WO2015083681A1 - ガスバリアーフィルム及びその製造方法 - Google Patents

ガスバリアーフィルム及びその製造方法 Download PDF

Info

Publication number
WO2015083681A1
WO2015083681A1 PCT/JP2014/081825 JP2014081825W WO2015083681A1 WO 2015083681 A1 WO2015083681 A1 WO 2015083681A1 JP 2014081825 W JP2014081825 W JP 2014081825W WO 2015083681 A1 WO2015083681 A1 WO 2015083681A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
barrier layer
film
carbon
flexible substrate
Prior art date
Application number
PCT/JP2014/081825
Other languages
English (en)
French (fr)
Inventor
浩了 有田
鈴木 一生
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015551511A priority Critical patent/JPWO2015083681A1/ja
Publication of WO2015083681A1 publication Critical patent/WO2015083681A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/0046Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by constructional aspects of the apparatus
    • B32B37/0053Constructional details of laminating machines comprising rollers; Constructional features of the rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/503Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using dc or ac discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • B32B2037/246Vapour deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/14Corona, ionisation, electrical discharge, plasma treatment

Definitions

  • the present invention relates to a gas barrier film and a method for producing the same, and more particularly relates to a gas barrier film that suppresses the occurrence of thermal damage to a substrate and has excellent gas barrier performance and flexibility and a method for producing the same.
  • a gas barrier film in which a thin film (gas barrier layer) containing a metal oxide such as aluminum oxide, magnesium oxide, or silicon oxide is formed on the surface of a plastic substrate or film prevents deterioration due to various gases such as water vapor and oxygen. Therefore, it is used in applications for packaging articles that require shutoff of various gases.
  • a gas barrier film in which a thin film (gas barrier layer) containing a metal oxide such as aluminum oxide, magnesium oxide, or silicon oxide is formed on the surface of a plastic substrate or film prevents deterioration due to various gases such as water vapor and oxygen. Therefore, it is used in applications for packaging articles that require shutoff of various gases.
  • it is used for sealing electronic devices such as solar cells, liquid crystal display elements, organic electroluminescence elements (hereinafter also referred to as organic EL elements). Has also been used.
  • a gas barrier layer capable of achieving both gas barrier performance and flexibility can be formed by forming a composition film in which the ratio of carbon amount and oxygen amount is continuously changed as the gas barrier layer (for example, see Patent Document 4.)
  • the apparatus used in the plasma CVD method disclosed in the patent document can converge the plasma near the counter roller electrode by using a magnetic field, and as a result, a dense gas barrier layer can be formed. It is.
  • JP 2009-255040 A Japanese Patent No. 3511325 JP 2012-106421 A International Publication No. 2012/046767
  • the present invention has been made in view of the above problems and situations, and its solution is to suppress the occurrence of thermal damage to the base material and to provide a gas barrier film excellent in gas barrier performance and flexibility and a method for producing the same. Is to provide.
  • the present inventor in the process of examining the cause of the above problems, the gas barrier layer of the gas barrier film has been formed by a specific plasma chemical vapor deposition method, and It has been found that when the gas barrier layer satisfies all the specific requirements, the occurrence of thermal damage to the substrate is suppressed, and a gas barrier film excellent in gas barrier performance and flexibility can be obtained.
  • a gas barrier film having a gas barrier layer on at least one surface of a flexible substrate is formed by a plasma chemical vapor deposition method using plasma generated by applying a voltage between opposing roller electrodes having at least a magnetic field generating member for generating a magnetic field, and the gas barrier A gas barrier film, wherein the layer satisfies all of the following requirements (1) to (3): (1)
  • the gas barrier layer contains silicon, oxygen, and carbon as constituent elements.
  • the ratio (C / O) of the carbon amount to the oxygen amount of the gas barrier layer continuously changes with a gradient in the layer thickness direction.
  • the number of peaks of the ratio (C / O) of the carbon amount to the oxygen amount in the layer thickness direction per film forming process is two.
  • a method for producing a gas barrier film in which a gas barrier layer satisfying all of the following requirements (1) to (3) is formed on at least one surface of a flexible substrate Step (i): A step of feeding the belt-shaped flexible substrate from the feed roller and transporting it with the transport roller, Step (ii): The flexible base material is conveyed while being brought into contact with each of the counter roller electrodes having a magnetic field generating member for generating a magnetic field, and a film forming gas is applied between the electrodes while applying a voltage to the counter roller electrode. And performing a plasma discharge to change the plasma discharge intensity in the vicinity of the surface of the counter roller electrode and forming a gas barrier layer by a plasma chemical vapor deposition method on the flexible substrate.
  • the gas barrier layer contains silicon, oxygen, and carbon as constituent elements.
  • the ratio (C / O) of the carbon amount to the oxygen amount contained in the gas barrier layer continuously changes with a gradient with respect to the layer thickness direction.
  • the number of peaks of the ratio (C / O) of the carbon amount to the oxygen amount in the layer thickness direction per film forming process is two.
  • the apparatus used in the plasma chemical vapor deposition method disclosed in International Publication No. 2012/046767 can focus the plasma near the counter roller electrode by using a magnetic field, and as a result, a dense gas barrier. Layers can be formed.
  • the apparatus Since the apparatus has a structure having a magnetic field generating member having an N pole and an S pole in each of a pair of opposed roller electrodes, a region having a strong and weak plasma discharge intensity exists between the pair of opposed roller electrodes by the magnetic field. And the composition of the gas barrier layer can be continuously changed depending on the region.
  • the plasma discharge intensity is strong or weak, it is presumed that at the same time, a temperature distribution tends to occur on the surface of the base material, and the temperature distribution tends to cause wrinkles and deformations on the base material.
  • wrinkles and deformation are likely to occur due to thermal damage.
  • the present inventor has examined the above problem in detail, and in the case of a gas barrier layer produced in a conventional example using the apparatus, the ratio of the carbon amount to the oxygen amount in the layer thickness direction (C / C) in the gas barrier layer. O), more than two peaks were observed in one film forming process, and in such a case, it was found that thermal damage to the substrate occurred due to the influence of the intensity of the plasma discharge intensity. .
  • the number of peaks of the carbon amount ratio (C / O) to the oxygen amount in the layer thickness direction can be reduced to two, thereby reducing the influence of the intensity of the plasma discharge intensity. It is assumed that the occurrence of thermal damage can be suppressed.
  • Example of configuration of gas barrier film of the present invention An example of another constitution of the gas barrier film of the present invention Schematic showing an example of gas barrier film manufacturing equipment Enlarged view of film formation space of gas barrier film manufacturing equipment Schematic showing the definition of peaks in the carbon / oxygen ratio distribution curve An example of the carbon / oxygen ratio distribution curve in the thickness direction of the layer according to the XPS depth profile of the gas barrier layer of the embodiment according to the present invention Example of carbon / oxygen ratio distribution curve in the layer thickness direction by XPS depth profile of gas barrier layer of comparative example
  • the gas barrier film of the present invention is a gas barrier film having a gas barrier layer on at least one surface of a flexible substrate, wherein the gas barrier layer has a magnetic field generating member that generates at least a magnetic field.
  • a film is formed by a plasma chemical vapor deposition method using plasma generated by applying a voltage therebetween, and the gas barrier layer satisfies all the requirements (1) to (3).
  • This feature is a technical feature common to the inventions according to claims 1 to 3.
  • the difference between the maximum value of the ratio (C / O) of the carbon amount to the oxygen amount of the gas barrier layer and the minimum value of any one of the adjacent minimum values is 0.05 or more. Since a gas barrier film having better performance and flexibility is obtained, it is preferable.
  • a gas barrier layer satisfying all the requirements (1) to (3) is formed on at least one surface of a flexible substrate.
  • a method for producing a gas barrier film comprising: Step (i): A step of feeding the belt-shaped flexible substrate from the feed roller and transporting it with the transport roller, Step (ii): The flexible base material is conveyed while being brought into contact with each of the counter roller electrodes having a magnetic field generating member for generating a magnetic field, and a film forming gas is applied between the electrodes while applying a voltage to the counter roller electrode.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the gas barrier film of the present invention is a gas barrier film having a gas barrier layer on at least one surface of a flexible substrate, wherein the gas barrier layer has a magnetic field generating member that generates at least a magnetic field.
  • the film is formed by a plasma chemical vapor deposition method using plasma generated by applying a voltage therebetween, and the gas barrier layer satisfies all of the following requirements (1) to (3) And (1)
  • the gas barrier layer contains silicon, oxygen, and carbon as constituent elements.
  • the ratio (C / O) of the carbon amount to the oxygen amount of the gas barrier layer continuously changes with a gradient in the layer thickness direction.
  • the number of peaks of the ratio (C / O) of the carbon amount to the oxygen amount in the layer thickness direction per film forming process is two.
  • Plastruction chemical vapor deposition method using plasma generated by applying a voltage between opposed roller electrodes having a magnetic field generating member for generating a magnetic field is simply referred to as “plasma CVD method between roller electrodes” in the present application. Or, more simply, “plasma CVD method”.
  • the ratio (C / O) of the carbon amount to the oxygen amount of the gas barrier layer is specifically profiled by a carbon / oxygen ratio distribution curve.
  • the carbon / oxygen distribution ratio curve is a continuous plot in which the distance (L) from the gas barrier layer surface according to the present invention is plotted on the horizontal axis and the ratio of carbon content to the oxygen content (C / O) is plotted on the vertical axis.
  • a distribution curve Thus, a “mountain” (or “valley”) occurs when the curve changes continuously with a slope.
  • Measurement of the silicon content, oxygen content, and carbon content with respect to the distance (L) from the gas barrier layer surface is performed by the element distribution measurement in the depth direction (hereinafter also referred to as XPS depth profile) by the following X-ray photoelectron spectroscopy. Can do.
  • XPS depth profile The amount of silicon, the amount of oxygen, and the amount of carbon of the gas barrier layer according to the present invention can be measured by combining X-ray photoelectron spectroscopy (XPS) measurement with rare gas ion sputtering such as argon. It can be obtained by so-called XPS depth profile measurement in which surface composition analysis is sequentially performed while being exposed.
  • XPS X-ray photoelectron spectroscopy
  • the vertical axis is the atomic ratio (at%) of each element, or the ratio of the carbon amount to the oxygen amount (C / O), and the horizontal axis can be created as the etching time (sputtering time).
  • the etching time is generally correlated with the distance (L) in the layer thickness direction from the surface of the gas barrier layer according to the present invention.
  • SiO 2 equivalent layer thickness (nm) is the sputter depth (nm). Also called.
  • a distribution curve representing the atomic ratio (at%) of each element and a carbon / oxygen ratio distribution curve representing the ratio of the carbon amount to the oxygen amount (C / O) represent the silicon amount, oxygen under the following measurement conditions: It was created by measuring the amount and carbon amount.
  • Etching ion species Argon (Ar + ) Etching rate (SiO 2 thermal oxide equivalent value): 0.05 nm / sec Etching interval (SiO 2 equivalent) (data plot interval): SiO 2 equivalent layer thickness of gas barrier layer ⁇ 10 ⁇ TR number (number of counter roller electrodes) (nm)
  • X-ray photoelectron spectrometer Model “VG Theta Probe”, manufactured by Thermo Fisher Scientific Irradiation
  • X-ray Single crystal spectroscopy AlK ⁇ X-ray spot and size: 800 ⁇ 400 ⁇ m oval.
  • the atomic ratio (at%) of each element is the ratio of the amount of carbon to the total amount of silicon, oxygen and carbon (100 at%), the “carbon atomic ratio (at%)”, the total amount of silicon, oxygen and carbon.
  • FIG. 1A shows an example.
  • the gas barrier film 10 a is a gas barrier film in which the gas barrier layer 3 is laminated on the flexible substrate 1.
  • providing the clear hard coat layer 2 functioning as a smooth layer between the flexible substrate 1 and the gas barrier layer 3 improves the adhesion between the substrate and the gas barrier layer, This is a preferred mode in order to make the unevenness of the interface difficult to affect the gas barrier layer which is a thin layer.
  • the gas barrier film 10b of this invention which is another aspect is equipped with the clear hard-coat layer 2 which is a smooth layer on the flexible base material 1, as shown to FIG. 1B, for example,
  • the clear hard coat It is also preferable that the gas barrier layer 3 is laminated on the layer 2 and the bleed-out preventing layer 4 is provided on the surface of the flexible substrate 1 opposite to the surface having the gas barrier layer 3.
  • a second gas barrier layer 5 containing a metal oxide may be laminated on the gas barrier layer 3.
  • An overcoat layer 6 may be laminated on the second gas barrier layer 5.
  • the “gas barrier property” as used in the present invention is, for example, a water vapor transmission rate measured by a method according to JIS K 7129-1992, or an oxygen transmission rate measured by a method according to JIS K 7126-1987. Indicated. In general, if the water vapor transmission rate is 1 g / m 2 / day or less or the oxygen transmission rate is 1 ml / m 2 / day / atm or less, it is said to have gas barrier properties. Furthermore, if the water vapor transmission rate is 1 ⁇ 10 ⁇ 2 g / m 2 / day or less, it is said to have a high gas barrier property and can be used for electronic devices such as organic EL, electronic paper, solar cells, and LCDs.
  • the gas barrier layer according to the present invention is a flexible base material by performing a film forming process by a plasma CVD method while supplying a film forming gas between a pair of opposed roller electrodes having at least a magnetic field generating member for generating a magnetic field.
  • the gas barrier layer is characterized in that it satisfies all the following requirements (1) to (3).
  • the gas barrier layer contains silicon, oxygen, and carbon as constituent elements.
  • the ratio (C / O) of the carbon amount to the oxygen amount of the gas barrier layer continuously changes with a gradient in the layer thickness direction.
  • the number of peaks of the ratio (C / O) of the carbon amount to the oxygen amount in the layer thickness direction per film forming process is two.
  • the thickness of the gas barrier layer according to the present invention is not particularly limited, but it is usually preferably in the range of 20 to 1000 nm in order to improve the gas barrier performance and make it difficult to cause defects.
  • the gas barrier layer according to the present invention may be a single layer or a laminated structure composed of a plurality of sublayers. In this case, the number of sublayers is preferably 2 to 30. Moreover, each sublayer may have the same composition or a different composition. In that case, the layer thickness per gas barrier layer according to the present invention is more preferably in the range of 20 to 500 nm, and more preferably in the range of 30 to 300 nm from the viewpoint of improving flexibility. .
  • the gas barrier layer according to the present invention is characterized by containing silicon, oxygen, and carbon as constituent elements as the requirement (1).
  • carbon is present in addition to silicon and oxygen.
  • the presence of silicon and oxygen can impart gas barrier properties, and the presence of carbon can impart flexibility to the gas barrier layer.
  • the gas barrier layer according to the present invention comprises a silicon distribution curve indicating the relationship between the distance (L) from the surface of the gas barrier layer according to the present invention in the layer thickness direction of the gas barrier layer according to the present invention and the silicon atomic ratio, L
  • the oxygen distribution curve showing the relationship between the oxygen atom ratio and the carbon distribution curve showing the relationship between the L and carbon atom ratio, 80% or more (upper limit: 100%) of the thickness of the gas barrier layer according to the present invention.
  • the region has an order magnitude relationship represented by the following formula (A) or the following formula (B).
  • Formula (A) (carbon atom ratio) ⁇ (silicon atom ratio) ⁇ (oxygen atom ratio)
  • Formula (B) (oxygen atom ratio) ⁇ (silicon atom ratio) ⁇ (carbon atom ratio)
  • at least 80% or more of the layer thickness of the gas barrier layer according to the present invention does not have to be continuous in the gas barrier layer, and only needs to satisfy the above-described relationship at a portion of 80% or more. .
  • the relationship between the oxygen atom ratio, the silicon atom ratio, and the carbon atom ratio is more preferably satisfied in a region of at least 90% or more (upper limit: 100%) of the film thickness of the gas barrier layer, and at least 93 More preferably, it is satisfied in an area of at least% (upper limit: 100%). Further, in the region of 80% or more (upper limit: 100%) of the thickness of the gas barrier layer according to the present invention, the atomic ratio satisfies C ⁇ Si ⁇ O, and the order magnitude relationship represented by the formula (A) is satisfied. Is preferred. By satisfying such conditions, the gas barrier property and bending resistance of the obtained gas barrier film are sufficient.
  • the silicon atom ratio in the gas barrier layer is preferably in the range of 25 to 45 at%, and more preferably in the range of 30 to 40 at%.
  • the oxygen atom ratio in the gas barrier layer according to the present invention is preferably in the range of 20 to 67 at%, more preferably in the range of 25 to 67 at%.
  • the carbon atom ratio in the layer is preferably in the range of 3 to 50 at%, more preferably in the range of 3 to 40 at%.
  • the gas barrier layer As a material of the gas barrier layer according to the present invention, it is a material having a function of suppressing the ingress of gas such as water and oxygen causing deterioration of the performance of the electronic device in which the gas barrier film is used.
  • Inorganic silicon compounds such as silicon oxide, silicon oxynitride, silicon dioxide, and silicon nitride, organic silicon compounds, and the like can be used.
  • the gas barrier layer is preferably formed by oxidizing or nitriding a gas in which an organosilicon compound is vaporized.
  • organosilicon compounds include hexamethyldisiloxane, 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane, methylsilane, dimethylsilane, trimethylsilane, diethylsilane, propyl
  • organosilicon compounds include silane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane, tetraethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, and octamethylcyclotetrasiloxane.
  • hexamethyldisiloxane and 1,1,3,3-tetramethyldisiloxane are preferred from the viewpoint of easy handling and excellent gas barrier properties.
  • organosilicon compounds can be used singly or in combination of two or more.
  • the gas barrier layer includes the gas barrier layer as the requirement (2).
  • the ratio of the carbon amount to the oxygen amount (C / O) must be continuously changed with a gradient in the layer thickness direction from the viewpoint of achieving both gas barrier properties and flexibility.
  • C / O changes continuously with a gradient means that when carbon / oxygen ratio distribution curve is obtained by plotting C / O against distance (L) from the gas barrier layer surface, Means having two extreme values. The existence of such an extreme value indicates that the presence of carbon in the layer is not uniform, and the presence of a part having a large amount of carbon partially makes the entire layer a flexible structure, and has flexibility. improves.
  • C / O preferably has at least three extreme values, and more preferably has at least five extreme values.
  • the extreme value means the maximum or minimum value of C / O with respect to the distance from the surface of the gas barrier layer in the layer thickness direction of the gas barrier layer (L).
  • the maximum value is a point in C / O where the C / O value changes from increasing to decreasing with a continuous change in the distance from the surface of the gas barrier layer, and the ratio of that point is The value of the ratio of the position where the distance from the surface of the gas barrier layer in the layer thickness direction of the gas barrier layer is further changed by 5 nm from the point is reduced by 0.01 or more.
  • the minimum value is a point in C / O where the value of C / O changes from decreasing to increasing with a continuous change in the distance from the surface of the gas barrier layer, and more than the ratio value at that point. This means that the value of the ratio of the position where the distance from the surface of the gas barrier layer in the layer thickness direction of the gas barrier layer is further changed by 5 nm from this point increases by 0.01 or more.
  • C / O continuously changes means that the carbon / oxygen ratio distribution curve does not include a portion that changes discontinuously, specifically, a layer thickness calculated from an etching rate and an etching time.
  • the condition expressed by the following formula (1) is satisfied.
  • a film forming apparatus for forming a gas barrier layer according to the present invention includes a pair of opposed roller electrodes for opposingly arranging a flexible substrate in a vacuum chamber, and forming a thin film layer on the flexible substrate. It is preferable that the film forming apparatus has at least one set of the following means (1) to (5).
  • the conventional CVD method using plasma discharge using a flat electrode (horizontal transport) type does not cause a continuous change in the concentration gradient of the carbon atom component in the gas barrier layer, so the gas barrier that is the subject of the present application. Compatibility and flexibility are difficult.
  • the effect of the present invention is that carbon atoms are formed in a gas barrier layer formed by a plasma chemical vapor deposition method using a plasma generated by applying a voltage between opposed roller electrodes having a magnetic field generating member that generates a magnetic field.
  • the film forming apparatus A includes a pair of opposed roller electrodes 21 and 22 (means (4)) in the vacuum chamber 11 and magnetic field generation provided inside the pair of opposed roller electrodes 21 and 22.
  • At least one set of film-forming region 20 provided with apparatuses 23 and 24 (means (2)), power source 25 (means (3)), supply port 26 (means (1)) and exhaust port 27 (means (5)). Have.
  • the original winding roller 41 is rotatably disposed on the upstream side in the transport direction X in the vacuum chamber 11, and the winding roller 42 is rotatably disposed on the downstream side in the transport direction X.
  • a transport roller is appropriately disposed between the members (transport rollers 43 to 46).
  • the film forming apparatus A conveys the long flexible substrate 1 by the opposed roller electrodes 21 and 22 and the conveying rollers 43 to 46 under reduced pressure, and the opposed roller is placed on the conveyed flexible substrate 1.
  • a gas barrier layer is continuously formed by the electrodes 21 and 22.
  • the long flexible substrate 1 is preferably a film substrate, and one or more functional layers such as a smooth layer may already be formed.
  • the internal pressure of the vacuum chamber 11 is adjusted to a reduced pressure by the vacuum pump 50 when the gas barrier layer is formed.
  • under reduced pressure means that the pressure in the vacuum chamber 11 is in the range of 0.01 to 20 Pa.
  • the pair of opposed roller electrodes 21 and 22 form a gas barrier layer as a thin film on the flexible substrate 1 by a plasma CVD method between the roller electrodes.
  • the surface temperature of the pair of opposed roller electrodes 21 and 22 is preferably 50 ° C. or less, and more preferably 30 ° C. or less, from the viewpoint of alleviating thermal damage to the flexible substrate 1.
  • the electrode surface temperature is controlled by circulating a temperature-controlled heat medium (for example, water, oil, or ethylene glycol) inside the electrode, or by using a temperature sensor such as a thermocouple that incorporates a heater inside the electrode. A method using an infrared heater can be used.
  • a supply port 26 for supplying a film forming gas, an exhaust port 27 for evacuating the film forming gas, and a pair of opposed roller electrodes 21 and 22 The power source 25 is disposed.
  • Each opposing roller electrode 21 and 22 is a roller which conveys the flexible base material 1, and functions also as a pair of electrodes.
  • Each counter roller electrode 21 and 22 has a built-in magnetic field generator 23 and 24, respectively.
  • FIG. 3 is an enlarged view of the opposed roller electrodes 21 and 22.
  • the magnetic field generators 23 and 24 are fixed in the opposing roller electrodes 21 and 22 so as not to rotate due to the rotation of the opposing roller electrodes 21 and 22.
  • the magnetic field generators 23 and 24 are devices that form an endless tunnel-like magnetic field that swells in the facing space. Since the apparatus has a structure having a magnetic field generating member having an N pole and an S pole in each of a pair of opposed roller electrodes, a region having a strong and weak plasma discharge intensity exists between the pair of opposed roller electrodes by the magnetic field. Can do.
  • the ratio of the amount of carbon and the amount of oxygen contained in the gas barrier layer which can continuously change the carbon content of the gas barrier layer depending on the region and which is listed as the requirement (2) according to the present invention. (C / O) can be continuously changed with a gradient in the layer thickness direction.
  • a racetrack-shaped magnetic field is formed in the vicinity of the roller surface facing the opposing space (discharge region) along the length direction of the roller axis of the opposing roller electrodes 21 and 22, and the plasma can be converged by the magnetic field.
  • the opposing roller electrodes 21 and 22 are arranged to face each other so that the rotation axes are parallel to each other on the same plane, and convey the flexible substrate 1 so that the surfaces on which the gas barrier layer is formed face each other. Therefore, after forming a gas barrier layer on the flexible substrate 1 by the counter roller electrode 21 upstream in the transport direction X, the gas barrier layer is formed on the flexible substrate 1 by the counter roller electrode 22 downstream in the transport direction X. Furthermore, a gas barrier layer can be formed, and the film formation rate can be further improved.
  • the counter roller electrodes 21 and 22 preferably have the same diameter from the viewpoint of efficiently forming a thin film.
  • the diameters of the counter roller electrodes 21 and 22 are preferably in the range of 50 to 1000 mm in diameter from the viewpoint of optimizing the discharge conditions and reducing the space in the vacuum chamber 11.
  • the diameter ⁇ is 100 mm or more, a sufficiently large discharge space can be formed, and a reduction in productivity can be prevented. In addition, a sufficient layer thickness can be obtained by short-time discharge, and the amount of heat applied to the flexible substrate 1 at the time of discharge can be suppressed to suppress residual stress. If the diameter ⁇ is 1000 mm or less, the uniformity of the discharge space can be maintained, which is practical in device design.
  • the power source 25 supplies power to the pair of opposed roller electrodes 21 and 22.
  • the power source 25 a conventionally known power source can be used for plasma generation.
  • an AC power source capable of alternately inverting the polarities of the opposing roller electrodes 21 and 22 improves the film formation rate. Therefore, it is preferable.
  • the amount of power that the power supply 25 supplies to the pair of opposed roller electrodes 21 and 22 is preferably in the range of 1 to 200 W / cm per unit width, and more preferably in the range of 10 to 100 W / cm from the viewpoint of film quality and substrate damage. preferable.
  • the AC frequency is preferably in the range of 50 Hz to 1 MHz.
  • the supply port 26 supplies a film-forming gas for the gas barrier layer to the discharge space formed between the opposed roller electrodes 21 and 22.
  • the supply port 26 is equidistant from the opposing roller electrodes 21 and 22 and is disposed above the discharge space, and the exhaust port 27 is equidistant from the opposing roller electrodes 21 and 22 and the bottom surface of the vacuum chamber 11. Of these, it is disposed in the lower region of the discharge space. Thereby, the film forming gas supplied from the supply port 26 passes through the discharge space between the opposed roller electrodes 21 and 22 and is discharged from the exhaust port 27.
  • the original winding roller 41 is also called an unwinder and unwinds the roll body of the flexible substrate 1.
  • the transport rollers 43 to 46 are also called guide rollers, and take up the unrolled flexible base material 1 from the original winding roller 41 to the pair of counter roller electrodes 21 and 22 and from the pair of counter roller electrodes 21 and 22. Convey continuously to the roller 42.
  • the take-up roller 42 is also called a winder, and takes up the flexible substrate 1 formed into a film.
  • each roller a conventionally known roller can be used, and for example, a metal or alloy roller can be used.
  • a coat layer may be provided on each roller surface.
  • the film forming apparatus A After forming the gas barrier layer, the film forming apparatus A having the above configuration reverses the rotation direction of each roller so that the conveyance direction X of the flexible substrate 1 is reversed, and further forms a plurality of gas barrier layers. You can also
  • (C) Film formation method requirement (3)
  • the number of peaks in the layer thickness direction of C / O (carbon / oxygen ratio distribution curve) per film deposition process by the plasma CVD method is two. It is a feature.
  • the “mountain” means that, in C / O (carbon / oxygen ratio distribution curve), the difference in C / O between the maximum value and one of the minimum values adjacent to both is 0.01 or more. At some point, the maximum value (peak) is defined as the “mountain” of the carbon / oxygen ratio distribution curve. Therefore, “the number of peaks is two” means that the number of local maximum values (peaks) is two per one film forming process.
  • the difference in C / O between the maximum value and any one of the minimum values adjacent to the maximum value is preferably 0.02 or more, more preferably 0.05 or more, and still more preferably 0.1 or more. is there. By having such a C / O difference, sufficient flexibility can be imparted to the gas barrier layer.
  • FIG. 4 is a schematic diagram showing “mountains” in C / O (carbon / oxygen ratio distribution curve).
  • Per film forming process means that in the film forming apparatus that performs plasma CVD including the counter roller electrode, a flexible substrate passes through each of the pair of counter roller electrodes, and a gas barrier layer is formed. The process is referred to as “one film formation process”.
  • FIG. 2 it refers to a process in which the flexible substrate 1 passes through a pair of opposed roller electrodes 21 and 22 and a gas barrier layer is formed by plasma CVD.
  • a plurality of film forming apparatuses are connected to form a plurality of films (tandem film forming apparatus). It is also preferable to carry out the film formation process again by conveying the film-formed gas barrier film wound up by the winder in the reverse direction, or to repeat the film formation process a plurality of times.
  • the method for producing a gas barrier layer according to the present invention preferably basically includes the following steps (i) to (iii).
  • the method for producing a gas barrier layer according to the present invention includes: A film forming method for forming a thin film layer on a flexible base material by disposing a flexible base material in a vacuum chamber, and having at least one set of the following steps (1) to (5) It is preferable.
  • Step (1) Step of supplying a film forming gas to the facing space between the flexible substrates to be opposed to each other
  • Step (3) Step for generating plasma in the facing space
  • a film forming method including a step of heating before the step of forming the thin film layer will be described as a preferable aspect of the film forming method according to the present embodiment.
  • step (1) Step of supplying a film forming gas
  • the film forming gas for the gas barrier layer is supplied to the facing space between the flexible substrates to be opposed to each other.
  • a gas barrier layer made of silicon oxide is formed by oxidizing a silicon compound
  • a silicon compound gas (raw material gas) and an oxygen gas (reaction gas) are supplied as film forming gases.
  • a carrier gas can be used as necessary, and a plasma generating gas can be supplied to promote the generation of plasma.
  • the carrier gas include noble gases such as helium, argon, neon, xenon, and krypton, nitrogen gas, and the like
  • the plasma generating gas include hydrogen.
  • the “opposite space” refers to a space between the pair of opposed roller electrodes 21 and 22 described above (see FIG. 2).
  • “opposing arrangement” in the flexible substrate means arranging the flexible substrate surfaces on which the thin film layers are formed so as to face each other.
  • step (3) In the step of generating plasma, it is generated by supplying power to the counter roller electrodes 21 and 22 using a conventionally known power source. The plasma is generated along the magnetic field lines of the magnetic field generated in step (2). Therefore, electrons are confined in the discharge space by the electric field and magnetic field in the discharge space (opposing space), high-density plasma is generated, and the film formation rate is improved.
  • step (4) Step of forming a thin film layer (step (4)) In the step of forming the thin film layer on the flexible base material, the plasma of the supplied source gas is generated by the plasma formed in the opposing space of the pair of opposing roller electrodes 21 and 22, and on the flexible base material.
  • Step (5) Step of exhausting the film forming gas
  • Step (5) Step of evacuating the deposition gas
  • the roll body of the flexible substrate 1 is set on the original winding roller 41.
  • a part of the flexible substrate 1 is unwound from the original winding roller 41, is laid over the transport rollers 43 to 46, the counter roller electrodes 21 and 22, and is taken up by the take-up roller 42.
  • the vacuum pump 50 is evacuated to reduce the pressure in the vacuum chamber 11.
  • the conveyance speed (also referred to as line speed) of the flexible substrate 1 can be appropriately adjusted according to the type of film forming gas, the pressure in the vacuum chamber 11, and the like.
  • the number of peaks in the layer thickness direction of C / O (carbon / oxygen ratio distribution curve) per film deposition process by the plasma CVD method is two.
  • the conveyance speed of the flexible substrate 1 is preferably in the range of 3 to 100 m / min, and preferably in the range of 3 to 50 m / min. If it is 3 / min or more, the number of the peaks can be set to two in one film formation process, and wrinkles can be prevented from occurring in the flexible substrate 1 due to heat. If it is 100 m / min or less, it becomes easy to make the thickness of the gas barrier layer to form in a desired range.
  • FIG. 5 is a diagram showing an example of a carbon / oxygen ratio distribution curve in the layer thickness direction according to the XPS depth profile of the gas barrier layer of the example satisfying the requirement (3).
  • the starting point of the sputter depth (nm) represents the surface of the gas barrier layer.
  • FIG. 6 is a diagram showing an example of a carbon / oxygen ratio distribution curve in the layer thickness direction according to the XPS depth profile of the gas barrier layer of the comparative example.
  • the gas barrier layer having a total film thickness of about 180 nm was formed by performing the film forming process twice with the conveyance speed of the flexible substrate 1 being 1 m / min.
  • the number of peaks per one film formation process is confirmed from FIG. 6 (one film formation process is a range of a layer thickness of about 90 nm each surrounded by a frame, and peaks a, b, c, d are observed).
  • a film-forming gas for the gas barrier layer is supplied from the supply port 26 between the opposed roller electrodes 21 and 22, and a voltage is applied to generate plasma.
  • the film forming gas can be supplied together with a carrier gas for transporting the film forming gas, a plasma discharge gas, or the like, as necessary.
  • the flexible base material 1 is conveyed to the counter roller electrode 21, and the raw material component of the gas barrier layer is deposited on the surface of the flexible base material 1.
  • the flexible substrate 1 is sequentially transported to the transport rollers 44 and 45, and the raw material components of the gas barrier layer are further deposited by the counter roller electrode 22 to form the gas barrier layer as a thin film.
  • the flexible base material 1 on which the gas barrier layer is formed is conveyed by the conveying roller 46 and wound by the winding roller 42.
  • the film forming region 20 is further provided after the transport roller 46, and the gas is processed in the same procedure.
  • a barrier layer can be formed.
  • the gas barrier layer is further formed by reversing the conveyance direction of the flexible base material 1, the conveyance order by the conveyance rollers 43 to 46 and the counter roller electrodes 21 and 22 is reversed. A similar procedure can be followed except that the components are deposited and then further deposited by the counter roller electrode 21.
  • an insulating film in which an insulating layer is formed in addition to the gas barrier film of the present invention in which a gas barrier layer is formed, an insulating film in which an insulating layer is formed, and a refractive index with respect to the substrate
  • examples include a reflective film in which thin films having a difference are laminated.
  • the flexible substrate 1 is a flexible substrate.
  • the term “flexibility” as used herein refers to a base material that is wound around a ⁇ (diameter) 50 mm roll and is not cracked before and after being wound with a constant tension. More preferably, it is possible to provide a more flexible gas barrier film when the base material can be wound around a ⁇ 30 mm roll.
  • the flexible substrate 1 is preferably a highly transparent resin.
  • a gas barrier film with high transparency can be obtained, and it can be preferably used for an electronic device such as an organic EL element.
  • the resin examples include methacrylic acid ester, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), cycloolefin polymer (COP), cycloolefin copolymer (COC), polyarylate, and polystyrene (PS). ), Aromatic polyamide, polyetheretherketone, polysulfone, polyethersulfone, polyimide (PI), polyetherimide, and the like.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • COP cycloolefin polymer
  • COC cycloolefin copolymer
  • PS polyarylate
  • PS polystyrene
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • COP cycloolefin polymer
  • COC cycloolefin copolymer
  • the flexible substrate 1 may have a configuration in which two or more of the above resins are laminated.
  • the flexible substrate 1 preferably has a thickness in the range of 5 to 500 ⁇ m, more preferably in the range of 10 to 250 ⁇ m, still more preferably in the range of 15 to 150 ⁇ m, and 20 A thickness in the range of ⁇ 75 ⁇ m is particularly preferable from the viewpoint of thinning.
  • the width of the flexible substrate 1 is not particularly limited, but is preferably 100 mm width or more, more preferably 500 mm width or more, and even more preferably 1000 mm width or more from the viewpoint of enhancing productivity. If it is the structure of this invention, even if it uses a 1000-mm-wide flexible base material, the deformation
  • the clear hard-coat layer may be formed as a smooth layer on the surface.
  • a curable resin such as a thermosetting resin or an active energy ray curable resin curable resin can be used.
  • active energy ray-curable resins are preferred because they are easy to mold.
  • thermosetting resin is not particularly limited, and examples thereof include various thermosetting resins such as epoxy resins, cyanate ester resins, phenol resins, bismaleimide-triazine resins, polyimide resins, acrylic resins, and vinylbenzyl resins. .
  • the active energy ray-curable resin is a resin that is cured through a crosslinking reaction or the like by irradiation with active rays such as ultraviolet rays and electron beams.
  • Typical examples of the active energy ray curable resin include an ultraviolet curable resin and an electron beam curable resin, and an ultraviolet curable resin is particularly preferable.
  • Examples of the ultraviolet curable resin include an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, and an ultraviolet curable epoxy resin. Can do.
  • the surface of the flexible substrate 1 is irradiated with vacuum ultraviolet rays or subjected to surface treatment by corona discharge, and then the clear hard coat layer is applied. It can be formed by applying and curing a liquid.
  • a wet process such as a coating method using a gravure coater, a dip coater, a reverse coater, a wire bar coater, a die coater, or the like, or an inkjet method can be used.
  • the clear hard coat layer coating solution is suitably applied within a range of 0.1 to 40.0 ⁇ m as a wet film thickness, and preferably within a range of 0.5 to 30.0 ⁇ m.
  • the layer thickness after drying is preferably in the range of 0.1 to 30.0 ⁇ m, more preferably in the range of 1 to 10 ⁇ m.
  • a second gas barrier layer on the gas barrier layer according to the present invention from the viewpoint of improving the gas barrier property.
  • the second gas barrier layer is not particularly limited as long as it has gas barrier properties, but a coating film of a polysilazane-containing liquid is provided by a coating method, and vacuum ultraviolet light (VUV light) having a wavelength of 200 nm or less is applied. It is preferable to provide a second gas barrier layer formed by irradiation and modification treatment.
  • the thickness of the second gas barrier layer is preferably in the range of 1 to 500 nm, more preferably in the range of 10 to 300 nm. If the thickness is greater than 1 nm, gas barrier performance can be exhibited, and if it is within 500 nm, cracks are unlikely to occur in the dense silicon oxynitride film.
  • Polysilazane is commercially available in the form of a solution dissolved in an organic solvent, and the commercially available product can be used as a polysilazane-containing coating solution as it is.
  • Examples of commercially available polysilazane solutions include NN120-20, NAX120-20, and NL120-20 manufactured by AZ Electronic Materials.
  • a metal alkoxide compound, a metal chelate compound, or a low molecular silazane / siloxane may be added to the polysilazane solution.
  • the gas barrier film of the present invention has excellent gas barrier properties, transparency, and bending resistance.
  • the gas barrier film of the present invention is a gas barrier film used for electronic devices such as packages such as electronic devices, photoelectric conversion elements (solar cell elements), organic electroluminescence (EL) elements, liquid crystal display elements, and the like. Can be used for various purposes.
  • Example 1 Preparation of flexible substrate >> As a flexible base material (support), a roll-like polyester film with a thickness of 125 ⁇ m and a width of 1000 mm that is easily bonded on both sides (manufactured by Teijin DuPont Films Ltd., polyethylene terephthalate film, KDL86WA, Table 1 shows PET and (Abbreviated) was used as the flexible substrate 1.
  • the film formation process was performed 6 times under the following film formation conditions (plasma CVD conditions), and the gas barrier layer was formed under the condition of a thickness of about 180 nm, whereby the gas barrier film 1 was produced.
  • the gas barrier film produced above was evaluated as follows.
  • Etching ion species Argon (Ar + ) Etching rate (SiO 2 thermal oxide equivalent value): 0.05 nm / sec Etching interval (SiO 2 equivalent value): 10 nm
  • X-ray photoelectron spectrometer Model name “VG Theta Probe” manufactured by Thermo Fisher Scientific, Inc.
  • Irradiation X-ray Single crystal spectroscopy AlK ⁇ X-ray spot and size: 800 ⁇ 400 ⁇ m oval.
  • the gas barrier layer in which the number of peaks was two was a profile approximated to FIG. 5, and the gas barrier layer in which the number of peaks was four was a profile approximated to FIG.
  • the silicon atomic ratio (at%), the oxygen atomic ratio (at%), and the carbon atomic ratio (at%) are obtained, and the silicon with respect to the distance (sputter depth (nm)) from the surface of the gas barrier layer is determined.
  • the silicon atom ratio was distributed in the range of 30 to 40 at% and the oxygen atom ratio was distributed in the range of 20 to 67 at%.
  • the carbon atom ratio was found to be distributed in the range of 3 to 50 at%.
  • Deformation of the base material is not observed by visual observation (the film can be formed without any problem). ⁇ : Substrate deformation is slightly observed (film formation can be performed without any problem) ⁇ : Deformation of the base material makes it impossible to continue film formation [Measurement of water vapor transmission rate (WVTR)] The water vapor transmission rate (WVTR (g / m 2 / day)) of the gas barrier film was measured using the equipment shown below.
  • MOCON water vapor transmission rate measuring device PERMATRAN W3 / 33 Measurement of water vapor transmission rate at 40 ° C. and 90% RH Lower detection limit: 0.01 (g / m 2 / day)
  • the notation “impossible to measure” indicates that the flexible substrate was damaged by heat and WVTR could not be measured.
  • the gas barrier film having the structure defined in the present invention is less affected by the thermal damage to the flexible substrate than the comparative example, and has a gas barrier property (water vapor) It can be seen that the barrier properties are excellent.
  • the gas barrier film of the comparative example was inferior in flexibility due to substrate damage, but the gas barrier film of the present invention was measured by the water vapor transmission rate (WVTR) before and after the flexibility test. No change was observed, and it was confirmed that the gas barrier layer according to the present invention was formed on the flexible base material, so that it was excellent in flexibility.
  • WVTR water vapor transmission rate
  • the gas barrier film of the present invention is a gas barrier film that suppresses the occurrence of thermal damage to the substrate and has excellent gas barrier performance and flexibility, and is an electronic device such as an organic electroluminescence element, a solar cell, and a liquid crystal display device. It can be suitably used as a gas barrier film for use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Wrappers (AREA)
  • Laminated Bodies (AREA)

Abstract

 本発明の課題は、基材への熱ダメージの発生を抑制し、ガスバリアー性能及び屈曲性に優れたガスバリアーフィルムを提供することである。 本発明のガスバリアーフィルムは、可撓性基材の少なくとも一方の面にガスバリアー層を有し、前記ガスバリアー層が、少なくとも磁場を発生させる磁場発生部材を有する対向ローラー電極間に電圧を印加して発生させたプラズマを用いたプラズマ化学気相成長法により成膜処理されており、当該ガスバリアー層が、下記要件(1)から(3)までを全て満たすことを特徴とする。 (1)前記ガスバリアー層が、ケイ素、酸素、及び炭素を構成元素として含有する。 (2)前記ガスバリアー層の酸素量に対する炭素量の比率(C/O)が、層厚方向に対して勾配を有して連続的に変化する。 (3)前記成膜処理一回当たりの層厚方向における前記酸素量に対する炭素量の比率(C/O)の山の数が、2つである。

Description

ガスバリアーフィルム及びその製造方法
 本発明は、ガスバリアーフィルム及びその製造方法に関し、より詳しくは、基材への熱ダメージの発生を抑制し、ガスバリアー性能及び屈曲性に優れたガスバリアーフィルム及びその製造方法に関する。
 従来、プラスチック基板やフィルムの表面に、酸化アルミニウム、酸化マグネシウム、酸化ケイ素等の金属酸化物を含む薄膜(ガスバリアー層)を形成したガスバリアーフィルムは、水蒸気や酸素等の各種ガスによる変質を防止するため、各種ガスの遮断を必要とする物品を包装する用途で用いられている。また、上記包装用途以外にも、各種ガスによる変質を防止するために、太陽電池、液晶表示素子、有機エレクトロルミネッセンス素子(以下、有機EL素子ともいう。)等の電子デバイスを封止する用途にも使用されている。
 このようなガスバリアーフィルムを製造する方法としては、プラズマ化学気相成長法(以下、プラズマCVD法(CVD:Chemical Vapor Deposition)ともいう。)によってフィルムなどの基材上にガスバリアー層を形成する方法や、ポリシラザンを主成分とする塗布液を基材上に塗布した後に改質処理を施してガスバリアー層を形成する方法、あるいはそれらを併用する方法が知られている(例えば、特許文献1~3参照。)。
 また、ガスバリアー層として炭素量と酸素量の比率が連続的に変化している組成膜を形成することで、ガスバリアー性能と屈曲性を両立できるガスバリアー層を形成できることが知られている(例えば、特許文献4参照。)。当該特許文献で開示されているプラズマCVD法に用いられる装置は、磁場を利用することで対向ローラー電極近傍にプラズマを収束させることができ、その結果、緻密なガスバリアー層を形成することが可能である。
 このように磁場でプラズマを収束させることによって緻密な膜を形成できる一方で、当該プラズマの熱により耐熱性の低い基材や薄膜の基材、又は広幅の基材等は熱ダメージによって皺や変形等が生じやすく、これに伴って基材上に形成されたガスバリアー層の組成が変化して所望のガスバリアー性能や屈曲性が得られないことが判明した。
特開2009-255040号公報 特許第3511325号公報 特開2012-106421号公報 国際公開第2012/046767号
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、基材への熱ダメージの発生を抑制し、ガスバリアー性能及び屈曲性に優れたガスバリアーフィルム及びその製造方法を提供することである。
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、ガスバリアーフィルムのガスバリアー層が、特定のプラズマ化学気相成長法により成膜処理されており、かつ当該ガスバリアー層が特定の要件を全て満たすことにより、基材への熱ダメージの発生を抑制し、ガスバリアー性能及び屈曲性に優れたガスバリアーフィルムが得られることを見出した。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
 1.可撓性基材の少なくとも一方の面にガスバリアー層を有するガスバリアーフィルムであって、
 前記ガスバリアー層が、少なくとも磁場を発生させる磁場発生部材を有する対向ローラー電極間に電圧を印加して発生させたプラズマを用いたプラズマ化学気相成長法により成膜処理されており、当該ガスバリアー層が、下記要件(1)から(3)までを全て満たすことを特徴とするガスバリアーフィルム。
(1)前記ガスバリアー層が、ケイ素、酸素、及び炭素を構成元素として含有する。
(2)前記ガスバリアー層の酸素量に対する炭素量の比率(C/O)が、層厚方向に対して勾配を有して連続的に変化する。
(3)前記成膜処理一回当たりの層厚方向における前記酸素量に対する炭素量の比率(C/O)の山の数が、2つである。
 2.前記酸素量に対する炭素量の比率(C/O)の極大値とその両隣にある極小値のいずれかの極小値との差が、0.05以上であることを特徴とする第1項に記載のガスバリアーフィルム。
 3.可撓性基材の少なくとも一方の面に、下記要件(1)から(3)までの要件を全て満たすガスバリアー層を成膜処理するガスバリアーフィルムの製造方法であって、
 工程(i):帯状の可撓性基材を送り出しローラーから繰り出して搬送ローラーで搬送する工程、
 工程(ii):前記可撓性基材を磁場を発生させる磁場発生部材を有する対向ローラー電極のそれぞれに接触させながら搬送を行い、当該対向ローラー電極に電圧を印加しながら電極間に成膜ガスを供給してプラズマ放電を行い、当該対向ローラー電極表面付近のプラズマ放電強度を変化させながら、当該可撓性基材上に、プラズマ化学気相成長法によるガスバリアー層の成膜処理を行う工程、
 工程(iii):前記可撓性基材上に前記ガスバリアー層を形成したガスバリアーフィルムを搬送ローラーで搬送しながら巻取りローラーで巻取る工程、を含むことを特徴とするガスバリアーフィルムの製造方法。
(1)前記ガスバリアー層が、ケイ素、酸素、及び炭素を構成元素として含有する。
(2)前記ガスバリアー層が含有する酸素量に対する炭素量の比率(C/O)が、層厚方向に対して勾配を有して連続的に変化する。
(3)前記成膜処理一回当たりの層厚方向における前記酸素量に対する炭素量の比率(C/O)の山の数が、2つである。
 本発明の上記手段により、基材への熱ダメージの発生を抑制し、ガスバリアー性能及び屈曲性に優れたガスバリアーフィルム及びその製造方法を提供することができる。
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。
 国際公開第2012/046767号に開示されているプラズマ化学気相成長法に用いられる装置は、磁場を利用することで対向ローラー電極近傍にプラズマを収束させることができ、その結果、緻密なガスバリアー層を形成することが可能である。
 当該装置は一対の対向ローラー電極内のそれぞれにN極とS極を有する磁場発生部材を有する構造であるため、磁場によって一対の対向ローラー電極間においてプラズマ放電強度に強弱を有する領域を存在させることができ、当該領域によってガスバリアー層の組成を連続的に変化させることができるという特徴がある。しかしながら、当該プラズマ放電強度に強弱が存在すると、同時に基材表面に温度分布が生じやすく、当該温度分布によって基材に皺や変形等が発生しやすいものと推察される。特に、耐熱性の低い基材や薄膜の基材、また広幅の基材の場合は熱ダメージによって皺や変形等が生じやすい。
 本発明者は上記問題を詳細に検討したところ、当該装置を用いた従来例で作製したガスバリアー層の場合は、当該ガスバリアー層内の層厚方向に対する酸素量に対する炭素量の比率(C/O)が、一回当たりの成膜処理で山の数が2つより多く観察され、そのような場合に上記プラズマ放電強度の強弱の影響によって基材への熱ダメージが発生することを見出した。
 本発明では、層厚方向における当該酸素量に対する炭素量の比率(C/O)の山の数を2つにすることで、プラズマ放電強度の強弱の影響を低減でき、結果として基材への熱ダメージの発生を抑制できるものと推察される。
本発明のガスバリアーフィルムの構成の一例 本発明のガスバリアーフィルムの別の構成の一例 ガスバリアーフィルムの製造装置の一例を示す概略図 ガスバリアーフィルムの製造装置の成膜空間の拡大図 炭素/酸素比率分布曲線の山の定義を示す模式図 本発明に係る実施例のガスバリアー層のXPSデプスプロファイルによる層の厚さ方向の炭素/酸素比率分布曲線の一例 比較例のガスバリアー層のXPSデプスプロファイルによる層の厚さ方向の炭素/酸素比率分布曲線の一例
 本発明のガスバリアーフィルムは、可撓性基材の少なくとも一方の面にガスバリアー層を有するガスバリアーフィルムであって、前記ガスバリアー層が、少なくとも磁場を発生させる磁場発生部材を有する対向ローラー電極間に電圧を印加して発生させたプラズマを用いたプラズマ化学気相成長法により成膜処理されており、当該ガスバリアー層が、前記要件(1)から(3)までを全て満たすことを特徴とする。この特徴は、請求項1から請求項3までの請求項に係る発明に共通する技術的特徴である。
 さらに、ガスバリアー層の酸素量に対する炭素量の比率(C/O)の極大値とその両隣にある極小値のいずれかの極小値との差が、0.05以上であることが、ガスバリアー性能及び屈曲性がより優れたガスバリアーフィルムが得られることから、好ましい。
 本発明のガスバリアーフィルムを製造するガスバリアーフィルムの製造方法は、可撓性基材の少なくとも一方の面に、前記要件(1)から(3)までを全て満たすガスバリアー層を成膜処理するガスバリアーフィルムの製造方法であって、
 工程(i):帯状の可撓性基材を送り出しローラーから繰り出して搬送ローラーで搬送する工程、
 工程(ii):前記可撓性基材を磁場を発生させる磁場発生部材を有する対向ローラー電極のそれぞれに接触させながら搬送を行い、当該対向ローラー電極に電圧を印加しながら電極間に成膜ガスを供給してプラズマ放電を行い、当該対向ローラー電極表面付近のプラズマ放電強度を変化させながら、当該可撓性基材上に、プラズマ化学気相成長法によるガスバリアー層の成膜処理を行う工程、
 工程(iii):前記可撓性基材上に前記ガスバリアー層を形成したガスバリアーフィルムを搬送ローラーで搬送しながら巻取りローラーで巻取る工程、を含むことを特徴とし、ガスバリアー性能及び屈曲性に優れたガスバリアーフィルムを生産性よく製造できる。
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
 ≪本発明のガスバリアーフィルムの概要≫
 本発明のガスバリアーフィルムは、可撓性基材の少なくとも一方の面にガスバリアー層を有するガスバリアーフィルムであって、前記ガスバリアー層が、少なくとも磁場を発生させる磁場発生部材を有する対向ローラー電極間に電圧を印加して発生させたプラズマを用いたプラズマ化学気相成長法により成膜処理されており、当該ガスバリアー層が、下記要件(1)から(3)までを全て満たすことを特徴とする。
(1)前記ガスバリアー層が、ケイ素、酸素、及び炭素を構成元素として含有する。
(2)前記ガスバリアー層の酸素量に対する炭素量の比率(C/O)が、層厚方向に対して勾配を有して連続的に変化する。
(3)前記成膜処理一回当たりの層厚方向における前記酸素量に対する炭素量の比率(C/O)の山の数が、2つである。
 なお、前記「磁場を発生させる磁場発生部材を有する対向ローラー電極間に電圧を印加して発生させたプラズマを用いたプラズマ化学気相成長法」を、本願では簡単に「ローラー電極間プラズマCVD法」、又はさらに簡単に「プラズマCVD法」という場合がある。
 ここで、前記ガスバリアー層の酸素量に対する炭素量の比率(C/O)は、具体的には炭素/酸素比率分布曲線によってプロファイルされる。当該炭素/酸素分布比率曲線は、本発明に係るガスバリアー層表面からの距離(L)を横軸に、含有する酸素量に対する炭素量の比率(C/O)を縦軸にプロットした連続した分布曲線をいう。したがって、当該曲線が勾配を有して連続的に変化する場合に、「山」(又は「谷」)が生じる。
 ガスバリアー層表面からの距離(L)に対するケイ素量、酸素量及び炭素量の測定は、下記X線光電子分光法による深さ方向の元素分布測定(以下、XPSデプスプロファイルともいう。)によって行うことができる。
 ≪X線光電子分光法:XPSデプスプロファイルについて≫
 本発明に係るガスバリアー層のケイ素量、酸素量及び炭素量は、X線光電子分光法(XPS:Xray Photoelectron Spectroscopy)の測定とアルゴン等の希ガスイオンスパッタとを併用することにより、試料内部を露出させつつ順次表面組成分析を行う、いわゆるXPSデプスプロファイル測定により得ることができる。このようなXPSデプスプロファイル測定により得られる各元素の分布曲線、及び炭素/酸素比率分布曲線は、例えば、縦軸を各元素の原子比率(at%)、又は酸素量に対する炭素量の比率(C/O)とし、横軸をエッチング時間(スパッタ時間)として作成することができる。なお、このように横軸をエッチング時間とする元素の分布曲線においては、エッチング時間は本発明に係るガスバリアー層表面から層厚方向における距離(L)におおむね相関することから、「本発明に係るガスバリアー層表面から層厚方向における距離(L)」として、XPSデプスプロファイル測定の際に採用したエッチング速度とエッチング時間との関係から算出されるガスバリアー層表面からの距離(すなわち、SiO換算の層厚(nm)=(エッチング時間(sec)×エッチング速度(nm/sec))を採用することができる。本発明では、SiO換算の層厚(nm)はスパッタ深さ(nm)ともいう。
 本発明では、各元素の原子比率(at%)を表す分布曲線、及び酸素量に対する炭素量の比率(C/O)を表す炭素/酸素比率分布曲線は、下記測定条件にてケイ素量、酸素量、及び炭素量を測定して作成した。
 [測定条件]
 エッチングイオン種:アルゴン(Ar
 エッチングレート(SiO熱酸化膜換算値):0.05nm/sec
 エッチング間隔(SiO換算値)(データプロット間隔):ガスバリアー層のSiO換算層厚÷10÷TR数(対向ローラー電極数)(nm)
 X線光電子分光装置:Thermo Fisher Scientific社製、機種名「VG Theta Probe」
 照射X線:単結晶分光AlKα
 X線のスポット及びそのサイズ:800×400μmの楕円形。
 また、各元素の原子比率(at%)は、ケイ素、酸素及び炭素の合計量(100at%)に対する炭素量の比率を、「炭素原子比率(at%)」、ケイ素、酸素及び炭素の合計量に対する酸素量の比率を「酸素原子比率(at%)」、及びケイ素、酸素及び炭素の合計量に対するケイ素量の比率を「ケイ素原子比率(at%)」を表し、上記各元素の原子比率(at%)をガスバリアー層表面からの距離(L)に対してプロットした曲線が、それぞれケイ素分布曲線、酸素分布曲線及び炭素分布曲線となる。
 ≪本発明のガスバリアーフィルムの構成≫
 本発明のガスバリアーフィルムの構成は特に限定されるものではないが、図1Aに一例を示す。ガスバリアーフィルム10aは、可撓性基材1の上に、ガスバリアー層3が積層されてなるガスバリアーフィルムである。その際、可撓性基材1とガスバリアー層3の間に、平滑層として機能するクリアハードコート層2を設けることは、基材とガスバリアー層との密着性を向上したり、基材界面の凹凸を薄層であるガスバリアー層に影響させにくくするため、好ましい態様である。
 また、別の態様である本発明のガスバリアーフィルム10bは、例えば、図1Bに示すように、可撓性基材1の上に平滑層であるクリアハードコート層2を備え、そのクリアハードコート層2上にガスバリアー層3が積層され、さらに可撓性基材1の当該ガスバリアー層3を有する面とは反対側の面に、ブリードアウト防止層4を設けることも好ましい。さらに、当該ガスバリアー層3上には、金属酸化物を含む第2のガスバリアー層5が積層されていてもよい。また、第2のガスバリアー層5上にはオーバーコート層6が積層されていてもよい。
 なお、本発明でいう「ガスバリアー性」とは、例えばJIS K 7129-1992に準拠した方法で測定された水蒸気透過率や、JIS K 7126-1987に準拠した方法で測定された酸素透過率で示される。一般的には水蒸気透過率が1g/m/day以下又は酸素透過率が1ml/m/day/atm以下であればガスバリアー性を有するといわれる。さらに水蒸気透過率が1×10-2g/m/day以下であれば高ガスバリアー性を有するといわれ、有機ELや電子ペーパー、太陽電池、LCD等の電子デバイスに用いることができる。
 ≪ガスバリアー層≫
 本発明に係るガスバリアー層は、少なくとも磁場を発生させる磁場発生部材を有する一対の対向ローラー電極間に成膜ガスを供給しながらプラズマCVD法による成膜処理を行うことによって、可撓性基材の少なくとも一方の面に形成されたものであり、当該ガスバリアー層は、下記要件(1)から(3)までを全て満たすことを特徴とする。
(1)前記ガスバリアー層が、ケイ素、酸素、及び炭素を構成元素として含有する。
(2)前記ガスバリアー層の酸素量に対する炭素量の比率(C/O)が、層厚方向に対して勾配を有して連続的に変化する。
(3)前記成膜処理一回当たりの層厚方向における前記酸素量に対する炭素量の比率(C/O)の山の数が、2つである。
 本発明に係るガスバリアー層の厚さは特に限定されないが、ガスバリアー能を向上させ、一方で、欠陥を生じにくくするために、通常、20~1000nmの範囲内であることが好ましい。本発明に係るガスバリアー層は、単層であっても、複数のサブレイヤーからなる積層構造であってもよい。この場合サブレイヤーの層数は、2~30層であることが好ましい。また、各サブレイヤーが同じ組成であっても異なる組成であってもよい。その場合、本発明に係るガスバリアー層1層当たりの層厚は、20~500nmの範囲であることがより好ましく、30~300nmの範囲内であることが屈曲性を向上する観点から、さらに好ましい。
 以下それぞれの要件について説明する。
 (a)構成元素:要件(1)
 本発明に係るガスバリアー層は、要件(1)としてケイ素、酸素、及び炭素を構成元素として含有することが特徴である。
 本発明に係るガスバリアー層には、ケイ素及び酸素に加えて炭素が存在する。このうちケイ素及び酸素を存在させることによってガスバリアー性を付与でき、炭素を存在させることによってガスバリアー層に屈曲性を付与することができる。
 本発明に係るガスバリアー層は、本発明に係るガスバリアー層の層厚方向における本発明に係るガスバリアー層表面からの距離(L)と、ケイ素原子比率との関係を示すケイ素分布曲線、Lと酸素原子比率との関係を示す酸素分布曲線、並びにLと炭素原子比率との関係を示す炭素分布曲線において、本発明に係るガスバリアー層の層厚の80%以上(上限:100%)の領域で、下記式(A)又は下記式(B)で表される序列の大小関係を有することが好ましい。
 式(A) (炭素原子比率)<(ケイ素原子比率)<(酸素原子比率)
 式(B) (酸素原子比率)<(ケイ素原子比率)<(炭素原子比率)
 ここで、本発明に係るガスバリアー層の層厚の少なくとも80%以上とは、ガスバリアー層中で連続していなくてもよく、単に80%以上の部分で上記した関係を満たしていればよい。
 上記分布曲線において、酸素原子比率、ケイ素原子比率及び炭素原子比率の関係は、ガスバリアー層の膜厚の、少なくとも90%以上(上限:100%)の領域で満たされることがより好ましく、少なくとも93%以上(上限:100%)の領域で満たされることがさらに好ましい。また、本発明に係るガスバリアー層の層厚の80%以上(上限:100%)の領域で、原子比率がC<Si<O、式(A)で表される序列の大小関係を満たすことが好ましい。このような条件となることで、得られるガスバリアーフィルムのガスバリアー性や折り曲げ耐性が十分となる。
 ガスバリアー層中におけるケイ素原子比率は、25~45at%の範囲であることが好ましく、30~40at%の範囲であることがより好ましい。また、前記本発明に係るガスバリアー層中における酸素原子比率は、20~67at%の範囲であることが好ましく、25~67at%の範囲であることがより好ましい。さらに、前記層中における炭素原子比率は、3~50at%の範囲であることが好ましく、3~40at%の範囲であることがより好ましい。
 本発明に係るガスバリアー層の材料としては、ガスバリアーフィルムが用いられた電子デバイスの性能劣化をもたらす水、酸素等のガスの浸入を抑制する機能を有する材料であり、ケイ素化合物として、例えば、酸化ケイ素、酸窒化ケイ素、二酸化ケイ素、窒化ケイ素等の無機ケイ素化合物、有機ケイ素化合物等を用いることができる。
 中でも、ガスバリアー層は、有機ケイ素化合物が気化されたガスを酸化又は窒化させて形成されていることが好ましい。
 有機ケイ素化合物としては、例えば、ヘキサメチルジシロキサン、1,1,3,3-テトラメチルジシロキサン、ビニルトリメチルシラン、メチルトリメチルシラン、ヘキサメチルジシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、オクタメチルシクロテトラシロキサン等が挙げられる。中でも、取扱いを容易とし、優れたガスバリアー性を得る観点から、ヘキサメチルジシロキサン、1,1,3,3-テトラメチルジシロキサンが好ましい。
 これらの有機ケイ素化合物は、1種を単独で又は2種以上を組み合わせて使用することができる。
 (b)成膜装置:要件(2)
 上記のように、ガスバリアー層内における酸素の分布状態がガスバリアー性に影響し、炭素の分布状態が屈曲性に影響することから、要件(2)として、当該ガスバリアー層において、ガスバリアー層の酸素量に対する炭素量の比率(C/O)が、層厚方向に対して勾配を有して連続的に変化することが、ガスバリアー性と屈曲性を両立する観点から必要である。
 「C/Oが勾配を有して連続的に変化する」とは、ガスバリアー層表面からの距離(L)に対するC/Oをプロットして炭素/酸素比率分布曲線を得たときに、少なくとも2つの極値を有することを意味する。かような極値の存在は、層内の炭素の存在が均一ではないことを示すものであり、部分的に炭素量が多い部分が存在することで、層全体がフレキシブル構造となり、屈曲性が向上する。
 本発明に係るガスバリアー層は、C/Oが少なくとも3つの極値を有することが好ましく、少なくとも5つの極値を有することがより好ましい。
 ここで極値とは、ガスバリアー層の層厚方向におけるガスバリアー層の表面からの距離に(L)対するC/Oの極大値又は極小値のことをいう。
 本発明において極大値とは、C/Oにおいて、ガスバリアー層の表面からの距離の連続的変化に伴ってC/Oの値が増加から減少に変わる点であって、かつその点の比率の値よりも、該点からガスバリアー層の層厚方向におけるガスバリアー層の表面からの距離をさらに5nm変化させた位置の比率の値が、0.01以上減少する点のことをいう。
 極小値とは、C/Oにおいて、ガスバリアー層の表面からの距離の連続的変化に伴ってC/Oの値が減少から増加に変わる点であって、かつその点の比率の値よりも、該点からガスバリアー層の層厚方向におけるガスバリアー層の表面からの距離をさらに5nm変化させた位置の比率の値が、0.01以上増加する点のことをいう。
 C/Oが連続的に変化するとは、前記炭素/酸素比率分布曲線が不連続に変化する部分を含まないことを意味し、具体的には、エッチング速度とエッチング時間とから算出される層厚方向の表面からの距離(x、単位:nm)と、C/Oとの関係において、下記数式(1)で表される条件を満たすことをいう。
  数式(1)  (d(C/O)/dx)≦0.005
 本発明に係るガスバリアー層が要件(2)を満たすためには、以下説明するプラズマCVD法を行える成膜装置を用いることが好ましい。
 本発明に係るガスバリアー層を形成する成膜装置は、真空チャンバー内において、可撓性基材を対向配置させる一対の対向ローラー電極を具備し、当該可撓性基材上に薄膜層を形成する成膜装置であって、少なくとも一組の下記手段(1)~(5)を有することが好ましい。
 手段(1):対向配置させる可撓性基材間の対向空間に成膜ガスを供給する供給口
 手段(2):対向空間に膨らんだ無終端のトンネル状の磁場を形成する磁場発生装置
 手段(3):対向空間にプラズマを発生させる電源
 手段(4):可撓性基材上に薄膜層を形成する一対の対向ローラー電極
 手段(5):対向空間の成膜ガスを排気する排気口
 より具体的には、成膜装置としては、プラズマCVD法を用いた対向ローラー型の成膜装置が用いられる。
 ちなみに、従来の平坦電極(水平搬送)タイプを用いたプラズマ放電でのCVD法では、ガスバリアー層内の炭素原子成分の濃度勾配の連続的な変化が起こらないため、本願の課題であるガスバリアー性及び屈曲性の両立は困難である。本発明による効果は、磁場を発生させる磁場発生部材を有する対向ローラー電極間に電圧を印加して発生させたプラズマを用いたプラズマ化学気相成長法で形成されるガスバリアー層内において、炭素原子成分の濃度勾配が連続的に変化することによって、ガスバリアー性及び密着性が両立するものである。
 図2に示すように、成膜装置Aは、真空チャンバー11内に、一対の対向ローラー電極21及び22(手段(4))、当該一対の対向ローラー電極21及び22内部に設けられた磁場発生装置23及び24(手段(2))、電源25(手段(3))、供給口26(手段(1))及び排気口27(手段(5))を備えた成膜領域20を少なくとも一組有している。
 真空チャンバー11内の搬送方向Xの上流側には、元巻きローラー41が回転自在に配設され、搬送方向Xの下流側には、巻取りローラー42が回転自在に配設されている。各部材間には、適宜搬送ローラーが配設されている(搬送ローラー43~46)。
 成膜装置Aは、減圧下において、対向ローラー電極21及び22と搬送ローラー43~46とにより長尺の可撓性基材1を搬送し、搬送される可撓性基材1上に対向ローラー電極21及び22によりガスバリアー層を連続的に形成する。
 長尺の可撓性基材1は、好ましくはフィルム基材であり、平滑層等の1層以上の機能性層が既に形成されていてもよい。
 真空チャンバー11は、ガスバリアー層の形成時、真空ポンプ50によって内部の圧力が減圧下に調整される。なお、減圧下とは、真空チャンバー11内の圧力が0.01~20Paの範囲内にあるこという。
 一対の対向ローラー電極21及び22は、ローラー電極間プラズマCVD法により、可撓性基材1上にガスバリアー層を薄膜として形成する。
 当該一対の対向ローラー電極21及び22の表面温度は、可撓性基材1への熱ダメージを緩和する観点から50℃以下であることが好ましく、30℃以下であることがより好ましい。電極の表面温度の制御は、電極内部に温度を制御した熱媒体(例えば、水やオイル、エチレングリコール)を循環させる方法や、電極内部にヒーターを組み込み熱電対のような温度センサーで制御する方法、赤外線ヒーターを用いる方法などが用いることができる。
 対向配置された一対の対向ローラー電極21及び22間には、成膜ガスを供給する供給口26と、当該成膜ガスを真空排気する排気口27と、一対の対向ローラー電極21及び22に接続された電源25と、が配設されている。
 各対向ローラー電極21及び22は、可撓性基材1を搬送するローラーであり、一対の電極としても機能する。
 また、各対向ローラー電極21及び22は、それぞれ磁場発生装置23及び24を内蔵している。
 図3は、対向ローラー電極21及び22部分の拡大図である。
 磁場発生装置23及び24は、対向ローラー電極21及び22の回転によって回転しないように、各対向ローラー電極21及び22内に固定されている。
 磁場発生装置23及び24としては、通常の永久磁石を用いることができる。
 磁場発生装置23及び24は、対向空間に膨らんだ無終端のトンネル状の磁場を形成する装置である。当該装置は一対の対向ローラー電極内のそれぞれにN極とS極を有する磁場発生部材を有する構造であるため、磁場によって一対の対向ローラー電極間においてプラズマ放電強度に強弱を有する領域を存在させることができる。当該領域によってガスバリアー層の炭素量の含有量を連続的に変化させることができ、かつ本発明に係る要件(2)として挙げている前記ガスバリアー層が含有する炭素量と酸素量との比率(C/O)を、層厚方向に対して勾配を有して連続的に変化することができる。
 すなわち、対向ローラー電極21、22のローラー軸の長さ方向に沿って対向空間(放電領域)に面したローラー表面付近にレーストラック状の磁場が形成され、磁場によってプラズマを収束させることができる。
 プラズマの生成は、一対の対向ローラー電極21及び22に、電源25により電圧が印加されると、電極間に放電空間が形成され、供給口26により当該放電空間内に成膜ガス(原料ガス及び反応用ガス)が供給されると、原料ガスのプラズマが生成され、放電空間に面する可撓性基材1上に原料成分が堆積する。一対の対向ローラー電極21及び22は、それぞれ前記内蔵する磁場発生装置23及び24により磁場を形成しているので、プラズマはこの磁場の磁力線に沿って生成される。
 また、各対向ローラー電極21及び22は、回転軸が同一平面上において平行となるように対向配置され、ガスバリアー層が形成される面が対向するように可撓性基材1を搬送する。そのため、搬送方向Xの上流側の対向ローラー電極21により可撓性基材1上にガスバリアー層を形成した後、搬送方向Xの下流側の対向ローラー電極22により可撓性基材1上に更にガスバリアー層を形成することができ、成膜レートをより向上させることができる。
 各対向ローラー電極21及び22は、薄膜を効率良く形成する観点から、直径が同一であることが好ましい。
 各対向ローラー電極21及び22の直径としては、放電条件の最適化、真空チャンバー11内のスペース削減等の観点から、直径φが50~1000mmの範囲内であることが好ましい。
 直径φが100mm以上であれば、十分な大きさの放電空間を形成することができ、生産性の低下を防ぐことができる。また、短時間の放電で十分な層厚を得ることができ、放電時に可撓性基材1に加えられる熱量を抑えて、残留応力を抑えることができる。直径φが1000mm以下であれば、放電空間の均一性を維持することができ、装置設計において実用的である。
 電源25は、一対の対向ローラー電極21及び22に電力を供給する。
 電源25としては、プラズマ生成用として従来公知の電源を用いることができるが、各対向ローラー電極21及び22の極性を交互に反転させることができる交流電源であることが、成膜レートを向上させることから好ましい。
 電源25が一対の対向ローラー電極21及び22に供給する電力量としては、単位幅あたりに1~200W/cmの範囲が好ましく、膜質及び基材ダメージの観点から10~100W/cmの範囲がより好ましい。また、交流電源とする場合、交流の周波数は50Hz~1MHzの範囲内であることが好ましい。
 供給口26は、対向ローラー電極21及び22間に形成された放電空間に、ガスバリアー層の成膜ガスを供給する。
 供給口26は、対向ローラー電極21及び22から等距離で、かつ放電空間よりも上方に配設されており、排気口27は対向ローラー電極21及び22から等距離で、かつ真空チャンバー11の底面のうち、放電空間の下方領域に配設されている。これにより、供給口26から供給される成膜ガスは、対向ローラー電極21及び22間の放電空間を通過して排気口27から排出されるようになっている。
 元巻きローラー41は、アンワインダーとも呼ばれ、可撓性基材1のロール体を巻き出す。
 搬送ローラー43~46は、ガイドローラーとも呼ばれ、巻き出された可撓性基材1を元巻きローラー41から一対の対向ローラー電極21及び22へ、一対の対向ローラー電極21及び22から巻取りローラー42へと連続的に搬送する。
 巻取りローラー42は、ワインダーとも呼ばれ、成膜された可撓性基材1を巻き取る。
 各ローラーとしては、従来公知のものを使用することができ、例えば、金属製又は合金製のローラーを用いることができる。各ローラー表面には、コート層が設けられていてもよい。
 上記構成の成膜装置Aは、ガスバリアー層を形成後、各ローラーの回転方向を逆転させて、可撓性基材1の搬送方向Xを逆方向とし、複数のガスバリアー層を更に形成することもできる。
 (c)成膜方法:要件(3)
 本発明に係るガスバリアー層は、要件(3)として、前記プラズマCVD法による成膜処理一回当たりのC/O(炭素/酸素比率分布曲線)の層厚方向における山の数が、2つであることが特徴である。
 上記「山」とは、C/O(炭素/酸素比率分布曲線)において、前記極大値とその両隣にある極小値のいずれかの極小値とのC/Oの差が、0.01以上であるときに、その極大値(ピーク)を炭素/酸素比率分布曲線の「山」と定義する。したがって、「山の数が2つ」ということは、当該極大値(ピーク)の数が、一回の成膜処理当たり2個であることを意味する。
 前記極大値とその両隣にある極小値のいずれかの極小値とのC/Oの差は、0.02以上が好ましく、より好ましくは0.05以上であり、さらに好ましくは0.1以上である。このようなC/Oの差を有することで、ガスバリアー層に十分な屈曲性を付与することができる。
 図4は、C/O(炭素/酸素比率分布曲線)における「山」を示す模式図である。
 「成膜処理一回当たり」とは、前記対向ローラー電極を具備するプラズマCVDを行う成膜装置において、一対の対向ローラー電極それぞれを可撓性基材が通過し、ガスバリアー層が形成される処理を「一回の成膜処理」という。
 すなわち、図2で説明すると、可撓性基材1が一対の対向ローラー電極21及び22を通過してプラズマCVDによってガスバリアー層が形成される処理をいう。
 したがって複数回成膜処理を行って所望の厚さのガスバリアー層を複数積層する場合は、例えば、当該成膜装置を複数個連結して複数回の成膜を行ったり(タンデム型成膜装置ともいう。)、前記ワインダーで巻取った成膜済みのガスバリアーフィルムを逆方向に搬送して再度成膜処理を行ったり、当該成膜処理を複数回繰り返すこと等によって行うことが好ましい。
 本発明に係るガスバリアー層の製造方法は、基本的に下記工程(i)~(iii)を含む
ことが好ましい。
 工程(i):帯状の可撓性基材を送り出しローラーから繰り出して搬送ローラーで搬送する工程、
 工程(ii):前記可撓性基材を磁場を発生させる磁場発生部材を有する対向ローラー電極のそれぞれに接触させながら搬送を行い、当該対向ローラー電極に電圧を印加しながら電極間に成膜ガスを供給してプラズマ放電を行い、当該対向ローラー電極表面付近のプラズマ放電強度を変化させながら、当該可撓性基材上に、プラズマ化学気相成長法によるガスバリアー層の成膜処理を行う工程、
 工程(iii):前記可撓性基材上に前記ガスバリアー層を形成したガスバリアーフィルムを搬送ローラーで搬送しながら巻取りローラーで巻取る工程
 中でも本発明に係るガスバリアー層の製造方法は、真空チャンバー内において、可撓性基材を対向配置させ、当該可撓性基材上に薄膜層を形成する成膜方法であって、少なくとも一組の下記工程(1)~(5)を有することが好ましい。
 工程(1):対向配置させる可撓性基材間の対向空間に成膜ガスを供給する工程
 工程(2):対向空間に膨らんだ無終端のトンネル状の磁場を形成する工程
 工程(3):対向空間にプラズマを発生させる工程
 工程(4):可撓性基材を対向配置させ、当該可撓性基材上に薄膜層を形成する工程
 工程(5):対向空間の成膜ガスを排気する工程
 以下、本実施形態に係る成膜方法の好ましい態様として、薄膜層を形成する工程前に加温する工程を有する成膜方法について説明する。
(a)成膜ガスを供給する工程(工程(1))
 成膜ガスを供給する工程では、対向配置させる可撓性基材間の対向空間にガスバリアー層の成膜ガスを供給する。例えば、ケイ素化合物を酸化させてケイ素酸化物からなるガスバリアー層を形成する場合には、ケイ素化合物のガス(原料ガス)と酸素ガス(反応用ガス)を成膜ガスとして供給する。供給する成膜ガスは、必要に応じて、キャリアガスを用いることができ、また、プラズマの生成を促進するためにプラズマ生成用ガスを供給することもできる。キャリアガスとしては、例えば、ヘリウム、アルゴン、ネオン、キセノン、クリプトン等の希ガスや窒素ガス等が挙げられ、プラズマ生成用ガスとしては、水素等が挙げられる。
 なお、本発明において「対向空間」とは、前述の一対の対向ローラー電極21及び22間の空間をいう(図2参照。)。また、可撓性基材における「対向配置」とは、薄膜層が形成される可撓性基材表面を互いに向き合うように配置することをいう。
(b)磁場を形成する工程(工程(2))
 磁場を形成する工程では、対向ローラー電極21及び22の周面のうち、対向空間に面する領域付近に磁力線が膨らんだ磁場を発生させる。これにより、プラズマが収束されやすくなるため、ガスバリアー層の成膜効率を向上させることができる。
(c)プラズマを発生させる工程(工程(3))
 プラズマを発生させる工程では、従来公知の電源を用いて、対向ローラー電極21及び22に電力を供給することにより発生させる。プラズマは、工程(2)で発生させた磁場の磁力線に沿って生成される。そのため、放電空間(対向空間)における電場と磁場によって電子が放電空間内に閉じ込められ、高密度のプラズマが生成され、成膜レートが向上する。
(d)薄膜層を形成する工程(工程(4))
 可撓性基材上に薄膜層を形成する工程では、一対の対向ローラー電極21及び22の対向空間に形成されたプラズマにより、供給された原料ガスのプラズマが生成され、可撓性基材上に原料成分が堆積することにより、ガスバリアー層の薄膜を形成する。
(e)成膜ガスを排気する工程(工程(5))
 成膜ガスを真空排気する工程では、供給された成膜ガスのうち、可撓性基材上にガスバリアー層の薄膜を形成するのに用いられなかった残留ガスを真空チャンバー内から排気する。
 次に、前記成膜装置Aを用いた成膜方法について説明する。
 最初に、可撓性基材1のロール体を元巻きローラー41にセットする。元巻きローラー41から可撓性基材1を一部巻き出して、各搬送ローラー43~46、対向ローラー電極21及び22に架け渡し、巻取りローラー42により巻き取る。
 その後、真空ポンプ50により排気を行い、真空チャンバー11内を減圧する。
 真空チャンバー11内を十分に減圧した後、各搬送ローラー43~46、対向ローラー電極21及び22により、可撓性基材1の搬送を開始する。
 可撓性基材1の搬送速度(ライン速度ともいう。)は、成膜ガスの種類や真空チャンバー11内の圧力等に応じて適宜調整することができる。
 本発明に係るガスバリアー層は、要件(3)として、前記プラズマCVD法による成膜処理一回当たりのC/O(炭素/酸素比率分布曲線)の層厚方向における山の数が、2つであることが特徴であるが、山の数を制御する方法として、可撓性基材1の搬送速度を制御することが好ましい。可撓性基材1の搬送速度は、3~100m/minの範囲内であることが好ましく、3~50m/minの範囲内とすることが好ましい。3/min以上であれば、一回の成膜処理において、前記山の数を2つにすることができ、熱に起因して可撓性基材1にシワが生じることを防止できる。100m/min以下であれば、形成するガスバリアー層の厚さを所望の範囲内とすることが容易になる。
 基材への熱ダメージを回避し生産性向上の観点からは、可撓性基材1の搬送速度は5m/min以上であることが好ましく、10m/min以上であることがより好ましい。
 また、山の数を2つにする別の手段としては、対向ローラー電極の直径を制御することが好ましく、前記対向ローラー電極の好ましい直径φ50~1000mmの範囲内であることが好ましいが、直径φを適宜調整して制御することができる。山の数を所望の数以下にするには、当該直径φは50~700mmであることがより好ましく、50~500mmであることがさらに好ましく、50~300mmであることが、本発明に係るガスバリアー層を形成するのに特に好ましい。
 山の数を制御する方法としては、上記2例を組み合わせることも好ましく、さらに成膜ガスの供給量、印加電力、交流電源の周波数等を調整因子として組み合わせることも好ましい。
 図5は、要件(3)を満たす実施例のガスバリアー層のXPSデプスプロファイルによる層の厚さ方向の炭素/酸素比率分布曲線の一例を示す図である。スパッタ深さ(nm)の起点はガスバリアー層の表面を表す。
 可撓性基材1の搬送速度を3m/minとし、成膜処理を6回行うことによってトータル膜厚約180nmのガスバリアー層を形成した。一回の成膜処理当たりの山の数は、図5より2つ確認される(一回の成膜処理は、枠で囲った各々約30nmの層厚の範囲であり、山a、bが観察される。)。
 図6は、比較例のガスバリアー層のXPSデプスプロファイルによる層の厚さ方向の炭素/酸素比率分布曲線の一例を示す図である。
 可撓性基材1の搬送速度を1m/minとして、成膜処理を2回行うことによってトータル膜厚約180nmのガスバリアー層を形成した。一回の成膜処理当たりの山の数は、図6より4つ確認される(一回の成膜処理は、枠で囲った各々約90nmの層厚の範囲であり、山a、b、c、dが観察される。)。
 可撓性基材1の搬送開始にともない、供給口26から対向ローラー電極21及び22間にガスバリアー層の成膜ガスを供給するとともに、電圧を印加し、プラズマを生成させる。成膜ガスは、必要に応じて、成膜ガスを搬送するためのキャリアガス、プラズマ放電用ガス等とともに供給され得る。
 次に当該可撓性基材1を対向ローラー電極21まで搬送し、可撓性基材1表面上にガスバリアー層の原料成分を堆積させる。可撓性基材1を、搬送ローラー44及び45に順次搬送し、対向ローラー電極22により、更にガスバリアー層の原料成分を堆積させ、ガスバリアー層を薄膜として形成する。
 ガスバリアー層が形成された可撓性基材1を、搬送ローラー46により搬送し、巻取りローラー42により巻き取る。
 前記したようにガスバリアー層が既に設けられた可撓性基材1上に、更にガスバリアー層を形成する場合、搬送ローラー46に続けて、更に成膜領域20を設け、同様の手順でガスバリアー層を形成することができる。
 可撓性基材1の搬送方向を逆にして、更にガスバリアー層を形成する場合も、搬送ローラー43~46、対向ローラー電極21及び22による搬送順が逆になり、対向ローラー電極22により原料成分を堆積させた後、対向ローラー電極21により更に堆積させる以外は、同様の手順とすることができる。
 上記成膜装置Aにより製造することができる機能性フィルムとしては、ガスバリアー層が形成された本発明のガスバリアーフィルムの他、絶縁層が形成された絶縁性フィルム、基材に対して屈折率差を有する薄膜が積層された反射フィルム等が挙げられる。
 ≪可撓性基材≫
 可撓性基材1は、可撓性を有する基板である。ここでいう「可撓性」とは、φ(直径)50mmロールに巻き付け、一定の張力で巻取る前後で割れ等が生じることのない基材をいう。より好ましくはφ30mmロールに巻き付け可能な基材であるとより柔軟なガスバリアーフィルムを提供できる。
 可撓性基材1としては、透明性が高い樹脂であることが好ましい。樹脂の透明性が高く、可撓性基材1の透明性が高いと、透明性が高いガスバリアーフィルムを得ることができ、有機EL素子等の電子デバイスに好ましく用いることができる。
 樹脂としては、例えば、メタクリル酸エステル、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、シクロオレフィンポリマー(COP)、シクロオレフィン共重合体(COC)、ポリアリレート、ポリスチレン(PS)、芳香族ポリアミド、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリイミド(PI)、ポリエーテルイミド、等が挙げられる。中でも、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、シクロオレフィンポリマー(COP)、シクロオレフィン共重合体(COC)等が、コスト及び入手の容易性から好ましい。
 可撓性基材1は、上記樹脂が2以上積層された構成としてもよい。
 可撓性基材1は、厚さが5~500μmの範囲内であることが好ましく、10~250μmの範囲内であることがより好ましく、15~150μmの範囲内であることがさらに好ましく、20~75μmの範囲内であることが、特に薄膜化の観点から好ましい。
 可撓性基材1の幅は特に限定されるものではないが、生産性を高める観点から100mm幅以上が好ましく、500mm幅以上がより好ましく、1000mm幅以上であることがさらに好ましい。本発明の構成であれば、1000mm幅以上の可撓性基材を用いても熱ダメージによる変形や皺の発生を抑制できる。
 〈平滑層:クリアハードコート層〉
 可撓性基材1は、可撓性基材1上に形成されるガスバリアー層との密着性を高めるため、表面上に平滑層としてクリアハードコート層が形成されていてもよい。
 クリアハードコート層としては、熱硬化型樹脂、活性エネルギー線硬化型樹脂硬化型樹脂等の硬化性樹脂を用いることができる。中でも、成形が容易なことから、活性エネルギー線硬化型樹脂が好ましい。
 熱硬化型樹脂としては、特に制限はなく、例えば、エポキシ樹脂、シアネートエステル樹脂、フェノール樹脂、ビスマレイミド-トリアジン樹脂、ポリイミド樹脂、アクリル樹脂、ビニルベンジル樹脂等の種々の熱硬化性樹脂が挙げられる。
 活性エネルギー線硬化型樹脂は、紫外線、電子線等の活性線の照射により架橋反応等を経て硬化する樹脂である。
 活性エネルギー線硬化型樹脂としては、紫外線硬化型樹脂、電子線硬化型樹脂等が代表的なものとして挙げられ、中でも紫外線硬化型樹脂が好ましい。
 紫外線硬化型樹脂としては、例えば、紫外線硬化型ウレタンアクリレート系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、紫外線硬化型エポキシ樹脂等を挙げることができる。
 クリアハードコート層は、可撓性基材1との密着性を向上させるため、可撓性基材1表面に真空紫外線を照射するか、コロナ放電によって表面処理した後、クリアハードコート層の塗布液を塗布して硬化させることにより、形成することができる。
 塗布方法としては、グラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター等を用いた塗布法、インクジェット法等のウェットプロセスを用いることができる。
 クリアハードコート層の塗布液は、ウェット膜厚として0.1~40.0μmの範囲内で塗布することが適当であり、好ましくは0.5~30.0μmの範囲内である。また、乾燥後の層厚としては、0.1~30.0μmの範囲内が好ましく、より好ましくは1~10μmの範囲内である。
 〈第2のガスバリアー層〉
 本発明において、本発明に係るガスバリアー層の上に、第2のガスバリアー層を設けることが、ガスバリアー性向上の観点から好ましい。第2のガスバリアー層としてはガスバリアー性を有していれば特に限定されるものではないが、塗布方式でポリシラザン含有液の塗膜を設け、波長200nm以下の真空紫外光(VUV光)を照射して改質処理することにより形成される第2のガスバリアー層を設けることが好ましい。上記第2のガスバリアー層を前記CVD法で設けたガスバリアー層の上に設けることにより、ガスバリアー層に残存する微小な欠陥を、上部からポリシラザンのガスバリアー成分で埋めることができ、更なるガスバリアー性と屈曲性を向上できるので、好ましい。
 第2のガスバリアー層の厚さは、1~500nmの範囲が好ましい、より好ましくは10~300nmの範囲である。厚さが1nmより厚いとガスバリアー性能が発揮でき、500nm以内であれば、緻密な酸窒化ケイ素膜にクラックが入りにくい。
 ポリシラザンは、有機溶媒に溶解した溶液の状態で市販されており、市販品をそのままポリシラザン含有塗布液として使用することができる。ポリシラザン溶液の市販品としては、AZエレクトロニックマテリアルズ株式会社製のNN120-20、NAX120-20、NL120-20などが挙げられる。またポリシラザン溶液に、金属アルコキシド化合物又は金属キレート化合物、低分子シラザン/シロキサンを添加してもよい。
 ≪電子デバイス≫
 上記のように本発明のガスバリアーフィルムは、優れたガスバリアー性、透明性、折り曲げ耐性を有する。このため、本発明のガスバリアーフィルムは、電子デバイス等のパッケージ、光電変換素子(太陽電池素子)や有機エレクトロルミネッセンス(EL)素子、液晶表示素子等の等の電子デバイスに用いられるガスバリアーフィルムなど、様々な用途に使用することができる。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。
 実施例1
 《可撓性基材の準備》
 可撓性基材(支持体)として、両面に易接着加工された厚さ125μm、幅1000mmのロール状のポリエステルフィルム(帝人デュポンフィルム株式会社製、ポリエチレンテレフタレートフィルム、KDL86WA、表1にはPETと略記する。)を可撓性基材1として用いた。
 《クリアハードコート層付可撓性基材の作製》
 〔クリアハードコート層付可撓性基材1の作製〕
 下記のクリアハードコート層形成用塗布液1を、可撓性基材1のガスバリアー層設置側に、乾燥後の層厚が4μmになるようにワイヤーバーで塗布してクリアハードコート層(CHCという。)を形成した後、80℃で3分間乾燥し、次いで、硬化条件として0.5J/cm空気下で、高圧水銀ランプを使用して硬化を行い、クリアハードコート層付可撓性基材1(表1中、CHC-PETと略す。)を作製した。
 (クリアハードコート層形成用塗布液1の調製)
 DIC(株)製のUV硬化型樹脂ユニディックV-4025に、AGCセイミケミカル株式会社製のフッ素オリゴマー:サーフロンS-651を固形分(質量比率)でUV硬化型樹脂/S-651=99.8/0.2になるように添加し、更に、光重合開始剤としてイルガキュア184(BASFジャパン社製)を、固形分比(質量比率)でUV硬化型樹脂/光重合開始剤=95/5になるように添加して、更に溶媒としてMEKで希釈して、クリアハードコート層形成用塗布液1(NV30質量%)を調製した。
 《ガスバリアーフィルムの作製》
 〔ガスバリアーフィルム1の作製〕
 図2に記載の磁場を発生させる磁場発生部材を有する対向ローラー電極間に電圧を印加して発生させたプラズマを用いるプラズマCVD装置を用いて、クリアハードコート層付可撓性基材1のクリアハードコート層を形成した面にガスバリアー層を形成して、ガスバリアーフィルム1を作製した。
 具体的には、上記作製したクリアハードコート層付可撓性基材1上に形成したクリアハードコート層と反対側の面が対向ローラー電極と接触する面になるように装置に装着して、下記の成膜条件(プラズマCVD条件)により6回成膜処理を行い、ガスバリアー層を厚さ約180nmとなる条件で成膜し、ガスバリアーフィルム1を作製した。
 (成膜条件)
 原料ガス(ヘキサメチルジシロキサン、HMDSO)の供給量:1.5sccm(Standard Cubic Centimeter per Minute)/cm
 酸素ガス(O)の供給量:10sccm/cm
 真空チャンバー内の真空度:2Pa
 プラズマ発生用電源からの印加電力:27W/cm
 プラズマ発生用電源の周波数:80kHz
 クリアハードコート層付可撓性基材の搬送速度:3m/min
 対向ローラー電極温度:30℃
 電極径φ:表1中Aと表記する。
 〔ガスバリアーフィルム2~9の作製〕
 ガスバリアーフィルム1の作製において、変更点として、可撓性基材としてシクロオレフィンポリマーフィルムである日本ゼオン(株)製ゼオノア(厚さ100μm、幅1000mm:表1中COPと表記する。)及び厚さ50μm、幅1000mmのロール状のクリアハードコート層付きポリエステルフィルム((帝人デュポンフィルム株式会社製、ポリエチレンテレフタレートフィルム、表1中CHC-PETと表記する。)、成膜処理回数、成膜ガス濃度、印加電力、可撓性基材搬送速度、及び対向ローラー電極径φ(電極径を電極径Aの2/5倍の大きさに変更、表1中電極径Bと表記する。ただし、磁石の配置角度はA=Bである。)を適宜変えて、表1に記載のガスバリアーフィルム2~9を作製した。
 以上作製したガスバリアーフィルムについて、以下の評価を行った。
 《ガスバリアーフィルムの特性値の測定及び評価》
 〔原子分布プロファイル(XPSデータ)測定〕
 下記条件にて、作製した各ガスバリアーフィルムのXPSデプスプロファイル測定を行い、ケイ素原子量、酸素原子量、及び炭素原子量の測定値を得た。
 エッチングイオン種:アルゴン(Ar
 エッチングレート(SiO熱酸化膜換算値):0.05nm/sec
 エッチング間隔(SiO換算値):10nm
 X線光電子分光装置:Thermo Fisher Scientific社製、機種名「VG Theta Probe」 照射X線:単結晶分光AlKα
 X線のスポット及びそのサイズ:800×400μmの楕円形。
 上記条件で測定したデータをもとに、ガスバリアー層の表面からの距離(スパッタ深さ(nm))を横軸に、酸素量に対する炭素量の比率(C/O)を縦軸にして、炭素/酸素比率分布曲線を作成し、成膜処理一回当たりの山の数を測定した。
 山の数が2つであったガスバリアー層は、図5に近似したプロファイルであり、山の数が4つであったガスバリアー層は、図6に近似したプロファイルであった。
 また、同様にケイ素原子比率(at%)、酸素原子比率(at%)、及び炭素原子比率(at%)を求め、ガスバリアー層の表面からの距離(スパッタ深さ(nm))に対する、ケイ素分布曲線、酸素分布曲線及び炭素分布曲線を作成したところ、いずれの水準もケイ素原子比率は、30~40at%の範囲に分布しており、酸素原子比率は、20~67at%の範囲に分布しており、炭素原子比率は、3~50at%の範囲に分布していることが分かった。
 〔基材ダメージ〕
 成膜中の可撓性基材を目視で観察し、熱ダメージの発生を観察し、以下の基準で評価した。
 ○:目視観察による基材の変形は見られない(問題無く成膜できる。)
 △:僅かに基材変形がみられる(成膜は一応問題無くできる。)
 ×:基材が変形し、成膜続行が不可能
 〔水蒸気透過率(WVTR)の測定〕
 ガスバリアーフィルムの水蒸気透過率(WVTR(g/m/day))は、以下に示す機器を用いて測定した。
 MOCON社製 水蒸気透過率測定装置PERMATRAN W3/33
 40℃、90%RHにおける水蒸気透過率を測定
 検出下限:0.01(g/m/day)
 表1中、「測定不可」という表記は、可撓性基材が熱ダメージを受け、WVTRの測定ができなかったことを表す。
 〔屈曲性試験〕
 あらかじめ、半径10mmの曲率になるように、180度の角度で100回屈曲を繰り返し処理したガスバリアーフィルムについて、上記水蒸気透過率(WVTR)を測定した。
 ◎:水蒸気透過率(WVTR)の測定値に変化が見られない
 ○:水蒸気透過率(WVTR)の測定値に10%以内の変化が見られる
 ×:水蒸気透過率(WVTR)の測定値に10%以上の変化が見られる
 以上により得られた評価結果を、表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に記載の結果より明らかなように、本発明で規定する構成からなるガスバリアーフィルムは、比較例に対し、可撓性基材への熱ダメージの発生を抑制され、ガスバリアー性(水蒸気遮断性)に優れていることが分かる。
 また、上記屈曲性試験を行ったところ、比較例のガスバリアーフィルムは基材ダメージによって屈曲性に劣るが、本発明のガスバリアーフィルムは屈曲性試験前後で水蒸気透過率(WVTR)の測定値に変化が見られず、可撓性基材上に本発明に係るガスバリアー層を形成したことによって、屈曲性にも優れていることが確認された。
 本発明のガスバリアーフィルムは、基材への熱ダメージの発生を抑制し、ガスバリアー性能及び屈曲性に優れたガスバリアーフィルムであり、有機エレクトルミネッセンス素子、太陽電池、液晶表示装置等の電子デバイス用途のガスバリアーフィルムとして、好適に用いることができる。
 1 可撓性基材
 2 クリアハードコート層
 3 ガスバリアー層
 4 ブリードアウト防止層
 5 第2のガスバリアー層
 6 オーバーコート層
 10a、10b ガスバリアーフィルム
 11 真空チャンバー
 20 成膜領域
 21、22 対向ローラー電極
 23、24 磁場発生装置
 25 電源
 26 供給口
 27 排気口
 31 加温装置
 41 元巻きローラー
 42 巻取りローラー
 43~46 搬送ローラー
 50 真空ポンプ
 A  成膜装置
 X  搬送方向

Claims (3)

  1.  可撓性基材の少なくとも一方の面にガスバリアー層を有するガスバリアーフィルムであって、
     前記ガスバリアー層が、少なくとも磁場を発生させる磁場発生部材を有する対向ローラー電極間に電圧を印加して発生させたプラズマを用いたプラズマ化学気相成長法により成膜処理されており、当該ガスバリアー層が、下記要件(1)から(3)までを全て満たすことを特徴とするガスバリアーフィルム。
    (1)前記ガスバリアー層が、ケイ素、酸素、及び炭素を構成元素として含有する。
    (2)前記ガスバリアー層の酸素量に対する炭素量の比率(C/O)が、層厚方向に対して勾配を有して連続的に変化する。
    (3)前記成膜処理一回当たりの層厚方向における前記酸素量に対する炭素量の比率(C/O)の山の数が、2つである。
  2.  前記酸素量に対する炭素量の比率(C/O)の極大値とその両隣にある極小値のいずれかの極小値との差が、0.05以上であることを特徴とする請求項1に記載のガスバリアーフィルム。
  3.  可撓性基材の少なくとも一方の面に、下記要件(1)から(3)までの要件を全て満たすガスバリアー層を成膜処理するガスバリアーフィルムの製造方法であって、
     工程(i):帯状の可撓性基材を送り出しローラーから繰り出して搬送ローラーで搬送する工程、
     工程(ii):前記可撓性基材を磁場を発生させる磁場発生装置を有する対向ローラー電極のそれぞれに接触させながら搬送を行い、当該対向ローラー電極に電圧を印加しながら電極間に成膜ガスを供給してプラズマ放電を行い、当該対向ローラー電極表面付近のプラズマ放電強度を変化させながら、当該可撓性基材上に、プラズマ化学気相成長法によるガスバリアー層の成膜処理を行う工程、
     工程(iii):前記可撓性基材上に前記ガスバリアー層を形成したガスバリアーフィルムを搬送ローラーで搬送しながら巻取りローラーで巻取る工程、を含むことを特徴とするガスバリアーフィルムの製造方法。
    (1)前記ガスバリアー層が、ケイ素、酸素、及び炭素を構成元素として含有する。
    (2)前記ガスバリアー層が含有する酸素量に対する炭素量の比率(C/O)が、層厚方向に対して勾配を有して連続的に変化する。
    (3)前記成膜処理一回当たりの層厚方向における前記酸素量に対する炭素量の比率(C/O)の山の数が、2つである。
PCT/JP2014/081825 2013-12-05 2014-12-02 ガスバリアーフィルム及びその製造方法 WO2015083681A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015551511A JPWO2015083681A1 (ja) 2013-12-05 2014-12-02 ガスバリアーフィルム及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013251667 2013-12-05
JP2013-251667 2013-12-05

Publications (1)

Publication Number Publication Date
WO2015083681A1 true WO2015083681A1 (ja) 2015-06-11

Family

ID=53273443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081825 WO2015083681A1 (ja) 2013-12-05 2014-12-02 ガスバリアーフィルム及びその製造方法

Country Status (2)

Country Link
JP (1) JPWO2015083681A1 (ja)
WO (1) WO2015083681A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017185789A (ja) * 2016-03-31 2017-10-12 住友化学株式会社 積層フィルム及びその製造方法
WO2018092657A1 (ja) * 2016-11-18 2018-05-24 コニカミノルタ株式会社 光学フィルム、偏光板保護フィルム、およびこれらを含む偏光板、ならびにこれらを含む表示装置
CN113308940A (zh) * 2021-05-17 2021-08-27 佛山南海力豪包装有限公司 一种等离子体高阻隔纸及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012082466A (ja) * 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd プラズマcvd成膜装置、成膜方法
JP2012082467A (ja) * 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd プラズマcvd成膜装置、成膜方法
JP2012097291A (ja) * 2010-10-29 2012-05-24 Kobe Steel Ltd プラズマcvd装置
JP2012096531A (ja) * 2010-10-08 2012-05-24 Sumitomo Chemical Co Ltd 積層フィルム
JP2014083691A (ja) * 2012-10-19 2014-05-12 Konica Minolta Inc ガスバリアーフィルム及びガスバリアーフィルムの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012082466A (ja) * 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd プラズマcvd成膜装置、成膜方法
JP2012082467A (ja) * 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd プラズマcvd成膜装置、成膜方法
JP2012096531A (ja) * 2010-10-08 2012-05-24 Sumitomo Chemical Co Ltd 積層フィルム
JP2012097291A (ja) * 2010-10-29 2012-05-24 Kobe Steel Ltd プラズマcvd装置
JP2014083691A (ja) * 2012-10-19 2014-05-12 Konica Minolta Inc ガスバリアーフィルム及びガスバリアーフィルムの製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017185789A (ja) * 2016-03-31 2017-10-12 住友化学株式会社 積層フィルム及びその製造方法
JP2021151794A (ja) * 2016-03-31 2021-09-30 住友化学株式会社 積層フィルム及びその製造方法
JP7261837B2 (ja) 2016-03-31 2023-04-20 住友化学株式会社 積層フィルム及びその製造方法
WO2018092657A1 (ja) * 2016-11-18 2018-05-24 コニカミノルタ株式会社 光学フィルム、偏光板保護フィルム、およびこれらを含む偏光板、ならびにこれらを含む表示装置
CN113308940A (zh) * 2021-05-17 2021-08-27 佛山南海力豪包装有限公司 一种等离子体高阻隔纸及其制备方法

Also Published As

Publication number Publication date
JPWO2015083681A1 (ja) 2017-03-16

Similar Documents

Publication Publication Date Title
WO2014123201A1 (ja) ガスバリア性フィルム、およびその製造方法
JP6398986B2 (ja) ガスバリア性フィルム
WO2014203892A1 (ja) ガスバリア性フィルム、およびその製造方法
WO2015083681A1 (ja) ガスバリアーフィルム及びその製造方法
JP6428633B2 (ja) 成膜装置及び成膜方法
WO2015083706A1 (ja) ガスバリア性フィルム及びその製造方法
CN108290376B (zh) 气体阻隔性膜
JP6593343B2 (ja) 成膜装置及び成膜方法
JP2016097500A (ja) ガスバリアーフィルム、その製造方法及びプラズマ化学気相蒸着法用基材
WO2015053189A1 (ja) ガスバリアーフィルム及びその製造方法
JP6354302B2 (ja) ガスバリア性フィルム
JP5895855B2 (ja) ガスバリア性フィルムの製造方法
JPWO2016132901A1 (ja) ガスバリアーフィルム及びその製造方法
WO2016159206A1 (ja) ガスバリアーフィルム及びその製造方法
WO2014125877A1 (ja) ガスバリア性フィルム
WO2015163358A1 (ja) ガスバリアーフィルム及びその製造方法
WO2015137389A1 (ja) ガスバリアーフィルムの製造方法
JP6874775B2 (ja) 電子デバイス
JP6288082B2 (ja) 成膜装置、電極ロールおよびガスバリア性フィルムの製造方法
JP6888623B2 (ja) ガスバリア性フィルムの製造方法
CN108349210B (zh) 气体阻隔膜
JP6579098B2 (ja) ガスバリア性フィルムの製造方法
JP6508054B2 (ja) 成膜方法及び成膜装置
JP2015168238A (ja) 複合積層フィルムの製造方法
WO2017086034A1 (ja) ガスバリアー性フィルム、照明装置及び表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14868425

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015551511

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14868425

Country of ref document: EP

Kind code of ref document: A1