WO2015050263A1 - Resin composition and heat dissipation component comprising same - Google Patents

Resin composition and heat dissipation component comprising same Download PDF

Info

Publication number
WO2015050263A1
WO2015050263A1 PCT/JP2014/076636 JP2014076636W WO2015050263A1 WO 2015050263 A1 WO2015050263 A1 WO 2015050263A1 JP 2014076636 W JP2014076636 W JP 2014076636W WO 2015050263 A1 WO2015050263 A1 WO 2015050263A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
resin
resin composition
less
compound
Prior art date
Application number
PCT/JP2014/076636
Other languages
French (fr)
Japanese (ja)
Inventor
健二 池田
哲郎 土橋
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to JP2015540578A priority Critical patent/JP6376135B2/en
Publication of WO2015050263A1 publication Critical patent/WO2015050263A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a resin composition and a heat dissipation component comprising the same.
  • heat sinks made of aluminum-based alloys with high thermal conductivity have been used as heat-dissipating components such as heat sinks for cooling semiconductors such as LED elements and electronic devices used in LED lighting, and heat sinks for large power supplies such as industrial equipment and devices. It is used.
  • Patent Document 1 contains a thermoplastic resin, graphite particles, and a carbon fiber structure, and when the content of the graphite particles and the carbon fiber structure is 100 parts by mass of the thermoplastic resin, A resin composition characterized by 10 parts by mass or more and 300 parts by mass or less and 1 part by mass or more and 80 parts by mass or less is described.
  • Patent Document 2 contains a thermoplastic resin, carbon fiber, and graphite particles having an average particle diameter of more than 12 ⁇ m and not more than 50 ⁇ m, and is 230 ° C. and a load of 2.16 kg according to JIS-K-7210. Describes a resin composition having a melt flow rate of 0.5 g / 10 min to 30 g / 10 min.
  • the heat dissipating parts made of the resin composition described in any of the patent documents have low thermal conductivity, and further improvements have been demanded.
  • the present invention provides a resin composition capable of producing a heat dissipation component having good thermal conductivity, and a heat dissipation component comprising the resin composition and having good thermal conductivity. Objective.
  • the present invention 20% by mass or more and 59% by mass or less of the thermoplastic resin (A), 1% by mass or more and 10% by mass or less of carbon fiber (B) having a thermal conductivity of 150 W / m ⁇ K or more; A resin composition containing 40% by mass or more and 70% by mass or less of graphite particles (C) (provided that the total amount of (A), (B) and (C) is 100% by mass);
  • the thermoplastic resin (A) is a propylene resin (A1) having a melt flow rate measured at 230 ° C. and a load of 21.18 N of 1.0 g / 10 min to 200 g / 10 min, and 190 ° C. and a load of 21.18 N.
  • a resin composition which is a resin containing an ethylene resin (A2) having a melt flow rate of 5.0 g / 10 min to 300 g / 10 min and a density of 930 kg / m 3 to 990 kg / m 3 And a heat dissipating part comprising the resin composition.
  • A2 ethylene resin
  • the resin composition according to the present invention contains a predetermined amount of each of a thermoplastic resin (A), carbon fiber (B), and graphite particles (C).
  • a thermoplastic resin (A) contained in the resin composition contains a propylene resin (A1) and an ethylene resin (A2).
  • the content of the propylene resin (A1) is 5% by mass or more and 95% by mass or less, and 10% by mass or more when the total amount of the thermoplastic resin (A) is 100% by mass. It is preferably 90% by mass or less, and more preferably 15% by mass or more and 85% by mass or less.
  • the content of the ethylene resin (A2) is 95% by mass or less, 5% by mass or more, and 90% by mass or less when the total amount of the thermoplastic resin (A) is 100% by mass. It is preferably 10% by mass or more, and more preferably 85% by mass or less and 15% by mass or more.
  • the content of the propylene resin (A1) is 95% by mass or less (that is, the content of the ethylene resin (A2) is 5% by mass or more), it is possible to obtain a heat radiation component having a good thermal conductivity. It becomes.
  • the content of the thermoplastic resin (A) is 20% by mass or more and 59% by mass or less when the total amount of the thermoplastic resin (A), the carbon fiber (B) and the graphite particles (C) is 100% by mass. Yes, it is preferably 26 mass% or more and 56 mass% or less, and more preferably 28 mass% or more and 55 mass% or less.
  • the content of the thermoplastic resin (A) is 20% by mass or more, the impact resistance of the heat dissipation component can be improved.
  • the heat radiating component with favorable heat conductivity can be obtained by making content of a thermoplastic resin (A) into 59 mass% or less.
  • a propylene resin (A1) is resin which contains the structural unit derived from propylene exceeding 50 mass%.
  • the propylene resin (A1) includes a propylene homopolymer; a structural unit derived from at least one comonomer selected from the group consisting of ethylene and an ⁇ -olefin having 4 to 10 carbon atoms, and a structural unit derived from propylene.
  • a propylene copolymer a structural unit derived from at least one comonomer selected from the group consisting of ethylene and an ⁇ -olefin having 4 to 10 carbon atoms in a propylene homopolymer matrix, and a structural unit derived from propylene And a heterophasic polymerized material which is a mixture having a structure in which a copolymer having the above is dispersed. These may be used alone or in combination of two or more.
  • the content of structural units derived from at least one comonomer selected from the group consisting of ethylene and an ⁇ -olefin having 4 to 10 carbon atoms in the propylene copolymer and the heterophasic polymerization material is 0.01% by mass.
  • the content is preferably 20% by mass or less (however, the total amount of each of the propylene copolymer and the heterophasic polymerization material is 100% by mass).
  • Examples of the ⁇ -olefin having 4 to 10 carbon atoms include butene, hexene, octene and the like, butene is preferable.
  • propylene copolymer examples include propylene-ethylene copolymer, propylene-1-butene copolymer, propylene-1-hexene copolymer, propylene-1-octene copolymer, propylene-ethylene- Examples thereof include 1-butene copolymer, propylene-ethylene-1-hexene copolymer, and propylene-ethylene-1-octene copolymer. These may be random copolymers or block copolymers.
  • a propylene resin (A1) a propylene homopolymer, a propylene-ethylene copolymer, a propylene-1-butene copolymer, or a propylene-ethylene-1-butene copolymer is preferably used, and a propylene homopolymer is used. It is more preferable.
  • the melt flow rate of the propylene resin (A1) measured at 230 ° C. and a load of 21.18 N is 5.0 g / 10 min to 200 g / 10 min, preferably 10 g / 10 min to 150 g / 10 min. Yes, more preferably from 20 g / 10 min to 120 g / 10 min.
  • a resin composition having appropriate fluidity can be obtained, and by setting the melt flow rate to 200 g / 10 min or less, the impact resistance of the heat radiation component Can be improved.
  • Propylene resin (A1) can be produced by a known polymerization method using a polymerization catalyst.
  • the polymerization catalyst include a Ziegler type catalyst system, a Ziegler-Natta type catalyst system, a catalyst system comprising a transition metal compound of Group 4 of the periodic table having a cyclopentadienyl ring and an alkylaluminoxane, and a cyclopentadienyl ring.
  • Examples thereof include a catalyst system comprising a transition metal compound of Group 4 of the periodic table, a compound that reacts with the transition metal compound to form an ionic complex, and an organoaluminum compound.
  • a prepolymerized catalyst prepared by prepolymerizing ethylene or ⁇ -olefin in the presence of the above catalyst system may be used.
  • these catalyst systems include JP-A-61-218606, JP-A-61-287904, JP-A-5-194585, JP-A-7-216017, and JP-A-9-316147.
  • catalyst systems described in JP-A-10-212319 and JP-A-2004-182981 are examples of these catalyst systems described in JP-A-10-212319 and JP-A-2004-182981.
  • Examples of the polymerization method include bulk polymerization, solution polymerization, slurry polymerization, and gas phase polymerization.
  • Bulk polymerization is a method in which polymerization is performed using a liquid olefin as a medium at the polymerization temperature
  • gas phase polymerization is a method in which a gaseous monomer is used as a medium and a gaseous monomer is contained in the medium. This is a polymerization method.
  • These polymerization methods may be either batch type or continuous type, and these polymerization methods may be arbitrarily combined.
  • a production method by a continuous gas phase polymerization method, a bulk-gas phase polymerization method in which a bulk polymerization method and a gas phase polymerization method are continuously performed is preferable.
  • Various conditions in the polymerization step may be appropriately determined.
  • the heterophasic polymer material used as the propylene resin (A1) is a propylene homopolymer produced in the preceding polymerization step, and composed of propylene, ethylene, and an ⁇ -olefin having 4 to 10 carbon releases in the latter polymerization step. It is preferable to produce using a method of polymerizing at least one comonomer selected from the group, a so-called “multistage polymerization method”.
  • the isoform measured by 13 C-NMR of the portion produced by homopolymerization of propylene (the portion produced by propylene homopolymerization)
  • the tactic pentad fraction is preferably 0.95 or more, more preferably 0.98 or more.
  • the isotactic pentad fraction is a fraction of the propylene monomer unit at the center of the isotactic chain in the pentad unit in the propylene polymer molecular chain, in other words, 5 propylene monomer units. It is the fraction of propylene monomer units in a continuously meso-bonded chain (hereinafter referred to as mmmm).
  • the method for measuring the isotactic pentad fraction is as follows. It is the method described by Zambelli et al., Macromolecules, 6, 925 (1973), that is, the method measured by 13 C-NMR.
  • the ratio of the area of the NMR peak attributed to mmmm to the area of the absorption peak of the methyl carbon region measured by 13 C-NMR spectrum is the isotactic pentad fraction.
  • ethylene resin (A2) is resin containing 50 mass% or more of structural units derived from ethylene.
  • the ethylene resin (A2) is an ethylene homopolymer; an ethylene copolymer having a structural unit derived from ethylene, a structural unit derived from propylene, and a structural unit derived from an ⁇ -olefin having 4 to 10 carbon atoms. Is mentioned. These may be used alone or in combination of two or more.
  • the content of the structural unit derived from the ⁇ -olefin having 4 to 10 carbon atoms in the ethylene copolymer is preferably 0.01% by mass or more and 20% by mass or less (provided that the total amount of the ethylene copolymer is 100%). (Mass%).
  • Examples of the ⁇ -olefin having 4 to 10 carbon atoms include butene, hexene, octene and the like, butene is preferable.
  • ethylene copolymer examples include an ethylene-propylene copolymer, an ethylene-butene-1 copolymer, an ethylene-pentene-1 copolymer, an ethylene-hexene-1 copolymer, an ethylene-octene-1 copolymer, And ethylene-4-methyl-pentene-1.
  • the density of the ethylene resin (A2) is at 930 kg / m 3 or more 990kg / m 3 or less, preferably not more than 940 kg / m 3 or more 980 kg / m 3, more preferably 950 kg / m 3 or more 965 kg / m 3 or less is there.
  • the density of the ethylene resin (A2) is measured according to the method defined in Method A in JIS K7112-1980 after annealing described in JIS K6760-1995.
  • the melt flow rate of the ethylene resin (A2) measured at 190 ° C. and a load of 21.18 N is 5.0 g / 10 min to 300 g / 10 min, preferably 10 g / 10 min to 250 g / 10 min. More preferably, it is 20 g / 10 min or more and 200 g / 10 min or less.
  • an appropriately fluid resin composition can be obtained.
  • the melt flow rate By setting the melt flow rate to 300 g / 10 min or less, the heat resistance of the heat dissipation component It becomes possible to improve impact properties.
  • the ethylene resin (A2) can be produced using a known method.
  • Examples of such a method include polymerization using a catalyst containing a transition metal atom.
  • a catalyst containing a transition metal atom a transition metal compound (a), a composition comprising a transition metal compound (a) and an activator (b), and a transition metal compound (a) and an activator
  • carrier (c) is mentioned.
  • transition metal compound (a) examples include a transition metal compound containing a group 3-11 of the periodic table or a lanthanoid series transition metal atom, a halogen atom, and a group having a cyclopentadiene-type anion skeleton or a group containing a hetero atom. Can be mentioned. When there are a plurality of these groups, they may be the same or different.
  • a group having a cyclopentadiene type anion skeleton, a group having a cyclopentadiene type anion skeleton and a group containing a hetero atom, or a group containing a hetero atom may be directly connected to each other, such as a carbon atom, silicon It may be linked via a residue containing an atom, nitrogen atom, oxygen atom, sulfur atom or phosphorus atom.
  • Examples of the group having a cyclopentadiene-type anion skeleton include a substituted or unsubstituted cyclopentadienyl group, indenyl group, hydroindenyl group, and fluorenyl group.
  • Examples of the hetero atom in the group containing a hetero atom include an oxygen atom, a sulfur atom, a nitrogen atom, and a phosphorus atom. Examples of such a group include an alkoxy group, an aryloxy group, a thioalkoxy group, a thioaryloxy group, and an amino group.
  • the activator (b) may be any one that can activate the transition metal compound (a) and form an ion pair.
  • Examples of the activator (b) include organoaluminum compounds, organoaluminum oxy compounds, boron compounds, clay minerals, sulfonates, carboxylic acid derivatives, surface-treated solid oxides or halides. These compounds may be used alone or in combination of two or more.
  • Examples of the carrier (c) include inorganic substances such as inorganic oxides, clays and clay minerals, and particulate organic polymers.
  • examples of the inorganic oxide include SiO 2 , Al 2 O 3 , MgO, ZrO 2 , TiO 2 , B 2 O 3 , CaO, ZnO, BaO, ThO 2 , and mixtures thereof.
  • clay or clay mineral examples include kaolin, bentonite, kibushi clay, gyrome clay, allophane, hysinger gel, bayophyllite, talc, unmo group, montmorillonite group, vermiculite, ryokdeite group, palygorskite, kaolinite, nacrite, dickite, Halloysite and the like.
  • carrier (c) those subjected to surface treatment or chemical treatment as necessary may be used.
  • the catalyst containing a transition metal atom examples include a solid catalyst component prepared by using a transition metal compound in Group 4 to 6 of the periodic table and an organometallic compound of Group 1, 2, or 13 metal in the periodic table. Examples include so-called Ziegler-Natta catalysts.
  • Examples of the polymerization method used for producing the ethylene resin (A2) include a slurry polymerization method, a gas phase polymerization method, and a solution polymerization method using the catalyst containing the transition metal atom.
  • the polymerization conditions such as polymerization temperature, polymerization time, polymerization pressure and monomer concentration are not particularly limited. Moreover, you may coexist components, such as surfactant, an antistatic agent, and an electron-donating compound, in a polymerization reaction system as needed.
  • the thermal conductivity of the carbon fiber (B) used in the present invention is 150 W / m ⁇ K or more, preferably 200 W / m ⁇ K or more. When the thermal conductivity of the carbon fiber (B) is less than 150 W / m ⁇ K, the thermal conductivity of the resin composition may decrease.
  • the thermal conductivity of the carbon fiber (B) is preferably as high as possible from the viewpoint of imparting heat radiation performance, but is usually 1950 W / m ⁇ K or less, and usually 800 W / m ⁇ K or less from the viewpoint of availability. It is. From the viewpoint of thermal conductivity, pitch-based carbon fibers are preferable, and specific examples include trade name DIALEAD manufactured by Mitsubishi Plastics Co., Ltd.
  • the surface of this carbon fiber (B) may be treated with a sizing agent.
  • the sizing agent include polyolefin, polyurethane, polyester, acrylic, epoxy resin, starch, vegetable oil and the like.
  • the sizing agent may contain a surface treatment agent such as acid-modified polyolefin and silane coupling agent, and a lubricant such as paraffin wax.
  • the method for treating the carbon fiber (B) with a sizing agent include a method of immersing the carbon fiber (B) in an aqueous solution in which the sizing agent is dissolved, a method of applying the aqueous solution to the fiber by spraying, and the like.
  • the number average fiber length of the carbon fibers (B) in the resin composition in the present invention is preferably 0.5 mm or more, and more preferably 0.7 mm or more. By setting the fiber length in such a range, the thermal conductivity of the resin composition can be made higher than the thermal conductivity of the resin composition containing carbon fibers having a number average fiber length of less than 0.5 mm.
  • the number average fiber length (unit: mm) of the carbon fibers is a method described in JP-A No. 2002-5924, in which the resin is removed from the sample for evaluation by a Soxhlet extraction method (solvent: xylene) and the fibers are recovered. Can be measured.
  • the fiber diameter of carbon fiber (B) is 5 micrometers or more, and it is more preferable that it is 7 micrometers or more.
  • the content of the carbon fiber (B) is 1% by mass or more and 10% by mass or less when the total amount of the thermoplastic resin (A), the carbon fiber (B), and the graphite particles (C) is 100% by mass. More preferably, it is 2 mass% or more and 9 mass% or less.
  • the graphite constituting the graphite particles (C) used in the present invention may be either artificial graphite or natural graphite. Specifically, trade name CB-150 manufactured by Nippon Graphite Industry Co., Ltd. can be mentioned.
  • the average particle diameter of the graphite particles (C) is preferably more than 12 ⁇ m and 50 ⁇ m or less, and more preferably 19 ⁇ m or more and 40 ⁇ m or less. By making the average particle diameter larger than 12 ⁇ m, it becomes possible to improve the fluidity of the resin composition, and by setting the average particle diameter to 50 ⁇ m or less, the thermal conductivity of the heat dissipation component is improved.
  • the average particle diameter can be measured using a laser scattering type particle size distribution measuring apparatus.
  • the content of the graphite particles (C) is 40% by mass or more and 70% by mass or less when the total amount of the thermoplastic resin (A), the carbon fiber (B), and the graphite particles (C) is 100% by mass. 42 mass% or more and 65 mass% or less is preferable, and 43 mass% or more and 63 mass% or less is more preferable.
  • the melt flow rate (MFR) of the resin composition according to the present invention is from 0.1 g / 10 min to 30 g / 10 min, preferably from 0.2 g / 10 min to 25 g / 10 min, more preferably. Is 0.3 g / 10 min or more and 20 g / 10 min or less.
  • the melt flow rate is a value measured at a measurement temperature of 230 ° C. and a load of 21.18 N in accordance with the method defined in JIS K7210.
  • the resin composition contains an adsorbent (D), an antioxidant (E), at least one compound (F) selected from the following compound group S, and the like. You may let them.
  • the compound group S is represented by a compound represented by the general formula C n H n-2 (OH) n (wherein n represents an integer of 4 or more), the following alkoxy compound, and the following formula (2). It is a group of compounds consisting of a compound, trehalose, sucrose, lactose, maltose, meletitose, stachyose, curdlan, glycogen, glucose and fructose.
  • An alkoxy compound is a compound in which a hydrogen atom of at least one hydroxyl group of a hydroxyl group contained in a compound represented by the following formula (1) is substituted with an alkyl group having 1 to 12 carbon atoms, and the formula (1) Is a compound containing one aldehyde group or one ketone group and m-1 hydroxyl groups.
  • C m H 2m O m (1) In the formula, m represents an integer of 3 or more.) (In the formula, p represents an integer of 2 or more.)
  • the adsorbent (D) is at least one compound selected from the group consisting of calcium hydroxide, zeolite, and hydrotalcite. Among these, it is preferable to use calcium hydroxide because fogging resistance can be improved with a smaller amount of use.
  • the average particle diameter of calcium hydroxide used as the adsorbent (D) is preferably 0.1 ⁇ m or more and 150 ⁇ m or less, and more preferably 1 ⁇ m or more and 10 ⁇ m or less. By setting the average particle diameter within this range, the adsorbent (D) can be uniformly dispersed in the resin composition.
  • the average particle diameter can be measured using a laser scattering type particle size distribution measuring apparatus.
  • the content of the adsorbent (D) is 100 parts by mass with respect to the total amount of the thermoplastic resin (A), carbon fiber (B), and graphite particles (C). And 0.05 parts by mass or more and 1 part by mass or less, and preferably 0.2 parts by mass or more and 1 part by mass or less.
  • antioxidant (E) a known antioxidant can be used.
  • phenolic antioxidants, hydroquinone antioxidants, sulfur antioxidants, phosphorus antioxidants and the like can be mentioned. These may be used alone or in combination of two or more, and it is preferable to use a phenolic antioxidant and a phosphorus antioxidant alone or in combination.
  • phenolic antioxidants examples include alkylated monophenols, alkylthiomethylphenols, alkylidene bisphenols and derivatives thereof, acylaminophenol derivatives, and ⁇ - (3,5-di-tert-butyl-4-hydroxyphenyl) propionic acid.
  • hydroquinone antioxidant examples include hydroquinone, 2,6-di-tert-butyl-4-methoxyphenol, 2,5-di-tert-butylhydroquinone, 2,5-di-tert-amylhydroquinone, 2,6-diphenyl-4-octadecyloxyphenol, 2,6-di-tert-butylhydroquinone, 2,5-di-tert-butyl-4-hydroxyanisole, 3,5-di-tert-butyl-4- Examples include hydroxyphenyl stearate, bis (3,5-di-tert-butyl-4-hydroxyphenyl) adipate and mixtures thereof.
  • sulfur-based antioxidant examples include 2,4-bis [(octylthio) methyl] -O-cresol, 4,6-bis (dodecylthiomethyl) -O-cresol, dilauryl 3,3′-thiodipropio.
  • phosphorus antioxidants include triphenyl phosphite, tris (nonylphenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite, 6- [3- (3-tert-butyl).
  • Content of antioxidant (E) is 0.05 mass part or more and 1 mass part or less with respect to 100 mass parts of total amounts of the said thermoplastic resin (A), carbon fiber (B), and graphite particle (C). It is preferable that it is 0.1 mass part or more and 0.5 mass part or less.
  • the compound (F) is at least one compound selected from the following compound group S.
  • the compound group S is represented by a compound represented by the general formula C n H n-2 (OH) n (wherein n represents an integer of 4 or more), the following alkoxy compound, and the following formula (2). It is a group of compounds consisting of a compound, trehalose, sucrose, lactose, maltose, meletitose, stachyose, curdlan, glycogen, glucose and fructose.
  • An alkoxy compound is a compound in which a hydrogen atom of at least one hydroxyl group of a hydroxyl group contained in a compound represented by the following formula (1) is substituted with an alkyl group having 1 to 12 carbon atoms, and the formula (1) Is a compound containing one aldehyde group or one ketone group and m-1 hydroxyl groups.
  • C m H 2m O m (1) In the formula, m represents an integer of 3 or more.) (In the formula, p represents an integer of 2 or more.)
  • N in the general formula of the compound represented by the general formula C n H n-2 (OH) n (hereinafter referred to as compound S1) represents an integer of 4 or more.
  • n is preferably an integer of 5 to 8, and more preferably 6.
  • Compound S1 includes sugar alcohols having 4 or more carbon atoms.
  • Compound S1 may be D-form or L-form, or a mixture of D-form and L-form. Further, it may be optically active or optically inactive.
  • the compound S1 is preferably a sugar alcohol having 6 carbon atoms.
  • the alkoxy form means that the hydrogen atom of at least one hydroxyl group of the hydroxyl group contained in the compound represented by the following formula (1) (hereinafter sometimes referred to as the compound (1)) has 1 to 12 carbon atoms. This is a compound substituted with an alkyl group, and the compound (1) contains one aldehyde group or ketone group and m-1 hydroxyl groups.
  • M of the compound (1) is an integer of 3 or more, preferably 3 to 60, and particularly preferably 6 or 12.
  • Compound (1) has one aldehyde carbonyl group or one ketonic carbonyl group.
  • Compound (1) has m-1 hydroxyl groups.
  • the compound (1) is preferably a monosaccharide, specifically, glycerose, erythrose, threose, ribose, lyxose, xylose, arabinose, aldohexose, allose, talose, gulose, glucose, altrose, mannose, galactose, idose.
  • Monosaccharides having an aldehyde group such as octose monosaccharides having a ketone group such as ketotriose, dihydroxyacetone, ketotetorose, erythrulose, ketopentose, xylulose, ribulose, ketohexose, psicose, fructose, sorbose, tagatose;
  • Compound (1) may be an optically active substance such as D-form or L-form, or an optically inactive substance such as DL-form.
  • D-form or L-form an optically active substance
  • DL-form an optically inactive substance
  • hexoses such as allose, talose, growth, glucose, altrose, mannose, galactose, idose, psicose, fructose, sorbose, tagatose are preferable, and glucose is particularly preferable.
  • the alkoxy form is a compound in which a hydrogen atom of at least one hydroxyl group contained in the compound (1) is substituted with an alkyl group.
  • the alkoxy compound preferably has at least one hydroxyl group. Particularly preferred is an alkoxy compound in which one hydrogen atom of a hydroxyl group contained in the compound (1) is substituted with an alkyl group, and the other group remains a hydroxyl group.
  • the alkyl group has 1 to 12 carbon atoms, preferably 1 or 2, and particularly preferably 1.
  • Preferable alkoxy compounds include, for example, formula (1-2) (Wherein, R represents an alkyl group having 1 to 12 carbon atoms, preferably 5 to 12 carbon atoms).
  • Examples of the compound represented by the formula (1-2) include methyl ⁇ -D-glucopyranoside, methyl ⁇ -D-glucopyranoside, ethyl ⁇ -D-glucopyranoside, ethyl ⁇ -D-glucopyranoside, and n-propyl ⁇ -D.
  • alkyl of compound (1) examples thereof include a method in which hydrogen chloride gas is circulated through an alcohol solution at ⁇ 10 ° C. or more and 25 ° C. or less, for example, a method in which a mixed solution of compound (1), alkyl alcohol and hydrochloric acid is heated to reflux for alkoxylation.
  • methyl ⁇ -D-glucopyranoside, n-octyl ⁇ -D-glucopyranoside, and the like can be obtained from Tokyo Chemical Industry Co., Ltd.
  • p represents an integer of 2 or more, preferably 2 to 6, Particularly preferably, it represents 5.
  • Examples of the compound (2) include 1,2,3-trihydroxycyclopropane, 1,2,3,4-tetrahydroxycyclopentane, 1,2,3,4,5-pentahydroxycyclopentane, 2,3,4,5,6-hexahydroxycyclohexane, 1,2,3,4,5,6,7-heptahydroxycycloheptane, 1,2,3,4,5,6,7,8-octa And hydroxycyclooctane.
  • 1,2,3,4,5,6-hexahydroxycyclohexane such as myo-inositol, epi-inositol, allo-inositol, muco-inositol, neo-inositol, chiro-inositol, scyllo-inositol, etc.
  • myo-inositol and scyllo-inositol represented by the following formula are preferred.
  • the content of at least one compound (F) selected from the compound group S is 100 parts by mass of the total mass of the thermoplastic resin (A), the carbon fiber (B), and the graphite particles (C). On the other hand, it is 0.01 mass part or more and 1 mass part or less, and it is preferable that it is 0.05 mass part or more and 0.5 mass part or less.
  • the resin composition used in the present invention may contain an organic fiber (G).
  • the organic fibers (G) include plant fibers such as polyester fibers, polyamide fibers, polyurethane fibers, polyimide fibers, polyolefin fibers, polyacrylonitrile fibers, and kenaf.
  • the organic fiber (G) is preferably an organic fiber-containing resin composition in which the thermoplastic resin (A), a modified polyolefin modified with an unsaturated carboxylic acid or a derivative thereof, or a resin such as an elastomer is mixed. Used as a thing.
  • Examples of the method for producing the organic fiber-containing resin composition include methods described in JP-A-2006-8995 and JP-A-3-121146.
  • the resin composition of the present invention contains organic fibers (G)
  • the content is 100 parts by mass of the total amount of the thermoplastic resin (A), the carbon fibers (B), and the graphite particles (C). It is preferably 3 parts by mass or more and 10 parts by mass or less, and more preferably 3 parts by mass or more and 5 parts by mass or less.
  • the resin composition of the present invention comprises the above components (D) and (E) in order to improve the processing characteristics, mechanical characteristics, electrical characteristics, thermal characteristics, surface characteristics, light stability and the like of the resin composition.
  • other resins and additives may be contained.
  • the “other resins” include polyolefins modified with unsaturated carboxylic acids or derivatives thereof, and rubbers such as polyolefin elastomers, polyester elastomers, polyurethane elastomers, and polyvinyl chloride elastomers.
  • the additive examples include inorganic fillers, neutralizers, plasticizers, lubricants, mold release agents, adhesion preventing agents, nucleating agents, light stabilizers, flame retardants, pigments, dyes, and the like.
  • the inorganic filler examples include glass fiber, talc, wollastonite, glass flake and the like.
  • the method for producing the resin composition of the present invention is not limited, but the thermoplastic resin (A), carbon fiber (B), graphite particles (C), and adsorbent (D) used as necessary, A method in which an antioxidant (E), a compound (F), an organic fiber (G), a modifier and the like are uniformly mixed using a mixing device such as a Henschel mixer or a tumbler and then melt kneaded using a plasticizing device. Is mentioned. In melt-kneading, it is preferable to appropriately adjust the temperature and agitation of the plasticizing apparatus in order to prevent the carbon fiber (B) from being broken and becoming too short.
  • a resin composition containing organic fibers is prepared in advance as in the method disclosed in Japanese Patent Application Laid-Open No. 2006-8995, and the resin composition and the thermoplastic resin are prepared.
  • Carbon fiber, graphite particles, and optionally modified polyolefin and modifier may be uniformly mixed using a mixing device such as a Henschel mixer or tumbler, and then melt-kneaded using a plasticizing device. .
  • the plasticizing device is a device that heats a thermoplastic resin to a temperature higher than its melting point and stirs the thermoplastic resin in a molten state.
  • a Banbury mixer for example, a single-screw extruder, a twin-screw co-rotating extruder (for example, TEM [registered trademark] manufactured by Toshiba Machine Co., Ltd., TEX [registered trademark] manufactured by Nippon Steel Works, Ltd., etc.) can be used.
  • 2 axis different direction rotary extruder Kobe Steel Works Co., Ltd. FCM [registered trademark], Nippon Steel Works Co., Ltd. CMP [registered trademark] etc.
  • the heat dissipation component according to the present invention is obtained by molding the above resin composition.
  • the molding method is not particularly limited, and molding can be performed using methods such as extrusion molding, injection molding, compression molding, and blow molding.
  • the heat radiating component include a lighting fixture component.
  • parts for lighting equipment include a heat sink, a sealing cover, and a shade.
  • the heat radiating component include a heat sink for cooling a semiconductor such as an electronic device, and a heat sink for a large power source such as an industrial device or apparatus.
  • Compound (F) selected from Compound Group S: D-(+)-trehalose dihydrate (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • the evaluation items of the molded articles prepared in Examples and Comparative Examples and the measurement methods thereof are as follows.
  • Melt flow rate (MFR, unit: g / 10 minutes) The melt flow rate was measured according to JIS K7210.
  • the melt flow rate of the resin composition and the propylene resin (A1) was measured at a temperature of 230 ° C. and a load of 21.18N.
  • the melt flow rate of the ethylene resin (A2) was measured at a temperature of 190 ° C. and a load of 21.18N.
  • Izod impact strength (Izod, unit: kJ / m 2 ) Using the test pieces (63.5 mm ⁇ 10 mm ⁇ thickness 4 mm) produced in the examples and comparative examples, according to the method defined in JIS K7110, notching was performed after molding to evaluate the notched impact strength. The measurement was performed at a temperature of 23 ° C.
  • Thermal conductivity of the molded body was measured using a laser flash method.
  • Three test pieces (80 mm ⁇ 10 mm ⁇ thickness 4 mm) manufactured in Examples and Comparative Examples were stacked and bonded to obtain a 12 mm thick laminate.
  • Two substantially central portions of the laminate were cut from a direction perpendicular to the bonding surface, and each cut surface was polished to prepare a test piece of 10 mm ⁇ 12 mm ⁇ 1 mm thickness.
  • the thermal conductivity in the in-plane direction of the molded body was determined by a laser flash method thermal constant measuring apparatus (TC-7000, ULVAC-RIKO Co., Ltd.).
  • Example 1 In the ratio shown in Table 1-1 and Table 1-2 below, each component was put in a polyethylene bag and shaken vigorously to mix uniformly, and then a 20 mm single screw extruder VS20-26 made by Tanabe Plastics Machinery was used. After melt-kneading at a cylinder temperature of 240 ° C., it was cut into pellets of about 3 mm.
  • “mass%” is a value when the total amount of the thermoplastic resin (A), carbon fiber (B), and graphite particles (C) is 100 mass%.
  • Mass part is a value when the total amount of the thermoplastic resin (A), the carbon fiber (B), and the graphite particles (C) is 100 parts by mass.
  • the obtained pellets were injection molded using an injection molding machine (Toyo Seiki TOYO SI-30III) at a cylinder temperature of 230 ° C., a mold temperature of 50 ° C., an injection speed of 20 mm / sec, and a holding pressure of 25 MPa.
  • a molded body was obtained.
  • Table 2 shows the evaluation results of the physical properties of this molded body.
  • Example 2 Except that the blending amounts of (A-1), (A-4), (B-1), and (C) used in Example 1 were changed as shown in Table 1-1 and Table 1-2, A molded body was obtained in the same procedure as in Example 1, and its physical properties were evaluated. Table 2 shows the evaluation results of the physical properties of this molded body.
  • Example 3 Except that the blending amounts of (A-1), (A-4), (B-1), and (C) used in Example 1 were changed as shown in Table 1-1 and Table 1-2, A molded body was obtained in the same procedure as in Example 1, and its physical properties were evaluated. Table 2 shows the evaluation results of the physical properties of this molded body.
  • Example 1 The procedure similar to that of Example 1 was followed except that the thermoplastic resin (A-4) was replaced with (A-6) and the amount of (C) was changed as shown in Table 1-1 and Table 1-2. Molded bodies were obtained and their physical properties were evaluated. Table 2 shows the evaluation results of the physical properties of this molded body.
  • Example 4 The molded product was prepared in the same procedure as in Example 1 except that (A-1) and (A-2) were used as the propylene resin (A1) and blended as shown in Table 1 and the ethylene polymer was not blended. Obtained and evaluated its physical properties. Table 2 shows the evaluation results of the physical properties of this molded body.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

Provided are: a resin composition with which a heat dissipation component having good thermal conductivity can be manufactured; and a heat dissipation component comprising the resin composition. Specifically provided is a resin composition containing 20 mass% to 59 mass% of a thermoplastic resin (A), 1 mass% to 10 mass% of carbon fibers (B), which have a thermal conductivity of at least 150 W/m∙K, and 40 mass% to 70 mass% of graphite particles (C). (However, the total weight of (A), (B) and (C) is set at 100 mass%.) The thermoplastic resin (A) contains: a propylene resin (A1) having a melt float rate of 1.0 g/10 minutes to 200 g/10 minutes, as measured at 230°C with a 21.18 N load; and an ethylene resin (A2) with a melt flow rate of 5.0 g/10 minutes to 300 g/10 minutes, as measured at 190°C with a 21.18 N load, and having a density of 930 kg/m3 to 990 kg/3. Further provided is a heat dissipation component comprising the resin composition.

Description

樹脂組成物及びこれからなる放熱部品Resin composition and heat dissipation component comprising the same
 本発明は、樹脂組成物及びこれからなる放熱部品に関する。 The present invention relates to a resin composition and a heat dissipation component comprising the same.
 従来、LED照明に使われるLED素子や電子機器などの半導体冷却用ヒートシンク、産業機器・装置等の大型電源用ヒートシンクなどの放熱部品として、熱伝導率の高いアルミ系合金等で作られたヒートシンクが用いられている。 Conventionally, heat sinks made of aluminum-based alloys with high thermal conductivity have been used as heat-dissipating components such as heat sinks for cooling semiconductors such as LED elements and electronic devices used in LED lighting, and heat sinks for large power supplies such as industrial equipment and devices. It is used.
 例えば、特許文献1には、熱可塑性樹脂、黒鉛粒子、及び炭素繊維構造体を含有し、上記黒鉛粒子及び上記炭素繊維構造体の含有量が、熱可塑性樹脂を100質量部とした場合に、それぞれ、10質量部以上300質量部以下及び1質量部以上80質量部以下であることを特徴とする樹脂組成物が記載されている。
 また、特許文献2には、熱可塑性樹脂と、炭素繊維と、平均粒子径が12μmを超え50μm以下の黒鉛粒子とを含有し、JIS−K−7210に準拠して230℃、荷重2.16kgにて測定されるメルトフローレートが0.5g/10分以上30g/10分以下である樹脂組成物が記載されている。
For example, Patent Document 1 contains a thermoplastic resin, graphite particles, and a carbon fiber structure, and when the content of the graphite particles and the carbon fiber structure is 100 parts by mass of the thermoplastic resin, A resin composition characterized by 10 parts by mass or more and 300 parts by mass or less and 1 part by mass or more and 80 parts by mass or less is described.
Patent Document 2 contains a thermoplastic resin, carbon fiber, and graphite particles having an average particle diameter of more than 12 μm and not more than 50 μm, and is 230 ° C. and a load of 2.16 kg according to JIS-K-7210. Describes a resin composition having a melt flow rate of 0.5 g / 10 min to 30 g / 10 min.
特開2008−150595号公報JP 2008-150595 A 特開2012−207219号公報JP 2012-207219 A
 しかしながら、いずれの特許文献に記載されている樹脂組成物からなる放熱部品も、熱伝導率が低く、更なる改良が求められていた。
 上記の課題に鑑み、本発明は、良好な熱伝導性を有する放熱部品を製造することができる樹脂組成物、及び該樹脂組成物からなり良好な熱伝導性を有する放熱部品を提供することを目的とする。
However, the heat dissipating parts made of the resin composition described in any of the patent documents have low thermal conductivity, and further improvements have been demanded.
In view of the above problems, the present invention provides a resin composition capable of producing a heat dissipation component having good thermal conductivity, and a heat dissipation component comprising the resin composition and having good thermal conductivity. Objective.
 本発明は、
 熱可塑性樹脂(A)20質量%以上59質量%以下と、
 熱伝導率が150W/m・K以上である炭素繊維(B)1質量%以上10質量%以下と、
 黒鉛粒子(C)40質量%以上70質量%以下とを含有する樹脂組成物であって(但し、前記(A)、(B)及び(C)の合計量を100質量%とする)、
 前記熱可塑性樹脂(A)は、230℃、荷重21.18Nで測定されるメルトフローレートが1.0g/10分以上200g/10分以下のプロピレン樹脂(A1)及び190℃、荷重21.18Nで測定されるメルトフローレートが5.0g/10分以上300g/10分以下であり、かつ密度が930kg/m以上990kg/m以下のエチレン樹脂(A2)を含有する樹脂である樹脂組成物、及び
 該樹脂組成物からなる放熱部品
を提供するものである。
The present invention
20% by mass or more and 59% by mass or less of the thermoplastic resin (A),
1% by mass or more and 10% by mass or less of carbon fiber (B) having a thermal conductivity of 150 W / m · K or more;
A resin composition containing 40% by mass or more and 70% by mass or less of graphite particles (C) (provided that the total amount of (A), (B) and (C) is 100% by mass);
The thermoplastic resin (A) is a propylene resin (A1) having a melt flow rate measured at 230 ° C. and a load of 21.18 N of 1.0 g / 10 min to 200 g / 10 min, and 190 ° C. and a load of 21.18 N. A resin composition which is a resin containing an ethylene resin (A2) having a melt flow rate of 5.0 g / 10 min to 300 g / 10 min and a density of 930 kg / m 3 to 990 kg / m 3 And a heat dissipating part comprising the resin composition.
 本発明によれば、良好な熱伝導性を有する放熱部品を製造することができる樹脂組成物、及び該樹脂組成物からなり良好な熱伝導性を有する放熱部品を提供することが可能である。 According to the present invention, it is possible to provide a resin composition capable of producing a heat dissipation component having good thermal conductivity, and a heat dissipation component comprising the resin composition and having good thermal conductivity.
〔樹脂組成物〕
 本発明に係る樹脂組成物は熱可塑性樹脂(A)、炭素繊維(B)、及び黒鉛粒子(C)をそれぞれ所定量含有する。
<熱可塑性樹脂(A)>
 樹脂組成物に含有される熱可塑性樹脂(A)は、プロピレン樹脂(A1)及びエチレン樹脂(A2)を含有する。熱可塑性樹脂(A)において、プロピレン樹脂(A1)の含有量は、熱可塑性樹脂(A)の総量を100質量%としたときに、5質量%以上95質量%以下であり、10質量%以上90質量%以下であることが好ましく、15質量%以上85質量%以下であることがより好ましい。熱可塑性樹脂(A)において、エチレン樹脂(A2)の含有量は、熱可塑性樹脂(A)の総量を100質量%としたときに、95質量%以下5質量%以上であり、90質量%以下10質量%以上であることが好ましく、85質量%以下15質量%以上であることがより好ましい。
 プロピレン樹脂(A1)の含有量を、5質量%以上(即ち、エチレン樹脂(A2)の含有量が95質量%以下)とすることによって、樹脂組成物から製造される放熱部品の耐熱性を向上させることが可能となる。また、プロピレン樹脂(A1)の含有量を95質量%以下(即ち、エチレン樹脂(A2)の含有量を5質量%以上)とすることによって、熱伝導率が良好な放熱部品を得ることが可能となる。
(Resin composition)
The resin composition according to the present invention contains a predetermined amount of each of a thermoplastic resin (A), carbon fiber (B), and graphite particles (C).
<Thermoplastic resin (A)>
The thermoplastic resin (A) contained in the resin composition contains a propylene resin (A1) and an ethylene resin (A2). In the thermoplastic resin (A), the content of the propylene resin (A1) is 5% by mass or more and 95% by mass or less, and 10% by mass or more when the total amount of the thermoplastic resin (A) is 100% by mass. It is preferably 90% by mass or less, and more preferably 15% by mass or more and 85% by mass or less. In the thermoplastic resin (A), the content of the ethylene resin (A2) is 95% by mass or less, 5% by mass or more, and 90% by mass or less when the total amount of the thermoplastic resin (A) is 100% by mass. It is preferably 10% by mass or more, and more preferably 85% by mass or less and 15% by mass or more.
By making the content of the propylene resin (A1) 5% by mass or more (that is, the content of the ethylene resin (A2) is 95% by mass or less), the heat resistance of the heat dissipation component manufactured from the resin composition is improved. It becomes possible to make it. Further, by setting the content of the propylene resin (A1) to 95% by mass or less (that is, the content of the ethylene resin (A2) is 5% by mass or more), it is possible to obtain a heat radiation component having a good thermal conductivity. It becomes.
 熱可塑性樹脂(A)の含有量は、熱可塑性樹脂(A)、炭素繊維(B)及び黒鉛粒子(C)の合計量を100質量%としたときに、20質量%以上59質量%以下であり、26質量%以上56質量%以下であることが好ましく、28質量%以上55質量%以下であることがより好ましい。
 熱可塑性樹脂(A)の含有量を20質量%以上とすることによって放熱部品の耐衝撃性を高めることができる。また、熱可塑性樹脂(A)の含有量を59質量%以下とすることによって熱伝導率が良好な放熱部品を得ることができる。
The content of the thermoplastic resin (A) is 20% by mass or more and 59% by mass or less when the total amount of the thermoplastic resin (A), the carbon fiber (B) and the graphite particles (C) is 100% by mass. Yes, it is preferably 26 mass% or more and 56 mass% or less, and more preferably 28 mass% or more and 55 mass% or less.
By setting the content of the thermoplastic resin (A) to 20% by mass or more, the impact resistance of the heat dissipation component can be improved. Moreover, the heat radiating component with favorable heat conductivity can be obtained by making content of a thermoplastic resin (A) into 59 mass% or less.
(プロピレン樹脂(A1))
 本発明において、プロピレン樹脂(A1)は、プロピレン由来の構成単位を50質量%を超えて含有する樹脂である。プロピレン樹脂(A1)としては、プロピレン単独重合体;エチレン及び炭素数4~10のα−オレフィンからなる群から選ばれる少なくとも1種のコモノマーに由来する構造単位と、プロピレンに由来する構造単位とのプロピレン共重合体;プロピレン単独重合体のマトリックスの中で、エチレン及び炭素数4~10のα−オレフィンからなる群から選ばれる少なくとも1種のコモノマーに由来する構造単位と、プロピレンに由来する構造単位とを有する共重合体が分散した構造を有する混合物であるヘテロファジック重合材料が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
(Propylene resin (A1))
In this invention, a propylene resin (A1) is resin which contains the structural unit derived from propylene exceeding 50 mass%. The propylene resin (A1) includes a propylene homopolymer; a structural unit derived from at least one comonomer selected from the group consisting of ethylene and an α-olefin having 4 to 10 carbon atoms, and a structural unit derived from propylene. A propylene copolymer; a structural unit derived from at least one comonomer selected from the group consisting of ethylene and an α-olefin having 4 to 10 carbon atoms in a propylene homopolymer matrix, and a structural unit derived from propylene And a heterophasic polymerized material which is a mixture having a structure in which a copolymer having the above is dispersed. These may be used alone or in combination of two or more.
 上記プロピレン共重合体及び上記ヘテロファジック重合材料におけるエチレン及び炭素数4~10のα−オレフィンからなる群から選ばれる少なくとも1種のコモノマーに由来する構造単位の含有量は、0.01質量%以上20質量%以下であることが好ましい(但し、プロピレン共重合体及びヘテロファジック重合材料のそれぞれの総量を100質量%とする。)。炭素数4~10のα−オレフィンとしては、ブテン、ヘキセン、及びオクテン等が挙げられ、ブテンが好ましい。 The content of structural units derived from at least one comonomer selected from the group consisting of ethylene and an α-olefin having 4 to 10 carbon atoms in the propylene copolymer and the heterophasic polymerization material is 0.01% by mass. The content is preferably 20% by mass or less (however, the total amount of each of the propylene copolymer and the heterophasic polymerization material is 100% by mass). Examples of the α-olefin having 4 to 10 carbon atoms include butene, hexene, octene and the like, butene is preferable.
 プロピレン共重合体としては、具体的には、プロピレン−エチレン共重合体、プロピレン−1−ブテン共重合体、プロピレン−1−ヘキセン共重合体、プロピレン−1−オクテン共重合体、プロピレン−エチレン−1−ブテン共重合体、プロピレン−エチレン−1−ヘキセン共重合体、プロピレン−エチレン−1−オクテン共重合体等が挙げられる。これらはランダム共重合体であってもブロック共重合体であってもよい。 Specific examples of the propylene copolymer include propylene-ethylene copolymer, propylene-1-butene copolymer, propylene-1-hexene copolymer, propylene-1-octene copolymer, propylene-ethylene- Examples thereof include 1-butene copolymer, propylene-ethylene-1-hexene copolymer, and propylene-ethylene-1-octene copolymer. These may be random copolymers or block copolymers.
 プロピレン樹脂(A1)として、プロピレン単独重合体、プロピレン−エチレン共重合体、プロピレン−1−ブテン共重合体、プロピレン−エチレン−1−ブテン共重合体を用いることが好ましく、プロピレン単独重合体を用いることがより好ましい。 As the propylene resin (A1), a propylene homopolymer, a propylene-ethylene copolymer, a propylene-1-butene copolymer, or a propylene-ethylene-1-butene copolymer is preferably used, and a propylene homopolymer is used. It is more preferable.
 プロピレン樹脂(A1)の230℃、荷重21.18Nで測定されるメルトフローレートは、5.0g/10分以上200g/10分以下であり、好ましくは10g/10分以上150g/10分以下であり、より好ましくは20g/10分以上120g/10分以下である。該メルトフローレートを5.0g/10分以上とすることによって適度な流動性を有する樹脂組成物を得ることができ、該メルトフローレートを200g/10分以下とすることによって放熱部品の耐衝撃件を向上させることが可能となる。 The melt flow rate of the propylene resin (A1) measured at 230 ° C. and a load of 21.18 N is 5.0 g / 10 min to 200 g / 10 min, preferably 10 g / 10 min to 150 g / 10 min. Yes, more preferably from 20 g / 10 min to 120 g / 10 min. By setting the melt flow rate to 5.0 g / 10 min or more, a resin composition having appropriate fluidity can be obtained, and by setting the melt flow rate to 200 g / 10 min or less, the impact resistance of the heat radiation component Can be improved.
 プロピレン樹脂(A1)は、重合触媒を用いて公知の重合方法により製造することができる。重合触媒としては、例えば、チーグラー型触媒系、チーグラー・ナッタ型触媒系、シクロペンタジエニル環を有する周期表第4族の遷移金属化合物とアルキルアルミノキサンからなる触媒系、シクロペンタジエニル環を有する周期表第4族の遷移金属化合物とそれと反応してイオン性の錯体を形成する化合物及び有機アルミニウム化合物からなる触媒系等が挙げられる。また、上記の触媒系の存在下でエチレンやα−オレフィンを予備重合させて調製される予備重合触媒を用いてもよい。これらの触媒系としては、例えば、特開昭61−218606号公報、特開昭61−287904号公報、特開平5−194685号公報、特開平7−216017号公報、特開平9−316147号公報、特開平10−212319号公報、特開2004−182981号公報に記載の触媒系が挙げられる。 Propylene resin (A1) can be produced by a known polymerization method using a polymerization catalyst. Examples of the polymerization catalyst include a Ziegler type catalyst system, a Ziegler-Natta type catalyst system, a catalyst system comprising a transition metal compound of Group 4 of the periodic table having a cyclopentadienyl ring and an alkylaluminoxane, and a cyclopentadienyl ring. Examples thereof include a catalyst system comprising a transition metal compound of Group 4 of the periodic table, a compound that reacts with the transition metal compound to form an ionic complex, and an organoaluminum compound. In addition, a prepolymerized catalyst prepared by prepolymerizing ethylene or α-olefin in the presence of the above catalyst system may be used. Examples of these catalyst systems include JP-A-61-218606, JP-A-61-287904, JP-A-5-194585, JP-A-7-216017, and JP-A-9-316147. And catalyst systems described in JP-A-10-212319 and JP-A-2004-182981.
 重合方法としては、バルク重合、溶液重合、スラリー重合又は気相重合等が挙げられる。バルク重合とは、重合温度において液状のオレフィンを媒体として重合を行う方法であり、また、気相重合とは、気体状態の単量体を媒体として、その媒体中で気体状態の単量体を重合する方法である。これらの重合方法は、バッチ式、連続式のいずれでもよく、また、これらの重合方法を任意に組み合わせてもよい。工業的かつ経済的な観点から、連続式の気相重合法、バルク重合法と気相重合法を連続的に行うバルク−気相重合法による製造方法が好ましい。
 なお、重合工程における各種条件(重合温度、重合圧力、モノマー濃度、触媒投入量、重合時間等)は、適宜決定すればよい。
Examples of the polymerization method include bulk polymerization, solution polymerization, slurry polymerization, and gas phase polymerization. Bulk polymerization is a method in which polymerization is performed using a liquid olefin as a medium at the polymerization temperature, and gas phase polymerization is a method in which a gaseous monomer is used as a medium and a gaseous monomer is contained in the medium. This is a polymerization method. These polymerization methods may be either batch type or continuous type, and these polymerization methods may be arbitrarily combined. From an industrial and economical viewpoint, a production method by a continuous gas phase polymerization method, a bulk-gas phase polymerization method in which a bulk polymerization method and a gas phase polymerization method are continuously performed is preferable.
Various conditions in the polymerization step (polymerization temperature, polymerization pressure, monomer concentration, catalyst input amount, polymerization time, etc.) may be appropriately determined.
 プロピレン樹脂(A1)として用いられる上記のヘテロファジック重合材料は、前段の重合工程でプロピレン単独重合体を製造し、後段の重合工程でプロピレンとエチレン及び炭素放4~10のα−オレフィンからなる群から選ばれる少なくとも1種のコモノマーとを重合する方法、所謂「多段重合法」を用いて製造することが好ましい。 The heterophasic polymer material used as the propylene resin (A1) is a propylene homopolymer produced in the preceding polymerization step, and composed of propylene, ethylene, and an α-olefin having 4 to 10 carbon releases in the latter polymerization step. It is preferable to produce using a method of polymerizing at least one comonomer selected from the group, a so-called “multistage polymerization method”.
 プロピレン樹脂(A1)として用いられる前記プロピレン単独重合体又は前記ヘテロファジック重合材料において、プロピレンの単独重合によって生成した部分(プロピレン単独重合によって製造された部分)の13C−NMRによって測定されるアイソタクチック・ペンタッド分率は0.95以上が好ましく、さらに好ましくは0.98以上である。
 ここで、アイソタクチック・ペンタッド分率とは、プロピレン重合体分子鎖中のペンタッド単位でのアイソタクチック連鎖の中心にあるプロピレンモノマー単位の分率であり、換言すればプロピレンモノマー単位が5個連続してメソ結合した連鎖(以下、mmmmと表す。)の中にあるプロピレンモノマー単位の分率である。アイソタクチック・ペンタッド分率の測定方法は、A.ZambelliらによってMacromolecules,6,925(1973)に記載されている方法、すなわち13C−NMRによって測定される方法である。
In the propylene homopolymer or heterophasic polymerized material used as the propylene resin (A1), the isoform measured by 13 C-NMR of the portion produced by homopolymerization of propylene (the portion produced by propylene homopolymerization) The tactic pentad fraction is preferably 0.95 or more, more preferably 0.98 or more.
Here, the isotactic pentad fraction is a fraction of the propylene monomer unit at the center of the isotactic chain in the pentad unit in the propylene polymer molecular chain, in other words, 5 propylene monomer units. It is the fraction of propylene monomer units in a continuously meso-bonded chain (hereinafter referred to as mmmm). The method for measuring the isotactic pentad fraction is as follows. It is the method described by Zambelli et al., Macromolecules, 6, 925 (1973), that is, the method measured by 13 C-NMR.
 具体的には、13C−NMRスペクトルによって測定されるメチル炭素領域の吸収ピークの面積に対する、mmmmに帰属されるNMRピークの面積の割合が、アイソタクチック・ペンタッド分率である。 Specifically, the ratio of the area of the NMR peak attributed to mmmm to the area of the absorption peak of the methyl carbon region measured by 13 C-NMR spectrum is the isotactic pentad fraction.
(エチレン樹脂(A2))
 本発明において、エチレン樹脂(A2)は、エチレン由来の構成単位を50質量%以上含有する樹脂である。エチレン樹脂(A2)としては、エチレン単独重合体;エチレンに由来する構造単位と、プロピレンに由来する構造単位と、炭素数4~10のα−オレフィンに由来する構造単位とを有するエチレン共重合体が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
(Ethylene resin (A2))
In this invention, ethylene resin (A2) is resin containing 50 mass% or more of structural units derived from ethylene. The ethylene resin (A2) is an ethylene homopolymer; an ethylene copolymer having a structural unit derived from ethylene, a structural unit derived from propylene, and a structural unit derived from an α-olefin having 4 to 10 carbon atoms. Is mentioned. These may be used alone or in combination of two or more.
 エチレン共重合体における炭素数4~10のα−オレフィンに由来する構造単位の含有量は、0.01質量%以上20質量%以下であることが好ましい(但し、エチレン共重合体の総量を100質量%とする。)。炭素数4~10のα−オレフィンとしては、ブテン、ヘキセン、及びオクテン等が挙げられ、ブテンが好ましい。
 エチレン共重合体としては、エチレン−プロピレン共重合体、エチレン−ブテン−1共重合体、エチレン−ペンテン−1共重合体、エチレン−ヘキセン−1共重合体、エチレン−オクテン−1共重合体、エチレン−4−メチル−ペンテン−1等が挙げられる。
The content of the structural unit derived from the α-olefin having 4 to 10 carbon atoms in the ethylene copolymer is preferably 0.01% by mass or more and 20% by mass or less (provided that the total amount of the ethylene copolymer is 100%). (Mass%). Examples of the α-olefin having 4 to 10 carbon atoms include butene, hexene, octene and the like, butene is preferable.
Examples of the ethylene copolymer include an ethylene-propylene copolymer, an ethylene-butene-1 copolymer, an ethylene-pentene-1 copolymer, an ethylene-hexene-1 copolymer, an ethylene-octene-1 copolymer, And ethylene-4-methyl-pentene-1.
 エチレン樹脂(A2)の密度は930kg/m以上990kg/m以下であり、好ましくは940kg/m以上980kg/m以下であり、より好ましくは950kg/m以上965kg/m以下である。エチレン樹脂(A2)の密度を930kg/m以上とすることによって、放熱部品の耐熱性を向上させることが可能となり、該密度を990kg/m以下とすることによって、放熱部品の耐衝撃性を向上させることが可能となる。密度は、JIS K6760−1995に記載のアニーリングを行った後、JIS K7112−1980のうち、A法に規定された方法に従って測定された値を用いる。 The density of the ethylene resin (A2) is at 930 kg / m 3 or more 990kg / m 3 or less, preferably not more than 940 kg / m 3 or more 980 kg / m 3, more preferably 950 kg / m 3 or more 965 kg / m 3 or less is there. By setting the density of the ethylene resin (A2) to 930 kg / m 3 or more, it becomes possible to improve the heat resistance of the heat dissipating component. By setting the density to 990 kg / m 3 or less, the impact resistance of the heat dissipating component Can be improved. The density is measured according to the method defined in Method A in JIS K7112-1980 after annealing described in JIS K6760-1995.
 エチレン樹脂(A2)の190℃、荷重21.18Nで測定されるメルトフローレートは、5.0g/10分以上300g/10分以下であり、好ましくは10g/10分以上250g/10分以下であり、更に好ましくは20g/10分以上200g/10分以下である。該メルトフローレートを5.0g/10分以上とすることによって、適度な流動性の樹脂組成物を得ることができ、該メルトフローレートを300g/10分以下とすることによって、放熱部品の耐衝撃性を向上させることが可能となる。 The melt flow rate of the ethylene resin (A2) measured at 190 ° C. and a load of 21.18 N is 5.0 g / 10 min to 300 g / 10 min, preferably 10 g / 10 min to 250 g / 10 min. More preferably, it is 20 g / 10 min or more and 200 g / 10 min or less. By setting the melt flow rate to 5.0 g / 10 min or more, an appropriately fluid resin composition can be obtained. By setting the melt flow rate to 300 g / 10 min or less, the heat resistance of the heat dissipation component It becomes possible to improve impact properties.
 エチレン樹脂(A2)は、公知の方法を用いて製造することができる。かかる方法としては、例えば、遷移金属原子を含有する触媒を用いた重合が挙げられる。ここで、遷移金属原子を含有する触媒としては、遷移金属化合物(a)、遷移金属化合物(a)と活性化剤(b)とからなる組成物、及び遷移金属化合物(a)と活性化剤(b)と担体(c)とからなる組成物が挙げられる。 The ethylene resin (A2) can be produced using a known method. Examples of such a method include polymerization using a catalyst containing a transition metal atom. Here, as a catalyst containing a transition metal atom, a transition metal compound (a), a composition comprising a transition metal compound (a) and an activator (b), and a transition metal compound (a) and an activator The composition which consists of (b) and a support | carrier (c) is mentioned.
 遷移金属化合物(a)としては、周期表3~11族又はランタノイド系列の遷移金属原子と、ハロゲン原子と、シクロペンタジエン形アニオン骨格を有する基又はヘテロ原子を含有する基とを含む遷移金属化合物が挙げられる。これらの基が複数ある場合には、それぞれ同一でも異なっていてもよい。また、シクロペンタジエン形アニオン骨格を有する基同士、シクロペンタジエン形アニオン骨格を有する基とヘテロ原子を含有する基、又はヘテロ原子を含有する基同士は、直接連結されていてもよく、炭素原子、ケイ素原子、窒素原子、酸素原子、硫黄原子もしくはリン原子を含有する残基を介して連結されていてもよい。 Examples of the transition metal compound (a) include a transition metal compound containing a group 3-11 of the periodic table or a lanthanoid series transition metal atom, a halogen atom, and a group having a cyclopentadiene-type anion skeleton or a group containing a hetero atom. Can be mentioned. When there are a plurality of these groups, they may be the same or different. In addition, a group having a cyclopentadiene type anion skeleton, a group having a cyclopentadiene type anion skeleton and a group containing a hetero atom, or a group containing a hetero atom may be directly connected to each other, such as a carbon atom, silicon It may be linked via a residue containing an atom, nitrogen atom, oxygen atom, sulfur atom or phosphorus atom.
 前記シクロペンタジエン形アニオン骨格を有する基としては、例えば、置換又は無置換のシクロペンタジエニル基、インデニル基、ヒドロインデニル基、フルオレニル基が挙げられる。
 前記ヘテロ原子を含有する基におけるヘテロ原子としては、酸素原子、硫黄原子、窒素原子、リン原子等が挙げられ、かかる基としてはアルコキシ基、アリールオキシ基、チオアルコキシ基、チオアリールオキシ基、アミノ基、イミノ基、ホスフィノ基、キレート性配位子、あるいはヘテロ原子を環内に有する芳香族もしくは脂肪族複素環基が挙げられる。
Examples of the group having a cyclopentadiene-type anion skeleton include a substituted or unsubstituted cyclopentadienyl group, indenyl group, hydroindenyl group, and fluorenyl group.
Examples of the hetero atom in the group containing a hetero atom include an oxygen atom, a sulfur atom, a nitrogen atom, and a phosphorus atom. Examples of such a group include an alkoxy group, an aryloxy group, a thioalkoxy group, a thioaryloxy group, and an amino group. Group, imino group, phosphino group, chelating ligand, or aromatic or aliphatic heterocyclic group having a hetero atom in the ring.
 活性化剤(b)は、遷移金属化合物(a)を活性化し、イオン対を形成できるものであればよい。活性化剤(b)の例としては、有機アルミニウム化合物、有機アルミニウムオキシ化合物、ホウ素化合物、粘土鉱物、スルホン酸塩、カルボン酸誘導体、表面処理された固体酸化物もしくは固体ハロゲン化物が挙げられる。これらの化合物は単独又は2種類以上を併用してもよい。 The activator (b) may be any one that can activate the transition metal compound (a) and form an ion pair. Examples of the activator (b) include organoaluminum compounds, organoaluminum oxy compounds, boron compounds, clay minerals, sulfonates, carboxylic acid derivatives, surface-treated solid oxides or halides. These compounds may be used alone or in combination of two or more.
 担体(c)としては、例えば、無機酸化物、粘土や粘土鉱物といった無機物質や粒子状有機ポリマーが挙げられる。無機酸化物のとしては、例えば、SiO、Al、MgO、ZrO、TiO、B、CaO、ZnO、BaO、ThO、及びこれらの混合物が挙げられる。粘土又は粘土鉱物としては、カオリン、ベントナイト、木節粘土、ガイロメ粘土、アロフェン、ヒシンゲル石、バイロフィライト、タルク、ウンモ群、モンモリロナイト群、バーミキュライト、リョクデイ石群、パリゴルスカイト、カオリナイト、ナクライト、ディッカイト、ハロイサイト等が挙げられる。担体(c)は、必要に応じて表面処理や化学処理を行ったものを用いてもよい。 Examples of the carrier (c) include inorganic substances such as inorganic oxides, clays and clay minerals, and particulate organic polymers. Examples of the inorganic oxide include SiO 2 , Al 2 O 3 , MgO, ZrO 2 , TiO 2 , B 2 O 3 , CaO, ZnO, BaO, ThO 2 , and mixtures thereof. Examples of clay or clay mineral include kaolin, bentonite, kibushi clay, gyrome clay, allophane, hysinger gel, bayophyllite, talc, unmo group, montmorillonite group, vermiculite, ryokdeite group, palygorskite, kaolinite, nacrite, dickite, Halloysite and the like. As the carrier (c), those subjected to surface treatment or chemical treatment as necessary may be used.
 前記遷移金属原子を含む触媒のその他の例としては、周期表4~6族遷移金属化合物を用いて調製した固体触媒成分と周期表第1、2、又は13族金属の有機金属化合物とからなるいわゆるチーグラー−ナッタ触媒が挙げられる。 Other examples of the catalyst containing a transition metal atom include a solid catalyst component prepared by using a transition metal compound in Group 4 to 6 of the periodic table and an organometallic compound of Group 1, 2, or 13 metal in the periodic table. Examples include so-called Ziegler-Natta catalysts.
 エチレン樹脂(A2)の製造に用いられる重合方法としては、例えば、前記遷移金属原子を含む触媒を用いたスラリー重合法、気相重合法、溶液重合法が挙げられる。重合温度、重合時間、重合圧力、モノマー濃度などの重合条件については特に限定されない。また、必要に応じて界面活性剤や帯電防止剤、電子供与性化合物といった成分を重合反応系に共存させてもよい。 Examples of the polymerization method used for producing the ethylene resin (A2) include a slurry polymerization method, a gas phase polymerization method, and a solution polymerization method using the catalyst containing the transition metal atom. The polymerization conditions such as polymerization temperature, polymerization time, polymerization pressure and monomer concentration are not particularly limited. Moreover, you may coexist components, such as surfactant, an antistatic agent, and an electron-donating compound, in a polymerization reaction system as needed.
<炭素繊維(B)>
 本発明に用いられる炭素繊維(B)の熱伝導率は150W/m・K以上であり、好ましくは200W/m・K以上である。炭素繊維(B)の熱伝導率が150W/m・K未満である場合、樹脂組成物の熱伝導率が低下することがある。炭素繊維(B)の熱伝導率は、放熱性能付与効率の観点からは高いほど好ましいが、通常は1950W/m・K以下であり、特に入手容易性の観点から通常は800W/m・K以下である。また、熱伝導率の観点から、ピッチ系炭素繊維が好ましく、具体的には、三菱樹脂株式会社製 商標ダイアリード、帝人株式会社製 商標ラヒーマ等が挙げられる。
 また、この炭素繊維(B)は、その表面が収束剤で処理されていてもよい。収束剤としては、ポリオレフィン、ポリウレタン、ポリエステル、アクリル、エポキシ樹脂、澱粉、植物油等が挙げられる。さらに、収束剤に、酸変性ポリオレフィン、シラン系カップリング剤等の表面処理剤、パラフィンワックス等の潤滑剤が配合されていてもよい。
 炭素繊維(B)を収束剤で処理する方法としては例えば、収束剤を溶解させた水溶液に浸漬させる法、前記水溶液をスプレーで繊維に塗布する方法等が挙げられる。
<Carbon fiber (B)>
The thermal conductivity of the carbon fiber (B) used in the present invention is 150 W / m · K or more, preferably 200 W / m · K or more. When the thermal conductivity of the carbon fiber (B) is less than 150 W / m · K, the thermal conductivity of the resin composition may decrease. The thermal conductivity of the carbon fiber (B) is preferably as high as possible from the viewpoint of imparting heat radiation performance, but is usually 1950 W / m · K or less, and usually 800 W / m · K or less from the viewpoint of availability. It is. From the viewpoint of thermal conductivity, pitch-based carbon fibers are preferable, and specific examples include trade name DIALEAD manufactured by Mitsubishi Plastics Co., Ltd. and trade name Lahima manufactured by Teijin Limited.
Moreover, the surface of this carbon fiber (B) may be treated with a sizing agent. Examples of the sizing agent include polyolefin, polyurethane, polyester, acrylic, epoxy resin, starch, vegetable oil and the like. Further, the sizing agent may contain a surface treatment agent such as acid-modified polyolefin and silane coupling agent, and a lubricant such as paraffin wax.
Examples of the method for treating the carbon fiber (B) with a sizing agent include a method of immersing the carbon fiber (B) in an aqueous solution in which the sizing agent is dissolved, a method of applying the aqueous solution to the fiber by spraying, and the like.
 本発明における樹脂組成物中の炭素繊維(B)の数平均繊維長は、0.5mm以上であることが好ましく、0.7mm以上であることがより好ましい。繊維長をこのような範囲とすることにより、樹脂組成物の熱伝導率を数平均繊維長が0.5mm未満の炭素繊維を含有する樹脂組成物の熱伝導率よりも高くすることができる。炭素繊維の数平均繊維長(単位:mm)は、ソックスレー抽出法(溶媒:キシレン)で評価用サンプルより樹脂を除去して繊維を回収し、特開2002−5924号公報に記載されている方法により測定することができる。
 また、炭素繊維(B)の繊維径は5μm以上であることが好ましく、7μm以上であることがより好ましい。
The number average fiber length of the carbon fibers (B) in the resin composition in the present invention is preferably 0.5 mm or more, and more preferably 0.7 mm or more. By setting the fiber length in such a range, the thermal conductivity of the resin composition can be made higher than the thermal conductivity of the resin composition containing carbon fibers having a number average fiber length of less than 0.5 mm. The number average fiber length (unit: mm) of the carbon fibers is a method described in JP-A No. 2002-5924, in which the resin is removed from the sample for evaluation by a Soxhlet extraction method (solvent: xylene) and the fibers are recovered. Can be measured.
Moreover, it is preferable that the fiber diameter of carbon fiber (B) is 5 micrometers or more, and it is more preferable that it is 7 micrometers or more.
 炭素繊維(B)の含有量は、熱可塑性樹脂(A)、炭素繊維(B)及び黒鉛粒子(C)の合計量を100質量%としたときに、1質量%以上10質量%以下であり、2質量%以上9質量%以下であることがより好ましい。炭素繊維(B)の含有量を1質量%以上とすることによって、熱伝導率が良好な放熱部品を得ることができ、含有量を10質量%以下とすることによって、樹脂組成物の流動性を良好にすることが可能となる。 The content of the carbon fiber (B) is 1% by mass or more and 10% by mass or less when the total amount of the thermoplastic resin (A), the carbon fiber (B), and the graphite particles (C) is 100% by mass. More preferably, it is 2 mass% or more and 9 mass% or less. By setting the carbon fiber (B) content to 1% by mass or more, it is possible to obtain a heat-radiating component with good thermal conductivity, and by setting the content to 10% by mass or less, the fluidity of the resin composition. Can be improved.
<黒鉛粒子(C)>
 本発明で用いられる黒鉛粒子(C)を構成する黒鉛は、人造黒鉛、天然黒鉛のいずれでもよい。具体的には、日本黒鉛工業株式会社製 商標CB−150等が挙げられる。
<Graphite particles (C)>
The graphite constituting the graphite particles (C) used in the present invention may be either artificial graphite or natural graphite. Specifically, trade name CB-150 manufactured by Nippon Graphite Industry Co., Ltd. can be mentioned.
 黒鉛粒子(C)の平均粒子径は、12μmを超え50μm以下であることが好ましく、19μm以上40μm以下であることがより好ましい。平均粒子径を12μmよりも大きくすることによって、樹脂組成物の流動性を良好にすることが可能となり、平均粒子径を50μm以下とすることにより、放熱部品の熱伝導率が向上する。平均粒子径は、レーザー散乱型粒度分布測定装置を用いて測定することができる。 The average particle diameter of the graphite particles (C) is preferably more than 12 μm and 50 μm or less, and more preferably 19 μm or more and 40 μm or less. By making the average particle diameter larger than 12 μm, it becomes possible to improve the fluidity of the resin composition, and by setting the average particle diameter to 50 μm or less, the thermal conductivity of the heat dissipation component is improved. The average particle diameter can be measured using a laser scattering type particle size distribution measuring apparatus.
 黒鉛粒子(C)の含有量は、熱可塑性樹脂(A)、炭素繊維(B)及び黒鉛粒子(C)の合計量を100質量%としたときに、40質量%以上70質量%以下であり、42質量%以上65質量%以下であることが好ましく、43質量%以上63質量%以下であることがより好ましい。黒鉛粒子(C)の含有量を40質量%以上とすることによって、熱伝導率が良好な放熱部品を得ることができ、含有量を70質量%以下とすることによって樹脂組成物の流動性を良好にすることが可能となる。 The content of the graphite particles (C) is 40% by mass or more and 70% by mass or less when the total amount of the thermoplastic resin (A), the carbon fiber (B), and the graphite particles (C) is 100% by mass. 42 mass% or more and 65 mass% or less is preferable, and 43 mass% or more and 63 mass% or less is more preferable. By setting the content of the graphite particles (C) to 40% by mass or more, it is possible to obtain a heat radiating component with good thermal conductivity, and by setting the content to 70% by mass or less, the fluidity of the resin composition is improved. It becomes possible to improve.
 本発明に係る樹脂組成物のメルトフローレート(MFR)は、0.1g/10分以上30g/10分以下であり、好ましくは0.2g/10分以上25g/10分以下であり、より好ましくは0.3g/10分以上20g/10分以下である。樹脂組成物のメルトフローレートを0.1g/10分以上とすることによって、樹脂組成物の流動性を向上させることが可能となる。メルトフローレートを30g/10分以下とすることによって放熱部品の耐衝撃性の低下を防止することができる。なお、メルトフローレートは、JIS K7210に規定された方法に準じ、測定温度230℃、荷重21.18Nで測定したときの値を用いる。 The melt flow rate (MFR) of the resin composition according to the present invention is from 0.1 g / 10 min to 30 g / 10 min, preferably from 0.2 g / 10 min to 25 g / 10 min, more preferably. Is 0.3 g / 10 min or more and 20 g / 10 min or less. By setting the melt flow rate of the resin composition to 0.1 g / 10 min or more, the fluidity of the resin composition can be improved. By setting the melt flow rate to 30 g / 10 min or less, it is possible to prevent a reduction in impact resistance of the heat dissipation component. The melt flow rate is a value measured at a measurement temperature of 230 ° C. and a load of 21.18 N in accordance with the method defined in JIS K7210.
<その他>
 放熱部品に熱安定性や耐フォギング性を付与する場合、樹脂組成物に吸着剤(D)、酸化防止剤(E)、下記化合物群Sから選ばれる少なくとも1種の化合物(F)等を含有させてもよい。
 化合物群Sは、一般式Cn−2(OH)で表される化合物(式中、nは4以上の整数を表す。)、下記アルコキシ体、下記式(2)で表される化合物、トレハロース、スクロース、ラクトース、マルトース、メレチトース、スタキオース、カードラン、グリコーゲン、グルコース及びフルクトースからなる化合物群である。
 アルコキシ体は、下記式(1)で表される化合物に含まれる水酸基の少なくとも1個の水酸基の水素原子が炭素原子数1~12のアルキル基に置換された化合物であり、該式(1)で表される化合物は、アルデヒド基又はケトン基1個とm−1個の水酸基とを含有する化合物である。
 C2m・・・(1)
(式中、mは3以上の整数を表す。)
Figure JPOXMLDOC01-appb-I000001
(式中、pは2以上の整数を表す。)
<Others>
When imparting thermal stability and fogging resistance to a heat dissipation component, the resin composition contains an adsorbent (D), an antioxidant (E), at least one compound (F) selected from the following compound group S, and the like. You may let them.
The compound group S is represented by a compound represented by the general formula C n H n-2 (OH) n (wherein n represents an integer of 4 or more), the following alkoxy compound, and the following formula (2). It is a group of compounds consisting of a compound, trehalose, sucrose, lactose, maltose, meletitose, stachyose, curdlan, glycogen, glucose and fructose.
An alkoxy compound is a compound in which a hydrogen atom of at least one hydroxyl group of a hydroxyl group contained in a compound represented by the following formula (1) is substituted with an alkyl group having 1 to 12 carbon atoms, and the formula (1) Is a compound containing one aldehyde group or one ketone group and m-1 hydroxyl groups.
C m H 2m O m (1)
(In the formula, m represents an integer of 3 or more.)
Figure JPOXMLDOC01-appb-I000001
(In the formula, p represents an integer of 2 or more.)
 上記の吸着剤(D)としては、水酸化カルシウム、ゼオライト、及び、ハイドロタルサイトからなる群から選ばれる少なくともいずれか1種の化合物である。このうち、より少ない使用量で耐フォギング性を向上できるので、水酸化カルシウムを用いることが好ましい。 The adsorbent (D) is at least one compound selected from the group consisting of calcium hydroxide, zeolite, and hydrotalcite. Among these, it is preferable to use calcium hydroxide because fogging resistance can be improved with a smaller amount of use.
 吸着剤(D)として用いられる水酸化カルシウムの平均粒子径は、0.1μm以上150μm以下であることが好ましく、1μm以上10μm以下であることがより好ましい。平均粒子径をこの範囲にすることにより、吸着剤(D)を樹脂組成物中に均一に分散させることができる。平均粒子径は、レーザー散乱型粒度分布測定装置を用いて測定することができる。 The average particle diameter of calcium hydroxide used as the adsorbent (D) is preferably 0.1 μm or more and 150 μm or less, and more preferably 1 μm or more and 10 μm or less. By setting the average particle diameter within this range, the adsorbent (D) can be uniformly dispersed in the resin composition. The average particle diameter can be measured using a laser scattering type particle size distribution measuring apparatus.
 放熱部品に耐フォギング性を付与するという観点から、吸着剤(D)の含有量は、前記熱可塑性樹脂(A)、炭素繊維(B)及び黒鉛粒子(C)の合計量100質量部に対して、0.05質量部以上1質量部以下であり、0.2質量部以上1質量部以下であることが好ましい。 From the viewpoint of imparting fogging resistance to the heat dissipation component, the content of the adsorbent (D) is 100 parts by mass with respect to the total amount of the thermoplastic resin (A), carbon fiber (B), and graphite particles (C). And 0.05 parts by mass or more and 1 part by mass or less, and preferably 0.2 parts by mass or more and 1 part by mass or less.
 上記の酸化防止剤(E)としては、公知の酸化防止剤を使用することができる。例えば、フェノール系酸化防止剤、ヒドロキノン系酸化防止剤、イオウ系酸化防止剤、リン系酸化防止剤等が挙げられる。これらは単独又は2種以上を組み合わせて用いてもよく、フェノール系酸化防止剤とリン系酸化防止剤を単独又は併用して用いることが好ましい。 As the antioxidant (E), a known antioxidant can be used. For example, phenolic antioxidants, hydroquinone antioxidants, sulfur antioxidants, phosphorus antioxidants and the like can be mentioned. These may be used alone or in combination of two or more, and it is preferable to use a phenolic antioxidant and a phosphorus antioxidant alone or in combination.
 フェノール系酸化防止剤としては、例えば、アルキル化モノフェノール、アルキルチオメチルフェノール、アルキリデンビスフェノール及びその誘導体、アシルアミノフェノール誘導体、β−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオン酸エステル、ヒドロキシル化チオジフェニルエーテル、ベンジル誘導体、トリアジン誘導体、ヒドロキシベンジルマロネート誘導体、芳香族ヒドロキシベンジル誘導体、ベンジルホスホネート誘導体、β−(5−tert−ブチル−4−ヒドロキシ−3−メチルフェニル)プロピオン酸エステル、β−(3,5−ジシクロヘキシル−4−ヒドロキシフェニル)プロピオン酸エステル、3,5−ジ−tert−ブチル−4−ヒドロキシフェニル酢酸エステル、β−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオン酸、トコフェロール、テトラキス[メチレン−3(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]メタン等が挙げられる。 Examples of phenolic antioxidants include alkylated monophenols, alkylthiomethylphenols, alkylidene bisphenols and derivatives thereof, acylaminophenol derivatives, and β- (3,5-di-tert-butyl-4-hydroxyphenyl) propionic acid. Ester, hydroxylated thiodiphenyl ether, benzyl derivative, triazine derivative, hydroxybenzyl malonate derivative, aromatic hydroxybenzyl derivative, benzylphosphonate derivative, β- (5-tert-butyl-4-hydroxy-3-methylphenyl) propionic acid ester , Β- (3,5-dicyclohexyl-4-hydroxyphenyl) propionic acid ester, 3,5-di-tert-butyl-4-hydroxyphenylacetic acid ester, β- (3,5-di- ert- butyl-4-hydroxyphenyl) propionic acid, tocopherol, tetrakis [methylene-3 (3,5-di -tert- butyl-4-hydroxyphenyl) propionate] methane, and the like.
 ヒドロキノン系酸化防止剤としては、例えば、ヒドロキノンや、2,6−ジ−tert−ブチル−4−メトキシフェノール、2,5−ジ−tert−ブチルヒドロキノン、2,5−ジ−tert−アミルヒドロキノン、2,6−ジフェニル−4−オクタデシルオキシフェノール、2,6−ジ−tert−ブチルヒドロキノン、2,5−ジ−tert−ブチル−4−ヒドロキシアニソール、3,5−ジ−tert−ブチル−4−ヒドロキシフェニルステアレート、ビス(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)アジペート及びそれらの混合物が挙げられる。 Examples of the hydroquinone antioxidant include hydroquinone, 2,6-di-tert-butyl-4-methoxyphenol, 2,5-di-tert-butylhydroquinone, 2,5-di-tert-amylhydroquinone, 2,6-diphenyl-4-octadecyloxyphenol, 2,6-di-tert-butylhydroquinone, 2,5-di-tert-butyl-4-hydroxyanisole, 3,5-di-tert-butyl-4- Examples include hydroxyphenyl stearate, bis (3,5-di-tert-butyl-4-hydroxyphenyl) adipate and mixtures thereof.
 イオウ系酸化防止剤としては、例えば、2,4−ビス[(オクチルチオ)メチル]−O−クレゾール、4,6−ビス(ドデシルチオメチル)−O−クレゾール、ジラウリル 3,3’−チオジプロピオネート、トリデシル 3,3’−チオジプロピオネート、ジミリスチル 3,3’−チオジプロピオネート、ジステアリル 3,3’−チオジプロピオネート、ラウリル ステアリル 3,3’−チオジプロピオネート、ネオペンタンテトライルテトラキス(3−ラウリルチオプロピオネート)、ペンタエリスリチルテトラキス(3−ラウリルチオプロピオネート)等が挙げられる。 Examples of the sulfur-based antioxidant include 2,4-bis [(octylthio) methyl] -O-cresol, 4,6-bis (dodecylthiomethyl) -O-cresol, dilauryl 3,3′-thiodipropio. Nate, tridecyl 3,3'-thiodipropionate, dimyristyl 3,3'-thiodipropionate, distearyl 3,3'-thiodipropionate, lauryl stearyl 3,3'-thiodipropionate, neopentane Tetrayltetrakis (3-lauryl thiopropionate), pentaerythrityl tetrakis (3-lauryl thiopropionate), etc. are mentioned.
 リン系酸化防止剤としては、例えば、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、6−[3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロポキシ]−2,4,6,8,10−テトラ−tert−ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェピン、トリラウリルホスファイト、トリオクタデシルホスファイト、ジステアリル ペンタエリスリトール ジホスファイト、ジイソデシル ペンタエリスリトール ジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトール ジホスファイト、ビス(2,4−ジ−tert−ブチル−6−メチルフェニル)ペンタエリスリトール ジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトール ジホスファイト、ビス(2,4,6−トリ−tert−ブチルフェニル)ペンタエリスリトール ジホスファイト、トリステアリルソルビトールトリホスファイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,4’−ジフェニレンジホスホナイト、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)2−エチルヘキシル ホスファイト、2,2’−エチリデンビス(4,6−ジ−tert−ブチルフェニル) フルオロ ホスファイト、ビス(2,4−ジ−tert−ブチル−6−メチルフェニル) エチルホスファイト、ビス(2,4−ジ−tert−ブチル−6−メチルフェニル)メチルホスファイト、2−(2,4,6−トリ−tert−ブチルフェニル)−5−エチル−5−ブチル−1,3,2−オキサホスホリナン、2,2’,2’’−ニトリロ[トリエチル−トリス(3,3’,5,5’−テトラ−tert−ブチル−1,1’−ビフェニル−2,2’−ジイル)ホスファイト、2,4,8,10−テトラ−tert−ブチル−6−[3−(3−メチル−4−ヒドロキシ−5−tert−ブチルフェニル)プロポキシ]ジベンゾ[d,f][1,3,2]ジオキサホスフェピン等が挙げられる。酸化防止剤(E)は2種以上を併用してもよい。 Examples of phosphorus antioxidants include triphenyl phosphite, tris (nonylphenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite, 6- [3- (3-tert-butyl). -4-hydroxy-5-methylphenyl) propoxy] -2,4,6,8,10-tetra-tert-butyldibenzo [d, f] [1,3,2] dioxaphosphine, trilaurylphos Phyto, trioctadecyl phosphite, distearyl pentaerythritol diphosphite, diisodecyl pentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,4-di-tert-butyl-6-methyl) Phenyl) pentaerythritol di Sphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, bis (2,4,6-tri-tert-butylphenyl) pentaerythritol diphosphite, tristearyl sorbitol triphosphite, tetrakis ( 2,4-di-tert-butylphenyl) -4,4′-diphenylenediphosphonite, 2,2′-methylenebis (4,6-di-tert-butylphenyl) 2-ethylhexyl phosphite, 2,2 '-Ethylidenebis (4,6-di-tert-butylphenyl) fluoro phosphite, bis (2,4-di-tert-butyl-6-methylphenyl) ethyl phosphite, bis (2,4-di-tert) -Butyl-6-methylphenyl) methylphosphie 2- (2,4,6-tri-tert-butylphenyl) -5-ethyl-5-butyl-1,3,2-oxaphosphorinane, 2,2 ′, 2 ″ -nitrilo [triethyl-tris (3,3 ′, 5,5′-tetra-tert-butyl-1,1′-biphenyl-2,2′-diyl) phosphite, 2,4,8,10-tetra-tert-butyl-6 And [3- (3-methyl-4-hydroxy-5-tert-butylphenyl) propoxy] dibenzo [d, f] [1,3,2] dioxaphosphine. Two or more antioxidants (E) may be used in combination.
 酸化防止剤(E)の含有量は、前記熱可塑性樹脂(A)、炭素繊維(B)及び黒鉛粒子(C)の合計量100質量部に対して、0.05質量部以上1質量部以下であり、0.1質量部以上0.5質量部以下であることが好ましい。 Content of antioxidant (E) is 0.05 mass part or more and 1 mass part or less with respect to 100 mass parts of total amounts of the said thermoplastic resin (A), carbon fiber (B), and graphite particle (C). It is preferable that it is 0.1 mass part or more and 0.5 mass part or less.
 上記の化合物(F)は、下記化合物群Sから選ばれる少なくとも1種の化合物である。化合物群Sは、一般式Cn−2(OH)で表される化合物(式中、nは4以上の整数を表す。)、下記アルコキシ体、下記式(2)で表される化合物、トレハロース、スクロース、ラクトース、マルトース、メレチトース、スタキオース、カードラン、グリコーゲン、グルコース及びフルクトースからなる化合物群である。
 アルコキシ体は、下記式(1)で表される化合物に含まれる水酸基の少なくとも1個の水酸基の水素原子が炭素原子数1~12のアルキル基に置換された化合物であり、該式(1)で表される化合物は、アルデヒド基又はケトン基1個とm−1個の水酸基とを含有する化合物である。
 C2m・・・(1)
(式中、mは3以上の整数を表す。)
Figure JPOXMLDOC01-appb-I000002
(式中、pは2以上の整数を表す。)
The compound (F) is at least one compound selected from the following compound group S. The compound group S is represented by a compound represented by the general formula C n H n-2 (OH) n (wherein n represents an integer of 4 or more), the following alkoxy compound, and the following formula (2). It is a group of compounds consisting of a compound, trehalose, sucrose, lactose, maltose, meletitose, stachyose, curdlan, glycogen, glucose and fructose.
An alkoxy compound is a compound in which a hydrogen atom of at least one hydroxyl group of a hydroxyl group contained in a compound represented by the following formula (1) is substituted with an alkyl group having 1 to 12 carbon atoms, and the formula (1) Is a compound containing one aldehyde group or one ketone group and m-1 hydroxyl groups.
C m H 2m O m (1)
(In the formula, m represents an integer of 3 or more.)
Figure JPOXMLDOC01-appb-I000002
(In the formula, p represents an integer of 2 or more.)
 一般式Cn−2(OH)で表される化合物(以下、化合物S1と記す。)の一般式中のnは、4以上の整数を表す。nは、好ましくは5~8の整数であり、より好ましくは6である。 N in the general formula of the compound represented by the general formula C n H n-2 (OH) n (hereinafter referred to as compound S1) represents an integer of 4 or more. n is preferably an integer of 5 to 8, and more preferably 6.
 化合物S1としては、炭素原子数4以上の糖アルコールが挙げられる。
 例えば、n=4の糖アルコールとして、エリトリトール、トレイトール;
n=5の糖アルコールとして、アドニトール、アラビニトール、キシリトール;
n=6の糖アルコールとして、アリトール、タリトール、ソルビトール、マンニトール、イジトール、ガラクチトール;
n=7の糖アルコールとして、ボレミトール、ペルセイトール;
n=8の糖アルコールとして、オクチトールを挙げることができる。
Compound S1 includes sugar alcohols having 4 or more carbon atoms.
For example, n = 4 sugar alcohols such as erythritol, threitol;
n = 5 sugar alcohols such as adonitol, arabinitol, xylitol;
n = 6 sugar alcohols such as allitol, taritol, sorbitol, mannitol, iditol, galactitol;
As sugar alcohols with n = 7, boremitol, perseitol;
As a sugar alcohol of n = 8, octitol can be mentioned.
 化合物S1は、D体又はL体であってもよく、D体とL体の混合物であってもよい。また、光学活性であってもよく、光学不活性であってもよい。化合物S1として、好ましくは、炭素原子数6の糖アルコールである。 Compound S1 may be D-form or L-form, or a mixture of D-form and L-form. Further, it may be optically active or optically inactive. The compound S1 is preferably a sugar alcohol having 6 carbon atoms.
 アルコキシ体とは、下記式(1)で表される化合物(以下、化合物(1)と記すことがある。)に含まれる水酸基の少なくとも1個の水酸基の水素原子が炭素原子数1~12のアルキル基に置換された化合物であり、該化合物(1)は、アルデヒド基又はケトン基1個とm−1個の水酸基とを含有する。
 C2m・・・(1)
The alkoxy form means that the hydrogen atom of at least one hydroxyl group of the hydroxyl group contained in the compound represented by the following formula (1) (hereinafter sometimes referred to as the compound (1)) has 1 to 12 carbon atoms. This is a compound substituted with an alkyl group, and the compound (1) contains one aldehyde group or ketone group and m-1 hydroxyl groups.
C m H 2m O m (1)
 化合物(1)のmは、3以上の整数であり、好ましくは、3~60であり、特に好ましくは6又は12である。 M of the compound (1) is an integer of 3 or more, preferably 3 to 60, and particularly preferably 6 or 12.
 化合物(1)は、アルデヒド性カルボニル基又はケトン性カルボニル基を1個有している。また、化合物(1)はm−1個の水酸基を有する。 Compound (1) has one aldehyde carbonyl group or one ketonic carbonyl group. Compound (1) has m-1 hydroxyl groups.
 化合物(1)としては、単糖が好ましく、具体的には、グリセロース、エリトロース、トレオース、リボース、リキソース、キシロース、アラビノース、アルドヘキソース、アロース、タロース、グロース、グルコース、アルトロース、マンノース、ガラクトース、イドース、オクトースなどのアルデヒド基を有する単糖;ケトトリオース、ジヒドロキシアセトン、ケトテトロース、エリトルロース、ケトペントース、キシルロース、リブロース、ケトヘキソース、プシコース、フルクトース、ソルボース、タガトースなどのケトン基を有する単糖;などが挙げられる。 The compound (1) is preferably a monosaccharide, specifically, glycerose, erythrose, threose, ribose, lyxose, xylose, arabinose, aldohexose, allose, talose, gulose, glucose, altrose, mannose, galactose, idose. Monosaccharides having an aldehyde group such as octose; monosaccharides having a ketone group such as ketotriose, dihydroxyacetone, ketotetorose, erythrulose, ketopentose, xylulose, ribulose, ketohexose, psicose, fructose, sorbose, tagatose;
 化合物(1)としては、D体、L体などの光学活性体であっても、DL体などの光学的に不活性なものであってもよい。化合物(1)としては、中でも、アロース、タロース、グロース、グルコース、アルトロース、マンノース、ガラクトース、イドース、プシコース、フルクトース、ソルボース、タガトースなどの六炭糖が好ましく、とりわけグルコースが好ましい。 Compound (1) may be an optically active substance such as D-form or L-form, or an optically inactive substance such as DL-form. As compound (1), among them, hexoses such as allose, talose, growth, glucose, altrose, mannose, galactose, idose, psicose, fructose, sorbose, tagatose are preferable, and glucose is particularly preferable.
 アルコキシ体は、化合物(1)に含まれる少なくとも1つの水酸基の水素原子がアルキル基に置換された化合物である。アルコキシ体には少なくとも1つの水酸基を有するものが好ましい。特に好ましくは、化合物(1)に含まれる水酸基の1つの水素原子がアルキル基に置換され、かつ、他の基は水酸基のままであるアルコキシ体である。前記アルキル基の炭素原子数は1~12であり、好ましくは、1又は2であり、特に好ましくは1である。 The alkoxy form is a compound in which a hydrogen atom of at least one hydroxyl group contained in the compound (1) is substituted with an alkyl group. The alkoxy compound preferably has at least one hydroxyl group. Particularly preferred is an alkoxy compound in which one hydrogen atom of a hydroxyl group contained in the compound (1) is substituted with an alkyl group, and the other group remains a hydroxyl group. The alkyl group has 1 to 12 carbon atoms, preferably 1 or 2, and particularly preferably 1.
 好ましいアルコキシ体としては、例えば、式(1−2)
Figure JPOXMLDOC01-appb-I000003
(式中、Rは、炭素原子数1~12、好ましくは炭素原子数5~12のアルキル基を表す。)で表される化合物等をあげることができる。
Preferable alkoxy compounds include, for example, formula (1-2)
Figure JPOXMLDOC01-appb-I000003
(Wherein, R represents an alkyl group having 1 to 12 carbon atoms, preferably 5 to 12 carbon atoms).
 式(1−2)で表される化合物としては、例えば、メチル α−D−グルコピラノシド、メチル β−D−グルコピラノシド、エチル α−D−グルコピラノシド、エチル β−D−グルコピラノシド、n−プロピル α−D−グルコピラノシド、n−プロピル β−D−グルコピラノシド、n−ブチル α−D−グルコピラノシド、n−ブチル β−D−グルコピラノシド、n−ペンチル α−D−グルコピラノシド、n−ペンチル β−D−グルコピラノシド、n−ヘキシル α−D−グルコピラノシド、n−ヘキシル β−D−グルコピラノシド、n−ヘプチル α−D−グルコピラノシド、n−ヘプチル β−D−グルコピラノシド、n−オクチル α−D−グルコピラノシド、n−オクチル β−D−グルコピラノシド、n−ノニル α−D−グルコピラノシド、n−ノニル β−D−グルコピラノシド、n−デシル α−D−グルコピラノシド、n−デシル β−D−グルコピラノシド、n−ウンデシル α−D−グルコピラノシド、n−ウンデシル β−D−グルコピラノシド、n−ドデシル α−D−グルコピラノシド、n−ドデシル β−D−グルコピラノシド等が挙げられる。 Examples of the compound represented by the formula (1-2) include methyl α-D-glucopyranoside, methyl β-D-glucopyranoside, ethyl α-D-glucopyranoside, ethyl β-D-glucopyranoside, and n-propyl α-D. -Glucopyranoside, n-propyl β-D-glucopyranoside, n-butyl α-D-glucopyranoside, n-butyl β-D-glucopyranoside, n-pentyl α-D-glucopyranoside, n-pentyl β-D-glucopyranoside, n- Hexyl α-D-glucopyranoside, n-hexyl β-D-glucopyranoside, n-heptyl α-D-glucopyranoside, n-heptyl β-D-glucopyranoside, n-octyl α-D-glucopyranoside, n-octyl β-D- Glucopyranoside, n-nonyl α-D -Glucopyranoside, n-nonyl β-D-glucopyranoside, n-decyl α-D-glucopyranoside, n-decyl β-D-glucopyranoside, n-undecyl α-D-glucopyranoside, n-undecyl β-D-glucopyranoside, n- Examples include dodecyl α-D-glucopyranoside and n-dodecyl β-D-glucopyranoside.
 アルコキシ体の製造方法としては、例えば、新実験化学講座14 有機化合物の合成と反応V(丸善株式会社、昭和53年7月20日発行)2426頁の記載に準じて、化合物(1)のアルキルアルコール溶液を−10℃以上25℃以下で塩化水素ガスを流通させる方法、例えば、化合物(1)、アルキルアルコール及び塩酸の混合溶液を加熱還流させてアルコキシ化する方法などが挙げられる。また、メチル α−D−グルコピラノシド、n−オクチル β−D−グルコピラノシドなどは、東京化成品工業(株)から入手することができる。 As the method for producing the alkoxy compound, for example, according to the description of New Experimental Chemistry Lecture 14, Organic Compound Synthesis and Reaction V (Maruzen Co., Ltd., issued July 20, 1978), page 2426, alkyl of compound (1) Examples thereof include a method in which hydrogen chloride gas is circulated through an alcohol solution at −10 ° C. or more and 25 ° C. or less, for example, a method in which a mixed solution of compound (1), alkyl alcohol and hydrochloric acid is heated to reflux for alkoxylation. In addition, methyl α-D-glucopyranoside, n-octyl β-D-glucopyranoside, and the like can be obtained from Tokyo Chemical Industry Co., Ltd.
 下記式(2)で表される化合物(以下、化合物(2)と記すことがある。)について、式(2)中、pは2以上の整数を表し、好ましくは、2~6を表し、特に好ましくは5を表す。
Figure JPOXMLDOC01-appb-I000004
For the compound represented by the following formula (2) (hereinafter sometimes referred to as compound (2)), in formula (2), p represents an integer of 2 or more, preferably 2 to 6, Particularly preferably, it represents 5.
Figure JPOXMLDOC01-appb-I000004
 化合物(2)としては、例えば、1,2,3−トリヒドロキシシクロプロパン、1,2,3,4−テトラヒドロキシシクロペンタン、1,2,3,4,5−ペンタヒドロキシシクロペンタン、1,2,3,4,5,6−ヘキサヒドロキシシクロヘキサン、1,2,3,4,5,6,7−ヘプタヒドロキシシクロヘプタン、1,2,3,4,5,6,7,8−オクタヒドロキシシクロオクタンなどが挙げられる。 Examples of the compound (2) include 1,2,3-trihydroxycyclopropane, 1,2,3,4-tetrahydroxycyclopentane, 1,2,3,4,5-pentahydroxycyclopentane, 2,3,4,5,6-hexahydroxycyclohexane, 1,2,3,4,5,6,7-heptahydroxycycloheptane, 1,2,3,4,5,6,7,8-octa And hydroxycyclooctane.
 好ましくは、myo−イノシトール、epi−イノシトール、allo−イノシトール、muco−イノシトール、neo−イノシトール、chiro−イノシトール、scyllo−イノシトールなどの1,2,3,4,5,6−ヘキサヒドロキシシクロヘキサンが挙げられ、特に、下記式で表されるmyo−イノシトール及びscyllo−イノシトールが好ましい。
Figure JPOXMLDOC01-appb-I000005
Preferably, 1,2,3,4,5,6-hexahydroxycyclohexane such as myo-inositol, epi-inositol, allo-inositol, muco-inositol, neo-inositol, chiro-inositol, scyllo-inositol, etc. In particular, myo-inositol and scyllo-inositol represented by the following formula are preferred.
Figure JPOXMLDOC01-appb-I000005
 化合物群Sから選ばれる少なくとも1種の化合物(F)の含有量は、前記熱可塑性樹脂(A)、炭素繊維(B)及び黒鉛粒子(C)のそれぞれの質量の合計量を100質量部に対して、0.01質量部以上1質量部以下であり、0.05質量部以上0.5質量部以下であることが好ましい。 The content of at least one compound (F) selected from the compound group S is 100 parts by mass of the total mass of the thermoplastic resin (A), the carbon fiber (B), and the graphite particles (C). On the other hand, it is 0.01 mass part or more and 1 mass part or less, and it is preferable that it is 0.05 mass part or more and 0.5 mass part or less.
<有機繊維(G)>
 本発明で用いられる樹脂組成物は、有機繊維(G)を含有していてもよい。有機繊維(G)としては、例えば、ポリエステル繊維、ポリアミド繊維、ポリウレタン繊維、ポリイミド繊維、ポリオレフィン繊維、ポリアクリロニトリル繊維、ケナフ等の植物繊維が挙げられる。
 本発明において、有機繊維(G)は好ましくは、上記熱可塑性樹脂(A)や、不飽和カルボン酸又はその誘導体で変性された変性ポリオレフィン、エラストマーのような樹脂を混合させた有機繊維含有樹脂組成物として用いられる。有機繊維含有樹脂組成物の製造方法として、特開2006−8995号公報や特開平3−121146号公報に記載された方法が挙げられる。
 本発明の樹脂組成物が有機繊維(G)を含有する場合に、その含有量は、熱可塑性樹脂(A)と炭素繊維(B)と黒鉛粒子(C)の合計量を100質量部として、3質量部以上10質量部以下であることが好ましく、3質量部以上5質量部以下であることがより好ましい。
<Organic fiber (G)>
The resin composition used in the present invention may contain an organic fiber (G). Examples of the organic fibers (G) include plant fibers such as polyester fibers, polyamide fibers, polyurethane fibers, polyimide fibers, polyolefin fibers, polyacrylonitrile fibers, and kenaf.
In the present invention, the organic fiber (G) is preferably an organic fiber-containing resin composition in which the thermoplastic resin (A), a modified polyolefin modified with an unsaturated carboxylic acid or a derivative thereof, or a resin such as an elastomer is mixed. Used as a thing. Examples of the method for producing the organic fiber-containing resin composition include methods described in JP-A-2006-8995 and JP-A-3-121146.
When the resin composition of the present invention contains organic fibers (G), the content is 100 parts by mass of the total amount of the thermoplastic resin (A), the carbon fibers (B), and the graphite particles (C). It is preferably 3 parts by mass or more and 10 parts by mass or less, and more preferably 3 parts by mass or more and 5 parts by mass or less.
 また、本発明の樹脂組成物は、樹脂組成物の加工特性、機械特性、電気的特性、熱的特性、表面特性、光安定性などを改良するために、前記成分(D)、(E)、(F)、(G)以外に、その他の樹脂や添加剤を含有していてもよい。「その他の樹脂」としては、不飽和カルボン酸又はその誘導体で変性されたポリオレフィンや、ポリオレフィン系エラストマー、ポリエステル系エラストマー、ポリウレタン系エラストマー、ポリ塩化ビニル系エラストマー等のゴムが挙げられる。添加剤としては、無機充填材、中和剤、可塑剤、滑剤、離型剤、付着防止剤、造核剤、光安定剤、難燃剤、顔料、染料等が挙げられる。無機充填材としては、ガラス繊維、タルク、ワラストナイト、ガラスフレーク等が挙げられる。変性ポリオレフィンや無機充填材を添加することで、熱可塑性樹脂と無機成分との結合を強めることができる。 In addition, the resin composition of the present invention comprises the above components (D) and (E) in order to improve the processing characteristics, mechanical characteristics, electrical characteristics, thermal characteristics, surface characteristics, light stability and the like of the resin composition. In addition to (F) and (G), other resins and additives may be contained. Examples of the “other resins” include polyolefins modified with unsaturated carboxylic acids or derivatives thereof, and rubbers such as polyolefin elastomers, polyester elastomers, polyurethane elastomers, and polyvinyl chloride elastomers. Examples of the additive include inorganic fillers, neutralizers, plasticizers, lubricants, mold release agents, adhesion preventing agents, nucleating agents, light stabilizers, flame retardants, pigments, dyes, and the like. Examples of the inorganic filler include glass fiber, talc, wollastonite, glass flake and the like. By adding a modified polyolefin or an inorganic filler, the bond between the thermoplastic resin and the inorganic component can be strengthened.
<樹脂組成物の製造方法>
 本発明の樹脂組成物の製造方法は限定されるものではないが、熱可塑性樹脂(A)、炭素繊維(B)、黒鉛粒子(C)、及び必要に応じて用いられる吸着剤(D)、酸化防止剤(E)、化合物(F)、有機繊維(G)、改質剤等をヘンシェルミキサー、タンブラー等の混合装置を用いて均一に混合した後、可塑化装置を用いて溶融混練する方法が挙げられる。溶融混練に当たっては、炭素繊維(B)が折れて短くなりすぎることを抑制するために、可塑化装置の温度、攪拌を適宜調整することが好ましい。
 特に、有機繊維を加える際には、例えば、特開2006−8995号公報に開示されている方法のように予め有機繊維を含有する樹脂組成物を作製し、その樹脂組成物と、熱可塑性樹脂、炭素繊維、黒鉛粒子、及び必要に応じて用いられる変性ポリオレフィン、改質剤をヘンシェルミキサー、タンブラー等の混合装置を用いて均一に混合した後、可塑化装置を用いて溶融混練してもよい。
<Method for producing resin composition>
The method for producing the resin composition of the present invention is not limited, but the thermoplastic resin (A), carbon fiber (B), graphite particles (C), and adsorbent (D) used as necessary, A method in which an antioxidant (E), a compound (F), an organic fiber (G), a modifier and the like are uniformly mixed using a mixing device such as a Henschel mixer or a tumbler and then melt kneaded using a plasticizing device. Is mentioned. In melt-kneading, it is preferable to appropriately adjust the temperature and agitation of the plasticizing apparatus in order to prevent the carbon fiber (B) from being broken and becoming too short.
In particular, when organic fibers are added, for example, a resin composition containing organic fibers is prepared in advance as in the method disclosed in Japanese Patent Application Laid-Open No. 2006-8995, and the resin composition and the thermoplastic resin are prepared. , Carbon fiber, graphite particles, and optionally modified polyolefin and modifier may be uniformly mixed using a mixing device such as a Henschel mixer or tumbler, and then melt-kneaded using a plasticizing device. .
 可塑化装置を用いて溶融混練する際は、上記の各成分を同一の供給口又は別の供給口から供給することができる。ここで可塑化装置とは、熱可塑性樹脂をその融点以上に加熱し、溶融状態になった熱可塑性樹脂に攪拌を加える装置のことである。例えば、バンバリーミキサー、単軸押出し機、2軸同方向回転押出し機(例えば、東芝機械(株)製 TEM[登録商標]、日本製鋼所(株)製 TEX[登録商標]等が挙げられる。)、2軸異方向回転押出し機(神戸製鋼所(株)製 FCM[登録商標]、日本製鋼所(株)製 CMP[登録商標]等が挙げられる。)が挙げられる。 When melt-kneading using a plasticizer, the above components can be supplied from the same supply port or from different supply ports. Here, the plasticizing device is a device that heats a thermoplastic resin to a temperature higher than its melting point and stirs the thermoplastic resin in a molten state. For example, a Banbury mixer, a single-screw extruder, a twin-screw co-rotating extruder (for example, TEM [registered trademark] manufactured by Toshiba Machine Co., Ltd., TEX [registered trademark] manufactured by Nippon Steel Works, Ltd., etc.) can be used. 2 axis different direction rotary extruder (Kobe Steel Works Co., Ltd. FCM [registered trademark], Nippon Steel Works Co., Ltd. CMP [registered trademark] etc.) can be mentioned.
〔放熱部品〕
 本発明に係る放熱部品は、上記の樹脂組成物を成形して得られる。成形方法は特に限定されるものではなく、押出成形、射出成形、圧縮成形、ブロー成形等の方法を用いて成形することが可能である。
 放熱部品としては、照明器具用部品が挙げられる。照明器具用部品としては、ヒートシンクやシーリングカバーやシェードが挙げられる。放熱部品として更に、電子機器などの半導体冷却用ヒートシンク、産業機器・装置等の大型電源用ヒートシンクなどが挙げられる。
[Heat dissipation parts]
The heat dissipation component according to the present invention is obtained by molding the above resin composition. The molding method is not particularly limited, and molding can be performed using methods such as extrusion molding, injection molding, compression molding, and blow molding.
Examples of the heat radiating component include a lighting fixture component. Examples of parts for lighting equipment include a heat sink, a sealing cover, and a shade. Further, examples of the heat radiating component include a heat sink for cooling a semiconductor such as an electronic device, and a heat sink for a large power source such as an industrial device or apparatus.
 以下、本発明について実施例を用いて説明するが、本発明は、かかる実施例に限定されるものではない。 Hereinafter, the present invention will be described using examples, but the present invention is not limited to such examples.
〔樹脂組成物の原料成分〕
 熱可塑性樹脂(A):
 プロピレン樹脂(A1):
(A−1):プロピレン単独重合体(住友化学(株)製ノーブレン、グレード:U501E1、MFR(230℃、荷重21.18Nで測定)=120g/10分)。
(A−2):プロピレン単独重合体(住友化学(株)製ノーブレン、グレード:Z101A、MFR(230℃、荷重21.18Nで測定)=22g/10分)。
(A−3):プロピレン単独重合体(住友化学(株)製ノーブレン、グレード:D101、MFR(230℃、荷重21.18Nで測定)=0.5g/10分)。
 エチレン樹脂(A2):
(A−4):高密度ポリエチレン(京葉ポリエチレン株式会社製KEIYOポリエチレン、グレード:M6910、密度=958kg/m、MFR(190℃、荷重21.18Nで測定)=23g/10分)。
(A−5):高密度ポリエチレン(プライムポリマー株式会社製ハイゼックス、グレード:3300F、密度=950kg/m、MFR(190℃、荷重21.18Nで測定)=1.1g/10分)。
(A−6):低密度ポリエチレン(住友化学(株)製スミカセン、グレード:G808、密度=919kg/m、MFR(190℃、荷重21.18Nで測定)=200g/10分)。
[Raw material ingredients of resin composition]
Thermoplastic resin (A):
Propylene resin (A1):
(A-1): Propylene homopolymer (Nobrene manufactured by Sumitomo Chemical Co., Ltd., Grade: U501E1, MFR (measured at 230 ° C., load 21.18 N) = 120 g / 10 min).
(A-2): Propylene homopolymer (Nobrene manufactured by Sumitomo Chemical Co., Ltd., Grade: Z101A, MFR (measured at 230 ° C., load 21.18 N) = 22 g / 10 min).
(A-3): Propylene homopolymer (Nobrene manufactured by Sumitomo Chemical Co., Ltd., grade: D101, MFR (measured at 230 ° C., load 21.18 N) = 0.5 g / 10 min).
Ethylene resin (A2):
(A-4): High density polyethylene (KEIYO polyethylene manufactured by Keiyo Polyethylene Co., Ltd., grade: M6910, density = 958 kg / m 3 , MFR (measured at 190 ° C., load 21.18 N) = 23 g / 10 min).
(A-5): High density polyethylene (Hi-Zex manufactured by Prime Polymer Co., Ltd., grade: 3300F, density = 950 kg / m 3 , MFR (measured at 190 ° C., load 21.18 N) = 1.1 g / 10 min).
(A-6): low density polyethylene (Sumitomo Chemical Co., Ltd. Sumikasen, grade: G808, density = 919 kg / m 3 , MFR (measured at 190 ° C., load 21.18 N) = 200 g / 10 min).
 炭素繊維(B):
(B−1):三菱樹脂製 登録商標 ダイアリードK223HE 数平均繊維長6mm、直径11μm、熱伝導率550W/m・K
(B−2):三菱樹脂製 登録商標 ダイアリードK6371T 数平均繊維長6mm、直径11μm、熱伝導率140W/m・K
Carbon fiber (B):
(B-1): Mitsubishi Plastics registered trademark DIALEAD K223HE Number average fiber length 6 mm, diameter 11 μm, thermal conductivity 550 W / m · K
(B-2): Mitsubishi Plastics registered trademark DIALEAD K6371T Number average fiber length 6 mm, diameter 11 μm, thermal conductivity 140 W / m · K
 黒鉛粒子(C):
日本黒鉛工業製 登録商標CB−150 固定炭素量>98%、平均粒径40μm
Graphite particles (C):
Made by Nippon Graphite Industry Co., Ltd. CB-150 Fixed carbon content> 98%, average particle size 40μm
 吸着剤(D):
 水酸化カルシウム 鈴木工業株式会社製、商品名「カルテックLT」平均粒径1.5μm
Adsorbent (D):
Calcium hydroxide manufactured by Suzuki Kogyo Co., Ltd., trade name “Caltech LT” average particle size 1.5 μm
添加剤
 酸化防止剤(E):フェノール系酸化防止剤
商品名:スミライザーGS(住友化学(株)製)
化学名:2−[1−(2−ヒドロキシ−3,5−ジ−tert−ペンチルフェニル)エチル]−4,6−ジ−tert−ペンチルフェニルアクリレート
Additives Antioxidant (E): Phenol type antioxidant Product name: Sumilizer GS (manufactured by Sumitomo Chemical Co., Ltd.)
Chemical name: 2- [1- (2-hydroxy-3,5-di-tert-pentylphenyl) ethyl] -4,6-di-tert-pentylphenyl acrylate
 化合物群Sから選ばれる化合物(F):
D−(+)−トレハロース二水和物(東京化成工業(株)製)
Compound (F) selected from Compound Group S:
D-(+)-trehalose dihydrate (manufactured by Tokyo Chemical Industry Co., Ltd.)
〔物性の評価〕
 実施例及び比較例で作成した成形体の評価項目及びその測定方法は下記の通りである。
(1)メルトフローレート(MFR、単位:g/10分)
 メルトフローレートは、JIS K7210に従って測定した。樹脂組成物、及びプロピレン樹脂(A1)のメルトフローレートは、温度230℃、荷重21.18Nで測定した。エチレン樹脂(A2)のメルトフローレートは、温度190℃、荷重:21.18Nで測定した。
[Evaluation of physical properties]
The evaluation items of the molded articles prepared in Examples and Comparative Examples and the measurement methods thereof are as follows.
(1) Melt flow rate (MFR, unit: g / 10 minutes)
The melt flow rate was measured according to JIS K7210. The melt flow rate of the resin composition and the propylene resin (A1) was measured at a temperature of 230 ° C. and a load of 21.18N. The melt flow rate of the ethylene resin (A2) was measured at a temperature of 190 ° C. and a load of 21.18N.
(2)比重
 実施例及び比較例で製造した試験片(20mm×20mm×厚み4mm)の比重は、A.S.T.M D792に従って測定した。
(2) Specific gravity The specific gravity of the test pieces (20 mm × 20 mm × thickness 4 mm) produced in the examples and comparative examples is as follows. S. T. T. et al. Measured according to MD 792.
(3)アイゾット衝撃強度(Izod、単位:kJ/m
 実施例及び比較例で製造した試験片(63.5mm×10mm×厚み4mm)を用い、JIS K7110に規定された方法に従い、成形後にノッチ加工し、ノッチ付き衝撃強度を評価した。測定は、温度23℃で行った。
(3) Izod impact strength (Izod, unit: kJ / m 2 )
Using the test pieces (63.5 mm × 10 mm × thickness 4 mm) produced in the examples and comparative examples, according to the method defined in JIS K7110, notching was performed after molding to evaluate the notched impact strength. The measurement was performed at a temperature of 23 ° C.
(4)加熱変形温度(HDT、単位:℃)
 実施例及び比較例で製造した試験片(80mm×10mm×厚み4mm)を用い、ASTM D648に従って、応力0.45MPaで測定を行った。加熱変形温度の測定結果を表1に示す。
(4) Heat distortion temperature (HDT, unit: ° C)
Using test pieces (80 mm × 10 mm × thickness 4 mm) manufactured in Examples and Comparative Examples, measurement was performed at a stress of 0.45 MPa according to ASTM D648. Table 1 shows the measurement results of the heat distortion temperature.
(5)熱伝導率
 成形体の熱伝導率はレーザーフラッシュ法を用いて測定した。
 実施例及び比較例で製造した試験片(80mm×10mm×厚み4mm)を3枚重ねて接着して、厚さ12mmの積層体を得た。この積層体の略中央部分を2箇所、接着面に対して垂直な方向から切断し、各切断面を研磨して10mm×12mm×厚さ1mmの試験片を作成した。
 この試験片を用いて、レーザーフラッシュ法熱定数測定装置(アルバック理工株式会社製 TC−7000)により成形体面内方向(すなわち、接着面に対して垂直な方向)の熱伝導率を求めた。
(5) Thermal conductivity The thermal conductivity of the molded body was measured using a laser flash method.
Three test pieces (80 mm × 10 mm × thickness 4 mm) manufactured in Examples and Comparative Examples were stacked and bonded to obtain a 12 mm thick laminate. Two substantially central portions of the laminate were cut from a direction perpendicular to the bonding surface, and each cut surface was polished to prepare a test piece of 10 mm × 12 mm × 1 mm thickness.
Using this test piece, the thermal conductivity in the in-plane direction of the molded body (that is, the direction perpendicular to the bonding surface) was determined by a laser flash method thermal constant measuring apparatus (TC-7000, ULVAC-RIKO Co., Ltd.).
 〔実施例1〕
 下記表1−1及び表1−2に示される割合で、各成分をポリエチレン製の袋に入れて強く振って均一に混合した後、田辺プラスチックス機械製20mm単軸押出機VS20−26を用い、シリンダ温度240℃で溶融混練した後、約3mmのペレット状に裁断した。
 なお、表1−1及び表1−2中、「質量%」は熱可塑性樹脂(A)、炭素繊維(B)及び黒鉛粒子(C)の合計量を100質量%としたときの値であり、「質量部」は熱可塑性樹脂(A)、炭素繊維(B)及び黒鉛粒子(C)の合計量を100質量部としたときの値である。
[Example 1]
In the ratio shown in Table 1-1 and Table 1-2 below, each component was put in a polyethylene bag and shaken vigorously to mix uniformly, and then a 20 mm single screw extruder VS20-26 made by Tanabe Plastics Machinery was used. After melt-kneading at a cylinder temperature of 240 ° C., it was cut into pellets of about 3 mm.
In Table 1-1 and Table 1-2, “mass%” is a value when the total amount of the thermoplastic resin (A), carbon fiber (B), and graphite particles (C) is 100 mass%. "Mass part" is a value when the total amount of the thermoplastic resin (A), the carbon fiber (B), and the graphite particles (C) is 100 parts by mass.
 次いで、得られたペレットを、射出成形機((株)東洋精機 TOYO SI−30III)を用いて、シリンダ温度230℃、金型温度50℃、射出速度20mm/秒、保圧25MPaで射出成形し、成形体を得た。この成形体の物性の評価結果を表2に示す。 Next, the obtained pellets were injection molded using an injection molding machine (Toyo Seiki TOYO SI-30III) at a cylinder temperature of 230 ° C., a mold temperature of 50 ° C., an injection speed of 20 mm / sec, and a holding pressure of 25 MPa. A molded body was obtained. Table 2 shows the evaluation results of the physical properties of this molded body.
 〔実施例2〕
 実施例1で用いた(A−1)、(A−4)、(B−1)、及び(C)の配合量を表1−1及び表1−2に示すように代えた以外は、実施例1と同様の手順で成形体を得、その物性を評価した。この成形体の物性の評価結果を表2に示す。
[Example 2]
Except that the blending amounts of (A-1), (A-4), (B-1), and (C) used in Example 1 were changed as shown in Table 1-1 and Table 1-2, A molded body was obtained in the same procedure as in Example 1, and its physical properties were evaluated. Table 2 shows the evaluation results of the physical properties of this molded body.
 〔実施例3〕
 実施例1で用いた(A−1)、(A−4)、(B−1)、及び(C)の配合量を表1−1及び表1−2に示すように代えた以外は、実施例1と同様の手順で成形体を得、その物性を評価した。この成形体の物性の評価結果を表2に示す。
Example 3
Except that the blending amounts of (A-1), (A-4), (B-1), and (C) used in Example 1 were changed as shown in Table 1-1 and Table 1-2, A molded body was obtained in the same procedure as in Example 1, and its physical properties were evaluated. Table 2 shows the evaluation results of the physical properties of this molded body.
〔比較例1〕
 熱可塑性樹脂(A−4)を(A−6)に代え、(C)の配合量を表1−1及び表1−2に示すように代えた以外は、実施例1と同様の手順で成形体を得、その物性を評価した。この成形体の物性の評価結果を表2に示す。
[Comparative Example 1]
The procedure similar to that of Example 1 was followed except that the thermoplastic resin (A-4) was replaced with (A-6) and the amount of (C) was changed as shown in Table 1-1 and Table 1-2. Molded bodies were obtained and their physical properties were evaluated. Table 2 shows the evaluation results of the physical properties of this molded body.
〔比較例2〕
 熱可塑性樹脂(A−6)を(A−5)に代えた以外は、比較例1と同様の手順で成形体を得、その物性を評価した。この成形体の物性の評価結果を表2に示す。
[Comparative Example 2]
Except that the thermoplastic resin (A-6) was replaced with (A-5), a molded body was obtained in the same procedure as in Comparative Example 1, and its physical properties were evaluated. Table 2 shows the evaluation results of the physical properties of this molded body.
〔比較例3〕
 熱可塑性樹脂(A−6)を(A−4)に代えた以外は、比較例1と同様の手順で成形体を得、物性を評価した。この成形体の物性の評価結果を表2に示す。
[Comparative Example 3]
Except that the thermoplastic resin (A-6) was replaced with (A-4), a molded body was obtained in the same procedure as in Comparative Example 1, and the physical properties were evaluated. Table 2 shows the evaluation results of the physical properties of this molded body.
〔比較例4〕
 プロピレン樹脂(A1)として(A−1)と(A−2)を用い表1に示すように配合し、エチレン重合体を配合しなかった以外は、実施例1と同様の手順で成形体を得、その物性を評価した。この成形体の物性の評価結果を表2に示す。
[Comparative Example 4]
The molded product was prepared in the same procedure as in Example 1 except that (A-1) and (A-2) were used as the propylene resin (A1) and blended as shown in Table 1 and the ethylene polymer was not blended. Obtained and evaluated its physical properties. Table 2 shows the evaluation results of the physical properties of this molded body.
〔比較例5〕
 炭素繊維(B−1)を(B−2)に代えた以外は、実施例1と同様の手順で成形体を得、その物性を評価した。この成形体の物性の評価結果を表2に示す。
[Comparative Example 5]
Except having replaced carbon fiber (B-1) with (B-2), the molded object was obtained in the procedure similar to Example 1, and the physical property was evaluated. Table 2 shows the evaluation results of the physical properties of this molded body.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 本発明によれば、良好な熱伝導性を有する放熱部品を製造することができる樹脂組成物及びこれからなる放熱部品を提供することができる。 According to the present invention, it is possible to provide a resin composition capable of producing a heat radiating component having good thermal conductivity and a heat radiating component comprising the same.

Claims (4)

  1.  熱可塑性樹脂(A)20質量%以上59質量%以下と、
     熱伝導率が150W/m・K以上である炭素繊維(B)1質量%以上10質量%以下と、
     黒鉛粒子(C)40質量%以上70質量%以下と、を含有する樹脂組成物であって(但し、前記(A)、(B)及び(C)の合計量を100質量%とする)、
     前記熱可塑性樹脂(A)は、230℃、荷重21.18Nで測定されるメルトフローレートが1.0g/10分以上200g/10分以下のプロピレン樹脂(A1)、及び190℃、荷重21.18Nで測定されるメルトフローレートが5.0g/10分以上300g/10分以下であり、かつ密度が930kg/m以上990kg/m以下のエチレン樹脂(A2)を含有する樹脂である
    樹脂組成物。
    20% by mass or more and 59% by mass or less of the thermoplastic resin (A),
    1% by mass or more and 10% by mass or less of carbon fiber (B) having a thermal conductivity of 150 W / m · K or more;
    A resin composition containing graphite particles (C) 40% by mass or more and 70% by mass or less (provided that the total amount of (A), (B) and (C) is 100% by mass);
    The thermoplastic resin (A) has a melt flow rate measured at 230 ° C. and a load of 21.18 N of 1.0 g / 10 min or more and 200 g / 10 min or less, a 190 ° C. and a load of 21.18. Resin which is a resin containing an ethylene resin (A2) having a melt flow rate measured at 18N of 5.0 g / 10 min to 300 g / 10 min and a density of 930 kg / m 3 to 990 kg / m 3 Composition.
  2.  熱可塑性樹脂(A)において、プロピレン樹脂(A1)の含有量、及びエチレン樹脂(A2)の含有量は、熱可塑性樹脂(A)の量を100質量%としたときに、それぞれ、5質量%以上95質量%以下、及び95質量%以下5質量%以上である請求項1に記載の樹脂組成物。 In the thermoplastic resin (A), the content of the propylene resin (A1) and the content of the ethylene resin (A2) are 5% by mass when the amount of the thermoplastic resin (A) is 100% by mass. The resin composition according to claim 1, which is 95% by mass or less and 95% by mass or less and 5% by mass or more.
  3.  230℃、荷重21.18Nで測定されるメルトフローレートが0.1g/10分以上30g/10分以下である請求項1又は2に記載の樹脂組成物。 3. The resin composition according to claim 1, wherein the melt flow rate measured at 230 ° C. and a load of 21.18 N is 0.1 g / 10 min or more and 30 g / 10 min or less.
  4.  請求項1から3いずれかに記載の樹脂組成物からなる放熱部品。 A heat dissipating component comprising the resin composition according to any one of claims 1 to 3.
PCT/JP2014/076636 2013-10-01 2014-09-29 Resin composition and heat dissipation component comprising same WO2015050263A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015540578A JP6376135B2 (en) 2013-10-01 2014-09-29 Resin composition and heat dissipation component comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013206142 2013-10-01
JP2013-206142 2013-10-01

Publications (1)

Publication Number Publication Date
WO2015050263A1 true WO2015050263A1 (en) 2015-04-09

Family

ID=52778845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076636 WO2015050263A1 (en) 2013-10-01 2014-09-29 Resin composition and heat dissipation component comprising same

Country Status (2)

Country Link
JP (1) JP6376135B2 (en)
WO (1) WO2015050263A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108781524A (en) * 2016-04-11 2018-11-09 积水保力马科技株式会社 Thermally conductive sheet
JPWO2018123012A1 (en) * 2016-12-28 2019-10-31 日立化成株式会社 HEAT CONDUCTIVE SHEET, HEAT CONDUCTIVE SHEET MANUFACTURING METHOD, AND HEAT DISSIPTOR
JP2021050270A (en) * 2019-09-24 2021-04-01 日本ポリプロ株式会社 Polypropylene resin composition
WO2022038941A1 (en) * 2020-08-18 2022-02-24 三井化学株式会社 Ethylene-based polymer composition and use application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005281466A (en) * 2004-03-29 2005-10-13 Idemitsu Kosan Co Ltd Carbon fiber-containing fiber-reinforced resin composition with small warpage distortion and its molded article
JP2007100027A (en) * 2005-10-07 2007-04-19 Prime Polymer:Kk Resin composition for part of intake system of internal combustion engine, and part of intake system
JP2007103297A (en) * 2005-10-07 2007-04-19 Prime Polymer:Kk Resin composition for fuel cell member, and fuel cell member
JP2012036247A (en) * 2010-08-04 2012-02-23 Toray Ind Inc Resin composition
JP2013001818A (en) * 2011-06-17 2013-01-07 Sumitomo Chemical Co Ltd Resin composition and inverter component made of the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02160853A (en) * 1989-11-16 1990-06-20 Mitsui Toatsu Chem Inc Polyolefin sheet for decorative panel
JP3384151B2 (en) * 1994-12-14 2003-03-10 三菱化学株式会社 Olefin-based conductive resin composition
JP2000159951A (en) * 1998-11-30 2000-06-13 Mitsubishi Chemicals Corp Conductive olefin resin composition
JP2003183461A (en) * 2001-12-25 2003-07-03 Toyo Ink Mfg Co Ltd Electroconductive resin composition and molded article
JP2008094924A (en) * 2006-10-11 2008-04-24 Daicel Polymer Ltd Thermoconductive resin composition
JP5938958B2 (en) * 2011-03-15 2016-06-22 住友化学株式会社 Resin composition and heat dissipation component comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005281466A (en) * 2004-03-29 2005-10-13 Idemitsu Kosan Co Ltd Carbon fiber-containing fiber-reinforced resin composition with small warpage distortion and its molded article
JP2007100027A (en) * 2005-10-07 2007-04-19 Prime Polymer:Kk Resin composition for part of intake system of internal combustion engine, and part of intake system
JP2007103297A (en) * 2005-10-07 2007-04-19 Prime Polymer:Kk Resin composition for fuel cell member, and fuel cell member
JP2012036247A (en) * 2010-08-04 2012-02-23 Toray Ind Inc Resin composition
JP2013001818A (en) * 2011-06-17 2013-01-07 Sumitomo Chemical Co Ltd Resin composition and inverter component made of the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108781524A (en) * 2016-04-11 2018-11-09 积水保力马科技株式会社 Thermally conductive sheet
KR20180133842A (en) * 2016-04-11 2018-12-17 세키수이 폴리머텍 가부시키가이샤 Thermally conductive sheet
EP3419399A4 (en) * 2016-04-11 2019-10-30 Sekisui Polymatech Co., Ltd. Heat conductive sheet
KR102073780B1 (en) 2016-04-11 2020-02-05 세키수이 폴리머텍 가부시키가이샤 Thermal conductive sheet
CN108781524B (en) * 2016-04-11 2020-12-25 积水保力马科技株式会社 Heat conducting fin
US10964620B2 (en) 2016-04-11 2021-03-30 Sekisui Polymatech Co., Ltd. Thermally conductive sheet
JPWO2018123012A1 (en) * 2016-12-28 2019-10-31 日立化成株式会社 HEAT CONDUCTIVE SHEET, HEAT CONDUCTIVE SHEET MANUFACTURING METHOD, AND HEAT DISSIPTOR
US11639426B2 (en) 2016-12-28 2023-05-02 Resonac Corporation Heat conduction sheet, method of manufacturing heat conduction sheet, and heat dissipating device
JP2021050270A (en) * 2019-09-24 2021-04-01 日本ポリプロ株式会社 Polypropylene resin composition
WO2022038941A1 (en) * 2020-08-18 2022-02-24 三井化学株式会社 Ethylene-based polymer composition and use application thereof
JPWO2022038941A1 (en) * 2020-08-18 2022-02-24
JP7341353B2 (en) 2020-08-18 2023-09-08 三井化学株式会社 Ethylene polymer composition and its uses

Also Published As

Publication number Publication date
JP6376135B2 (en) 2018-08-22
JPWO2015050263A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
JP5938958B2 (en) Resin composition and heat dissipation component comprising the same
JP6376135B2 (en) Resin composition and heat dissipation component comprising the same
US8895644B2 (en) Resin composition and lighting fixture components made of the same
JP4732457B2 (en) Molding composition with improved flowability based on thermoplastic polyesters
Zhang et al. Synergistic effects of toughening of nano-CaCO3 and toughness of β-polypropylene
JP5552544B2 (en) Method for forming thermoplastic vulcanizates
RU2684110C1 (en) Carbon fiber reinforced materials with low density
BRPI0822601B1 (en) copolymers of heterophasic polypropylene with high purity, its production process, and article
EP2731988A1 (en) High flow polyolefin composition with low shrinkage and clte
AU2013329910B2 (en) Nucleated polypropylene composition for containers
BR112017026870B1 (en) FIBER REINFORCED COMPOSITION, AUTOMOTIVE AND FOAMED ARTICLE, AND, USE OF A FIBER REINFORCED COMPOSITION
JP2007119781A (en) Thermoplastic polyester-based molding composition having improved fluidity
JP2012207219A (en) Resin composition and heat-radiating component
WO2021036613A1 (en) Glass fiber reinforced polycarbonate composite material, preparation method therefor and application thereof
WO2019010672A1 (en) Glass fiber reinforced composition with low odor
JP6916713B2 (en) Polypropylene resin composition and molded product
CN102482465B (en) TPO compositions, articles, and methods of making the same
JP2013173923A (en) Molded article comprising polypropylene resin composition
JP5938959B2 (en) Resin composition and heat dissipation component comprising the same
CN112280167A (en) Preparation method of heat-resistant high-rigidity transparent low-shrinkage homo-polypropylene resin with wide molecular weight distribution
CN110872431B (en) Thermoplastic resin composition and articles produced therefrom
JP2011256247A (en) Propylene resin composition
WO2017213125A1 (en) Propylene-based resin composition and injection-molded object thereof
CN111484680A (en) High-gloss and high-temperature-resistant polypropylene composite material and preparation method thereof
JP6056500B2 (en) Polypropylene resin composition and molded body containing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14850273

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015540578

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14850273

Country of ref document: EP

Kind code of ref document: A1