WO2015056659A1 - タンパク質検出用融合タンパク質およびタンパク質の検出方法 - Google Patents

タンパク質検出用融合タンパク質およびタンパク質の検出方法 Download PDF

Info

Publication number
WO2015056659A1
WO2015056659A1 PCT/JP2014/077274 JP2014077274W WO2015056659A1 WO 2015056659 A1 WO2015056659 A1 WO 2015056659A1 JP 2014077274 W JP2014077274 W JP 2014077274W WO 2015056659 A1 WO2015056659 A1 WO 2015056659A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
domain
amino acid
bap
acid residue
Prior art date
Application number
PCT/JP2014/077274
Other languages
English (en)
French (fr)
Inventor
典穂 神谷
恭一 松葉
永井 賢治
浩之輔 林
Original Assignee
国立大学法人九州大学
日立アロカメディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学, 日立アロカメディカル株式会社 filed Critical 国立大学法人九州大学
Priority to CN201480056879.XA priority Critical patent/CN105829348B/zh
Priority to US15/029,787 priority patent/US9976129B2/en
Priority to EP14854395.2A priority patent/EP3059250A4/en
Publication of WO2015056659A1 publication Critical patent/WO2015056659A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/03Phosphoric monoester hydrolases (3.1.3)
    • C12Y301/03001Alkaline phosphatase (3.1.3.1)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/20Fusion polypeptide containing a tag with affinity for a non-protein ligand
    • C07K2319/21Fusion polypeptide containing a tag with affinity for a non-protein ligand containing a His-tag
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/61Fusion polypeptide containing an enzyme fusion for detection (lacZ, luciferase)

Definitions

  • the present invention relates to a protein detection fusion protein and a protein detection method.
  • ELISA Enzyme-Linked Immunosorbent Assay
  • ELISA is a method for quantitatively detecting a specific protein such as an antigen contained in a sample using an enzyme-labeled antibody by using an antigen-antibody reaction, and is one of the techniques widely used in immunoassays and the like.
  • a direct adsorption method, a sandwich method, a competitive method, and the like are known.
  • a primary antibody against a target substance (antigen) adsorbed on the surface of a solid phase is bound by an antigen-antibody reaction.
  • an enzyme-labeled labeled secondary antibody is added, and again bound by antigen-antibody reaction.
  • a chromogenic reaction occurs in proportion to the amount of antigen.
  • the absorbance of the generated chromogenic substance is measured with an absorptiometer or the like, and the amount of antigen can be quantified from a standard curve created using a standard product with a known concentration.
  • such a method requires a labeled secondary antibody that specifically binds to the primary antibody that specifically binds to the target substance (antigen), and detects multiple types of target substances (antigens).
  • alkaline phosphatase is known as an enzyme for protein detection, and among them, CIAP (Calf Intestine Alkaline Phosphatase) has been widely used.
  • CIAP purified from bovine small intestine has been widely used in the past.
  • CIAP prepared by genetic recombination has also been sold.
  • the former has a high production cost and it is difficult to stabilize the quality.
  • expression production is performed in yeast or the like in order to reduce production costs, but excessive glycosylation occurs, and background, viscosity, etc. often become a problem.
  • CIAP is highly active, but has poor stability, particularly thermal stability, and it is difficult to maintain activity for a long time, and cannot be used for gene-related applications that require heating. Furthermore, since the activity decreases even when diluted, the property of high activity is not fully utilized in an actual application used at a low concentration for a long time.
  • BAP Bacterial Alkaline Phosphatase
  • BAP Bacterial Alkaline Phosphatase
  • enzyme-labeled protein G obtained by binding an enzyme such as alkaline phosphatase and protein G by a chemical reaction.
  • Protein G is a streptococcal cell wall-derived protein that binds to most mammalian IgG. If such enzyme-labeled protein G is used, it can bind to primary antibodies of many immune species, and even when detecting multiple types of target substances (antigens), there is no need to prepare antibodies that specifically bind to each. It is good and versatility is high. However, the method using enzyme-labeled protein G labeled with an enzyme such as alkaline phosphatase has a problem of low detection sensitivity. In addition, some have low thermal stability and may be deactivated during handling.
  • Non-Patent Document 1 a fusion protein in which the C1 domain of protein G (SpG) was bound to the N-terminus of Cypridina luciferase was prepared, but there was no antibody binding ability, and a linker GGGGS was inserted between the two. It is described that the result was the same.
  • Non-patent document 2 describes the gene sequence, amino acid sequence, structure, function of each domain, etc. of protein G.
  • Non-Patent Document 3 describes double mutants in which an amino acid residue at a specific position of BAP is substituted, for example, D153G / D330N, D153H / D330N, etc., and activity, stability, optimum pH, substrate, metal The ion affinity and activity are discussed.
  • Patent Document 1 describes mutants D153G, K328R and double mutant V99A / K328R in which an amino acid residue at a specific position of BAP is substituted, and describes uses such as sandwich ELISA and competition method.
  • Patent Document 2 describes BAP mutants at positions 329, 330, and 153/328, and describes that a fusion protein with an antigen was prepared and a competitive ELISA was performed.
  • Patent Document 3 describes a variant of BAP such as K328R, and describes that ELISA was performed by chemically binding to an antibody.
  • the present invention is to provide a protein detection fusion protein having high versatility, high detection sensitivity, and high stability, and a protein detection method using the same.
  • the present invention relates to a protein domain containing at least one of the C1 domain of protein G, the C2 domain of protein G and the C3 domain of protein G, and the amino acid residue Asp at position 153 of E. coli alkaline alkaline phosphatase (BAP) by Gly.
  • BAP E. coli alkaline alkaline phosphatase
  • a protein detection fusion protein is obtained by fusing a mutant K328R / D330N.
  • the protein domain is preferably one in which the B domain of protein A, the C2 domain of protein G, and the C3 domain of protein G are bound.
  • the present invention also relates to a method for detecting a protein, wherein the fusion protein for protein detection is directly or indirectly bound to a protein present in an object, and the fusion protein for protein detection is bound. This is a protein detection method in which an alkaline phosphatase moiety is detected as a label moiety.
  • BAP E. coli alkaline alkaline phosphatase
  • FIG. 1 is a schematic diagram showing the structure of an example of a protein detection fusion protein according to this embodiment.
  • FIG. 2 is a diagram showing the expression level of pG-D153G / D330N (pG binding site: N-terminal) in Example 1 (2SLN medium, culture supernatant cultured at 3 mL scale, triplet, arrows are pG- D153G / D330N migration position is shown).
  • FIG. 3 is a diagram showing the expression level of pG-D153G / D330N (pG binding site: N-terminal) in Example 1 (TMN medium, culture supernatant cultured at 3 mL scale, triplet, arrows are pG- D153G / D330N migration position is shown).
  • FIG. 2 is a diagram showing the expression level of pG-D153G / D330N (pG binding site: N-terminal) in Example 1 (2SLN medium, culture supernatant cultured at 3 mL scale, triplet
  • FIG. 4 is a diagram showing the expression level of pG-D153H / D330N (pG binding site: N-terminus) in Example 1 (2SLN medium, culture supernatant cultured at 3 mL scale, triplet, arrows are pG- D153H / D330N migration position is shown).
  • FIG. 5 is a diagram showing the expression level of pG-D153H / D330N (pG binding site: N-terminal) in Example 1 (TMN medium, culture supernatant cultured at 3 mL scale, triplet, arrow indicates pG- D153H / D330N migration position is shown).
  • FIG. 5 is a diagram showing the expression level of pG-D153H / D330N (pG binding site: N-terminal) in Example 1 (TMN medium, culture supernatant cultured at 3 mL scale, triplet, arrow indicates pG- D153H / D330N migration position is shown).
  • FIG. 6 is a diagram showing the expression level of pG-K328R / D330N (pG binding site: N-terminus) in Example 1 (2SLN medium, culture supernatant cultured at 3 mL scale, triplet, arrows are pG- The migration position of K328R / D330N is shown).
  • FIG. 7 is a diagram showing the expression level of pG-K328R / D330N (pG binding site: N-terminal) in Example 1 (TMN medium, culture supernatant cultured at 3 mL scale, triplet, arrows are pG- The migration position of K328R / D330N is shown).
  • FIG. 7 is a diagram showing the expression level of pG-K328R / D330N (pG binding site: N-terminal) in Example 1 (TMN medium, culture supernatant cultured at 3 mL scale, triplet, arrows are pG- The migration position of K328R / D330N is shown).
  • FIG. 8 is a diagram showing the expression level of pG-K328R / D330N (pG binding site: C-terminus) in Example 1 (2SLN medium, culture supernatant cultured at 3 mL scale, triplet, arrows are pG- The migration position of K328R / D330N is shown).
  • FIG. 9 is a diagram showing the expression level of pG-K328R / D330N (pG binding site: C-terminus) in Example 1 (TMN medium, culture supernatant cultured at 3 mL scale, triplet, arrow indicates pG- The migration position of K328R / D330N is shown).
  • FIG. 9 is a diagram showing the expression level of pG-K328R / D330N (pG binding site: C-terminus) in Example 1 (TMN medium, culture supernatant cultured at 3 mL scale, triplet, arrow indicates pG- The migration position of K328R / D330N is shown).
  • FIG. 10 is a diagram showing purification of an expressed protein (pG-D153G / D330N) using a Ni-NTA column in Example 2 (vector: pBIC4, pBIC7, pBIC8, medium: 2SLN, arrow indicates pG-D153G / D330N). Indicates the migration position).
  • FIG. 11 is a diagram showing purification of an expressed protein (pG-D153G / D330N) using a Ni-NTA column in Example 2 (vector: pBIC4, pBIC7, pBIC8, medium: TMN, arrow indicates pG-D153G / D330N). Indicates the migration position).
  • FIG. 11 is a diagram showing purification of an expressed protein (pG-D153G / D330N) using a Ni-NTA column in Example 2 (vector: pBIC4, pBIC7, pBIC8, medium: TMN, arrow indicates pG-D153G /
  • FIG. 12 is a diagram showing purification of an expressed protein (pG-D153H / D330N) using a Ni-NTA column in Example 2 (vector: pBIC7, pBIC8, medium: 2SLN, arrow indicates migration of pG-D153H / D330N) Position).
  • FIG. 13 is a diagram showing purification of an expressed protein (pG-D153H / D330N) using a Ni-NTA column in Example 2 (vector: pBIC7, pBIC8, medium: TMN, arrow indicates migration of pG-D153H / D330N) Position).
  • FIG. 13 is a diagram showing purification of an expressed protein (pG-D153H / D330N) using a Ni-NTA column in Example 2 (vector: pBIC7, pBIC8, medium: TMN, arrow indicates migration of pG-D153H / D330N) Position).
  • FIG. 14 is a diagram showing purification of an expressed protein (pG-K328R / D330N (pG binding site: N-terminus)) using a Ni-NTA column in Example 2 (vector: pBIC4, pBIC8, medium: 2SLN, arrow) Indicates the migration position of pG-K328R / D330N).
  • FIG. 15 is a diagram showing purification of an expressed protein (pG-K328R / D330N (pG binding site: N-terminal)) using a Ni-NTA column in Example 2 (vector: pBIC4, pBIC8, medium: TMN, arrow) Indicates the migration position of pG-K328R / D330N).
  • FIG. 14 is a diagram showing purification of an expressed protein (pG-K328R / D330N (pG binding site: N-terminus)) using a Ni-NTA column in Example 2 (vector: pBIC4, pBIC8, medium: 2
  • FIG. 16 is a diagram showing purification of an expressed protein (pG-K328R / D330N (pG binding site: C-terminal)) using a Ni-NTA column in Example 2 (vector: pBIC2, pBIC3, pBIC1, medium: 2SLN). The arrow indicates the migration position of pG-K328R / D330N).
  • FIG. 17 is a diagram showing purification of an expressed protein (pG-K328R / D330N (pG binding site: C-terminal)) using a Ni-NTA column in Example 2 (vector: pBIC1, pBIC3, medium: TMN, arrow) Indicates the migration position of pG-K328R / D330N).
  • FIG. 17 is a diagram showing purification of an expressed protein (pG-K328R / D330N (pG binding site: C-terminal)) using a Ni-NTA column in Example 2 (vector: pBIC1, pBIC3,
  • FIG. 18 is a diagram showing the ALP activity of purified samples (Fr.1) of pG-D153G / D330N and pG-D153H / D330N in Example 3 (45 ° C. measurement, the values in the figure are 9-series measurement). (Mean ⁇ standard deviation).
  • FIG. 19 is a view showing the ALP activity of the purified pG-K328R / D330N preparation (Fr. 1) in Example 3 (measured at 45 ° C., the values in the figure are the mean values of 9 consecutive measurements ⁇ standard deviation).
  • . 20 shows the results of Western blotting of pG-D153G / D330N (pG binding site: N-terminus) in Example 3.
  • FIG. 21 shows the results of Western blotting of pG-D153H / D330N (pG binding site: N-terminus) in Example 3.
  • FIG. 22 shows the results of Western blotting of pG-K328R / D330N (pG binding site: N-terminus) in Example 3.
  • FIG. 23 shows the results of Western blotting of pG-K328R / D330N (pG binding site: C-terminus) in Example 3.
  • FIG. 24 shows the amino acid sequence of the pG-BAP mutant (D153G / D330N).
  • FIG. 25 is a view showing an amino acid sequence of a pG-BAP mutant (D153H / D330N).
  • FIG. 26 is a view showing an amino acid sequence of a pG-BAP mutant (K328R / D330N (pG binding site: N-terminus)).
  • FIG. 27 is a view showing an amino acid sequence of a pG-BAP mutant (K328R / D330N (pG binding site: C-terminal)).
  • FIG. 28 is a diagram showing a pBIC vector map (the target gene was inserted directly downstream of the secretion signal.
  • Promoter P22, P2 protein gene 5 ′ sequence derived from B. choshinensis, Rep: plasmid self-replication-related protein, Ori: Plasmid replication origin, Nmr: neomycin resistance gene).
  • the fusion protein for protein detection comprises a protein domain containing at least one of the C1 domain of protein G, the C2 domain of protein G, and the C3 domain of protein G, and a double of E. coli alkaline alkaline phosphatase (BAP). Mutant D153G / D330N, D153H / D330N, or K328R / D330N is fused.
  • the present inventors have focused on protein G as a protein domain that directly or indirectly binds to a protein to be detected.
  • Protein G is a streptococcal cell wall-derived protein that binds to most mammalian IgG. This protein G was labeled with alkaline phosphatase, and it was examined whether it could be used as a substitute for a labeled secondary antibody.
  • alkaline phosphatase as an enzyme label involved in detection sensitivity and stability, the present inventors have been involved in the activity of the amino acid residue at position 153 or 328 of Escherichia coli alkaline alkaline phosphatase (BAP). Focusing on the fact that amino acid residues are involved in stability, double mutants D153G / D330N, D153H / D330N, and K328R / D330N of E.
  • D153G / D330N and D153H / D330N which are double mutants of BAP, are more stable than CIAP that has been frequently used in the past, and more active than BAP (Wild type).
  • the BAP double mutant D153G / D330N is obtained by substituting the amino acid residue Asp at position 153 of BAP with Gly and the amino acid residue Asp at position 330 with Asn, and D153H / D330N is The amino acid residue Asp at position 153 of BAP is replaced with His, the amino acid residue Asp at position 330 is replaced with Asn, and the amino acid residue Lys at position 328 of BAP is replaced with Arg in K328R / D330N. The amino acid residue Asp at position 330 is substituted with Asn.
  • the protein domain is not particularly limited as long as it contains at least one of the C1 domain, C2 domain, and C3 domain that are IgG binding domains of protein G. It preferably contains a protein G C2 domain and a protein G C3 domain linked to each other.
  • At least one of E domain of protein A, D domain of protein A, A domain of protein A, B domain of protein A, and C domain of protein A Preferably one, and more preferably the B domain of protein A.
  • the B domain of protein A, the C2 domain of protein G, and the C3 domain of protein G are preferably combined.
  • the fused alkaline phosphatase may be fused with the C2 domain of protein G on the C-terminal side, or may be fused with the N-terminal side.
  • the C2 domain of protein G is fused to the N-terminal side of the fused alkaline phosphatase.
  • the fusion protein for protein detection according to the present embodiment may have a tag such as a His tag which is a kind of tag peptide composed of about 6 consecutive histidine (His) residues.
  • FIG. 1 schematically shows an example of the structure of a protein detection fusion protein according to this embodiment.
  • the fusion protein for protein detection includes, for example, a B domain of protein A, a C2 domain of protein G, and a C2 domain of protein G on the N-terminal side of double mutant D153G / D330N, D153H / D330N, or K328R / D330N.
  • Protein G C3 domain is bound and His tag is added to the C-terminal side of BAP double mutant, BAP double mutant D153G / D330N, D153H / D330N, or K328R / D330N C-terminal side
  • the B domain of protein A, the C2 domain of protein G, and the C3 domain of protein G are bound, and a His tag is added to the C-terminal side of the protein G domain.
  • the fusion protein for protein detection comprises a protein domain containing at least one of the C1 domain of protein G, the C2 domain of protein G, and the C3 domain of protein G, and a double BAP by genetic engineering techniques.
  • the mutant D153G / D330N, D153H / D330N, or K328R / D330N can be expressed as a fusion protein.
  • a tag such as a His tag may be added to the N-terminal side or C-terminal side of the protein G domain or BAP double mutant.
  • Purification of the fusion protein is performed by gel filtration chromatography, immobilized metal ion affinity chromatography, etc.
  • a peptide tag for purification for example, (His) 6-tag (hexahistidine tag)
  • the amino acid sequence of the fusion protein can be confirmed using a DNA sequencer for the gene sequence of the plasmid vector encoding the protein. Confirmation of the purification of the fusion protein can be performed by SDS-PAGE or the like.
  • the fusion protein for protein detection according to the present embodiment primary antibodies of almost all animal species can be detected.
  • the detection sensitivity of the fusion protein for protein detection according to this embodiment is higher than that of the conventional labeled protein G, and also has high stability.
  • the detection sensitivity is equal to or higher than that of the conventional labeled secondary antibody, and the versatility is high.
  • the fusion protein for protein detection according to this embodiment it can bind to (primary) antibodies of many immune species, and it is not necessary to prepare a secondary antibody for each immune species, and is highly versatile.
  • This fusion protein for protein detection is a protein derived from bacteria, and does not have a problem of post-translational modification, and can be prepared in a microorganism expression system.
  • a secretory expression system is utilized, it can produce efficiently. It can be produced at a lower cost than when animal-derived materials are extracted and purified, or animal-derived materials are expressed and produced in animal cells.
  • Animal-derived CIAP and the like contain sugar chains.
  • Sugar chains are said to be one of the causes of adsorption to measurement containers, membranes, etc., and may cause high background.
  • the double mutant of BAP does not have a sugar chain modification that causes high background, the background and the problem of handling due to high viscosity are unlikely to occur in animal-derived enzymes.
  • the enzyme part is more active than BAP, is more stable than CIAP, and has some resistance to high temperatures, so it has sensitivity in gene detection (hybridization) that requires temperature treatment. It can also be applied to improvements.
  • proteins can be detected with higher sensitivity than existing pG-CIAP.
  • the protein detection fusion protein and the protein present in the target are directly or indirectly bound, and the alkaline phosphatase portion of the bound protein detection fusion protein is bound. It is a method of detecting as a labeling moiety.
  • the protein detection fusion protein and protein detection method according to the present embodiment can be used in basic research fields such as Western blot, ELISA, immunoprecipitation, immunohistochemistry (immunostaining), and pathological examination fields. it can.
  • Example 1 A pG-BAP mutant gene fragment was inserted into a Brevibacillus expression vector to construct an expression vector. For those that were able to construct an expression vector, transformation and culturing were carried out for a predetermined period. After separation of the culture supernatant and cells, the production amount of the target protein contained in the culture supernatant was confirmed. ⁇ Materials and test methods> 1.
  • Expression vector In secretory expression using Brevibacillus, it is suggested that there is a possibility that the optimum protein synthesis rate and secretion signal differ for each target protein. Therefore, two types of promoters (pBIC1, pBIC2, pBIC3, pBIC4: P22 promoter (SEQ ID NO: 9), pBIC5, pBIC6, pBIC7, pBIC8: P2 promoter (SEQ ID NO: 10)) and four types of secretion signals (pBIC1, pBIC5: A total of 8 types of expression vectors were used in combination of SEQ ID NO: 11, pBIC2, pBIC6: SEQ ID NO: 12, pBIC3, pBIC7: SEQ ID NO: 13, pBIC4, pBIC8: SEQ ID NO: 14 (see FIG.
  • Vectors used pBIC1 to pBIC8 [provided by Higeta Shoyu Co., Ltd.] 2. Construction of expression vector Simple plasmid construction that does not require enzyme treatment for insertion of pG-BAP mutant gene fragments (pG-D153G / D330N, pG-D153H / D330N and pG-K328R / D330N) into an expression vector
  • the BIC method (Brevibacillus In vivo Cloning) was used. In the BIC method, DNA added with a 15 bp sequence homologous to both ends of a linear expression vector at both ends of a gene encoding a target protein is mixed with the vector and introduced into a competent cell.
  • a recombination reaction of homologous sequences occurs in the microbial cells, and an expression plasmid is formed.
  • vector construction was possible, and those for which a target protein expression vector was obtained were subjected to the following expression test. 3.
  • Host for secretion expression Brevibacillus choshinensis HPD31-SP3 strain [provided by Higeta Shoyu Co., Ltd.] 4). Transformation of Brevibacillus (DNA introduction) Brevibacillus choshinensis HPD31-SP3 strain was cultured in a MT medium (TM medium supplemented with 20 mM MgCl 2 (see Table 1)) at 37 ° C.
  • TM medium supplemented with 20 mM MgCl 2 (see Table 1)
  • TMN an agar medium in which 10 ⁇ g / mL neomycin was added to TM medium
  • TMN an agar medium in which 10 ⁇ g / mL neomycin was added to TM medium
  • Cultivation of transformant 3 mL of TMN medium and 2SLN medium 50 ⁇ g / mL neomycin added to 2SL medium (see Table 2)) were dispensed into a 16 mm diameter test tube, and the single colony selected in the previous section was inoculated. did.
  • the shaking culture was performed for 48 hours at 30 ° C. and 120 rpm. 7).
  • the TMN medium had the same tendency except that the expression level was higher than that of the 2SLN medium, but it was found that the target protein was hardly produced in both mediums in pBIC6 (FIGS. 2 and 3).
  • the amino acid sequence of pG-D153G / D330N is shown in FIG. 24 and SEQ ID NO: 1, and the DNA sequence is shown in SEQ ID NO: 2.
  • PG-D153H / D330N (pG binding site: N-terminal)
  • those with high expression in both 2SLN and TMN media were pBIC7 and pBIC8, and TMN media tended to have a higher expression level. .
  • PG-K328R / D330N (pG binding site: N-terminal)
  • pG-K328R / D330N (pG binding site: N-terminal)
  • pBIC4 and pBIC8 that produced the target protein among the obtained four types of expression vectors.
  • the variation between regimes was small and stable expression was observed, and by medium, pBIC8 tended to have a slightly higher expression level in TMN medium (FIGS. 6 and 7).
  • the amino acid sequence of pG-K328R / D330N is shown in FIG. 26 and SEQ ID NO: 5, and the DNA sequence is shown in SEQ ID NO: 6.
  • PG-K328R / D330N (pG binding site: C-terminal)
  • K328R / D330N in which pG is linked to the C-terminal among the obtained expression vectors (pBIC1, pBIC2, and pBIC3), production of the target protein was observed in all vectors in 2SLN medium, but TMN medium Then, the result that the production amount of pBIC2 was remarkably small was obtained. Comparing the pG-bonded N-terminal and the C-terminal bonded, it is not considered that there is a large difference in the intensity of the target protein band for those for which production was observed.
  • Purification of target protein Simple purification was performed using His SpinTrap Kit (28-9321-71 / GE Healthcare), which is a kind of Ni-NTA column.
  • the purification procedure was in accordance with the attached instruction manual, but 300 to 600 ⁇ L of the culture supernatant was used, the imidazole concentration of the culture supernatant at the time of column binding, and the same concentration of the binding (washing) buffer was 40 mM. The same concentration was 500 mM. Further, after adding the culture supernatant to the column, washing was performed 3 times, and enzyme elution was performed twice, and the eluted fractions were designated as fractions 1 and 2 (Fr.1, Fr.2), respectively. 2.
  • the purified mutant enzyme solution contains a high concentration of imidazole. However, as a result of preliminary studies, it was found that the enzyme activity was adversely affected. Then, the solvent was exchanged into the storage buffer (below). The gel filtration method (Zeba Desert Spin Columns, 89890 / Thermo Scientific) or the ultrafiltration method (Amicon Ultra Centrifugal Filters, 10K membrane, UFC501024 / Millipore) was used for this operation. The solvent-exchanged purified sample was concentrated about 4 to 5 times by ultrafiltration (same as above) and stored at 4 ° C.
  • Protein quantification was performed by the Micro BCA method (BCA Protein Assay Reagent Kit, 23227 / Thermo Scientific). A predetermined amount of purified sample and detection reagent were mixed in equal amounts, treated at 60 ° C. for 1 hour, cooled, and then measured for OD562. A calibration curve was prepared using BSA (Bovine Serum Albumin) as the standard protein, and the protein content was determined. ⁇ Result> 1.
  • PG-D153H / D330N In the case of pG-D153H / D330N, it was possible to purify a high-purity sample using a combination of pBIC7 and pBIC8 in both 2SLN medium and TMN medium. The molecular weight of the purified sample was the same as that of pG-D153G / D330N (FIGS. 12 and 13). PG-K328R / D330N (pG binding site: N-terminal) When 2SLN medium was used, pBIC4 could be purified with a Ni-NTA column, and a purified sample with high purity could be obtained.
  • Example 3 In order to confirm whether the enzyme part of each purified sample and the antibody-binding protein part actually function, and to investigate whether it can be used as a protein detection reagent, the detection sensitivity of alkaline phosphatase (ALP) activity and Western blotting Comparison was performed using a commercially available reagent as a control.
  • ALP alkaline phosphatase
  • a substrate p-NPP: p-nitrophenyl phosphate, 149-02342 / Wako Pure Chemical Industries
  • OD410 absorbance change caused by dephosphorylation of the substrate
  • the measurement temperature was 45 ° C.
  • the specific activity ( ⁇ mol p-NP / mg protein / sec) of the enzyme was determined using a calibration curve of an enzyme product (p-NP: p-nitrophenol, 299-58641 / Wako Pure Chemical Industries) at a known concentration.
  • CIAP an ALP derived from bovine small intestine, was expressed in yeast (AP high active rec. EIA Grade, CR, 03 535 452 / Roche), and PLAP (Plaxal Alkaline Phosphatase, P3895 / Sigma). did.
  • Enzyme dilution buffer 100 mM DEA-HCl (pH 9.5), 1 mM MgCl 2 Substrate, enzyme product dilution, lysis buffer: 1M DEA-HCl (pH 9.5), 1 mM MgCl 2 2.
  • Detection sensitivity by Western blot As a antigen, human-derived transferrin (Calbiochem / 616419), which is a serum protein, was used. A dilution series was prepared with 2 ⁇ sample buffer so as to be 10 ng to 3 pg / 15 ⁇ L, and 15 ⁇ L was loaded per lane, and SDS-PAGE was performed.
  • Hybond P (PVDF) membrane to which Transferrin of the same dilution series was transferred was prepared, and the detection sensitivity was compared after antigen-antibody reaction. Detailed procedures and reagents used for comparison are shown below.
  • Membrane Hybond P membrane (GE Healthcare / RPN2020F) Transcription buffer: 25 mM Tris-HCl
  • FIG. 18 shows the ALP activity measurement results of pG-D153G / D330N and pG-D153H / D330N (both pG binding positions: N-terminal).
  • the specific activity of pG-D153G / D330N is 350 to 450 ⁇ mol p-NP / mg prot.
  • the specific activity tended to be slightly higher in the TMN medium.
  • the specific activity of pG-D153H / D330N is 50 ⁇ mol p-NP / mg prot.
  • the value was significantly lower.
  • FIGS. pG-D153G / D330N Detection sensitivity by Western blotting Western blotting using a purified sample (Fr.1) and luminescence detection are shown in FIGS. pG-D153G / D330N was able to detect 3 to 10 pg of Transferrin except for pBIC8 (2SLN medium). Since the control pG-CIAP was about 100 pg, it was suggested that the detection sensitivity of pG-D153G / D330N may be 10 to 30 times higher (FIG. 20).
  • the detection sensitivity of pG-D153H / D330N is 30 to 100 pg, which is not significantly different from that of commercially available pG-CIAP, and its low enzyme activity is considered to be reflected in the detection sensitivity (FIG. 21).
  • pG-K328R / D330N it is slightly inferior to pG-D153G / D330N, but both pG bound to the N-terminus and C-terminus have a detection sensitivity of about 10 pg, about 10 times that of the control pG-CIAP. High possibility was suggested (FIGS. 22 and 23).
  • D153G / D330N and D153H / D330N the binding site of pG is examined only at the N-terminus, but these mutation sites are near the binding sites of phosphate, Mg 2+ and Zn 2+ , and the binding site of pG is the C-terminus. In this case, it is unlikely that the antibody binding activity of pG is inhibited by the three-dimensional structure change, and there is a high possibility that the equivalent result will be obtained in terms of performance.
  • K328R / D330N the stability of expression production was superior at the N-terminal.
  • One of the factors that cause pG binding to the C-terminus is that the vector is not stably maintained in the host.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Hematology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Urology & Nephrology (AREA)
  • Immunology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Cell Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Peptides Or Proteins (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

 プロテインGのC1ドメイン、プロテインGのC2ドメインおよびプロテインGのC3ドメインのうち少なくとも1つを含むタンパク質ドメインと、大腸菌アルカリアルカリホスファターゼ(BAP)の153位のアミノ酸残基AspをGlyにより置換し、330位のアミノ酸残基AspをAsnにより置換した2重変異体D153G/D330N、大腸菌アルカリアルカリホスファターゼ(BAP)の153位のアミノ酸残基AspをHisにより置換し、330位のアミノ酸残基AspをAsnにより置換した2重変異体D153H/D330N、または大腸菌アルカリアルカリホスファターゼ(BAP)の328位のアミノ酸残基LysをArgにより置換し、330位のアミノ酸残基AspをAsnにより置換した2重変異体K328R/D330Nとを融合したものであるタンパク質検出用融合タンパク質である。

Description

タンパク質検出用融合タンパク質およびタンパク質の検出方法
 本発明は、タンパク質検出用融合タンパク質およびタンパク質の検出方法に関する。
 生体試料中には種々のタンパク質が存在するが、特定のタンパク質を検出、定量するための方法として、ELISA(Enzyme−Linked ImmunoSorbent Assay)等が知られている。
 ELISAは、試料中に含まれる抗原等の特定のタンパク質を、酵素標識した抗体を用い、抗原抗体反応を利用して定量的に検出する方法であり、免疫検査等において汎用されている手法の1つである。ELISAには、直接吸着法、サンドイッチ法、競合法等が知られている。
 例えば、固相の表面に吸着させた目的物質(抗原)に対する1次抗体を抗原抗体反応により結合させる。未反応の1次抗体を洗い流した後、酵素標識した標識2次抗体を添加して、再び抗原抗体反応により結合させる。ここで未反応の標識2次抗体を洗い流し、発色基質を添加すると、抗原の量に比例して発色反応が起こる。生成した発色物質の吸光度を吸光度計等により測定し、濃度既知の標準品を用いて作成した標準曲線から、抗原の量を定量することができる。
 しかし、このような方法では、目的物質(抗原)に特異的に結合する1次抗体に対して特異的に結合する標識2次抗体が必要となり、複数種類の目的物質(抗原)を検出する場合、複数種類の1次抗体に対して、それぞれに特異的に結合する標識2次抗体を用意する必要があり、汎用性が低い。
 従来、タンパク質検出用の酵素としてアルカリホスファターゼが知られ、その中ではCIAP(Calf Intestine Alkaline Phosphatase)が広く用いられている。CIAPは牛小腸より精製したものが従来より広く使用されているが、近年、遺伝子組換えで作製したものも販売されている。しかし、前者は生産コストが高く、品質を安定させることが難しい。また、後者では生産コストを低減するために酵母等で発現生産を行っているが、過剰に糖鎖付加が生じ、バックグラウンド、粘性等が問題となる場合が多い。また、CIAPは、高活性であるが、安定性、特に熱安定性が劣っており、長時間、活性を維持することは難しく、加熱が必要な遺伝子関連のアプリケーションに使用できない。さらに、希釈した場合にもその活性が低下することから、長時間、低濃度で用いる実際のアプリケーションで高活性という特性は十分に生かされていない。
 BAP(Bacterial Alkaline Phosphatase)は、安定性が高いが、CIAPに比べるとその活性は数十分の一程度であり、活性が低いため、タンパク質検出にはほとんど用いられていない。
 一方、標識2次抗体の代わりに、アルカリホスファターゼ等の酵素とプロテインGとを化学反応で結合した酵素標識プロテインGを用いる方法がある。プロテインGは、連鎖球菌の細胞壁由来タンパク質で、ほとんどの哺乳動物のIgGと結合する性質を持つ。このような酵素標識プロテインGを用いれば多くの免疫種の1次抗体と結合可能であり、複数種類の目的物質(抗原)を検出する場合でも、それぞれに特異的に結合する抗体を用意しなくてもよく、汎用性が高い。
 しかし、アルカリホスファターゼ等の酵素で標識した酵素標識プロテインGを用いる方法は、検出感度が低いという問題があった。また、熱安定性が低いものもあり、取扱中に失活する場合があった。
 非特許文献1には、プロテインG(SpG)のC1ドメインをウミホタルルシフェラーゼのN末端に結合させた融合タンパク質を作製したが、抗体結合能はなかったこと、リンカーGGGGSを両者間に挿入したものも同じ結果であったことが記載されている。
 非特許文献2には、プロテインGの遺伝子配列、アミノ酸配列、構造、各ドメインの機能等について記載されている。
 非特許文献3には、BAPの特定の位置のアミノ酸残基を置換した2重変異体、例えば、D153G/D330N、D153H/D330N等が記載され、活性、安定性、至適pH、基質、金属イオンの親和性と活性について考察がされている。
 特許文献1には、BAPの特定の位置のアミノ酸残基を置換した変異体D153G、K328Rおよび2重変異体V99A/K328Rについて記載され、サンドイッチELISA、競合法等の用途が記載されている。
 特許文献2には、BAPの329位、330位、153/328位の変異体について記載され、抗原との融合タンパク質の作製と競合ELISAを行ったことが記載されている。
 特許文献3には、K328R等のBAPの変異体について記載され、抗体に化学結合させてELISAを行ったことが記載されている。
特許第3560972号公報 特開平9−098780号公報 特許第2620416号公報
Engineering of functional chimeric protein G−Vargula luciferase,ANALYTICAL BIOCHEMISTRY,249(2),pp.147−152(1997) Expression and purification of a truncated recombinant streptococcal protein G,Biochem J.,267(1),pp.171−177(1990) Improving Escherichia coli Alkaline Phosphatase Efficacy by Additional Mutations inside and outside the Catalytic Pocket.,Chembiochem.,2,pp.517−523,(2001)
 本発明は、汎用性が高く、検出感度が高く、かつ安定性の高いタンパク質検出用融合タンパク質およびそれを用いたタンパク質の検出方法を提供することにある。
 本発明は、プロテインGのC1ドメイン、プロテインGのC2ドメインおよびプロテインGのC3ドメインのうち少なくとも1つを含むタンパク質ドメインと、大腸菌アルカリアルカリホスファターゼ(BAP)の153位のアミノ酸残基AspをGlyにより置換し、330位のアミノ酸残基AspをAsnにより置換した2重変異体D153G/D330N、大腸菌アルカリアルカリホスファターゼ(BAP)の153位のアミノ酸残基AspをHisにより置換し、330位のアミノ酸残基AspをAsnにより置換した2重変異体D153H/D330N、または大腸菌アルカリアルカリホスファターゼ(BAP)の328位のアミノ酸残基LysをArgにより置換し、330位のアミノ酸残基AspをAsnにより置換した2重変異体K328R/D330Nとを融合したものであるタンパク質検出用融合タンパク質である。
 また、前記タンパク質検出用融合タンパク質において、前記タンパク質ドメインが、プロテインAのBドメイン、プロテインGのC2ドメインおよびプロテインGのC3ドメインが結合されたものであることが好ましい。
 また、本発明は、タンパク質の検出方法であって、前記タンパク質検出用融合タンパク質と、対象物中に存在するタンパク質とを直接または間接的に結合させ、結合している前記タンパク質検出用融合タンパク質のアルカリホスファターゼ部分を標識部分として検出するタンパク質の検出方法である。
 本発明では、プロテインGのC1ドメイン、プロテインGのC2ドメインおよびプロテインGのC3ドメインのうち少なくとも1つを含むタンパク質ドメインと、大腸菌アルカリアルカリホスファターゼ(BAP)の2重変異体D153G/D330N、D153H/D330N、またはK328R/D330Nとを融合させることにより、汎用性が高く、検出感度が高く、かつ安定性の高いタンパク質検出用融合タンパク質およびそれを用いたタンパク質の検出方法を提供することができる。
 図1は、本実施形態に係るタンパク質検出用融合タンパク質の一例の構造を示す模式図である。
 図2は、実施例1における、pG−D153G/D330N(pG結合部位:N末端)の発現量を示す図である(2SLN培地、培養上清 3mLスケールで培養、3連制、矢印はpG−D153G/D330Nの泳動位置を示す)。
 図3は、実施例1における、pG−D153G/D330N(pG結合部位:N末端)の発現量を示す図である(TMN培地、培養上清 3mLスケールで培養、3連制、矢印はpG−D153G/D330Nの泳動位置を示す)。
 図4は、実施例1における、pG−D153H/D330N(pG結合部位:N末端)の発現量を示す図である(2SLN培地、培養上清 3mLスケールで培養、3連制、矢印はpG−D153H/D330Nの泳動位置を示す)。
 図5は、実施例1における、pG−D153H/D330N(pG結合部位:N末端)の発現量を示す図である(TMN培地、培養上清 3mLスケールで培養、3連制、矢印はpG−D153H/D330Nの泳動位置を示す)。
 図6は、実施例1における、pG−K328R/D330N(pG結合部位:N末端)の発現量を示す図である(2SLN培地、培養上清 3mLスケールで培養、3連制、矢印はpG−K328R/D330Nの泳動位置を示す)。
 図7は、実施例1における、pG−K328R/D330N(pG結合部位:N末端)の発現量を示す図である(TMN培地、培養上清 3mLスケールで培養、3連制、矢印はpG−K328R/D330Nの泳動位置を示す)。
 図8は、実施例1における、pG−K328R/D330N(pG結合部位:C末端)の発現量を示す図である(2SLN培地、培養上清 3mLスケールで培養、3連制、矢印はpG−K328R/D330Nの泳動位置を示す)。
 図9は、実施例1における、pG−K328R/D330N(pG結合部位:C末端)の発現量を示す図である(TMN培地、培養上清 3mLスケールで培養、3連制、矢印はpG−K328R/D330Nの泳動位置を示す)。
 図10は、実施例2における、Ni−NTAカラムによる発現タンパク質(pG−D153G/D330N)の精製を示す図である(ベクター:pBIC4,pBIC7,pBIC8、培地:2SLN、矢印はpG−D153G/D330Nの泳動位置を示す)。
 図11は、実施例2における、Ni−NTAカラムによる発現タンパク質(pG−D153G/D330N)の精製を示す図である(ベクター:pBIC4,pBIC7,pBIC8、培地:TMN、矢印はpG−D153G/D330Nの泳動位置を示す)。
 図12は、実施例2における、Ni−NTAカラムによる発現タンパク質(pG−D153H/D330N)の精製を示す図である(ベクター:pBIC7,pBIC8、培地:2SLN、矢印はpG−D153H/D330Nの泳動位置を示す)。
 図13は、実施例2における、Ni−NTAカラムによる発現タンパク質(pG−D153H/D330N)の精製を示す図である(ベクター:pBIC7,pBIC8、培地:TMN、矢印はpG−D153H/D330Nの泳動位置を示す)。
 図14は、実施例2における、Ni−NTAカラムによる発現タンパク質(pG−K328R/D330N(pG結合部位:N末端))の精製を示す図である(ベクター:pBIC4,pBIC8、培地:2SLN、矢印はpG−K328R/D330Nの泳動位置を示す)。
 図15は、実施例2における、Ni−NTAカラムによる発現タンパク質(pG−K328R/D330N(pG結合部位:N末端))の精製を示す図である(ベクター:pBIC4,pBIC8、培地:TMN、矢印はpG−K328R/D330Nの泳動位置を示す)。
 図16は、実施例2における、Ni−NTAカラムによる発現タンパク質(pG−K328R/D330N(pG結合部位:C末端))の精製を示す図である(ベクター:pBIC2,pBIC3,pBIC1、培地:2SLN、矢印はpG−K328R/D330Nの泳動位置を示す)。
 図17は、実施例2における、Ni−NTAカラムによる発現タンパク質(pG−K328R/D330N(pG結合部位:C末端))の精製を示す図である(ベクター:pBIC1,pBIC3、培地:TMN、矢印はpG−K328R/D330Nの泳動位置を示す)。
 図18は、実施例3における、pG−D153G/D330NおよびpG−D153H/D330N精製標品(Fr.1)のALP活性を示す図である(45℃測定、図中数値は、9連測定の平均値±標準偏差)。
 図19は、実施例3における、pG−K328R/D330N精製標品(Fr.1)のALP活性を示す図である(45℃測定、図中数値は、9連測定の平均値±標準偏差)。
 図20は、実施例3における、pG−D153G/D330N(pG結合部位:N末端)のウエスタンブロット結果を示す図である。
 図21は、実施例3における、pG−D153H/D330N(pG結合部位:N末端)のウエスタンブロット結果を示す図である。
 図22は、実施例3における、pG−K328R/D330N(pG結合部位:N末端)のウエスタンブロット結果を示す図である。
 図23は、実施例3における、pG−K328R/D330N(pG結合部位:C末端)のウエスタンブロット結果を示す図である。
 図24は、pG−BAP変異体(D153G/D330N)のアミノ酸配列を示す図である。
 図25は、pG−BAP変異体(D153H/D330N)のアミノ酸配列を示す図である。
 図26は、pG−BAP変異体(K328R/D330N(pG結合部位:N末端))のアミノ酸配列を示す図である。
 図27は、pG−BAP変異体(K328R/D330N(pG結合部位:C末端))のアミノ酸配列を示す図である。
 図28は、pBICベクターマップを示す図である(分泌シグナルの下流に直接目的遺伝子を挿入した。プロモータ:B.choshinensis由来P22,P2タンパク質遺伝子5’配列、Rep:プラスミド自己複製関連タンパク質、Ori:プラスミド複製開始点、Nmr:ネオマイシン耐性遺伝子)。
 本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。
 本実施形態に係るタンパク質検出用融合タンパク質は、プロテインGのC1ドメイン、プロテインGのC2ドメインおよびプロテインGのC3ドメインのうち少なくとも1つを含むタンパク質ドメインと、大腸菌アルカリアルカリホスファターゼ(BAP)の2重変異体D153G/D330N、D153H/D330N、またはK328R/D330Nとを融合したものである。
 本発明者らは、検出対象であるタンパク質と直接または間接的に結合するタンパク質ドメインとして、プロテインGに着目した。プロテインGは、連鎖球菌の細胞壁由来タンパク質で、ほとんどの哺乳動物のIgGと結合する性質を持つ。このプロテインGをアルカリホスファターゼ標識し、標識2次抗体等に代わるものとして利用できないかを検討した。
 また、本発明者らは、検出感度および安定性に関与する酵素標識としてのアルカリホスファターゼとして、大腸菌アルカリアルカリホスファターゼ(BAP)の153位または328位のアミノ酸残基が活性に関与し、330位のアミノ酸残基が安定性に関与することに着目し、大腸菌アルカリアルカリホスファターゼ(BAP)の2重変異体D153G/D330N、D153H/D330N、およびK328R/D330Nを選択した。BAPの2重変異体であるD153G/D330NおよびD153H/D330Nは従来からよく用いられているCIAPに比べて安定性が高く、BAP(Wild type)に比べて高活性である。
 ここで、BAPの2重変異体D153G/D330Nは、BAPの153位のアミノ酸残基AspをGlyにより置換し、330位のアミノ酸残基AspをAsnにより置換したものであり、D153H/D330Nは、BAPの153位のアミノ酸残基AspをHisにより置換し、330位のアミノ酸残基AspをAsnにより置換したものであり、K328R/D330Nは、BAPの328位のアミノ酸残基LysをArgにより置換し、330位のアミノ酸残基AspをAsnにより置換したものである。
 本発明者らが鋭意検討したところ、プロテインGのC1ドメイン、プロテインGのC2ドメインおよびプロテインGのC3ドメインのうち少なくとも1つを含むタンパク質ドメインと、BAPの2重変異体D153G/D330N、D153H/D330N、またはK328R/D330Nとを融合させることにより、汎用性が高く、検出感度が高く、かつ安定性の高いタンパク質検出用融合タンパク質が得られることを見出した。
 タンパク質ドメインとしては、プロテインGのIgG結合ドメインであるC1ドメイン、C2ドメインおよびC3ドメインのうち少なくとも1つを含むものであればよく、特に制限はないが、抗体から脱離しにくい等の点から、プロテインGのC2ドメインおよびプロテインGのC3ドメインが連結されているものを含むことが好ましい。また、プロテインGの抗体等に対する反応性が向上する等の点から、プロテインAのEドメイン、プロテインAのDドメイン、プロテインAのAドメイン、プロテインAのBドメイン、プロテインAのCドメインのうち少なくとも1つを含むことが好ましく、プロテインAのBドメインを含むことがより好ましい。特に、プロテインAのBドメイン、プロテインGのC2ドメインおよびプロテインGのC3ドメインが結合されたものであることが好ましい。
 融合型アルカリホスファターゼのC末端側にプロテインGのC2ドメインを融合させたものでもよいし、N末端側に融合させたものでもよい。発現の安定性等の点から、融合型アルカリホスファターゼのN末端側にプロテインGのC2ドメインを融合させたものであることが好ましい。
 本実施形態に係るタンパク質検出用融合タンパク質は、6個程度の連続するヒスチジン(His)残基からなるタグペプチドの一種であるHisタグ等のタグを有していてもよい。
 図1に、本実施形態に係るタンパク質検出用融合タンパク質の一例の構造を模式的に示す。本実施形態に係るタンパク質検出用融合タンパク質は、例えば、BAPの2重変異体D153G/D330N、D153H/D330N、またはK328R/D330NのN末端側に、プロテインAのBドメイン、プロテインGのC2ドメインおよびプロテインGのC3ドメインが結合され、BAPの2重変異体のC末端側にHisタグが付加されたもの、BAPの2重変異体D153G/D330N、D153H/D330N、またはK328R/D330NのC末端側に、プロテインAのBドメイン、プロテインGのC2ドメインおよびプロテインGのC3ドメインが結合され、プロテインGドメインのC末端側にHisタグが付加されたものである。
 本実施形態に係るタンパク質検出用融合タンパク質は、遺伝子工学的手法により、プロテインGのC1ドメイン、プロテインGのC2ドメインおよびプロテインGのC3ドメインのうち少なくとも1つを含むタンパク質ドメインと、BAPの2重変異体D153G/D330N、D153H/D330N、またはK328R/D330Nとを融合した融合タンパク質として発現させて得ることができる。また、その際、プロテインGドメインまたはBAPの2重変異体のN末端側またはC末端側にHisタグ等のタグを付与してもよい。
 融合タンパク質の精製は、N末端またはC末端に付加した精製用ペプチドタグ(例えば、(His)6−tag(ヘキサヒスチジンタグ))を利用し、ゲル濾過クロマトグラフィ、固定化金属イオンアフィニティクロマトグラフィ等により行うことができる。
 融合タンパク質のアミノ酸配列の確認は当該タンパク質をコードするプラスミドベクターの遺伝子配列をDNAシーケンサにて確認することができる。融合タンパク質の精製の確認は、SDS−PAGE等で行うことができる。
 本実施形態に係るタンパク質検出用融合タンパク質によれば、ほぼ全ての動物種の1次抗体を検出可能である。本実施形態に係るタンパク質検出用融合タンパク質の検出感度は、従来の標識プロテインGより高く、安定性も高い。また、従来の標識2次抗体と検出感度は同等以上であり、汎用性が高い。本実施形態に係るタンパク質検出用融合タンパク質を用いれば多くの免疫種の(1次)抗体と結合可能であり、免疫種ごとに2次抗体を用意しなくてもよく、汎用性が高い。
 このタンパク質検出用融合タンパク質は、バクテリア由来のタンパク質であり、翻訳後修飾の問題がなく、微生物の発現系で作製することができる。また、分泌発現系を利用すれば効率よく生産することができる。動物由来のものを抽出、精製したり、動物由来のものを動物細胞で発現生産する場合に比べて安価に製造することができる。
 動物由来のCIAP等には糖鎖が含まれている。糖鎖は測定容器、メンブレン等に吸着する原因の1つであると言われており、高いバックグラウンドを生じることがある。しかし、BAPの2重変異体は、高バックグラウンドの原因となる糖鎖修飾が存在しないため、動物由来酵素でみられるバックグラウンドおよび高粘性によるハンドリングの問題等が生じにくい。
 酵素部分はBAPに比べて高活性であり、CIAPに比べると安定性に優れており、高温にもある程度耐性を有していることから、温度処理の必要な遺伝子検出(ハイブリダイゼーション)等における感度向上にも応用することができる。また、既存のpG−CIAPに比べて高感度でタンパク質を検出することができる可能性がある。
<タンパク質の検出方法>
 本実施形態に係るタンパク質の検出方法は、前記タンパク質検出用融合タンパク質と、対象物中に存在するタンパク質とを直接または間接的に結合させ、結合しているタンパク質検出用融合タンパク質のアルカリホスファターゼ部分を標識部分として検出する方法である。
 本実施形態に係るタンパク質検出用融合タンパク質およびタンパク質の検出方法は、例えば、ウエスタンブロット、ELISA、免疫沈降、免疫組織化学(免疫染色)等の基礎研究分野や、病理検査分野等に利用することができる。
 以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。なお、下記実施例中、室温とは20~25℃である。
[実施例1]
 Brevibacillus発現ベクターにpG−BAP変異体の遺伝子断片を挿入し、発現ベクターの構築を行った。発現ベクターを構築できたものについては、形質転換および所定期間培養を実施し、培養上清と菌体を分離後、培養上清に含まれる目的タンパク質の生産量を確認した。
<材料および試験方法>
1.発現ベクター(プラスミド)
 Brevibacillusを用いた分泌発現では、目的タンパク質ごとに最適なタンパク質の合成速度および分泌シグナルが異なる可能性が示唆されている。そこで、2種のプロモータ(pBIC1,pBIC2,pBIC3,pBIC4:P22プロモータ(配列番号9)、pBIC5,pBIC6,pBIC7,pBIC8:P2プロモータ(配列番号10))および4種の分泌シグナル(pBIC1,pBIC5:配列番号11、pBIC2,pBIC6:配列番号12、pBIC3,pBIC7:配列番号13、pBIC4,pBIC8:配列番号14)を組合せた、合計8種の発現用ベクターを使用した(図28参照)。
 使用ベクター:pBIC1~pBIC8[ヒゲタ醤油(株)提供]
2.発現ベクター構築
 pG−BAP変異体の遺伝子断片(pG−D153G/D330N、pG−D153H/D330NおよびpG−K328R/D330N)の発現用ベクターへの挿入には、酵素処理を必要としない簡便なプラスミド構築法であるBIC法(Brevibacillus In vivo Cloning)を利用した。BIC法では、目的タンパク質をコードする遺伝子の両端に、直鎖上の発現ベクターの両末端と相同な15bpの配列を付加したDNAをベクターと混合してコンピテントセルに導入する。菌体内で相同配列の組み換え反応が生じ、発現プラスミドが形成される。8種のベクターのうち、ベクター構築が可能であり、目的タンパク質発現用のベクターを取得できたものについては、下記の発現試験を実施した。
3.分泌発現用宿主
 Brevibacillus choshinensis HPD31−SP3株[ヒゲタ醤油(株)提供]
4.Brevibacillusの形質転換(DNA導入)
 Brevibacillus choshinensis HPD31−SP3株をMT培地(20mM MgClを添加したTM培地(表1参照))で37℃にて対数増殖期まで振盪培養し、遠心分離によって集菌した。次いで、50mM Tris−HCl(pH7.5)に懸濁し、遠心分離により集菌後、50mM Tris−HCl(pH8.5)に再懸濁し、37℃で60分間振盪した。振盪した懸濁液500μLの遠心分離を行って集菌し、2ng/μLの発現ベクターDNA溶液5μLと0.5M NaSO/70mM リン酸バッファ(pH6.3)50μLの混合液を加え、懸濁して5分間静置後、40% PEG6000/70mM リン酸バッファ(pH6.3)を150μL添加して、ボルテックスにより撹拌、懸濁した。
Figure JPOXMLDOC01-appb-T000001
5.形質転換体の選抜
 形質転換を行った菌体は、遠心分離により集菌し、1mLのTM培地に懸濁し、37℃で60分間振盪した。次いで、TMN(TM培地に10μg/mLのネオマイシンを添加した寒天培地)に塗抹して、37℃、30時間培養し、形質転換体を選抜した。
6.形質転換体の培養
 3mLのTMN培地、および2SLN培地(2SL培地(表2参照)に50μg/mLのネオマイシンを添加)を16mm径の試験管に分注し、前項で選抜したシングルコロニーを植菌した。30℃、120rpmの条件で48時間振盪培養を行った。
Figure JPOXMLDOC01-appb-T000002
7.菌体と培養上清の分離
 遠心分離(5000g、5分間)を行って、菌体と培養上清を分離した。培養上清は0.22μmのろ過滅菌用フィルタを通して、菌体を除去した。
8.発現確認
 培養上清に等量の2×サンプルバッファを添加し、100℃で5分間変性した後、SDS−PAGEに供して、各サンプル中の生産タンパク質のサイズ確認、および発現生産量の推定、比較を行った。
<結果>
1.菌体内および培養上清における発現確認
・pG−D153G/D330N(pG結合部位:N末端)
 pG−D153G/D330Nについては、ベクター2種類およびシグナルペプチド4種類の計8種類の組合せのうち、発現プラスミドの取得が可能であった4種類について発現試験を実施した。2SLN培地(培養上清)の場合は、pBIC4、pBIC7およびpBIC8で高いレベルの発現量が認められ、連制間の差異もほとんどなく、安定的な発現がなされていることが示唆された。TMN培地でも発現量が2SLN培地より多くなること以外は、同様の傾向であったが、pBIC6では、両培地とも目的タンパク質は、ほとんど生産されていないことがわかった(図2,3)。pG−D153G/D330Nのアミノ酸配列を図24および配列番号1に、DNA配列を配列番号2に示す。
・pG−D153H/D330N(pG結合部位:N末端)
 5種類の発現ベクターを取得したpG−D153H/D330Nの場合は2SLNおよびTMN両培地で高発現が認められたものは、pBIC7およびpBIC8であり、TMN培地の方が発現量が多い傾向であった。連制間のばらつきも認められないことから、安定した発現を示す可能性が示唆された。pBIC1、pBIC5およびpBIC6においては、ほとんどpG−D153H/D330Nの発現は認められなかった(図4,5)。pG−D153H/D330Nのアミノ酸配列を図25および配列番号3に、DNA配列を配列番号4に示す。
 なお、pG−D153G/D330N、pG−D153H/D330N双方とも発現量の多いものは、SDS−PAGEのバンド強度から、g/Lレベルの生産量が期待された。
・pG−K328R/D330N(pG結合部位:N末端)
 pG−K328R/D330N(pG結合部位:N末端)の場合は、取得した4種の発現ベクターのうち、目的タンパク質が生産されていたのはpBIC4およびpBIC8であった。いずれも連制間のバラツキは小さく、安定な発現を示しており、培地別にみると、pBIC8ではTMN培地で発現量が若干多い傾向が認められた(図6,7)。pG−K328R/D330N(pG結合部位:N末端)のアミノ酸配列を図26および配列番号5に、DNA配列を配列番号6に示す。
・pG−K328R/D330N(pG結合部位:C末端)
 C末端にpGを結合したK328R/D330Nの場合、得られた発現ベクター3種(pBIC1、pBIC2、pBIC3)のうち、2SLN培地では、すべてのベクターで目的タンパク質の生産が認められたが、TMN培地では、pBIC2の生産量が著しく少ない結果が得られた。pGをN末端に結合したものとC末端結合したものを比べると、生産が認められたものについては、目的タンパク質バンドの強度に大きな差があるとは考えられない。しかし、C末端結合のものは、3連制の試験で同等に生産されたものがなく、N末端結合のものに比べるとタンパク質発現に安定性を欠く可能性が示唆された(図8,9)。pG−K328R/D330N(pG結合部位:C末端)のアミノ酸配列を図27および配列番号7に、DNA配列を配列番号8に示す。
[実施例2]
 ブレビバチルスにて発現させたBAP変異体には、上述のようにヒスチジンタグ(H6 tag)がC末端に付加されており、Ni−NTAカラムを用いて、比較的簡便に精製を行うことができる。本実施例においては、培養上清から精製標品を取得した。
<材料および試験方法>
1.目的タンパク質の精製
 Ni−NTAカラムの一種であるHis SpinTrap Kit(28−9321−71/GE Healthcare)を用いて簡易精製を行った。精製操作は、添付の取扱説明書に準じたが、300~600μLの培養上清を用い、カラム結合時の培養上清のイミダゾール濃度、そして結合(洗浄)バッファの同濃度は40mM、溶出バッファの同濃度は500mMとした。また、培養上清をカラムに添加後、洗浄を3回行い、酵素溶出を2回実施して、溶出画分をそれぞれフラクション1,2(Fr.1、Fr.2)とした。
2.脱塩および濃縮
 精製された変異体酵素液には、高濃度のイミダゾールが含有しているが、予備検討の結果、酵素活性に悪影響を及ぼすことが判明したので、イミダゾールを除去するために脱塩し、保存バッファ(下記)への溶媒交換を実施した。この操作には、ゲルろ過法(Zeba Desalt Spin Columns、89890/Thermo Scientific)、または限外ろ過法(Amicon Ultra Centrifugal Filters、10K membrane、UFC501024/Millipore)を用いた。溶媒交換した精製標品は、限外ろ過(同上)により4~5倍程度、濃縮を行い、4℃で保存した。
 保存バッファ:100mM Tris−HCl(pH8.0)、100mM NaCl、1mM MgCl、20μM ZnCl
3.純度確認およびタンパク質定量
 得られた精製標品は、SDS−PAGE法により純度を確認した。ゲルは、ミニプロティアン(登録商標) TGX(商標)プレキャストゲル(456−1036/Bio−Rad)を使用した。電気泳動後のゲルは、純水で洗浄し、CBB染色(Quick−CBB PLUS、178−00551/和光純薬)によりタンパク質バンドを可視化した。
 タンパク質定量は、Micro BCA法(BCA Protein Assay Reagent Kit、23227/Thermo Scientific)によった。所定量の精製標品と検出試薬を等量混合後、60℃で1時間処理し、冷却した後、OD562を測定した。標準タンパク質としてBSA(Bovine Serum Albumin)を用いて検量線を作成し、タンパク質含量を求めた。
<結果>
1. Ni−NTAカラムによる精製
・pG−D153G/D330N(pG結合部位:N末端)
 発現試験において発現量の多かったpG−D153G/D330Nにおけるベクターおよび培地の組合せについて培養上清からNi−NTAカラムを用いて簡易精製を行った(図10,11)。供試したいずれの組合せ(pBIC4、pBIC7、pBIC8)も精製画分においては、夾雑タンパク質がほぼ除去されており、高純度の精製標品を得ることが可能であった。
・pG−D153H/D330N
 pG−D153H/D330Nの場合も2SLN培地およびTMN培地双方において、pBIC7およびpBIC8の組合せで高純度の標品を精製することが可能であった。また、精製標品の分子量についても、pG−D153G/D330Nと同様の結果であった(図12,13)。
・pG−K328R/D330N(pG結合部位:N末端)
 2SLN培地を用いた場合、pBIC4についてはNi−NTAカラムによる精製が可能であり、純度の高い精製標品を得ることができた。しかしpBIC8については、カラム未結合画分に少量しかタンパク質が存在せず、その後のカラム洗浄においても同様であった。高濃度のイミダゾールを有する溶出バッファを用いてもほとんど出てこないことから、Ni−NTAカラムにタンパク質が強固に吸着されており回収不能となった可能性が示唆された(図14)。TMN培地の場合は、pBIC4、pBIC8双方とも目的タンパク質を精製することが可能であった(図15)。2SLN培地を用いた場合のみpBIC8がカラムに吸着する原因は、現状では不明である。
・pG−K328R/D330N(pG結合部位:C末端)
 pG−K328R/D330N(pG結合位置:C末端)についても、同様にタンパク質発現量が認められたものについて簡易精製を実施した(図16,17)。2SLN培地では、pBIC1、pBIC2およびpBIC3、また、TMN培地では、pBIC1、pBIC3で精製標品を得ることができた。
[実施例3]
 精製した各標品の酵素部分、および抗体結合タンパク質部分が実際に機能するか確認し、タンパク質検出試薬として利用できるか検討を行うために、アルカリホスファターゼ(ALP)活性測定とウエスタンブロットにおける検出感度の比較を市販の試薬を対照として実施した。
<材料および試験方法>
1.ALP活性測定
 酵素標品を酵素希釈バッファで所定濃度に希釈し、96穴マイクロプレートの各ウェルに5μL加えた。次いで、基質(p−NPP:p−ニトロフェニルホスフェート、149−02342/和光純薬)溶液を95μL添加し、基質の脱リン酸化により生じる吸光度変化(OD410)をマイクロプレートリーダー(SH−9000Lab/コロナ電気)を用いて、20~30secごとに18回測定した。測定温度は、45℃とした。酵素の比活性(μmol p−NP/mg protein/sec)は、既知濃度の酵素産物(p−NP:p−ニトロフェノール、299−58641/和光純薬)の検量線を利用して求めた。なお、酵素の希釈、および基質、酵素産物の溶解、希釈には、下記のバッファを使用し、基質溶液のp−NPP濃度は、1mMとした。比較対照としては、ウシ小腸由来のALPであるCIAPを酵母発現させたもの(AP highly active rec. EIA Grade,CR,03 535 452/Roche)、およびPLAP(Placental Alkaline Phosphatase、P3895/Sigma)を使用した。
 酵素希釈バッファ:100mM DEA−HCl(pH9.5)、1mM MgCl
 基質、酵素産物希釈、溶解バッファ:1M DEA−HCl(pH9.5)、1mM MgCl
2.ウエスタンブロットによる検出感度検討
 抗原には、血清タンパク質であるヒト由来のTransferrin(Calbiochem/616419)を使用した。2×サンプルバッファで10ng~3pg/15μLとなるように希釈列を作製し、1レーンあたり15μLロードして、SDS−PAGEを行った。同じ希釈列のTransferrinが転写されたHybond P(PVDF)メンブレンを作製し、抗原抗体反応後、検出感度を比較した。詳しい手順および比較対照に用いた試薬を以下に示す。
 サンプルバッファ(2×):62.5mM Tris−HCl(pH6.8)、2% SDS、25% グリセロール、0.01% BPB(Bromophenol blue、029−02912/Wako)、10% メルカプトエタノール(M3148/Sigma)
SDS−PAGE(200V 定電圧条件、30min)
 ゲル:ミニプロティアンTGXゲル10%(Bio−Rad/456−1035)
 泳動バッファ:25mM Tris−HCl(pH8.3)、192mM グリシン、0.1% SDS
  ↓
ブロッティング(200mA 定電流条件、40min)
 メンブレン:Hybond Pメンブレン(GEヘルスケア/RPN2020F)
 転写バッファ:25mM Tris−HCl(pH8.3)、192mM グリシン、20%メタノール
  ↓
メンブレン洗浄(TBS、3min ×2回)
 TBS(20mM Tris−HCl(pH7.5)、150mM NaCl、2.68mM KCl)
  ↓
ブロッキング(5% Skim Milk Powder(198−10605/Wako)/TBST、室温、撹拌、60min)
 TBST(0.1% Tween20/TBS)
  ↓
メンブレン洗浄(TBST、5min×3回)
  ↓
1次抗体反応(室温、撹拌、60min)
 抗体:Rabbit anti−human Transferrin antibody(DAKO/A0061) 1/2,000希釈 (4.3μg/mL TBST)
  ↓
メンブレン洗浄(TBST、5min×4回)
  ↓
pG−アルカリホスファターゼ反応(室温、撹拌、60min)
 pG−BAP変異体精製標品、Fr.1を使用
 処理濃度:0.5μg/mL TBST
  ↓
メンブレン洗浄(TBST、5min×4回)
  ↓
発光検出
 7,200secまで150sec毎に画像取得。
 測定器:ChemiDoc XRS+(170−8265J1PC/Bio−Rad)
 発光基質:CDP−Star Ready−to−use(Roche/12041677001)
 比較対照試薬
 pG−CIAP(Protein G Alkaline Phosphatase Conjugated、PG00−05/Rockland)
<結果>
1.ALP活性
 図18には、pG−D153G/D330NおよびpG−D153H/D330N(いずれもpG結合位置:N末端)のALP活性測定結果を示す。測定値のばらつきが若干、大きいが、pG−D153G/D330Nの比活性は、350~450μmol p−NP/mg prot./minであり、TMN培地の方が比活性は、若干高い傾向にあった。
 一方、pG−D153H/D330Nの比活性は、50μmol p−NP/mg prot./min程度でpG−D153G/D330Nに比べるとその値は大幅に低いものであった。
 図19には、pG−K328R/D330N(pG結合部位:N末端およびC末端)の活性測定結果を示す。N末端結合のものに若干、活性値の大小が認められるが、N末端、C末端ともその比活性は200μmol/mg protein/min程度であり、両者の間に大きな差はないものと考えられた。
 以上の結果から、作製したpG−BAP変異体のALP活性を高い方から示すと以下の通りであった。
 pG−D153G/D330N>pG−K328R/D330N>pG−D153H/D330N
2.ウエスタンブロットによる検出感度
 精製標品(Fr.1)を用いたウエスタンブロットを行い、発光検出を行った結果を図20~23に示す。pG−D153G/D330Nは、pBIC8(2SLN培地)を除いて3~10pgのTransferrinを検出することが可能であった。対照のpG−CIAPは、100pg程度であることから、pG−D153G/D330Nの検出感度は、10~30倍高い可能性が示唆された(図20)。一方、pG−D153H/D330Nの検出感度は、30~100pgであり、市販のpG−CIAPと大きな差はなく、その低い酵素活性が検出感度に反映されているものと考えられた(図21)。pG−K328R/D330Nの場合は、pG−D153G/D330Nより若干、劣るが、pGをN末端、C末端に結合したもの双方とも10pg程度の検出感度であり、対照のpG−CIAPより10倍程度高い可能性が示唆された(図22,23)。
 以上の結果より、ブレビバチルスで分泌発現された目的タンパク質は抗体結合活性、ALP活性を保持していることが明らかとなった。また、ウエスタンブロットという実際のアプリケーションにおいて、今回、供試したpG−D153G/D330NおよびpG−K328R/D330Nは、市販の既存品に比べ、高い検出感度を示すことから、タンパク質検出試薬として有用であることが判明した。
 K328R/D330Nでは、N末端と、C末端でALP活性、ウエスタンブロット双方とも性能差はほとんどなかった。
 D153G/D330N、D153H/D330Nでは、pGの結合部位はN末端しか検討していないが、これらの変異部位はリン酸、Mg2+およびZn2+の結合部位近傍であり、pGの結合部位をC末端とした場合も立体構造変化によってpGの抗体結合活性が阻害されるとは考えにくく、性能面では同等の結果が得られる可能性が高い。
 K328R/D330Nにおいては、発現生産の安定性はN末端のものが優れていた。C末端にpGが結合したものは宿主内でベクターが安定して保持されにくいことが一因と考えられる。

Claims (3)

  1. プロテインGのC1ドメイン、プロテインGのC2ドメインおよびプロテインGのC3ドメインのうち少なくとも1つを含むタンパク質ドメインと、大腸菌アルカリアルカリホスファターゼ(BAP)の153位のアミノ酸残基AspをGlyにより置換し、330位のアミノ酸残基AspをAsnにより置換した2重変異体D153G/D330N、大腸菌アルカリアルカリホスファターゼ(BAP)の153位のアミノ酸残基AspをHisにより置換し、330位のアミノ酸残基AspをAsnにより置換した2重変異体D153H/D330N、または大腸菌アルカリアルカリホスファターゼ(BAP)の328位のアミノ酸残基LysをArgにより置換し、330位のアミノ酸残基AspをAsnにより置換した2重変異体K328R/D330Nとを融合したものであることを特徴とするタンパク質検出用融合タンパク質。
  2. 請求項1に記載のタンパク質検出用融合タンパク質であって、
     前記タンパク質ドメインが、プロテインAのBドメイン、プロテインGのC2ドメインおよびプロテインGのC3ドメインが結合されたものであることを特徴とするタンパク質検出用融合タンパク質。
  3. タンパク質の検出方法であって、
     請求項1または2に記載のタンパク質検出用融合タンパク質と、対象物中に存在するタンパク質とを直接または間接的に結合させ、結合している前記タンパク質検出用融合タンパク質のアルカリホスファターゼ部分を標識部分として検出することを特徴とするタンパク質の検出方法。
PCT/JP2014/077274 2013-10-18 2014-10-06 タンパク質検出用融合タンパク質およびタンパク質の検出方法 WO2015056659A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480056879.XA CN105829348B (zh) 2013-10-18 2014-10-06 蛋白质检测用融合蛋白及蛋白质检测方法
US15/029,787 US9976129B2 (en) 2013-10-18 2014-10-06 Fusion protein for protein detection, and method for detecting protein
EP14854395.2A EP3059250A4 (en) 2013-10-18 2014-10-06 Fusion protein for protein detection, and method for detecting protein

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-217048 2013-10-18
JP2013217048A JP5866715B2 (ja) 2013-10-18 2013-10-18 タンパク質検出用融合タンパク質およびタンパク質の検出方法

Publications (1)

Publication Number Publication Date
WO2015056659A1 true WO2015056659A1 (ja) 2015-04-23

Family

ID=52828103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077274 WO2015056659A1 (ja) 2013-10-18 2014-10-06 タンパク質検出用融合タンパク質およびタンパク質の検出方法

Country Status (5)

Country Link
US (1) US9976129B2 (ja)
EP (1) EP3059250A4 (ja)
JP (1) JP5866715B2 (ja)
CN (1) CN105829348B (ja)
WO (1) WO2015056659A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6732368B2 (ja) * 2016-01-12 2020-07-29 東ソー株式会社 アルカリホスファターゼ及びその製造方法
EP3737750B1 (en) 2018-01-09 2024-06-05 Theriva Biologics, Inc. Alkaline phosphatase agents for treatment of neurodevelopmental disorders
CA3094173A1 (en) 2018-03-20 2019-09-26 Synthetic Biologics, Inc. Intestinal alkaline phosphatase formulations
EP3773686B1 (en) 2018-03-20 2023-06-07 Theriva Biologics, Inc. Alkaline phosphatase agents for treatment of radiation disorders
CN110511282A (zh) * 2019-08-27 2019-11-29 中国农业科学院上海兽医研究所(中国动物卫生与流行病学中心上海分中心) 一种用于抗体酶标的双功能蛋白spg-alp及其elisa检测试剂盒
CN110615846B (zh) * 2019-08-27 2022-05-17 中国农业科学院上海兽医研究所(中国动物卫生与流行病学中心上海分中心) 一种兼有IgG结合活性及生物素结合活性的双功能蛋白及其ELISA试剂盒
CN110511284A (zh) * 2019-08-27 2019-11-29 中国农业科学院上海兽医研究所(中国动物卫生与流行病学中心上海分中心) 一种用于抗体酶标的双功能蛋白spg-alp
CN114262714B (zh) * 2021-12-01 2022-08-30 陕西脉元生物科技有限公司 一种富集蛋白、构建方法和应用以及基于其快速检测抗体的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0998780A (ja) 1995-06-29 1997-04-15 Commiss Energ Atom 修飾された細菌アルカリ性ホスファターゼ及びその用途
JP2620416B2 (ja) 1990-02-07 1997-06-11 アボット・ラボラトリーズ 比活性の向上した合成アルカリホスファターゼ
JP3560972B2 (ja) 1992-07-07 2004-09-02 アボット・ラボラトリーズ 指示薬として使用するための改善された特異活性を有するアルカリホスファターゼ酵素
JP2014100095A (ja) * 2012-11-20 2014-06-05 Kyushu Univ タンパク質検出用融合タンパク質およびタンパク質の検出方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2003144A1 (en) * 2007-06-15 2008-12-17 Institut Pasteur Method for the diagnosis or the screening of an arbovirus infection, reagents useful in said method and their applications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2620416B2 (ja) 1990-02-07 1997-06-11 アボット・ラボラトリーズ 比活性の向上した合成アルカリホスファターゼ
JP3560972B2 (ja) 1992-07-07 2004-09-02 アボット・ラボラトリーズ 指示薬として使用するための改善された特異活性を有するアルカリホスファターゼ酵素
JPH0998780A (ja) 1995-06-29 1997-04-15 Commiss Energ Atom 修飾された細菌アルカリ性ホスファターゼ及びその用途
JP2014100095A (ja) * 2012-11-20 2014-06-05 Kyushu Univ タンパク質検出用融合タンパク質およびタンパク質の検出方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"Engineering of functional chimeric protein G-Vargula luciferase", ANALYTICAL BIOCHEMISTRY, vol. 249, no. 2, 1997, pages 147 - 152
"Expression and purification of a truncated recombinant streptococcal protein G", BIOCHEM J., vol. 267, no. 1, 1990, pages 171 - 177
"Improving Escherichia coli Alkaline Phosphatase Efficacy by Additional Mutations inside and outside the Catalytic Pocket", CHEMBIOCHEM., vol. 2, 2001, pages 517 - 523
ELIASSON M. ET AL.: "Chimeric IgG-binding receptors engineered from staphylococcal protein A and streptococcal protein G", J. BIOL. CHEM., vol. 263, no. 9, 25 March 1988 (1988-03-25), pages 4323 - 4327, XP055334754 *
GORBATIUK O.B. ET AL.: "Construction, expression, functional characterization and practical application of fusion protein SPA- BAPmut", BIOPOLYM. CELL, vol. 29, no. 1, February 2013 (2013-02-01), pages 49 - 54, XP055334751 *
See also references of EP3059250A4 *
SUN S. ET AL.: "Chimaeric protein A/protein G and protein G/alkaline phosphatase as reporter molecules", J. IMMUNOL. METHODS, vol. 152, no. 1, 31 July 1992 (1992-07-31), pages 43 - 48, XP023657538 *

Also Published As

Publication number Publication date
JP5866715B2 (ja) 2016-02-17
CN105829348B (zh) 2019-12-06
JP2015078161A (ja) 2015-04-23
US9976129B2 (en) 2018-05-22
EP3059250A4 (en) 2017-04-05
US20160355791A1 (en) 2016-12-08
EP3059250A1 (en) 2016-08-24
CN105829348A (zh) 2016-08-03

Similar Documents

Publication Publication Date Title
JP5866715B2 (ja) タンパク質検出用融合タンパク質およびタンパク質の検出方法
US11667679B2 (en) Streptavidin muteins and methods of using them
US7960312B2 (en) Method and agent for immobilizing protein via protein bound to silicon oxide-containing substance
CN110376384B (zh) 检测中蜂蜂蜜与意蜂蜂蜜的elisa检测试剂盒
CN111073901A (zh) 一种肌钙蛋白i检测试剂盒校准品的制备方法
CN106554411B (zh) 可用作标准物质的胱抑素c产品、其制备方法及其用途
CN112094355A (zh) 一种用于临床诊断的复合质控品及其制备方法
Ghaedmohammadi et al. The first report on the sortase-mediated display of bioactive protein A from Staphylococcus aureus (SpA) on the surface of the vegetative form of Bacillus subtilis
US11008365B2 (en) Polypeptide exhibiting affinity to antibodies forming non-native three-dimensional structure
US20120009624A1 (en) Protein particles
Dunford et al. Purification of Active Chloroplast Sedoheptulose-1, 7-Bisphosphatase Expressed inEscherichia coli
Kim et al. Expression of bovine lactoferrin C-lobe in Rhodococcus erythropolis and its purification and characterization
US20100240146A1 (en) Fluorescent protein particles
JPWO2005003155A1 (ja) ブロッキング効率の向上したタンパク質
CN112979767B (zh) 检测牛支原体抗体的抗原组合物、试剂盒及其应用
WO2021106453A1 (ja) 組換えc反応性タンパク質
US10954275B1 (en) Designed proteins for pH switchable antibody purification
US10604778B2 (en) BRCA2 mediated protein purification recombinase
CN114163539A (zh) Tp重组抗原及其制备方法和应用
CN116134317A (zh) 包含SARS-CoV-2核衣壳结构域的融合蛋白
CN117604016A (zh) 一种抗体亲和体蛋白串联构建功能性磁小体及其制备方法
CN117164691A (zh) 波形蛋白变体及其瓜氨酸化产物的制备和应用
WO2021072599A1 (zh) 用于检测tp抗体的试剂盒以及方法
JP2004305097A (ja) レセプタータンパク質を細胞表層に発現し得るdna、発現ベクター、形質転換細胞およびレセプタータンパク質と結合する化合物を検出する方法
JP2004305096A (ja) レセプタータンパク質を細胞表層に発現し得るdna、発現ベクター、形質転換細胞および毒性物質を検出する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14854395

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 15029787

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014854395

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014854395

Country of ref document: EP