WO2015057000A1 - 열전 재료 및 그 제조 방법 - Google Patents

열전 재료 및 그 제조 방법 Download PDF

Info

Publication number
WO2015057000A1
WO2015057000A1 PCT/KR2014/009749 KR2014009749W WO2015057000A1 WO 2015057000 A1 WO2015057000 A1 WO 2015057000A1 KR 2014009749 W KR2014009749 W KR 2014009749W WO 2015057000 A1 WO2015057000 A1 WO 2015057000A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric material
thermoelectric
present
formula
examples
Prior art date
Application number
PCT/KR2014/009749
Other languages
English (en)
French (fr)
Inventor
고경문
김태훈
박철희
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140131791A external-priority patent/KR101624310B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201480054978.4A priority Critical patent/CN105612625B/zh
Priority to JP2016524118A priority patent/JP6460351B2/ja
Priority to EP14854841.5A priority patent/EP3038175B1/en
Priority to US14/914,617 priority patent/US10038132B2/en
Publication of WO2015057000A1 publication Critical patent/WO2015057000A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Definitions

  • the present invention relates to a thermoelectric conversion technology, and more particularly, to a thermoelectric conversion material having excellent thermoelectric conversion characteristics, a method of manufacturing the same, and a use thereof.
  • Compound A semiconductor is a compound which acts as a semiconductor by combining two or more elements rather than a single element such as silicon or germanium.
  • Various kinds of such compound semiconductors are currently developed and used in various fields.
  • a compound semiconductor may be used in a thermoelectric conversion element using a Peltier effect, a light emitting element such as a light emitting diode or a laser diode using the photoelectric conversion effect, and a solar cell.
  • thermoelectric conversion element may be applied to thermoelectric power generation, thermoelectric conversion cooling, or the like, and is generally configured in such a manner that an N-type thermoelectric semiconductor and a P-type thermoelectric semiconductor are electrically connected in series and thermally in parallel.
  • thermoelectric conversion power generation is a form of power generation that converts thermal energy into electrical energy by using thermoelectric power generated by providing a temperature difference to a thermoelectric conversion element.
  • thermoelectric conversion cooling is a form of cooling which converts electrical energy into thermal energy by taking advantage of the effect that a temperature difference occurs at both ends when a direct current flows through both ends of the thermoelectric conversion element.
  • thermoelectric conversion element The energy conversion efficiency of such a thermoelectric conversion element is largely dependent on ZT which is a figure of merit of a thermoelectric conversion material.
  • ZT may be determined according to Seebeck coefficient, electrical conductivity, thermal conductivity, and the like, and the higher the ZT value, the better the thermoelectric conversion material.
  • thermoelectric conversion materials Although many thermoelectric conversion materials have been proposed so far, there is no situation that sufficient thermoelectric conversion materials having high thermoelectric conversion performance are provided. In particular, in recent years, the field of application for thermoelectric conversion materials is gradually expanding, and the temperature conditions may vary depending on the application field. However, since thermoelectric conversion performance may vary depending on temperature, each thermoelectric conversion material needs to be optimized for thermoelectric conversion performance in a field in which the thermoelectric conversion material is applied. However, it is not yet seen that thermoelectric conversion materials with optimized performance over a wide and wide temperature range are well prepared.
  • an object of the present invention is to provide a thermoelectric material having excellent thermoelectric conversion performance in a wide temperature range, a method of manufacturing the same, and an apparatus using the same.
  • thermoelectric material represented by the following Chemical Formula 1 after repeated studies on the thermoelectric material, and confirmed that the novel thermoelectric conversion material may have excellent thermoelectric conversion performance.
  • the present invention was completed.
  • Q is at least one or more of S and Te, 2 ⁇ x ⁇ 2.6, 0 ⁇ y ⁇ 1.
  • x in Chemical Formula 1 may be x ⁇ 2.2.
  • x in Chemical Formula 1 may be x ⁇ 2.1.
  • x in Chemical Formula 1 may be 2.025 ⁇ x.
  • y in Formula 1 may be y ⁇ 0.1.
  • y in Formula 1 may be y ⁇ 0.05.
  • the method of manufacturing a thermoelectric material according to the present invention may further include a step of sintering the composite after the composite forming step.
  • the pressure sintering step may be performed by a hot press method or a discharge plasma sintering method.
  • thermoelectric conversion element according to the present invention for achieving the above object includes the thermoelectric material according to the present invention.
  • thermoelectric generator according to the present invention for achieving the above object includes the thermoelectric material according to the present invention.
  • thermoelectric material excellent in thermoelectric conversion performance can be provided.
  • thermoelectric material in the thermoelectric material according to an aspect of the present invention, a low thermal diffusivity, a low lattice thermal conductivity, a high Seebeck coefficient and a high ZT value may be ensured in a wide temperature range of 50 ° C to 500 ° C.
  • thermoelectric material according to the present invention can be used as another material in place of or in addition to the conventional thermoelectric material.
  • thermoelectric material according to the present invention can maintain a higher ZT value than the conventional thermoelectric material even at a temperature of 500 ° C. or lower, and even at a low temperature near 200 ° C. Therefore, when the thermoelectric material according to the present invention is used in a thermoelectric device for power generation or the like, stable thermoelectric conversion performance can be ensured even when a material is exposed to a relatively low temperature.
  • thermoelectric material according to the present invention may be used in solar cells, infrared windows (IR windows), infrared sensors, magnetic elements, memories, and the like.
  • FIG. 1 is a flowchart schematically showing a compound semiconductor manufacturing method according to an aspect of the present invention.
  • thermoelectric materials 2 is a graph showing an XRD analysis result for thermoelectric materials according to various embodiments of the present disclosure.
  • FIG. 3 is an enlarged graph of portion A of FIG. 2.
  • thermoelectric materials according to examples and comparative examples of the present invention are thermoelectric materials according to examples and comparative examples of the present invention.
  • thermoelectric material 5 is a graph illustrating a comparison of Seebeck coefficient measurement results according to temperatures of thermoelectric materials according to examples and comparative examples of the present disclosure.
  • thermoelectric materials according to examples and comparative examples of the present disclosure.
  • thermoelectric materials 7 is a graph illustrating a comparison of ZT value measurement results according to temperatures of thermoelectric materials according to examples and comparative examples of the present disclosure.
  • thermoelectric material according to an aspect of the present invention may be represented by the following Chemical Formula 1.
  • Q is at least one or more of S and Te, 2 ⁇ x ⁇ 2.6, 0 ⁇ y ⁇ 1.
  • thermoelectric material according to the present invention is configured in a form in which a part of Se is substituted with Cu and / or Se. That is, the thermoelectric material according to the present invention is composed of a form in which a part of Se site is deficient in Cu-Se based thermoelectric material and S and / or Te are substituted in such deficient site. And, due to such a constitutional feature, the thermoelectric material according to the present invention, the thermoelectric conversion performance can be improved compared to the conventional Cu-Se-based thermoelectric material.
  • thermoelectric material which concerns on this invention is Cu-Se type thermoelectric material containing Cu and Se, and x is larger than two.
  • Chemical Formula 1 it may be preferable to satisfy the condition of x ⁇ 2.2.
  • x ⁇ 2.2 may be.
  • thermoelectric material according to the present invention may satisfy the condition of x ⁇ 2.15.
  • Formula 1 may be configured to satisfy the condition of x ⁇ 2.1.
  • Chemical Formula 1 may satisfy a condition of 2.01 ⁇ x.
  • x may be 2.01 ⁇ x.
  • x may satisfy a condition of 2.025 ⁇ x. Under such conditions, the thermoelectric conversion performance of the thermoelectric material according to the present invention may be further improved.
  • x may be configured to satisfy a condition of 2.04 ⁇ x.
  • x may satisfy a condition of 2.05 ⁇ x.
  • x may be 2.075 ⁇ x.
  • y ⁇ 0.1 may be.
  • y ⁇ 0.075 in Chemical Formula 1, y ⁇ 0.05.
  • thermoelectric material represented by the formula (1) may include a part of the secondary phase, the amount may vary depending on the heat treatment conditions.
  • thermoelectric material according to the present invention when the content of Se is 1 with respect to the Cu-Se-based thermoelectric material, the content of Cu exceeds 2, and a part of Se is replaced with S and / or Te It can be formed as. Therefore, the thermoelectric material according to the present invention, due to such a constitutional feature, compared with the conventional Cu-Se-based thermoelectric material, the Seebeck coefficient is increased, the thermal diffusivity is reduced, ZT value is increased, the thermoelectric conversion performance can be improved. have.
  • thermoelectric material 1 is a flowchart schematically showing a method of manufacturing a thermoelectric material according to an aspect of the present invention.
  • the method of manufacturing a thermoelectric material according to the present disclosure may include a mixture forming step S110 and a compound forming step S120.
  • the mixture forming step (S110) to correspond to the formula (1), it is possible to form a mixture by mixing S and / or Te in addition to Cu and Se as a raw material.
  • each raw material may be mixed in powder form.
  • the mixing between each raw material is made better, the reactivity between each raw material can be improved, the compound synthesis can be made well in step S120.
  • the mixing of each raw material may be performed in the manner of hand milling (ball milling), ball milling (planetary ball mill), etc. using mortar (mortar)
  • the present invention is not limited by this specific mixing method.
  • the compound forming step (S120) is a step of forming a compound according to Chemical Formula 1 by heat-treating the mixture formed in the step S110, that is, Cu x Se 1-y Q y (Q is at least one of S and Te, 2 ⁇ x ⁇ 2.6, 0 ⁇ y ⁇ 1) A step of synthesizing the compound.
  • the mixture produced in step S110 may be put into a furnace and heated at a predetermined temperature for a predetermined time to allow the compound of Formula 1 to be synthesized.
  • step S120 may be performed by a solid phase reaction method.
  • the raw material that is, the mixture used in the synthesis, does not change into a completely liquid state in the synthesis process, and the reaction may occur in the solid state.
  • the step S120 may be performed for 1 hour to 24 hours in the temperature range of 200 °C to 650 °C. Since this temperature range is lower than the melting point of Cu, Cu x Se 1-y Q y may be synthesized when Cu is not melted when heated in this temperature range. For example, the step S120 may be performed for 15 hours under a temperature condition of 450 ° C.
  • a mixture of Cu, Se and S and / or Te is put into a cemented carbide mold to form a pellet for the synthesis of Cu x Se 1-y Q y , and the mixture of pellets is fused. It can be enclosed in a fused silica tube and vacuum sealed. The vacuum-sealed first mixture may be charged into a furnace and heat treated.
  • thermoelectric material manufacturing method according to the present invention after the compound forming step (S120), may further comprise a step (S130) of pressure sintering the compound.
  • step S130 may be performed by a hot press (Hot Press) method or a discharge plasma sintering (Spark Plasma Sintering) method.
  • Hot Press Hot Press
  • spark Plasma Sintering spark Plasma Sintering
  • thermoelectric material according to the present invention when sintered by the pressure sintering method, it is easy to obtain a high sintered density and an effect of improving thermoelectric performance.
  • the pressure sintering step may be performed under a pressure condition of 30MPa to 200MPa.
  • the pressure sintering step may be performed under a temperature condition of 300 °C to 800 °C.
  • the pressure sintering step may be performed for 1 minute to 12 hours under the pressure and temperature conditions.
  • the step S130 may be performed while flowing a gas, such as Ar, He, N 2 , which contains a part of hydrogen or does not contain hydrogen in a vacuum state.
  • a gas such as Ar, He, N 2 , which contains a part of hydrogen or does not contain hydrogen in a vacuum state.
  • the step S130 may be performed by pulverizing the composite formed in the step S120 into a powder form, followed by pressure sintering. In this case, while improving convenience in the sintering and measuring process, the sintered density can be further increased.
  • thermoelectric conversion element according to the present invention may include the above-mentioned thermoelectric material.
  • thermoelectric material according to the present invention can effectively improve the ZT value in a wide temperature range compared to conventional thermoelectric materials, especially Cu-Se-based thermoelectric materials. Therefore, the thermoelectric material according to the present invention can be usefully used in thermoelectric conversion elements in place of or in addition to conventional thermoelectric conversion materials.
  • thermoelectric material according to the present invention can be used in a thermoelectric power generation device that performs thermoelectric power generation using a waste heat source or the like. That is, the thermoelectric generator according to the present invention includes the thermoelectric material according to the present invention described above. In the case of the thermoelectric material according to the present invention, since it shows a high ZT value in a wide temperature range, such as a temperature range of 50 ° C. to 500 ° C., the thermoelectric material may be more usefully applied to thermoelectric power generation.
  • thermoelectric material according to the present invention may be manufactured in the form of a bulk type thermoelectric material.
  • Cu, Se and S in powder form were weighed to conform to the chemical formula of Cu 2.025 Se 0.99 S 0.01 , and then mixed in alumina mortar.
  • the mixed material was placed in a cemented carbide mold to make pellets and placed in a fused silica tube and vacuum sealed. Then, the mixture was heated in a box furnace for 1 hour and then heated for 15 hours at 500 ° C., and then slowly cooled to room temperature to obtain a Cu 2.025 Se 0.99 S 0.01 compound.
  • Example 2 Cu, Se and S in powder form were weighed to conform to the chemical formula of Cu 2.025 Se 0.95 S 0.05 , and then mixed and synthesized in the same manner as in Example 1 to obtain a Cu 2.025 Se 0.95 S 0.05 composite. Then, a sample of Example 2 was obtained through a sintering process in the same manner as in Example 1 above.
  • Example 3 Cu, Se and S in powder form were weighed to conform to the chemical formula of Cu 2.05 Se 0.99 S 0.01 , and then mixed and synthesized in the same manner as in Example 1 to obtain a Cu 2.05 Se 0.99 S 0.01 composite. Then, a sample of Example 3 was obtained through a sintering process in the same manner as in Example 1.
  • Example 4 Cu, Se and S in powder form were weighed to conform to the chemical formula of Cu 2.05 Se 0.95 S 0.05 , and then mixed and synthesized in the same manner as in Example 1 to obtain a Cu 2.05 Se 0.95 S 0.05 composite. Then, a sample of Example 4 was obtained through a sintering process in the same manner as in Example 1.
  • Example 5 Cu, Se and S in powder form were weighed to conform to the chemical formula of Cu 2.1 Se 0.99 S 0.01 , and then mixed and synthesized in the same manner as in Example 1 to obtain a Cu 2.1 Se 0.99 S 0.01 composite. Then, a sample of Example 5 was obtained through a sintering process in the same manner as in Example 1.
  • Example 6 Cu, Se, and S in powder form were weighed according to the chemical formula of Cu 2.1 Se 0.95 S 0.05 , and then mixed and synthesized in the same manner as in Example 1 to obtain a Cu 2.1 Se 0.95 S 0.05 composite. Then, a sample of Example 6 was obtained through a sintering process in the same manner as in Example 1.
  • Example 1 Cu and Se in powder form were weighed to conform to the chemical formula of Cu 2 Se, and then mixed and synthesized in the same manner as in Example 1 to obtain a Cu 2 Se composite. Then, a comparative example sample was obtained through a sintering process in the same manner as in Example 1.
  • thermoelectric materials of Examples 1 to 6 the XRD pattern was analyzed and shown in FIG. 2.
  • portion A of FIG. 2 is enlarged and illustrated in FIG. 3, and in FIG. 3, a Cu peak appearing when Cu is present in a single composition is indicated by B.
  • FIG. 1 For the thermoelectric materials of Examples 1 to 6, the XRD pattern was analyzed and shown in FIG. 2.
  • the portion A of FIG. 2 is enlarged and illustrated in FIG. 3, and in FIG. 3, a Cu peak appearing when Cu is present in a single composition is indicated by B.
  • the samples of Examples 1 to 6 all are formed from the material of the Cu x Se in the form of a portion S is substituted Cu x Se 1-y S y on Se sites, Cu 2 S It can be seen that it is not formed in the form of.
  • thermo diffusivity was measured at predetermined temperature intervals using LFA457 (Netzsch), and the results are shown as Examples 1 to 6 and Comparative Examples 4. Shown in
  • the electrical conductivity and the Seebeck coefficient of the samples were measured at predetermined temperature intervals using ZEM-3 (Ulvac-Riko, Inc), among which The Seebeck coefficient S measurement results are shown in FIG. 5 as Examples 1 to 6 and Comparative Examples.
  • the lattice thermal conductivity ( ⁇ L ) and ZT values of the samples of Examples 1 to 6 and Comparative Examples were calculated and the results are shown in FIGS. 6 and 7, respectively.
  • the lattice thermal conductivity was obtained using the Wiedenmann-Franz Law, and the Lorentz constant used at that time was 1.86 * 10 -8 .
  • the lattice thermal conductivity may be calculated using the following equation.
  • ⁇ L lattice thermal conductivity
  • ⁇ total thermal conductivity
  • ⁇ e thermal conductivity by electrical conductivity
  • T temperature (K).
  • thermoelectric materials of Examples 1 to 6 represented by Cu x Se 1-y S y (2 ⁇ x ⁇ 2.6, 0 ⁇ y ⁇ 1) are compared with the thermoelectric materials of the comparative example. It can be seen that thermal diffusivity is remarkably low over the entire temperature measurement interval of 100 ° C to 500 ° C.
  • thermoelectric material of the comparative example has a thermal diffusivity of more than 0.4 mm 2 / s, while all of the thermoelectric materials of the examples do not exceed 0.4 mm 2 / s.
  • thermoelectric material of the comparative example shows the thermal diffusivity more than twice compared with the thermoelectric materials of Examples 1-6.
  • thermoelectric materials of Examples 2 to 6 have a thermal diffusivity of 0.2 mm 2 / s or less in the temperature range of 100 ° C. to 500 ° C., and thermal diffusion at a level of about one third to one quarter compared to the comparative example. It can be seen that the degree is greatly reduced.
  • thermoelectric materials of Examples 1 to 6 according to the present invention over the entire temperature measurement section of 50 ° C. to 500 ° C., compared to the thermoelectric material of the comparative example. It can be seen that high.
  • thermoelectric material of the comparative example has only a Seebeck coefficient of 120 kW / K or less in the temperature range of 500 ° C, whereas the thermoelectric materials of Examples 1 to 6 all have a Seebeck coefficient of 175 kW / K or more at a temperature of 500 ° C. Is showing.
  • the Seebeck coefficient is at least 220 Pa / K at a temperature of 500 ° C.
  • the Seebeck coefficient is at least 260 Pa / K.
  • the lattice thermal conductivity is greater than 0.4 W / mK in the temperature range of 200 ° C. to 500 ° C., whereas in the thermoelectric material of Examples 1 to 6, the same The lattice thermal conductivity is less than 0.4 W / mK over the temperature range.
  • thermoelectric material of the comparative example at a temperature of 200 °C shows a lattice thermal conductivity of approximately 0.65 W / mK
  • thermoelectric material of Examples 1 to 6 shows a lattice thermal conductivity of 0.4 W / mK, a large difference It is shown.
  • thermoelectric material of Example 2 has a lattice thermal conductivity of about 0.25 W / mK at a temperature of 200 ° C., which has a very low lattice thermal conductivity compared to the comparative example.
  • thermoelectric material of the example exhibits a ZT value improvement effect of about 2 to 3 times in the temperature range of 200 ° C. to 500 ° C. as compared to the thermoelectric material of the comparative example. Can be.
  • the ZT value of the comparative example is only about 0.15, while the ZT values of Examples 1 to 6 show values of 0.35 or more, and in particular, the ZT values of Examples 2 to 6 are 0.5 or more. The value is shown. Moreover, in Examples 2 and 3, the ZT value is approximately 0.6, which is about 4 times that of the comparative example.
  • the ZT value of the comparative example is about 0.25 or less, whereas the ZT values of Examples 1 to 6 show a larger value than 0.5, and particularly, in Examples 2 to 6, the ZT value is 0.7 or more. It is shown. Moreover, in Examples 2 and 3, the ZT value has a value larger than 0.8, which shows a great difference from the comparative example.
  • the ZT value of the comparative example was about 0.35 or less, while the ZT values of Examples 1 to 6 showed values of 0.8 or more and more than 1.0, showing a difference of two or more times. Moreover, in the case of Example 2, the ZT value showed a value close to 1.1, which shows a big difference from the comparative example.
  • the ZT value of the comparative example is about 0.5, while the ZT values of Examples 1 to 6 show values of 0.9 or more, more than 1.0. In particular, in the case of Example 2, ZT value has shown the value of 1.25 or more.
  • thermoelectric material according to each embodiment of the present invention compared with the thermoelectric material of the comparative example, the thermal diffusivity is significantly lowered and the Seebeck coefficient is increased over the entire temperature range of 100 °C to 500 °C, ZT value It can be seen that the back is significantly improved. Therefore, it can be said that the thermoelectric material according to the present invention is excellent in thermoelectric conversion performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

본 발명은 열전 성능이 우수한 열전 재료를 개시한다. 본 발명에 따른 열전 재료는, 다음과 같은 화학식 1로 표시될 수 있다. <화학식 1> CuxSe1-yQy 상기 화학식 1에서, Q는 S 및 Te 중 적어도 하나 이상이고, 2<x≤2.6, 0<y<1이다.

Description

열전 재료 및 그 제조 방법
본 발명은 열전 변환 기술에 관한 것으로, 보다 상세하게는 열전 변환 특성이 우수한 열전 변환 물질 및 그 제조방법과, 이를 이용한 용도에 관한 것이다.
본 출원은 2013년 10월 17일자로 출원된 한국 특허출원 번호 제10-2013-0124024호 및 2014년 9월 30일자로 출원된 한국 특허출원 번호 제10-2014-0131791호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
화합물 반도체는 실리콘이나 게르마늄과 같은 단일 원소가 아닌 2종 이상의 원소가 결합되어 반도체로서 동작하는 화합물이다. 이러한 화합물 반도체는 현재 다양한 종류가 개발되어 다양한 분야에서 사용되고 있다. 대표적으로, 펠티어 효과(Peltier Effect)를 이용한 열전 변환 소자, 광전 변환 효과를 이용한 발광 다이오드나 레이저 다이오드 등의 발광 소자와 태양 전지 등에 화합물 반도체가 이용될 수 있다.
특히, 열전 변환 소자는 열전 변환 발전이나 열전 변환 냉각 등에 적용될 수 있는데, 일반적으로는 N 타입 열전 반도체와 P 타입 열전 반도체가 전기적으로는 직렬로, 열적으로는 병렬로 연결되는 방식으로 구성된다. 이 중 열전 변환 발전은, 열전 변환 소자에 온도차를 둠으로써 발생하는 열기전력을 이용하여, 열 에너지를 전기 에너지로 변환시키는 발전 형태이다. 그리고, 열전 변환 냉각은, 열전 변환 소자의 양단에 직류 전류를 흘렸을 때, 양단에서 온도 차가 발생하는 효과를 이용하여, 전기 에너지를 열 에너지로 변환시키는 냉각 형태이다.
이러한 열전 변환 소자의 에너지 변환 효율은 대체로 열전 변환 재료의 성능 지수 값인 ZT에 의존한다고 할 수 있다. 여기서, ZT는 제벡(Seebeck) 계수, 전기 전도도 및 열 전도도 등에 따라 결정될 수 있는데, ZT값이 높을수록 성능이 우수한 열전 변환 재료라고 할 수 있다.
지금까지 많은 열전 변환 재료가 제안되고 있지만, 열전 변환 성능이 높은 열전 변환 재료가 충분히 마련되어 있다고는 볼 수 없는 실정이다. 특히, 최근에는 열전 변환 재료에 대한 적용 분야는 점차 확장되어 가고 있으며, 적용 분야마다 온도 조건이 달라질 수 있다. 그런데, 열전 변환 재료는 온도에 따라 열전 변환 성능이 달라질 수 있으므로, 각각의 열전 변환 재료는 해당 열전 변환 재료가 적용된 분야에서 열전 변환 성능이 최적화될 필요가 있다. 하지만, 아직까지, 다양하고 넓은 온도 범위에서 최적화된 성능을 갖는 열전 변환 재료가 제대로 마련되어 있다고는 볼 수 없다.
따라서, 본 발명은 상기와 같은 문제점을 해결하기 위해 창안된 것으로서, 넓은 온도 영역대에서 우수한 열전 변환 성능을 갖는 열전 재료와 그 제조 방법, 및 이를 이용한 장치 등을 제공하는 것을 목적으로 한다.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
상기와 같은 목적을 달성하기 위해, 본 발명자는 열전 재료에 관한 거듭된 연구 끝에 하기 화학식 1로 표시되는 열전 재료를 합성하는데 성공하고, 이러한 신규한 열전 변환 재료가 우수한 열전변환성능을 가질 수 있음을 확인하여 본 발명을 완성하였다.
<화학식 1>
CuxSe1-yQy
상기 화학식 1에서, Q는 S 및 Te 중 적어도 하나 이상이고, 2<x≤2.6, 0<y<1이다.
여기서, 상기 화학식 1의 x는, x≤2.2일 수 있다.
또한, 상기 화학식 1의 x는, x≤2.1일 수 있다.
또한, 상기 화학식 1의 x는, 2.025≤x일 수 있다.
또한, 상기 화학식 1의 y는, y<0.1일 수 있다.
또한, 상기 화학식 1의 y는, y≤0.05일 수 있다.
또한 상기와 같은 목적을 달성하기 위한 본 발명에 따른 열전 재료 제조 방법은, 상기 화학식 1에 대응되도록 Cu, Se 및 Q를 칭량하여 혼합함으로써 혼합물을 형성하는 단계; 및 상기 혼합물을 열처리하여 상기 화학식 1로 표시되는 화합물을 합성하는 단계를 포함한다.
여기서, 본 발명에 따른 열전 재료 제조 방법은, 상기 합성물 형성 단계 후, 상기 합성물을 가압 소결하는 단계를 더 포함할 수 있다.
또한, 상기 가압 소결 단계는, 핫 프레스 방식 또는 방전 플라즈마 소결 방식에 의해 수행될 수 있다.
또한 상기와 같은 목적을 달성하기 위한 본 발명에 따른 열전 변환 소자는, 본 발명에 따른 열전 재료를 포함한다.
또한 상기와 같은 목적을 달성하기 위한 본 발명에 따른 열전 발전 장치는, 본 발명에 따른 열전 재료를 포함한다.
본 발명에 의하면, 열전 변환 성능이 우수한 열전 재료가 제공될 수 있다.
특히, 본 발명의 일 측면에 따른 열전 재료는, 50℃ 내지 500℃의 중저온의 넓은 온도 범위에서 낮은 열확산도 및 낮은 격자 열전도도, 높은 제백 계수 및 높은 ZT값이 확보될 수 있다.
따라서, 본 발명에 따른 열전 재료는 종래의 열전 재료를 대체하거나 종래의 열전 재료에 더하여 또 다른 하나의 소재로서 사용될 수 있다.
더욱이, 본 발명에 따른 열전 재료는, 500℃ 이하의 온도, 더욱이 200℃ 부근의 저온에서도 종래 열전 재료에 비해 높은 ZT값이 유지될 수 있다. 따라서, 본 발명에 따른 열전 재료는, 발전용 열전 장치 등에 이용될 경우, 비교적 낮은 온도에 노출되는 재료의 경우에도 안정적인 열전 변환 성능이 확보될 수 있다.
또한, 본 발명에 따른 열전 재료는, 태양 전지나 적외선 윈도우(IR window), 적외선 센서, 마그네틱 소자, 메모리 등에도 이용될 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술하는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은, 본 발명의 일 측면에 따른 화합물 반도체 제조 방법을 개략적으로 나타내는 흐름도이다.
도 2는, 본 발명의 여러 실시예에 따른 열전 재료에 대하여, XRD 분석 결과를 나타낸 그래프이다.
도 3은, 도 2의 A 부분을 확대하여 나타낸 그래프이다.
도 4는, 본 발명의 실시예 및 비교예에 따른 열전 재료의 온도에 따른 열확산도 측정 결과를 비교하여 나타낸 그래프이다.
도 5는, 본 발명의 실시예 및 비교예에 따른 열전 재료의 온도에 따른 제백 계수 측정 결과를 비교하여 나타낸 그래프이다.
도 6은, 본 발명의 실시예 및 비교예에 따른 열전 재료의 온도에 따른 격자 열전도도 측정 결과를 비교하여 나타낸 그래프이다.
도 7은, 본 발명의 실시예 및 비교예에 따른 열전 재료의 온도에 따른 ZT값 측정 결과를 비교하여 나타낸 그래프이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상에 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본 발명의 일 측면에 따른 열전재료는, 다음과 같은 화학식 1로 표시될 수 있다.
<화학식 1>
CuxSe1-yQy
상기 화학식 1에서, Q는 S 및 Te 중 적어도 하나 이상이고, 2<x≤2.6, 0<y<1이다.
우선, 본 발명에 따른 열전 재료는, Se의 일부가 Cu 및/또는 Se로 치환된 형태로 구성된다. 즉, 본 발명에 따른 열전 재료는, Cu-Se계 열전 재료에서 Se 사이트의 일부가 결핍되고 그러한 결핍 사이트에 S 및/또는 Te가 치환된 형태로 구성된다. 그리고, 이러한 구성적 특징으로 인해, 본 발명에 따른 열전 재료는, 기존의 Cu-Se계 열전 재료에 비해 열전 변환 성능이 향상될 수 있다.
또한, 본 발명에 따른 열전 재료는, Cu 및 Se를 포함하는 Cu-Se계 열전 재료로서, x가 2보다 크다.
바람직하게는, 상기 화학식 1에서, x≤2.2의 조건을 만족하는 것이 좋을 수 있다. 특히, 상기 화학식 1에서, x<2.2일 수 있다.
더욱 바람직하게는, 상기 화학식 1에서, 본 발명에 따른 열전 재료는, x≤2.15의 조건을 만족하는 것이 좋다.
특히, 상기 화학식 1은, x≤2.1의 조건을 만족하도록 구성될 수 있다.
또한, 상기 화학식 1은, 2.01≤x의 조건을 만족할 수 있다. 특히, 상기 화학식 1에서, x는 2.01<x일 수 있다.
더욱이, 상기 화학식 1에서, x는 2.025≤x의 조건을 만족할 수 있다. 이와 같은 조건에서 본 발명에 따른 열전 재료의 열전 변환 성능이 더욱 향상될 수 있다.
특히, 상기 화학식 1에서, x는 2.04<x의 조건을 만족하도록 구성될 수 있다.
더욱이, 상기 화학식 1에서, x는 2.05≤x의 조건을 만족할 수 있다.
또한, 상기 화학식 1에서, x는 2.075≤x일 수 있다.
또한, 상기 화학식 1에서, y<0.1일 수 있다. 특히, 상기 화학식 1에서, y≤0.075일 수 있다. 더욱이, 상기 화학식 1에서, y≤0.05일 수 있다.
한편, 상기 화학식 1로 표시되는 열전 재료에는, 2차상이 일부 포함될 수 있으며, 그 양은 열처리 조건에 따라 달라질 수 있다.
이처럼, 본 발명에 따른 열전 재료는, Cu-Se계 열전 재료에 대하여, Se의 함량을 1로 할 때, Cu의 함량이 2를 초과하고, Se의 일부가 S 및/또는 Te로 치환된 구성으로 형성될 수 있다. 따라서, 본 발명에 따른 열전 재료는, 이러한 구성적 특징으로 인해, 종래의 Cu-Se계 열전 재료에 비해 제백 계수가 증가하고 열확산도가 감소하며, ZT값이 증가하여 열전변환성능이 개선될 수 있다.
도 1은, 본 발명의 일 측면에 따른 열전 재료 제조 방법을 개략적으로 나타내는 흐름도이다.
도 1을 참조하면, 본 발명에 따른 열전 재료를 제조하는 방법은, 혼합물 형성 단계(S110) 및 합성물 형성 단계(S120)를 포함할 수 있다.
상기 혼합물 형성 단계(S110)는, 상기 화학식 1에 대응되도록, 원료로서 Cu 및 Se 이외에 S 및/또는 Te를 혼합하여 혼합물을 형성할 수 있다.
여기서, 상기 S110 단계는, 각 원료를 분말 형태로 혼합할 수 있다. 이 경우, 각 원료 간 혼합이 보다 잘 이루어져, 각 원료 간 반응성이 향상될 수 있으므로, S120 단계에서 화합물 합성이 잘 이루어질 수 있다.
또한, 상기 혼합물 형성 단계(S110)에서, 각 원료의 혼합은, 몰타르(mortar)를 이용한 핸드 밀링(hand milling), 볼 밀링(ball milling), 유성 볼밀(planetary ball mill) 등의 방식으로 수행될 수 있는데, 다만 본 발명이 이러한 구체적인 혼합 방식에 의해 제한되는 것은 아니다.
상기 합성물 형성 단계(S120)는, 상기 S110 단계에서 형성된 혼합물을 열처리함으로써 상기 화학식 1에 따른 합성물을 형성하는 단계, 즉 CuxSe1-yQy(Q는 S 및 Te 중 적어도 하나 이상, 2<x≤2.6, 0<y<1) 합성물을 합성하는 단계이다. 여기서, 상기 S120 단계는, S110 단계에서 생성된 혼합물을 퍼니스(furnace)에 투입하여 소정 온도에서 소정 시간 동안 가열함으로써, 화학식 1의 화합물이 합성되도록 할 수 있다.
바람직하게는, 상기 S120 단계는, 고체상 반응 방식으로 수행될 수 있다. 이러한 고체상 반응 방식에 의한 합성의 경우, 합성에 이용되는 원재료, 즉 혼합물이 합성 과정에서 완전한 액체 상태로 변하지 않고, 고체 상태에서 반응이 일어날 수 있다.
예를 들어, 상기 S120 단계는, 200℃ 내지 650℃의 온도 범위에서 1시간 내지 24시간 동안 수행될 수 있다. 이러한 온도 범위는 Cu의 녹는점보다 낮기 때문에, 이러한 온도 범위에서 가열되는 경우, Cu는 녹지 않은 상태에서 CuxSe1-yQy가 합성될 수 있다. 예를 들어, 상기 S120 단계는, 450℃의 온도 조건 하에서 15시간 동안 수행될 수 있다.
상기 S120 단계에서, CuxSe1-yQy 합성을 위해 Cu, Se와 S 및/또는 Te의 혼합물은 초경 몰드에 넣어져 펠렛(pellet) 형태로 만들어지고, 이러한 펠렛 형태의 혼합물은 퓨즈드 실리카 튜브(fused silica tube) 안에 넣어져 진공 밀봉될 수 있다. 그리고, 이와 같이 진공 밀봉된 제1 혼합물은 퍼니스에 투입되어 열처리될 수 있다.
바람직하게는, 본 발명에 따른 열전 재료 제조 방법은, 도 1에 도시된 바와 같이, 합성물 형성 단계(S120) 이후에, 상기 합성물을 가압 소결하는 단계(S130)를 더 포함할 수 있다.
여기서, 상기 S130 단계는, 핫 프레스(Hot Press; HP) 방식이나 방전 플라즈마 소결(Spark Plasma Sintering; SPS) 방식에 의해 수행되는 것이 좋다. 본 발명에 따른 열전 재료의 경우, 이러한 가압 소결 방식에 의해 소결될 때, 높은 소결 밀도와 열전 성능 향상 효과를 얻기 용이할 수 있다.
예를 들어, 상기 가압 소결 단계는, 30MPa 내지 200MPa의 압력 조건 하에서 수행될 수 있다. 또한, 상기 가압 소결 단계는 300℃ 내지 800℃의 온도 조건 하에서 수행될 수 있다. 그리고, 상기 가압 소결 단계는, 상기 압력 및 온도 조건 하에서 1분 내지 12시간 동안 수행될 수 있다.
또한, 상기 S130 단계는, 진공 상태, 또는 수소를 일부 포함하고 있거나 수소를 포함하지 않는 Ar, He, N2 등의 기체를 흘리면서 수행될 수 있다.
또한 바람직하게는, 상기 S130 단계는, 상기 S120 단계에서 형성된 합성물을 분말 형태로 분쇄한 후, 가압 소결하는 방식으로 수행될 수 있다. 이 경우, 소결 및 측정 과정에서 편의성을 향상시키는 한편, 소결 밀도를 더욱 증가시킬 수 있다.
본 발명에 따른 열전 변환 소자는, 상술한 열전 재료를 포함할 수 있다. 특히, 본 발명에 따른 열전 재료는, 종래의 열전 재료, 특히 Cu-Se계 열전 재료에 비해 넓은 온도 범위에서 ZT값이 효과적으로 향상될 수 있다. 그러므로, 본 발명에 따른 열전 재료는, 종래의 열전 변환 재료를 대체하거나 종래의 열전 재료에 더하여 열전 변환 소자에 유용하게 이용될 수 있다.
더욱이, 본 발명에 따른 열전 재료는, 폐열원 등을 이용하여 열전 발전을 하는 열전 발전 장치에 이용될 수 있다. 즉, 본 발명에 따른 열전 발전 장치는, 상술한 본 발명에 따른 열전 재료를 포함한다. 본 발명에 따른 열전 재료의 경우, 50℃ 내지 500℃의 온도 영역대와 같이, 넓은 온도 범위에서 높은 ZT값을 보이므로, 열전 발전에 더욱 유용하게 적용될 수 있다.
또한, 본 발명에 따른 열전 재료는, 벌크형 열전 재료 형태로 제조될 수도 있다.
이하, 본 발명을 보다 구체적으로 설명하기 위해 실시예 및 비교예를 들어 상세하게 설명하기로 한다. 다만, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예 1
파우더 형태의 Cu, Se 및 S를 Cu2.025Se0.99S0.01의 화학식에 맞도록 칭량한 후, 알루미나 몰타르(alumina mortar)에 넣고 혼합하였다. 혼합된 재료는 초경 몰드에 넣어 펠렛을 만들고 퓨즈드 실리카 튜브(fused silica tube)에 넣고 진공 밀봉하였다. 그리고, 이를 박스 퍼니스(box furnace)에 넣어 500℃로 1시간 승온 후 15시간 동안 가열하였고, 가열 후에는 실온까지 천천히 식혀 Cu2.025Se0.99S0.01 합성물을 얻었다.
그리고, 이러한 합성물을 그라파이트 몰드에 충진한 후, 500℃, 50MPa의 조건으로, 진공 상태에서 10분 간 방전 플라즈마 소결(SPS)하여 실시예 1 시료를 얻었다. 이때, 소결 밀도는 이론값 대비 98% 이상이 되도록 하였다.
실시예 2
파우더 형태의 Cu, Se 및 S를 Cu2.025Se0.95S0.05의 화학식에 맞도록 칭량한 후, 상기 실시예 1과 동일한 방식으로 혼합 및 합성 과정을 거쳐 Cu2.025Se0.95S0.05 합성물을 얻었다. 그리고, 이에 대하여 상기 실시예 1과 동일한 방식으로 소결 과정을 거쳐 실시예 2 시료를 얻었다.
실시예 3
파우더 형태의 Cu, Se 및 S를 Cu2.05Se0.99S0.01의 화학식에 맞도록 칭량한 후, 상기 실시예 1과 동일한 방식으로 혼합 및 합성 과정을 거쳐 Cu2.05Se0.99S0.01 합성물을 얻었다. 그리고, 이에 대하여 상기 실시예 1과 동일한 방식으로 소결 과정을 거쳐 실시예 3 시료를 얻었다.
실시예 4
파우더 형태의 Cu, Se 및 S를 Cu2.05Se0.95S0.05의 화학식에 맞도록 칭량한 후, 상기 실시예 1과 동일한 방식으로 혼합 및 합성 과정을 거쳐 Cu2.05Se0.95S0.05 합성물을 얻었다. 그리고, 이에 대하여 상기 실시예 1과 동일한 방식으로 소결 과정을 거쳐 실시예 4 시료를 얻었다.
실시예 5
파우더 형태의 Cu, Se 및 S를 Cu2.1Se0.99S0.01의 화학식에 맞도록 칭량한 후, 상기 실시예 1과 동일한 방식으로 혼합 및 합성 과정을 거쳐 Cu2.1Se0.99S0.01 합성물을 얻었다. 그리고, 이에 대하여 상기 실시예 1과 동일한 방식으로 소결 과정을 거쳐 실시예 5 시료를 얻었다.
실시예 6
파우더 형태의 Cu, Se 및 S를 Cu2.1Se0.95S0.05의 화학식에 맞도록 칭량한 후, 상기 실시예 1과 동일한 방식으로 혼합 및 합성 과정을 거쳐 Cu2.1Se0.95S0.05 합성물을 얻었다. 그리고, 이에 대하여 상기 실시예 1과 동일한 방식으로 소결 과정을 거쳐 실시예 6 시료를 얻었다.
비교예
파우더 형태의 Cu 및 Se를 Cu2Se의 화학식에 맞도록 칭량한 후, 상기 실시예 1과 동일한 방식으로 혼합 및 합성 과정을 거쳐 Cu2Se 합성물을 얻었다. 그리고, 이에 대하여 상기 실시예 1과 동일한 방식으로 소결 과정을 거쳐 비교예 시료를 얻었다.
이러한 실시예 1~6의 열전 재료에 대하여, XRD 패턴을 분석하고, 이를 도 2에 나타내었다. 그리고, 도 2의 A 부분을 확대하여, 도 3에 나타내었으며, 도 3에는 Cu가 단일 조성으로 존재할 때 나타나는 Cu 피크가 B로 표시되어 있다.
도 1 및 도 2를 참조하면, 실시예 1~6의 시료가 Cu2Se 모노클리닉 메인 페이즈(monoclinic main phase)를 형성하고, Cu가 초과하는 정도의 경향에 따라서 Cu 피크가 성장한다는 것을 알 수 있다. 그리고, 이외에 다른 2차상은 관찰되지 않고 있다.
따라서, 이러한 측정 결과에 의하면, 실시예 1~6의 시료는 모두, CuxSe의 재료에서 Se 사이트의 일부에 S가 치환된 CuxSe1-ySy의 형태로 형성되고, Cu2S의 형태로는 형성되지 않았음을 알 수 있다.
또한, 실시예 1~6 시료 및 비교예 시료에 대해서는, LFA457(Netzsch)를 사용하여 소정 온도 간격으로 열 확산도(TD)를 측정하였고, 그 결과를 실시예 1~6 및 비교예로서 도 4에 도시하였다.
그리고, 상기 실시예 1~6 시료 및 비교예 시료 각각의 다른 일부에 대하여, ZEM-3(Ulvac-Riko, Inc)를 사용하여 소정 온도 간격으로 시료의 전기 전도도와 제백 계수를 측정하였고, 그 중 제백 계수(S) 측정 결과에 대해서는 실시예 1~6 및 비교예로서 도 5에 도시하였다.
또한, 상기 실시예 1~6 시료 및 비교예 시료 각각에 대하여, 온도에 따른 격자 열전도도(κL) 및 ZT값을 계산하고 그 결과를 각각 도 6 및 도 7에 도시하였다. 특히, 격자 열전도도는, 비데만-프란츠 법칙(Wiedemann-Franz Law)을 이용하여 구했으며, 그때 사용한 로렌츠 상수는 1.86*10-8이다. 보다 구체적으로, 격자 열전도도는 다음과 같은 수식을 이용하여 계산될 수 있다.
κL = κtotal - κe
여기서, κL은 격자 열전도도, κtotal은 열 전도도, κe는 전기전도도에 의한 열 전도도를 나타낸다고 할 수 있다. 그리고, κe는 다음과 같이 표현될 수 있다.
κe = σLT
여기서, σ는 전기 전도도를 의미하고, L은 로렌츠 상수로서, 1.86 E-8을 나타낸다. 또한, T는 온도(K)를 의미한다.
먼저, 도 4의 결과를 참조하면, CuxSe1-ySy(2<x≤2.6, 0<y<1)로 표시되는 실시예 1~6의 열전 재료는, 비교예의 열전 재료에 비해, 100℃ 내지 500℃의 전체 온도 측정 구간에 걸쳐 열확산도가 현저하게 낮다는 것을 알 수 있다.
보다 구체적으로, 비교예의 열전 재료는 열확산도가 0.4 mm2/s 초과인 반면, 실시예의 열전 재료는 모두 열확산도가 0.4 mm2/s를 넘지 않고 있다. 더욱이, 비교예의 열전 재료는 실시예 1~6의 열전 재료에 비해, 2배 이상의 열확산도를 보이고 있다. 특히, 실시예 2~6의 열전 재료는, 100℃ 내지 500℃의 온도 범위에서 열확산도가 모두 0.2 mm2/s 이하로서, 비교예에 비해 대략 3분의 1에서 4분의 1 수준으로 열확산도가 크게 감소함을 알 수 있다.
다음으로, 도 5의 결과를 참조하면, 본 발명에 따른 실시예 1~6의 열전 재료가 비교예의 열전 재료에 비해, 50℃ 내지 500℃의 전체 온도 측정 구간에 걸쳐 제백계수(S)가 현저하게 높음을 알 수 있다.
대표적으로, 비교예의 열전 재료는 500℃의 온도 범위에서 제백계수가 120 ㎶/K 이하에 불과한 반면, 실시예 1~6의 열전 재료는 모두 500℃의 온도에서 제백계수가 175 ㎶/K 이상의 값을 보이고 있다. 특히, 실시예 2~6의 경우, 500℃의 온도에서 제백계수가 220 ㎶/K 이상이며, 더욱이, 실시예 3~6의 경우, 제백계수가 260 ㎶/K 이상이다.
또한, 도 6의 결과를 참조하면, 비교예의 열전 재료의 경우, 200℃ 내지 500℃의 온도 범위에서 격자 열전도도가 0.4 W/mK보다 큰 반면, 실시예 1~6의 열전 재료의 경우, 동일한 온도 범위에서 격자 열전도도가 0.4 W/mK보다 작은 값을 보이고 있다.
특히, 200℃의 온도에서 비교예의 열전 재료는, 대략 0.65 W/mK의 격자 열전도도를 보이는 반면, 실시예 1~6의 열전 재료는, 0.4 W/mK의 격자 열전도도를 보여, 큰 차이를 나타내고 있다. 더욱이, 실시예 2의 열전 재료는, 200℃의 온도에서 대략 0.25 W/mK 정도의 격자 열전도도를 보여 비교예에 비해 매우 낮은 격자 열전도도를 가짐을 알 수 있다.
다음으로, 도 7의 결과를 참조하면, 실시예의 열전 재료의 경우, 비교예의 열전 재료에 비해 200℃ 내지 500℃의 온도 범위에서 대체로 2배 내지 3배 가량의 ZT값 향상 효과를 나타내고 있음을 알 수 있다.
예를 들어, 200℃의 온도에서, 비교예의 ZT값은 대략 0.15 정도에 불과한 반면, 실시예 1~6의 ZT값은 0.35 이상의 값을 보이고 있으며, 특히 실시예 2~6의 ZT값은 0.5 이상의 값을 나타내고 있다. 더욱이, 실시예 2 및 3의 경우, ZT값이 대략 0.6으로서 비교예에 비해 대략 4배 정도의 값을 보이고 있다.
또한, 300℃의 온도에서, 비교예의 ZT값은 대략 0.25 이하인 반면, 실시예 1~6의 ZT값은 0.5보다 큰 값을 보이고 있으며, 특히 실시예 2~6의 경우 ZT값이 0.7 이상의 값을 나타내고 있다. 더욱이, 실시예 2 및 3의 경우, ZT값이 0.8보다 큰 값을 가짐으로써, 비교예와 큰 차이를 보이고 있다.
또한, 400℃의 온도에서, 비교예의 ZT값은 대략 0.35 이하인 반면, 실시예 1~6의 ZT값은 0.8 이상, 많게는 1.0 이상의 값을 보이고 있어, 2배 이상의 차이를 보이고 있다. 더욱이, 실시예 2의 경우, ZT값이 1.1에 가까운 값을 보여, 비교예와는 큰 차이를 나타내고 있다.
그리고, 500의 온도에서, 비교예의 ZT값은 대략 0.5 정도인 반면, 실시예 1~6의 ZT값은 0.9 이상, 많게는 1.0 이상의 값을 보이고 있다. 특히, 실시예 2의 경우에는, ZT값이 1.25 이상의 값을 나타내고 있다.
이상의 결과를 종합하면, 본 발명의 각 실시예에 따른 열전 재료는, 비교예의 열전 재료에 비해, 100℃ 내지 500℃의 전체 온도 구간에 걸쳐, 열확산도가 크게 낮아지고 제백 계수가 높아지며, ZT값 등이 현저하게 향상됨을 알 수 있다. 그러므로, 본 발명에 따른 열전 재료는 열전 변환 성능이 뛰어나다고 할 수 있다.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.

Claims (11)

  1. 하기 화학식 1로 표시되는 열전 재료.
    <화학식 1>
    CuxSe1-yQy
    상기 화학식 1에서, Q는 S 및 Te 중 적어도 하나 이상이고, 2<x≤2.6, 0<y<1이다.
  2. 제1항에 있어서,
    상기 화학식 1의 x는, x≤2.2인 것을 특징으로 하는 열전 재료.
  3. 제1항에 있어서,
    상기 화학식 1의 x는, x≤2.1인 것을 특징으로 하는 열전 재료.
  4. 제1항에 있어서,
    상기 화학식 1의 x는, 2.025≤x인 것을 특징으로 하는 열전 재료.
  5. 제1항에 있어서,
    상기 화학식 1의 y는, y<0.1인 것을 특징으로 하는 열전 재료.
  6. 제1항에 있어서,
    상기 화학식 1의 y는, y≤0.05인 것을 특징으로 하는 열전 재료.
  7. 제1항의 화학식 1에 대응되도록 Cu, Se 및 Q를 칭량하여 혼합함으로써 혼합물을 형성하는 단계; 및
    상기 혼합물을 열처리하여 상기 화학식 1로 표시되는 화합물을 합성하는 단계
    를 포함하는 것을 특징으로 하는 제1항의 열전 재료 제조 방법.
  8. 제7항에 있어서,
    상기 합성물 형성 단계 후, 상기 합성물을 가압 소결하는 단계를 더 포함하는 것을 특징으로 하는 열전 재료 제조 방법.
  9. 제8항에 있어서,
    상기 가압 소결 단계는, 핫 프레스 방식 또는 방전 플라즈마 소결 방식에 의해 수행되는 것을 특징으로 하는 열전 재료 제조 방법.
  10. 제1항 내지 제6항 중 어느 한 항에 따른 열전 재료를 포함하는 열전 변환 소자.
  11. 제1항 내지 제6항 중 어느 한 항에 따른 열전 재료를 포함하는 열전 발전 장치.
PCT/KR2014/009749 2013-10-17 2014-10-16 열전 재료 및 그 제조 방법 WO2015057000A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480054978.4A CN105612625B (zh) 2013-10-17 2014-10-16 热电材料及其制造方法
JP2016524118A JP6460351B2 (ja) 2013-10-17 2014-10-16 熱電材料及びその製造方法
EP14854841.5A EP3038175B1 (en) 2013-10-17 2014-10-16 Thermoelectric materials and their manufacturing method
US14/914,617 US10038132B2 (en) 2013-10-17 2014-10-16 Thermoelectric materials and their manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0124024 2013-10-17
KR20130124024 2013-10-17
KR1020140131791A KR101624310B1 (ko) 2013-10-17 2014-09-30 열전 재료 및 그 제조 방법
KR10-2014-0131791 2014-09-30

Publications (1)

Publication Number Publication Date
WO2015057000A1 true WO2015057000A1 (ko) 2015-04-23

Family

ID=52828374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009749 WO2015057000A1 (ko) 2013-10-17 2014-10-16 열전 재료 및 그 제조 방법

Country Status (1)

Country Link
WO (1) WO2015057000A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115010495A (zh) * 2022-05-31 2022-09-06 河南工程学院 一种快速合成铜硒基块体热电材料的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030057512A1 (en) * 2001-08-31 2003-03-27 Hans-Josef Sterzel Thermoelectrically active materials and generators and peltier arrangements containing them
EP1930960A1 (en) * 2006-12-04 2008-06-11 Aarhus Universitet Use of thermoelectric materials for low temperature thermoelectric purposes
US20100051080A1 (en) * 2008-07-18 2010-03-04 Samsung Electronics Co., Ltd. Thermoelectric materials and chalcogenide compounds
US20100307556A1 (en) * 2007-10-18 2010-12-09 Lg Chem, Ltd Process for preparation of compound containing 6a group element using reductant
US20130009115A1 (en) * 2011-05-13 2013-01-10 Lg Chem, Ltd. Compound semiconductors and their application

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030057512A1 (en) * 2001-08-31 2003-03-27 Hans-Josef Sterzel Thermoelectrically active materials and generators and peltier arrangements containing them
EP1930960A1 (en) * 2006-12-04 2008-06-11 Aarhus Universitet Use of thermoelectric materials for low temperature thermoelectric purposes
US20100307556A1 (en) * 2007-10-18 2010-12-09 Lg Chem, Ltd Process for preparation of compound containing 6a group element using reductant
US20100051080A1 (en) * 2008-07-18 2010-03-04 Samsung Electronics Co., Ltd. Thermoelectric materials and chalcogenide compounds
US20130009115A1 (en) * 2011-05-13 2013-01-10 Lg Chem, Ltd. Compound semiconductors and their application

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3038175A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115010495A (zh) * 2022-05-31 2022-09-06 河南工程学院 一种快速合成铜硒基块体热电材料的方法

Similar Documents

Publication Publication Date Title
WO2015050420A1 (ko) 신규한 화합물 반도체 및 그 활용
WO2015080527A1 (ko) 신규한 화합물 반도체 및 그 활용
KR101624310B1 (ko) 열전 재료 및 그 제조 방법
WO2015057019A1 (ko) 열전 재료 및 그 제조 방법
WO2011122888A2 (en) Thermoelectric material, and thermoelectric module and thermoelectric device including the thermoelectric material
WO2015034317A1 (ko) 열전 재료 및 그 제조 방법
WO2012026775A2 (en) Thermoelectric material, and thermoelectric module and thermoelectric device comprising the thermoelectric material
WO2015046810A1 (ko) 신규한 화합물 반도체 및 그 활용
WO2017014583A1 (ko) 화합물 반도체 열전 재료 및 그 제조방법
WO2012148197A2 (ko) 신규한 화합물 반도체 및 그 활용
WO2015057000A1 (ko) 열전 재료 및 그 제조 방법
WO2015057018A1 (ko) 열전 재료 및 그 제조 방법
WO2020050466A1 (ko) 주석 디셀레니드계 열전소재 및 이의 제조 방법
WO2012157914A1 (ko) 신규한 화합물 반도체 및 그 활용
WO2015034318A1 (ko) 열전 재료
WO2016052948A1 (ko) 화합물 반도체 및 그 제조방법
WO2015034321A1 (ko) 열전 재료 제조 방법
WO2019151643A1 (ko) 층상형 znbi, znbi 나노시트 및 이들의 제조방법
KR101629509B1 (ko) 열전 재료 및 그 제조 방법
WO2012148198A2 (ko) 신규한 화합물 반도체 및 그 활용
WO2012157907A1 (ko) 신규한 화합물 반도체 및 그 활용
WO2022211488A1 (ko) 수소화물 및 이의 제조 방법
WO2015034320A1 (ko) 열전 재료
WO2023243962A1 (ko) 열전 재료 및 그 형성 방법
WO2019146913A1 (ko) 구리 프로모터를 포함하는 수소발생 반응용 촉매

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14854841

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14914617

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014854841

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016524118

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE