WO2015115151A1 - 蛍光観察装置 - Google Patents

蛍光観察装置 Download PDF

Info

Publication number
WO2015115151A1
WO2015115151A1 PCT/JP2015/050446 JP2015050446W WO2015115151A1 WO 2015115151 A1 WO2015115151 A1 WO 2015115151A1 JP 2015050446 W JP2015050446 W JP 2015050446W WO 2015115151 A1 WO2015115151 A1 WO 2015115151A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
light
light source
excitation light
output intensity
Prior art date
Application number
PCT/JP2015/050446
Other languages
English (en)
French (fr)
Inventor
弘靖 森下
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to CN201580005986.4A priority Critical patent/CN105934191B/zh
Priority to DE112015000283.9T priority patent/DE112015000283T5/de
Priority to JP2015559847A priority patent/JP6383370B2/ja
Publication of WO2015115151A1 publication Critical patent/WO2015115151A1/ja
Priority to US15/198,407 priority patent/US20160302652A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/043Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00006Operational features of endoscopes characterised by electronic signal processing of control signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • G01N21/474Details of optical heads therefor, e.g. using optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • G02B23/243Objectives for endoscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2461Illumination
    • G02B23/2469Illumination using optical fibres
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/555Constructional details for picking-up images in sites, inaccessible due to their dimensions or hazardous conditions, e.g. endoscopes or borescopes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • G01N21/474Details of optical heads therefor, e.g. using optical fibres
    • G01N2021/4742Details of optical heads therefor, e.g. using optical fibres comprising optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers
    • G01N2201/0612Laser diodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/08Optical fibres; light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/113Fluorescence

Definitions

  • the present invention relates to a fluorescence observation apparatus.
  • the present invention has been made in view of the above-described circumstances, and in a fluorescence observation apparatus that simultaneously captures reflected light and fluorescence from a subject using a common imaging device, both the reflected light image and the fluorescent image are simultaneously displayed.
  • An object of the present invention is to provide a fluorescence observation apparatus capable of observing clearly.
  • the present invention includes an illumination light source that emits illumination light and an excitation light source that emits excitation light having a part of the wavelength band of the illumination light, and the illumination light and the excitation light are simultaneously subjected to a subject.
  • a light source unit that irradiates the light source, a single image sensor that simultaneously captures the reflected light reflected on the subject by irradiation of the illumination light, and fluorescence generated on the subject by irradiation of the excitation light, and the image sensor A filter that cuts the excitation light and transmits all or most of the reflected light except the excitation light, an output intensity of the illumination light of the illumination light source, and the excitation of the excitation light source
  • a fluorescence observation apparatus including a light control unit that adjusts output intensity of light independently of each other.
  • the illumination light and the excitation light from the light source unit are simultaneously irradiated onto the subject to generate the reflected light and the fluorescence, and both the reflected light and the fluorescence are photographed by the common imaging device.
  • both the illumination light image and the fluorescence image of the subject can be observed simultaneously in one image.
  • the intensity of reflected light and fluorescence generated in the subject are proportional to the intensity of illumination light and excitation light, respectively. Therefore, by adjusting the output intensities of the illumination light source and the excitation light source provided separately from each other by the dimming unit, the reflected light and the fluorescent light are adjusted so that the reflected light and the fluorescent light have the same signal intensity. By appropriately adjusting the intensity ratio, it is possible to clearly observe both the reflected light image and the fluorescent image simultaneously.
  • the dimming unit is configured to output an output intensity of the illumination light source and an output intensity of the excitation light source based on a gradation value of an image obtained by photographing the reflected light and the fluorescence by the image sensor. May be adjusted. By doing in this way, the output intensity of each light source can be automatically adjusted without requiring user operation.
  • the image acquired by the imaging device is a color image
  • the dimming unit has a single color image corresponding to the fluorescent color among a plurality of single color images constituting the color image.
  • the output intensity of the excitation light source may be adjusted based on the tone value, and the output intensity of the illumination light source may be adjusted based on the gradation value of another single color image.
  • the dimming unit adjusts the output intensity of the illumination light source based on the average value of the gradation values of the whole or a part of the image, and the maximum value of the gradation value of the whole or a part of the image.
  • the output intensity of the excitation light source may be adjusted based on the above. In this way, by using the average value of the gradation values of the image, the intensity of the reflected light generated over a wide range of the subject can be more accurately evaluated. On the other hand, by using the maximum value of the gradation value of the image, the intensity of the fluorescence generated locally in the subject can be more accurately evaluated.
  • the light source unit continuously irradiates the subject with the illumination light, intermittently irradiates the subject with the excitation light, and the imaging device transmits the excitation light and the illumination light.
  • the first image is acquired when both of the objects are irradiated to the subject
  • the second image is acquired when only the illumination light is irradiated to the subject
  • the light control unit Adjusting the output intensity of the illumination light source on the basis of the tone value of the image of the first image and the excitation based on the tone value of the third image obtained by subtracting the second image from the first image.
  • the output intensity of the light source may be adjusted. By doing in this way, the intensity
  • the fluorescence intensity can be more accurately evaluated by using the third image including only the fluorescence image.
  • both the reflected light image and the fluorescence image can be observed clearly simultaneously.
  • FIG. 1 is an overall configuration diagram of a fluorescence observation apparatus according to a first embodiment of the present invention. It is a graph which shows the wavelength characteristic of (a) white light, (b) excitation light, (c) output light from a light source unit, and (d) barrier filter. It is a graph which shows the wavelength characteristic of (a) fluorescent dye, (b) fluorescence, (c) reflected light, and (d) incident light to an image pick-up element. It is a whole block diagram of the fluorescence observation apparatus which concerns on the 2nd Embodiment of this invention. It is a whole block diagram which shows the modification of the fluorescence observation apparatus of FIG. It is a whole block diagram of the fluorescence observation apparatus which concerns on the 3rd Embodiment of this invention.
  • a fluorescence observation apparatus 100 according to the first embodiment of the present invention is an endoscope apparatus, and as shown in FIG. 1, an elongated insertion part 2 to be inserted into a body, a light source unit (light source part) 3, and the light source unit.
  • the illumination unit 4 that irradiates the white light (illumination light) Lw and the excitation light Lex 3 from the distal end 2a of the insertion portion 2 toward the biological tissue (subject) X, and the biological tissue
  • An imaging unit 5 that acquires image information S of X, an image processor 6 that processes the image information S, and a display unit 7 that displays an image A generated by the image processor 6 are provided.
  • the light source unit 3 includes a white light source (illumination light source) 31, an excitation light source 32, a dichroic mirror 33 that combines the white light Lw and the excitation light Lex emitted from the two light sources 31 and 32, and the dichroic mirror 33. And a coupling lens 34 that collects the light combined by.
  • the white light source 31 is a light source using, for example, a xenon lamp, and emits white light Lw having a wavelength over the entire visible region (specifically, from 400 nm to 650 nm) as shown in FIG. .
  • the excitation light source 32 is, for example, a light source using a laser diode that emits narrowband light. As shown in FIG. 2B, the excitation light Lex of blue (specifically, wavelength 480 nm to 490 nm) is emitted. Exit.
  • the dichroic mirror 33 reflects the excitation light Lex and transmits the white light Lw, thereby outputting light in which the white light Lw and the excitation light Lex are superimposed as shown in FIG.
  • the illumination unit 4 includes a light guide fiber 41 disposed over almost the entire length of the insertion portion 2 in the longitudinal direction, and an illumination optical system 42 provided at the distal end 2a of the insertion portion 2.
  • the light guide fiber 41 guides the light collected by the coupling lens 34.
  • the illumination optical system 42 diffuses the white light Lw and the excitation light Lex guided by the light guide fiber 41 and irradiates the living tissue X facing the distal end 2 a of the insertion portion 2.
  • the imaging unit 5 includes an objective lens unit 51 that forms an image of light from the living tissue X, an imaging element 52 that images the light imaged by the objective lens unit 51, and the objective lens unit 51 and the imaging element 52. And a barrier filter (filter) 53 disposed therebetween.
  • the image sensor 52 is, for example, a color CCD or a color CMOS, and takes a color image of the light imaged by the objective lens unit 51.
  • the barrier filter 53 has an optical characteristic that blocks light in the wavelength region of the excitation light Lex and transmits light in other wavelength bands.
  • the image processor 6 includes an image generation unit 61 that generates a color image A from the image information S acquired by the image sensor 52.
  • the image generation unit 61 outputs the generated image A to the display unit 7.
  • the image processor 6 controls the output intensity of the white light source 31 and the excitation light source 32 independently of each other according to the input to the white light amount input button 62 and the excitation light amount input button 63 that can be input by the user and the buttons 62 and 63.
  • the light control part 64 is provided.
  • the white light quantity input button 62 and the excitation light quantity input button 63 are provided on the front surface of the casing of the image processor 6.
  • the white light quantity input button 62 can input the intensity of the white light Lw, and transmits the input intensity to the dimming unit 64.
  • the excitation light amount input button 63 can input the intensity of the excitation light Lex, and transmits the input intensity to the dimming unit 64.
  • the dimmer 64 adjusts the output intensity of the white light source 31 according to the intensity received from the white light quantity input button 62.
  • the dimmer 64 adjusts the output intensity of the excitation light source 32 according to the intensity received from the excitation light quantity input button 63.
  • a fluorescent dye that accumulates in a lesioned part is administered to the biological tissue X in advance.
  • a fluorescent dye having an excitation wavelength ⁇ ex from 470 nm to 490 nm and a fluorescence wavelength ⁇ em from 510 nm to 530 nm is assumed.
  • the insertion portion 2 is inserted into the body, and the distal end 2a thereof is disposed opposite to the biological tissue X.
  • the white light Lw and the excitation light Lex are simultaneously applied from the distal end 2a of the insertion portion 2 to the biological tissue X by the operation of the light source unit 3. Irradiate.
  • the white light Lw is reflected on the surface of the living tissue X, whereby reflected light Lw ′ (see FIG. 3C) is generated.
  • irradiation with the excitation light Lex generates two components, a fluorescence Lf having a wavelength of 510 nm to 530 nm (see FIG. 3B) and a reflected light Lex 'of the excitation light having a wavelength of 480 to 490 nm.
  • the reflected light Lw ′ and Lex ′ of the white light and the excitation light and the fluorescence Lf return to the distal end 2 a of the insertion portion 2 and enter the objective lens unit 51.
  • the reflected light Lex 'of the excitation light is blocked by the barrier filter 53, and the reflected light Lw' of white light and the fluorescence Lf are incident on the image sensor 52 (see FIG. 3D).
  • the reflected light Lw ′ and the fluorescence Lf are simultaneously captured by the common image sensor 52 and acquired as the image information S.
  • the image generation unit 61 in the image processor 6 generates an image A from the image information S, and the generated image A is displayed on the display unit 7.
  • This image A is an image in which the reflected light image and the fluorescence image of the living tissue X are superimposed.
  • the brightness of the reflected light image and the fluorescent image in the image A is proportional to the intensities of the white light Lw and the excitation light Lex irradiated to the living tissue X, respectively.
  • the user operates the white light amount input button 62 and the excitation light amount input button 63 while observing the image A displayed on the display unit 7, and sets the output intensity of each of the light sources 31 and 32 independently of each other. By adjusting, the brightness of the reflected light image and the fluorescent image in the image A can be adjusted independently of each other.
  • the dimmer 64 sets an upper limit corresponding to the output intensity of the white light source 31 with respect to the output intensity of the excitation light source 32.
  • strong excitation light Lex is irradiated to the living tissue X from a short distance, there may occur a problem that the living tissue X is affected by heat or autofluorescence is generated.
  • the intensity of the excitation light Lex is uniformly limited so that the above-mentioned problem does not occur even when the excitation light Lex is irradiated from a short distance, the fluorescent dye can be sufficiently used for observation from a long distance. There is a possibility that it cannot be excited.
  • the observation distance distance between the living tissue X and the distal end 2a of the insertion portion 2
  • the amount of incident light of the reflected light Lw ′ to the image sensor 52 increases.
  • the intensity is set weak. Therefore, the lower the output intensity of the white light source 31 is, the lower the upper limit of the output intensity of the excitation light source 32 is set, thereby preventing the excitation light Lex from being irradiated to the living tissue X from a short distance. .
  • the output intensity of each of the light sources 31 and 32 can be changed in 10 stages from “1” to “10”. However, “1” is the weakest and “10” is the strongest. Even if the output light intensity of the white light source 31 and the output intensity of the excitation light source 32 are the same, their absolute values are different. For example, even if the level value is the same “10”, the absolute value of the output intensity of the excitation light source 32 is 100 times the absolute value of the output intensity of the white light source 31.
  • the dimming unit 64 sets the upper limit of the output intensity of the excitation light source 32 to “10”, and makes it possible to change the output intensity of the excitation light source 32 in the range of “1” to “10”.
  • the dimming unit 64 sets the upper limit of the output intensity of the excitation light source 32 to “3”, and allows the output intensity of the excitation light source 32 to be changed in the range of “1” to “3”.
  • the intensity of the excitation light Lex irradiated to the living tissue X can be adjusted within an appropriate range.
  • a fluorescence observation apparatus 200 Next, a fluorescence observation apparatus 200 according to the second embodiment of the present invention will be described with reference to FIGS.
  • the configuration different from that of the first embodiment will be mainly described, and the same configuration as that of the first embodiment will be denoted by the same reference numerals and description thereof will be omitted.
  • the user manually adjusts the white light Lw and the excitation light Lex irradiated to the living tissue X.
  • the present embodiment is different from the first embodiment in that the white light Lw and the excitation light Lex are automatically dimmed.
  • the image processor 6 replaces the white light amount input button 62 and the excitation light amount input button 63 with a white light measurement unit 65 and An excitation light measurement unit 66 is provided.
  • the image generation unit 61 transmits, to the excitation light measurement unit 66, a single color image corresponding to the color exhibited by the fluorescence Lf among the three single color images (that is, the R image, the G image, and the B image) constituting the color image A. Then, another single color image is transmitted to the white light measuring unit 65.
  • the fluorescence Lf is green
  • the G image is transmitted to the excitation light measurement unit 66
  • the living tissue X is a color containing a large amount of red component
  • the R image is transmitted to the white light measurement unit 65. I decided to.
  • the white light measurement unit 65 calculates a representative value (for example, an average value or a median value) of the gradation values of the R image received from the image generation unit 61, and transmits the obtained representative value to the dimming unit 64. There is a positive correlation between the representative value of the R image and the intensity of the white light Lw. Therefore, the white light measurement unit 65 can measure the intensity of the white light Lw irradiated to the living tissue X from the representative value of the R image.
  • a representative value for example, an average value or a median value
  • the excitation light measurement unit 66 calculates a representative value (for example, an average value or a median value) of the gradation values of the G image received from the image generation unit 61, and transmits the obtained representative value to the dimming unit 64. There is a positive correlation between the representative value of the G image and the intensity of the excitation light Lex. Therefore, the excitation light measurement unit 66 can measure the intensity of the excitation light Lex irradiated to the living tissue X from the representative value of the G image.
  • a representative value for example, an average value or a median value
  • the light control unit 64 controls the output intensity of the white light source 31 based on the representative value received from the white light measurement unit 65 so that the representative value becomes a predetermined value.
  • the dimming unit 64 controls the output intensity of the excitation light source 32 based on the representative value received from the excitation light measuring unit 66 so that the representative value falls within a predetermined value.
  • the fluorescence observation apparatus 200 configured as described above will be described.
  • the R image is white light.
  • the G image is transmitted to the measurement unit 65 and the excitation light measurement unit 66, respectively.
  • the white light measuring unit 65 measures the intensity of the white light Lw irradiated to the living tissue X from the brightness of the R image, and the white light source 31 is set so that the intensity of the white light Lw becomes a predetermined value. Feedback control is performed by the dimmer 64.
  • the excitation light measuring unit 66 measures the intensity of the excitation light Lex irradiated on the living tissue X from the brightness of the G image, and the excitation light source 32 is set so that the intensity of the excitation light Lex becomes a predetermined value. Feedback control is performed by the dimmer 64.
  • the output intensity of each of the light sources 31 and 32 is automatically controlled so that each of the reflected light image and the fluorescent image in the color image A is always displayed with appropriate constant brightness.
  • the R image is an image of red reflected light that is hardly absorbed by the living tissue X (particularly blood), and is acquired most stably.
  • the intensity of the white light Lw applied to the living tissue X can be accurately measured and the output intensity of the white light source 31 can be appropriately controlled.
  • the G image is an image in which the influence of the reflected light Lw ′ is small and the fluorescence Lf is captured most clearly.
  • the light control unit 64 sets an upper limit according to the output intensity of the white light source 31 with respect to the output intensity of the excitation light source 32, as in the first embodiment.
  • the white light measurement unit 65 and the excitation light measurement unit 66 calculate the average value and the maximum value of the gradation values of the whole or a part of the color image A instead of measuring the monochromatic image, respectively. May be.
  • the image generation unit 61 transmits the generated color image A to the white light measurement unit 65 and the excitation light measurement unit 66 as they are.
  • the white light measurement unit 65 calculates the average value of the gradation values of the whole or a part (preferably the central part) of the color image A, and transmits the obtained average value to the light control unit 64.
  • the excitation light measurement unit 66 calculates the maximum value of the gradation value of the whole or a part (preferably the central part) of the color image A, and transmits the obtained maximum value to the light control unit 64.
  • the dimmer 64 controls the output intensity of the white light source 31 so that the received average value becomes a predetermined value, and controls the output intensity of the excitation light source 32 so that the received maximum value becomes a predetermined value.
  • the reflected light image is reflected in the entire color image A, by using the average value of the gradation values of all or part of the color image A, it is possible to ignore the influence of the bright local area due to the fluorescence Lf.
  • the intensity of the white light Lw can be accurately measured.
  • the intensity of the excitation light Lex is accurately measured by using the maximum gradation value of the color image A. be able to.
  • the white light source 31 and the excitation light source 32 are controlled on the basis of the color image A in which the reflected light image and the fluorescence image are superimposed. Instead, as described below. Alternatively, an image including only the reflected light image and an image including only the fluorescent image may be generated, and the white light source 31 and the excitation light source 32 may be controlled based on these images.
  • the white light source 31 continuously emits white light Lw
  • the excitation light source 32 intermittently emits excitation light Lex by repeatedly turning on and off.
  • the on / off operation of the excitation light source 32 is performed in synchronization with the timing of photographing by the image sensor 52.
  • a first color image A1 in which the fluorescent image and the reflected light image are superimposed is generated from the image information S acquired by the imaging element 52 when the excitation light source 32 is on, and the excitation light source 32 is turned off.
  • the second color image A2 including only the reflected light image is generated from the image information S acquired by the image sensor 52 at the time.
  • the image generation unit 61 transmits the second color image A2 of the two types of generated color images A1 and A2 to the white light measurement unit 65, and both color images A1 and A2 are transmitted.
  • A2 is output to the fluorescence calculation unit 67.
  • the fluorescence calculation unit 67 subtracts the second color image A2 from the first color image A1 to generate a third color image A3 including only the fluorescence image, and obtains the obtained third color image A3. It transmits to the excitation light measuring unit 66.
  • the white light measurement unit 65 can accurately measure the intensity of the white light Lw based on the color image A2 including only the reflected light image without being affected by the fluorescence Lf. Further, since the frame rate does not decrease with respect to the reflected light image, fine observation of the living tissue X can be performed as usual based on the reflected light image. On the other hand, the excitation light measuring unit 66 can accurately measure the intensity of the excitation light Lex without being affected by the reflected light Lw ′ based on the third color image A3 including only the fluorescence image.
  • the simultaneous method of irradiating the living tissue X with the white light Lw and photographing the reflected light Lw ′ using the color image sensor 52 is adopted.
  • blue (B), green (G), and red (R) monochromatic light is sequentially irradiated onto the living tissue X, and the reflected light of each monochromatic light is applied to the monochrome image sensor 52 ′.
  • This is different from the first and second embodiments in that it adopts a frame sequential method for photographing.
  • the fluorescence observation apparatus 300 further includes a rotating filter 35 between the white light source 31 and the dichroic mirror 33, as shown in FIG.
  • the rotary filter 35 includes three types of filters that selectively transmit blue, green, and red light, respectively, on the optical path between the white light source 31 and the dichroic mirror 33. Three types of filters are alternatively arranged in order.
  • the fluorescence observation apparatus 300 repeats the first step to the third step, and sequentially acquires the B image, the G image, and the R image. It is like that.
  • the blue light Lb is irradiated onto the living tissue X, and the reflected light Lb ′ of the blue light Lb from the living tissue X is imaged.
  • a B image is generated by being photographed by the element 52.
  • the green light Lg is irradiated onto the living tissue X, and the reflected light Lg ′ of the green light Lg from the living tissue X is captured by the image sensor 52.
  • the G image is generated by shooting the image.
  • the third step as shown in FIGS.
  • the red light Lr is irradiated onto the living tissue X, and the reflected light Lr ′ of the red light Lr from the living tissue X is captured by the image sensor 52.
  • the R image is generated by being photographed.
  • the excitation light source 32 emits the excitation light Lex in the second step, and stops the emission of the excitation light Lex in the first step and the third step. Thereby, in the second step, a G image including a fluorescent image is generated.
  • the image generation unit 61 combines the color image A from the three single-color images, and outputs the obtained image A to the display unit 7.
  • the resolution of the image A is generally higher in the frame sequential method than in the simultaneous method. This is because a monochrome image with higher resolution can be obtained. That is, according to the fluorescence observation apparatus 300 according to the present embodiment, by adopting the frame sequential method, the image pickup device 52 ′ smaller than the image pickup device 52 is used, and the same as in the first and second embodiments. There is an advantage that a resolution image A can be generated. Since other effects are the same as those of the first and second embodiments, the description thereof is omitted.
  • the white light measuring unit 65 and the excitation light measuring unit 66 described in the second embodiment may be provided.
  • the white light measurement unit 65 and the excitation light measurement unit 66 measure the intensity of each light Lw ′ and Lf from the R image and the G image.
  • the fluorescence Lf is observed not only in the G image but also in the R image.
  • an R image from which the fluorescence Lf is completely eliminated is acquired. Therefore, the intensity of the white light Lw can be measured more accurately by using such an R image.
  • the living tissue X is irradiated with the excitation light Lex simultaneously with the green light Lg, but instead, the living tissue X is irradiated with the excitation light Lex simultaneously with the blue light Lb or the red light Lr.
  • the excitation light Lex may be irradiated simultaneously with light of two colors or three colors (that is, two or more steps from the first step to the third step).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Astronomy & Astrophysics (AREA)
  • Multimedia (AREA)
  • Endoscopes (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

照明光(Lw)と、該照明光の波長帯域のうち一部の波長帯域を有する励起光(Lex)とを同時に被写体(X)に照射する光源部(3)と、照明光(Lw)の被写体(X)からの反射光(Lw')と、励起光(Lex)の照射によって被写体(X)において発生する蛍光(Lf)とを同時に撮影する単一の撮像素子(52)と、励起光(Lex)を除く光(Lw',Lf)を撮像素子(52)へ透過させるフィルタ(53)と、光源部(3)からの照明光(Lw)の出力強度と励起光(Lex)の出力強度とを互いに独立に調整する調光部(64)とを備える蛍光観察装置(100)を提供する。

Description

蛍光観察装置
 本発明は、蛍光観察装置に関するものである。
 従来、単一の光源と単一の撮像素子とを使用し、被写体からの可視域の照明光の反射光と蛍光との両方を共通の撮像素子で同時に撮影する蛍光観察装置が知られている(例えば、特許文献1参照。)。
特開2005-312830号公報
 しかしながら、特許文献1の蛍光観察装置において、蛍光と反射光との強度差が大きくなると、弱い方の光が強い方の光に埋もれてしまい、弱い方の光の像を画像で観察することが困難になるという問題がある。例えば、蛍光信号に対して反射光信号が強過ぎると、蛍光像を鮮明に観察することが困難になる。
 本発明は、上述した事情に鑑みてなされたものであって、被写体からの反射光および蛍光を共通の撮像素子を用いて同時に撮影する蛍光観察装置において、反射光像および蛍光像の両方を同時に鮮明に観察することができる蛍光観察装置を提供することを目的とする。
 上記目的を達成するため、本発明は以下の手段を提供する。
 本発明は、照明光を出射する照明光源と前記照明光の波長帯域のうち一部の波長帯域を有する励起光を出射する励起光源とを有し、前記照明光と前記励起光とを同時に被写体に照射する光源部と、前記照明光の照射によって前記被写体において反射された反射光と、前記励起光の照射によって前記被写体において発生する蛍光とを同時に撮影する単一の撮像素子と、該撮像素子の前段に配置され、前記励起光をカットし、前記反射光のうち前記励起光を除く全部または大部分を透過させるフィルタと、前記照明光源の前記照明光の出力強度と前記励起光源の前記励起光の出力強度とを互いに独立に調整する調光部とを備える蛍光観察装置を提供する。
 本発明によれば、光源部からの照明光および励起光が同時に被写体に照射されることによって反射光および蛍光が発生し、反射光および蛍光の両方が共通の撮像素子によって撮影される。これにより、被写体の照明光像と蛍光像との両方を1つの画像内で同時に観察することができる。
 この場合に、被写体で発生する反射光および蛍光の強度は、それぞれ照明光および励起光の強度に比例する。したがって、別々に設けられている照明光源および励起光源の出力強度を調光部によって互いに独立に調整することによって、反射光と蛍光との信号強度が同レベルとなるようにこれら反射光と蛍光との強度比を適切に調整して、反射光像と蛍光像の両方を同時に鮮明に観察することができる。
 上記発明においては、前記調光部が、前記撮像素子によって前記反射光および前記蛍光を撮影して取得された画像の階調値に基づき、前記照明光源の出力強度と前記励起光源の出力強度とを調整してもよい。
 このようにすることで、ユーザの操作を必要とせずに、各光源の出力強度を自動調整することができる。
 上記発明においては、前記撮像素子によって取得された画像が、カラー画像であり、前記調光部が、前記カラー画像を構成する複数の単色画像のうち、前記蛍光の色に対応する単色画像の階調値に基づいて前記励起光源の出力強度を調整し、他の単色画像の階調値に基づいて前記照明光源の出力強度を調整してもよい。
 このようにすることで、反射光および蛍光のそれぞれの強度を、互いの影響が排除された画像に基づいて正確に評価し、各光源の出力強度をより適切に調整することができる。
 上記発明においては、前記調光部が、前記画像の全体または一部分の階調値の平均値に基づいて前記照明光源の出力強度を調整し、前記画像の全体または一部分の階調値の最大値に基づいて前記励起光源の出力強度を調整してもよい。
 このようにすることで、画像の階調値の平均値を用いることによって、被写体の広範囲で発生する反射光の強度をより正確に評価することができる。一方、画像の階調値の最大値を用いることによって、被写体の局所で発生する蛍光の強度をより正確に評価することができる。
 上記発明においては、前記光源部が、前記照明光を連続的に前記被写体に照射するとともに、前記励起光を間欠的に前記被写体に照射し、前記撮像素子が、前記励起光および前記照明光の両方が前記被写体に照射されているときに第1の画像を取得し、前記照明光のみが前記被写体に照射されているときに第2の画像を取得し、前記調光部が、前記第2の画像の階調値に基づいて前記照明光源の出力強度を調整し、前記第1の画像から前記第2の画像を減算して得られた第3の画像の階調値に基づいて前記励起光源の出力強度を調整してもよい。
 このようにすることで、反射光像のみを含む第2の画像を用いることによって、反射光の強度をより正確に評価することができる。一方、蛍光像のみを含む第3の画像を用いることによって、蛍光の強度をより正確に評価することができる。
 本発明によれば、被写体からの反射光および蛍光を共通の撮像素子を用いて同時に撮影する蛍光観察装置において、反射光像および蛍光像の両方を同時に鮮明に観察することができるという効果を奏する。
本発明の第1の実施形態に係る蛍光観察装置の全体構成図である。 (a)白色光、(b)励起光、(c)光源ユニットからの出力光および(d)バリアフィルタの波長特性を示すグラフである。 (a)蛍光色素、(b)蛍光、(c)反射光および(d)撮像素子への入射光の波長特性を示すグラフである。 本発明の第2の実施形態に係る蛍光観察装置の全体構成図である。 図4の蛍光観察装置の変形例を示す全体構成図である。 本発明の第3の実施形態に係る蛍光観察装置の全体構成図である。 図6の蛍光観察装置の回転フィルタが備える3色のフィルタ(R,G,B)の各々の波長特性を示すグラフである。 図6の蛍光観察装置の作用を説明する図であり、(a),(b)第1のステップ、(c),(d)第2のステップおよび(e),(f)第3のステップにおける、光源ユニットからの出力光((a),(c),(e))および撮像素子への入射光((b),(d),(f))の波長特性を示すグラフである。
(第1の実施形態)
 以下に、本発明の第1の実施形態に係る蛍光観察装置100について図1から図3を参照して説明する。
 本実施形態に係る蛍光観察装置100は、内視鏡装置であって、図1に示されるように、体内に挿入される細長い挿入部2と、光源ユニット(光源部)3と、該光源ユニット3からの白色光(照明光)Lwおよび励起光Lexを挿入部2の先端2aから生体組織(被写体)Xに向けて照射する照明ユニット4と、挿入部2の先端2aに設けられ、生体組織Xの画像情報Sを取得する撮像ユニット5と、画像情報Sを処理する画像プロセッサ6と、該画像プロセッサ6によって生成された画像Aを表示する表示部7とを備えている。
 光源ユニット3は、白色光源(照明光源)31と、励起光源32と、これら2つの光源31,32から出射された白色光Lwおよび励起光Lexを合波するダイクロイックミラー33と、該ダイクロイックミラー33によって合波された光を集光するカップリングレンズ34とを備えている。
 白色光源31は、例えば、キセノンランプを用いた光源であり、図2(a)に示されるように、可視領域全体(具体的には、400nmから650nm)にわたって波長を有する白色光Lwを出射する。
 励起光源32は、例えば、狭帯域光を出射するレーザダイオードを用いた光源であり、図2(b)に示されるように、青色(具体的には、波長480nmから490nm)の励起光Lexを出射する。
 ダイクロイックミラー33は、励起光Lexを反射し、白色光Lwを透過させることによって、図2(c)に示されるように、白色光Lwと励起光Lexとが重畳された光を出力する。
 照明ユニット4は、挿入部2の長手方向のほぼ全長にわたって配置されたライトガイドファイバ41と、挿入部2の先端2aに設けられた照明光学系42とを備えている。ライトガイドファイバ41は、カップリングレンズ34によって集光された光を導光する。照明光学系42は、ライトガイドファイバ41によって導光されてきた白色光Lwおよび励起光Lexを拡散させて、挿入部2の先端2aに対向する生体組織Xに照射する。
 撮像ユニット5は、生体組織Xからの光を結像する対物レンズユニット51と、該対物レンズユニット51によって結像された光を撮影する撮像素子52と、対物レンズユニット51と撮像素子52との間に配置されたバリアフィルタ(フィルタ)53とを備えている。
 撮像素子52は、例えば、カラーCCDまたはカラーCMOSであり、対物レンズユニット51によって結像された光をカラー撮影する。
 バリアフィルタ53は、図2(d)に示されるように、励起光Lexの波長領域の光を遮断し、これ以外の波長帯域の光を透過させる光学特性を有している。
 画像プロセッサ6は、撮像素子52によって取得された画像情報Sからカラー画像Aを生成する画像生成部61を備えている。画像生成部61は、生成した画像Aを表示部7に出力する。
 画像プロセッサ6は、ユーザによって入力操作可能な白色光量入力ボタン62および励起光量入力ボタン63と、これらのボタン62,63への入力に従って白色光源31および励起光源32の出力強度を互いに独立に制御する調光部64とを備えている。
 白色光量入力ボタン62および励起光量入力ボタン63は、画像プロセッサ6の筐体の前面に設けられている。白色光量入力ボタン62は、白色光Lwの強度を入力可能であり、入力された強度を調光部64に送信する。励起光量入力ボタン63は、励起光Lexの強度を入力可能であり、入力された強度を調光部64に送信する。
 調光部64は、白色光量入力ボタン62から受信した強度に従って、白色光源31の出力強度を調整する。調光部64は、励起光量入力ボタン63から受信した強度に従って、励起光源32の出力強度を調整する。
 次に、このように構成された蛍光観察装置100の作用について説明する。
 本実施形態に係る蛍光観察装置100を用いて生体組織Xを観察するには、予め、例えば病変部に集積する蛍光色素を生体組織Xに投与しておく。本実施形態においては、図3(a)に示されるように、470nmから490nmに励起波長λexを有し、510nmから530nmに蛍光波長λemを有する蛍光色素を想定している。
 まず、体内に挿入部2を挿入してその先端2aを生体組織Xに対向配置し、光源ユニット3の作動によって白色光Lwおよび励起光Lexを同時に、挿入部2の先端2aから生体組織Xに照射する。生体組織Xにおいては、白色光Lwが生体組織Xの表面において反射されることによって反射光Lw’(図3(c)参照。)が発生する。これと同時に、励起光Lexの照射によって、波長510nmから530nmの蛍光Lf(図3(b)参照。)と、波長480から490nmの励起光の反射光Lex’との2つの成分が発生する。
 白色光および励起光の反射光Lw’,Lex’と蛍光Lfとのうち一部は、挿入部2の先端2aに戻り、対物レンズユニット51へ入射する。そして、励起光の反射光Lex’はバリアフィルタ53によって遮断され、白色光の反射光Lw’と蛍光Lfとが撮像素子52へ入射する(図3(d)参照。)。
 このようにして、反射光Lw’と蛍光Lfとが共通の撮像素子52によって同時に撮影されて画像情報Sとして取得される。次に、画像プロセッサ6内の画像生成部61において、画像情報Sから画像Aが生成され、生成された画像Aが表示部7に表示される。この画像Aは、生体組織Xの反射光像と蛍光像とが重畳された画像である。
 ここで、画像A内の反射光像および蛍光像の明るさは、生体組織Xに照射される白色光Lwおよび励起光Lexの強度にそれぞれ比例する。本実施形態において、ユーザは、表示部7に表示されている画像Aを観察しながら、白色光量入力ボタン62および励起光量入力ボタン63を操作し、各光源31,32の出力強度を互いに独立に調整することによって、画像A内の反射光像および蛍光像の明るさを互いに独立に調整することができる。したがって、例えば、画像A内において反射光像と蛍光像とが互いに略同一の明るさで表示されるように、ボタン62,63を用いて各光源31,32の出力強度を調整することによって、反射光像および蛍光像の両方を鮮明に観察することができるという利点がある。
 本実施形態においては、調光部64が、励起光源32の出力強度に対して、白色光源31の出力強度に応じた上限を設定することが好ましい。
 生体組織Xに対して近距離から強い励起光Lexが照射されると、生体組織Xが熱による影響を受けたり、自家蛍光が発生したりしてしまうという問題が発生し得る。一方、近距離から励起光Lexが照射されたとしても上記の問題が発生しないように、励起光Lexの強度を一律に低く制限してしまうと、遠距離から観察する場合に蛍光色素を十分に励起することができない可能性がある。
 ここで、通常、観察距離(生体組織Xと挿入部2の先端2aとの間の距離)が近い程、撮像素子52への反射光Lw’の入射光量は増加するので、白色光源31の出力強度は弱く設定される。そこで、白色光源31の出力強度が低い程、励起光源32の出力強度の上限を低く設定することによって、生体組織Xに対して近距離から強い励起光Lexが照射されることを防ぐことができる。
 例えば、各光源31,32の出力強度は、「1」から「10」の10段階で変更可能であるとする。ただし、「1」が最弱であり、「10」が最強である。白色光源31の出力強度と励起光源32の出力強度とは、レベル値が同一であっても、その絶対値は異なる。例えば、レベル値が同じ「10」であったとしても、励起光源32の出力強度の絶対値は、白色光源31の出力強度の絶対値の100倍である。
 生体組織Xを遠距離から観察する場合に、白色光源31の出力強度がユーザによって「10」に設定されたとする。このときに、調光部64は、励起光源32の出力強度の上限を「10」に設定し、「1」から「10」の範囲で、励起光源32の出力強度を変更可能とする。一方、生体組織Xを近距離から観察する場合に、白色光源31の出力強度がユーザによって「3」に設定されたとする。このときに、調光部64は、励起光源32の出力強度の上限を「3」に設定し、「1」から「3」の範囲で、励起光源32の出力強度を変更可能にする。
 このように、白色光源31の出力強度Iwに対する励起光源32の出力強度Iexの割合Iex/Iwが所定値以下となるように、励起光源32の出力強度Iexに対して上限を設定することによって、生体組織Xに照射される励起光Lexの強度を適切な範囲で調整することができる。
(第2の実施形態)
 次に、本発明の第2の実施形態に係る蛍光観察装置200について図4および図5を参照して説明する。
 本実施形態においては、第1の実施形態と異なる構成について主に説明し、第1の実施形態と共通の構成については同一の符号を付して説明を省略する。
 第1の実施形態においては、生体組織Xに照射される白色光Lwおよび励起光Lexをユーザが手動で調光することとした。これに対し、本実施形態は、白色光Lwおよび励起光Lexを自動で調光する点において、第1の実施形態と異なっている。
 具体的には、本実施形態に係る蛍光観察装置200は、図4に示されるように、画像プロセッサ6が、白色光量入力ボタン62および励起光量入力ボタン63に代えて、白色光測定部65および励起光測定部66を備えている。
 画像生成部61は、カラー画像Aを構成する3色の単色画像(すなわち、R画像、G画像およびB画像)のうち、蛍光Lfが呈する色に対応する単色画像を励起光測定部66に送信し、他の1つの単色画像を白色光測定部65に送信する。本実施形態においては、蛍光Lfが緑色であるので、G画像を励起光測定部66に送信し、生体組織Xが赤成分を多く含む色であるので、R画像を白色光測定部65に送信することとする。
 白色光測定部65は、画像生成部61から受信したR画像の階調値の代表値(例えば、平均値または中央値)を算出し、得られた代表値を調光部64に送信する。R画像の代表値と白色光Lwの強度との間には、正の相関関係が存在する。したがって、白色光測定部65は、R画像の代表値から、生体組織Xへ照射される白色光Lwの強度を測定することができる。
 励起光測定部66は、画像生成部61から受信したG画像の階調値の代表値(例えば、平均値または中央値)を算出し、得られた代表値を調光部64に送信する。G画像の代表値と励起光Lexの強度との間には、正の相関関係が存在する。したがって、励起光測定部66は、G画像の代表値から、生体組織Xへ照射される励起光Lexの強度を測定することができる。
 調光部64は、白色光測定部65から受信した代表値に基づき、該代表値が所定の値になるように、白色光源31の出力強度を制御する。調光部64は、励起光測定部66から受信した代表値に基づき、該代表値が所定の値内になるように、励起光源32の出力強度を制御する。
 このように構成された蛍光観察装置200の作用について説明する。
 本実施形態に係る蛍光観察装置200によれば、画像生成部61において生体組織Xのカラー画像Aが生成されると、カラー画像Aを構成する3色の単色画像のうち、R画像が白色光測定部65に、G画像が励起光測定部66に、それぞれ送信される。そして、白色光測定部65において、R画像の明るさから生体組織Xに照射されている白色光Lwの強度が測定され、該白色光Lwの強度が所定の値となるように白色光源31が調光部64によってフィードバック制御される。一方、励起光測定部66において、G画像の明るさから生体組織Xに照射されている励起光Lexの強度が測定され、該励起光Lexの強度が所定の値となるように励起光源32が調光部64によってフィードバック制御される。
 このように、本実施形態によれば、カラー画像A内の反射光像および蛍光像の各々が常に適切な一定の明るさで表示されるように、各光源31,32の出力強度を自動制御することによって、ユーザは、調光のための操作をせずとも反射光像および蛍光像の両方を常に鮮明に観察することができるという利点がある。また、観察距離の変動等によって生体組織Xに照射される白色光Lwおよび励起光Lexの強度が変動したときに、これらの強度が迅速に適切に調整される。したがって、必要以上に強い白色光Lwおよび励起光Lexが生体組織Xに照射されることを防止することができるという利点がある。
 また、R画像は、生体組織X(特に、血液)によってほとんど吸収されない赤色の反射光の画像であり、最も安定して取得される。このようなR画像を用いることによって、生体組織Xに照射されている白色光Lwの強度を正確に測定し、白色光源31の出力強度を適切に制御することができるという利点がある。一方、G画像は、反射光Lw’の影響が小さく、蛍光Lfが最も鮮明に撮影された画像である。このようなG画像を用いることによって、生体組織Xに照射されている励起光Lexの強度を正確に測定し、励起光源32の出力強度を適切に制御することができるという利点がある。
 本実施形態においても、第1の実施形態と同様に、調光部64が、励起光源32の出力強度に対して、白色光源31の出力強度に応じた上限を設定することが好ましい。
 本実施形態においては、白色光測定部65および励起光測定部66が、単色画像を測光することに代えて、カラー画像Aの全体または一部分の階調値の平均値および最大値をそれぞれ算出してもよい。
 この場合、画像生成部61は、生成したカラー画像Aをそのまま白色光測定部65および励起光測定部66に送信する。
 白色光測定部65は、カラー画像Aの全体または一部分(好ましくは中央部分)の階調値の平均値を算出し、得られた平均値を調光部64に送信する。
 励起光測定部66は、カラー画像Aの全体または一部分(好ましくは中央部分)の階調値の最大値を算出し、得られた最大値を調光部64に送信する。
 調光部64は、受信した平均値が所定の値になるように白色光源31の出力強度を制御し、受信した最大値が所定の値になるように励起光源32の出力強度を制御する。
 反射光像は、カラー画像A全体に写っているため、カラー画像Aの全体または一部分の階調値の平均値を用いることによって、蛍光Lfに因る明るい局所の影響を無視することができ、白色光Lwの強度を正確に測定することができる。一方、蛍光像は、カラー画像A内の、蛍光色素が集積した局所のみに写っているため、カラー画像Aの階調値の最大値を用いることによって、励起光Lexの強度を正確に測定することができる。
 本実施形態においては、反射光像と蛍光像とが重畳されたカラー画像Aに基づいて、白色光源31および励起光源32を制御することとしたが、これに代えて、以下に説明するように、反射光像のみを含む画像と、蛍光像のみを含む画像とを生成し、これら画像に基づいて白色光源31および励起光源32を制御してもよい。
 すなわち、白色光源31は、白色光Lwを連続的に出射し、励起光源32は、オンオフを繰り返すことによって励起光Lexを間欠的に出射する。この励起光源32のオンオフ動作は、撮像素子52の撮影のタイミングに同期して行われる。これにより、励起光源32がオンであるときに撮像素子52によって取得された画像情報Sから、蛍光像と反射光像とが重畳された第1のカラー画像A1が生成され、励起光源32がオフであるときに撮像素子52によって取得された画像情報Sから、反射光像のみを含む第2のカラー画像A2が生成される。
 画像生成部61は、図5に示されるように、生成したこれら2種類のカラー画像A1,A2のうち、第2のカラー画像A2を白色光測定部65に送信し、両方のカラー画像A1,A2を蛍光演算部67に出力する。蛍光演算部67は、第1のカラー画像A1から第2のカラー画像A2を減算することによって、蛍光像のみを含む第3のカラー画像A3を生成し、得られた第3のカラー画像A3を励起光測定部66に送信する。
 このようにすることで、白色光測定部65は、反射光像のみを含むカラー画像A2に基づき、蛍光Lfの影響を受けることなく、白色光Lwの強度を正確に測定することができる。また、反射光像に関してはフレームレートが落ちないので、反射光像に基づいて通常通り生体組織Xの細かな観察を行うことができる。一方、励起光測定部66は、蛍光像のみを含む第3のカラー画像A3に基づき、反射光Lw’の影響を受けることなく励起光Lexの強度を正確に測定することができる。
(第3の実施形態)
 次に、本発明の第3の実施形態に係る蛍光観察装置300について図6から図8を参照して説明する。
 本実施形態においては、第1および第2の実施形態と異なる構成について主に説明し、第1および第2の実施形態と共通の構成については同一の符号を付して説明を省略する。
 第1および第2の実施形態においては、白色光Lwを生体組織Xに照射し、その反射光Lw’をカラーの撮像素子52を用いて撮影する同時方式を採用することとした。これに対し、本実施形態は、青色(B)、緑色(G)および赤色(R)の単色光を順番に生体組織Xに照射し、各単色光の反射光をモノクロの撮像素子52’を用いて撮影する面順次方式を採用している点において、第1および第2の実施形態と異なっている。
 具体的には、本実施形態に係る蛍光観察装置300は、図6に示されるように、白色光源31とダイクロイックミラー33との間に、回転フィルタ35をさらに備えている。回転フィルタ35は、図7に示されるように、青色、緑色および赤色の光をそれぞれ選択的に透過させる3種類のフィルタを備え、白色光源31とダイクロイックミラー33との間の光路上に、これら3種類のフィルタを択一的に順番に配置するようになっている。これにより、蛍光観察装置300は、図8(a)から(f)に示されるように、第1のステップから第3のステップまでを繰り返し、B画像、G画像およびR画像を順番に取得するようになっている。
 すなわち、第1のステップにおいては、図8(a),(b)に示されるように、青色光Lbが生体組織Xに照射され、生体組織Xからの青色光Lbの反射光Lb’が撮像素子52に撮影されることによって、B画像が生成される。第2のステップにおいては、図8(c),(d)に示されるように、緑色光Lgが生体組織Xに照射され、生体組織Xからの緑色光Lgの反射光Lg’が撮像素子52に撮影されることによって、G画像が生成される。第3のステップにおいては、図8(e),(f)に示されるように、赤色光Lrが生体組織Xに照射され、生体組織Xからの赤色光Lrの反射光Lr’が撮像素子52に撮影されることによって、R画像が生成される。ここで、励起光源32は、第2のステップにおいて励起光Lexを出射し、第1のステップおよび第3のステップにおいて励起光Lexの出射を停止する。これにより、第2のステップにおいては、蛍光像を含むG画像を生成される。
 画像生成部61は、3つの単色画像からカラー画像Aを合成し、得られた画像Aを表示部7に出力する。
 寸法および画素数が同一の撮像素子52,52’を使用する場合、一般に、同時方式に比べて面順次方式の方が画像Aの解像度が高くなる。これは、より解像度の高い単色画像が得られることに因る。すなわち、本実施形態に係る蛍光観察装置300によれば、面順次方式を採用することによって、撮像素子52よりも小さい撮像素子52’を使用しつつ、第1および第2の実施形態と同等の解像度の画像Aを生成することができるという利点がある。その他の効果は、第1および第2の実施形態と同様であるので、説明を省略する。
 本実施形態においては、入力ボタン62,63に代えて、第2の実施形態において説明した白色光測定部65および励起光測定部66を備えてもよい。この場合、白色光測定部65および励起光測定部66は、R画像およびG画像から各光Lw’,Lfの強度を測定することが好ましい。
 同時方式においては、蛍光Lfが、G画像のみならず、R画像においても観察される。これに対し、面順次方式においては、蛍光Lfが完全に排除されたR画像が取得される。したがって、このようなR画像を用いることによって、白色光Lwの強度をさらに正確に測定することができる。
 本実施形態においては、緑色光Lgと同時に励起光Lexを生体組織Xに照射することとしたが、これに代えて、青色光Lbまたは赤色光Lrと同時に励起光Lexを生体組織Xに照射してもよく、2色または3色の光と同時に(すなわち、第1のステップから第3のステップのうち2以上のステップで)励起光Lexを照射してもよい。
100,200,300 蛍光観察装置
2 挿入部
3 光源ユニット(光源部)
31 白色光源(照明光源)
32 励起光源
33 ダイクロイックミラー
34 カップリングレンズ
35 回転フィルタ
4 照明ユニット
41 ライトガイドファイバ
42 照明光学系
5 撮像ユニット
51 対物レンズユニット
52,52’ 撮像素子
53 バリアフィルタ
6 画像プロセッサ
61 画像生成部
62 白色光量入力ボタン
63 励起光量入力ボタン
64 調光部
65 白色光測定部
66 励起光測定部
67 蛍光演算部
X 生体組織(被写体)
Lw 白色光(照明光)
Lw’ 反射光
Lex 励起光
Lf 蛍光

Claims (5)

  1.  照明光を出射する照明光源と前記照明光の波長帯域のうち一部の波長帯域を有する励起光を出射する励起光源とを有し、前記照明光と前記励起光とを同時に被写体に照射する光源部と、
     前記照明光の照射によって前記被写体において反射された反射光と、前記励起光の照射によって前記被写体において発生する蛍光とを同時に撮影する単一の撮像素子と、
     該撮像素子の前段に配置され、前記励起光をカットし、前記反射光のうち前記励起光を除く全部または大部分を透過させるフィルタと、
     前記照明光源の前記照明光の出力強度と前記励起光源の前記励起光の出力強度とを互いに独立に調整する調光部とを備える蛍光観察装置。
  2.  前記調光部が、前記撮像素子によって前記反射光および前記蛍光を撮影して取得された画像の階調値に基づき、前記照明光源の出力強度と前記励起光源の出力強度とを調整する請求項1に記載の蛍光観察装置。
  3.  前記撮像素子によって取得された画像が、カラー画像であり、
     前記調光部が、前記カラー画像を構成する複数の単色画像のうち、前記蛍光の色に対応する単色画像の階調値に基づいて前記励起光源の出力強度を調整し、他の単色画像の階調値に基づいて前記照明光源の出力強度を調整する請求項2に記載の蛍光観察装置。
  4.  前記調光部が、前記画像の全体または一部分の階調値の平均値に基づいて前記照明光源の出力強度を調整し、前記画像の全体または一部分の階調値の最大値に基づいて前記励起光源の出力強度を調整する請求項2に記載の蛍光観察装置。
  5.  前記光源部が、前記照明光を連続的に前記被写体に照射するとともに、前記励起光を間欠的に前記被写体に照射し、
     前記撮像素子が、前記励起光および前記照明光の両方が前記被写体に照射されているときに第1の画像を取得し、前記照明光のみが前記被写体に照射されているときに第2の画像を取得し、
     前記調光部が、前記第2の画像の階調値に基づいて前記照明光源の出力強度を調整し、前記第1の画像から前記第2の画像を減算して得られた第3の画像の階調値に基づいて前記励起光源の出力強度を調整する請求項2に記載の蛍光観察装置。
PCT/JP2015/050446 2014-01-31 2015-01-09 蛍光観察装置 WO2015115151A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580005986.4A CN105934191B (zh) 2014-01-31 2015-01-09 荧光观察装置
DE112015000283.9T DE112015000283T5 (de) 2014-01-31 2015-01-09 Fluoreszenzbeobachtungsvorrichtung
JP2015559847A JP6383370B2 (ja) 2014-01-31 2015-01-09 蛍光観察装置
US15/198,407 US20160302652A1 (en) 2014-01-31 2016-06-30 Fluorescence observation apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-016905 2014-01-31
JP2014016905 2014-01-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/198,407 Continuation US20160302652A1 (en) 2014-01-31 2016-06-30 Fluorescence observation apparatus

Publications (1)

Publication Number Publication Date
WO2015115151A1 true WO2015115151A1 (ja) 2015-08-06

Family

ID=53756729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050446 WO2015115151A1 (ja) 2014-01-31 2015-01-09 蛍光観察装置

Country Status (5)

Country Link
US (1) US20160302652A1 (ja)
JP (1) JP6383370B2 (ja)
CN (1) CN105934191B (ja)
DE (1) DE112015000283T5 (ja)
WO (1) WO2015115151A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9439439B2 (en) 2011-03-28 2016-09-13 Corning Incorporated Antimicrobial action of Cu, CuO and Cu2O nanoparticles on glass surfaces and durable coatings
WO2017073302A1 (ja) * 2015-10-27 2017-05-04 オリンパス株式会社 撮像システムのための制御装置、撮像システム、及び撮像システムの制御方法
EP3446619B1 (en) * 2016-04-21 2023-09-20 FUJIFILM Corporation Endoscope system and processor device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10324041B2 (en) * 2016-12-21 2019-06-18 Abbott Japan Co., Ltd. Optical imaging system using lateral illumination for digital assays
CN114098611B (zh) * 2021-10-08 2022-09-13 武汉迈瑞医疗技术研究院有限公司 一种内窥镜***及其成像调节方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008259591A (ja) * 2007-04-10 2008-10-30 Hamamatsu Photonics Kk 蛍光観察用光源装置及びそれを用いた蛍光観察装置
JP2009279169A (ja) * 2008-05-22 2009-12-03 Fujinon Corp 蛍光画像取得方法および蛍光画像取得装置
JP2011147757A (ja) * 2009-09-29 2011-08-04 Fujifilm Corp 医療機器及び内視鏡装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4198086B2 (ja) * 2003-06-25 2008-12-17 オリンパス株式会社 蛍光観察用装置
US20090289200A1 (en) * 2008-05-22 2009-11-26 Fujifilm Corporation Fluorescent image obtainment method and apparatus, fluorescence endoscope, and excitation-light unit
JP5081720B2 (ja) * 2008-05-22 2012-11-28 富士フイルム株式会社 蛍光内視鏡装置および励起光ユニット
EP2384689B1 (en) * 2009-10-20 2016-12-07 Olympus Corporation Fluorescence observation device
JP2011131002A (ja) * 2009-12-25 2011-07-07 Fujifilm Corp 蛍光画像撮像装置
WO2012025141A1 (en) * 2010-08-24 2012-03-01 Osram Ag Colour-tunable light source unit with phosphor element
JP5682975B2 (ja) * 2010-09-02 2015-03-11 国立大学法人東北大学 がん発症又はがん発症リスクの判定方法
JP5798430B2 (ja) * 2011-10-03 2015-10-21 浜松ホトニクス株式会社 蛍光観測装置及び蛍光観測方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008259591A (ja) * 2007-04-10 2008-10-30 Hamamatsu Photonics Kk 蛍光観察用光源装置及びそれを用いた蛍光観察装置
JP2009279169A (ja) * 2008-05-22 2009-12-03 Fujinon Corp 蛍光画像取得方法および蛍光画像取得装置
JP2011147757A (ja) * 2009-09-29 2011-08-04 Fujifilm Corp 医療機器及び内視鏡装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9439439B2 (en) 2011-03-28 2016-09-13 Corning Incorporated Antimicrobial action of Cu, CuO and Cu2O nanoparticles on glass surfaces and durable coatings
WO2017073302A1 (ja) * 2015-10-27 2017-05-04 オリンパス株式会社 撮像システムのための制御装置、撮像システム、及び撮像システムの制御方法
JP6203452B1 (ja) * 2015-10-27 2017-09-27 オリンパス株式会社 撮像システム
US11051683B2 (en) 2015-10-27 2021-07-06 Olympus Corporation Control device for imaging system, imaging system, and method for controlling imaging system
EP3446619B1 (en) * 2016-04-21 2023-09-20 FUJIFILM Corporation Endoscope system and processor device

Also Published As

Publication number Publication date
US20160302652A1 (en) 2016-10-20
CN105934191A (zh) 2016-09-07
JP6383370B2 (ja) 2018-08-29
JPWO2015115151A1 (ja) 2017-03-23
CN105934191B (zh) 2018-01-02
DE112015000283T5 (de) 2016-10-06

Similar Documents

Publication Publication Date Title
JP5229723B2 (ja) 蛍光画像取得装置
US20200397266A1 (en) Apparatus and method for enhanced tissue visualization
JP5303012B2 (ja) 内視鏡システム、内視鏡システムのプロセッサ装置及び内視鏡システムの作動方法
JP6383370B2 (ja) 蛍光観察装置
JP5887350B2 (ja) 内視鏡システム及びその作動方法
WO2012043771A1 (ja) 撮像装置
US20200337540A1 (en) Endoscope system
WO2015025640A1 (ja) 蛍光観察装置
US10610082B2 (en) Endoscope apparatus
WO2016147315A1 (ja) 蛍光画像生成装置及び蛍光画像生成方法
US9414739B2 (en) Imaging apparatus for controlling fluorescence imaging in divided imaging surface
JP6203452B1 (ja) 撮像システム
JP2009279171A (ja) 蛍光画像取得方法および蛍光画像取得装置
JPWO2016080130A1 (ja) 観察装置
JP6266559B2 (ja) 内視鏡診断装置、画像処理方法、プログラムおよび記録媒体
JP2016202411A (ja) 蛍光観察装置
JP2017000192A (ja) 蛍光観察装置
JP6800664B2 (ja) 内視鏡装置
WO2016203983A1 (ja) 内視鏡装置
JP6113033B2 (ja) 内視鏡装置
JP2016123577A (ja) 蛍光観察装置
JP6120758B2 (ja) 医用システム
JP2013094489A (ja) 内視鏡装置
JP6138386B1 (ja) 内視鏡装置及び内視鏡システム
JP6062111B2 (ja) 内視鏡装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15742881

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015559847

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112015000283

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15742881

Country of ref document: EP

Kind code of ref document: A1