WO2015121983A1 - 直流送電系統の保護システムおよび交流/直流変換器ならびに直流送電系統の遮断方法 - Google Patents

直流送電系統の保護システムおよび交流/直流変換器ならびに直流送電系統の遮断方法 Download PDF

Info

Publication number
WO2015121983A1
WO2015121983A1 PCT/JP2014/053527 JP2014053527W WO2015121983A1 WO 2015121983 A1 WO2015121983 A1 WO 2015121983A1 JP 2014053527 W JP2014053527 W JP 2014053527W WO 2015121983 A1 WO2015121983 A1 WO 2015121983A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
power transmission
transmission system
circuit breaker
current
Prior art date
Application number
PCT/JP2014/053527
Other languages
English (en)
French (fr)
Inventor
和順 田畠
伊藤 弘基
邦夫 菊池
信 宮下
健次 亀井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US15/116,867 priority Critical patent/US9800171B2/en
Priority to JP2014520858A priority patent/JP5622978B1/ja
Priority to PCT/JP2014/053527 priority patent/WO2015121983A1/ja
Priority to EP14882204.2A priority patent/EP3107172B1/en
Publication of WO2015121983A1 publication Critical patent/WO2015121983A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/1216Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for AC-AC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/125Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for rectifiers
    • H02H7/1257Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for rectifiers responsive to short circuit or wrong polarity in output circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
    • H02H9/025Current limitation using field effect transistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J5/00Circuit arrangements for transfer of electric power between ac networks and dc networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/125Avoiding or suppressing excessive transient voltages or currents
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/021Details concerning the disconnection itself, e.g. at a particular instant, particularly at zero value of current, disconnection in a predetermined order

Definitions

  • the present invention relates to a DC power transmission system protection system, an AC / DC converter, and a DC power transmission system shutoff method.
  • Patent Document 2 various interruption methods using a DC breaker are proposed.
  • Patent Document 3 further discloses that the duty of the DC circuit breaker is reduced by inserting a current limiting device in the DC circuit to limit the fault current.
  • JP 2013-55885 A Japanese Patent Laid-Open No. 62-123922 JP 2009-011117 A
  • the current limiting element is required to have the ability to limit the current of kA order, and the high voltage ⁇ Since the ability to withstand large currents is required, there is still a problem that large scale is inevitable. Needless to say, increasing the scale of the current limiting element not only increases the cost, but also leads to an energization loss during DC power transmission.
  • the present invention has been made in view of the above, and a DC power transmission system protection system capable of shortening the time until restart of the DC power transmission system while avoiding the increase in size and cost of equipment.
  • Another object of the present invention is to provide an AC / DC converter and a method for interrupting a DC power transmission system.
  • the present invention is a DC power transmission system protection system applied to a configuration having an AC / DC converter between an AC system and a DC power transmission system,
  • An AC circuit breaker is provided between the AC system and the AC / DC converter, a DC circuit breaker is provided between the DC power transmission system and the AC / DC converter, and the AC / DC
  • a bypass switch capable of short-circuiting the converter cell constituting the AC / DC converter is provided inside or outside the converter, and when the DC power transmission system is faulty, the bypass switch is turned on, and the AC The supply of DC power from the system to the DC transmission system is cut off.
  • FIG. 1 is a diagram illustrating a configuration example of a protection system for a DC power transmission system according to a first embodiment.
  • FIG. 2 is a diagram illustrating a circuit configuration example of the converter cell.
  • FIG. 3 is a diagram showing a circuit configuration example different from that of FIG. 2 of the converter cell.
  • FIG. 4 is a diagram showing a circuit configuration example different from those in FIGS. 2 and 3 of the converter cell.
  • FIG. 5 is a diagram illustrating a configuration example of an AC / DC converter configured using the converter cell of FIG. 2.
  • FIG. 6 is a diagram illustrating a waveform example of a direct current and an operation sequence example of each device in the protection system of the first embodiment.
  • FIG. 7 is a diagram showing a DC current waveform according to the prior art when a DC line fault is removed by an AC circuit breaker.
  • FIG. 8 is a diagram illustrating a configuration example of the protection system according to the second embodiment.
  • FIG. 9 is a diagram showing a DC current waveform in the second embodiment.
  • FIG. 10 is a diagram illustrating a configuration example of an AC / DC converter in the protection system according to the third embodiment.
  • FIG. 11 is a diagram illustrating a configuration example of an AC / DC converter in the protection system according to the fourth embodiment.
  • FIG. 12 is a diagram illustrating a configuration example of the protection system according to the fifth embodiment.
  • FIG. 13 is a diagram illustrating a configuration example of the protection system according to the sixth embodiment.
  • FIG. 14 is a diagram illustrating a configuration example of the protection system according to the seventh embodiment.
  • FIG. 15 is a diagram illustrating a configuration example of a cell in the AC / DC converter of the protection system according to the eighth embodiment.
  • FIG. 16 is a diagram illustrating a configuration example of a DC circuit breaker (forced arc extinguishing method) applicable to the protection systems according to Embodiments 1 to 8.
  • FIG. 17 is a diagram illustrating a configuration example of a DC circuit breaker (self-excited vibration extinguishing method) applicable to the protection systems according to Embodiments 1 to 8.
  • FIG. 18 is a diagram illustrating a configuration example of a DC circuit breaker (semiconductor system) applicable to the protection systems according to Embodiments 1 to 8.
  • FIG. 1 is a diagram illustrating a configuration example of a DC power transmission system protection system (hereinafter simply referred to as “protection system”) according to the first embodiment.
  • the protection system according to Embodiment 1 includes an AC circuit breaker 3, an AC / DC converter 5, a DC circuit breaker 7, and a control device 30.
  • the AC line 4 that electrically connects the transformer 2 and the AC / DC converter 5 is provided with an AC circuit breaker 3, and is connected to the DC side of the AC / DC converter 5, and the power of the DC power transmission system
  • a DC circuit breaker 7 is provided in the DC line 6 which is a line.
  • the control device 30 is a control unit that controls at least the AC circuit breaker 3, the AC / DC converter 5, and the DC circuit breaker 7.
  • the measurement information INF by a sensor (not shown) arranged at the main points of the AC system and the DC power transmission system. Are used to generate and output control signals (AC_S, SW, DC_S) for controlling the AC circuit breaker 3, the AC / DC converter 5 and the DC circuit breaker 7.
  • FIG. 2 is a diagram showing a circuit configuration example of a cell (hereinafter referred to as “converter cell”) 9 which is a structural unit of the AC / DC converter 5, and FIG. 3 and FIG. It is a figure which shows the example of a circuit structure.
  • FIG. 5 is a diagram showing a configuration example of the AC / DC converter 5 configured using the converter cell 9 of FIG.
  • the converter cell 9 includes an IGBT which is an example of a transistor element and two switching elements 9a and 9b each having a diode connected in reverse parallel to the IGBT.
  • a capacitor 9c is connected to both ends of the switching elements 9a and 9b connected in series, and a terminal drawn from both ends of the switching element 9b is a cell terminal 9d.
  • a bypass switch 8 is connected to both ends (collector terminal and emitter terminal) of any one switching element of the converter cell 9 (switching element 9b in the example of FIG. 2).
  • the bypass switch 8 is a switch (switch) that is connected between the cell terminals 9d and is configured to be able to short-circuit the switching element 9b by closing the contact point. Energization is possible.
  • the switching elements 9a and 9b in the cell are generally composed of elements having a small current capacity, and the function of the bypass switch 8 cannot be realized by the switching elements 9a and 9b.
  • the internal configuration of the converter cell 9 is not limited to the configuration shown in FIG. 2, but a configuration in which switching elements 9a and 9b as shown in FIG. 3 are connected in parallel, or a switching element 9a as shown in FIG. , 9b are configured in series and parallel, and a more complicated control is conceivable in which the bypass switch 8 is connected to each connection point of the switching elements 9a, 9b.
  • the converter cell 9 is shown in FIGS. The present invention is applicable even with such a configuration.
  • the internal configuration of the AC / DC converter 5 is as shown in FIG. 5, and a plurality of converter cells 9 are connected in series to each phase on the AC side, and are configured by connecting the cell terminals 9d in series. can do.
  • the AC circuit breaker 3 and the DC circuit breaker 7 are in the on state, and the bypass switch 8 is in the open state.
  • FIG. 6 is a diagram showing an operation sequence example of the waveform example and the devices of the DC current I DC in the protection system of the first embodiment.
  • FIG. 7 is a diagram illustrating a DC current waveform when a DC line fault is removed by an AC circuit breaker as in Patent Document 1 described above.
  • the horizontal axis represents time
  • the vertical axis represents the direct current I DC flowing through the direct current line. The meaning of each symbol shown on the horizontal axis is as follows.
  • t f Accident occurred (Figs. 6 and 7) t BP-C : Bypass switch input (Fig. 6) t AC-O : AC circuit breaker circuit breaker (Figs. 6 and 7) t ex : Zero point generation, arc extinction (Fig. 7) t DC-O : DC breaker circuit breaker (Fig. 6) t AC-C : AC breaker inserted (Figs. 6 and 7) DC breaker input, bypass switch open (Fig. 6) t res : Converter operation restart (Figs. 6 and 7)
  • the behavior at the time of an accident in the protection system according to Embodiment 1 is as follows. First, the rated value of the DC current flows in the steady state, when an accident occurs in the DC line 6 at time t f, the DC current rises rapidly. However, if all the bypass switches 8 in each converter cell 9 are simultaneously turned on at time t BP-C , the AC side is short-circuited and no current flows into the DC side. Therefore, from the time point t BP-C, the direct current is attenuated by the time constant of the circuit. Thereafter, the AC circuit breaker 3 interrupts the short circuit current on the AC side at time t AC-O .
  • the attenuated direct current is interrupted by the direct current breaker 7 to eliminate the accident.
  • the AC circuit breaker 3 and the DC circuit breaker 7 are turned on, and all the bypass switches 8 in each converter cell 9 are opened simultaneously, but these operations are in no particular order. Yes, it is sufficient that all these operations have been performed by the converter operation resumption time t res .
  • the above behavior can be derived, accident removal can be performed at a higher speed than the conventional method of removing an accident with only an AC circuit breaker, and the AC / DC converter 5
  • the operation resumption time can be advanced.
  • the accident current is attenuated at high speed by the bypass switch, and the attenuated current is interrupted by the DC circuit breaker. A restart can be realized.
  • the DC circuit breaker since the DC circuit breaker only needs to interrupt the attenuated DC current, it can be expected to reduce the scale of the system, and an excessive burden is imposed on each device. Therefore, it is possible to reduce the cost of the entire system configuration.
  • FIG. FIG. 8 is a diagram illustrating a configuration example of the protection system according to the second embodiment.
  • a current limiter 10 that increases the circuit resistance of the DC line 6 is provided.
  • the current limiter 10 is configured by a device in which a high-speed switch such as a semiconductor element and a resistor are configured in parallel.
  • a high-speed switch such as a semiconductor element and a resistor are configured in parallel.
  • FIG. 9 is a diagram showing a direct current waveform in the second embodiment. The meaning of each symbol shown on the horizontal axis is as follows.
  • the direct current has a waveform that decays with a circuit time constant. Thereafter, by operating the current limiter 10 at time t lim , the circuit time constant becomes smaller, and the direct current starts to decay at a higher speed. With these behaviors, the time until accident removal can be shortened as compared with the first embodiment.
  • the system can be restarted at higher speed by applying the current limiter.
  • FIG. 10 is a diagram showing a configuration different from FIG. 5 as a configuration example of the AC / DC converter in the protection system according to the third embodiment.
  • a current limiter 10 that increases the resistance of the line is added to each phase inside the AC / DC converter 5.
  • the DC current at the time of the accident can be rapidly attenuated by the same operation as in the second embodiment, and the time until the accident can be removed can be shortened.
  • the current limiter 10 since the current limiter 10 is provided in each phase of the AC / DC converter 5, the current limiter 10 only needs to limit the current shunted to each phase. Although the number of vessels 10 increases, the scale of each can be reduced.
  • the system can be restarted at higher speed by applying the current limiter.
  • FIG. 11 is a diagram illustrating a configuration different from FIGS. 5 and 10 as a configuration example of the AC / DC converter in the protection system according to the fourth embodiment.
  • one bypass switch 8 is connected to a cell group including a plurality of cells 9 (two cells in the example of FIG. 11) as a group.
  • bypass switch 8 If the AC / DC converter 5 shown in FIG. 11 is used, although the rated voltage of the bypass switch 8 increases, the number of bypass switches 8 can be reduced, and the overall cost can be reduced. Further, by reducing the number of switches, it becomes easy to ensure simultaneity of control, and improvement in reliability can be expected.
  • FIG. 12 is a diagram illustrating a configuration example of the protection system according to the fifth embodiment.
  • one or more bypass switches 8 are connected between the DC side terminals of the AC / DC converter 5.
  • the same effect as in the first embodiment can be expected by turning on the bypass switch 8 in the case of a DC accident.
  • the effect can be obtained if at least one bypass switch 8 is installed between the DC side terminals. Therefore, the bypass switch 8 is required for each phase of the AC / DC converter 5.
  • the number of bypass switches 8 can be reduced as compared with the fourth aspect, and further improvement in reliability can be expected.
  • the bypass switch 8 can be installed outside the AC / DC converter 5, an effect of increasing the flexibility of the layout in the DC power transmission system can be expected.
  • bypass switch is provided between the DC terminals of the AC / DC converter, it is possible to reduce the number of bypass switches, As a result, it is possible to ensure the simultaneity of control and improve the reliability while reducing the cost.
  • FIG. FIG. 13 is a diagram illustrating a configuration example of the protection system according to the sixth embodiment.
  • a ground switch 11 for grounding the AC / DC converter 5 is provided on each of the positive and negative electrodes on the DC side of the AC / DC converter 5.
  • the ground switch is provided for each of the positive and negative electrodes on the DC side in the AC / DC converter, the number of components is reduced. Therefore, it is possible to improve the reliability while reducing the cost.
  • FIG. FIG. 14 is a diagram illustrating a configuration example of the protection system according to the seventh embodiment.
  • an AC circuit breaker 3 is provided on the AC side of each AC / DC converter 5, and each AC The DC circuit breaker 7 is provided on both sides of the DC line 6 on the DC side of the DC converter 5.
  • Each AC / DC converter 5 includes a bypass switch 8 (see FIG. 2).
  • the operation of the AC / DC converter 5 located in the immediate vicinity of the accident point is the same as in the first embodiment. That is, by turning on the bypass switch 8 of the AC / DC converter 5, the DC current is attenuated, and the attenuated current is interrupted by the DC circuit breaker 7 to perform high-speed restart. By restarting the AC / DC converter 5 located immediately near the accident point at a high speed, the AC / DC converter 5 located farther away from the accident point causes the DC line voltage before stopping due to the influence of the accident. Recovers and operation can be continued without stopping.
  • the AC / DC converter located immediately near the accident point can be restarted at high speed.
  • FIG. FIG. 15 is a diagram illustrating a configuration different from that of FIG. 2 as a configuration example of a cell in the AC / DC converter of the protection system according to the eighth embodiment.
  • a bidirectional semiconductor switch 12 is provided between the cell terminals 9d.
  • the configuration shown in the eighth embodiment may be applied to a protection system to which the second to seventh embodiments are applied.
  • the bidirectional semiconductor switch 12 is off and no current flows.
  • the element applied to the bidirectional semiconductor switch 12 is a large-capacity element capable of energizing a large current for a long time, and an accident current can be energized.
  • the switching elements 9a and 9b in the cell are generally composed of elements having a small current capacity, and when an accident occurs, it is essential to perform an off operation or bypass by another device. , 9b cannot be realized. With the above operation, the same effects as in the first to seventh embodiments can be obtained. Further, by applying the bidirectional semiconductor switch, it is possible to operate at a higher speed than the bypass switch.
  • the fault current is attenuated at high speed by the bidirectional semiconductor switch, and the attenuated current is interrupted by the DC circuit breaker.
  • a high-speed restart can be realized.
  • FIG. 16 is a diagram illustrating a configuration example of the DC circuit breaker 7 applicable to the protection systems according to Embodiments 1 to 8.
  • a forced arc extinguishing type direct current is shown. It is the form which applied the circuit breaker.
  • the charging switch 17 is turned on, and the capacitor 14 that has been charged in advance is discharged by means such as a DC power source 16 so that the resonance current with the reactor 15 is superimposed on the direct current and the current is superposed.
  • This is a direct current circuit breaker system in which a zero point is formed and a breaker 13 cuts off. After the shut-off unit 13 is shut off, the varistor 18 operates to suppress overvoltage generated in the shut-off unit 13.
  • FIG. FIG. 17 is a diagram showing a configuration example of the DC circuit breaker 7 applicable to the protection systems according to Embodiments 1 to 8.
  • a self-excited vibration extinguishing system is shown. It is the form which applied the direct current circuit breaker.
  • the self-excited vibration extinguishing system is a DC circuit breaker system in which a current zero point is formed by a current expansion vibration phenomenon based on the interaction between the arc and the capacitor 14 and the reactor 15. After the shut-off unit 13 is shut off, the varistor 18 operates to suppress overvoltage generated in the shut-off unit 13.
  • Such a self-excited vibration extinguishing type DC circuit breaker 7 has a simple configuration and can be realized at low cost. For this reason, speeding up the restart time of the entire system can be realized at low cost.
  • FIG. FIG. 18 is a diagram showing a configuration example of the DC circuit breaker 7 applicable to the protection systems according to the first to eighth embodiments.
  • the DC circuit breaker 7 in the first to eighth embodiments a semiconductor type DC circuit breaker is shown. It is the form which applied.
  • the semiconductor system is a system in which a direct current is interrupted by the semiconductor element 19 and can operate at a higher speed than the mechanical DC circuit breakers shown in the ninth and tenth embodiments although it is relatively expensive. After the semiconductor element 19 is shut off, the varistor 18 operates so as to suppress overvoltage generated in the semiconductor element 19.
  • Such a method using the semiconductor type DC circuit breaker 7 can be considered as a combination of a semiconductor element and a mechanical switch. For this reason, the advantages of the semiconductor element and the mechanical switch can be utilized, and the restart time of the entire system can be further increased.
  • the present invention is useful as a protection system for a DC power transmission system that can shorten the time until restart of the DC power transmission system while avoiding the increase in size and cost of equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Rectifiers (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Abstract

 交流系統1と交流/直流変換器5との間には交流遮断器3が設けられ、直流線路6と交流/直流変換器5との間には直流遮断器7が設けられる。交流/直流変換器5には、交流/直流変換器5を構成する変換器セルを短絡可能なバイパススイッチが接続される。直流線路6の事故時にはバイパススイッチを投入して、交流系統1から直流線路6への直流電力の供給を遮断する。

Description

直流送電系統の保護システムおよび交流/直流変換器ならびに直流送電系統の遮断方法
 本発明は、直流送電系統の保護システムおよび交流/直流変換器ならびに直流送電系統の遮断方法に関する。
 IGBT(Insulated Gate Bipolar Transistor)等の自己消弧形半導体素子を適用した自励式直流送電においては、直流線路にて地絡もしくは極間短絡事故(以下単に「事故」という)が発生した場合、交流電力を直流電力に変換する変換器(以下「交流/直流変換器」と記載する)の制御を停止したとしても、交流/直流変換器素子保護用の還流ダイオードを介して電流が交流側より流れ込むため、事故電流が増加し続ける。この事故電流を遮断する直流遮断器が直流線路に設けられていない場合、例えば下記特許文献1では、交流/直流変換器に繋がる交流系統の交流遮断器を遮断することにより事故除去を行っている。
 また直流遮断器によって直流線路事故除去を行うことも考えられる。例えば下記特許文献2では、直流遮断器を用いた各種の遮断方式が提案されている。この場合、さらに下記特許文献3では、直流回路に限流装置を挿入し、事故電流を限流することで、直流遮断器の責務軽減を行うことが開示されている。
特開2013-55885号公報 特開昭62-123921号公報 特開2009-011117号公報
 しかしながら、上記の特許文献1のように直流線路事故を交流遮断器によって除去する手法の場合、交流遮断器の遮断時間に数十ms程度要する上に、交流遮断器の遮断後にも直流側には回路時定数による減衰電流が一定の時間流れ続け、電流零点形成の後に事故点のアークが消滅するまで待たねばならず、系統の再起動までに時間を要するという課題があった。
 また、上記特許文献2のように、直流遮断器によって直流線路事故除去を行う場合、自励式直流送電においては事故時の直流電流が高速に立ち上がり、そのピークも大きいという特徴があるため、直流遮断器は事故電流が立ち上がる前に遮断を行う高速動作責務もしくはピーク値に達した後の大電流を遮断する大電流遮断責務を要求され、直流遮断器が大型化して、装置が高価となるという課題があった。
 さらに上記特許文献3のように、限流装置を直流線路に挿入して事故時の電流を抑制する場合、その限流素子はkAオーダーもの電流を限流する能力が必要となる上、高電圧・大電流への耐量を要求されるため、やはり大規模化が避けられないという課題があった。限流素子の大規模化はコストの増大のみならず、直流送電時の通電ロスにも繋がるため、これを回避することが求められることは言うまでもない。
 本発明は、上記に鑑みてなされたものであって、機器の大型化、高コスト化を回避しつつ、直流送電系統の再起動までの時間を短縮化することができる直流送電系統の保護システムおよび交流/直流変換器ならびに直流送電系統の遮断方法を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、交流系統と直流送電系統との間に交流/直流変換器を有する構成に適用される直流送電系統の保護システムであって、前記交流系統と前記交流/直流変換器との間には交流遮断器が設けられ、前記直流送電系統と前記交流/直流変換器との間には直流遮断器が設けられると共に、前記交流/直流変換器の内部もしくは外部には、当該交流/直流変換器を構成する変換器セルを短絡可能なバイパススイッチが設けられており、前記直流送電系統の事故時には前記バイパススイッチを投入して、前記交流系統から前記直流送電系統への直流電力の供給を遮断することを特徴とする。
 この発明によれば、機器の大型化、高コスト化を回避しつつ、直流送電系統の再起動までの時間を短縮化することができる、という効果を奏する。
図1は、実施の形態1に係る直流送電系統の保護システムの一構成例を示す図である。 図2は、変換器セルの回路構成例を示す図である。 図3は、変換器セルの図2とは異なる回路構成例を示す図である。 図4は、変換器セルの図2および図3とは異なる回路構成例を示す図である。 図5は、図2の変換器セルを用いて構成される交流/直流変換器の一構成例を示す図である。 図6は、実施の形態1の保護システムにおける直流電流の波形例および各機器の動作シーケンス例を示す図である。 図7は、直流線路事故を交流遮断器によって除去する場合の従来技術に係る直流電流波形を示す図である。 図8は、実施の形態2に係る保護システムの一構成例を示す図である。 図9は、実施の形態2における直流電流波形を示す図である。 図10は、実施の形態3に係る保護システムにおける交流/直流変換器の構成例を示す図である。 図11は、実施の形態4に係る保護システムにおける交流/直流変換器の構成例を示す図である。 図12は、実施の形態5に係る保護システムの一構成例を示す図である。 図13は、実施の形態6に係る保護システムの一構成例を示す図である。 図14は、実施の形態7に係る保護システムの一構成例を示す図である。 図15は、実施の形態8に係る保護システムの交流/直流変換器におけるセルの構成例を示す図である。 図16は、実施の形態1~8に係る保護システムに適用可能な直流遮断器(強制消弧方式)の構成例を示す図である。 図17は、実施の形態1~8に係る保護システムに適用可能な直流遮断器(自励振動消弧方式)の構成例を示す図である。 図18は、実施の形態1~8に係る保護システムに適用可能な直流遮断器(半導体方式)の構成例を示す図である。
 以下に添付図面を参照し、本発明の実施の形態に係る直流送電系統の保護システム、交流/直流変換器および直流送電系統の遮断方法について説明する。なお、以下に示す実施の形態により本発明が限定されるものではない。
実施の形態1.
 図1は、実施の形態1に係る直流送電系統の保護システム(以下単に「保護システム」という)の一構成例を示す図である。実施の形態1に係る保護システムは、図1に示すように、交流遮断器3、交流/直流変換器5、直流遮断器7および制御装置30を備えて構成される。
 交流/直流変換器5には、変圧器2を介して交流系統1からの交流電力が供給される。変圧器2と交流/直流変換器5とを電気的に接続する交流線路4には交流遮断器3が設けられ、また、交流/直流変換器5の直流側に接続され、直流送電系統の電力線路である直流線路6には、直流遮断器7が設けられている。制御装置30は、少なくとも交流遮断器3、交流/直流変換器5および直流遮断器7を制御する制御部であり、交流系統および直流送電系統の要所に配置される図示しないセンサによる計測情報INFを用いて、交流遮断器3、交流/直流変換器5および直流遮断器7を制御するための制御信号(AC_S,SW,DC_S)を生成して出力する。
 図2は、交流/直流変換器5の構成単位であるセル(以下「変換器セル」という)9の回路構成例を示す図であり、図3および図4は、変換器セル9の他の回路構成例を示す図である。また、図5は、図2の変換器セル9を用いて構成される交流/直流変換器5の一構成例を示す図である。
 変換器セル9は、図2に示すように、トランジスタ素子の一例であるIGBTと、このIGBTに逆並列に接続されるダイオードを具備する2個のスイッチング素子9a,9bが直列に接続され、この直列接続されたスイッチング素子9a,9bの両端にコンデンサ9cが接続され、スイッチング素子9bの両端から引き出された端子がセル端子9dとされる構成である。変換器セル9の何れか一方のスイッチング素子(図2の例では、スイッチング素子9b)の両端(コレクタ端子およびエミッタ端子)にはバイパススイッチ8が接続される。
 バイパススイッチ8は、セル端子9d間に接続され、接点を閉じることでスイッチング素子9bを短絡可能に構成されるスイッチ(開閉器)であり、大電流を長時間通電可能であるため、事故電流の通電が可能である。なお、セル内のスイッチング素子9a,9bは一般的に電流容量の小さい素子で構成され、バイパススイッチ8の機能はスイッチング素子9a,9bによっては実現し得ない。
 なお、変換器セル9の内部構成は図2に示す構成に限定されるものではなく、図3に示すようなスイッチング素子9a,9bを並列接続した構成や、図4に示すようなスイッチング素子9a,9bを直並列構成し、スイッチング素子9a,9bの各接続点にバイパススイッチ8を接続するようなより複雑な制御を行う構成も考えられ、変換器セル9がこれら図3および図4に示すような構成であっても本発明は適用可能である。
 交流/直流変換器5の内部構成は図5のようになっており、変換器セル9が交流側の各相に複数直列接続された構成であり、セル端子9dを直列に接続することで構成することができる。なお、定常運転時において、交流遮断器3、直流遮断器7は投入状態であり、バイパススイッチ8は開放状態である。
 つぎに、実施の形態1に係る保護システムにおける事故時の挙動について、図6および図7を参照して説明する。図6は、実施の形態1の保護システムにおける直流電流IDCの波形例および各機器の動作シーケンス例を示す図である。図7は、上記特許文献1のように直流線路事故を交流遮断器によって除去する場合の直流電流波形を示す図である。これらの図において、横軸は時間、縦軸は直流線路に流れる直流電流IDCである。また、横軸に示す各記号の意味は、以下の通りである。
 tf:事故発生(図6,7)
 tBP-C:バイパススイッチ投入(図6)
 tAC-O:交流遮断器遮断(図6,7)
 tex:零点生成、アーク消滅(図7)
 tDC-O:直流遮断器遮断(図6)
 tAC-C:交流遮断器投入(図6,7)
    直流遮断器投入、バイパススイッチ開放(図6)
 tres:変換器運転再開(図6,7)
 直流線路における事故を交流遮断器によって除去する場合、図7に示すように、交流遮断器の遮断時間(tf~tAC-O)に数十ms程度要する。また、交流遮断器の遮断後にも直流側には回路時定数による減衰電流が一定の時間流れ続ける(tAC-O~tex)。さらに、電流零点形成の後に事故点のアークが消滅するまで待たねばならないため(tex~tAC-C)、系統の再起動までに長い時間を要していた(tAC-C~tres)。
 一方、実施の形態1に係る保護システムでの事故時の挙動は以下の通りとなる。まず、定常状態においては直流電流の定格値が流れているが、時刻tfにおいて直流線路6で事故が発生すると、直流電流が急激に立ち上がる。しかしながら、時刻tBP-Cにおいて各変換器セル9内のバイパススイッチ8を全て同時に投入すると、交流側が短絡状態となり、直流側に電流が流れ込まなくなる。したがって、tBP-Cの時点から直流電流は回路の時定数により減衰して行く。その後、交流遮断器3は時刻tAC-Oにおいて、交流側の短絡電流を遮断する。そして、時刻tDC-Oにおいて、減衰した直流電流を直流遮断器7により遮断して、事故を除去する。なお、事故除去後は、時刻tAC-Cにおいて、交流遮断器3および直流遮断器7を投入し、各変換器セル9内のバイパススイッチ8を全て同時に開放するが、これらの動作は順不同であり、変換器運転再開時刻tresまでに、これら全ての動作が実施されていればよい。
 なお、上記の説明では、各変換器セル9内のバイパススイッチ8の全てを同時に投入する、または、全てを同時に開放すると説明したが、各バイパススイッチ8の特性のばらつきにより、投入タイミングおよび開放タイミングに多少のばらつきが生じることは許容される。ただし、各バイパススイッチ8間における投入タイミングおよび開放タイミングのばらつきが小さいことが好ましいことは言うまでもない。
 実施の形態1に係る保護システムによれば、上記の挙動を引き出すことができ、従来の交流遮断器のみで事故を除去する方式よりも高速な事故除去が可能となり、交流/直流変換器5の運転再開時刻を早めることが可能となる。
 以上説明したように、実施の形態1に係る保護システムによれば、バイパススイッチにて事故電流を高速に減衰させ、その減衰電流を直流遮断器で遮断することとしたので、系統全体の高速な再起動を実現することが可能となる。
 また、実施の形態1に係る保護システムによれば、直流遮断器は減衰した直流電流を遮断すればよいため、システムの規模の縮小が期待でき、各機器に過大な責務が課されることを抑制でき、系統構成全体としての低コスト化を図ることが可能となる。
実施の形態2.
 図8は、実施の形態2に係る保護システムの一構成例を示す図である。実施の形態2は、実施の形態1の構成に加え、直流線路6の回路抵抗分を増加させる限流器10を備えた構成である。この限流器10は例えば半導体素子などの高速スイッチと抵抗体を並列構成した機器によって構成される。なお、その他の構成については、図1に示した実施の形態1の構成と同一もしくは同等であり、それらの構成部には同一の符号を付して、重複する説明は省略する。
 図9は、実施の形態2における直流電流波形を示す図である。なお、横軸に示す各記号の意味は、以下の通りである。
 tf:事故発生
 tBP-C:バイパススイッチ投入
 tlim:限流器動作
 tAC-O:交流遮断器遮断
 tAC-O:直流遮断器遮断
 tAC-C:交流遮断器投入、直流遮断器投入およびバイパススイッチ開放
 tres:変換器運転再開
 時刻tBP-Cにおいて、バイパススイッチ8を投入することにより、直流電流は回路時定数で減衰する波形となる。その後、時刻tlimにおいて、限流器10を動作させることにより、回路時定数が小さくなり、直流電流は更に高速に減衰を始める。これらの挙動により、事故除去までの時間は、実施の形態1に比して短縮することが可能となる。
 以上説明したように、実施の形態2に係る保護システムによれば、限流器の適用によりさらに高速な系統の再起動が可能となる。
実施の形態3.
 図10は、実施の形態3に係る保護システムにおける交流/直流変換器の構成例として、図5とは異なる構成を示す図である。実施の形態3においては、図5に示す実施の形態1の構成において、交流/直流変換器5の内部における各相に、線路の抵抗分を増加させる限流器10を付加した構成である。
 図5に示す交流/直流変換器5を用いれば、実施の形態2と同様の動作で事故時の直流電流を急速に減衰させ、事故除去までの時間を短縮することが可能となる。また、実施の形態3においては限流器10が交流/直流変換器5の各相に設けられていることから、限流器10は各相に分流した電流を限流すればよく、限流器10の個数は増えるもののそれぞれの規模を低減することが可能となる。
 以上説明したように、実施の形態3に係る保護システムによれば、限流器の適用によりさらに高速な系統の再起動が可能となる。
実施の形態4.
 図11は、実施の形態4に係る保護システムにおける交流/直流変換器の構成例として、図5および図10とは異なる構成を示す図である。実施の形態4においては、複数のセル9(図11の例では2つのセル)を一群とするセル群に対して1つのバイパススイッチ8を接続する構成である。
 図11に示す交流/直流変換器5を用いれば、バイパススイッチ8の定格電圧は上昇するものの、バイパススイッチ8の個数を減らすことが可能となり、全体的なコストを低減することが可能となる。また、スイッチの個数を減少させることにより、制御の同時性を確保することが容易となり、信頼性の向上が期待できる。
 以上説明したように、実施の形態4に係る保護システムによれば、セル群に対して1つのバイパススイッチを設けることとしたので、コストを削減しつつ、信頼性を向上させることが可能となる。
実施の形態5.
 図12は、実施の形態5に係る保護システムの一構成例を示す図である。実施の形態5においては、交流/直流変換器5の直流側端子間に1個以上(図12では1個を例示)のバイパススイッチ8を接続する構成である。
 図12に示す保護システムを用いれば、直流事故時にはバイパススイッチ8を投入することで、実施の形態1と同様の効果が期待できる。また、実施の形態5においては、バイパススイッチ8は直流側端子間に最低1個設置すればその効果を得られるため、交流/直流変換器5の各相にバイパススイッチ8を必要とする実施の形態4よりも、バイパススイッチ8の個数を低減でき、更なる信頼性向上が期待できる。また、交流/直流変換器5の外部にバイパススイッチ8を設置することも可能となるため、直流送電系統におけるレイアウトの柔軟性も増すという効果も期待できる。
 以上説明したように、実施の形態5に係る保護システムによれば、交流/直流変換器の直流側端子間にバイパススイッチを設けることとしたので、バイパススイッチの個数を減らすことが可能となり、全体的なコスト削減を図りつつ、制御の同時性を確保し、信頼性を向上させることが可能となる。
実施の形態6.
 図13は、実施の形態6に係る保護システムの一構成例を示す図である。実施の形態6においては、交流/直流変換器5を接地する接地開閉器11が交流/直流変換器5における直流側の正極および負極のそれぞれに設けられる構成である。
 図13に示す保護システムを用いれば、事故時には対地に接続された各接地開閉器11を動作させることで実施の形態1と同様の効果が期待できる。
 以上説明したように、実施の形態6に係る保護システムによれば、交流/直流変換器における直流側の正極および負極のそれぞれに接地開閉器を設けることとしたので、構成機器の個数を低減することができ、コスト削減を図りつつ、信頼性を向上させることが可能となる。
実施の形態7.
 図14は、実施の形態7に係る保護システムの一構成例を示す図である。実施の形態7は、3つ以上の交流系統1を直流線路6で連系させた多端子直流送電系統において、各交流/直流変換器5の交流側には交流遮断器3を設け、各交流/直流変換器5の直流側における直流線路6の両側に直流遮断器7を設ける構成である。なお、各交流/直流変換器5の内部には、バイパススイッチ8を有する構成である(図2参照)。
 事故点の直近に位置する交流/直流変換器5の運転については、実施の形態1と同様である。すなわち、交流/直流変換器5のバイパススイッチ8を投入することにより直流電流を減衰させ、その減衰電流を直流遮断器7によって遮断することで高速再起動を行う。事故点の直近に位置する交流/直流変換器5を高速再起動することにより、事故点よりも遠方に位置する交流/直流変換器5は、事故の影響を受けて停止する前に直流線路電圧が回復し、停止することなく運転継続することが可能となる。
 なお、図14に示す実施の形態7に示す保護システムに、実施の形態2~6に示す構成を適用してもよいことは言うまでもない。
 以上説明したように、多端子系統に適用可能な実施の形態7に係る保護システムによれば、事故点の直近に位置する交流/直流変換器を高速再起動することができるので、事故点よりも遠方に位置する交流/直流変換器を停止させることなく運転継続することができ、事故時の系統影響を局限することが可能となる。
実施の形態8.
 図15は、実施の形態8に係る保護システムの交流/直流変換器におけるセルの構成例として、図2とは異なる構成を示す図である。実施の形態8においては、図2に示すバイパススイッチ8に代えて、双方向半導体スイッチ12をセル端子9d間に設ける構成である。
 なお、実施の形態8に示す構成を、実施の形態2~7を適用した保護システムに適用してもよいことは言うまでもない。
 定常運転時において、双方向半導体スイッチ12はオフ状態であり電流は流れない。一方、直流線路6で事故が発生した際には、双方向半導体スイッチ12をオン状態とすることで交流側は短絡状態となり、直流側には電流が流れ込まなくなる。ここで、双方向半導体スイッチ12に適用される素子は大電流を長時間通電可能な大容量素子の適用を想定しており、事故電流の通電が可能である。なお、セル内のスイッチング素子9a,9bは一般的に電流容量の小さい素子で構成され、事故発生時にはオフ動作または他の機器によるバイパスを行うことが必須であるため、上記の動作はスイッチング素子9a,9bによっては実現し得ない。以上の動作により、実施の形態1~7と同様の効果を得ることができる。また、双方向半導体スイッチを適用することにより、バイパススイッチよりもさらに高速な動作が可能となる。
 以上説明したように、実施の形態8に係る保護システムによれば、双方向半導体スイッチにて事故電流を高速に減衰させ、その減衰電流を直流遮断器で遮断することとしたので、系統全体の高速な再起動を実現することが可能となる。
実施の形態9.
 図16は、実施の形態1~8に係る保護システムに適用可能な直流遮断器7の構成例を示す図であり、実施の形態1~8における直流遮断器7について、強制消弧方式の直流遮断器を適用した形態である。
 強制消弧方式は、投入スイッチ17を投入し、DC電源16等の手段によって予め充電されたコンデンサ14から電荷の放電を行うことにより、リアクトル15との共振性電流を直流電流に重畳させて電流零点を形成し、遮断部13にて遮断を行う直流遮断器の方式である。遮断部13の遮断後は、バリスタ18が遮断部13に発生する過電圧を抑制するように動作する。
 このように構成された強制消弧方式の直流遮断器7を用いれば、高速な直流電流の遮断が可能となり、系統全体の再起動時間を高速化することが可能となる。
 また、上述した実施の形態1~8に係る保護システムに適用される直流遮断器では、減衰した直流電流を遮断すればよいため、コンデンサ14およびリアクトル15による共振性電流の波高値を低減することができ、コンデンサ14および、その充電装置として機能するDC電源16の規模を縮小することが可能となる。
実施の形態10.
 図17は、実施の形態1~8に係る保護システムに適用可能な直流遮断器7の構成例を示す図であり、実施の形態1~8における直流遮断器7について、自励振動消弧方式の直流遮断器を適用した形態である。
 自励振動消弧方式は、アークと、コンデンサ14およびリアクトル15との相互作用に基づく電流の拡大振動現象により電流零点を形成する直流遮断器の方式である。遮断部13の遮断後は、バリスタ18が遮断部13に発生する過電圧を抑制するように動作する。
 このような自励振動消弧方式の直流遮断器7は、構成が簡易であり、低コストで実現可能である。このため、系統全体の再起動時間を高速化することが低コストで実現可能である。
 また、上述した実施の形態1~8に係る保護システムに適用される直流遮断器では、減衰した直流電流を遮断すればよいため、拡大振動減少により発生する電流波高値を低減することができ、コンデンサ14の規模を縮小することが可能となる。
実施の形態11.
 図18は、実施の形態1~8に係る保護システムに適用可能な直流遮断器7の構成例を示す図であり、実施の形態1~8における直流遮断器7について、半導体方式の直流遮断器を適用した形態である。
 半導体方式は、半導体素子19によって直流電流を遮断する方式であり、比較的高コストなものの、実施の形態9,10に示す機械式の直流遮断器よりも高速な動作が可能である。半導体素子19の遮断後は、バリスタ18が半導体素子19に発生する過電圧を抑制するように動作する。
 このような半導体方式の直流遮断器7を用いる手法は、半導体素子と機械式スイッチとの組み合わせによるものと考えることができる。このため、半導体素子と機械式スイッチの利点を活用することができ、系統全体の再起動時間をさらに高速化することが可能である。
 また、上述した実施の形態1~8に係る保護システムに適用される直流遮断器では、減衰した直流電流を遮断すればよいため、遮断を行う半導体素子の電流容量を低減でき、半導体素子19の規模を縮小することが可能となる。また遮断時のエネルギーが低減できるため、バリスタ18の規模も縮小することが可能となる。
 なお、以上の実施の形態1~11に示した構成は、本発明の構成の一例であり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能であることは言うまでもない。
 以上のように、本発明は、機器の大型化、高コスト化を回避しつつ、直流送電系統の再起動までの時間を短縮化することができる直流送電系統の保護システムとして有用である。
 1 交流系統、2 変圧器、3 交流遮断器、4 交流線路、5 交流/直流変換器、6 直流線路、7 直流遮断器、8 バイパススイッチ、9 セル、9a,9b スイッチング素子、9c コンデンサ、9d セル端子、10 限流器、11 接地開閉器、12 双方向半導体スイッチ、13 遮断部、14 コンデンサ、15 リアクトル、16 DC電源、17 投入スイッチ、18 バリスタ、19 半導体素子、30 制御装置。

Claims (17)

  1.  交流系統と直流送電系統との間に交流/直流変換器を有する構成に適用される直流送電系統の保護システムであって、
     前記直流送電系統と前記交流/直流変換器との間には直流遮断器が設けられ、
     前記交流/直流変換器の内部もしくは外部には、当該交流/直流変換器を構成する変換器セルを短絡可能なバイパススイッチが接続されており、
     前記直流送電系統の事故時には前記バイパススイッチを投入して、前記交流系統から前記直流送電系統への直流電力の供給を遮断する
     ことを特徴とする直流送電系統の保護システム。
  2.  前記バイパススイッチの投入後に、前記直流遮断器にて遮断を行うことを特徴とする請求項1に記載の直流送電系統の保護システム。
  3.  前記交流/直流変換器の外部の直流側に限流器を備えたことを特徴とする請求項1に記載の直流送電系統の保護システム。
  4.  前記交流/直流変換器の内部の各相に限流器を備えたことを特徴とする請求項1に記載の直流送電系統の保護システム。
  5.  前記バイパススイッチは、前記変換器セル毎に設けられていることを特徴とする請求項1に記載の直流送電系統の保護システム。
  6.  前記バイパススイッチは、2個以上の前記変換器セルが直列接続されたセル群に対して設けられていることを特徴とする請求項1に記載の直流送電系統の保護システム。
  7.  前記交流/直流変換器の直流側を対地に接地する接地開閉器が設けられていることを特徴とする請求項1から6の何れか1項に記載の直流送電系統の保護システム。
  8.  前記直流送電系統が3つ以上の交流系統を直流線路で連系する多端子直流送電系統であることを特徴とする請求項1から6の何れか1項に記載の直流送電系統の保護システム。
  9.  前記バイパススイッチに代えて双方向半導体スイッチを適用したことを特徴とする請求項1から6の何れか1項に記載の直流送電系統の保護システム。
  10.  前記直流遮断器として、予め充電したコンデンサから放電を行うことにより、リアクトルとの共振性電流を直流電流に重畳して電流零点を形成する強制消弧方式の直流遮断器を適用したことを特徴とする請求項1から6の何れか1項に記載の直流送電系統の保護システム。
  11.  前記直流遮断器として、アークと転流回路との相互作用に基づく電流の拡大振動現象により電流零点を形成する自励振動消弧方式の直流遮断器を適用したことを特徴とする請求項1から6の何れか1項に記載の直流送電系統の保護システム。
  12.  前記直流遮断器として、半導体素子によって遮断を行う半導体方式の直流遮断器を適用したことを特徴とする請求項1から6の何れか1項に記載の直流送電系統の保護システム。
  13.  交流系統と直流送電系統との間に設けられ、前記交流系統からの交流電力を直流電力に変換し直流遮断器を介して前記直流送電系統に供給する交流/直流変換器であって、
     前記交流/直流変換器には、当該交流/直流変換器を構成する変換器セルを短絡可能なバイパススイッチが接続されていることを特徴とする交流/直流変換器。
  14.  前記交流/直流変換器の内部の各相に限流器を備えたことを特徴とする請求項13に記載の交流/直流変換器。
  15.  前記バイパススイッチは、前記変換器セル毎に設けられていることを特徴とする請求項13に記載の交流/直流変換器。
  16.  前記バイパススイッチは、2個以上の前記変換器セルが直列接続されたセル群に対して設けられていることを特徴とする請求項13に記載の交流/直流変換器。
  17.  交流系統と直流送電系統との間には交流/直流変換器が設けられ、前記交流系統と前記交流/直流変換器との間には交流遮断器が設けられ、前記直流送電系統と前記交流/直流変換器との間には直流遮断器が設けられ、前記交流/直流変換器の内部もしくは外部には当該交流/直流変換器を構成する変換器セルを短絡可能なバイパススイッチが接続される構成に適用される直流送電系統の遮断方法であって、
     前記直流送電系統の事故発生時に前記バイパススイッチを投入するステップと、
     前記バイパススイッチの投入後に前記交流遮断器を遮断するステップと、
     前記交流遮断器の遮断後に前記直流遮断器を遮断するステップと、
     を含むことを特徴とする直流送電系統の遮断方法。
PCT/JP2014/053527 2014-02-14 2014-02-14 直流送電系統の保護システムおよび交流/直流変換器ならびに直流送電系統の遮断方法 WO2015121983A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/116,867 US9800171B2 (en) 2014-02-14 2014-02-14 Protection system for DC power transmission system, AC-DC converter, and method of interrupting DC power transmission system
JP2014520858A JP5622978B1 (ja) 2014-02-14 2014-02-14 直流送電系統の保護システムおよび交流直流変換器ならびに直流送電系統の遮断方法
PCT/JP2014/053527 WO2015121983A1 (ja) 2014-02-14 2014-02-14 直流送電系統の保護システムおよび交流/直流変換器ならびに直流送電系統の遮断方法
EP14882204.2A EP3107172B1 (en) 2014-02-14 2014-02-14 Protection system for dc power transmission system, ac/dc converter, and dc power transmission system breaking method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/053527 WO2015121983A1 (ja) 2014-02-14 2014-02-14 直流送電系統の保護システムおよび交流/直流変換器ならびに直流送電系統の遮断方法

Publications (1)

Publication Number Publication Date
WO2015121983A1 true WO2015121983A1 (ja) 2015-08-20

Family

ID=53799749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053527 WO2015121983A1 (ja) 2014-02-14 2014-02-14 直流送電系統の保護システムおよび交流/直流変換器ならびに直流送電系統の遮断方法

Country Status (4)

Country Link
US (1) US9800171B2 (ja)
EP (1) EP3107172B1 (ja)
JP (1) JP5622978B1 (ja)
WO (1) WO2015121983A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105811381A (zh) * 2016-03-17 2016-07-27 中国科学院电工研究所 一种直流限流断路器
WO2017203865A1 (ja) * 2016-05-25 2017-11-30 三菱電機株式会社 電力変換装置
WO2018052067A1 (ja) * 2016-09-14 2018-03-22 株式会社 東芝 直流送電システム
WO2018092303A1 (ja) * 2016-11-21 2018-05-24 三菱電機株式会社 電力変換装置
WO2018163582A1 (ja) * 2017-03-06 2018-09-13 株式会社 東芝 電力変換装置
JPWO2017168518A1 (ja) * 2016-03-28 2018-11-29 三菱電機株式会社 電力変換装置
CN105990827B (zh) * 2015-01-30 2018-12-21 南京南瑞继保电气有限公司 一种高压直流断路拓扑电路及实现方法
EP3439158A4 (en) * 2016-03-28 2019-06-26 Mitsubishi Electric Corporation POWER CONVERSION DEVICE
US10476402B2 (en) 2014-10-08 2019-11-12 Mitsubishi Electric Corporation Power converter
EP3338336B1 (en) * 2015-08-21 2020-09-30 General Electric Technology GmbH Electrical assembly
JP2020205673A (ja) * 2019-06-14 2020-12-24 国立大学法人東京工業大学 直流送電システム
KR20210014658A (ko) * 2018-06-13 2021-02-09 엔알 일렉트릭 컴퍼니 리미티드 다중 전압 등급 직류 그리드 시스템 및 제어 보호 방법
US10992219B2 (en) 2017-06-27 2021-04-27 Mitsubishi Electric Corporation Power conversion device
JP7418671B1 (ja) 2023-03-16 2024-01-19 三菱電機株式会社 直流遮断器
JP7419277B2 (ja) 2021-02-01 2024-01-22 東芝三菱電機産業システム株式会社 電力変換装置

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2773006B1 (en) * 2013-02-28 2016-06-15 General Electric Technology GmbH Control circuit
JP5889498B2 (ja) * 2014-03-05 2016-03-22 三菱電機株式会社 電力変換装置
JP6366711B2 (ja) * 2014-06-30 2018-08-01 三菱電機株式会社 電力変換装置
WO2016042601A1 (ja) * 2014-09-16 2016-03-24 三菱電機株式会社 風力発電システムおよび直流送電システム
WO2016056073A1 (ja) * 2014-10-08 2016-04-14 三菱電機株式会社 電力変換装置
EP3032677B1 (en) 2014-12-12 2021-05-05 General Electric Technology GmbH DC electrical network
KR101994143B1 (ko) * 2015-04-02 2019-06-28 지멘스 악티엔게젤샤프트 컨버터 장치 및 그 단락 보호 방법
EP3285389B1 (en) * 2015-04-13 2020-11-25 Mitsubishi Electric Corporation Electric power conversion device and electric power system
EP3285388B1 (en) * 2015-04-13 2021-09-22 Mitsubishi Electric Corporation Electric power conversion device
JP5944067B1 (ja) * 2015-04-24 2016-07-05 三菱電機株式会社 電力変換装置
WO2016207976A1 (ja) * 2015-06-23 2016-12-29 三菱電機株式会社 電力変換装置および直流送電システム
US10326355B2 (en) * 2015-07-14 2019-06-18 Mitsubishi Electric Corporation Power conversion device
EP3398239A1 (en) * 2015-12-29 2018-11-07 Vito NV Device and method for the reconfiguration of a rechargeable energy storage device into separate battery connection strings
KR101857570B1 (ko) * 2015-12-30 2018-05-15 주식회사 효성 모듈러 멀티레벨 컨버터 및 이의 dc 고장 차단 방법
US10819215B2 (en) * 2016-06-30 2020-10-27 University Of South Carolina Bypass switch for high voltage DC systems
JP6161774B2 (ja) * 2016-08-02 2017-07-12 三菱電機株式会社 送電系統システム、電力変換装置および開閉器
US10411587B2 (en) * 2016-12-14 2019-09-10 Abb Schweiz Ag Fault isolation and system restoration using power converter
WO2018184671A1 (de) * 2017-04-05 2018-10-11 Siemens Aktiengesellschaft Mehrphasiger mehrstufenstromrichter
US10998830B2 (en) * 2017-06-06 2021-05-04 Hitachi, Ltd. Power conversion device and three-phase power conversion device
JP6608405B2 (ja) * 2017-07-19 2019-11-20 矢崎総業株式会社 電圧変換ユニット
EP3691108B1 (en) * 2017-09-26 2022-08-24 Mitsubishi Electric Corporation Power conversion device
JP6958287B2 (ja) 2017-11-24 2021-11-02 トヨタ自動車株式会社 電力制御システムおよび車両
WO2019202703A1 (ja) 2018-04-19 2019-10-24 三菱電機株式会社 直流遮断器
CN108899893B (zh) * 2018-06-08 2021-01-01 科华恒盛股份有限公司 能馈式牵引供电装置的保护***及轨道交通供电***
CN109193579B (zh) * 2018-08-29 2022-04-15 中国电力科学研究院有限公司 一种用于确定直流电网线路中的操作过电压的方法及***
US11121542B2 (en) * 2018-10-29 2021-09-14 Rolls-Royce North American Technologies, Inc. Protection coordination technique for power converters
DE102018128121A1 (de) * 2018-11-09 2020-05-14 Eaton Intelligent Power Limited AC/DC-Umwandlungs-Anordnung
US12015354B2 (en) * 2018-12-25 2024-06-18 Mitsubishi Electric Corporation Power conversion device capable of suppressing a harmonic component in an output voltage from an arm that increases after bypass of a failed converter cell
WO2020136699A1 (ja) * 2018-12-25 2020-07-02 三菱電機株式会社 電力変換装置
EP3985859A4 (en) * 2019-06-12 2022-06-15 Mitsubishi Electric Corporation CURRENT TRANSFORMING DEVICE
CN111224569B (zh) * 2020-02-20 2021-01-26 浙江大学 一种低全桥比例子模块混合型mmc及其直流故障处理策略
KR102387824B1 (ko) * 2020-05-14 2022-04-18 효성중공업 주식회사 Hvdc 서브 모듈의 바이패스 장치 및 방법
EP4187735A1 (en) * 2020-05-21 2023-05-31 Mitsubishi Electric Corporation Power conversion system
JP7504761B2 (ja) * 2020-10-16 2024-06-24 株式会社日立製作所 電力変換システム
CN112636312B (zh) * 2020-12-12 2021-10-08 同济大学 一种基于注入零序特征信号的微电网保护方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003259649A (ja) * 2002-03-04 2003-09-12 Fuji Electric Co Ltd 自励式直流電源装置の制御方法
JP2013055885A (ja) * 2012-12-21 2013-03-21 Hitachi Ltd 電力変換装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59149718A (ja) 1983-02-15 1984-08-27 三菱電機株式会社 直流線路保護装置
JPS60216721A (ja) 1984-04-11 1985-10-30 三菱電機株式会社 限流装置
JPS62123921A (ja) 1985-11-22 1987-06-05 株式会社東芝 直流遮断装置
JPS6455016A (en) 1987-08-24 1989-03-02 Mitsubishi Electric Corp Dc current limiter
US4862313A (en) * 1987-12-11 1989-08-29 Hitachi, Ltd. Driving apparatus for DC circuit breakers
US5126585A (en) * 1990-06-19 1992-06-30 Auckland Uniservices Limited Uninterruptible power supplies
JPH06113444A (ja) 1992-09-29 1994-04-22 Hitachi Ltd 自励式変換器の保護装置
JPH09233833A (ja) 1996-02-23 1997-09-05 Toshiba Corp 交直変換装置
JPH10290572A (ja) 1997-04-14 1998-10-27 Hitachi Ltd 電力変換装置
JP2009011117A (ja) 2007-06-29 2009-01-15 Kansai Electric Power Co Inc:The 電力変換装置
BRPI0822496A2 (pt) * 2008-03-20 2015-06-16 Abb Res Ag Conversor de fonte de voltagem
EP2583375B1 (en) * 2010-06-18 2018-05-30 General Electric Technology GmbH Converter for hvdc transmission and reactive power compensation
CN103597687B (zh) * 2011-04-04 2016-03-09 Abb技术有限公司 用于hvdc断路器的快速断路器故障检测
CA2853868A1 (en) * 2011-11-15 2013-05-23 Alstom Technology Ltd A power electronic module
EP2595302A1 (en) * 2011-11-21 2013-05-22 ABB Technology AG Method and device for servicing individual power module during operation of a modular multicell converter
WO2015032421A1 (en) * 2013-09-03 2015-03-12 Abb Technology Ltd Hvdc series current source converter
US9178349B2 (en) * 2013-09-11 2015-11-03 General Electric Company Method and system for architecture, control, and protection systems of modular stacked direct current subsea power system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003259649A (ja) * 2002-03-04 2003-09-12 Fuji Electric Co Ltd 自励式直流電源装置の制御方法
JP2013055885A (ja) * 2012-12-21 2013-03-21 Hitachi Ltd 電力変換装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3107172A4 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10476402B2 (en) 2014-10-08 2019-11-12 Mitsubishi Electric Corporation Power converter
CN105990827B (zh) * 2015-01-30 2018-12-21 南京南瑞继保电气有限公司 一种高压直流断路拓扑电路及实现方法
EP3338336B1 (en) * 2015-08-21 2020-09-30 General Electric Technology GmbH Electrical assembly
US11005266B2 (en) 2015-08-21 2021-05-11 General Electric Technology Gmbh Electrical assembly for a power transmission network
CN105811381A (zh) * 2016-03-17 2016-07-27 中国科学院电工研究所 一种直流限流断路器
CN105811381B (zh) * 2016-03-17 2018-02-02 中国科学院电工研究所 一种直流限流断路器
US10855168B2 (en) 2016-03-28 2020-12-01 Mitsubishi Electric Corporation Power conversion device having bypass circuit protection
US10673352B2 (en) 2016-03-28 2020-06-02 Mitsubishi Electric Corporation Power conversion apparatus comprising cell blocks each including cascaded converter cells and a bypass circuit connected thereto
JPWO2017168518A1 (ja) * 2016-03-28 2018-11-29 三菱電機株式会社 電力変換装置
EP3439162A4 (en) * 2016-03-28 2019-04-24 Mitsubishi Electric Corporation POWER CONVERSION DEVICE
EP3439158A4 (en) * 2016-03-28 2019-06-26 Mitsubishi Electric Corporation POWER CONVERSION DEVICE
US10468972B2 (en) 2016-05-25 2019-11-05 Mitsubishi Electric Corporation Power converter including a plurality of converter cells connected in multiple series
JP6275352B1 (ja) * 2016-05-25 2018-02-07 三菱電機株式会社 電力変換装置
WO2017203865A1 (ja) * 2016-05-25 2017-11-30 三菱電機株式会社 電力変換装置
WO2018052067A1 (ja) * 2016-09-14 2018-03-22 株式会社 東芝 直流送電システム
EP3544171A4 (en) * 2016-11-21 2020-01-08 Mitsubishi Electric Corporation POWER CONVERSION DEVICE
WO2018092303A1 (ja) * 2016-11-21 2018-05-24 三菱電機株式会社 電力変換装置
US11070124B2 (en) 2016-11-21 2021-07-20 Mitsubishi Electric Corporation Power conversion device
WO2018163582A1 (ja) * 2017-03-06 2018-09-13 株式会社 東芝 電力変換装置
JP2018148685A (ja) * 2017-03-06 2018-09-20 株式会社東芝 電力変換装置
US10992219B2 (en) 2017-06-27 2021-04-27 Mitsubishi Electric Corporation Power conversion device
KR20210014658A (ko) * 2018-06-13 2021-02-09 엔알 일렉트릭 컴퍼니 리미티드 다중 전압 등급 직류 그리드 시스템 및 제어 보호 방법
JP2021526787A (ja) * 2018-06-13 2021-10-07 南京南瑞▲継▼保▲電気▼有限公司Nr Electric Co., Ltd 多電圧レベル直流グリッドシステムおよび制御保護方法
US11342744B2 (en) 2018-06-13 2022-05-24 Nr Electric Co., Ltd Multi-voltage level direct current grid system and control protection method
JP7105322B2 (ja) 2018-06-13 2022-07-22 南京南瑞▲継▼保▲電気▼有限公司 多電圧レベル直流グリッドシステムおよび制御保護方法
KR102490363B1 (ko) * 2018-06-13 2023-01-18 엔알 일렉트릭 컴퍼니 리미티드 다중 전압 등급 직류 그리드 시스템 및 제어 보호 방법
JP2020205673A (ja) * 2019-06-14 2020-12-24 国立大学法人東京工業大学 直流送電システム
JP7304619B2 (ja) 2019-06-14 2023-07-07 国立大学法人東京工業大学 直流送電システム
JP7419277B2 (ja) 2021-02-01 2024-01-22 東芝三菱電機産業システム株式会社 電力変換装置
JP7418671B1 (ja) 2023-03-16 2024-01-19 三菱電機株式会社 直流遮断器

Also Published As

Publication number Publication date
EP3107172A4 (en) 2018-04-04
EP3107172A1 (en) 2016-12-21
EP3107172B1 (en) 2022-06-01
US20170163170A1 (en) 2017-06-08
JPWO2015121983A1 (ja) 2017-03-30
US9800171B2 (en) 2017-10-24
JP5622978B1 (ja) 2014-11-12

Similar Documents

Publication Publication Date Title
WO2015121983A1 (ja) 直流送電系統の保護システムおよび交流/直流変換器ならびに直流送電系統の遮断方法
CN104137211B (zh) 具有缓冲电路的高压直流混合电路断路器
JP6250153B2 (ja) 高圧直流電流遮断装置及び方法
US9413157B2 (en) Direct-current circuit breaker
KR101483084B1 (ko) 직류 전류 차단 장치 및 방법
EP3413330B1 (en) Direct current circuit breaker
WO2016140122A1 (ja) 直流遮断装置
EP3242309B1 (en) High voltage dc circuit breaker
KR101641511B1 (ko) 직류전류 차단을 위한 장치 및 방법
JP5265063B1 (ja) 直流遮断器
CN104617783A (zh) 具有直流故障限流能力的mmc换流器改进结构及隔离方法
JP6456575B1 (ja) 直流遮断器
JP5031607B2 (ja) 直流高速真空遮断装置
JP2018195565A (ja) 直流遮断装置
JP6386955B2 (ja) 直流遮断装置および直流遮断方法
CN114128067A (zh) 直流配电盘
KR20180074231A (ko) 한류기 유지 보수 시스템 및 방법
JPH11355905A (ja) 電力変換装置の遮断システム
CN116783677A (zh) 直流电流断路装置
JP2006260925A (ja) 直流高速真空遮断装置
WO2016199407A1 (ja) 直流遮断装置、直流遮断方法
WO2023047556A1 (ja) 直流遮断器
JP2016214001A (ja) 無停電電源システム
JP2004166339A (ja) 無停電電源装置
KR20200011186A (ko) 전류 제한 장치 및 이를 포함하는 직류 차단 시스템

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014520858

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882204

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014882204

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014882204

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15116867

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE