WO2015101177A1 - 轴承、锁紧环及两者的套装组合体 - Google Patents

轴承、锁紧环及两者的套装组合体 Download PDF

Info

Publication number
WO2015101177A1
WO2015101177A1 PCT/CN2014/093971 CN2014093971W WO2015101177A1 WO 2015101177 A1 WO2015101177 A1 WO 2015101177A1 CN 2014093971 W CN2014093971 W CN 2014093971W WO 2015101177 A1 WO2015101177 A1 WO 2015101177A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
ring
inner ring
rotating shaft
locking ring
Prior art date
Application number
PCT/CN2014/093971
Other languages
English (en)
French (fr)
Inventor
汤姆·德·鲁斯特
霍莱特纳·鲁道夫
张翔
Original Assignee
斯凯孚上海汽车技术有限公司
斯凯孚公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 斯凯孚上海汽车技术有限公司, 斯凯孚公司 filed Critical 斯凯孚上海汽车技术有限公司
Publication of WO2015101177A1 publication Critical patent/WO2015101177A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/063Fixing them on the shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • F16C19/163Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone

Definitions

  • the present invention relates to a bearing locking collar, a kit assembly consisting of a conventional type of rolling bearing and the locking ring, and a novel bearing incorporating the locking ring itself.
  • a conventional type of rolling bearing is designed to have an inner ring, an outer ring, and a plurality of rolling bodies disposed between the inner ring and the outer ring in this order.
  • These conventional types of bearings are designed to be axially positioned to prevent axial displacement caused by vibration or other types of external forces.
  • some types of bearings such as angular contact ball bearings, tapered roller bearings, deep groove ball bearings, etc., even need to withstand relatively strong axial loads. .
  • these conventional types of bearings must be fixed in a reliable manner on the bearing shaft passing through the inner ring thereof. In practice, people often use a lock nut to achieve the above purpose.
  • the lock nut is screwed onto the threaded bearing shaft in a screw-fit manner, abutting against the side of the guide flange of the bearing inner ring from one side to provide axial axial alignment Positioning and support.
  • This locking method requires the thread to be tapped on the rotating shaft in advance, which not only increases the process and cost, but also makes the lock nut easy to loose under the action of vibration and external force.
  • an additional anti-loose member such as a locking washer or a locking bolt, is required to achieve a reliable fixing.
  • the Chinese utility model patent CN 202160405 U discloses an "inner ring extended deep groove ball bearing" for achieving axial positioning by increasing the friction of the inner ring.
  • the inner ring of the deep groove ball bearing has an elongated portion extending in the axial direction, and the frictional force between the inner ring of the bearing and the rotating shaft is increased by increasing the contact area between the inner ring of the bearing and the rotating shaft.
  • this design is simple in structure, convenient in assembly, and low in cost, it is difficult to ensure the reliability of axial positioning simply by the frictional force that can be provided by the conventional interference fit between the inner ring and the rotating shaft.
  • the axial load carrying capacity of the inner ring cannot be fundamentally improved, and thus its application range is rather limited.
  • the present invention is directed to a bearing lock ring that is simple in construction, convenient to install, and capable of providing reliable positioning and axial support.
  • the basic idea of the present invention is to adopt a locking ring having an annular closed structure, which can be larger than the inner ring by virtue of the mechanical properties of the material itself and the combination of a certain degree of expansion and deformation. The mechanical strength of the interference fit between the shafts is hooped on the shaft.
  • the locking ring can be sold and used as a separate component and a conventional type of bearing, or as an inner ring extension integrated with the bearing inner ring.
  • the present invention provides a bearing lock ring for providing axial positioning and support for conventional types of rolling bearings.
  • the conventional type of rolling bearing structurally includes an inner ring, an outer ring, and a plurality of rolling bodies disposed between the inner ring and the outer ring.
  • the locking ring is an annular closing member for fitting in series with the inner ring of the bearing on a shaft of uniform diameter.
  • the locking ring abuts at least one end of the inner ring in the axial direction when mounted on the rotating shaft.
  • the locking ring can be fastened to the shaft with a mechanical strength greater than the degree of tight fit between the inner ring and the shaft.
  • the locking ring is not only simple in structure, convenient in installation, low in cost, but also provides reliable axial positioning and support for the bearing over a relatively large load range.
  • the present invention also provides a bearing kit assembly comprising a conventional type of rolling bearing and the above-described locking ring for use with the conventional type of rolling bearing.
  • This combination of kits is not only convenient for the purchase and use of the user, but also facilitates the standardized production and supply of the products.
  • the present invention further provides a bearing having an inner ring, an outer ring, and a plurality of rolling bodies disposed between the inner ring and the outer ring, which are sequentially distributed in the radial direction.
  • the inner ring has an integrally extended axial extension in addition to its standard area corresponding to the outer ring.
  • the extension is formed on the side of the inner ring for receiving the axial load on the force rib, and has an annular closed structure for providing axial positioning and support for the bearing.
  • 1a is a partial cross-sectional view showing the use of the locking ring and the angular contact ball bearing in the present invention
  • Figure 1b is a partial cross-sectional view showing the locking ring of the present invention connected to the angular contact ball bearing through a connecting mechanism, and the area A in the figure is a partial cross-sectional enlarged view of the connecting mechanism;
  • Figure 1c is a partial cross-sectional view showing the locking ring of the present invention as an inner ring extension and an inner ring of an angular contact ball bearing;
  • Figure 1d is a partial cross-sectional view of an angular contact ball bearing having an improved inner ring extension
  • FIG. 2a is a partial cross-sectional view showing a state in which the locking ring of the present invention is coupled to a tapered roller bearing by a connecting mechanism, and the area A in the drawing is a partial cross-sectional enlarged view of the connecting mechanism;
  • Figure 2b is a partial cross-sectional view of a tapered roller bearing having an improved inner ring extension
  • Figure 3a is a partial cross-sectional view showing the state in which the locking ring of the present invention is coupled to a deep groove ball bearing by a connecting mechanism, and the area A in the figure is a partial cross-sectional enlarged view of the connecting mechanism;
  • Figure 3b is a partial cross-sectional view of a deep groove ball bearing with an improved inner ring extension.
  • FIG. 1a is a partial cross-sectional view showing the use of the locking ring and the angular contact ball bearing in the present invention.
  • This cross-sectional view is a cross-sectional view of the bearing body 10 and the locking ring 20 cut from an imaginary plane containing the bearing axis 8.
  • the left half of Fig. 1a shows a conventional angular contact ball bearing 10 comprising an inner ring 1, an outer ring 2 and a plurality of rolling bodies 3 disposed between the inner ring 1 and the outer ring 2.
  • the angular contact ball bearing 10 should also contain a cage 4 for preventing the rolling bodies 3 from touching each other.
  • the inner ring 1 is nested on the rotating shaft 5 in a moderate interference fit.
  • the axial load F acting on the outer ring 2 is transmitted through the rolling elements 3 and finally acts on the force rib 11 of the inner ring 1.
  • the force rib also referred to as "guide rib"
  • guide rib in terms of the angular contact ball bearing, is disposed on one side of the inner ring 1 and has a certain thickness in both the axial direction and the radial direction, which is sufficient to withstand considerable strength. Axial load.
  • FIG. 1a shows a locking ring 20 having a generally rectangular cross section.
  • the locking ring 20 functions similarly to a conventional lock nut for preventing axial displacement of the bearing 10 under axial load F or other external force.
  • the difference is that the locking ring 20 is neither fitted by the screw nor by the shaft 5
  • the groove is matched, but is fastened to the rotating shaft 5 by a hoop in which the tightness is greater than the interference fit of the inner ring 1 and the rotating shaft 5.
  • the locking ring 20 is a closed annular member that can be placed in series with the bearing 10 on a shaft 5 of uniform diameter.
  • the mounting process is carried out in a state in which the bearing inner ring 1 and the lock ring 20 are preheated and expanded. After cooling, the two can be hooped on the shaft 5 by virtue of the shrinkage characteristics of the material.
  • This type of mounting is well known in the bearing art and will not be described here.
  • the locking ring 20 abuts axially from one side against the side of the inner ring 1 for receiving the axial load F.
  • the locking ring 20 only needs to abut axially against either or both sides of the inner ring 1 for reliable positioning.
  • the mechanical strength of the tightening ring 20 of the tightening ring 20 must be greater than the hoop strength of the normal interference fit of the inner ring 1 and the rotating shaft 5.
  • This greater mechanical strength can be attributed to the shrinkage characteristics of the telescopic deformation of the locking ring 20, for example, by using an interference fit that is greater than the interference between the inner ring 1 and the shaft 5;
  • the mechanical properties derived from the material of the inner ring 1 from the locking ring 20 can be achieved, for example, by using a more rigid locking ring material than the inner ring 1 with the same interference amplitude.
  • a combination of the above two schemes can also be adopted.
  • the locking ring 20 in order to achieve a tightening strength higher than the inner ring interference fit, can be designed to have an inner diameter smaller than the inner ring 1, so that the locking ring 20 can be closer than the inner ring 1.
  • the degree of tightening is fixed to the rotating shaft 5.
  • the locking ring 20 In the case of a metal material, in the case of a bearing steel, the locking ring 20 has a considerable sealing effect even if it is only a few tens of micrometers smaller than the inner ring 1 in the inner diameter.
  • the structural deformation caused by the interference fit of the locking ring 20 with the rotating shaft 5 needs to be controlled within the safe stretch range of its material.
  • the locking ring 20 may be of a bearing steel material that is homogenous to the inner ring 1 but has not been subjected to a final heat treatment.
  • the final heat treatment may be, for example, a heat treatment process such as quenching, tempering, carburizing, nitriding, or the like. It is well known that bearing steels without final heat treatment have better plastic toughness than bearing steels that have undergone final heat treatment. This not only facilitates the cutting process, but also facilitates a good tightening effect by structural deformation.
  • the locking ring 20 can also be a thermally refined steel material.
  • the so-called modulated steel is typically a sorbite material obtained after quenching and high temperature tempering heat treatment of a medium carbon steel having a carbon content of 0.3 to 0.6%. This material has a high degree of comprehensive mechanical properties and maintains high strength while also providing good ductility and toughness. It can be understood that any other metal material having high strength and/or good plastic toughness can be used as long as it can effectively expand and contract and hoop on the rotating shaft.
  • a greater roughness can be provided on the inner surface 22 thereof, in particular greater than the roughness of the inner surface 14 of the bearing inner ring, in order to effectively increase the locking ring 20 and The coefficient of friction between the shafts 5, thereby improving the fastening effect.
  • the locking ring 20 is generally rectangular in cross section.
  • any other geometric shape such as a right-angled trapezoid, a right-angled triangle, a sector having a central angle of 90 degrees, or the like, as long as there are two orthogonal sides adjacent to each other, one of which is a right-angled side.
  • the inner surface 22 of the locking ring 20 so that the hoop 5 can be reliably hooped on the rotating shaft 5
  • the other right angle side corresponds to the abutting surface 23 of the locking ring 20, so as to be able to fully abut against the force rib 11 of the bearing inner ring.
  • the purpose of the abutment and support of the locking ring of the present invention can be achieved.
  • the structure, performance and working principle of the locking ring 20 of the present invention will be described above by taking only the angular contact ball bearing 10 shown in Fig. 1a as an example.
  • the same structure of the locking ring is also fully applicable to other conventional types of rolling bearings, such as the tapered roller bearing 10 shown in Figure 2a and the deep groove ball bearing shown in Figure 3a. 10.
  • reliable positioning can be achieved by abutting the abutment surface 23 of the locking ring 20 axially against one or both sides of the inner ring 1 as needed. the goal of. In the latter case, the working mechanism and principle of the locking ring 20 are not substantially different from those of the aforementioned angular contact ball bearings, tapered roller bearings and tapered roller bearings.
  • the locking ring 20 can be combined with various conventional types of rolling bearings to form a kit that can be sold and used in sets. This not only facilitates the purchase and use of the user, but also facilitates the standardization of production and the supply of products.
  • the locking ring 20 can be attached to the angular contact ball bearing shown in Figure 1a. 10 or the tapered roller bearing 10 shown in Figure 2a forms a kit combination. After the installation is completed, the locking ring 20 can abut against the side of the force rib 11 of the inner ring 1 in the axial direction. Similarly, the locking ring 20 can also form a kit combination with the deep groove ball bearing 10 shown in Figure 3a.
  • the inner ring 1 of the deep groove ball bearing 10 has left and right ribs 13 and 11 which are bilaterally symmetrical. Depending on the direction of action of the axial load, the left and right ribs 13 or 11 of the inner ring 1 may become actual force ribs. In this case, the locking ring 20 can be actually mounted on the side of the force rib 11 or 13 subjected to the axial load as needed.
  • the deep groove ball bearing 10 is subjected to a bidirectional axial load, it is possible to adopt a technical solution in which the two locking rings 20 abut against the force receiving ribs 11 and 13 from both sides in the axial direction. After the installation is completed, the two locking rings abut against the left and right ribs 13 and 11 of the inner ring 1 from the axial sides, so that the deep groove ball bearing 10 has the bearing capacity of the double-sided axial load.
  • the kit is prevented from being lost, and the connection mechanism can be further provided so that the lock ring 20 and the bearing 10 can be connected together in a detachable manner.
  • the connection mechanism provides a buckle mechanism that is easy to disassemble.
  • the buckle mechanism structurally includes an annular flange 21 formed on the locking ring 20 and a force rib 11 formed on the inner ring 1.
  • the groove 12a is fitted.
  • the fitting groove 12a is formed on the shoulder 12 of the force rib 11
  • the annular flange 21 is formed at its end with a radially projecting hook-like projection 21a, the hook The projection 21 can be snapped into the fitting recess 12a by virtue of the return elasticity of the annular flange 21.
  • the bearing 10 and the locking ring 20 can be snapped together as long as sufficient axial thrust is applied.
  • the bearing 10 and the locking ring 20 can be separated as long as the opposite pulling force is applied in the axial direction.
  • buckle mechanism adopting the above structure is also fully applicable to the case of the tapered roller bearing 10 and the deep groove ball bearing 10 shown in Figs. 2a and 3a and other conventional types of rolling bearings, and thus will not be described herein. It will be appreciated that any other form of attachment mechanism may be employed as long as it is functionally capable of achieving a detachable connection of the locking ring 20 to the bearing 10, and is not necessarily limited to the buckle mechanism described above as a specific example.
  • the locking ring 20 is only used as a separate component for mating with the bearing 10.
  • the locking ring 20 can also be formed integrally with the bearing inner ring 1, and as the inner ring extension, it also functions as a hoop and a positioning.
  • the locking ring 20 and the bearing 10 can be completely "fused" in construction to form a new type of bearing 10'.
  • the new bearing has an inner ring 1, an outer ring 2 and a plurality of rolling bodies 3 disposed between the inner ring 1 and the outer ring 2.
  • the inner ring 1 has an elongated portion 20' extending in the axial direction in addition to the standard region 1' corresponding to the outer ring 2.
  • the elongated portion 20' is formed into a ring-shaped closed structure, in the When mounted, it can be integrally assembled with the inner ring 1 on the shaft 5 having a uniform diameter. Similar to the case of the aforementioned locking ring 20, after cooling, the elongated portion 20' can be larger than the standard region 1' and the rotating shaft 5 by virtue of the restoring property of its own material, combined with a certain degree of elastic (shrinkage) deformation. The hoop strength of the interference fit is fastened to the shaft 5.
  • the present invention further adds an annular damper groove 6 to the inner surface of the inner ring standard region 1' and the elongated portion 20'.
  • the cross-section of the damper groove 6 can be any conventional geometry, such as a semi-circular or semi-elliptical shape.
  • the damper groove 6 should have a certain depth in the radial direction. Simulation calculations and experiments have shown that under the action of the axial load F, the arrangement of the damping groove 6 can reduce the axial deformation amplitude of the material inside the elongated portion 20' as a whole. This shows from one side that the damping groove 6 is arranged such that the axial load F is before reaching the extension 20', at least part of which is introduced in advance via the axial contact area of the inner ring standard zone 1' close to the damping groove 6 In the rotating shaft 5, the axial load on the elongated portion 20' is correspondingly reduced.
  • the arrangement of the damper grooves 6 contributes to unloading the axial load experienced by the elongated portion 20' to a certain extent, thereby improving the axial support ability and positioning reliability of the elongated portion 20'.
  • the axial deformation range of the material in the elongated portion 20' tends to decrease as a whole. This shows that an increase in the radial depth of the damper groove 6 within a certain range contributes to further alleviating the axial load that the elongated portion 20' is subjected to.
  • the present invention can also provide a detaching card slot 7 on the radially outer surface of the elongated portion 20'. During the disassembly process, the claw of the detaching device can be inserted into the card slot 7 to facilitate the pulling of the inner ring 1 from the rotating shaft 5.
  • angular contact ball bearing 10' shown in Figs. 1c and 1d as an example, illustrating that the locking ring 20 can be integrated with the bearing inner ring 1' in the form of an elongated portion 20' to form an elongated inner ring.
  • Angular contact ball bearings 10' It will be fully understood by those skilled in the art that similar technical solutions can be applied to other conventional types of rolling bearings.
  • the elongated portion 20' may be formed on the side of the stressed rim 11 or 13 of the inner ring standard area 1' of the tapered roller bearing 10' or the deep groove ball bearing 10', with standard The region 1' is integrated to form the elongated inner ring 1 of the bearing 10', thereby obtaining a tapered roller bearing and a deep groove ball shaft with additional tightening ability Cheng.
  • the structure of the elongated portion of these conventional types of rolling bearings is similar to the structure of the angular contact ball bearing 10' shown in Figs. 1c and 1d, and has the same function and effect, and thus will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

一种轴承锁紧环(20),用于为常规类型的滚动轴承(10)提供轴向定位和支撑。所述轴承(10)在结构上包含沿径向分布的内圈(1)、外圈(2)和设置在内圈和外圈之间的多个滚动体(3)。所述锁紧环(20)为环形的闭合构件,用于与轴承(10)的内圈(1)串联套装在直径均一的转轴(5)上,能够沿轴向与所述内圈(1)的至少一端相抵靠。所述锁紧环(20)仅依靠自身材料的力学性能,并结合一定程度的伸缩形变,就能够以大于所述内圈(1)与所述转轴(5)过盈配合紧密程度的力学强度环箍在所述转轴(5)上。上述锁紧环(20)和常规类型的滚动轴承(10)共同构成轴承套件组合体。还提供一种具有加长内圈(1)的常规类型的滚动轴承(10')。

Description

轴承、锁紧环及两者的套装组合体 技术领域
本发明涉及一种轴承锁紧环(locking collar)、由常规类型的滚动轴承和所述锁紧环组成的套件组合体、以及集成所述锁紧环于自身的新型轴承。
背景技术
常规类型的滚动轴承在设计上具有沿径向依次分布内圈、外圈和设置在内圈和外圈之间的多个滚动体。这些常规类型的轴承在设计上需要轴向定位,用以防止震动或者其他类型的外力所引起的轴向移位。其中,有些类型的轴承,比如角接触球轴承(angular contact ball bearings)、圆锥滚子轴承(tapered roller bearings)、深沟球轴承(deep groove ball bearings)等,甚至需要承受相当强度的轴向负荷。为实现上述目的,这些常规类型的轴承必须以可靠的方式固定在穿过其内圈的轴承转轴上。在实践中,人们多以锁紧螺母(lock nut)来实现上述目的。典型情况下,锁紧螺母以螺旋适配的方式旋拧在攻有螺纹的轴承转轴上,从一侧抵靠在轴承内圈的引导挡边(guide flange)所在侧,从而为轴承提供轴向定位和支撑。这种锁紧方式需要预先在转轴上攻出螺纹,不仅增加了工序和成本,而且在震动和外力的作用下,锁紧螺母容易松动。为防止松动,还需要额外设置防松脱构件,比如锁紧垫片(locking washer)或者锁紧螺栓(locking bolt)等,才能最终实现可靠固定的目的。
为有效降低成本,简化结构和工艺,中国实用新型专利CN 202160405 U公开了一种通过提高内圈摩擦力来实现轴向定位的“内圈加长式深沟球轴承”。这种深沟球轴承的内圈具有沿轴向延伸的加长部,通过提高轴承内圈与转轴之间的接触面积,来增大轴承内圈与转轴之间的摩擦力。然而,这种设计虽然结构简单,装配方便,成本也低廉,但是仅仅依紧靠加长内圈与转轴之间的常规过盈配合所能提供的摩擦力,难以确保轴向定位的可靠性,更不能从根本上提高内圈的轴向负荷承载能力,因而其应用范围相当有限。
发明内容
本发明旨在提供一种结构简单、安装便捷、能够提供可靠定位和轴向支撑的轴承锁紧环。为实现上述目的,本发明的基本构思是采用一种具有环形闭合结构的锁紧环,该锁紧环依靠自身材料的力学性能,并结合自身一定幅度的伸缩形变,就能够以大于内圈与转轴之间过盈配合紧密程度的力学强度环箍在所述转轴上。基于以上构思,锁紧环既可以作为独立构件与常规类型的轴承成套出售和使用,也可以作为内圈加长部与轴承内圈集成为一体。
一方面,本发明提供一种轴承锁紧环,用于为常规类型的滚动轴承提供轴向定位和支撑。所述常规类型的滚动轴承,在结构上包含沿径向依次分布的内圈、外圈和设置在内圈和外圈之间的多个滚动体。所述锁紧环为环形的闭合构件,用于与轴承的内圈串联套装在直径均一的转轴上。当安装在所述转轴上时,所述锁紧环沿轴向与所述内圈的至少一端相抵靠。仅依靠自身材料的伸缩形变和力学性能,所述锁紧环就能够以大于所述内圈与转轴之间过盈配合紧密程度的力学强度紧固在所述转轴上。这种锁紧环,不仅结构简单,安装便捷,成本低廉,而且能够在相当大的负荷范围内为轴承提供可靠的轴向定位和支撑。
另一方面,本发明还提供一种轴承套件组合体,所述套件组合体包含常规类型的滚动轴承和与该常规类型的滚动轴承配套使用的上述锁紧环。这种套件组合体不仅方便用户的购买和使用,而且还有利于产品的标准化生产和配套供应。
再一方面,本发明进一步提供一种轴承,所述轴承具有沿径向依次分布的内圈、外圈和设置在内圈和外圈之间的多个滚动体。所述内圈在其对应于外圈的标准区域之外,还具有一体延伸的轴向加长部。所述加长部形成在所述内圈的用于承受轴向负荷的受力挡边所在侧,具有环形的闭合结构,用于为轴承提供轴向定位和支撑。当内圈套装在直径均一的转轴上时,所述加长部仅依靠其自身材料的伸缩形变和力学性能,就能够以大于所述标准区域与转轴之间的过盈配合紧密程度的力学强度紧箍在所述转轴上。采用这种具有加长内圈的新型轴承,不仅能够减少配件的数量,简化生产,降低成本,而且能够有效提高安装效率和使用便捷性。
以下结合附图的详细描述本发明的各种具体实施方式和有益效果。
附图说明
图1a为本发明所述锁紧环与角接触球轴承配套使用情况下的局部截面示意图;
图1b为本发明所述锁紧环通过连接机构与角接触球轴承连接在一起情况下的局部截面示意图,图中的区域A为所述连接机构的局部截面放大图;
图1c为本发明所述锁紧环作为内圈加长部与角接触球轴承的内圈形成为一体情况下的局部截面示意图;
图1d为具有改进的内圈加长部的角接触球轴承的局部截面示意图;
图2a为本发明所述锁紧环通过连接机构与圆锥滚子轴承连接在一起情况下的局部截面示意图,图中的区域A为所述连接机构的局部截面放大图;
图2b为具有改进的内圈加长部的圆锥滚子轴承的局部截面示意图;
图3a为本发明所述锁紧环通过连接机构与深沟球轴承连接在一起情况下的局部截面示意图,图中的区域A为所述连接机构的局部截面放大图;和
图3b为具有改进的内圈加长部的深沟球轴承的局部截面示意图。
具体实施方式
首先,以角接触球轴承为例,说明本发明所述锁紧环是如何与常规类型的滚动轴承配合使用的。图1a为本发明所述锁紧环与角接触球轴承配套使用情况下的局部截面示意图。该截面图是由包含轴承轴线8的假想平面剖切轴承本体10和锁紧环20所得出的截面图。图1a中的左半部分显示的是一个普通的角接触球轴承10,包括内圈1、外圈2和设置在内圈1和外圈2之间的多个滚动体3。在理想情况下,角接触球轴承10还应包含用于防止滚动体3彼此触碰的保持架4。在使用状态下,内圈1以适度的过盈配合方式嵌套在转轴5上。如图中箭头方向所示,作用在外圈2上的轴向负荷F经过滚动体3的传递,最终作用在内圈1的受力挡边11上。所述受力挡边(又称“引导挡边”),就角接触球轴承而言,设置在内圈1的一侧,沿轴向和径向均具有一定的厚度,足以承受相当强度的轴向负荷。
图1a中的右半部分显示的是一个截面大致呈矩形的锁紧环20。锁紧环20的作用与传统的锁紧螺母类似,用于防止轴承10在轴向负荷F或者其他外力的作用下沿轴向发生移位。所不同的是,锁紧环20既未通过螺旋适配,也未通过在转轴5上设置 匹配凹槽,而是通过在紧密强度上大于内圈1与转轴5过盈配合的环箍方式紧固在转轴5上。
在传统的固定轴承的方法中,人们总是倾向于在环箍型构件(例如:各种形式的锁紧螺母或者锁紧环)之外寻找额外的紧固或者防止松脱的技术手段,却恰恰忽视了利用环箍型构件自身的弹性形变和材料力学性能,就能够充分实现轴承内圈可靠固定在转轴上从而在转轴上获得有效支撑的现实可能性。本发明克服了传统的轴承固定方式中普遍存在的技术偏见,即认为锁紧环必须借助于螺纹或者凹槽等技术手段才能可靠固定在转轴上的传统理念。实验表明,以环形材料自身弹性所具有的回复(收缩)效应,辅以相当程度的弹性形变,就可以使环形材料强有力地紧箍在轴承转轴上,足以在相当大的幅值范围内承受轴向负荷,从而为轴承内圈提供可靠的定位和支撑。
仍以图1a为例,锁紧环20为一种闭合的环形构件,能够与轴承10串联套装在直径均一的转轴5上。其安装过程是在轴承内圈1和锁紧环20预热膨胀的状态下进行的。待冷却以后,两者就能够凭借自身材料的收缩特性,紧箍在转轴5上。这种安装方式在轴承领域已为人们所熟知,因而于此处不再赘述。待安装完成以后,锁紧环20沿轴向从一侧抵靠在内圈1的用于承受轴向负荷F的受力挡边11所在侧。对于无需承受大幅度轴向负荷的其他常规类型的滚动轴承而言,锁紧环20只需沿轴向抵靠内圈1的任意一侧或者两侧,即可实现可靠定位的目的。为同时实现可靠定位和牢固支撑的目的,锁紧环20紧箍转轴5的力学强度必须大于内圈1与转轴5正常过盈配合所具有的环箍强度。这种更大的力学强度,可以源于锁紧环20的伸缩形变所带来的收缩特性,例如,可以通过采用比内圈1与转轴5过盈幅度更大的过盈配合来实现;也可以源于锁紧环20不同于内圈1的材质上的力学特性,例如,可以通过在相同过盈幅度的情况下采用比内圈1更加强韧的锁紧环材料来实现。当然,作为第三种选择,也可以采用以上两种方案相结合的方式。
以结构形变为例,为实现高于内圈过盈配合的紧箍强度,可以在设计上使锁紧环20具有小于内圈1的内径,从而使锁紧环20能够以比内圈1更加紧密的紧箍程度固定在转轴5上。就金属材料而言,以轴承钢为例,锁紧环20哪怕在内径上比内圈1缩小只有数十微米,也会产生相当显著的紧箍效应。当然,锁紧环20与转轴5过盈配合所引发的结构形变有必要控制在其材料的安全拉伸范围之内。
在结构形变的基础上,还可以进一步采用力学性能不同于内圈1的其他材料, 比如伸缩弹性优于内圈1的金属材料。出于成本的考虑,锁紧环20可以采用与内圈1同质但未经过最终热处理的轴承钢材料。所述最终热处理,例如,可以是淬火(quenching)加回火(tempering)、渗碳、渗氮等热处理工艺。众所周知,未经最终热处理的轴承钢相比于经过了最终热处理的轴承钢具有更好的塑韧性(plastic toughness)。这不仅有利于切削加工,而且有利于通过结构形变获能够得良好的紧箍效应。
作为另外一种选择,锁紧环20也可以采用调制钢(thermally refined steel)材料。所谓调制钢在典型情况下是指含碳量在0.3~0.6%的中碳钢经过淬火加高温回火热处理工艺以后所获得的索氏体材料。这种材料具有很高的综合力学性能,在保持高强度的同时,还具有很好的塑性和韧性。可以理解,任何其他具有高强度和/或良好塑韧性的金属材料,只要能够有效伸缩并箍紧在转轴上,都可以予以采用。
为进一步提高锁紧环20的轴向负荷承载能力,可以在其内表面22上设置较大的粗糙度,尤其是大于轴承内圈内表面14的粗糙度,以便有效地提高锁紧环20与转轴5之间的摩擦系数,从而改善紧固效果。
另有必要指出,在图1a所示的实施例中,锁紧环20的截面大致为矩形。然而,本领域的技术人员都能够理解,任何其他的几何形状,比如直角梯形、直角三角形、具有90度圆心角的扇形等,只要具有相邻的彼此垂直的两条直角边,其中一条直角边对应锁紧环20的内表面22,从而能够可靠环箍在转轴5上,另外一条直角边对应锁紧环20的抵靠面23,从而能够充分抵靠在轴承内圈的受力挡边11所在侧,则都能够实现本发明所述锁紧环的抵靠和支撑目的。
以上仅以图1a中所示的角接触球轴承10为例说明本发明所述锁紧环20的结构、性能和工作原理。然而,本领域的技术人员都能够理解,相同结构的锁紧环也完全适用于其他常规类型的滚动轴承,比如图2a中所示的圆锥滚子轴承10和图3a中所示的深沟球轴承10。对于无需承受高强度轴向负荷的其他常规类型的滚动轴承而言,只要根据需要使锁紧环20的抵靠面23沿轴向抵靠内圈1的一侧或者两侧,就能够实现可靠定位的目的。在后一种情况下,锁紧环20的工作机制和原理与前述角接触球轴承、圆锥滚子轴承和圆锥滚子轴承的情形并无实质性区别。
由此可见,作为独立构件,锁紧环20可以与各种常规类型的滚动轴承组成套件组合体,从而可以成套出售和使用。这样不仅方便用户的购买和使用,而且还有利于生产的标准化和产品的配套供应。例如,锁紧环20可以与图1a中所示的角接触球轴承 10或者图2a中所示的圆锥滚子轴承10形成套件组合体。待安装完毕以后,锁紧环20可以沿轴向抵靠在内圈1的受力挡边11一侧。类似的,锁紧环20也可以与图3a中所示的深沟球轴承10形成套件组合体。所不同的是,深沟球轴承10的内圈1具有左右对称的左、右挡边13和11。根据轴向负荷作用方向的不同,内圈1的左、右挡边13或11均有可能成为实际的受力挡边。在这种情况下,可以根据需要,将锁紧环20实际安装在承受轴向负荷的受力挡边11或13所在侧。在深沟球轴承10承受双向的轴向负荷的情况下,可以采用两个锁紧环20沿轴向同时从两侧抵靠受力挡边11和13的技术方案。待安装完毕以后,两个锁紧环分别从轴向两侧抵靠内圈1的左、右挡边13和11,从而使深沟球轴承10具有双侧轴向负荷的承载能力。
为实现套装组合的目的,防止套件丢失,还可以进一步设置连接机构,使锁紧环20与轴承10能够以可拆分的方式连接在一起。在使用时,只要设法将锁紧环20与轴承10分开,逐一套装在轴承转轴5上,并使两者彼此抵靠即可。作为连接机构的一个具体示例,本发明提供了一种便于拆分的搭扣机构。如图1b所示,以角接触球轴承10为例,所述搭扣机构在结构上包含形成在锁紧环20上的环形突缘21和形成在内圈1的受力挡边11上的适配凹槽12a。在图1b中所示的情形下,适配凹槽12a形成在受力挡边11的肩部12上,环形突缘21在其末端形成有径向内突的钩状突部21a,该钩状突部21能够凭借环形突缘21的回复弹性卡嵌在适配凹槽12a中。在匹配过程中,只要施以足够的轴向推力,就能够将轴承10和锁紧环20“咔嗒”一声锁扣在一起。在安装之前,只要沿轴向施以相反的拉力,就可以将轴承10和锁紧环20分开。
容易理解,采用上述结构的搭扣机构,也完全适用于图2a和3a所示的圆锥滚子轴承10和深沟球轴承10以及其他常规类型的滚动轴承的情形,因而于此处不再赘述。可以理解,任何其他形式的连接机构,只要在功能上能够实现锁紧环20与轴承10的可拆分式连接,都可以予以采用,而不必限于以上作为具体示例加以描述的搭扣机构。
在上述诸多实施方式中,锁紧环20仅作为独立构件与轴承10匹配使用的。然而,锁紧环20也可以与轴承内圈1形成为一体,作为其内圈加长部同样起到紧箍和定位的作用。在这种情况下,以图1c所示的情形为例,锁紧环20和轴承10在结构上完全可以“融合”为一体,形成一种新型轴承10’。该新型轴承具有内圈1、外圈2和设置在内圈1和外圈2之间的多个滚动体3。所述内圈1在其对应于外圈2的标准区域1’之外,还具有沿轴向延伸的加长部20’。所述加长部20’形成为环形的闭合结构,在安 装时,即能够随内圈1一体套装在直径均一的转轴5上。类似于前述锁紧环20的情形,在冷却以后,加长部20’依靠其自身材料的回复特性,结合一定程度的弹性(收缩)形变,就能够以大于所述标准区域1’与转轴5之间的过盈配合的环箍强度紧固在转轴5上。
与前述情形类似,为进一步提高内圈1的轴向支撑能力,也可以考虑在其加长部20’的内表面22’上设置较大的粗糙度,尤其是大于内圈标准区域1’的内表面14’的粗糙度,从而有效地提高加长部20’与转轴5之间的摩擦系数和紧固效果。
所不同的是,与独立设置锁紧环20的情形相比,锁紧环20作为加长部20’与内圈1融合为一体的情况下,震动和轴向负荷可以几乎无损地传导至加长部20’。这对加长部20’承受轴向负荷的能力和轴向定位的可靠性均造成不利影响。为此,本发明进一步在内圈标准区域1’与加长部20’交界处的内表面上增设环形的减震槽6。如图1d所示,减震槽6的截面可以是任何常规的几何形状,比如半圆形或者半椭圆形。此外,减震槽6在径向上应具有一定的深度。模拟计算和实验表明,在轴向负荷F的作用下,减震槽6的设置可以从整体上降低加长部20’内部材料的轴向变形幅度。这从一个侧面表明,减震槽6的设置可以使轴向负荷F在到达加长部20’之前,其中至少有部分负荷通过内圈标准区域1’靠近减震槽6的轴接触面被提前导入转轴5中,从而相应地减少了加长部20’所承受的轴向负荷。由此可见,减震槽6的设置有助于在一定程度上卸载加长部20’所承受的轴向负荷,从而提高加长部20’的轴向支撑能力和定位可靠性。实验还表明,随着减震槽6的径向深度在一定范围内进一步增加,加长部20’内的材料轴向形变幅度在整体上趋于减小。这说明,减震槽6的径向深度在一定范围内的增加,有助于进一步缓和加长部20’所承受的轴向负荷。
不仅如此,如图1d所示,考虑到内圈1拆卸的便利性,本发明还可以在加长部20’的径向外表面上增设拆卸卡槽7。在拆卸过程中,拆卸装置的卡爪可以***到卡槽7中,方便从转轴5上将内圈1拖出。
以上仅以图1c和1d中所示的角接触球轴承10’为例,说明了锁紧环20可以以加长部20’的形式与轴承内圈1’融合为一体,从而形成具有加长内圈的角接触球轴承10’。本领域的技术人员完全可以理解,类似的技术方案也可以应用到其他常规类型的滚动轴承上。例如,如图2b和3b所示,加长部20’可以形成在圆锥滚子轴承10’或深沟球轴承10’的内圈标准区域1’的受力挡边11或者13所在侧,与标准区域1’融合为一体,形成轴承10’的加长型内圈1,从而获得具有额外紧箍能力的圆锥滚子轴承和深沟球轴 承。这些常规类型的滚动轴承的加长部的结构,与图1c和1d中所示的角接触球轴承10’的结构类似,也具有相同的功能和效果,因而于此处不再重述。
尽管本说明书仅针对图中所示的具体实施方式进行了详细说明,但所述领域的技术人员完全能够理解,其他任何形式的变更和改进,只要符合随附权利要求书的限定,均属于本发明的保护范围。

Claims (21)

  1. 一种轴承锁紧环(20),用于为常规类型的滚动轴承(10)提供轴向定位和支撑,所述轴承(10)在结构上包含沿径向分布的内圈(1)、外圈(2)和设置在内圈和外圈之间的多个滚动体(3),所述锁紧环(20)为环形的闭合构件,用于与轴承(10)的内圈(1)串联套装在直径均一的转轴(5)上,并能够沿轴向与所述内圈(1)的至少一端相抵靠,其特征在于:所述锁紧环(20)仅依靠自身材料的力学性能,并结合一定程度的伸缩形变,就能够以大于所述内圈(1)与所述转轴(5)过盈配合紧密程度的力学强度环箍在所述转轴(5)上。
  2. 如权利要求1中所述轴承锁紧环(20),其特征在于:在被安装在所述转轴(5)上以前,所述锁紧环(20)具有比所述内圈(1)缩小的内径。
  3. 如权利要求2中所述轴承锁紧环(20),其特征在于:所述锁紧环(20)内表面(22)的粗糙度大于轴承内圈(1)内表面(14)的粗糙度。
  4. 如权利要求1~3中任一项所述的轴承锁紧环(20),其特征在于:所述锁紧环(20)采用的是力学性能不同于所述内圈(1)的材料。
  5. 如权利要求4中所述的轴承锁紧环(20),其特征在于:所述锁紧环(20)是由材料弹性优于所述内圈(1)的金属材料制成。
  6. 如权利要求5中所述的轴承锁紧环(20),其特征在于:所述锁紧环(20)是由与内圈(1)材料同质但未经过最终热处理的轴承钢制成。
  7. 如权利要求4中任一项所述的轴承锁紧环(20),其特征在于:所述锁紧环(20)是由兼具高强度和优良弹性的金属材料制成。
  8. 如权利要求7中所述的轴承锁紧环(20),其特征在于:所述锁紧环(20)是由调制钢材料制成。
  9. 如权利要求1~3中任一项所述的轴承锁紧环(20),其特征在于:所述锁紧环(20)具有相互垂直的内表面(22)和抵靠面(23),当安装在所述转轴(5)上以后,所述内表面(22)环箍在所述转轴(5)上,所述抵靠面(23)沿轴向与所述内圈(1)的至少 一侧相抵靠。
  10. 如权利要求9中所述的轴承锁紧环(20),其特征在于:所述锁紧环(20)具有大致矩形的截面。
  11. 如权利要求9中所述的轴承锁紧环(20),其特征在于:所述轴承(10)为角接触球轴承、圆锥滚子轴承或者深沟球轴承,当安装在所述转轴(5)上以后,所述抵靠面(23)沿轴向抵靠所述内圈(1)的受力挡边(11、13)所在侧。
  12. 一种轴承套件组合体(10、20),包含权利要求1~11中任一项所述轴承(10)和与该轴承(10)配套使用的同一权利要求中所述的锁紧环(20)。
  13. 如权利要求12中所述的轴承套件组合体(10、20),其特征在于:所述锁紧环(20)能够通过连接机构(12、12a、21、21a)以可拆卸的方式与所述内圈(1)相连。
  14. 如权利要求13中所述轴承套件组合体(10、20),其特征在于:所述连接机构是一种搭扣机构(12、12a、21、21a),所述搭扣机构(12、12a、21、21a)包括形成在锁紧环(20)上的环形突缘(21)和形成在所述内圈(1)一侧肩部(12)上的适配凹槽(12a),所述环形突缘(21)在其末端形成有沿径向向内突出的钩状突部(21a),所述钩状突部(21a)能够能够在轴向外力的作用下,凭借环形突缘(21)的弹性形变适配在所述适配凹槽(21a)中,或者从所述适配凹槽(21a)中脱出。
  15. 如权利要求14中所述的轴承套件组合体(10、20),其特征在于:所述轴承(10)为角接触球轴承、圆锥滚子轴承或者深沟球轴承,当安装在所述转轴(5)上以后,所述抵靠面(23)沿轴向抵靠所述内圈(1)的受力挡边(11、13)所在侧,所述适配凹槽(21a)形成在所述内圈(1)位于受力挡边(11、13)所在侧的肩部(12)上。
  16. 一种轴承(10’),具有沿径向分布的内圈(1)、外圈(2)和设置在内圈和外圈之间的多个滚动体(3),所述内圈(1)在其对应于外圈(2)的标准区域(1’)之外还具有一体延伸的轴向加长部(20’),所述加长部(20’)形成为环形的闭合结构,为轴承(10’)提供轴向定位和支撑,其特征在于:当所述内圈(1)整体套装在直径均一的转轴(5)上时,所述加长部(20’)仅依靠其自身材料的力学性能,结合一定程度的伸 缩形变,就能够以大于所述内圈(1)与所述转轴(5)之间的过盈配合紧密程度的力学强度紧箍在所述转轴(5)上。
  17. 如权利要求16所述的轴承(10’),其特征在于:在被安装在所述转轴(5)上以前,所述加长部(20’)具有比内圈(1)标准区域(1’)缩小的内径。
  18. 如权利要求17所述的轴承(10’),其特征在于:所述加长部(20’)的内表面(22’)形成为具有比所述标准区域(1’)内表面(14’)大的粗糙度。
  19. 如权利要求16~18中任一项所述的轴承(10’),其特征在于:所述轴承(10’)为角接触球轴承、圆锥滚子轴承或者深沟球轴承,所述加长部(20’)从所述内圈(1)的受力挡边(11、13)所在侧沿轴向向外延伸。
  20. 如权利要求16~18中任意一项所述的轴承(10’),其特征在于:所述内圈(1)在其加长部(20’)和标准区域(1’)之间的内表面上形成有减震槽(6)。
  21. 如权利要求20所述的轴承(10’),其特征在于:所述加长部(20’)在其径向外表面上形成有用于拆卸内圈(1)的拆卸卡槽(7)。
PCT/CN2014/093971 2013-12-31 2014-12-16 轴承、锁紧环及两者的套装组合体 WO2015101177A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310751515.0 2013-12-31
CN201310751515.0A CN104747598A (zh) 2013-12-31 2013-12-31 轴承、锁紧环及两者的套装组合体

Publications (1)

Publication Number Publication Date
WO2015101177A1 true WO2015101177A1 (zh) 2015-07-09

Family

ID=53493185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093971 WO2015101177A1 (zh) 2013-12-31 2014-12-16 轴承、锁紧环及两者的套装组合体

Country Status (2)

Country Link
CN (1) CN104747598A (zh)
WO (1) WO2015101177A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017138894A1 (en) * 2016-02-10 2017-08-17 Ortadogu Rulman Sanayi Ve Ticaret Anonim Sirketi Method of assembling a wheel hub rolling bearing assembly by heat shrinking a retainer ring
DE102019118755A1 (de) * 2019-07-11 2021-01-14 Bayerische Motoren Werke Aktiengesellschaft Getriebe mit einem Wälzlager
CN112412986A (zh) * 2020-11-23 2021-02-26 吕梁学院 一种方便维修的采煤机行走轮轴承
US20220163067A1 (en) * 2019-03-12 2022-05-26 Schaeffler Technologies AG & Co. KG Rotor bearing of a wind turbine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3329137B1 (en) 2016-07-20 2019-04-24 Ortadogu Rulman Sanayi Ve Ticaret Anonim Sirketi Fixing of a ball bearing on a shaft with interposition of a conical sleeve
CN110178295B (zh) * 2017-01-11 2022-01-11 Lg伊诺特有限公司 电机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005028880A2 (en) * 2003-09-10 2005-03-31 Rexnord Corporation Bearing assembly
CN2797742Y (zh) * 2005-04-30 2006-07-19 浙江新昌皮尔轴承有限公司 轴承总成
CN201934523U (zh) * 2011-03-05 2011-08-17 中山市盈科轴承制造有限公司 带同心锁紧环的双列球面滚子轴承单元
CN202165405U (zh) * 2011-06-21 2012-03-14 蚌埠飞宇轴承有限公司 内圈加长式深沟球轴承
CN202937617U (zh) * 2012-11-26 2013-05-15 宁波三泰轴承有限公司 用于传动轮中的轴承装置
CN203214673U (zh) * 2013-03-07 2013-09-25 宋锦荣 一种轴承装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1250288B (it) * 1991-08-09 1995-04-07 Skf Ind Spa Sistema di bloccaggio per cuscinetto a rotolamento.
CN2358266Y (zh) * 1998-07-29 2000-01-12 南通振达轴承有限公司 一种拉式汽车离合器分离球轴承
CN102678741B (zh) * 2012-05-17 2015-01-21 宁波万丰轴承有限公司 一种非标薄壁防水轴承

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005028880A2 (en) * 2003-09-10 2005-03-31 Rexnord Corporation Bearing assembly
CN2797742Y (zh) * 2005-04-30 2006-07-19 浙江新昌皮尔轴承有限公司 轴承总成
CN201934523U (zh) * 2011-03-05 2011-08-17 中山市盈科轴承制造有限公司 带同心锁紧环的双列球面滚子轴承单元
CN202165405U (zh) * 2011-06-21 2012-03-14 蚌埠飞宇轴承有限公司 内圈加长式深沟球轴承
CN202937617U (zh) * 2012-11-26 2013-05-15 宁波三泰轴承有限公司 用于传动轮中的轴承装置
CN203214673U (zh) * 2013-03-07 2013-09-25 宋锦荣 一种轴承装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017138894A1 (en) * 2016-02-10 2017-08-17 Ortadogu Rulman Sanayi Ve Ticaret Anonim Sirketi Method of assembling a wheel hub rolling bearing assembly by heat shrinking a retainer ring
US20220163067A1 (en) * 2019-03-12 2022-05-26 Schaeffler Technologies AG & Co. KG Rotor bearing of a wind turbine
US11846323B2 (en) * 2019-03-12 2023-12-19 Schaeffler Technologies AG & Co. KG Rotor bearing of a wind turbine
DE102019118755A1 (de) * 2019-07-11 2021-01-14 Bayerische Motoren Werke Aktiengesellschaft Getriebe mit einem Wälzlager
CN112412986A (zh) * 2020-11-23 2021-02-26 吕梁学院 一种方便维修的采煤机行走轮轴承
CN112412986B (zh) * 2020-11-23 2022-05-03 吕梁学院 一种方便维修的采煤机行走轮轴承

Also Published As

Publication number Publication date
CN104747598A (zh) 2015-07-01

Similar Documents

Publication Publication Date Title
WO2015101177A1 (zh) 轴承、锁紧环及两者的套装组合体
US9732783B2 (en) Anti-loosening bolt assembly
JP6068458B2 (ja) 複合ホイールの取付装置
US9322426B2 (en) Nut and sleeve fastener
US7028589B1 (en) Resilient positioning assembly for an axle in a power tool
MY157161A (en) Thread locking/prevailing torque fastener and fastener assembly
KR101091799B1 (ko) 체결구 및 체결볼트
US8790059B2 (en) Washer assembly for mounting on irregular surfaces
KR960001517A (ko) 축과 회전체의 마찰식 체결구
US11512737B2 (en) V-clamp with more evenly distributed clamping load
KR102635371B1 (ko) 휠 스테이터 조립체
CN210739083U (zh) 螺纹连接组件
CN213512561U (zh) 力矩补偿型机械铆接式卡箍
CN205858924U (zh) 轮毂轴承紧固结构
CN105333019B (zh) 一种轴承装配结构
KR101454905B1 (ko) 휠 베어링 및 이를 사용한 휠 베어링 조립체
KR101551069B1 (ko) 차량용 휠의 구동력 전달장치
KR101867686B1 (ko) 하우징 일체형 액슬
JP2005188638A (ja) 動力伝達装置
JP2009030794A (ja) 回転支持装置及び回転支持装置用転がり軸受ユニット
JP2011236922A (ja) 回転支持装置及び回転支持装置用転がり軸受ユニット
JP2009264522A (ja) クリップナット
CN207178486U (zh) 一种轴承双向胀紧装置
KR101689839B1 (ko) 휠 베어링 및 이를 사용한 휠 베어링 조립체
WO2019109292A1 (zh) 用于紧固件的垫片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14875933

Country of ref document: EP

Kind code of ref document: A1