塩素含有量を監視し、前記残留塩素含有量が所定値以上となった場合に前記電解液注入量を減少させる構成としてもよい。
 上記した海水電解システム及び電解液注入方法によれば、注入ラインを流れる流体の流量を調整することによって、塩素を含む電解液の流量を調整することができる。これにより、主海水の塩素濃度を一定に保つことができる。
本発明の実施形態の海水電解システムの概要を示す模式図である。 本発明の実施形態の海水電解システムにおける、主海水ポンプの稼働台数が減少した場合の制御を説明するためのグラフである。 従来の海水電解システムの概要を示す模式図である。 従来の海水電解システムにおける、主海水ポンプの稼働台数が減少した場合の制御を説明するためのグラフである。
 以下、本発明の実施形態について図面を参照して詳細に説明する。
 図1は本発明の実施形態に係る海水電解システム1の概要を示す模式図である。海水電解システム1は、主海水Mが流通する取水用水路である主海水ライン3から海水Wを取水し、海水電解装置7にて海水Wを電気分解した後、電解処理水E(電解液)を主海水ライン3に注入するシステムである。主海水ライン3の主海水Mは、火力及び原子力発電所、海水淡水化プラント、化学プラント、製鉄プラントなどのプラントPに導入されて使用される。
 この海水電解システム1は、電気分解に必要な海水Wを導入する海水供給ポンプ4と、受液槽6と、海水電解装置7と、電解処理水E(海水W)を循環させる環状のリサイクルライン10(循環流路)と、リサイクルライン10を循環する電解処理水Eを主海水ライン3に注入する注入ライン13と、を有している。
 主海水ライン3には、複数の主海水ポンプ2(取水ポンプ)によって、主海水Mが導入される。主海水ライン3に導入される主海水Mの流量は、主海水ポンプ2の稼働台数に応じて変動する。
 リサイクルライン10は、第一リサイクルライン11と第二リサイクルライン12とから構成されている。
 海水供給ポンプ4は、主海水ライン3から海水Wを汲み上げる構成としてもよいし、海洋から直接海水Wを汲み上げる構成としてもよい。
 受液槽6は、システムを循環する電解処理水Eと、海水供給ポンプ4から供給される海水Wとを貯留する槽である。
 海水電解装置7は、リサイクルライン10の途中で海水Wを電気分解する。海水電解装置7は、電解槽8と、直流電源装置9と、を有している。海水電解装置7は、海水Wを電気分解することによって、次亜塩素酸ナトリウム(塩素、次亜塩素酸ソーダ)を生成する。電解槽8は、複数の電極(図示せず)と、電解槽8の内部に電解処理水Eを導入する流入口15と、電解槽8の内部から電解処理水Eを排出する流出口16と、を有している。
 直流電源装置9は、海水Wの電気分解に供される電流を供給する。直流電源装置9としては、例えば、直流電源と定電流制御回路とを備える構成を採用することができる。直流電源は、直流電力を出力する電源であって、例えば交流電源から出力される交流電力を直流に整流して出力する構成であってもよい。
 海水供給ポンプ4と受液槽6とは、海水供給ライン5によって接続されている。海水供給ライン5には、電気分解の妨げとなる異物の混入を防ぐためのストレーナーを設けてもよい。
 受液槽6と、電解槽8の流入口15とは、第一リサイクルライン11で接続されている。即ち、受液槽6内の電解処理水Eは、第一リサイクルライン11を介して電解槽8に導入される。第一リサイクルライン11上には、注入ポンプ17が設けられている。注入ポンプ17は、循環する電解処理水Eを電解槽8に供給するとともに、電解処理水Eを注入ライン13に移送する。
 第二リサイクルライン12は、電解槽8の流出口16と受液槽6とを接続する。即ち、海水電解装置7にて生成された電解処理水Eは、第二リサイクルライン12を介して受液槽6に導入される。
 注入ライン13の下流側端部には、注入ノズル(図示せず)が設けられている。注入ノズルを設けることによって、海水電解装置7で生成された次亜塩素酸ナトリウムを主海水ライン3へ効率よく拡散させることができる。
 注入ライン13上には、流量センサ18と、流量調整弁19が設けられている。流量センサ18は、注入ライン13を流れる電解処理水Eの流量を検出するセンサである。流量調整弁19は、注入ライン13における流量センサ18の下流側に設けられた弁である。
 注入ライン13を流れる電解処理水Eの流量は、流量調整弁19と流量センサ18とを用いて制御することができる。
 海水供給ライン5と、注入ライン13との間には、海水供給ポンプ4によって供給される海水Wを直接注入ライン13に導入するための分岐ライン21(バックアップライン)が設けられている。即ち、本実施形態の海水電解システム1は、海水供給ライン5を流れる海水Wを受液槽6に送ることなく、直接注入ライン13に分岐することができる。
 分岐ライン21上には、分岐ライン21を流れる海水Wの流量を調整するための海水分岐流量調整弁22が設けられている。
 主海水ライン3には、主海水ライン3を流れる主海水Mの流量を検出する主海水流量センサ24が設けられている。プラントPから排出された使用済みの主海水Mが流入する主海水ライン3の下流には、残留塩素の濃度を計測する残留塩素測定装置25が設けられている。
 また、海水電解システム1は、主海水ライン3を流れる主海水Mの流量に基づいて主海水ライン3に導入される電解処理水E及び海水Wに含まれる次亜塩素酸ナトリウム(塩素)の注入率を一定にする制御を行う制御装置(図示せず)を備えている。
 制御装置は、主海水Mの流量に基づいて直流電源装置9の出力電流値を調整する機能を有している。制御装置は、主海水M中の塩素濃度を目標値に保つべく、例えば、主海水Mの流量が減少した場合に海水電解装置7にて生成される次亜塩素酸ナトリウムを減少させ、主海水Mの流量が増加した場合に海水電解装置7にて生成される次亜塩素酸ナトリウムを増加させる制御を行う。
 また、制御装置は、主海水ライン3を流れる主海水Mの流量に基づいて注入ライン13を流れる電解処理水Eの流量(電解液注入量)を制御する機能を有している。制御装置は、主海水M中の塩素濃度を目標値に保つべく、流量調整弁19により電解処理水Eの流量を調整する。
 制御装置は、主海水ポンプ2の稼働台数に基づいて主海水Mの流量を検知して直流電源装置9の出力電流値を調整するとともに、注入ライン13を流れる電解処理水Eの流量を調整する。換言すれば、制御装置は、主海水ポンプ2の稼働台数が変動した場合に出力電流値及び電解処理水Eの流量を調整する。
 さらに、制御装置は、主海水Mの流量減少に伴って、海水分岐流量調整弁22を操作することによって分岐ライン21を流れる海水Wの流量を増加させる機能を有している。
 次に、本実施形態の海水電解システム1を用いた電解液注入方法について説明する。
 主海水ライン3には、主海水ポンプ2によって主海水Mが導入される。主海水Mは、プラントPに導入されて例えば炉の冷却などに使用される。
 海水供給工程においては、主海水ライン3を流通する海水Wのうちの一部が、海水供給ライン5を介して受液槽6に導入される。
 電解液循環工程において、海水Wは、第一リサイクルライン11、電解槽8、及び第二リサイクルライン12に導入され、循環される。この工程において、海水Wは第一リサイクルライン11を介して電解槽8に導入される。これにより、電解槽8内の電極が海水Wに浸漬される。
 電極間の海水W内を電流が流通することで海水Wに対して電気分解が施される。
 即ち、陽極においては、下記(1)式に示すように、海水W中の塩化物イオンから電子eが奪われ酸化が起こり、塩素が生成される。
 2Cl → Cl + 2e   …(1)
 一方、陰極においては、下記(2)式に示すように、海水W中の水に電子が与えられて還元が起こり、水酸化イオンと水素ガスが生成される。
 2HO + 2e → 2OH + H   …(2)
 また、下記(3)式に示すように、陰極で生成された水酸化イオンは海水W中のナトリウムイオンと反応して水酸化ナトリウムが生成される。
 2Na + 2OH → 2NaOH   …(3)
 さらに、(4)式に示すように、水酸化ナトリウムと塩素とが反応することにより、次亜塩素酸、塩化ナトリウム及び水が生成される。
 Cl + 2NaOH → NaClO + NaCl + HO   …(4)
 このように、海水Wの電気分解に基づいて、海洋生物の付着に対して抑制効果を有する次亜塩素酸ナトリウムが生成される。
 次亜塩素酸ナトリウムの濃度は、海水Wの塩化物イオン濃度が30,000~40,000mg/lまで高められていることから、2,500~5,000ppmとされることが好ましい。
 そして、電気分解が施された海水Wは、水素ガスとともに電解処理水Eとして電解槽8の流出口16から流出し、第二リサイクルライン12を介して受液槽6に貯留される。
 電解液注入工程において、受液槽6に貯留された電解処理水Eは注入ポンプ17によって注入ライン13に導入され、次いで、主海水ライン3に注入される。即ち、次亜塩素酸ナトリウムを含んだ電解処理水Eが、注水ポンプが稼動することによって注水ラインを介して主海水ライン3に注入される。
 また、海水分岐工程において、海水供給ライン5を流れる海水Wの一部は、分岐ライン21を介して注入ライン13に導入される。即ち、海水供給ライン5の海水Wの一部は、受液槽6に供給されることなく、注入ライン13を流れる電解処理水Eの流量を補うバックアップ海水として使用される。
 制御装置は、主海水Mの流量に応じて直流電源装置9の出力電流値を調整する。
 具体的には、図2のラインaに示すように、主海水ポンプ2の台数が減少した時点Dで、海水電解装置7にて生成される次亜塩素酸ナトリウムを減少させるように電流値C(A)を制御する。これにより、図2のラインbに示すように、受液槽6内(リサイクルライン10内)の電解処理水Eの塩素濃度LRTEC(mg/l)が徐々に減少する。即ち、塩素濃度は急激に減少することはない。
 注入量調整工程において、制御装置は主海水Mの流量に応じて注入ライン13を流れる電解処理水Eの流量を調整する。
 具体的には、図2のラインcに示すように、主海水ポンプ2の台数が減少した時点Dで、注入ライン13を介して主海水ライン3に導入される電解処理水Eの流量CLSFR(m/h)が少なくなるように、流量調整弁19を制御する。即ち、リサイクルライン10を循環する電解処理水Eの塩素濃度が、主海水Mの流量の急激な減少に対応できないため、制御装置は、注入ライン13を流れる電解処理水Eの流量を絞る。
 また、制御装置は、図2のラインdに示すように、主海水Mの流量の減少によって減少させた電解処理水Eの流量を補うように、分岐ライン21を流れる海水Wの流量を増加させる。具体的には、注入ライン13を流れる流体(海水W及び電解処理水E)の流速が、少なくとも0.7m/s以上となるように分岐ライン21を流れる海水Wの流量SWBUFR(m/h)を制御する。これにより、図2のラインeに示すように、注入流量IFR(m/h)は、略一定となる。
 ただし、注入ライン13を流れる海水Wの流量は、略一定にする必要はなく、流体の流速が0.7m/s以上であればよい。
 そして、制御装置によって、直流電源装置9の電流値及び注入ライン13を介して注入される電解処理水Eの流量などが調整されることによって、図2のラインfに示すように、塩素の注入率、即ち塩素濃度CCl(ppm)は、略一定となる。
 ただし、塩素の注入率は略一定とする必要はなく、主海水ライン3に注入される塩素が過剰とならなければよい。制御装置は、残留塩素測定装置25によって検出される残留塩素含有量を監視し、残留塩素含有量が所定値以上となった場合に電解液注入量を減少させる。
 上記実施形態によれば、注入ライン13に流量調整弁19を設けたことによって、次亜塩素酸ナトリウムを含む電解処理水Eの流量を調整することができる。これにより、主海水Mの塩素濃度を一定に保つことができる。
 また、主海水Mの流量減少に伴って電解液注入量を減少させる制御を行うことによって、主海水Mの流量が減少した場合に、次亜塩素酸ナトリウムが主海水ライン3に過剰に注入されることを防止することができる。
 また、分岐ライン21を介して注入ライン13に海水Wを導入することによって、注入ライン13の流量低下によるスケール堆積を防止することができる。即ち、注入ライン13を流れる流体の流量低下に伴い、水酸化マグネシウムや炭酸カルシウムなどのスケールが堆積して配管が詰まるなどの不具合を防止することができる。
 また、海水分岐流量調整弁22が主海水Mの流量減少に伴って海水分岐流量を増加させることによって、主海水Mの流量減少に伴い電解液注入量が減少した場合においても注入ライン13の流量低下によるスケール堆積を防止することができる。
 また、海水分岐流量調整弁22が、注入ライン13を流れる流体の流速が所定値以上になるように海水分岐流量を増加させることによって、注入ライン13を流れる流体の流速が確保されるため、注入ライン13の流量低下によるスケール堆積を防止することができる。
 また、主海水Mの流量を主海水ポンプ2の台数によって検知することによって、より容易に主海水Mの流量を検知することができる。
 また、主海水ライン3からの排水の残留塩素含有量を監視することによって、排水に含まれる残留塩素を低減することができる。
 また、リサイクルライン10を設けたことで、電気分解の際に発生したマンガン、マグネシウム、カルシウム等のスケール成分が電解処理水Eと共に電解槽8内に導入される。
 このようにスケール成分を含んだ電解処理水Eが再び電解槽8内に導入されることにより、スケール成分による種晶効果により、電極表面へのスケール付着を防止することができる。これにより、電極の耐久性の向上及び塩素発生効率の低下の抑制を図ることが可能となる。
 なお、上記実施形態においては、分岐ライン21に設けられた海水分岐流量調整弁22は、分岐ライン21を流れる海水Wの流量を調整可能であるとしたが、これに限ることはない。例えば、分岐ライン21に定流量弁を設けて分岐ライン21を介して注入ライン13に定流量の海水Wを導入する構成としてもよい。
 また、主海水Mの流量は、主海水ポンプ2の稼働台数ではなく、主海水ポンプ2の駆動電力により検知する構成としてもよい。これにより、より正確に主海水Mの流量を検知することができる。
 また、主海水Mの流量は、主海水流量センサ24によって検出してもよい。
 以上、本発明の実施形態について図面を参照して詳述したが、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、及びその他の変更が可能である。また、本発明は実施形態によって限定されることはなく、クレームの範囲によってのみ限定される。
 上記した海水電解システム及び電解液注入方法によれば、注入ラインを流れる流体の流量を調整することによって、塩素を含む電解液の流量を調整することができる。これにより、主海水の塩素濃度を一定に保つことができる。
 1  海水電解システム
 2  主海水ポンプ
 3  主海水ライン
 4  海水供給ポンプ
 5  海水供給ライン
 6  受液槽
 7  海水電解装置
 8  電解槽
 9  直流電源装置
 10  リサイクルライン
 11  第一リサイクルライン
 12  第二リサイクルライン
 13  注入ライン
 15  流入口
 16  流出口
 17  注入ポンプ
 18  流量センサ
 19  流量調整弁
 21  分岐ライン
 22  海水分岐流量調整弁
 24  主海水流量センサ
 25  残留塩素測定装置
 E  電解処理水(電解液)
 M  主海水
 P  プラント
 W  海水

Claims (16)

  1.  海水が循環するリサイクルラインと、
     前記リサイクルラインの途中で海水を電気分解する海水電解装置と、
     前記リサイクルラインから一部の電解液を主海水が流れる主海水ラインへ供給する注入ラインと、
     前記注入ラインに設けられて、前記主海水の流量により電解液注入量を調整する流量調整弁と、
     を有する海水電解システム。
  2.  前記流量調整弁は、前記主海水の流量減少に伴って前記電解液注入量を減少させる請求項1に記載の海水電解システム。
  3.  前記リサイクルラインへ海水を供給する海水供給ラインの海水の一部を前記注入ラインへ分岐する分岐ラインを更に有する請求項1又は請求項2に記載の海水電解システム。
  4.  前記分岐ラインを流れる海水の流量を調整する海水分岐流量調整弁を更に有し、
     前記海水分岐流量調整弁は前記主海水の流量減少に伴って海水分岐流量を増加させる請求項3に記載の海水電解システム。
  5.  前記海水分岐流量調整弁は、前記注入ラインを流れる流体の流速が所定値以上になるように海水分岐流量を増加させる請求項4に記載の海水電解システム。
  6.  前記主海水の流量は前記主海水ラインに海水を供給する主海水ポンプの台数によって検知される請求項1から請求項5のいずれか一項に記載の海水電解システム。
  7.  前記主海水の流量は前記主海水ラインに海水を供給する主海水ポンプの駆動電力により検知する請求項1から請求項5のいずれか一項に記載の海水電解システム。
  8.  前記主海水ラインからの排水の残留塩素含有量を監視し、前記残留塩素含有量が所定値以上となった場合に電解液注入量を減少させる請求項1から請求項7のいずれか一項に記載の海水電解システム。
  9.  環状のリサイクルラインに海水を供給する海水供給工程と、
     前記リサイクルラインの途中で前記海水を電気分解して電解液を前記リサイクルラインにて循環させる電解液循環工程と、
     注入ラインを介して前記リサイクルラインから一部の電解液を主海水が流れる主海水ラインへ供給する電解液注入工程と、
     前記主海水の流量により電解液注入量を調整する注入量調整工程と、を有する電解液注入方法。
  10.  前記注入量調整工程において、前記主海水の流量減少に伴って前記電解液注入量を減少させる請求項9に記載の電解液注入方法。
  11.  前記海水供給工程において供給される海水の一部を前記注入ラインへ供給する海水分岐工程を有する請求項9又は請求項10に記載の電解液注入方法。
  12.  前記海水分岐工程において、前記主海水の流量減少に伴って海水分岐流量を増加させる請求項11に記載の電解液注入方法。
  13.  前記海水分岐工程において、前記注入ラインを流れる流体の流速が所定値以上になるように前記海水分岐流量を増加させる請求項12に記載の電解液注入方法。
  14.  前記主海水の流量は前記主海水ラインに海水を供給する主海水ポンプの台数によって検知する請求項9から請求項13のいずれか一項に記載の電解液注入方法。
  15.  前記主海水の流量は前記主海水ラインに海水を供給する主海水ポンプの駆動電力により検知する請求項9から請求項13のいずれか一項に記載の電解液注入方法。
  16.  前記注入量調整工程において、前記主海水ラインからの排水の残留塩素含有量を監視し、前記残留塩素含有量が所定値以上となった場合に前記電解液注入量を減少させる請求項9から請求項15のいずれか一項に記載の電解液注入方法。
PCT/JP2015/053767 2014-02-13 2015-02-12 海水電解システム及び電解液注入方法 WO2015122435A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580006031.0A CN105939969B (zh) 2014-02-13 2015-02-12 海水电解***以及电解液注入方法
KR1020167020739A KR101891906B1 (ko) 2014-02-13 2015-02-12 해수 전해 시스템 및 전해액 주입 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-025425 2014-02-13
JP2014025425A JP6318444B2 (ja) 2014-02-13 2014-02-13 海水電解システム及び電解液注入方法

Publications (1)

Publication Number Publication Date
WO2015122435A1 true WO2015122435A1 (ja) 2015-08-20

Family

ID=53800177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053767 WO2015122435A1 (ja) 2014-02-13 2015-02-12 海水電解システム及び電解液注入方法

Country Status (4)

Country Link
JP (1) JP6318444B2 (ja)
KR (1) KR101891906B1 (ja)
CN (1) CN105939969B (ja)
WO (1) WO2015122435A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116395898A (zh) * 2023-04-28 2023-07-07 青岛华丰伟业电力科技工程有限公司 一种海水淡化厂自动启停控制***

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108358284A (zh) * 2017-12-29 2018-08-03 中国船舶重工集团公司第七二五研究所 一种自动控制运行的海水管路电解防污装置及方法
JP7083452B2 (ja) * 2018-08-28 2022-06-13 中国電力株式会社 塩素強化注入運転装置および方法
KR102374891B1 (ko) * 2021-06-14 2022-03-15 김을환 살균수 생성 장치 제어 방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02111496A (ja) * 1989-09-14 1990-04-24 Hitachi Ltd 残留塩素濃度連続自動検知装置
JPH02175889A (ja) * 1988-12-27 1990-07-09 Mitsubishi Heavy Ind Ltd 海水電気分解装置の出力制御方式
JPH04148313A (ja) * 1990-10-11 1992-05-21 Mitsubishi Heavy Ind Ltd 海洋生物付着防止装置
JPH0841670A (ja) * 1994-07-29 1996-02-13 Mitsubishi Heavy Ind Ltd 塩素発生装置の塩素量制御装置
JPH1085750A (ja) * 1996-09-18 1998-04-07 Mitsubishi Heavy Ind Ltd 海水電気分解装置
JP2003305476A (ja) * 2002-04-15 2003-10-28 Toa Harbor Works Co Ltd 海水の殺菌方法および殺菌装置
WO2005077833A1 (ja) * 2004-02-13 2005-08-25 Mitsubishi Heavy Industries, Ltd. 液体の無害化処理方法及びその装置
JP2008188506A (ja) * 2007-02-01 2008-08-21 Mitsubishi Heavy Ind Ltd 液体の無害化処理装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4162453B2 (ja) * 2002-09-04 2008-10-08 三洋電機株式会社 水処理装置
CN101810994B (zh) * 2010-03-11 2011-11-30 大连海事大学 一种船舶联合防污染***

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02175889A (ja) * 1988-12-27 1990-07-09 Mitsubishi Heavy Ind Ltd 海水電気分解装置の出力制御方式
JPH02111496A (ja) * 1989-09-14 1990-04-24 Hitachi Ltd 残留塩素濃度連続自動検知装置
JPH04148313A (ja) * 1990-10-11 1992-05-21 Mitsubishi Heavy Ind Ltd 海洋生物付着防止装置
JPH0841670A (ja) * 1994-07-29 1996-02-13 Mitsubishi Heavy Ind Ltd 塩素発生装置の塩素量制御装置
JPH1085750A (ja) * 1996-09-18 1998-04-07 Mitsubishi Heavy Ind Ltd 海水電気分解装置
JP2003305476A (ja) * 2002-04-15 2003-10-28 Toa Harbor Works Co Ltd 海水の殺菌方法および殺菌装置
WO2005077833A1 (ja) * 2004-02-13 2005-08-25 Mitsubishi Heavy Industries, Ltd. 液体の無害化処理方法及びその装置
JP2008188506A (ja) * 2007-02-01 2008-08-21 Mitsubishi Heavy Ind Ltd 液体の無害化処理装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116395898A (zh) * 2023-04-28 2023-07-07 青岛华丰伟业电力科技工程有限公司 一种海水淡化厂自动启停控制***
CN116395898B (zh) * 2023-04-28 2024-01-16 青岛华丰伟业电力科技工程有限公司 一种海水淡化厂自动启停控制***

Also Published As

Publication number Publication date
KR101891906B1 (ko) 2018-08-24
JP2015150483A (ja) 2015-08-24
JP6318444B2 (ja) 2018-05-09
CN105939969A (zh) 2016-09-14
KR20160103119A (ko) 2016-08-31
CN105939969B (zh) 2019-01-08

Similar Documents

Publication Publication Date Title
WO2012070468A1 (ja) 海水電解システム及び海水電解方法
US6814858B2 (en) Water treatment system
JP5791377B2 (ja) 海水電解システム及び海水電解方法
WO2015122435A1 (ja) 海水電解システム及び電解液注入方法
CN105793199A (zh) 利用二氧化碳高效电解船舶压舱水的处理设备及处理方法
JP2018108562A (ja) 電解水生成装置及び電解水生成方法
KR101763351B1 (ko) 선박 평형수 처리 장치
JP2007301540A (ja) 微酸性電解水生成装置
KR101517676B1 (ko) 고농도 미산성 차아염소산수 생성 장치
KR101840234B1 (ko) 염소 주입량 및 온도 조절이 가능한 염소수 전해소독 장치
JP5758099B2 (ja) 次亜塩素酸水の製造装置及び製造方法
KR101967077B1 (ko) 전해 시스템
JP6114335B2 (ja) 海水電解システム及び海水電解方法
JP6086306B2 (ja) バラスト水処理装置およびバラスト水処理方法
KR200462705Y1 (ko) 의료기기 소독용 차아염소산수 생성장치
KR101672243B1 (ko) 차아염소산염 공급 장치
JP2019076814A (ja) 水処理システム、水処理システムの電極腐食抑制方法及び電極腐食抑制装置
KR101946865B1 (ko) 해수전해설비 염소농도 제어 시스템
JP2020006340A (ja) 海水電解装置
JP2005279519A (ja) 電解水生成装置
KR101655795B1 (ko) 조수기를 사용한 저염도 해수 환경의 해양 생물 부착 방지 장치 및 이를 이용한 해양 생물의 부착 방지 방법
KR20160009380A (ko) 밸러스트수 처리 방법
JPWO2020217372A1 (ja) バラスト水処理システムおよびそれを備えた船舶
JP2015186806A (ja) 次亜塩素酸水の製造装置及び製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15748874

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167020739

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201605070

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15748874

Country of ref document: EP

Kind code of ref document: A1