WO2015096977A1 - Verfahren zur aufbereitung von asche aus müllverbrennungsanlagen durch nassklassierung - Google Patents

Verfahren zur aufbereitung von asche aus müllverbrennungsanlagen durch nassklassierung Download PDF

Info

Publication number
WO2015096977A1
WO2015096977A1 PCT/EP2014/077004 EP2014077004W WO2015096977A1 WO 2015096977 A1 WO2015096977 A1 WO 2015096977A1 EP 2014077004 W EP2014077004 W EP 2014077004W WO 2015096977 A1 WO2015096977 A1 WO 2015096977A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrocyclone
fraction
residue
plant
μιτι
Prior art date
Application number
PCT/EP2014/077004
Other languages
English (en)
French (fr)
Inventor
Manfred Klinkhammer
Original Assignee
Schauenburg Maschinen- Und Anlagen-Bau Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schauenburg Maschinen- Und Anlagen-Bau Gmbh filed Critical Schauenburg Maschinen- Und Anlagen-Bau Gmbh
Priority to PL14825112T priority Critical patent/PL3087317T3/pl
Priority to EP14825112.7A priority patent/EP3087317B1/de
Priority to CN201480073979.3A priority patent/CN105980775B/zh
Priority to US15/105,488 priority patent/US10213790B2/en
Publication of WO2015096977A1 publication Critical patent/WO2015096977A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B9/00General arrangement of separating plant, e.g. flow sheets
    • B03B9/04General arrangement of separating plant, e.g. flow sheets specially adapted for furnace residues, smeltings, or foundry slags
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J1/00Removing ash, clinker, or slag from combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2900/00Special arrangements for conducting or purifying combustion fumes; Treatment of fumes or ashes
    • F23J2900/01001Sorting and classifying ashes or fly-ashes from the combustion chamber before further treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2900/00Special arrangements for conducting or purifying combustion fumes; Treatment of fumes or ashes
    • F23J2900/01005Mixing water to ash

Definitions

  • the invention relates to a method for the treatment of ash from waste incineration plants, in particular municipal waste incineration plants, by wet classification according to the preamble of claim 1.
  • Classification is understood as meaning a separation of a starting material consisting of particles with a given particle size distribution into a plurality of fractions of different particle size distribution.
  • the classification serves, in particular, to separate the ashes into different proportions of pollutants.
  • a method for the treatment of ash from waste incineration plant by wet classification in which the ash is mixed in a mash vessel with liquid and fed by screening a coarse fraction as a feed stream of a classification, the upstream classifier and an upstream hydrocyclone includes.
  • the feed stream is separated in the classifying stage into a pollutant-free material fraction and a residual fraction loaded with pollutants, wherein the residual fraction is withdrawn as a suspension at the top of a fluidized bed produced in the upflow classifier and wherein the removed on the underside of the fluidized bed Gutfrtress is drained by a sieve.
  • the Gutfr quasi-strength has a grain size between 0.25 mm and 4 mm and can be landfilled without environmental requirements or possibly also economically, z. B. be used as an aggregate in road construction.
  • the residue contains particles having a particle size of less than 250 ⁇ and contains pollutants, eg. As heavy metals, organic light materials and metal oxides, which deposit as a coating on the particles.
  • pollutants eg. As heavy metals, organic light materials and metal oxides, which deposit as a coating on the particles.
  • the residue fraction contains some value
  • Substances such as iron and non-ferrous metals.
  • the residue is thickened and must be disposed of in compliance with applicable legal regulations at the expense.
  • the dry weight fraction of the contaminated residue fraction is between 10% and 30% of the ash feed.
  • the invention has the object to further reduce the amount of residue that can not be used economically, while ensuring that the pollutants are completely bound to the finely divided residue.
  • the object of the invention and solution of this problem is a method according to claim 1.
  • the invention follows a method with the features described above.
  • the sieve passage of the sieve device is returned to the hydrocyclone plant.
  • at least one stream is separated as a cyclone overflow, which contains only substantially particles that are smaller than the separation grain size of the screening.
  • grain size which is to find 50% coarse and 50% fine.
  • the cyclone overflow of the hydrocyclone plant is then separated in a second classification stage in a finely divided mineral fraction and a contaminated with pollutants residue, the residue has a grain upper limit between 20 ⁇ and 50 ⁇ .
  • the hydrocyclone plant has two hydrocyclones connected in parallel, the feed stream being a first hydrocyclone of the hydrocyclone plant and the sieve passage of the screening device being the second
  • Hydrocyclone of the hydrocyclone plant is supplied.
  • the cyclone overflows of the parallel-connected hydrocyclones each contain only particles which are smaller than the separating grain of the screening device and are fed to the second classification stage.
  • the screen residue of the screening device expediently has a lower particle size of more than 150 m.
  • the sieve device is operated so that the lower particle size of Siebrückstandes is about 250 ⁇ .
  • the hydrocyclone plant is designed so that the cyclone overflow entails substantially only particles having a particle size of less than 100 ⁇ .
  • the hydrocyclone plant is operated so that the upper grain boundary of the withdrawn in the hydrocyclone overflow suspension is in a range between 60 and 70 ⁇ .
  • the screen-type drainage is preferably combined with a metal deposition.
  • the metal deposition may relate both to the deposition of non-ferrous metals and of iron constituents which are separated from the sieve residue.
  • a further advantageous embodiment of the method according to the invention provides that organic lightweight materials are separated from the residual fraction withdrawn from the upflow classifier. These include in particular fibrous materials. For example, a tumble screen can be used to separate off the organic impurities. In addition, automatic backflush filters can be used. After separation of the organic light materials, the residual fraction is fed together with the cyclone overflow of the hydrocyclone plant of the second classification stage.
  • a hydrocyclone plant which, as a multicyclone, can comprise a plurality of hydrocyclones connected in parallel.
  • the mineral fraction is withdrawn as a cyclone underflow.
  • the cyclone overflow carries the polluted with pollutants residue. This has a grain spectrum with a grain upper limit between 20 ⁇ and 50 ⁇ on.
  • the hydrocyclone plant of the second classification stage is operated so that the residue in the cyclone overflow has a grain upper limit of about 25 ⁇ .
  • the cyclone underflow of the hydrocyclone plant used in the second classification stage is expediently dewatered by means of a sieve device.
  • the screening device can be combined with a metal cutting, which separates from the screen residue non-ferrous metals and / or iron components.
  • the dewatered residue then forms a finely divided mineral fraction without interfering ingredients that can be recycled economically.
  • finely divided metals which are separated by means of metal deposition from the screen residue.
  • the cyclone overflow of the hydrocyclone units used in the second classification stage is expediently concentrated in a thickener, which can be designed as a continuously operated sedimentation separator. Clarified liquid is withdrawn from the thickener and returned to the process as process fluid.
  • the liquid return may comprise a liquid tank to which a water treatment plant is connected. As part of the water treatment at least a pH adjustment is made.
  • a suspension with high solids content is withdrawn. This is then dewatered, wherein for dehydration of the residue preferably a pressure filtration is used.
  • the pressure filtration can be designed, for example, as a chamber filter press or as a drum filter press.
  • a significant advantage of the method according to the invention over the prior art from DE 10 201 1 013 030 A1 is that the thickener is a much lower mass flow with finely divided particles having a particle size of less than 50 ⁇ , and as a result, the downstream pressure drainage procedurally easier and can be operated with smaller apparatus.
  • the ash 1 comes from a waste incineration plant, in particular a domestic waste incineration plant, and is mixed with liquid 3 in a mash tank 2 and, after screening off a coarse fraction 4, is fed to a classification stage 5.
  • the coarse fraction 4 comprises a grain spectrum between 4 mm and 60 mm and can optionally be divided into two or more coarse fractions.
  • the screening devices used for this purpose can be equipped with metal separators for the deposition of non-ferrous metals or iron.
  • the classifying stage 5 comprises an upflow classifier 6 and an upstream hydrocyclone plant 7.
  • the feed stream is in the classifying stage 5 in a
  • the Siebrückstand 1 1 of the screening device 10 advantageously has a lower particle size of more than 150 m.
  • the classifying stage 5 is operated so that the screen residue 1 1 of the screening device 10 has a particle size range between 250 ⁇ and 4 mm. From the sieve residue metals 12 are deposited, which can be recycled as recyclables.
  • the Siebschreibstand 1 1 with a particle size range between 0.25 mm to 4 mm is pollutant-free and can be recycled economically.
  • the sieve passage 13 of the sieve device 10 is returned to the hydrocyclone plant 7, which in the exemplary embodiment has two parallel hydrocyclones 14, 14 '.
  • the feed stream is fed to a first hydrocyclone 14 of the hydrocyclone unit 7.
  • the sieve passage 13 of the sieve device 10 passes as a Teed .in the second hydrocyclone 14 'of the hydrocyclone system 7.
  • the screen residue 1 1 of the sieve device 10 a lower grain size of more than 150 ⁇ , preferably a lower grain size of about 250 ⁇ on.
  • organic lightweight materials in particular also fibrous substances, are separated off, the separation of the light substances being carried out, for example, by means of a tumble.
  • Siebes 16 can be done. Subsequently, the residual fraction 9 is fed together with the cyclone overflows 15, 15 'to a second classification stage 17, in which the material streams are separated into a finely divided mineral fraction 18 and a residue 19 contaminated with pollutants.
  • the second classifying stage 17 is operated so that the residue 19 has a grain upper limit between 20 ⁇ and 50 ⁇ . Preferably, a grain upper limit of the residue 19 of about 25 ⁇ .
  • a hydrocyclone plant 20 is used, wherein the finely divided mineral fraction 18 is withdrawn as a cyclone underflow and the cyclone overflow entrained with pollutants finely divided residue 19.
  • the cyclone underflow is dewatered by means of a sieve device 21, wherein from the sieve residue 22 expediently metals 23 are deposited. It falls to a finely divided mineral value product, which has a particle size range between 20 and 250 ⁇ .
  • metals 23 fall in finely divided form, which can also be recycled as recyclables.
  • the hydrocyclone plant 20 has two hydrocyclones 29, 29 'connected in parallel, the feed stream being fed to a first hydrocyclone 29 of the hydrocyclone plant 20 and the sieve passage 30 of the screening device 21 to the second hydrocyclone 29' of the hydrocyclone plant.
  • the cyclone overflows 31, 31 'of the parallel-connected hydrocyclones 29, 29' are fed to a thickener 24.
  • the cyclone overflow of the hydrocyclone plant 20 used in the second classification stage 17 is concentrated in the thickener 24, wherein clarified liquid 25 is withdrawn from the thickener 24 and returned to the process.
  • the liquid return comprises a liquid tank
  • the finely divided residue has a grain spectrum with a grain upper limit between 20 and 50 ⁇ , preferably a Kornoberalia of about 25 ⁇ is selected.
  • the residue which consists exclusively of very finely divided particles, has a large surface, at which the pollutants contained in the ash are effectively bound. Metal oxides are also deposited with the finely divided residue.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
  • Cyclones (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Aufbereitung von Asche aus Müllverbrennungsanlagen durch Nassklassierung, bei dem Asche (1) in einem Anmaischbehalter (2) mit Flüssigkeit (3) gemischt und nach Absieben einer Grobfraktion (4) als Aufgabestrom einer Klassierstufe (5) zugeführt wird, die einen Aufstromklassierer (6) und eine vorgeschaltete Hydrozyklonanlage (7) umfasst. Der Aufgabestrom wird in der Klassierstufe (5) in eine schadstofffreie Gutfraktion (8) und eine mit Schadstoffen belastete Restfraktion (9) aufgetrennt, wobei die Restfraktion (9) an der Oberseite eines im Aufstromklassierer erzeugten Fließbettes als Suspension abgezogen wird und wobei die an der Unterseite des Fließbettes abgezogene Gutfraktion (8) mittels einer Siebvorrichtung (10) entwässert wird. Der Siebdurchgang (13) der Siebvorrichtung (10) wird in die Hydrozyklonanlage (7) zurückgeführt. In der Hydrozyklonanlage (7) wird mindestens ein Stoffstrom als Zyklonüberlauf (15, 15') abgetrennt, der im Wesentlichen nur Partikel enthält, die kleiner sind als die Trennkorngröße der Siebung. Der Zyklonüberlauf (15, 15') der Hydrozyklonanlage (7) wird in einer zweiten Klassierstufe (17) in eine feinteilige mineralische Fraktion (18) sowie einen mit Schadstoffen belasteten Rückstand (19) aufgetrennt, wobei der Rückstand eine Kornobergrenze zwischen 20 μm und 50 μm aufweist.

Description

Verfahren zur Aufbereitung von Asche aus Müllverbrennungsanlagen durch
Nassklassierung
Beschreibung:
Die Erfindung betrifft ein Verfahren zur Aufbereitung von Asche aus Müllverbrennungsanlagen, insbesondere Hausmüllverbrennungsanlagen, durch Nassklassierung gemäß dem Oberbegriff des Anspruches 1 . Unter Klassierung versteht man eine Trennung eines aus Partikeln mit einer gegebenen Korngrößenverteilung bestehenden Ausgangsmaterials in mehrere Fraktionen unterschiedlicher Korngrößenverteilung. Die Klassierung dient insbesondere dazu, die Asche in unterschiedlich stark mit Schadstoffen belastete Anteile zu trennen.
Aus DE 10 201 1 013 030 A1 ist ein Verfahren zur Aufbereitung von Asche aus Müllverbrennungsanlage durch Nassklassierung bekannt, bei dem die Asche in einem Anmaischbehalter mit Flüssigkeit gemischt und nach Absieben einer Grobfraktion als Aufgabestrom einer Klassierstufe zugeführt wird, die einen Aufstromklassierer und eine vorgeschaltete Hydrozyklonanlage umfasst. Der Aufgabestrom wird in der Klassierstufe in eine schadstofffreie Gutfraktion und eine mit Schadstoffen belastete Restfraktion aufgetrennt, wobei die Restfraktion an der Oberseite eines im Aufstromklassierer erzeugten Fließbettes als Suspension abgezogen wird und wobei die an der Unterseite des Fließbettes abgezogene Gutfraktion mittels einer Siebvorrichtung entwässert wird. Die Gutfraktion hat ein Kornspektrum zwischen 0,25 mm und 4 mm und kann ohne Umweltauflagen deponiert oder ggf. auch wirtschaftlich, z. B. als Zuschlagstoff im Straßenbau, verwertet werden. Der Rückstand enthält Partikel mit einer Korngröße von weniger als 250 μιτι und enthält Schadstoffe, z. B. Schwer- metalle, organische Leichtstoffe und Metalloxide, die sich als Coating auf den Partikeln abscheiden. Daneben enthält die Rückstandsfraktion einige Wert-
Stoffe, wie beispielsweise Eisen und Nichteisenmetalle. Der Rückstand wird eingedickt und muss zur Beachtung einschlägiger gesetzlicher Vorschriften unter Aufwendung von Kosten deponiert werden. Der Trockengewichtsanteil der mit Schadstoffen belasteten Rückstandsfraktion beträgt zwischen 10 % und 30 % der Ascheaufgabemenge.
Vor diesen Hintergrund liegt der Erfindung die Aufgabe zugrunde, die Rückstandsmenge, die nicht wirtschaftlich verwertet werden kann, weiter zu reduzieren, wobei gleichzeitig sichergestellt sein muss, dass die Schadstoffe vollständig an dem feinteiligen Rückstand gebunden sind.
Gegenstand der Erfindung und Lösung dieser Aufgabe ist ein Verfahren nach Anspruch 1 . Die Erfindung schließt an ein Verfahren mit den eingangs beschriebenen Merkmalen an. Erfindungsgemäß wird der Siebdurchgang der Siebvorrichtung in die Hydrozyklonanlage zurückgeführt. In der Hydrozyklonanlage wird mindestens ein Stoffstrom als Zyklonüberlauf abgetrennt, der im Wesentlichen nur Partikel enthält, die kleiner sind als die Trenn korngröße der Siebung. Unter der Trenn korngröße wird diejenige Korngröße verstanden, die zu 50 % im Groben und zu 50 % im Feinen zu finden ist. Der Zyklonoberlauf der Hydrozyklonanlage wird dann in einer zweiten Klassierstufe in eine feinteilige mineralische Fraktion sowie einen mit Schadstoffen belasteten Rückstand aufgetrennt, wobei der Rückstand eine Kornobergrenze zwischen 20 μιτι und 50 μιτι aufweist.
Vorzugsweise weist die Hydrozyklonanlage zwei parallel geschaltete Hydrozyklone auf, wobei der Aufgabestrom einem ersten Hydrozyklon der Hydrozyklonanlage und der Siebdurchgang der Siebvorrichtung dem zweiten
Hydrozyklon der Hydrozyklonanlage zugeführt wird. Die Zyklonüberläufe der parallel geschalteten Hydrozyklone enthalten jeweils nur Partikel, die kleiner sind als das Trennkorn der Siebvorrichtung und werden der zweiten Klassierstufe zugeführt.
Der Siebrückstand der Siebvorrichtung weist zweckmäßig eine untere Korngröße von mehr als 150 m auf. Vorzugsweise wird die Siebvorrichtung so betrieben, dass die untere Korngröße des Siebrückstandes etwa 250 μιτι beträgt. Die Hydrozyklonanlage ist so ausgelegt, dass der Zyklonüberlauf im Wesentlichen nur Partikel mit einer Korngröße von weniger als 100 μιτι mitführt. Vorzugsweise wird die Hydrozyklonanlage so betrieben, dass die obere Korngrenze der im Hydrozyklonüberlauf abgezogenen Suspension in einem Bereich zwischen 60 und 70 μιτι liegt. Die siebtechnische Entwässerung wird vorzugsweise mit einer Metallab- scheidung kombiniert. Die Metallabscheidung kann dabei sowohl die Abscheidung von Nichteisenmetallen als auch von Eisenbestandteilen betreffen, die aus dem Siebrückstand abgeschieden werden. Eine weitere vorteilhafte Ausgestaltung des erfindungsgemäßen Verfahrens sieht vor, dass aus der aus dem Aufstrom klassierer abgezogenen Restfraktion organische Leichtstoffe abgetrennt werden. Hierzu gehören insbesondere auch faserförmige Materialien. Zur Abtrennung der organischen Störstoffe kann beispielsweise ein Taumelsieb verwendet werden. Zusätzlich können auch automatische Rückspülfilter eingesetzt werden. Nach Abtrennung der organischen Leichtstoffe wird die Restfraktion zusammen mit dem Zyklonoberlauf der Hydrozyklonanlage der zweiten Klassierstufe zugeführt.
In der zweiten Klassierstufe wird zweckmäßig ebenfalls eine Hydrozyklonanlage verwendet, die als Multizyklon mehrere parallel geschaltete Hydrozyklone umfassen kann. Die mineralische Fraktion wird als Zyklonunterlauf abgezogen. Der Zyklonoberlauf führt den mit Schadstoffen belasteten feinteiligen Rückstand mit. Dieser weist ein Kornspektrum mit einer Kornobergrenze zwischen 20 μιτι und 50 μιτι auf. Vorzugsweise wird die Hydrozyklonanlage der zweiten Klassierstufe so betrieben, dass der Rückstand im Zyklonoberlauf eine Kornobergrenze von etwa 25 μιτι hat. Der Zyklonunterlauf der in der zweiten Klassierstufe verwendeten Hydrozyklonanlage wird zweckmäßig mittels einer Siebvorrichtung entwässert. Die Siebvorrichtung kann mit einer Metallabschneidung kombiniert werden, welche aus dem Siebrückstand Nichteisenmetalle und/oder Eisenbestandteile abscheidet. Der entwässerte Rückstand bildet dann eine feinteilige mineralische Fraktion ohne störende Inhaltsstoffe, die wirtschaftlich verwertet werden kann. Daneben fallen als Wertprodukte feinteilige Metalle an, die mittels der Metallabscheidung aus dem Siebrückstand abgetrennt werden.
Der Zyklonoberlauf der in der zweiten Klassierstufe eingesetzten Hydrozyklon- anläge wird zweckmäßig in einem Eindicker aufkonzentriert, der als kontinuierlich betriebener Sedimentationsabscheider ausgebildet sein kann. Aus dem Eindicker wird geklärte Flüssigkeit abgezogen und als Prozessflüssigkeit in den Prozess zurückgeführt. Die Flüssigkeitsrückführung kann einen Flüssigkeitstank umfassen, an den eine Wasseraufbereitungsanlage angeschlossen ist. Im Rahmen der Wasseraufbereitung wird zumindest eine pH-Einstellung vorgenommen.
Aus dem Eindicker wird eine Suspension mit hohem Feststoffgehalt abgezogen. Diese wird anschließend entwässert, wobei zur Entwässerung des Rückstandes vorzugsweise eine Druckfiltration verwendet wird. Die Druckfiltration kann beispielsweise als Kammerfilterpresse oder als Trommelfilterpresse ausgebildet sein.
Ein wesentlicher Vorteil des erfindungsgemäßen Verfahrens gegenüber dem Stand der Technik aus DE 10 201 1 013 030 A1 ist, dass dem Eindicker ein wesentlich geringerer Massenstrom mit feinteiligen Partikeln, die eine Korngröße von weniger als 50 μιτι aufweisen, zugeführt wird und infolge dessen die nachgeschaltete Druckentwässerung verfahrenstechnisch einfacher und mit kleineren Apparaten betrieben werden kann.
Im Folgenden wird die Erfindung anhand einer lediglich ein Ausführungsbeispiel darstellenden Zeichnung erläutert. Die einzige Figur zeigt als stark vereinfachtes Blockschaltbild eine Anlage zur Aufbereitung von Asche durch Nassklassierung.
Die Asche 1 stammt aus einer Müllverbrennungsanlage, insbesondere einer Hausmüllverbrennungsanlage, und wird in einem Anmaischbehälter 2 mit Flüssigkeit 3 gemischt und nach Absieben einer Grobfraktion 4 einer Klassierstufe 5 zugeführt. Die Grobfraktion 4 umfasst ein Kornspektrum zwischen 4 mm und 60 mm und kann optional in zwei oder mehrere Grobfraktionen aufgeteilt werden. Die dazu eingesetzten Siebvorrichtungen können mit Metallabscheidern zur Abscheidung von Nichteisenmetallen oder Eisen ausgestattet sein.
Die Klassierstufe 5 umfasst einen Aufstrom klassierer 6 und eine vorgeschaltete Hydrozyklonanlage 7. Der Aufgabestrom wird in der Klassierstufe 5 in eine
schadstofffreie Gutfraktion 8 und eine mit Schadstoffen belastete Restfraktion 9 aufgetrennt, wobei die Restfraktion 9 an der Oberseite eines im Aufstromklassierer 6 erzeugten Fließbettes als Suspension abgezogen wird und wobei die an der Unterseite des Fließbettes abgezogene Gutfraktion 8 mittels einer Siebvorrichtung 10 entwässert wird. Der Siebrückstand 1 1 der Siebvorrichtung 10 weist zweckmäßig eine untere Korngröße von mehr als 150 m auf. Vorzugsweise wird die Klassierstufe 5 so betrieben, dass der Siebrückstand 1 1 der Siebvorrichtung 10 ein Kornspektrum zwischen 250 μιτι und 4 mm aufweist. Aus dem Siebrückstand werden Metalle 12 abgeschieden, die als Wertstoffe verwertet werden können. Der Siebrückstand 1 1 mit einem Kornspektrum zwischen 0,25 mm bis 4 mm ist schadstofffrei und kann wirtschaftlich verwertet werden.
Der Siebdurchgang 13 der Siebvorrichtung 10 wird in die Hydrozyklonanlage 7 zurückgeführt, die im Ausführungsbeispiel zwei parallel geschaltete Hydro- zyklone 14, 14' aufweist. Der Aufgabestrom wird einem ersten Hydrozyklon 14 der Hydrozyklonanlage 7 zugeführt. Der Siebdurchgang 13 der Siebvorrichtung 10 gelangt als Teed .in den zweiten Hydrozyklon 14' der Hydrozyklonanlage 7. Die Zyklonüberläufe 15, 15' der parallel geschalteten Hydrozyklone 14, 14' enthalten im Wesentlichen nur Partikel, die kleiner sind als das Trennkorn der Siebvorrichtung 10. Im Ausführungsbeispiel weist der Siebrückstand 1 1 der Siebvorrichtung 10 eine untere Korngröße von mehr als 150 μιτι, vorzugsweise eine untere Korngröße von etwa 250 μιτι auf. Die Zyklonüberläufe 15, 15' sind für einen Trennschnitt von etwa 60 bis 70 μιτι ausgelegt und führen im Wesentlichen nur Partikel mit einer Korngröße von weniger als 100 μιτι mit.
Aus der aus dem Aufstromklassierer 6 abgezogenen Restfraktion 9 werden organische Leichtstoffe, insbesondere auch faserförmige Stoffe, abgetrennt, wobei die Abtrennung der Leichtstoffe beispielsweise mittels eines Taumel-
Siebes 16 erfolgen kann. Anschließend wird die Restfraktion 9 zusammen mit den Zyklonüberläufen 15, 15' einer zweiten Klassierstufe 17 zugeführt, in der die Stoffströme in eine feinteilige mineralische Fraktion 18 sowie einen mit Schadstoffen belasteten Rückstand 19 aufgetrennt werden. Die zweite Klassier- stufe 17 wird so betrieben, dass der Rückstand 19 eine Kornobergrenze zwischen 20 μιτι und 50 μιτι aufweist. Bevorzugt ist eine Kornobergrenze des Rückstandes 19 von etwa 25 μιτι.
In der zweiten Klassierstufe 17 wird eine Hydrozyklonanlage 20 verwendet, wobei die feinteilige mineralische Fraktion 18 als Zyklonunterlauf abgezogen wird und der Zyklonüberlauf den mit Schadstoffen belasteten feinteiligen Rückstand 19 mitführt. Der Zyklonunterlauf wird mittels einer Siebvorrichtung 21 entwässert, wobei aus dem Siebrückstand 22 zweckmäßig Metalle 23 abgeschieden werden. Es fällt ein feinteiliges mineralisches Wertprodukt an, welches ein Kornspektrum zwischen 20 und 250 μιτι aufweist. Zusätzlich fallen Metalle 23 in feinteiliger Form an, die ebenfalls als Wertstoffe verwertet werden können.
Die Hydrozyklonanlage 20 weist zwei parallel geschaltete Hydrozyklonen 29, 29' auf, wobei der Aufgabestrom einem ersten Hydrozyklon 29 der Hydrozyklonanlage 20 und der Siebdurchgang 30 der Siebvorrichtung 21 dem zweiten Hydrozyklon 29' der Hydrozyklonanlage zugeführt wird. Die Zyklonüberläufe 31 , 31 ' der parallel geschalteten Hydrozyklone 29, 29' werden einem Eindicker 24 zugeführt.
Der Zyklonüberlauf der in der zweiten Klassierstufe 17 eingesetzten Hydrozyklonanlage 20 wird in dem Eindicker 24 aufkonzentriert, wobei geklärte Flüssigkeit 25 aus dem Eindicker 24 abgezogen und in den Prozess zurückgeführt wird. Die Flüssigkeitsrückführung umfasst einen Flüssigkeitstank
26, an den eine Wasseraufbereitungsanlage angeschlossen ist. Aus dem Eindicker 24 wird eine Suspension 28 mit hohem Feststoffgehalt abgezogen, die anschließend durch eine Druckfiltration 27 entwässert wird. Der feinteilige Rückstand hat ein Kornspektrum mit einer Kornobergrenze zwischen 20 und 50 μιτι, wobei vorzugsweise eine Kornobergrenze von etwa 25 μιτι gewählt wird. Der ausschließlich aus sehr feinteiligen Partikeln bestehende Rückstand hat eine große Oberfläche, an der die in der Asche enthaltenden Schadstoffe wirksam gebunden sind. Auch Metalloxide werden mit dem feinteiligen Rückstand abgeschieden.

Claims

Patentansprüche:
1 . Verfahren zur Aufbereitung von Asche aus Müllverbrennungsanlagen durch Nassklassierung, wobei Asche (1 ) in einem Anmaischbehälter (2) mit Flüssigkeit (3) gemischt und nach Absieben einer Grobfraktion (4) als Aufgabestrom einer Klassierstufe (15) zugeführt wird, die einen Aufstrom klassierer (6) und eine vorgeschaltete Hydrozyklonanlage (7) umfasst, wobei der Aufgabestrom in der Klassierstufe (5) in eine schadstofffreie Gutfraktion (8) und eine mit Schadstoffen belastete Restfraktion (9) aufgetrennt wird, wobei die Restfraktion (9) an der Oberseite eines im Aufstromklassierer (6) erzeugten Fließbettes als Suspension abgezogen wird und wobei die an der Unterseite des Fließbettes abgezogene Gutfraktion (8)mittels einer Siebvorrichtung (10) entwässert wird, d a d u r c h g e k e n n z e i c h n e t, dass der Siebdurchgang (13) der Siebvorrichtung (10) in die Hydrozyklonanlage (7) zurückgeführt wird, dass in der Hydrozyklonanlage (7) mindestens ein Stoffstrom als Zyklonüberlauf (15, 15') abgetrennt wird, der im Wesentlichen nur Partikel enthält, die kleiner sind als die Trennkorngröße der Siebung, und dass der Zyklonüberlauf (15, 15') der Hydrozyklonanlage (7) in einer zweiten Klassierstufe (17) in eine feinteilige mineralische Fraktion (18) sowie einen mit Schadstoffen belasteten Rückstand (19) aufgetrennt wird, wobei der Rückstand (19) eine Kornobergrenze zwischen 20 μιτι und 50 μιτι aufweist.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Hydrozyklon- anlage (7) zwei parallel geschaltete Hydrozyklone (14, 14') aufweist, wobei der Aufgabestrom einem ersten Hydrozyklon (14) der Hydrozyklonanlage (7) und der Siebdurchgang (13) der Siebvorrichtung (10) dem zweiten Hydrozyklon (14') der Hydrozyklonanlage zugeführt wird, und dass die Zyklonüberläufe (15, 15') der parallel geschalteten Hydrozyklone (14, 14') der zweiten Klassierstufe (17) zugeführt werden und im Wesentlichen nur Partikel enthalten, die kleiner sind als das Trennkorn der in der Siebvorrichtung (10) durchgeführten Siebung.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Siebrückstand (1 1 ) der Siebvorrichtung (10) eine untere Korngröße von mehr als 150 μιτι, vorzugsweise eine untere Korngröße von etwa 250 μιτι, aufweist und dass der Zyklonüberlauf (15, 15') der Hydrozyklonanlage (7) im Wesentlichen nur Partikel mit einer Korngröße von weniger als 100 μιτι mitführt.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass aus dem Siebrückstand (1 1 ) Metalle (12) abgeschieden werden.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass aus der aus dem Aufstromklassierer (5) abgezogenen Restfraktion (9) organische Leichtstoffe abgetrennt werden und dass die Restfraktion (9) anschließend zusammen mit dem Zyklonüberlauf (15, 15') der zweiten Klassierstufe (17) zugeführt wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass in der zweiten Klassierstufe (17) eine Hydrozyklonanlage (20) verwendet wird, wobei die mineralische Fraktion (18) als Zyklonunterlauf abgezogen wird und der Zyklonüberlauf den mit Schadstoffen belasteten feinteiligen Rückstand (19) mitführt.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass der Zyklonunterlauf mittels einer Siebvorrichtung (21 ) entwässert wird.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass aus dem Siebrückstand (22) der in der zweiten Klassierstufe (17) verwendeten Siebvorrichtung (21 ) Metalle (23) abgeschieden werden.
9. Verfahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass der Zyklonüberlauf der in der zweiten Klassierstufe (17) eingesetzten Hydrozyklonanlage (20) in einem Eindicker (24) aufkonzentriert wird, wobei geklärte Flüssigkeit (25) aus dem Eindicker (24) abgezogen und in den Prozess zurückgeführt wird.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die Flüssigkeitsrückführung einen Flüssigkeitstank (26) umfasst, an den eine Wasseraufbereitungsanlage angeschlossen ist.
1 1 . Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass eine Suspension (28) mit hohem Feststoffgehalt aus dem Eindicker (24) abgezogen und anschließend entwässert wird.
12. Verfahren nach Anspruch 1 1 , dadurch gekennzeichnet, dass zur Entwässerung des Rückstandes eine Druckfiltration (27) verwendet wird.
PCT/EP2014/077004 2013-12-23 2014-12-09 Verfahren zur aufbereitung von asche aus müllverbrennungsanlagen durch nassklassierung WO2015096977A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PL14825112T PL3087317T3 (pl) 2013-12-23 2014-12-09 Sposób obróbki popiołów ze spalarni odpadów z użyciem klasyfikacji na mokro
EP14825112.7A EP3087317B1 (de) 2013-12-23 2014-12-09 Verfahren zur aufbereitung von asche aus müllverbrennungsanlagen durch nassklassierung
CN201480073979.3A CN105980775B (zh) 2013-12-23 2014-12-09 用于通过湿法分级处理来自垃圾焚烧设备的灰烬的方法
US15/105,488 US10213790B2 (en) 2013-12-23 2014-12-09 Method for processing ash from waste incineration plants by means of wet classification

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102013021790.3 2013-12-23
DE102013021790 2013-12-23
DE102014100725.5A DE102014100725B3 (de) 2013-12-23 2014-01-23 Verfahren zur Aufbereitung von Asche aus Müllverbrennungsanlagen durch Nassklassierung
DE102014100725.5 2014-01-23

Publications (1)

Publication Number Publication Date
WO2015096977A1 true WO2015096977A1 (de) 2015-07-02

Family

ID=52017617

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP2014/077004 WO2015096977A1 (de) 2013-12-23 2014-12-09 Verfahren zur aufbereitung von asche aus müllverbrennungsanlagen durch nassklassierung
PCT/EP2014/079260 WO2015097256A1 (de) 2013-12-23 2014-12-23 Verfahren zur aufbereitung von asche aus müllverbrenungsanlagen durch nassklassierung

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/079260 WO2015097256A1 (de) 2013-12-23 2014-12-23 Verfahren zur aufbereitung von asche aus müllverbrenungsanlagen durch nassklassierung

Country Status (6)

Country Link
US (1) US10213790B2 (de)
EP (2) EP3087317B1 (de)
CN (1) CN105980775B (de)
DE (1) DE102014100725B3 (de)
PL (2) PL3087317T3 (de)
WO (2) WO2015096977A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK3325167T3 (da) * 2015-07-25 2020-10-12 Tav Holdings Inc System og fremgangsmåde til genvinding af ønskede materialer fra finpartikler i aske fra forbrændingsanlæg
PL414609A1 (pl) * 2015-10-29 2017-05-08 Henryk Karcz Sposób odzysku masy palnej z popiołu dennego oraz instalacja do odzysku masy palnej z popiołu
DE102016106054A1 (de) * 2016-04-03 2017-10-05 Schauenburg Maschinen- Und Anlagen-Bau Gmbh Verfahren und Anlage zur Aufbereitung von Asche aus Müllverbrennungsanlagen
DE102016106053A1 (de) 2016-04-03 2017-10-05 Schauenburg Maschinen- Und Anlagen-Bau Gmbh Verfahren und Anlage zur Aufbereitung von Asche aus Müllverbrennungsanlagen
PT3252377T (pt) * 2016-05-30 2020-06-02 Martin Gmbh Fuer Umwelt Und Energietechnik Método para o tratamento de escória de um dispositivo de combustão
DE102016117741B4 (de) * 2016-09-20 2019-01-24 Schauenburg Maschinen- Und Anlagen-Bau Gmbh Verfahren und Anlage zur Aufbereitung von Asche aus Müllverbrennungsanlagen
CN108918367B (zh) * 2018-06-15 2021-04-09 酒泉钢铁(集团)有限责任公司 一种快速识别铁矿粉中有害物质来源的检测方法
CN113412140A (zh) * 2018-12-18 2021-09-17 加拿大思博选矿设备公司 从湿式焚烧炉底灰中回收材料

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2754968A (en) * 1950-03-09 1956-07-17 Stamicarbon Treatment of liquid materials in a hydrocyclone
GB777561A (en) * 1951-12-21 1957-06-26 Siteg Siebtech Gmbh Process of continuously dehydrating muds containing recoverable minerals
EP2052780A2 (de) * 2007-10-26 2009-04-29 Scherer & Kohl GmbH & Co. KG Verfahren zur Schlackenaufbereitung
DE102011013030A1 (de) 2011-03-04 2012-09-06 Alexandra Beckmann Aufbereiten von Müllverbrennungsasche

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5794791A (en) * 1987-11-30 1998-08-18 Genesis Research Corporation Coal cleaning process
FI93753C (fi) * 1993-07-28 1995-05-26 Ahlstroem Oy Menetelmä ja laitteisto täyteainepitoisen materiaalin, kuten kierrätyskuidun käsittelyyn
FI97736C (fi) * 1995-03-07 1997-02-10 Ahlstrom Machinery Oy Menetelmä ja laitteisto täyteainepitoisen materiaalin, kuten kierrätyskuidun käsittelyyn
US20020017224A1 (en) 2000-05-03 2002-02-14 Robert Horton Method for the treatment of pozzolanic materials
CN101433880B (zh) * 2008-11-07 2012-05-23 倪志群 一种煤灰渣分选方法
DE102011013033A1 (de) 2011-03-04 2012-09-06 Alexandra Beckmann Aufbereiten von Müllverbrennungsasche
CN102284350B (zh) * 2011-08-01 2013-09-04 福建耀中建材实业有限公司 炉渣综合利用之分选分离工艺
AT512479B1 (de) * 2012-02-10 2013-11-15 Andritz Energy & Environment Gmbh Verfahren zur feinstoffreduktion im rea-gips

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2754968A (en) * 1950-03-09 1956-07-17 Stamicarbon Treatment of liquid materials in a hydrocyclone
GB777561A (en) * 1951-12-21 1957-06-26 Siteg Siebtech Gmbh Process of continuously dehydrating muds containing recoverable minerals
EP2052780A2 (de) * 2007-10-26 2009-04-29 Scherer & Kohl GmbH & Co. KG Verfahren zur Schlackenaufbereitung
DE102011013030A1 (de) 2011-03-04 2012-09-06 Alexandra Beckmann Aufbereiten von Müllverbrennungsasche

Also Published As

Publication number Publication date
PL3087317T3 (pl) 2019-05-31
EP3087318A1 (de) 2016-11-02
CN105980775B (zh) 2018-07-20
US20160310960A1 (en) 2016-10-27
EP3087318B1 (de) 2018-12-12
CN105980775A (zh) 2016-09-28
EP3087317B1 (de) 2018-12-12
DE102014100725B3 (de) 2014-12-31
US10213790B2 (en) 2019-02-26
PL3087318T3 (pl) 2019-05-31
WO2015097256A1 (de) 2015-07-02
EP3087317A1 (de) 2016-11-02

Similar Documents

Publication Publication Date Title
EP3087317B1 (de) Verfahren zur aufbereitung von asche aus müllverbrennungsanlagen durch nassklassierung
DE2612874C2 (de) Verfahren und Vorrichtung zur Aufbereitung von Schrott
DE2809630A1 (de) Verfahren zur nassen verdichtung von feiner kohle
DE3043220C2 (de) Verfahren und Anlage zur Reduzierung des Ölgehaltes von ölverschmutztem Walzsinter u.dgl.
EP2818250B1 (de) Verfahren zur Aufbereitung von Müllverbrennungsschlacke
EP3301360B1 (de) Verfahren und anlage zur aufbereitung von asche aus müllverbrennungsanlagen
DE4027880C2 (de)
DE102005043435B4 (de) Verfahren und Vorrichtung zur Reinigung von Wasser mittels Magnetseparation
DE4307952C2 (de) Anlage und Verfahren zur Bodenreinigung
DE4319535C1 (de) Verfahren zur Aufbereitung kontaminierter Böden
DE19520399C2 (de) Verfahren und Einrichtung zur Aufbereitung von Abwässern aus Naßentstaubungen von Shredderanlagen
CH653395A5 (de) Verfahren zum betrieb einer gesamtanlage zur herstellung von papier sowie gesamtanlage zur ausfuehrung des verfahrens.
DE19520494C2 (de) Verfahren zum Wiedergewinnen von Fasern und Fraktionieranlage für eine Papierfabrik
WO2017174500A1 (de) Verfahren und anlage zur aufbereitung von asche aus müllverbrennungsanlagen
DE19949265C2 (de) Verfahren zum Minimieren des Neuwassereinsatzes im Wasserkreislauf bei einer Aufbereitungsanlage
EP3439788B1 (de) Verfahren und anlage zur aufbereitung von asche aus müllverbrennungsanlagen
DE4307951C2 (de) Anlage zur Bodenreinigung
DE2906630C2 (de) Verfahren und Anlage zur Saugfilter-Entwässerung von Schlamm, insbesondere bei der Aufbereitung von Kohle
DE202023106530U1 (de) Anordnung zur Aufbereitung von Bauschutt
DE2916860A1 (de) Verfahren zur filtration von schlaemmen
DE3312246A1 (de) Verfahren zum entwaessern einer waessrigen suspension
AT514456B1 (de) Verfahren zur Aufbereitung von Müllverbrennungsschlacke
DE2250446A1 (de) Verfahren zur aufbereitung von abwasserschlaemmen aus klaeranlagen und vorrichtung zu dessen durchfuehrung
DD131994B1 (de) Verfahren zur wertstoffgewinnung aus rueckstandstrueben
DE102007052461A1 (de) Verfahren zur Entfernung von Störstoffen aus einer wässrigen Altpapiersuspension

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14825112

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014825112

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014825112

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15105488

Country of ref document: US