WO2015092833A1 - 回転電機 - Google Patents

回転電機 Download PDF

Info

Publication number
WO2015092833A1
WO2015092833A1 PCT/JP2013/007460 JP2013007460W WO2015092833A1 WO 2015092833 A1 WO2015092833 A1 WO 2015092833A1 JP 2013007460 W JP2013007460 W JP 2013007460W WO 2015092833 A1 WO2015092833 A1 WO 2015092833A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
winding
stator core
coil
stator
Prior art date
Application number
PCT/JP2013/007460
Other languages
English (en)
French (fr)
Inventor
省吾 岡本
健 西川
中村 成志
山村 明弘
洪太 廣橋
克毅 桑原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2013/007460 priority Critical patent/WO2015092833A1/ja
Priority to JP2015553234A priority patent/JP6135774B2/ja
Priority to US14/911,776 priority patent/US10056799B2/en
Priority to CN201380081726.6A priority patent/CN105830311B/zh
Priority to EP13899576.6A priority patent/EP3086444B1/en
Publication of WO2015092833A1 publication Critical patent/WO2015092833A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/18Windings for salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/0094Structural association with other electrical or electronic devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/522Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/09Machines characterised by wiring elements other than wires, e.g. bus rings, for connecting the winding terminations

Definitions

  • the present invention relates to a winding wound around a stator of a rotating electric machine.
  • the stator of the three-phase brushless motor has a stator core that is an iron core, a winding wound around the outer periphery of the teeth of the stator core, a bus bar that is electrically connected to the end of the coil, and an insulation between the bus bar. It is comprised from the insulation holder hold
  • a rotating electrical machine provided with such a stator, for example, a rotating electrical machine described in Patent Document 1 has been proposed.
  • U-phase connection bus ring U-phase connection bus ring
  • W-phase connection bus ring W-phase connection bus ring
  • neutral point connection bus ring of which, each phase connection bus ring Is disposed on one end side of both axial end portions of the stator core, and the neutral point connecting bus ring is disposed on the other end side of the axial end portions of the stator core.
  • This rotating electrical machine distributes each phase connection bus ring and neutral point connection bus ring to one end side and the other end side of the axial ends of the stator core. As a result, it is avoided that the space for arranging the bus rings is required only on one end side in the axial direction of the stator core, thereby reducing the outer diameter of the stator. It can be done.
  • the outer diameter of the stator is obtained by distributing each phase connection bus bar and the neutral point connection bus bar to one end side and the other end side in the axial direction of the stator core.
  • the bus bars are covered by the bus bar, especially the coil end portions, which are wound around the periphery of the stator core by disposing the bus bar at both axial ends of the stator core. For this reason, there is a problem that the cooling performance with respect to the coil end portion is lowered.
  • each phase connection bus bar and the neutral point connection bus bar are arranged only on one end side in the axial direction of the stator core, the coil end portion on the other end side in the axial direction of the stator core Since the coil end portion is exposed to a coolant (eg, cooling air or cooling oil) and the coil end portion is cooled, there is a problem that the outer diameter of the stator is increased.
  • a coolant eg, cooling air or cooling oil
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a rotating electrical machine in which the cooling performance of a winding wound around a stator core is improved while reducing the outer diameter of the stator. To do.
  • a rotating electrical machine includes a stator core having an annular core back and a plurality of teeth, and is wound around the teeth, and one end and the other end of each of the axial end portions of the stator core.
  • a plurality of windings for U-phase, V-phase, and W-phase extending from the part side and the other end side, a bobbin that insulates the stator core and the winding, and both axial ends of the stator core
  • U-phase, V-phase, and W-phase power supply bus bars arranged on one end side of the coil, and a coil group is formed by windings of the U-phase, V-phase, and W-phase.
  • each coil group One end of the winding forming each coil group is connected to the power bus bar of each phase, and the other end of the winding of each phase is a phase located at both ends of the winding. The other end of the winding faces the other end of the remaining phase winding.
  • FIG. 4 is a perspective view around the other end (23U2, 23V2, 23W2) of each phase winding forming the coil group 23G of FIG. 3; It is a modification of the bobbin 22 shown in FIG. It is another modification of the bobbin 22 shown in FIG. It is a modification of the other end (23U2, 23V2, 23W2) of the coil
  • FIG. 1 is a cross-sectional view of rotating electric machine 100 according to Embodiment 1 of the present invention.
  • 2 and 3 are plan views schematically showing the configuration of the stator 20 of the rotating electrical machine 100 shown in FIG. 1, wherein FIG. 2 is a front side plan view, FIG. 3 is a back side plan view, and FIG. FIG. 3 is a cross-sectional view taken along line AA in FIG.
  • FIG. 5 is a perspective view around the other end (23U2, 23V2, 23W2) of each phase winding forming one coil group 23G of FIG.
  • a rotating electrical machine 100 shown in FIG. 1 includes a rotor 10 and a stator 20, and the outer peripheral surface of the rotor 10 faces the inner peripheral surface of the stator 20 with a predetermined gap therebetween.
  • the rotor 10 is fixed to the rotor shaft 60.
  • the stator 20 is fitted into a cylindrical frame 70.
  • the stator 20 holds an annular stator core 21, a bobbin 22 attached to the stator core 21, a stator coil 23 that is a winding wound around the stator core 21 via the bobbin 22, and the stator core 21. It has a core holder 24, a plurality of power bus bars 25 electrically connected to one end of the stator coil 23, and a bus bar holder 27 that holds each power bus bar 25.
  • the stator core 21 has a plurality of teeth portions 21b (12 in the example of FIG. 2) protruding at equal intervals from the inner peripheral side of the annular core back portion 21a, and is divided by the core back portion 21a for each tooth portion 21b.
  • the plurality of divided cores are combined in a ring shape and press-fitted into the core holder 24.
  • a three-phase coil constituting a stator coil 23 described later is wound around the tooth portion 21b.
  • the bobbin 22 is an insulating member that electrically insulates between the stator coil 23 and the tooth portion 21b of the stator core 21, and is disposed at both axial ends of the tooth portion 21b.
  • the bobbin 22 may be configured integrally with a bus bar holder 27 described later.
  • extending portions 22 a and 22 b extending outward in the axial direction are provided on the inner peripheral side and the outer peripheral side of the bobbin 22, and the cross-sectional shape viewed from the circumferential direction is provided. It has an almost U shape.
  • a slit 22 c is formed near the center in the circumferential direction of the extending portion 22 b provided on the outer peripheral side of the bobbin 22.
  • the slit 22c is formed in the extending portion 22b of the bobbin 22, so that the stator coil 23 wound through the bobbin 22 can be seen from the outside in the radial direction.
  • the refrigerant 30 passes through the slit 22c and flows inward in the radial direction, and is configured to hit the coil end portion 23a of the stator coil 23.
  • the present invention is not limited to this, and the refrigerant hits the coil end portion through the slit. Any configuration may be used. For example, a configuration in which a spiral slit is formed or a configuration in which a gap or a hole is formed in the radial direction may be employed.
  • ATF Auto Transmission Fluid
  • AT Automatic Transmission
  • a groove 22e for supporting the other end (23U2 to 23W2) of the stator coil 23 is formed on the outer peripheral side of the bobbin 22 and on the axial end face 22d thereof.
  • the groove 22e is formed in the radial direction to the outer peripheral side of the bobbin 22 so that the circumferential position of the other end of the stator coil 23 is regulated, and the other end of the stator coil 23 is supported by the groove 22e.
  • the circumferential position of the other end of the stator coil 23 is regulated.
  • the stator coil 23 is a winding wound around the tooth portion 21 b of the stator core 21 via the bobbin 22. More specifically, the U-phase winding 23U, the V-phase winding 23V, and the W-phase winding 23W are each a three-phase coil including a plurality of windings, and the rotation for rotating the rotor 10 is performed. Generate a magnetic field.
  • One end of the stator coil 23 extends outward in the axial direction from one end side (the right side in FIG. 4) of both end portions in the axial direction of the stator core 21, and the power bus bar 25 (see FIG. 4) corresponding to each phase. In the example of FIG.
  • a coil group 23G is formed by the windings 23U to 23W of the respective phases constituting the three-phase coil (stator coil 23).
  • a coil group 23G is formed by three windings each including one winding 23U to 23W of each phase, and four (plural) coil groups 23G are formed.
  • the present invention is not limited to this, and the coil group only needs to include one or more windings of each phase.
  • the coil group is configured to include a plurality of windings of each phase. It may be.
  • the coil group includes a plurality of windings for each phase, for example, when the coil group is formed by six windings each including two windings for each phase, the U-phase winding includes two windings. When these windings are connected in parallel, as in the case shown in FIGS.
  • one end of each of the two U-phase windings and The other end is one end and the other end of the U-phase winding.
  • one end of the winding U1 becomes one end of the U-phase winding
  • the winding U2 Is the other end of the U-phase winding.
  • one end (23U1 to 23W1) of each phase winding forming each coil group 23G is connected to the power supply bus bar 25 (U phase bus bar 25U to W phase bus bar 25W) corresponding to each phase. Is done.
  • both (23W2) are bent in the circumferential direction and extended in the circumferential direction toward the other end (23V2) of the V-phase winding 23V, and the V-phase winding 23V Are connected to each other by, for example, TIG welding in the vicinity of the other end (23V2). That is, in each coil group 23G, the other ends (23U2, 23W2) of the phase windings located at both ends in the circumferential direction extend toward the other end (23V2) of the remaining phase windings. The other ends (23U2 to 23W2) of the windings of each phase forming the coil group 23G are connected to each other.
  • the core holder 24 is a ring-shaped holder that holds the stator core 21 from the outer peripheral side or one axial side of the rotating electrical machine 100.
  • the power bus bar 25 is a conductive member made of copper or copper alloy or the like formed in a ring shape (annular shape), and is disposed on one end side of the stator core 21 as shown in FIG. Yes.
  • the power bus bar 25 includes a U-phase bus bar 25U, a V-phase bus bar 25V, and a W-phase bus bar 25W corresponding to each phase (U-phase, V-phase, and W-phase) of the stator coil 23, and the U-phase bus bar 25U is located on the inner side.
  • the V-phase bus bar 25V and the W-phase bus bar 25W are stacked in the radial direction in this order.
  • the bus bar holder 27 is made of, for example, an electrically insulating resin member, and holds the power supply bus bar 25 (more specifically, the U-phase bus bar 25U, the V-phase bus bar 25V, and the W-phase bus bar 25W).
  • the bus bar holder 27 is mounted on one side in the axial direction of the stator core 21 and on the outer peripheral side of the bobbin 22.
  • the bus bar holder 27 may be configured integrally with the bobbin 22.
  • the bus bar holder 27 has, for example, a concave holding groove 27b for holding the power bus bar 25.
  • the bus bar holder 27 is held in the holding groove 27b so as to be inserted from the axial direction of the rotating electrical machine 100 in a state where the U-phase bus bar 25U to the W-phase bus bar 25W are stacked in the radial direction.
  • an adhesive such as silicon is bonded between the bus bar holder 27 and the U-phase bus bar 25U to W-phase bus bar 25W.
  • both are bonded.
  • the stator 20 according to Embodiment 1 of the present invention is wound around the stator core 21 having the annular core back 21a and the plurality of teeth 21b, and the teeth 21, and one end and the other end thereof are wound.
  • a plurality of windings 23 (23U, 23V, 23W) for U-phase, V-phase, and W-phase respectively extending from one end side and the other end side of both end portions of the stator core 21 in the axial direction. )
  • the bobbin 22 that insulates the stator core 21 and the winding 23, and the U-phase, V-phase, and W-phase respectively disposed on one end side of the axial end portions of the stator core 21.
  • a power bus bar 25 25U, 25V, 25W
  • a coil group 23G composed of windings 23 (23U, 23V, 23W) of U phase, V phase and W phase is formed, and each coil group 23G is formed phase
  • One end of the winding (23U1, 23V1, 23W1) is connected to the power bus bar 25 (25U, 25V, 25W) of each phase, and in addition to the winding of the phase located at both ends in the circumferential direction in the coil group 23G
  • the ends (23U2, 23W2) extend toward the other ends (23V2) of the remaining phase windings, so that the other ends (23U2, 23V2, 23W2) of the respective phase windings are connected to each other.
  • the U-phase winding 23U of one coil group 23G and the W-phase winding 23W of the other coil group 23G are adjacent to each other in the circumferential direction.
  • the other ends of both windings extend in the circumferential direction from the other end side of the stator core 21, but extend in opposite directions from each other. Since the refrigerant passes through the gap formed on the other end side and hits the coil end portion 23a of the stator coil 23, the coil end portion 23a is cooled, and thus the cooling performance of the winding 23 wound around the stator core 21 is improved. Can be made.
  • a coil group 23G is formed by windings (23U, 23V, 23W) of U phase, V phase, and W phase, and one end (23U1, 23V1, 23W1) of winding 23 is connected to power bus bar 25 (25U) of each phase. , 25V, 25W), and the other ends (23U2, 23V2, 23W2) of the winding 23 are connected to each other, and the connecting portion 23b becomes a neutral point.
  • the connecting portion 23b becomes a neutral point.
  • the extending portion 22b extending in the axial direction is provided on the outer peripheral side of the bobbin 22, and the slit 22c is formed in the extending portion 22b. Therefore, the refrigerant 30 on the outer peripheral side of the stator 20 passes through the slit 22c and directly hits the coil end portion 23a of the winding 23, thereby cooling the coil end portion 23a. The cooling performance of the wound winding wire 23 can be further improved.
  • the other ends (23U2, 23V2, 23W2) of the windings of the respective phases forming the coil group 23G have an outer diameter from the other end side in the axial direction of the stator core 21. Since the groove 22e that further restricts the circumferential position of the other end (23U2, 23V2, 23W2) of the winding of each phase is further provided on the outer peripheral side of the bobbin 22, The other end (23U2, 23V2, 23W2) of the winding of each phase is supported in the groove 22e, and the circumferential position thereof is regulated.
  • the winding adjacent to the circumferential direction by the spring back of the winding Since the other ends of the windings of each phase toward the circumferential direction can be prevented from spreading in the circumferential direction, and therefore, the other ends of the windings of adjacent coil groups can be prevented from contacting each other. Winding each adjacent phase Insulation between can be reliably ensured. Moreover, since the circumferential position of the other end (23U2, 23V2, 23W2) of the winding of each phase in the stator 20 is regulated, the other end (23U2, 23V2, 23W2) of each phase and the coil The refrigerant flows stably to the end portion 23a, and the cooling performance is further improved.
  • the restricting means for restricting the circumferential position of the other end (23U2, 23V2, 23W2) of each phase winding is formed on the axial end face 22d of the bobbin 22, and the other end (23U2, 23V2, 23W2), the other end (23U2, 23V2, 23W2) of the winding of each phase can be reliably fixed. As a result, it is possible to reliably fix the connection point at which the other ends (23U2, 23V2, 23W2) of the windings of each phase are connected to each other.
  • the other ends (23U2, 23V2, 23W2) of the windings of each phase are connected to each other by welding, and the other ends (23U2, 23V2, 23W2) of the windings of each phase are connected.
  • an adhesive 26 is used to support the other ends (23U2, 23V2, 23W2) of the windings of each phase, but in order to improve the vibration resistance of the windings, for example.
  • the other ends (23U2, 23V2, 23W2) of the windings of each phase may be bonded to the bobbin 22.
  • a slit 22c is formed on the right side (right side in FIG.
  • the slit 22c1 is formed over the entire coil end portion 23a, and the other end (23U2, 23V2, 23W2) of the winding of each phase may be supported in the slit 22c1.
  • each phase winding 23U2, 23V2, 23W2 in the example of FIG. 7
  • the bobbin 22 located between the groove 22e and the slit 22c2 extends. Since the portion 22b serves as a stopper that suppresses the radially inward movement of the other ends of the phase windings (23U2 and 23W2 in the example of FIG. 7) located at both ends in the circumferential direction, The other end of the winding can be more reliably fixed, and hence the connection point can be more reliably fixed.
  • the windings of the phases positioned at both ends are extended from the other end side of the stator core in the outer diameter direction.
  • the other end of the stator core is bent in the circumferential direction and connected to each other by being bent outward in the axial direction after welding.
  • the present invention is not limited to this, and as shown in FIG. After extending from the end side in the outer diameter direction, it is bent outward in the axial direction, and the other ends of the phase windings located at both ends are bent in the circumferential direction and connected to each other by welding. Good.
  • connection method it is possible to suppress the coil from extending radially outward after the coil (winding) is hooked in the groove during winding. Furthermore, in the first embodiment, the case where both the slit 22c and the groove 22e are formed on the bobbin 22 has been described. However, as shown in FIG. 9, only the groove 22e may be formed. Needless to say. 9 is a perspective view of the periphery of the connecting portion 23b1, where (a) shows a perspective view before welding and (b) shows a perspective view after welding, as shown in FIG. 9 (a). Before welding, the other end of each phase winding may be bent outward in the axial direction and welded.
  • the restricting means for restricting the circumferential position of the other end (23U2, 23V2, 23W2) of the winding of each phase is formed on the axial end face 22d of the bobbin 22,
  • the groove 22e supporting the other end (23U2, 23V2, 23W2) of the winding is shown, instead of the groove 22e, as shown in FIG. 10, the other end (23U2, 23V2) of each phase winding is shown.
  • 23W2) may be formed through the through hole 22f.
  • the circumferential position of the other end of each phase winding is regulated, and the axial position of the other end of each phase winding is also regulated. Fixing can be ensured, and therefore the connection point can be fixed more reliably.
  • FIG. 11 is a perspective view around the neutral point holder 41 constituting the stator 40 of the rotating electrical machine 200 according to Embodiment 2 of the present invention.
  • the rotating electric machine 200 including the stator 40 according to the second embodiment includes a neutral point holder 41 that holds a connection point to which the other end of each phase winding is connected.
  • subjected to FIG. 11 shows the same part.
  • the neutral point holder 41 is made of, for example, a resin member having electrical insulation, and holds a connection portion 23b to which the other ends (23U2, 23V2, 23W2) of the windings of each phase are connected. To do.
  • the neutral point holder 41 is disposed on the outer peripheral side of the bobbin 22 on the axial end surface 21 e of the core back portion 21 a on the other end side in the axial direction of the stator core 21.
  • the neutral point holder 41 is bonded, for example, by filling the adhesive 26 between the bottom surface and the axial end surface 21e of the core back portion 21a, and is fixed to the axial end surface 21e of the core back portion 21a.
  • the present invention is not limited to this.
  • a protrusion protruding inward in the axial direction is provided on the bottom surface of the neutral point holder, and a dovetail groove is provided in the axial end surface of the core back portion of the stator core.
  • the provided protrusion may be fixed by a dovetail groove of the stator core.
  • the axial length (h1) of the neutral holder 41 is lower than the axial length (h2) of the bobbin 22 from the axial end surface 21e of the core back portion 21a where the neutral point holder 41 is disposed. (See FIG. 11).
  • the neutral point holder 41 may be configured integrally with the bobbin 22. Further, the linear expansion coefficient of the neutral point holder 41 is larger than the linear expansion coefficient of the stator coil 23.
  • the neutral point holder 41 Since the linear expansion coefficient of the neutral point holder 41 is larger than the linear expansion coefficient of the stator coil 23, the connecting portion 23b of the stator coil 23 is neutral even if the temperature of the stator 20 changes due to the operation of the rotating electrical machine or the like. It can be held in the point holder 41.
  • the neutral point holder 41 has, for example, a concave holding groove 41a for holding the connection portion 23b.
  • the neutral point holder 41 is held in the holding groove 41 a so that the connection portion 23 b is inserted from the axial direction of the rotating electrical machine 200.
  • the adhesive point 26 is filled between the neutral point holder 41 and the connection portion 23b, for example, so that both are bonded.
  • the neutral point holder 41 that holds the connection portion 23b to which the other end (23U2, 23V2, 23W2) of the winding of each phase is connected is provided. Since it has, the connection part 23b can be more reliably fixed in the neutral point holder 41. In addition, since the circumferential position of the connecting portion 23b in the stator 40 is also fixed, it is possible to reliably ensure insulation between adjacent windings and the other end of each phase winding (23U2, 23V2). 23W2) is also regulated in the circumferential direction, so that the refrigerant flows stably to the other end (23U2, 23V2, 23W2) of each phase winding and the coil end portion 23a, and the cooling performance is further improved.
  • the neutral point holder for holding the winding is disposed on the outer periphery of the stator core
  • the neutral point holder 41 is disposed on the axial end surface 21e of the core back portion 21a on the other end side in the axial direction of the stator core 21. Since the refrigerant also flows on the outer periphery of the heat, the heat generated in the stator coil 23 and transmitted to the stator core 21 can be effectively cooled. Furthermore, compared to the stator in which the neutral point holder is disposed on the outer peripheral side of the stator core, the radial length of the portion of the core back portion where the neutral point holder is disposed is shortened with respect to the radial direction. The stator can be downsized in the radial direction.
  • the axial length (h1) of the neutral point holder 41 is greater than the axial length (h2) of the bobbin 22 from the axial end surface 21e of the core back portion 21. Therefore, even if the neutral point holder 41 is provided, the axial height of the stator 40 does not change, so that the neutral point holder 41 does not increase in size in the axial direction of the stator. Can be provided.
  • the rotary electric machines 100 and 200 shown in the first and second embodiments of the present invention are general rotary electric machines including the rotor 10 and the stator 20, or the rotor 10 and the stator 40, and have a configuration according to the present invention.
  • the present invention can be applied to a drive motor (electric motor) having a stator, and can also be applied to, for example, a generator such as an alternator or a motor generator having functions of an electric motor and a generator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

 ステータコアの両端部にバスバーが配設される回転電機において、コイルエンドがバスバーに覆われてしまうため、コイルエンドに対する冷却性が低下する。本発明の回転電機100は、ステータコア21に巻装されるとともに、一端及び他端がステータコア21の軸方向の両端部のうちの一方の端部側及び他方の端部側より延出されたU相、V相及びW相用のそれぞれ複数の巻線23を備え、U相、V相及びW相の巻線23U~23Wからなるコイル群23Gが形成され、コイル群23Gを形成する各相の巻線の一端23U1~23W1は各電源バスバー25U~25Wに接続されるとともに、コイル群23G内において周方向両端に位置する相の巻線の他端23U2、23W2が残りの相の巻線の他端23V2に向かってそれぞれ延出することで、各相の巻線の他端23U2~23W2は互いに接続されるものである。

Description

回転電機
 本発明は、回転電機のステータに巻装された巻線に関するものである。
 三相ブラシレスモータのステータは、鉄心であるステータコアと、このステータコアのティース外周に巻回される巻線と、このコイルの端部と電気的に接続されるバスバーと、このバスバー間を絶縁して保持し、ステータコアの端部に配設される絶縁ホルダから構成されている。このようなステータを備えた回転電機として、例えば、特許文献1に記載の回転電機が提案されている。
 特許文献1に記載の回転電機は、固定子鉄心(ステータコア)の周囲部にU相、V相、W相のそれぞれ複数の巻線が施され、その巻線を相別にそれぞれバスリング(バスバー)を介して結線するものにおいて、U相結線用バスリングと、V相結線用バスリング、及びW相結線用バスリング、並びに中性点結線用バスリングを具え、そのうちの各相結線用バスリングを、固定子鉄心の軸方向の両端部のうちの一方の端部側に配設し、中性点結線用バスリングを、固定子鉄心の軸方向の両端部のうちの他方の端部側に配設したものである。この回転電機は、各相結線用バスリングと、中性点結線用バスリングとを、固定子鉄心の軸方向の両端部のうちの一方の端部側と他方の端部側とに振り分けて配設したものであり、それによって、それらのバスリングの配設スペースが固定子鉄心の軸方向の一方の端部側にのみ必要とされることが避けられ、固定子の外径寸法を小さくできるものである。
特開2010-110160号公報(図1)
 特許文献1に記載の回転電機において、各相結線用バスバーと中性点結線用バスバーとを、ステータコアの軸方向の一方の端部側と他方の端部側に振り分けることにより、ステータの外径寸法を小さくすることができるが、ステータコアの軸方向の両端部にバスバーが配設されることにより、ステータコアの周囲部に巻回される巻線、特にコイルエンド部、がバスバーに覆われてしまうため、コイルエンド部に対する冷却性が低下するという問題があった。
 また、各相結線用バスバーと中性点結線用バスバーとをステータコアの軸方向の一方の端部側にのみ配設した場合、ステータコアの軸方向の他方の端部側のコイルエンド部は、バスバーに覆われていないことから、コイルエンド部に冷媒(例.冷却風、冷却油)があたり、コイルエンド部が冷却されるが、ステータの外径寸法が大きくなるという問題がある。
 本発明は、上記の問題を解決するためになされたもので、ステータの外径寸法を小さくしつつ、ステータコアに巻回される巻線の冷却性が向上した回転電機を提供することを目的とする。
 本発明に係る回転電機は、環状のコアバック及び複数のティースを有するステータコアと、前記ティースに巻装されるとともに、一端及び他端がそれぞれ前記ステータコアの軸方向の両端部のうちの一方の端部側及び他方の端部側より延出されたU相、V相及びW相用のそれぞれ複数の巻線と、前記ステータコアと前記巻線とを絶縁するボビンと、前記ステータコアの軸方向の両端部のうちの一方の端部側に配設されたU相、V相及びW相用のそれぞれの電源バスバーと、を備え、前記U相、V相及びW相の巻線でコイル群を形成し、それぞれのコイル群を形成する巻線の一端は、各相の電源バスバーにそれぞれ接続されるとともに、前記各相の巻線の他端は、前記巻線のうちの両端に位置する相の巻線の他端が残りの相の巻線の他端に向かってそれぞれ延出することで、互いに接続されることを特徴とするものである。
 本発明によれば、ステータの外径寸法を小さくしつつ、ステータコアに巻回される巻線の冷却性が向上した回転電機を提供することができる。
本発明の実施の形態1に係る回転電機100の断面図である。 図1のステータ20の正面側平面図である。 図1のステータ20の裏面側平面図である。 図2のA-A線に沿う断面図である。 図3のコイル群23Gを形成する各相の巻線の他端(23U2、23V2、23W2)周辺の斜視図である。 図5に示したボビン22の変形例である。 図5に示したボビン22の別の変形例である。 図5に示した各相の巻線の他端(23U2、23V2、23W2)の変形例である。 図5に示した各相の巻線の他端(23U2、23V2、23W2)の別の変形例であって、(a)溶接前、(b)溶接後、の斜視図である。 図5に示したボビン22のさらに別の変形例である。 本発明の実施の形態2に係る回転電機200のステータ40を構成する中性点ホルダ41周辺の斜視図である。
実施の形態1.
 以下、本発明の実施の形態1について図1~図10に基づいて説明するが、各図において、同一、または相当部材、部位については同一符号を付して説明する。
 図1は、本発明の実施の形態1に係る回転電機100の断面図である。図2、3はともに、図1に示す回転電機100のステータ20の構成を模式的に示した平面図であって、図2は正面側平面図、図3は裏面側平面図、図4は、図2のA-A線に沿う断面図である。また、図5は図3の一つのコイル群23Gを形成する各相の巻線の他端(23U2、23V2、23W2)周辺の斜視図である。
 図1に示す回転電機100は、ロータ10とステータ20を備え、ロータ10の外周面はステータ20の内周面と所定の間隙を介して対向している。ロータ10はロータ軸60に固定されている。ステータ20は、筒状のフレーム70に嵌合されている。以下では、図2~図5を参照しながら、本発明の実施の形態1に係るステータ20の構成要素について詳述する。
 ステータ20は、円環状に構成されたステータコア21と、ステータコア21に装着されるボビン22と、ボビン22を介してステータコア21に巻装された巻線であるステータコイル23と、ステータコア21を保持するコアホルダ24と、ステータコイル23の一端と電気的に接続される複数の電源用バスバー25と、各電源用バスバー25を保持するバスバーホルダ27と、を有する。
 ステータコア21は、環状のコアバック部21aの内周側から等間隔に複数のティース部21b(図2の例では12個)が突出したものであり、ティース部21bごとにコアバック部21aで分割された複数の分割コアを環状に組み合わせて、コアホルダ24に圧入されている。ティース部21bには、後述するステータコイル23を構成する3相コイルが、例えば図2に示すように、巻回されている。
 ボビン22は、ステータコイル23とステータコア21のティース部21bとの間を電気的に絶縁する絶縁部材であり、ティース部21bの軸方向両端に配設されている。ボビン22は、後述するバスバーホルダ27と一体に構成されるようにしてもよい。
 ボビン22の内周側及び外周側には、図2、図3に示すように、軸方向外方に延出する延出部22a、22bが設けられており、周方向から見た断面形状が略コの字状となっている。そして、図5に示すように、ボビン22の外周側に設けられた延出部22bの周方向中央付近には、スリット22cが形成されている。なお、図5に示した例では、ボビン22の延出部22bにスリット22cが形成されることで、このボビン22を介して巻装されたステータコイル23が、径方向外側から見えるようになり、冷媒30はこのスリット22cを通り、径方向内方に流れ、ステータコイル23のコイルエンド部23aにあたるように構成されているが、この場合に限らず、冷媒がスリットを介してコイルエンド部にあたる構成であれば良く、例えば、らせん状のスリットが形成される構成や径方向に向かって隙間や孔が生じる構成としてもよい。
 なお、冷媒30としては、空気のほか、例えば、回転電機100の近傍に配置された、AT(Automatic Transmission:自動変速機)内の潤滑・作動油であるATF(Automatic Transmission Fluid:オートマチックトランスミッションフルード)等があり、このATFをステータ20の外周側から滴下もしくは噴射することで、ステータ20が冷却される。
 また、ボビン22の外周側であって、その軸方向端面22dには、ステータコイル23の他端(23U2~23W2)を支持する溝22eが形成されている。溝22eは、ステータコイル23の他端の周方向位置が規制されるように、ボビン22の外周側まで径方向にわたって形成されており、この溝22eにステータコイル23の他端が支持されることにより、ステータコイル23の他端の周方向位置は規制される。
 ステータコイル23は、ステータコア21のティース部21bに、ボビン22を介して巻装される巻線である。より詳細には、U相用の巻線23U、V相用の巻線23V及びW相用の巻線23Wがそれぞれ複数の巻線からなる3相コイルであり、ロータ10を回転させるための回転磁界を発生させる。ステータコイル23の一端は、ステータコア21の軸方向の両端部のうちの一方の端部側(図4の右側)より軸方向外方に延出され、各相に対応する電源用バスバー25(図4の例では、U相の巻線23Uに対応するU相バスバー25U)と電気的かつ機械的に接続される。ステータコイル23の一端が軸方向外方に延出されていることから、ステータコイルの一端が周方向に延出される場合に比べて、径方向に対する寸法、すなわち、外径寸法を小さくすることができる。また、ステータコイル23の他端(23U2、23V2、23W2)は、ステータコア21の軸方向の両端部のうちの他方の端部側(図4の左側)より外径方向に延出されている。
 また、3相コイル(ステータコイル23)を構成する各相の巻線23U~23Wでコイル群23Gを形成している。図2、図3には、各相の巻線23U~23Wをそれぞれ1つ含む3つの巻線によりコイル群23Gが形成され、このコイル群23Gが4つ(複数)形成される例が示されているが、この場合に限らず、コイル群が、各相の巻線を1つ以上含むものであれば良く、例えば、各相の巻線をそれぞれ複数含むようにコイル群が構成されるようにしてもよい。なお、コイル群が各相の巻線を複数含む場合として、例えば、各相の巻線をそれぞれ2つ含む6つの巻線によりコイル群が形成される場合、U相の巻線は2つの巻線(それぞれ巻線U1、巻線U2とする)からなり、これらの巻線が並列接続されるときは、図2、図3に示した場合と同様、2つのU相巻線それぞれの一端及び他端が、U相の巻線の一端及び他端となる。また、これらの巻線が直列接続(巻線U1の他端と巻線U2の一端とを接続)されるときは、巻線U1の一端が、U相の巻線の一端となり、巻線U2の他端が、U相の巻線の他端となる。V相の巻線、W相の巻線についても同様である。
 それぞれのコイル群23Gを形成する各相の巻線の一端(23U1~23W1)は、前述したように、各相に対応する電源用バスバー25(U相バスバー25U~W相バスバー25W)にそれぞれ接続される。また、それぞれのコイル群23Gを形成する各相の巻線の他端(23U2~23W2)のうち、U相用の巻線23Uの他端(23U2)及びW相用の巻線23Wの他端(23W2)は、図5に示すように、ともに周方向に折り曲げられ、V相用の巻線23Vの他端(23V2)に向かって周方向に延出しており、V相用の巻線23Vの他端(23V2)近傍にて、例えばTIG溶接されることで、互いに接続されている。すなわち、それぞれのコイル群23G内において、周方向両端に位置する相の巻線の他端(23U2、23W2)が残りの相の巻線の他端(23V2)に向かってそれぞれ延出することで、コイル群23Gを形成する各相の巻線の他端(23U2~23W2)は互いに接続されている。
 コアホルダ24は、ステータコア21を外周側ないし回転電機100の軸方向片側から保持するリング状のホルダである。
 電源用バスバー25は、リング状(円環状)に形成された、銅又は銅合金等からなる導電性部材であり、図4に示すように、ステータコア21の一方の端部側に配設されている。電源用バスバー25は、ステータコイル23の各相(U相、V相及びW相)に対応したU相バスバー25U、V相バスバー25V及びW相バスバー25Wからなり、U相バスバー25Uが内側に位置し、V相バスバー25V、W相バスバー25Wの順に径方向に積層される。
 バスバーホルダ27は、例えば電気絶縁性を有する樹脂部材からなり、電源用バスバー25(より具体的には、U相バスバー25U、V相バスバー25V及びW相バスバー25W)を保持するものである。バスバーホルダ27は、ステータコア21の軸方向片側であってボビン22の外周側に装着されている。なお、バスバーホルダ27は、ボビン22と一体に構成されてもよい。バスバーホルダ27は、電源用バスバー25を保持するための、例えば凹状の保持溝27bを有する。バスバーホルダ27は、保持溝27bにて、U相バスバー25U~W相バスバー25Wが径方向に積層された状態で、回転電機100の軸方向から差し込まれるようにして保持される。U相バスバー25U~W相バスバー25Wが、バスバーホルダ27に回転電機100の軸方向から差し込まれると、バスバーホルダ27とU相バスバー25U~W相バスバー25Wとの間に、例えば、シリコン等の接着剤26を充填することで、両者は接着される。
 以上で述べたように、本発明の実施の形態1に係るステータ20は、環状のコアバック21a及び複数のティース21bを有するステータコア21と、ティース21に巻装されるとともに、一端及び他端がそれぞれステータコア21の軸方向の両端部のうちの一方の端部側及び他方の端部側より延出されたU相、V相及びW相用のそれぞれ複数の巻線23(23U、23V、23W)と、ステータコア21と巻線23とを絶縁するボビン22と、ステータコア21の軸方向の両端部のうちの一方の端部側に配設されたU相、V相及びW相用のそれぞれの電源バスバー25(25U、25V、25W)と、を備え、U相、V相及びW相の巻線23(23U、23V、23W)からなるコイル群23Gが形成され、コイル群23Gを形成する各相の巻線の一端(23U1、23V1、23W1)は、各相の電源バスバー25(25U、25V、25W)にそれぞれ接続されるとともに、コイル群23G内において周方向両端に位置する相の巻線の他端(23U2、23W2)が残りの相の巻線の他端(23V2)に向かってそれぞれ延出することで、各相の巻線の他端(23U2、23V2、23W2)は、互いに接続されるようにしたので、周方向に隣り合うコイル群23Gについて、その一方のコイル群23GのU相の巻線23U及び他方のコイル群23GのW相の巻線23Wは、周方向に隣り合うティース部21bにそれぞれ巻装されており、両巻線の他端は、ともにステータコア21の他方の端部側より周方向に延出しているが、互いに逆方向に延出していることから、両巻線の他端側に生じた隙間を冷媒が通り、ステータコイル23のコイルエンド部23aにあたることから、コイルエンド部23aが冷却され、それゆえ、ステータコア21に巻回される巻線23の冷却性を向上させることができる。
 また、U相、V相及びW相の巻線(23U、23V,23W)でコイル群23Gが形成され、巻線23の一端(23U1、23V1,23W1)は、各相の電源バスバー25(25U,25V,25W)にそれぞれ接続されるとともに、巻線23の他端(23U2、23V2,23W2)は、互いに接続されており、その接続部23bが中性点となることから、従来のように中性点結線用バスバーを別途設ける必要がなく、部品点数が削減されるとともに、ステータの外径寸法を小さくすることができる。
 したがって、ステータ10の外径寸法を小さくしつつ、ステータコア21に巻回される巻線23の冷却性が向上した回転電機100を提供することができる。
 また、本発明の実施の形態1によれば、ボビン22の外周側には、軸方向に延出する延出部22bが設けられているとともに、この延出部22bには、スリット22cが形成されているので、ステータ20の外周側にある冷媒30がこのスリット22cを通り、巻線23のコイルエンド部23aに直接あたることで、コイルエンド部23aが冷却され、それゆえ、ステータコア21に巻回される巻線23の冷却性をさらに向上させることができる。
 また、本発明の実施の形態1によれば、コイル群23Gを形成する各相の巻線の他端(23U2、23V2、23W2)は、ステータコア21の軸方向の他方の端部側より外径方向にそれぞれ延出しているとともに、ボビン22の外周側に、各相の巻線の他端(23U2、23V2、23W2)の周方向位置を規制する規制手段である溝22eをさらに備えたので、この溝22eに各相の巻線の他端(23U2、23V2、23W2)が支持され、その周方向位置が規制されることで、例えば、巻線のスプリングバックにより、周方向に隣接する巻線に向かって各相の巻線の他端が周方向に拡がるのを防ぐことができ、それゆえ、隣接するコイル群の巻線の他端同士が互いに接触することを防止することができることから、隣接する各相の巻線間の絶縁性を確実に確保することができる。また、ステータ20内における、各相の巻線の他端(23U2、23V2、23W2)の周方向位置が規制されることから、各相の巻線の他端(23U2、23V2、23W2)及びコイルエンド部23aに安定して冷媒が流れ、冷却性がさらに向上する。
 また、各相の巻線の他端(23U2、23V2、23W2)の周方向位置を規制する規制手段は、ボビン22の軸方向端面22dに形成され、各相の巻線の他端(23U2、23V2、23W2)を支持する溝22eであることから、各相の巻線の他端(23U2、23V2、23W2)を確実に固定することができる。その結果、各相の巻線の他端(23U2、23V2、23W2)が互いに接続される接続点の固定も確実に行うことができる。
 なお、本実施の形態1においては、各相の巻線の他端(23U2、23V2、23W2)が溶接により互いに接続されることに加え、各相の巻線の他端(23U2、23V2、23W2)を支持する溝22eを備えることにより、各相の巻線の他端(23U2、23V2、23W2)は確実に固定されるが、巻線の耐振性向上のために、例えば接着剤26を使って各相の巻線の他端(23U2、23V2、23W2)がボビン22に接着されるようにしてもよい。
 なお、スリット22c及び溝22eの構成として、図5には、ボビン22の外周側に設けられた延出部22bにおいて、径方向外側から見て右側(図5の右側)にスリット22cが形成され、径方向外側から見て左側(図5の左側)に溝22eが形成されており、スリット22c及び溝22eがそれぞれ別々に形成されている場合について示したが、この場合に限らず、図6に示すように、コイルエンド部23a全体にわたってスリット22c1が形成されており、このスリット22c1内にて各相の巻線の他端(23U2、23V2、23W2)が支持される構成としてもよい。また、図7に示すように、溝22eと同程度の周方向幅を有するスリット22c2が形成される構成としてもよい。この場合、各相の巻線の他端(図7の例では、23U2、23V2、23W2)の周方向位置が規制されるとともに、溝22eとスリット22c2との間に位置するボビン22の延出部22bが、周方向両端に位置する相の巻線の他端(図7の例では、23U2、23W2)の径方向内方への移動を抑制するストッパの役割を果たすことから、各相の巻線の他端をより確実に固定することができ、それゆえ、接続点の固定もより確実に行うことができる。
 また、各相の巻線の他端の接続方法に関して、図5~図7に示す例では、ステータコアの他方の端部側より外径方向に延出した後、両端に位置する相の巻線の他端は、周方向に折り曲げられ、溶接後に軸方向外方に折り曲げられることにより、互いに接続される場合について示したが、この場合に限らず、図8に示すように、ステータコアの他方の端部側より外径方向に延出した後、軸方向外方に曲げられ、両端に位置する相の巻線の他端が周方向に折り曲げられて、溶接により互いに接続されるようにしてもよい。この接続方法の場合、巻線時にコイル(巻線)を溝に引っ掛けた後、コイルが径方向外方に伸びてしまうことを抑制することができる。
 さらにまた、本実施の形態1においては、ボビン22にスリット22cと溝22eとがともに形成される場合について示したが、図9に示すように、溝22eのみが形成される構成としても良いことは言うまでもない。なお、図9は、接続部23b1周辺の斜視図であって、(a)は溶接前、(b)は溶接後の斜視図を示したものであるが、図9(a)に示すように、溶接する前に各相の巻線の他端を軸方向外方に折り曲げ、溶接するようにしてもよい。
 また、本実施の形態1においては、各相の巻線の他端(23U2、23V2、23W2)の周方向位置を規制する規制手段が、ボビン22の軸方向端面22dに形成され、各相の巻線の他端(23U2、23V2、23W2)を支持する溝22eである場合について示したが、溝22eの代わりに、図10に示すように、各相の巻線の他端(23U2、23V2、23W2)が貫通する貫通孔22fを形成するようにしてもよい。この場合、各相の巻線の他端の周方向位置が規制されるとともに、各相の巻線の他端の軸方向位置も規制されることから、各相の巻線の他端をより確実に固定することができ、それゆえ、接続点の固定もより確実に行うことができる。
実施の形態2.
 以下、実施の形態2に係るステータ40を備えた回転電機200について図11に基づいて説明する。図11は、本発明の実施の形態2に係る回転電機200のステータ40を構成する中性点ホルダ41周辺の斜視図である。図11に示すように、実施の形態2に係るステータ40を備えた回転電機200は、各相の巻線の他端が接続される接続点を保持する中性点ホルダ41を備えている点で、実施の形態1で示した回転電機100とは異なる。他の構成は上記実施の形態1の回転電機100と同様であるので、詳細説明は省略する。なお、図11に付した符号のうち、前出のものと同一の符号は同一の部分を示す。
 図11に示すように、中性点ホルダ41は、例えば電気絶縁性を有する樹脂部材からなり、各相の巻線の他端(23U2、23V2、23W2)が接続されている接続部23bを保持するものである。中性点ホルダ41は、ステータコア21の軸方向の他方の端部側の、コアバック部21aの軸方向端面21eであって、ボビン22の外周側に配置されている。中性点ホルダ41は、その底面とコアバック部21aの軸方向端面21eとの間に、例えば接着剤26を充填することで、接着され、コアバック部21aの軸方向端面21eに固定されるが、この場合に限らず、例えば、中性点ホルダの底面に、軸方向内方に突出する突起を設け、またステータコアのコアバック部の軸方向端面にアリ溝を設け、中性点ホルダに設けた突起が、ステータコアのアリ溝にて固定されるようにしてもよい。
 また、中性ホルダ41の軸方向長さ(h1)は、この中性点ホルダ41が配置されるコアバック部21aの軸方向端面21eからのボビン22の軸方向長さ(h2)よりも低い(図11参照)。なお、中性点ホルダ41は、ボビン22と一体に構成されてもよい。また、中性点ホルダ41の線膨張係数は、ステータコイル23の線膨張係数よりも大きい。中性点ホルダ41の線膨張係数が、ステータコイル23の線膨張係数よりも大きいことから、回転電機の動作等によりステータ20の温度変化が生じても、ステータコイル23の接続部23bを中性点ホルダ41内に保持することができる。
 中性点ホルダ41は、接続部23bを保持するための、例えば凹状の保持溝41aを有する。中性点ホルダ41は、保持溝41aにて、接続部23bが回転電機200の軸方向から差し込まれるようにして保持される。接続部23bが中性点ホルダ41に回転電機200の軸方向から差し込まれると、中性点ホルダ41と接続部23bとの間に、例えば、接着剤26を充填することで、両者は接着される。
 この実施の形態2では、上記実施の形態1の効果に加えて、各相の巻線の他端(23U2、23V2、23W2)が接続されている接続部23bを保持する中性点ホルダ41を備えているので、中性点ホルダ41内に接続部23bをより確実に固定することができる。また、ステータ40内における、接続部23bの周方向位置も固定されるので、隣接する巻線間の絶縁性を確実に確保することができるとともに、各相の巻線の他端(23U2、23V2、23W2)の周方向位置も規制されることから、各相の巻線の他端(23U2、23V2、23W2)及びコイルエンド部23aに安定して冷媒が流れ、冷却性がさらに向上する。
 また、巻線を保持するための中性点ホルダを、ステータコアの外周に配置した場合、径方向内側に流れた冷媒は、ステータコアの外周に配置された中性点ホルダの、外周側に流れるものの、内周側には流れ難いため、ステータコアの外周に中性点ホルダを配置したことにより、ステータコアの外周であって、中性点ホルダの内周側に対する冷却性が低下する虞があった。
 これに対し、本発明の実施の形態2において、中性点ホルダ41は、ステータコア21の軸方向の他方の端部側のコアバック部21aの軸方向端面21eに配置されているので、ステータコア21の外周にも冷媒が流れることから、ステータコイル23で発生し、ステータコア21に伝わった熱を効果的に冷却することができる。
 さらに、ステータコアよりも外周側に中性点ホルダを配置したステータに比べて、コアバック部の、中性点ホルダが配置された部分の径方向長さの分、径方向に対して短くなるので、ステータの径方向に対する小型化が可能となる。
 さらに、本発明の実施の形態2によれば、中性点ホルダ41の軸方向長さ(h1)が、コアバック部21の軸方向端面21eからのボビン22の軸方向長さ(h2)よりも低いので、中性点ホルダ41を備えた場合であっても、ステータ40の軸方向高さは変わらないことから、ステータの軸方向長さの大型化を招くことなく、中性点ホルダ41を備えることができる。
 本発明の実施の形態1、2で示した回転電機100、200は、ロータ10とステータ20、又はロータ10とステータ40とを備えた一般的な回転電機であり、本発明に係る構成を有するステータを備えた駆動モータ(電動機)に適用可能であるとともに、例えば、オルタネータ等の発電機や電動機と発電機の機能を備えたモータジェネレータにも適用可能である。
 10:ロータ、20、40:ステータ、21:ステータコア、21a:コアバック部、21b:ティース部、21e:軸方向端面、22:ボビン、22a、22b:延出部、22c:スリット、22d:軸方向端面、22e:溝(規制手段)、22f:貫通孔(規制手段)、23、23U、23V、23W:ステータコイル(巻線)、23a:コイルエンド部、23b、23b1:接続部、23U1、23V1、23W1:巻線の一端、23U2、23V2、23W2:巻線の他端、24:コアホルダ、25、25U、25V、25W:電源用バスバー、26:接着剤、27:バスバーホルダ、27a:保持溝、30:冷媒、41:中性点ホルダ、41a:保持溝、60:ロータ軸、70:フレーム、100、200:回転電機。

Claims (8)

  1.  環状のコアバック及び複数のティースを有するステータコアと、
     前記ティースに巻装されるとともに、一端及び他端がそれぞれ前記ステータコアの軸方向の両端部のうちの一方の端部側及び他方の端部側より延出されたU相、V相及びW相用のそれぞれ複数の巻線と、
     前記ステータコアと前記巻線とを絶縁するボビンと、
     前記ステータコアの軸方向の両端部のうちの一方の端部側に配設されたU相、V相及びW相用のそれぞれの電源バスバーと、を備え、
     前記U相、V相及びW相の巻線からなるコイル群が複数形成され、前記コイル群を形成する各相の巻線の一端は、各相の電源バスバーにそれぞれ接続されるとともに、前記コイル群内において周方向両端に位置する相の巻線の他端が残りの相の巻線の他端に向かってそれぞれ延出することで、前記各相の巻線の他端は互いに接続されることを特徴とする回転電機。
  2.  ボビンの外周側には、軸方向に延出する延出部が設けられているとともに、前記延出部には、スリットが形成されていることを特徴とする請求項1に記載の回転電機。
  3.  コイル群を形成する各相の巻線の他端は、ステータコアの軸方向の他方の端部側より外径方向にそれぞれ延出しているとともに、
     ボビンの外周側に、前記各相の巻線の他端の周方向位置を規制する規制手段をさらに備えていることを特徴とする請求項1または請求項2のうちいずれか1項に記載の回転電機。
  4.  規制手段は、ボビンの軸方向端面に形成され、各相の巻線の他端を支持する溝であることを特徴とする請求項3に記載の回転電機。
  5.  規制手段は、各相の巻線の他端が貫通する貫通孔であることを特徴とする請求項3に記載の回転電機。
  6.  各相の巻線の他端が接続されている接続部を保持するホルダをさらに備えていることを特徴とする請求項1から請求項5のいずれか1項に記載の回転電機。
  7.  ホルダは、ステータコアの軸方向の他方の端部側のコアバックの軸方向端面に配置されていることを特徴とする請求項6に記載の回転電機。
  8.  ホルダの軸方向長さが、コアバックの軸方向端面からのボビンの軸方向長さよりも低いことを特徴とする請求項7に記載の回転電機。
PCT/JP2013/007460 2013-12-19 2013-12-19 回転電機 WO2015092833A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2013/007460 WO2015092833A1 (ja) 2013-12-19 2013-12-19 回転電機
JP2015553234A JP6135774B2 (ja) 2013-12-19 2013-12-19 回転電機
US14/911,776 US10056799B2 (en) 2013-12-19 2013-12-19 Rotating electric machine
CN201380081726.6A CN105830311B (zh) 2013-12-19 2013-12-19 旋转电机
EP13899576.6A EP3086444B1 (en) 2013-12-19 2013-12-19 Rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/007460 WO2015092833A1 (ja) 2013-12-19 2013-12-19 回転電機

Publications (1)

Publication Number Publication Date
WO2015092833A1 true WO2015092833A1 (ja) 2015-06-25

Family

ID=53402229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/007460 WO2015092833A1 (ja) 2013-12-19 2013-12-19 回転電機

Country Status (5)

Country Link
US (1) US10056799B2 (ja)
EP (1) EP3086444B1 (ja)
JP (1) JP6135774B2 (ja)
CN (1) CN105830311B (ja)
WO (1) WO2015092833A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018133886A (ja) * 2017-02-14 2018-08-23 日本電産サンキョー株式会社 モータおよびポンプ装置
ES2835602T3 (es) 2018-01-12 2021-06-22 Carrier Corp Máquina electromagnética
DE102018202408A1 (de) * 2018-02-16 2019-08-22 Bühler Motor GmbH Stator mit einer wicklungsverschaltung
DE102019107526A1 (de) * 2018-07-11 2020-01-16 Hanon Systems Vorrichtung zum Antreiben eines Verdichters und Verfahren zum Herstellen der Vorrichtung
JP7047682B2 (ja) * 2018-09-13 2022-04-05 株式会社デンソー 回転電機、その固定子、および回転電機の製造方法
JP7338152B2 (ja) * 2018-12-12 2023-09-05 株式会社デンソー 回転電機
JP7205272B2 (ja) * 2019-02-08 2023-01-17 株式会社デンソー 電機子及び回転電機
CN111628591A (zh) * 2019-02-28 2020-09-04 株式会社村田制作所 定子、定子组件、以及电能与机械能的转换器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000232745A (ja) * 1999-02-10 2000-08-22 Toshiba Kyaria Kk 圧縮機用電動機
JP2009148093A (ja) * 2007-12-14 2009-07-02 Hitachi Ltd 回転電機
JP2010110160A (ja) 2008-10-31 2010-05-13 Toshiba Industrial Products Manufacturing Corp 回転電機
JP2011250513A (ja) * 2010-05-24 2011-12-08 Mitsubishi Electric Corp 電動機及びそれを搭載した圧縮機
WO2013136646A1 (ja) * 2012-03-13 2013-09-19 パナソニック株式会社 モータおよびそのステータの製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3741600B2 (ja) 2000-09-21 2006-02-01 三菱電機株式会社 電動機の固定子
JP2005318733A (ja) * 2004-04-28 2005-11-10 Honda Motor Co Ltd 電動機および電動機を搭載した電動パワーステアリング装置
KR100663641B1 (ko) * 2006-04-06 2007-01-05 주식회사 아모텍 일체형 스테이터의 제조방법, 이를 이용한 레이디얼코어타입 더블 로터 방식의 비엘디씨 모터 및 그의제조방법
JP5060839B2 (ja) * 2007-06-12 2012-10-31 富士重工業株式会社 電動機
US8154163B2 (en) 2008-04-15 2012-04-10 Honda Motor Co., Ltd. Electric power collection/distribution ring of rotary electric machine
US8063547B2 (en) * 2008-07-28 2011-11-22 Kabushiki Kaisha Yaskawa Denki Rotating electric machine and manufacturing method thereof
JP5493440B2 (ja) 2009-04-15 2014-05-14 日産自動車株式会社 回転電機の固定子および回転電機の固定子の冷却方法
JP5389559B2 (ja) * 2009-07-23 2014-01-15 愛三工業株式会社 回転電動機の固定子及び燃料ポンプ
JP5768323B2 (ja) 2010-03-26 2015-08-26 アイシン精機株式会社 回転電機のステータ
JP5957184B2 (ja) 2011-04-01 2016-07-27 本田技研工業株式会社 車両用駆動装置
JP5751927B2 (ja) * 2011-05-13 2015-07-22 三菱電機株式会社 回転電機およびそれに用いられるステータの製造方法
JP2014180067A (ja) 2011-07-01 2014-09-25 Nissan Motor Co Ltd 分割ステータコア
JP2013162673A (ja) 2012-02-07 2013-08-19 Toshiba Industrial Products Manufacturing Corp 回転電機の固定子の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000232745A (ja) * 1999-02-10 2000-08-22 Toshiba Kyaria Kk 圧縮機用電動機
JP2009148093A (ja) * 2007-12-14 2009-07-02 Hitachi Ltd 回転電機
JP2010110160A (ja) 2008-10-31 2010-05-13 Toshiba Industrial Products Manufacturing Corp 回転電機
JP2011250513A (ja) * 2010-05-24 2011-12-08 Mitsubishi Electric Corp 電動機及びそれを搭載した圧縮機
WO2013136646A1 (ja) * 2012-03-13 2013-09-19 パナソニック株式会社 モータおよびそのステータの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3086444A4

Also Published As

Publication number Publication date
EP3086444B1 (en) 2019-04-24
JP6135774B2 (ja) 2017-05-31
US20160190886A1 (en) 2016-06-30
CN105830311A (zh) 2016-08-03
CN105830311B (zh) 2019-06-04
US10056799B2 (en) 2018-08-21
EP3086444A1 (en) 2016-10-26
EP3086444A4 (en) 2017-08-09
JPWO2015092833A1 (ja) 2017-03-16

Similar Documents

Publication Publication Date Title
JP6135774B2 (ja) 回転電機
JP6072866B1 (ja) 回転電機
TWI393327B (zh) 車輛用旋轉電機之固定子
JP5911034B1 (ja) 回転電機のステータ
US11387698B2 (en) Rotating-electrical-machine stator, and rotating electrical machine provided with same
JP7139969B2 (ja) 回転電機
US10038353B2 (en) Dual-rotor electric rotating machine
JP2013070595A (ja) 3相回転電機及びその製造方法
JP2014107874A (ja) 回転電機
US20130062978A1 (en) Electric rotating machine
JP2016208757A (ja) 車両用回転電機
JP6839069B2 (ja) 回転電機
JP7060419B2 (ja) 回転電機
JP5330860B2 (ja) 回転電機
JP6357694B2 (ja) 回転機
US9362794B2 (en) Stator winding comprising multiple phase windings
JP6642320B2 (ja) コイルエンド押さえ具
JP2017034873A (ja) 電動機
JP2014107875A (ja) 回転電機
JP2012244839A (ja) 回転電機のステータ
JP7283265B2 (ja) 回転電機
JP6801444B2 (ja) ステータ
JP6294425B1 (ja) モータ
JP2007082287A (ja) 回転電機の固定子
JP2023085032A (ja) モータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13899576

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015553234

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14911776

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013899576

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013899576

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE