WO2015047042A1 - 높은 비표면적을 갖는 탄소나노튜브 및 그 제조 방법 - Google Patents

높은 비표면적을 갖는 탄소나노튜브 및 그 제조 방법 Download PDF

Info

Publication number
WO2015047042A1
WO2015047042A1 PCT/KR2014/009225 KR2014009225W WO2015047042A1 WO 2015047042 A1 WO2015047042 A1 WO 2015047042A1 KR 2014009225 W KR2014009225 W KR 2014009225W WO 2015047042 A1 WO2015047042 A1 WO 2015047042A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface area
catalyst
carbon nanotubes
specific surface
carbon
Prior art date
Application number
PCT/KR2014/009225
Other languages
English (en)
French (fr)
Inventor
김성진
손승용
우지희
이동철
강경연
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR20140129449A external-priority patent/KR101508101B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP14847473.7A priority Critical patent/EP3053877B1/en
Priority to CN201480003597.3A priority patent/CN104870363B/zh
Priority to US14/438,165 priority patent/US11090635B2/en
Priority to JP2015544018A priority patent/JP6217755B2/ja
Publication of WO2015047042A1 publication Critical patent/WO2015047042A1/ko

Links

Images

Classifications

    • B01J35/40
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8906Iron and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8913Cobalt and noble metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the present invention relates to a supported catalyst production method, particularly a carbon nanotube having a high specific surface area and a method for producing the same.
  • Carbon nanostructures refers to nanoscale carbon nanostructures having various shapes such as nanotubes, nanohairs, fullerenes, nanocones, nanohorns, and nanorods. High utilization in the technical field.
  • carbon nanotubes is a material in which the carbon atoms arranged in a hexagonal shape in the form of a tube, the diameter is approximately 1 to 100 nm.
  • CNTs carbon nanotubes
  • Such CNTs exhibit non-conductor, conductor or semiconducting properties depending on their unique chirality, and the carbon atoms are connected by strong covalent bonds, resulting in approximately 100 times greater tensile strength than steel, and excellent flexibility and elasticity. It is also chemically stable.
  • the type of CNT includes a single-walled carbon nanotube (SWCNT) composed of one layer and a diameter of about 1 nm, and a double-walled carbon composed of two layers and a diameter of about 1.4 to 3 nm.
  • nanotubes, DWCNTs) and multi-walled carbon nanotubes (MWCNTs) having a diameter of about 5 to 100 nm and consisting of three or more layers.
  • CNTs Due to characteristics such as chemical stability, excellent flexibility and elasticity, CNTs are being commercialized and applied in various fields, such as aerospace, fuel cells, composites, biotechnology, medicine, electrical and electronics, and semiconductors.
  • the primary structure of the CNT has a limit in directly adjusting its diameter or length to actual specifications for industrial applications, and thus, despite the excellent properties of the CNT, there are many limitations in industrial applications or applications.
  • the CNT is generally manufactured by arc discharge, laser ablation, chemical vapor deposition, or the like.
  • the arc discharge method and the laser evaporation method are difficult to mass-produce, and excessive arc production cost or laser equipment purchase cost is a problem.
  • the chemical vapor deposition method has a problem that the synthesis rate is very slow in the case of using a gas phase dispersion catalyst and the particles of the synthesized CNT are too small. There is a limit to mass production. Therefore, in order to increase the yield of CNT in chemical vapor deposition, studies on catalysts, reaction conditions, and the like are continuing.
  • CNTs having a high specific surface area and having a form that can be well dispersed and mixed during compounding are required.
  • an object of the present invention is to provide a method capable of providing a high yield of CNTs having a high specific surface area and having a bundled structure that can be well dispersed and mixed with a polymer.
  • Another object of the present invention is to provide a method for producing a CNT having the bundled structure.
  • the BET specific surface area is 200 m 2 / g or more, and the ratio of the G band peak integral (I G ) and the D band peak integral (I D ) (I G / I D ) by the BET specific surface area and Raman analysis is It provides a bundle of carbon nanotubes that satisfies the relationship.
  • y is the BET specific surface area
  • x is the I G / I D value
  • a is a constant from -400 to -500
  • b is a constant from 600 to 800.
  • the carbon nanotubes also satisfy the following relation.
  • y is the BET specific surface area (m 2 / g) and x is the I G / I D value.
  • a ratio (I G / I D ) of the G band peak integrated value (I G ) and the D band peak integrated value (I D ) of the carbon nanotubes may be 0.7 to 1.3.
  • the carbon nanotubes are formed by first firing a support precursor having a BET specific surface area of 1 m 2 / g or less at a first firing temperature of 100 ° C. to 450 ° C., and supporting a graphitized metal catalyst on the support. It may be prepared using a supported catalyst obtained by second firing at a second firing temperature of 100 ° C to 500 ° C.
  • the supported catalyst may be selected to have a particle size of 30 to 150 ⁇ m and a number average particle diameter (Mn) of 40 to 80 ⁇ m.
  • the support is aluminum-based, and in particular, the support precursor is preferably aluminum hydroxide [Al (OH) 3 ].
  • the second firing temperature is 100 °C to 300 °C.
  • the graphitized metal catalyst is nickel (Ni), cobalt (Co), iron (Fe), platinum (Pt), gold (Au), aluminum (Al), chromium (Cr), copper (Cu) ,
  • zirconium (Zr) may be at least one metal or alloy selected from the group consisting of.
  • the graphitized metal catalyst may be a multi-component metal catalyst including a main catalyst-catalyst.
  • the main catalyst may be at least one selected from Co and Fe, and the cocatalyst may be at least one selected from Mo and V.
  • the graphitized metal catalyst may be a binary metal catalyst selected from Co / Mo, Co / V, Fe / Mo and Fe / V.
  • the graphitized metal catalyst may have a content of 0.5 to 5 moles of a cocatalyst with respect to 10 moles of the main catalyst.
  • the graphitization catalyst may be 5 to 40 parts by weight based on 100 parts by weight of the supported catalyst.
  • the present invention also provides a support by forming a support by first baking a support precursor having a BET specific surface area of 1 m 2 / g or less at a first firing temperature of 100 ° C. to 450 ° C., after supporting the graphitized metal catalyst on the support, It provides a carbon nanotube manufacturing method comprising the step of contacting the supported catalyst obtained by the second firing at a second firing temperature of 100 °C to 500 °C contact with the gaseous carbon source to form carbon nanotubes (CNT).
  • a support precursor having a BET specific surface area of 1 m 2 / g or less at a first firing temperature of 100 ° C. to 450 ° C.
  • the specific surface area of the carbon nanotubes may increase.
  • the gaseous carbon source may be at least one selected from the group consisting of carbon monoxide, methane, ethane, ethylene, ethanol, acetylene, propane, propylene, butane, butadiene, pentane, pentene, cyclopentadiene, hexane, cyclohexane, benzene and toluene .
  • the reaction temperature may be 600 °C to 750 °C.
  • the present invention also provides a composite material including the bundled carbon nanotubes.
  • the present invention since a carbon nanotube (CNT) having a large specific surface area and having a shape that can be well dispersed and mixed can be obtained, it is possible to improve physical properties of the composite material including the CNT. As a result, the CNTs according to the present invention can be usefully used in various fields such as energy materials, functional composites, medicines, batteries, semiconductors, and display devices.
  • CNT carbon nanotube
  • 1 is a graph showing the relationship between the BET specific surface area and the IG / ID value of the carbon nanotube aggregate prepared according to an embodiment of the present invention.
  • FIG. 2 shows a SEM photograph of the bundled CNTs obtained in Example 3.
  • FIG. 3 shows the SEM photograph of the bundled CNT obtained in Example 12.
  • FIG. 4 shows the SEM photograph of the unbundled CNT obtained in Comparative Example 1.
  • FIG. 5 shows an SEM photograph of the unbundled CNT obtained in Comparative Example 2.
  • the present invention provides a method and method for producing the same, in which the specific surface area and form of the resulting CNTs can be suitably controlled by optimizing processes including pretreatment of the support, formation of the supported catalyst, and formation of the CNTs. It relates to CNT obtained by.
  • 'bundle type' refers to a secondary shape in the form of a bundle or a rope, in which a plurality of CNTs are arranged or intertwined side by side, unless otherwise stated.
  • 'Non-bundle or entangled type' means a shape without a certain shape, such as a bundle or a rope shape.
  • Raman analysis is a method for analyzing the structure of CNTs, which is useful for surface state analysis of CNTs.
  • the peak present in the region near the wavenumber of 1580 cm ⁇ 1 in the CNT Raman spectrum is called a G-band, which represents the SP 2 bond of the CNT, which represents a carbon crystal without structural defects.
  • the peak present in the region near the wave number 1360cm -1 in the Raman spectrum is called D-band, which indicates the SP 3 bond of CNTs, which represents carbon containing a structural bond.
  • the peak integrals of the G band and the D band are referred to as I G and I D , respectively.
  • the G band of the Raman spectrum for the CNT of the present invention may be a peak present in the wavenumber 1580 ⁇ 50 cm ⁇ 1 region, and the D band may be a peak present in the wavenumber 1360 ⁇ 50 cm ⁇ 1 region.
  • the wave range for the G band and the D band corresponds to a range that can be shifted according to the laser light source used in the Raman analysis.
  • the Raman value used in the present invention is not particularly limited, but is preferably measured at a laser wavelength of 532 nm using DXR Raman Microscope (Thermo Electron Scientific Instruments LLC).
  • the ratio of the G band peak integral value (I G ) and the D band peak integral value (I D ) of the Raman spectrum is 0.7 to 1.3. If less than 5, it means that the amorphous carbon is contained in a large amount or the crystallinity of the CNT is poor, but in the present invention, as the BET specific surface area is increased and the secondary shape of the bundled structure, the crystallinity of the CNT is good. It will have a range as described above.
  • the bundle type CNT according to the present invention has a BET specific surface area of 200 m 2 / g or more, and G band peak integral value (I G ) and D band peak integral value (I G ) by BET specific surface area and Raman analysis.
  • D ratio (I G / I D) of) a relationship that is inversely proportional at a predetermined ratio, and satisfy the following relation in detail.
  • y is the BET specific surface area
  • x is the I G / I D value
  • a is a constant from -400 to -500
  • b is a constant from 600 to 800.
  • a may be a constant of -400 to -450 or -450 to -500
  • b may be a constant of 600 to 700, or 650 to 750, or 700 to 800.
  • the carbon nanotubes also satisfy the following relation.
  • the specific surface area used in the present invention is measured by the BET method. Specifically, the specific surface area used is calculated by calculating the amount of nitrogen gas adsorption under liquid nitrogen temperature (77K) using BEL Japan's BELSORP-mini II. .
  • CNTs according to the invention have a BET specific surface area of 200 to 500 m 2 / g, or 200 to 300 m 2 / g, or 300 to 500 m 2 / g, or 300 to 400 m 2 / g, or 200 to 400 m Can be 2 / g.
  • CNTs according to the present invention have an I G / I D value of about 0.7 to about 1.3, or 0.7 to 1.1, or 0.7 to 1.0, or about 0.7 to 0.9, or 0.8 to 1.0, or 0.9 to 1.1, as determined by Raman analysis. It may have a range of.
  • Figure 1 graphically shows the relationship between the specific surface area and the I G / I D ratio of the CNT prepared according to the embodiment of the present invention.
  • Conventional CNTs tend to increase the I G / I D ratio as the BET specific surface area increases, but CNTs according to the present invention tend to constantly decrease the I G / I D ratio as the BET specific surface area increases. can confirm.
  • the ratio of the G band peak integral (I G ) and the D band peak integral (I D ) by the BET specific surface area and the Raman analysis method (I G / I D ) may satisfy the following relationship. have.
  • CNTs according to one embodiment may satisfy the following relationship.
  • the CNT may satisfy the following relationship.
  • the CNT may satisfy the following relationship.
  • a graphitization catalyst is supported on a support obtained therefrom, and then, at a temperature of 100 ° C. to 500 ° C.
  • a supported catalyst prepared by second firing at a temperature is prepared.
  • the supported catalyst may be contacted with a gaseous carbon source to prepare a bundle-type carbon nanotube having a BET specific surface area of preferably 200 m 2 / g or more.
  • the support precursor used in the preparation method serves to support the graphite catalyst, and can control the shape of the CNTs according to the type thereof.
  • an aluminum-based support precursor preferably aluminum hydroxide (aluminum-tri-hydroxide, ATH) can be used.
  • a support precursor can be used by drying for 1 hour to 24 hours at 50 °C to 150 °C.
  • the first firing temperature is preferably less than 500 ° C., much lower than 700 ° C., which is known to convert aluminum hydroxide to alumina. That is, the first firing may include a heat treatment process performed at a temperature of about 100 ° C to about 450 ° C, or about 120 ° C to about 400 ° C, or 200 to 450 ° C, or 300 to 450 ° C, or 200 to 400 ° C. Can be.
  • the aluminum-based support formed by the above process preferably contains 30 wt% or more of AlO (OH) converted from Al (OH) 3 and does not include Al 2 O 3 .
  • the aluminum (Al) -based support may further include one or more selected from the group consisting of ZrO 2 , MgO and SiO 2 .
  • the aluminum (Al) -based support may have a spherical or potato shape, and may have a porous structure, a molecular sieve structure, a honeycomb structure, or another suitable structure to have a relatively high surface area per unit mass or volume.
  • the support precursor may have a primary particle size of about 20 to about 200 ⁇ m, porosity of about 0.1 to about 1.0 cm 3 / g, specific surface area of less than about 1 m 2 / g.
  • the first firing process may be performed for about 0.5 hours to about 10 hours, preferably about 1 hour to 5 hours, but is not limited thereto.
  • CNTs Contacting the graphitization catalyst used in the preparation method with a gaseous carbon source can form CNTs.
  • the growth process of CNTs is described above.
  • the carbonaceous material which is a gaseous carbon source
  • the graphite catalyst for example, a graphite metal catalyst
  • the carbonaceous material is thermally decomposed on the surface of the metal catalyst.
  • CNTs in which the carbon atom generated from the decomposed carbon-containing gas penetrates into the graphitized metal catalyst to be dissolved and then exceeds the solubility limit which is an inherent property of the graphitized metal catalyst.
  • the nucleation of the furnace occurs and grows into CNTs.
  • the graphitized metal catalyst serves to help the carbon components present in the carbonaceous material combine with each other to form a hexagonal ring structure, for example, to synthesize graphite, induce carbonization, or CNT It is possible to use the catalyst used to prepare the. More specifically, nickel (Ni), cobalt (Co), iron (Fe), platinum (Pt), gold (Au), aluminum (Al), chromium (Cr), copper (Cu), magnesium (Mg), With manganese (Mn), molybdenum (Mo), rhodium (Rh), silicon (Si), tantalum (Ta), titanium (Ti), tungsten (W), uranium (U), vanadium (V) and zirconium (Zr) One or more metals or alloys selected from the group consisting of can be used.
  • the graphitization catalyst may use a binary or ternary or higher polyvalent metal.
  • a binary or multi-part graphitization catalyst may be composed of a main catalyst and a promoter, Co, Fe, Ni, etc. may be used as the main catalyst, Mo, V, etc. may be used as the promoter.
  • Such binary or plural graphitization catalysts are Co / Mo, Co / V, Fe / Mo, Fe / V, Fe / Co, Fe / Co / V, Fe / Co / Mo, Co / Mo / V, Fe / Mo / V, Fe / Co / Mo / V, etc. are mentioned. Among these, it is more preferable that Co and V are included.
  • the component ratio thereof may be, for example, 0.1 to 10 moles or 0.5 to 5 moles of the cocatalyst based on 10 moles of the main catalyst.
  • the graphitization catalyst is supported on the support in the form of various precursors such as metal salts, metal oxides, or metal compounds.
  • various precursors such as metal salts, metal oxides, or metal compounds.
  • Fe salt, Fe oxide, Fe compound, Ni salt, Ni oxide, Ni compound, Co salt, Co oxide, Co compound, Mo oxide, Mo compound, Mo salt, V oxide, V compound, V salt, etc. can be illustrated.
  • Fe (NO 3 ) 2 ⁇ 6H 2 O, Fe (NO 3 ) 2 ⁇ 9H 2 O, Fe (NO 3 ) 3 , Fe (OAc) 2 , Ni (NO 3 ) 2 ⁇ 6H 2 O, Co (NO 3 ) 2 .6H 2 O, Co 2 (CO) 8 , [Co 2 (CO) 6 (t-BuC CH)], Co (OAc) 2 , (NH 4 ) 6 Mo 7 O 24 4H 2 O, Mo (CO) 6 , (NH 4 ) MoS 4 , NH 4 VO 3 , and the like can be used.
  • the precursor of the graphitization catalyst When the precursor of the graphitization catalyst is supported on the support in the form of a solution, and then undergoes a second firing process, it is mainly supported in the form of a metal oxide to form a supported catalyst.
  • a support for example a granular aluminum-based support in the precursor aqueous solution of the graphitization catalyst
  • the mixture is first baked at about 100 ° C. to about 450 ° C. to form a support, and the support is supported on a graphitized metal catalyst, which is then calcined at a second baking temperature of 100 ° C. to 500 ° C. To obtain a supported catalyst for producing CNTs obtained by impregnating and coating the graphitized catalyst component on the surface of the granular support and the pores.
  • the vacuum drying may be carried out by rotary evaporation in the range of about 30 minutes to about 12 hours under vacuum in the temperature range of about 40 to about 100 °C.
  • the method may include aging by rotation or stirring at about 45 to about 80 ° C. before the vacuum drying. For example, it may be performed for up to 5 hours, 20 minutes to 5 hours, or 1 to 4 hours.
  • the second firing process for forming the supported catalyst is performed at a temperature of about 100 ° C to about 500 ° C, and the lower the catalyst firing temperature, the higher the BET specific surface area.
  • the second firing temperature may be 100 to 500 ° C, or 100 to 400 ° C, or 100 to 300 ° C, or 100 to 200 ° C, or 200 to 300 ° C, or 200 to 400 ° C.
  • the particle size or average particle diameter measured before the second firing of the supported catalyst used in the preparation method is about 30 ⁇ m to about 150 ⁇ m, and the primary particle diameter of the granular support and the graphitization catalyst is about 10 nm to about 50 nm.
  • the spherical or potato shape refers to a three-dimensional shape such as a spherical and ellipsoidal shape having an aspect ratio of 1.2 or less.
  • the supported catalyst when preparing a CNT according to the present invention using a fluidized bed reactor, in particular, has a particle diameter of about 30 ⁇ m to about 150 ⁇ m, a number average particle diameter (Mn) of 40 to 80 ⁇ m, or It can be used selectively to be 50 to 70 ⁇ m, or 50 to 70 ⁇ m. This is because it is important to ensure that the catalyst fluidized bed flows well without catalyst aggregation in the reaction zone in the fluidized bed reactor.
  • Mn number average particle diameter
  • the supported catalyst may include about 5 to about 40 parts by weight of the graphitization catalyst based on 100 parts by weight of the supported catalyst, but is not limited thereto.
  • the supported catalyst includes a Co-based graphitization catalyst
  • the content of Co may be about 3 to about 100 moles based on 100 moles of the support.
  • the graphitization catalyst may have a structure in which one or more layers are coated on the surface and pores of the granular support, preferably the aluminum-based support.
  • a supported catalyst using an impregnation method, in which the bulk density of the catalyst itself is higher than that of the coprecipitation catalyst and less than 10 microns, unlike the coprecipitation catalyst, when the supported catalyst is used. It is possible to reduce the possibility of fine powder due to attrition, which can occur during fluidization process because of the small amount of fine powder. Also, the mechanical strength of the catalyst itself is excellent, which makes it possible to stabilize the reactor operation.
  • CNTs may be prepared by growing CNTs by chemical vapor phase synthesis through decomposition of a carbon source using the supported catalyst as described above.
  • the CNT in the method for producing CNTs according to the chemical vapor phase synthesis method, after charging the graphitization catalyst in the reactor, the CNT can be prepared by supplying a gaseous carbon source under conditions of normal pressure and high temperature.
  • the growth of the CNTs is carried out by the process of infiltrating and saturating the pyrolyzed hydrocarbons by applying high temperature heat to the graphitization catalyst, and depositing carbons from the saturated graphitization catalyst to form a hexagonal ring structure.
  • the chemical vapor phase synthesis method is to add the supported catalyst to a horizontal fixed bed reactor or fluidized bed reactor and about 500 °C to about 900 °C, or about 500 °C to 800 °C, or about 600 °C to 800 °C, about 600 °C
  • One or more carbon sources selected from saturated or unsaturated hydrocarbons having 1 to 6 carbon atoms at a temperature of from about 750 ° C., or about 650 ° C. to about 700 ° C., or the carbon source with a reducing gas (eg, hydrogen) and a carrier gas ( For example, it may be carried out by injecting a mixed gas of nitrogen). Injecting a carbon source into the supported catalyst to grow the CNTs may be performed for 30 minutes to 8 hours.
  • the supply gas may be a carbon source and a reducing gas or a carrier gas, respectively, or a mixture thereof.
  • induction heating radiant heat, laser, IR, microwave, plasma, UV, surface plasmon heating, etc. can be used without limitation.
  • the carbon source used in the chemical vapor phase synthesis method may supply carbon, and any material that may exist in the gas phase at a temperature of 300 ° C. or higher may be used without particular limitation.
  • a gaseous carbonaceous substance any compound containing carbon may be used, and a compound having 6 or less carbon atoms is preferable, and more preferably a compound having 4 or less carbon atoms.
  • one or more selected from the group consisting of carbon monoxide, methane, ethane, ethylene, ethanol, acetylene, propane, propylene, butane, butadiene, pentane, pentene, cyclopentadiene, hexane, cyclohexane, benzene and toluene can be used. It is not limited.
  • the mixed gas of hydrogen and nitrogen transports the carbon source, prevents CNTs from burning at high temperatures, and assists in the decomposition of the carbon source.
  • Such gaseous carbon source, hydrogen and nitrogen can be used in various volume ratios, for example, the volume ratio of nitrogen: gaseous carbon source: hydrogen is 1: 0.1 to 10: 0 to 10, or 1: 0.5 to 1.5: 0.5 to 1.5 Can be used in the range of.
  • the flow rate of the reaction gas may use a range of about 100 to 500 sccm.
  • the CNTs are subjected to a cooling process.
  • the CNTs may be arranged more regularly by the cooling process.
  • Such cooling process may be natural cooling (removal of heat source), or cooling at a rate of about 5 ° C. to about 30 ° C. per minute.
  • a bundle type CNT having a BET specific surface area of about 200 m 2 / g or more, preferably about 200 m 2 / g to about 500 m 2 / g can be obtained.
  • the specific surface area can be measured by a conventional BET method.
  • the production method is capable of obtaining CNTs in high yield, for example, achieving a yield of about 5 to 50 times, or about 10 to 40 times.
  • the yield is obtained from the synthesized carbon nanotubes at room temperature and its content can be measured using an electronic balance.
  • the reaction yield can be calculated based on the weight of the supported catalyst used and the weight increase after the reaction based on the following formula.
  • the CNTs may be in a bundle having a flatness of about 0.9 to about 1, and each CNT strand diameter is about 2 nm to about 20 nm, preferably about 3 nm to about 8 nm, as the BET specific surface area increases. It may have a diameter.
  • the flatness may be defined by the following equation.
  • CNTs have a large BET specific surface area, that is, a low diameter, and have a bundle shape, so that the CNTs are well dispersed and mixed in other materials, for example, polymers, thereby improving physical properties when forming a composite material.
  • Electrode structures such as solar cells, fuel cells, lithium batteries and supercapacitors; Functional composite materials; Energy material; medicine; It can be usefully used for semiconductors such as FETs.
  • Co-V metal catalyst was prepared as a graphitization catalyst.
  • Citric acid was added to Flask A in which NH 4 VO 3 was dissolved in 20 ml water as the precursor material of V.
  • Co (NO 3 ) 2 .6H 2 O was added as a precursor material of Co so that the molar ratio of Co: V was 10: 1.
  • the prepared aqueous metal solution was observed as a clear solution without precipitation.
  • ATH400 obtained by calcining aluminum hydroxide (Aluminum-tri-hydroxide, Al (OH) 3 ) at 400 ° C for 4 hours as an aluminum-based support was prepared in Flask B. XRD analysis showed that after firing the support contained at least 40% by weight of AlO (OH).
  • CNT synthesis was tested in a laboratory scale fixed bed reactor using the supported catalyst prepared for CNT synthesis.
  • the catalyst for synthesizing CNT prepared in D was mounted in the middle of a quartz tube having an internal diameter of 55 mm, and then heated and maintained at 670 ° C. in a nitrogen atmosphere, and the volume of nitrogen, hydrogen, and ethylene gas was maintained.
  • the mixing ratio was synthesized for 1 hour while flowing 180 ml per minute in the same ratio to synthesize a predetermined amount of CNT aggregates.
  • the BET specific surface area was calculated by calculating the amount of nitrogen gas adsorption under liquid nitrogen temperature (77K) using BELSORP-mini II from BEL Japan.
  • I G / I D was measured at a laser wavelength of 532 nm using DXR Raman Microscope (Thermo Electron Scientific Instruments LLC).
  • Bundled CNTs were prepared by the same process as Example 1, except that the aluminum hydroxide was calcined at 300 ° C. instead of 400 ° C. (ATH300).
  • Bundled CNTs were prepared in the same manner as in Example 2, except that the reactor temperature was changed from 670 ° C to 690 ° C.
  • Bundled CNTs were prepared in the same manner as in Example 1, except that the reactor temperature was changed from 670 ° C. to 710 ° C.
  • Bundled CNTs were prepared in the same manner as in Example 1, except that the reactor temperature was changed from 670 ° C. to 690 ° C.
  • Bundled CNTs were prepared by the same process as Example 5, except that the molar ratio of Co: V was changed from 10: 1 to 20: 1.
  • Bundled CNT was prepared in the same manner as in Example 5 except that the molar ratio of Co: V was changed from 10: 1 to 5: 1.
  • Bundled CNTs were prepared in the same manner as in Example 7, except that Fe: Mo was used in a molar ratio of 5: 1 instead of Co: V in a molar ratio of 5: 1.
  • Bundled CNTs were prepared in the same manner as in Example 7, except that Co: V was used in a molar ratio of 5: 1 instead of Co: V in a molar ratio of 5: 1.
  • Bundled CNT was prepared by performing the same process as in Example 9 except that the calcining temperature of the supported catalyst was changed from 120 ° C. to 300 ° C.
  • a bundle-type CNT was prepared by performing the same process as in Example 9 except that the firing temperature of the supported catalyst was changed from 120 ° C. to 500 ° C.
  • Bundled CNTs were prepared in the same manner as in Example 9, except that 0 ml of nitrogen per minute, 60 ml of ethylene gas, and 120 ml of hydrogen per minute were flowed.
  • a CNT was prepared in the same manner as in Example 3 except that commercial boehmite was used as a support without performing a support calcining step.
  • a CNT was prepared in the same manner as in Example 3, except that commercial gamma-alumina was used as a support, and a support calcining process was not performed.
  • a CNT was prepared by performing the same process as in Example 9 except that the calcining temperature of the supported catalyst was changed from 120 ° C. to 700 ° C.
  • Example 1 Table 1 division Support Support firing temperature Catalytic metal Catalytic firing temperature Reactor temperature Mixed gas volume ratio (N 2 : C 2 H 4 : H 2 )
  • Example 1 ATH400 400 °C Co: V 10: 1 120 °C 670 °C 60:60:60 sccm
  • Example 4 ATH400 400 °C Co: V 10: 1 120 °C 710 °C 60:60:60 sccm
  • Example 5 ATH400 400 °C Co: V 10: 1 120 °C 690 °C 60:60:60 sccm
  • Example 6 ATH400 400 °C Co: V 20: 1 120 °C 690 °C 60:60:60 s
  • Examples 1, 2, 4, 5, and 8 satisfy the following relationship.
  • Example 3 satisfies the following relation.
  • Comparative Examples 1 to 6 have a specific surface area of 200 m 2 / g or more and bundle and satisfy the above relation.
  • Examples 3 and 5 in which the aluminum hydroxide support firing temperatures are 300 ° C. and 400 ° C., respectively, show different yields and BET surface areas, even though different process conditions are the same, It can be seen that it affects the yield and physical properties of the resulting CNTs.
  • Example 10 Example 11, Example 12 and Comparative Example 3, catalyst firing was performed at 120 ° C, 300 ° C, 500 ° C and 700 ° C, respectively, as the catalyst firing temperature was increased as shown in Table 2 above. It can be seen that the BET specific surface area decreases.
  • Examples 7 and 9 and 10 used binary catalysts of Co / V, Fe / Mo, and Co / Mo, respectively.
  • Examples 7 and 10, which are Co-based catalysts, have a high BET surface area and excellent yield. It can be seen that, especially in Example 7 using the CoV catalyst shows the best results.
  • Examples 5, 6 and 7 are Co: V ratios of 10: 1, 20: 1, and 5: 1, respectively, all of which show high BET specific surface area and high yield. It can be seen that the highest BET specific surface area is shown in Example 5 with a Co: V ratio of 10: 1.
  • Table 3 shows the yield, BET surface area, and I G / I D ratio of CNTs obtained using a catalyst prepared by varying the Co content (wt%) under the same reaction conditions as in Example 5.
  • Co content (wt%) was calculated as (Co impregnated weight / final catalyst weight) ⁇ 100.
  • Example 5 is referred to as Example 5-1 for convenience.
  • Example 7 and Example 12 only the mixing ratio of the reaction gas is different, it can be seen that the high specific surface area and yield are obtained in Example 7 where they are used in the same ratio.
  • Example 1 Example 4 and Example 5, the reaction temperature is 670 °C, 710 °C, and 690 °C, respectively, it can be seen that the highest BET specific surface area in Example 1, the temperature is 670 °C.
  • the present invention since a carbon nanotube (CNT) having a large specific surface area and having a shape that can be well dispersed and mixed can be obtained, it is possible to improve physical properties of the composite material including the CNT. As a result, the CNTs according to the present invention can be usefully used in various fields such as energy materials, functional composites, medicines, batteries, semiconductors, and display devices.
  • CNT carbon nanotube

Abstract

높은 비표면적을 갖는 탄소나노튜브를 제조할 수 있는 담지 촉매의 제조방법 및 이 담지 촉매를 이용하여 얻어진 탄소나노튜브가 제공되며, 본 발명에 따르면 높은 비표면적을 갖는 CNT를 높은 수율로 제조할 수 있으므로 다양한 분야에 유용하게 사용할 수 있다.

Description

높은 비표면적을 갖는 탄소나노튜브 및 그 제조 방법
본 발명은 담지 촉매 제조방법, 특히 높은 비표면적을 갖는 탄소나노튜브 및 이를 제조할 수 있는 방법에 관한 것이다.
탄소나노구조체(carbon nanostructures, CNS)는 나노튜브, 나노헤어, 풀러렌, 나노콘, 나노호른, 나노로드 등 다양한 형상을 갖는 나노크기의 탄소나노구조체를 지칭하며, 여러 가지 우수한 성질을 보유하기 때문에 다양한 기술분야에서 활용도가 높다.
그 중에서도 특히 탄소나노튜브(carbon nanotube, CNT)는 6각형으로 배열된 탄소원자들이 튜브 형태를 이루고 있는 물질로, 직경이 대략 1 내지 100 nm로 이루어진다. 이와 같은 CNT는 특유의 나선성(chirality)에 따라 부도체, 전도체 또는 반도체 성질을 나타내며, 탄소 원자들이 강력한 공유결합으로 연결되어 있어 인장강도가 강철보다 대략 100 배 이상 크고, 유연성과 탄성 등이 뛰어나며, 화학적으로도 안정한 특성을 가진다.
상기 CNT의 종류에는, 한 겹으로 구성되고 직경이 약 1 nm인 단일벽 CNT (single-walled carbon nanotube, SWCNT), 두 겹으로 구성되고 직경이 약 1.4 내지 3 nm인 이중벽 CNT (double-walled carbon nanotube, DWCNT) 및 셋 이상의 복수의 겹으로 구성되고 직경이 약 5 내지 100 nm인 다중벽 CNT (multi-walled carbon nanotube, MWCNT)가 있다.
화학적 안정성, 우수한 유연성과 탄성 등과 같은 특징으로 인해, CNT는 다양한 분야, 예를 들어 우주항공, 연료전지, 복합재료, 생명공학, 의약, 전기전자, 반도체 등에서 그 제품화 및 응용 연구가 진행되고 있다. 하지만, CNT의 1차 구조는 그 직경이나 길이를 산업적인 응용이 가능한 실제의 규격에 이르도록 직접적으로 조절하는데 한계가 있어, CNT의 뛰어난 물성에도 불구하고 산업상 응용이나 적용에 많은 제약이 따른다.
상기 CNT는 일반적으로 아크 방전법(arc discharge), 레이저 증발법(laser ablation), 화학 기상 증착법(chemical vapor deposition) 등에 의하여 제조된다. 그러나 상기 아크 방전법 및 레이저 증발법은 대량 생산이 어렵고, 과다한 아크 생산비용 또는 레이저 장비 구입비용이 문제된다. 또한 상기 화학 기상 증착법은 기상 분산 촉매를 사용하는 방법인 경우 합성속도가 매우 더디고 합성되는 CNT의 입자가 너무 작은 문제가 있으며, 담지 촉매를 사용하는 방법인 경우 반응기 내의 공간 이용 효율이 크게 떨어져 CNT의 대량 생산에 한계가 있다. 따라서, 화학 기상 증착법에 있어서 CNT의 수율을 높이기 위하여 촉매, 반응 조건 등에 대한 연구가 계속되고 있다.
한편 CNT를 고분자와 컴파운딩하여 얻어지는 복합소재의 물성을 개선하기 위해서는 높은 비표면적을 가지며, 컴파운딩시 분산 및 혼합이 잘 될 수 있는 형태를 가진 CNT가 요구된다.
따라서 본 발명이 해결하고자 하는 과제는, 높은 비표면적을 가지면서, 고분자와 컴파운딩시 분산 및 혼합이 잘 이루어질 수 있는 번들형 구조를 갖는 CNT를 높은 수율로 제공할 수 있는 방법을 제공하는 것이다.
본 발명이 해결하고자 하는 다른 과제는 상기 번들형 구조를 갖는 CNT를 제조할 수 있는 방법을 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명은,
BET 비표면적이 200 m2/g 이상이며, BET 비표면적과 라만분석법에 의한 G 밴드 피크 적분치(IG)와 D 밴드 피크 적분치(ID)의 비율(IG/ID)이 하기 관계식을 만족하며 번들형인 탄소나노튜브를 제공한다.
y = ax + b
상기 식에서, y 는 BET 비표면적, x는 IG/ID 값이며, a는 -400 내지 -500 의 상수이고, b는 600 내지 800의 상수이다.
일 구현예에 따르면 상기 탄소나노튜브는 하기 관계식도 만족한다.
200 ≤ y ≤ -427.2 x + 800
상기 식에서, y 는 BET 비표면적(m2/g), x는 IG/ID 값임.
본 발명의 바람직한 실시예에 따르면, 상기 탄소나노튜브의 G 밴드 피크 적분치(IG)와 D 밴드 피크 적분치(ID)의 비율(IG/ID)이 0.7 내지 1.3 일 수 있다.
상기 탄소나노튜브는, BET 비표면적 1 m2/g 이하의 지지체 전구체를 100℃ 내지 450℃의 제1 소성온도에서 제1 소성하여 지지체를 형성하고, 상기 지지체에 그래파이트화 금속촉매를 담지시킨 후, 이를 100℃ 내지 500℃의 제2 소성온도에서 제2 소성하여 얻은 담지 촉매를 이용하여 제조될 수 있다.
일 구현예에 따르면, 상기 담지 촉매는 30 내지 150㎛의 입자 크기와 40 내지 80㎛의 수평균입경(Mn)을 갖도록 선별된 것일 수 있다.
본 발명에 따르면, 상기 지지체가 알루미늄계인 것이 바람직하고, 특히 상기 지지체 전구체가 수산화알루미늄[Al(OH)3]인 것이 바람직하다.
본 발명의 바람직한 실시예에 따르면, 상기 제2 소성 온도가 100℃ 내지 300℃ 이다.
본 발명에 있어서, 상기 그래파이트화 금속촉매가 니켈(Ni), 코발트(Co), 철(Fe), 백금(Pt), 금(Au), 알루미늄(Al), 크롬(Cr), 구리(Cu), 마그네슘(Mg), 망간(Mn), 몰리브덴(Mo), 로듐(Rh), 실리콘(Si), 탄탈륨(Ta), 티타늄(Ti), 텅스텐(W), 우라늄(U), 바나듐(V) 및 지르코늄(Zr)으로 이루어진 군으로부터 선택된 하나 이상의 금속 또는 합금일 수 있다.
본 발명에 있어서, 상기 그래파이트화 금속촉매가 주촉매-조촉매를 포함하는 다원계 금속촉매일 수 있다.
본 발명에 있어서, 상기 주촉매는 Co 및 Fe로부터 선택되는 하나 이상이고, 상기 조촉매는 Mo 및 V 으로부터 선택되는 하나 이상일 수 있다.
본 발명의 바람직한 실시예에 따르면, 상기 그래파이트화 금속촉매가 Co/Mo, Co/V, Fe/Mo 및 Fe/V 중에서 선택되는 2원계 금속촉매일 수 있다.
상기 그래파이트화 금속촉매는 상기 주촉매 10몰에 대하여 조촉매의 함량이 0.5몰 내지 5몰일 수 있다.
또한 상기 담지촉매 100중량부를 기준으로 상기 그래파이트화 촉매가 5 내지 40 중량부 담지된 것일 수 있다.
본 발명은 또한, BET 비표면적 1 m2/g 이하의 지지체 전구체를 100℃ 내지 450℃의 제1 소성온도에서 제1 소성하여 지지체를 형성하고, 상기 지지체에 그래파이트화 금속촉매를 담지시킨 후, 이를 100℃ 내지 500℃의 제2 소성온도에서 제2 소성하여 얻은 담지 촉매를 기상 탄소공급원과 접촉 시켜 탄소나노튜브(CNT)를 형성하는 단계를 포함하는 탄소나노튜브 제조방법을 제공한다.
본 발명에 있어서, 상기 제2 소성 온도가 낮아질수록 탄소나노튜브의 비표면적이 증가할 수 있다.
상기 기상 탄소공급원이 일산화탄소, 메탄, 에탄, 에틸렌, 에탄올, 아세틸렌, 프로판, 프로필렌, 부탄, 부타디엔, 펜탄, 펜텐, 사이클로펜타디엔, 헥산, 사이클로헥산, 벤젠 및 톨루엔으로 이루어진 군으로부터 선택된 하나 이상일 수 있다.
상기 반응 온도가 600℃ 내지 750℃일 수 있다.
본 발명은 또한 상기 번들형 탄소나노튜브를 포함하는 복합소재를 제공한다.
본 발명에 따르면 비표면적이 크고, 분산 및 혼합이 잘 될 수 있는 형태를 가진 탄소나노튜브(CNT)가 얻어질 수 있으므로, 상기 CNT를 포함하는 복합소재의 물성을 개선하는 것이 가능해진다. 그 결과 본 발명에 따른 CNT는 에너지 소재, 기능성 복합재, 의약, 전지, 반도체, 표시소자 등 다양한 분야에 유용하게 사용할 수 있다.
도 1은 본 발명의 실시예에 따라 제조된 탄소나노튜브 응집체의 BET 비표면적 및 IG/ID 값의 관계를 나타내는 그래프이다.
도 2는 실시예 3에서 얻어진 번들형 CNT의 SEM 사진을 나타낸다.
도 3은 실시예 12에서 얻어진 번들형 CNT의 SEM 사진을 나타낸다.
도 4는 비교예 1에서 얻어진 비번들형 CNT의 SEM 사진을 나타낸다.
도 5는 비교예 2에서 얻어진 비번들형 CNT의 SEM 사진을 나타낸다.
이하 본 발명을 보다 상세히 설명한다.
본 발명은 지지체의 전처리 단계, 담지 촉매의 형성 단계 및 CNT의 형성 단계를 포함하는 공정들을 최적화함으로써 결과적으로 얻어지는 CNT의 비표면적과 형태를 번들형으로 적절히 제어할 수 있는 제조방법 및 이 제조방법에 의해 얻어지는 CNT에 관한 것이다.
본 발명에서 사용하는 용어 '번들형 (bundle type)'이란 달리 언급되지 않는 한, 복수개의 CNT가 나란하게 배열 또는 뒤엉켜있는, 다발(bundle) 혹은 로프(rope) 형태의 2차 형상을 지칭한다. '비번들형(non-bundle 또는 entangled type)'이란 다발 혹은 로프 형태와 같은 일정한 형상이 없는 형태를 의미한다.
라만 분석법은 CNT의 구조를 분석하는 방법으로서, CNT의 표면 상태 분석에 유용한 방법이다. CNT의 라만 스펙트럼 중 파수 1580cm-1 부근의 영역에 존재하는 피크를 G밴드라고 하며, 이는 CNT의 SP2 결합을 나타내는 피크로서, 구조결함이 없는 탄소 결정을 나타내는 것이다. 한편, 라만 스펙트럼 중 파수 1360cm-1 부근의 영역에 존재하는 피크를 D밴드라고 하며, 이는 CNT의 SP3 결합을 나타내는 피크로서, 구조결합을 함유하는 탄소를 나타내는 것이다. 상기 G밴드 및 D밴드의 피크 적분치를 각각 IG 및 ID라고 한다.
본 발명의 CNT에 대한 라만 스펙트럼의 G 밴드는 파수 1580 ± 50 cm-1 영역에 존재하는 피크일 수 있고, D 밴드는 파수 1360 ± 50 cm-1 영역에 존재하는 피크일 수 있다. 상기 G 밴드 및 D 밴드에 대한 파수 범위는 라만 분석법에 사용한 레이저 광원에 따라 시프트 될 수 있는 범위에 해당하는 것이다.
본 발명에서 사용하는 라만값은 특별히 제한되는 것은 아니지만, DXR Raman Microscope(Thermo Electron Scientific Instruments LLC)을 이용하여 레이저 파장 532nm 에서 측정하는 것이 바람직하다.
본 발명에 따른 CNT는 라만 스펙트럼의 G 밴드 피크 적분치(IG)와 D 밴드 피크 적분치(ID)의 비율이 0.7 내지 1.3 인데, 통상 G 밴드 피크 적분치와 D 밴드 피크 적분치의 비율이 5 미만인 경우에는 비정질 카본이 다량 함유되어 있거나 CNT의 결정성이 불량함을 의미하는 것이나, 본 발명에서는 BET 비표면적이 증가하고 번들형 구조의 2차 형상을 가짐에 따라 CNT의 결정성이 양호하면서도 상기와 같은 범위를 갖게 된다.
이와 같은 특징에 따라 본 발명에 따른 번들형 CNT는 BET 비표면적이 200 m2/g 이상이며, BET 비표면적과 라만분석법에 의한 G 밴드 피크 적분치(IG)와 D 밴드 피크 적분치(ID)의 비율(IG/ID)이 일정 비율로 반비례하는 관계를 가지며, 구체적으로 하기 관계식을 만족하는 것을 특징으로 한다.
y = ax + b
상기 식에서, y 는 BET 비표면적, x는 IG/ID 값이며, a는 -400 내지 -500 의 상수이고, b는 600 내지 800의 상수이다.
여기서, a는 -400 내지 -450 또는 -450 내지 -500의 상수일 수 있고, b는 600 내지 700, 또는 650내지 750, 또는 700 내지 800의 상수일 수 있다.
일 구현예에 따르면 상기 탄소나노튜브는 하기 관계식도 만족한다.
200 ≤ y ≤ -427.2 x + 800
본 발명에서 사용하는 비표면적은 BET법에 의해 측정한 것으로서, 구체적으로는 BEL Japan사 BELSORP-mini II를 이용하여 액체 질소 온도 하(77K)에 있어서의 질소가스 흡착량을 구하여 산출한 것이 바람직하다.
본 발명에 따른 CNT는 BET 비표면적이 200 내지 500 m2/g, 또는 200 내지 300 m2/g, 또는 300 내지 500 m2/g, 또는 300 내지 400 m2/g, 또는 200 내지 400 m2/g 일 수 있다.
본 발명에 따른 CNT는 라만 분석법으로 분석시 IG/ID의 값이 약 0.7 내지 약 1.3, 또는 0.7 내지 1.1, 또는 0.7 내지 1.0, 또는 약 0.7 내지 0.9, 또는 0.8 내지 1.0, 또는 0.9 내지 1.1 의 범위를 가질 수 있다.
구체적으로, 도 1은 본 발명의 실시예에 따라 제조된 CNT의 비표면적과 IG/ID 비율의 관계를 그래프로 나타낸 것이다. 종래의 CNT는 BET 비표면적이 증가하면 IG/ID 비율도 증가하는 경향을 나타내지만, 본 발명에 따른 CNT는 BET 비표면적이 증가하면 IG/ID 비율이 일정하게 감소하는 경향을 나타냄을 확인할 수 있다.
BET 비표면적이 커질수록 CNT 직경이 작은 것을 의미하고 따라서 CNT의 곡률(curvature)이 커지기 때문에 결정성이나 배열 정도를 나타내는 IG/ID 비율이 커질 것으로 예상되나 본 발명에 따른 CNT는 이와 반대되는 특이한 경향을 나타낸다.
바람직한 구현예에 따르면, BET 비표면적과 라만분석법에 의한 G 밴드 피크 적분치(IG)와 D 밴드 피크 적분치(ID)의 비율(IG/ID)이 하기 관계식을 만족하는 것일 수 있다.
-427.2 x + 600 ≤ y ≤ -427.2 x + 800
일 구현예에 따른 CNT는 하기 관계식을 만족하는 것일 수 있다.
-427.2 x + 600 ≤ y ≤ -427.2 x + 700
다른 구현예에 따른 CNT는 하기 관계식을 만족하는 것일 수 있다.
-427.2 x + 650 ≤ y ≤ -427.2 x + 750
또 다른 구현예에 따른 CNT는 하기 관계식을 만족하는 것일 수 있다.
-427.2 x + 700 ≤ y ≤ -427.2 x + 800
본 발명의 일구현예에 따르면, 지지체 전구체를 제 1 소성온도, 예를 들어 100℃ 내지 450℃의 온도에서 제1 소성하여 얻어진 지지체에 그래파이트화 촉매를 담지시킨 후, 이를 100℃ 내지 500℃의 온도에서 제2 소성하여 제조된 담지 촉매를 제조한다.
상기 담지 촉매를 기상 탄소공급원과 접촉시켜 바람직하게는 BET 비표면적이 200 m2/g 이상인 번들형 탄소나노튜브를 제조할 수 있다.
상기 제조방법에 사용되는 지지체 전구체는 그래파이트 촉매를 담지하는 역할을 수행하며, 그 종류에 따라 CNT의 형상을 제어할 수 있다.
이와 같은 지지체 전구체로서는 예를 들어 알루미늄계 지지체 전구체, 바람직하게는 수산화알루미늄 (aluminum-tri-hydroxide, ATH)을 사용할 수 있다. 이와 같은 지지체 전구체는 50℃ 내지 150℃에서 1 시간 내지 24 시간 동안 건조시켜 사용할 수 있다.
상기 지지체 전구체를 제1 소성하여 지지체를 형성하게 되는 바, 제1 소성 온도는 수산화알루미늄이 알루미나로 전환되는 것으로 알려진 700℃ 보다 훨씬 낮은 500℃ 미만인 것이 바람직하다. 즉, 제1 소성은 약 100℃ 내지 약 450℃, 또는 약 120℃ 내지 약 400℃, 또는 200 내지 450℃, 또는 300 내지 450℃, 또는 200 내지 400℃ 의 온도에서 수행하는 열처리 공정을 포함할 수 있다.
상기와 같은 공정에 의해 형성되는 알루미늄계 지지체는 Al(OH)3에서 전환된 AlO(OH)를 30 중량% 이상 포함하고 Al2O3는 포함하지 않는 것이 바람직하다.
또한 상기 알루미늄(Al)계 지지체에 ZrO2, MgO 및 SiO2로 이루어지는 그룹에서 선택되는 하나 이상을 추가로 포함할 수 있다. 상기 알루미늄(Al)계 지지체는 구형 또는 포테이토형의 형상을 가지고, 단위 질량 또는 부피당 비교적 높은 표면적을 갖도록 다공성 구조, 분자체 구조, 벌집 구조, 또 다른 적합한 구조를 가질 수 있다.
일 구현예에 따르면, 상기 지지체 전구체는 일차 입경 약 20 내지 약 200 ㎛, 기공율 약 0.1 내지 약 1.0 cm3/g, 비표면적 약 1 m2/g 미만인 것일 수 있다.
상기 제1 소성 공정은 약 0.5 시간 내지 약 10 시간, 바람직하게는 약 1시간 내지 5시간 동안 수행할 수 있으나, 이에 한정되는 것은 아니다.
상기 제조방법에 사용되는 그래파이트화 촉매를 기상 탄소공급원과 접촉시키면 CNT를 형성할 수 있다. 이와 같은 CNT의 성장 과정을 보다 구체적으로 설명하면, 기상 탄소공급원인 탄소계 물질을 상기 그래파이트화 촉매, 예를 들어 그래파이트화 금속 촉매와 접촉시킨 후 이를 열처리하면 상기 탄소계 물질이 금속 촉매 표면에서 열분해되며, 분해된 탄소 함유 가스로부터 생성되는 탄소원자가 상기 그래파이트화 금속 촉매 내부로 침투하여 고용된 후, 그 침투 함량이 상기 그래파이트화 금속 촉매의 고유 특성인 고용 한계(solubility limit)를 초과하는 경우, CNT로의 핵생성이 일어나 CNT로 성장하게 된다.
상기 그래파이트화 금속 촉매는 상기 탄소계 물질에 존재하는 탄소성분들이 서로 결합하여 6각형의 고리 구조를 형성하도록 도와주는 역할을 수행하는 바, 그 예로서는 그래파이트를 합성하거나, 탄화반응을 유도하거나, 또는 CNT를 제조하는데 사용되는 촉매를 사용할 수 있다. 보다 구체적으로는, 니켈(Ni), 코발트(Co), 철(Fe), 백금(Pt), 금(Au), 알루미늄(Al), 크롬(Cr), 구리(Cu), 마그네슘(Mg), 망간(Mn), 몰리브덴(Mo), 로듐(Rh), 실리콘(Si), 탄탈륨(Ta), 티타늄(Ti), 텅스텐(W), 우라늄(U), 바나듐(V) 및 지르코늄(Zr)으로 이루어진 군으로부터 선택된 하나 이상의 금속 또는 합금을 사용할 수 있다.
상기 그래파이트화 촉매는 2원계 또는 3원계 이상의 다원계 금속을 사용할 수 있다. 이와 같은 2원계 또는 다원계 그래파이트화 촉매는 주촉매 및 조촉매로 구성될 수 있으며, 상기 주촉매로서는 Co, Fe, Ni 등을 사용할 수 있고, 상기 조촉매로서는 Mo, V 등을 사용할 수 있다. 이와 같은 2원계 또는 다원계 그래파이트화 촉매는 Co/Mo, Co/V, Fe/Mo, Fe/V, Fe/Co, Fe/Co/V, Fe/Co/Mo, Co/Mo/V, Fe/Mo/V, Fe/Co/Mo/V 등을 들 수 있다. 이 중에서도 Co와 V 을 포함하는 것이 더욱 바람직하다.
주촉매 및 조촉매를 포함하는 상기 2원계 그래파이트화 촉매에서 이들의 성분비로서는 예를 들어 주촉매 10몰을 기준으로 조촉매 0.1몰 내지 10몰, 또는 0.5 몰 내지 5몰을 사용할 수 있다.
상기 그래파이트화 촉매는 금속염, 금속산화물, 또는 금속화합물 등의 다양한 전구체 형태로 상기 지지체에 담지된다. 예를 들어, 상기 그래파이트화 촉매의 전구체로서는 물에 용해될 수 있는 Fe염, Fe산화물, Fe화합물, Ni염, Ni산화물, Ni화합물, Co염, Co산화물, Co화합물, Mo산화물, Mo화합물, Mo염, V산화물, V화합물, V염 등을 예시할 수 있다. 또 다른 일례로 Fe(NO3)2·6H2O, Fe(NO3)2·9H2O, Fe(NO3)3, Fe(OAc)2, Ni(NO3)2·6H2O, Co(NO3)2·6H2O, Co2(CO)8, [Co2(CO)6(t-BuC=CH)], Co(OAc)2, (NH4)6Mo7O24·4H2O, Mo(CO)6, (NH4)MoS4, NH4VO3 등을 사용할 수 있다.
상기 그래파이트화 촉매의 전구체가 용액의 형태로 상기 지지체에 담지된 후, 제2 소성 공정을 거치게 되면, 주로 금속 산화물의 형태로 담지되어 담지 촉매를 형성할 수 있게 된다.
보다 구체적으로, 그래파이트화 촉매의 전구체 수용액에 지지체, 예를 들어 입상의 알루미늄계 지지체를 혼합하는 단계; 및
상기 혼합물을 진공건조 후 약 100℃ 내지 약 450℃ 하에 제1 소성하여 지지체를 형성하고, 상기 지지체에 그래파이트화 금속촉매를 담지시킨 후, 이를 100℃ 내지 500℃의 제2 소성온도에서 제2 소성하여, 입상 지지체 표면 및 세공에 상기 그래파이트화 촉매 성분을 함침 코팅시킨 CNT 제조용 담지 촉매를 수득하는 단계;를 포함하는 방법에 의해 제조될 수 있다.
일 구현예에 따르면, 상기 진공 건조는 약 40 내지 약 100℃ 온도 범위의 진공 하에 약 30분 내지 약 12시간 범위 내에서 회전 증발시켜 수행될 수 있다.
일 구현예에 따르면, 상기 진공 건조 전 약 45 내지 약 80℃ 하에 회전 또는 교반에 의해 숙성시키는 단계를 포함할 수 있다. 일례로 최대 5시간, 20분 내지 5시간, 혹은 1 내지 4시간 동안 수행할 수 있다.
상기 담지 촉매를 형성하는 제2 소성 공정은 약 100℃ 내지 약 500℃의 온도에서 수행되며, 촉매 소성 온도가 낮아질수록 BET 비표면적이 높아지는 경향을 나타낸다. 상기 제2 소성 온도는 100 내지 500℃, 또는 100 내지 400℃, 또는 100 내지 300℃, 또는 100 내지 200℃, 또는 200 내지 300℃, 또는 200 내지 400℃ 일 수 있다.
상기 제조방법에서 사용되는 담지 촉매의 제2 소성 전 측정한 입경 혹은 평균입경은 약 30㎛ 내지 약 150㎛이고, 상기 입상 지지체 및 그래파이트화 촉매의 일차 입경은 약 10nm 내지 약 50nm인 구형 또는 포테이토형일 수 있다. 여기서 구형 또는 포테이토 형상이란 종횡비(aspect ratio) 1.2 이하의 구형, 타원체형과 같은 3차원 형상을 지칭한다.
일 구현예에 따라, 유동층 반응기를 이용하여 본 발명에 따른 CNT를 제조하는 경우에는 특히, 담지 촉매의 입경이 약 30㎛ 내지 약 150㎛이고, 수평균입경(Mn)이 40 내지 80㎛, 또는 50 내지 70㎛, 또는 50 내지 70㎛ 이 되도록 선별하여 사용할 수 있다. 유동층 반응기 내 반응영역에서 촉매 유동층이 촉매 응집없이 잘 유동되도록 하는 것이 중요하기 때문이다.
일 구현예에 따르면, 상기 담지 촉매는 상기 담지촉매 100 중량부를 기준으로 상기 그래파이트화 촉매를 약 5 내지 약 40 중량부의 범위로 포함할 수 있으나, 이에 한정되는 것은 아니다.
예를 들어, 상기 담지촉매가 Co계 그래파이트화 촉매를 포함하는 경우, 상기 Co의 함량은 상기 지지체 100몰을 기준으로 약 3몰 내지 약 100몰의 함량이 될 수 있다.
일 구현예에 따르면, 상기 그래파이트화 촉매는 입상 지지체, 바람직하게는 알루미늄계 지지체 표면 및 세공에 일층 혹은 다층 코팅된 구조를 가질 수 있다.
상기 담지 촉매 제조과정에 있어서, 함침법을 이용한 담지 촉매를 사용하는 것이 바람직한데, 이는 담지 촉매가 사용되는 경우 촉매 자체의 벌크 밀도(bulk density)가 공침 촉매에 비해 높고 공침 촉매와 달리 10 마이크론 이하의 미분이 적어 유동화 과정에서 발생할 수 있는 마모(attrition)에 의한 미분발생 가능성을 줄일 수 있으며, 촉매 자체의 기계적 강도도 우수하여 반응기 운전을 안정하게 할 수 있는 효과를 갖기 때문이다.
상술한 바와 같은 담지 촉매를 이용하여 탄소공급원의 분해를 통한 화학적 기상 합성법으로 CNT를 성장시켜 CNT를 제조할 수 있다.
상기 화학적 기상 합성법에 따른 CNT 제조방법에 있어서, 그래파이트화 촉매를 반응기 내에 장입시킨 후, 상압 및 고온의 조건하에서 기상 탄소공급원을 공급하여 CNT를 제조할 수 있다. CNT의 성장은 상술한 바와 같이 고온의 열이 가해져 열분해된 탄화수소가 그래파이트화 촉매 내로 침투, 포화되는 과정을 거치고, 포화된 그래파이트화 촉매로부터 탄소들이 석출되며 6각형의 고리 구조를 형성하며 수행된다.
본 발명에 있어서, 상기 화학적 기상 합성법은 상기 담지 촉매를 수평 고정층 반응기 또는 유동층 반응기에 투입하고 약 500℃ 내지 약 900℃, 또는 약 500℃ 내지 800℃, 또는 약 600℃ 내지 800℃, 약 600℃ 내지 약 750℃, 또는 약 650℃ 내지 약 700℃의 온도에서 탄소수 1 내지 6의 포화 또는 불포화 탄화수소에서 선택된 하나 이상의 탄소 공급원, 또는 상기 탄소공급원과 환원가스(예를 들어, 수소) 및 운반가스(예를 들어, 질소)의 혼합가스를 주입하여 실시될 수 있다. 상기 담지 촉매에 탄소공급원을 주입하여 CNT를 성장시키는 단계는 30분 내지 8시간 동안 수행될 수 있다.
일 구현예에 따라 유동층 반응기를 사용하여 본 발명에 따른 CNT를 제조하는 경우에는 유동층 반응기 하단에 가스 공급구를 구비하여 가스 유동에 의해 촉매입자가 응집되지 않도록 하거나 뭉쳐진 촉매 입자들을 개별 입자로 분리해주는 것이 바람직하다. 이때 공급가스는 탄소공급원과 환원가스 또는 운반가스를 각각 또는 이들의 혼합가스를 사용하는 것이 가능하다.
상기 제조방법 중 소성 공정이나 열처리 공정을 위한 열원으로서는 유도가열(induction heating), 복사열, 레이져, IR, 마이크로파, 플라즈마, UV, 표면 플라즈몬 가열 등을 제한 없이 사용할 수 있다.
상기 화학적 기상 합성법에 사용되는 탄소공급원은 탄소를 공급할 수 있으며, 300℃ 이상의 온도에서 기상으로 존재할 수 있는 물질이라면 특별한 제한 없이 사용할 수 있다. 이와 같은 기상 탄소계 물질로서는 탄소를 함유하는 화합물이면 가능하며, 탄소수 6개 이하의 화합물이 바람직하고, 더욱 바람직하게는 탄소수 4개 이하의 화합물이다. 그러한 예로서는 일산화탄소, 메탄, 에탄, 에틸렌, 에탄올, 아세틸렌, 프로판, 프로필렌, 부탄, 부타디엔, 펜탄, 펜텐, 사이클로펜타디엔, 헥산, 사이클로헥산, 벤젠 및 톨루엔으로 이루어진 군으로부터 선택된 하나 이상을 사용할 수 있으나 이에 한정되는 것은 아니다. 또한, 수소 및 질소의 혼합가스는 탄소공급원을 운송하며, CNT가 고온에서 연소되는 것을 방지하고, 탄소공급원의 분해를 돕는다.
이와 같은 기상 탄소공급원, 수소 및 질소는 다양한 부피비로 사용될 수 있으며, 예를 들어 질소 : 기상 탄소공급원 : 수소의 부피비는 1 : 0.1 ~ 10 : 0 ~ 10, 또는 1 : 0.5 ~ 1.5 : 0.5 ~ 1.5의 범위에서 사용할 수 있다. 이때 반응가스의 유량은 약 100 내지 500 sccm의 범위를 사용할 수 있다.
상기와 같이 고온의 열처리 공정에 의해 CNT를 성장시킨 후, 냉각 공정을 거치게 되는 바, 이와 같은 냉각 공정에 의해 상기 CNT는 보다 규칙적으로 배열될 수 있다. 이와 같은 냉각 공정은 자연 냉각(열원의 제거), 또는 분당 약 5℃ 내지 약 30℃의 속도로 냉각할 수 있다.
상기와 같은 제조공정을 거치게 되면 BET 비표면적이 약 200 m2/g 이상, 바람직하게는 약 200 m2/g 내지 약 500 m2/g인 번들형 CNT가 얻어질 수 있게 된다. 상기 비표면적은 통상의 BET법을 통해 측정할 수 있다.
특히 상기 제조방법은 높은 수율로 CNT를 수득할 수 있게 되는 바, 예를 들어 약 5배 내지 50배, 또는 약 10배 내지 40배의 수율을 달성할 수 있게 된다. 상기 수율은 합성된 탄소나노튜브를 상온에서 수득하여 그 함량을 전자저울을 이용하여 측정할 수 있다. 이때 반응 수율은 사용한 담지 촉매의 중량과 반응 후 중량 증가량을 기준으로 하기 식에 의거하여 계산할 수 있다.
CNT 수율(배)=(반응 후 총 중량g - 사용한 담지 촉매의 중량g)/사용한 담지 촉매 중량g
본 발명에 있어서, 상기 CNT는 편평률이 약 0.9 내지 약 1인 번들형일 수 있으며, 또한 BET 비표면적이 증가함에 따라 CNT 각 가닥 직경은 약 2nm 내지 약 20nm, 바람직하게는 약 3nm 내지 약 8nm 저직경을 가질 수 있다.
상기 편평률은 하기 식으로 정의될 수 있다.
편평률 = CNT의 중심을 관통하는 최단 직경 / CNT의 중심을 관통하는 최대 직경
상술한 바와 같은 CNT는 BET 비표면적이 크고, 즉 저직경이며, 번들 형태를 가짐에 따라 다른 소재, 예를 들어 고분자에 분산 및 혼합이 잘 되므로 복합소재의 형성시 물성을 개선할 수 있게 된다.
따라서 다양한 LCD, OLED, PDP, e-paper와 같은 표시소자; 태양전지, 연료전지, 리튬전지, 슈퍼 커패시터 등의 전극 구조체; 기능성 복합소재; 에너지 소재; 의약; FET 등의 반도체 등에 유용하게 사용할 수 있다.
이하, 본 발명의 이해를 돕기 위하여 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 본 기술분야에서 통상의 지식을 가진 자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
실시예 1
A. 그래파이트화 금속촉매 전구체 수용액 제조
그래파이트화 촉매로서 Co-V 금속촉매를 준비하였다.
V의 전구체 물질로서 NH4VO3를 20ml 물에 용해시킨 플라스크 A에 시트르산을 투입하였다. Co:V의 몰비가 10:1이 되도록 Co의 전구체 물질로서 Co(NO3)2·6H2O 를 투입하였다. 제조된 금속 수용액은 침전 없이 맑은 용액 상태로 관찰되었다.
B. 지지체 준비
알루미늄계 지지체로서 수산화알루미늄(Aluminum-tri-hydroxide, Al(OH)3)을 400℃에서 4시간 소성하여 얻어진 ATH400 20g을 플라스크 B에 준비하였다. XRD 분석에 의하면 소성 후 지지체는 AlO(OH)를 40 중량% 이상 함유하는 것으로 나타났다.
C. 담지촉매 제조
ATH400 20g을 mol 기준 100으로 환산하면, Co 30몰 및 V 3몰이 되도록 플라스크 B에 상기 플라스크 A 용액 40g을 첨가하였다. 그래파이트화 촉매 금속 전구체를 충분히 ATH400에 담지시킨 후, 60℃ 항온조에서 5분간 교반하여 숙성시켰다. 이를 상기 온도를 유지하면서 80 rpm으로 회전시키며, 진공 건조하에 60 분간 건조시켰다. 건조된 촉매를 120℃에서 4시간 동안 소성시켜 균질한 담지 촉매를 제조하였다.
D. CNT 합성
상기에서 제조된 CNT 합성용 담지 촉매를 이용하여 실험실 규모의 고정층 반응장치에서 CNT 합성을 시험하였다. 구체적으로 상기 D에서 제조된 CNT 합성용 촉매를 직경 55 mm의 내경을 갖는 석영관의 중간부에 장착한 후, 질소 분위기에서 670℃까지 승온한 다음 유지시키고, 질소와 수소, 그리고 에틸렌 가스의 부피 혼합비를 동일 비율로 총 분당 180ml 흘리면서 1시간 동안 합성하여 소정량의 CNT 집합체를 합성하였다.
얻어진 CNT의 물성은 다음과 같았다:
수율 = 9.59배
BET 비표면적 = 381m2/g
IG/ID = 0.8188±0.0284
BET 비표면적은 BEL Japan사 BELSORP-mini II를 이용하여 액체 질소 온도 하(77K)에 있어서의 질소가스 흡착량을 구하여 산출하였다.
IG/ID 는 DXR Raman Microscope(Thermo Electron Scientific Instruments LLC)을 이용하여 레이저 파장 532nm 에서 측정하였다.
실시예 2
수산화알루미늄을 400℃가 아닌 300℃에서 소성한 것(ATH300)을 제외하고는 상기 실시예 1과 동일한 공정을 수행하여 번들형 CNT를 제조하였다.
얻어진 CNT의 물성은 다음과 같았다:
수율 = 9.68배
BET 비표면적 = 412m2/g
IG/ID = 0.7738±0.0407
실시예 3
반응기 온도를 670℃에서 690℃로 변경한 것을 제외하고는 상기 실시예 2와 동일한 공정을 수행하여 번들형 CNT를 제조하였다.
얻어진 CNT의 물성은 다음과 같았다:
수율 = 9.25배
BET 비표면적 = 394m2/g
IG/ID = 0.8690±0.0604
실시예 4
반응기 온도를 670℃에서 710℃로 변경한 것을 제외하고는 상기 실시예 1과 동일한 공정을 수행하여 번들형 CNT를 제조하였다.
얻어진 CNT의 물성은 다음과 같았다:
수율 = 15.33배
BET 비표면적 = 311m2/g
IG/ID = 0.9202±0.0590
실시예 5
반응기 온도를 670℃에서 690℃로 변경한 것을 제외하고는 상기 실시예 1과 동일한 공정을 수행하여 번들형 CNT를 제조하였다.
얻어진 CNT의 물성은 다음과 같았다:
수율 = 14.77배
BET 비표면적 = 355m2/g
IG/ID = 0.8496±0.0593
실시예 6
Co : V의 몰비를 10:1에서 20:1로 변경한 것을 제외하고는 상기 실시예 5와 동일한 공정을 수행하여 번들형 CNT를 제조하였다.
얻어진 CNT의 물성은 다음과 같았다:
수율 = 8.50배
BET 비표면적 = 311m2/g
IG/ID = 0.8103±0.0395
실시예 7
Co:V의 몰비를 10:1에서 5:1로 변경한 것을 제외하고는 상기 실시예 5와 동일한 공정을 수행하여 번들형 CNT를 제조하였다.
얻어진 CNT의 물성은 다음과 같았다:
수율 = 14.99배
BET 비표면적 = 300m2/g
IG/ID = 0.8332±0.0313
실시예 8
Co:V 를 5:1의 몰비로 사용한 것 대신에 Fe:Mo를 5:1의 몰비로 사용한 것을 제외하고는 상기 실시예 7과 동일한 공정을 수행하여 번들형 CNT를 제조하였다.
얻어진 CNT의 물성은 다음과 같았다:
수율 = 1.08배
BET 비표면적 = 218m2/g
IG/ID = 1.1443±0.0909
실시예 9
Co:V 를 5:1의 몰비로 사용한 것 대신에 Co:Mo를 5:1의 몰비로 사용한 것을 제외하고는 상기 실시예 7과 동일한 공정을 수행하여 번들형 CNT를 제조하였다.
얻어진 CNT의 물성은 다음과 같았다:
수율 = 5.48배
BET 비표면적 = 277m2/g
IG/ID = 0.8412±0.0436
실시예 10
담지촉매의 소성 온도를 120℃에서 300℃로 변경한 것을 제외하고는 상기 실시예 9와 동일한 공정을 수행하여 수행하여 번들형 CNT를 제조하였다.
얻어진 CNT의 물성은 다음과 같았다:
수율 = 25.88배
BET 비표면적 = 232m2/g
IG/ID = 1.0504±0.0383
실시예 11
담지촉매의 소성 온도를 120℃에서 500℃로 변경한 것을 제외하고는 상기 실시예 9와 동일한 공정을 수행하여 수행하여 번들형 CNT를 제조하였다.
얻어진 CNT의 물성은 다음과 같았다:
수율 = 21.71배
BET 비표면적 = 225m2/g
IG/ID = 1.1044±0.0227
실시예 12
질소를 분당 0ml, 에틸렌 가스를 분당 60ml, 수소를 분당 120ml의 양으로 흘린 것을 제외하면 상기 실시예 9와 동일한 공정을 수행하여 번들형 CNT를 제조하였다.
얻어진 CNT의 물성은 다음과 같았다:
수율 = 9.12배
BET 비표면적 = 269m2/g
IG/ID = 0.8726±0.0248
비교예 1
지지체로서 상용 보에마이트를 지지체 소성공정을 수행하지 않고 그대로 사용한 것을 제외하고는 상기 실시예 3과 동일한 공정을 수행하여 CNT를 제조하였다.
얻어진 CNT의 물성은 다음과 같았다:
수율 = 8.36배
BET 비표면적 = 292m2/g
IG/ID = 0.9948±0.0302
비교예 2
지지체로서 상용 γ-알루미나를 사용하고, 지지체 소성공정을 수행하지 않은 것을 제외하고는 상기 실시예 3과 동일한 공정을 수행하여 CNT를 제조하였다.
얻어진 CNT의 물성은 다음과 같았다:
수율 = 8.25배
BET 비표면적 = 318m2/g
IG/ID = 0.9052±0.0136
비교예 3
담지촉매의 소성 온도를 120℃에서 700℃로 변경한 것을 제외하고는 상기 실시예 9와 동일한 공정을 수행하여 수행하여 CNT를 제조하였다.
얻어진 CNT의 물성은 다음과 같았다:
수율 = 26.26배
BET 비표면적 = 188m2/g
IG/ID = 1.2187±0.0177
비교예 4 내지 6
상업적으로 구입가능한 CNT를 비교예 4 내지 6으로 하였다.
비교예 4: 샘플1(Chengdu Organic Chemicals): BET=235, IG/ID ratio=6.91
비교예 5: 샘플2(MI): BET=30-45, IG/ID ratio=0.96
비교예 6: 샘플3(US Research Nanomaterials): BET=346, IG/ID ratio=1.7155
상기 실시예 1 내지 12, 비교예 1 및 2에서 사용된 반응 조건을 요약하면 하기 표 1과 같다.
표 1
구분 지지체 지지체소성온도 촉매금속 촉매소성온도 반응기온도 혼합가스 부피비(N2:C2H4:H2)
실시예 1 ATH400 400℃ Co:V=10:1 120℃ 670℃ 60:60:60sccm
실시예 2 ATH300 300℃ Co:V=10:1 120℃ 670℃ 60:60:60sccm
실시예 3 ATH300 300℃ Co:V=10:1 120℃ 690℃ 60:60:60sccm
실시예 4 ATH400 400℃ Co:V=10:1 120℃ 710℃ 60:60:60sccm
실시예 5 ATH400 400℃ Co:V=10:1 120℃ 690℃ 60:60:60sccm
실시예 6 ATH400 400℃ Co:V=20:1 120℃ 690℃ 60:60:60sccm
실시예 7 ATH400 400℃ Co:V=5:1 120℃ 690℃ 60:60:60sccm
실시예 8 ATH400 400℃ Fe:Mo=5:1 120℃ 690℃ 60:60:60sccm
실시예 9 ATH400 400℃ Co:Mo=5:1 120℃ 690℃ 60:60:60sccm
실시예 10 ATH400 400℃ Co:Mo=5:1 300℃ 690℃ 60:60:60sccm
실시예 11 ATH400 400℃ Co:Mo=5:1 500℃ 690℃ 60:60:60sccm
실시예 12 ATH400 400℃ Co:V=5:1 120℃ 690℃ 0:60:120sccm
비교예 1 상용 보에마이트 - Co:V=10:1 120℃ 690℃ 60:60:60sccm
비교예 2 상용 감마알루미나 - Co:V=10:1 120℃ 690℃ 60:60:60sccm
비교예 3 ATH400 400℃ Co:Mo=5:1 700℃ 690℃ 60:60:60sccm
상기 실시예 1 내지 12 및 비교예 1 내지 5 에서 얻어진 CNT의 물성을 요약 정리하면 하기 표 2와 같다.
표 2
구분 수율 (배) CNT 형상 yBET 표면적 (m2/g) xIG/ID ratio -427.2 * x
실시예 1 9.59 번들형 381 0.8188 -349.79
실시예 2 9.68 번들형 412 0.7738 -330.57
실시예 3 9.25 번들형 394 0.8690 -371.24
실시예 4 15.33 번들형 311 0.9202 -393.11
실시예 5 14.77 번들형 355 0.8496 -362.95
실시예 6 8.50 번들형 311 0.8103 -346.16
실시예 7 14.99 번들형 300 0.8332 -355.94
실시예 8 1.08 번들형 218 1.1443 -488.85
실시예 9 5.48 번들형 277 0.8412 -359.36
실시예 10 25.88 번들형 232 1.0504 -448.73
실시예 11 21.71 번들형 225 1.1044 -471.80
실시예 12 9.12 번들형 269 0.8726 -372.77
비교예 1 8.36 비번들형 292 0.9948 -424.98
비교예 2 8.25 비번들형 318 0.9052 -386.70
비교예 3 26.26 번들형 188 1.2187 -520.63
비교예 4 - 비번들형 235 6.91 -2951.95
비교예 5 - 비번들형 30-45 0.96 -410.11
비교예 6 - 비번들형 346 1.7155 -732.86
도 1은 BET 비표면적(y)과 IG/ID 비율(x)의 관계를 그래프로 나타낸 것이다. 도 1로부터 알 수 있는 바와 같이 실시예 1 내지 12의 CNT는 x와 y는 하기 관계식을 만족한다.
-427.2 x + 600 ≤ y ≤ -427.2 x + 800
보다 구체적으로, 실시예 1, 2, 4, 5 및 8은 하기 관계식을 만족한다.
-427.2 x + 700 ≤ y ≤ -427.2 x + 750
실시예 3은 하기 관계식을 만족한다.
-427.2 x + 750 ≤ y ≤ -427.2 x + 800
실시예 6, 7, 10 및 11은 하기 관계식을 만족한다.
-427.2 x + 650 ≤ y ≤ -427.2 x + 700
실시예 9 및 12는 하기 관계식을 만족한다.
-427.2 x + 600 ≤ y ≤ -427.2 x + 650
반면, 비교예 1 내지 6 중에는 비표면적이 200 m2/g 이상이면서 번들형이고 상기 관계식을 만족하는 것은 하나도 없다.
비교 평가 1 - 지지체 소성 온도(제 1 소성 온도)
상기 표 2에 나타낸 바와 같이, 수산화알루미늄 지지체 소성 온도가 각각 300℃ 및 400℃ 인 실시예 3 및 실시예 5는 다른 공정 조건이 동일함에도 상이한 수율 및 BET 표면적을 나타냄을 고려할 때, 지지체의 소성 온도가 결과물인 CNT의 수율 및 물성에 영향을 미침을 알 수 있다.
비교 평가 2 - CNT 결과물의 형상
도 2, 도 3, 도 4 및 도 5 는 각각 실시예 3, 실시예 12, 비교예 1 및 2 에서 얻어진 CNT의 SEM 사진을 나타낸다.
본 발명에 따라 수산화알루미늄 지지체 전구체를 사용한 실시예 3 및 실시예 12에서는 번들형 구조의 CNT가 얻어지나, 상용 보에마이트 및 감마알루미나를 지지체로 사용한 비교예 1 및 2 에서는 비번들형의 엉킨 구조를 갖는 CNT가 얻어짐을 확인할 수 있다.
비교 평가 3 - 촉매 소성 온도(제 2 소성 온도)
실시예 10, 실시예 11, 실시예 12 및 비교예 3은 촉매 소성이 각각 120℃, 300℃, 500℃ 및 700℃에서 수행되었으며, 상기 표 2에 나타낸 바와 같이 상기 촉매 소성 온도가 증가함에 따라 BET 비표면적이 감소하는 것을 알 수 있다.
비교 평가 4 - 촉매 종류
실시예 7, 실시예 9 및 10은 각각 Co/V, Fe/Mo 및 Co/Mo의 2원계 촉매를 사용하였으며, Co계 촉매인 실시예 7 및 실시예 10 이 BET 표면적이 높고 수율이 우수함을 알 수 있으며, 특히 CoV 촉매를 사용하는 실시예 7 에서 가장 우수한 결과를 보임을 확인할 수 있다.
비교 평가 5 - 주촉매:조촉매의 비율
실시예 5, 실시예 6 및 실시예 7은 각각 Co:V의 비율이 10:1, 20:1 및 5:1인 경우로서, 이들 모두 높은 BET 비표면적 및 높은 수율을 나타냄을 확인할 수 있으며, Co:V의 비율이 10:1인 실시예 5에서 가장 높은 BET 비표면적을 나타냄을 확인할 수 있다.
비교 평가 6 - 촉매함량
실시예 5와 동일한 반응 조건으로 Co 함량(wt%)을 변화시켜 제조된 촉매를 사용하여 얻은 CNT의 수율, BET 표면적, IG/ID 비를 표 3에 나타내었다. Co 함량(wt%)는 (함침시킨 Co 중량/최종 촉매중량)x 100 으로 계산하였다. 표 3에서는 편의상 실시예 5를 실시예 5-1로 표기한다.
표 3
구분 Co(wt%) 수율(배) BET 표면적(m2/g) IG/ID ratio
실시예 5-1 12.5 14.77 355 0.8496
실시예 5-2 14.1 20.02 306 0.8530
실시예 5-3 10.9 8.30 338 0.8535
실시예 5-4 9.2 1.43 299 0.8675
비교 평가 7 - 반응가스 조성
실시예 7 및 실시예 12는 반응가스의 혼합비만 상이한 바, 이들이 동일한 비율로 사용된 실시예 7에서 높은 비표면적과 수율이 얻어짐을 확인할 수 있다.
비교 평가 8 - 반응 온도
실시예 1, 실시예 4 및 실시예 5는 각각 반응 온도가 670℃, 710℃, 및 690℃인 경우로서, 상기 온도가 670℃인 실시예 1에서 BET 비표면적이 가장 높음을 알 수 있다.
본 발명에 따르면 비표면적이 크고, 분산 및 혼합이 잘 될 수 있는 형태를 가진 탄소나노튜브(CNT)가 얻어질 수 있으므로, 상기 CNT를 포함하는 복합소재의 물성을 개선하는 것이 가능해진다. 그 결과 본 발명에 따른 CNT는 에너지 소재, 기능성 복합재, 의약, 전지, 반도체, 표시소자 등 다양한 분야에 유용하게 사용할 수 있다.

Claims (19)

  1. BET 비표면적이 200 m2/g 이상이며, BET 비표면적과 라만분석법에 의한 G 밴드 피크 적분치(IG)와 D 밴드 피크 적분치(ID)의 비율(IG/ID)이 하기 관계식을 만족하며 번들형인 탄소나노튜브:
    y = ax + b
    상기 식에서, y 는 BET 비표면적, x는 IG/ID 값이며, a는 -400 내지 -500 의 상수이고, b는 600 내지 800의 상수이다.
  2. 제1항에 있어서, 상기 BET 표면적(y)와 IG/ID(x)가 하기 관계식 또한 만족하는 것인 탄소나노튜브:
    200 ≤ y ≤ -427.2 x + 800
    상기 식에서, y 는 BET 비표면적(m2/g), x는 IG/ID 값임.
  3. 제1항에 있어서,
    상기 탄소나노튜브의 G 밴드 피크 적분치(IG)와 D 밴드 피크 적분치(ID)의 비율(IG/ID)이 0.7 내지 1.3 인 것인 탄소나노튜브.
  4. 제1항에 있어서,
    상기 탄소나노튜브는,
    BET 비표면적 1 m2/g 이하의 지지체 전구체를 100℃ 내지 450℃의 제1 소성온도에서 제1 소성하여 지지체를 형성하고, 상기 지지체에 그래파이트화 금속촉매를 담지시킨 후, 이를 100℃ 내지 500℃의 제2 소성온도에서 제2 소성하여 얻은 담지 촉매를 이용하여 제조된 것인, 탄소나노튜브.
  5. 제4항에 있어서,
    상기 담지 촉매는 30 내지 150㎛의 입자 크기와 40 내지 80㎛의 수평균입경을 갖도록 선별된 것인, 탄소나노튜브.
  6. 제4항에 있어서,
    상기 지지체가 알루미늄계인 것인, 탄소나노튜브.
  7. 제4항에 있어서,
    상기 지지체 전구체가 수산화알루미늄[Al(OH)3]인 것인, 탄소나노튜브.
  8. 제4항에 있어서,
    상기 제2 소성 온도가 100℃ 내지 300℃인 것인, 탄소나노튜브.
  9. 제4항에 있어서,
    상기 그래파이트화 금속촉매가 니켈(Ni), 코발트(Co), 철(Fe), 백금(Pt), 금(Au), 알루미늄(Al), 크롬(Cr), 구리(Cu), 마그네슘(Mg), 망간(Mn), 몰리브덴(Mo), 로듐(Rh), 실리콘(Si), 탄탈륨(Ta), 티타늄(Ti), 텅스텐(W), 우라늄(U), 바나듐(V) 및 지르코늄(Zr)으로 이루어진 군으로부터 선택된 하나 이상의 금속 또는 합금인 것인, 탄소나노튜브.
  10. 제4항에 있어서,
    상기 그래파이트화 금속촉매가 주촉매-조촉매를 포함하는 다원계 금속촉매인 것인, 탄소나노튜브.
  11. 제10항에 있어서,
    상기 주촉매는 Co 및 Fe로부터 선택되는 하나 이상이고, 상기 조촉매는 Mo 및 V 으로부터 선택되는 하나 이상인 것인, 탄소나노튜브.
  12. 제4항에 있어서,
    상기 그래파이트화 금속촉매가 Co/Mo, Co/V, Fe/Mo 및 Fe/V 중에서 선택되는 2원계 금속촉매인 것인, 탄소나노튜브.
  13. 제4항에 있어서,
    상기 그래파이트화 금속촉매는 상기 주촉매 10몰에 대하여 조촉매의 함량이 0.1몰 내지 10몰인 것인, 탄소나노튜브.
  14. 제4항에 있어서,
    상기 담지촉매 100중량부를 기준으로 상기 그래파이트화 촉매가 5 내지 40 중량부 담지된 것인, 탄소나노튜브.
  15. BET 비표면적 1 m2/g 이하의 지지체 전구체를 100℃ 내지 450℃의 제1 소성온도에서 제1 소성하여 지지체를 형성하고, 상기 지지체에 그래파이트화 금속촉매를 담지시킨 후, 이를 100℃ 내지 500℃의 제2 소성온도에서 제2 소성하여 얻은 담지 촉매를 기상 탄소공급원과 접촉 시켜 탄소나노튜브(CNT)를 형성하는 단계를 포함하는 탄소나노튜브 제조방법.
  16. 제15항에 있어서,
    상기 제2 소성 온도가 낮아질수록 탄소나노튜브의 비표면적이 증가하는 것인 탄소나노튜브 제조방법.
  17. 제15항에 있어서,
    상기 기상 탄소공급원이 일산화탄소, 메탄, 에탄, 에틸렌, 에탄올, 아세틸렌, 프로판, 프로필렌, 부탄, 부타디엔, 펜탄, 펜텐, 사이클로펜타디엔, 헥산, 사이클로헥산, 벤젠 및 톨루엔으로 이루어진 군으로부터 선택된 하나 이상인 것인 탄소나노튜브 제조방법.
  18. 제15항에 있어서,
    상기 반응 온도가 600℃ 내지 750℃인 것인 탄소나노튜브 제조방법.
  19. 제1항 내지 제14항 중 어느 한 항에 따른 탄소나노튜브를 포함하는 복합소재.
PCT/KR2014/009225 2013-09-30 2014-09-30 높은 비표면적을 갖는 탄소나노튜브 및 그 제조 방법 WO2015047042A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14847473.7A EP3053877B1 (en) 2013-09-30 2014-09-30 Method for manufacturing bundle-type carbon nanotubes having a large specific surface area
CN201480003597.3A CN104870363B (zh) 2013-09-30 2014-09-30 具有高比表面积的碳纳米管及其制造方法
US14/438,165 US11090635B2 (en) 2013-09-30 2014-09-30 Carbon nanotube having high specific surface area and method for manufacturing same
JP2015544018A JP6217755B2 (ja) 2013-09-30 2014-09-30 高い比表面積を有する炭素ナノチューブ及びその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0116963 2013-09-30
KR20130116963 2013-09-30
KR10-2014-0129449 2014-09-26
KR20140129449A KR101508101B1 (ko) 2013-09-30 2014-09-26 높은 비표면적을 갖는 탄소나노튜브 및 그 제조 방법

Publications (1)

Publication Number Publication Date
WO2015047042A1 true WO2015047042A1 (ko) 2015-04-02

Family

ID=52744041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009225 WO2015047042A1 (ko) 2013-09-30 2014-09-30 높은 비표면적을 갖는 탄소나노튜브 및 그 제조 방법

Country Status (1)

Country Link
WO (1) WO2015047042A1 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017052064A1 (ko) * 2015-09-25 2017-03-30 주식회사 엘지화학 탄소 나노튜브 분산액 및 이의 제조방법
WO2017095151A1 (ko) * 2015-11-30 2017-06-08 주식회사 엘지화학 이차전지용 양극 및 이를 포함하는 이차전지
WO2017099481A1 (ko) * 2015-12-10 2017-06-15 주식회사 엘지화학 이차전지용 양극 및 이를 포함하는 이차전지
CN107735890A (zh) * 2015-09-10 2018-02-23 Lg化学株式会社 用于二次电池的导电材料以及包含该导电材料的二次电池
CN112203977A (zh) * 2018-07-27 2021-01-08 Lg化学株式会社 碳纳米管、其制造方法以及包含该碳纳米管的用于一次电池的正极
US11171322B2 (en) 2015-12-10 2021-11-09 Lg Chem, Ltd. Positive electrode having improved pore structure in positive electrode active material layer
US11196051B2 (en) 2015-11-30 2021-12-07 Lg Chem, Ltd. Positive electrode for secondary battery and secondary battery including the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050008562A1 (en) * 2003-07-10 2005-01-13 Seoul National University Nanostructured carbon materials having excellent crystallinity and large surface area suitable for fuel cell electrodes and method for synthesizing the same
JP2011519809A (ja) * 2008-05-01 2011-07-14 本田技研工業株式会社 成長した単層ナノチューブの効率および品質に炭化水素および輸送ガス材料が与える効果
KR20120095284A (ko) * 2011-02-18 2012-08-28 가부시끼가이샤 도시바 그라파이트 나노 카본 화이버 및 그 제조 방법
KR20130078777A (ko) * 2011-12-30 2013-07-10 코오롱플라스틱 주식회사 폴리옥시메틸렌 수지 조성물

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050008562A1 (en) * 2003-07-10 2005-01-13 Seoul National University Nanostructured carbon materials having excellent crystallinity and large surface area suitable for fuel cell electrodes and method for synthesizing the same
JP2011519809A (ja) * 2008-05-01 2011-07-14 本田技研工業株式会社 成長した単層ナノチューブの効率および品質に炭化水素および輸送ガス材料が与える効果
KR20120095284A (ko) * 2011-02-18 2012-08-28 가부시끼가이샤 도시바 그라파이트 나노 카본 화이버 및 그 제조 방법
KR20130078777A (ko) * 2011-12-30 2013-07-10 코오롱플라스틱 주식회사 폴리옥시메틸렌 수지 조성물

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107735890A (zh) * 2015-09-10 2018-02-23 Lg化学株式会社 用于二次电池的导电材料以及包含该导电材料的二次电池
US10665890B2 (en) 2015-09-10 2020-05-26 Lg Chem, Ltd. Conductive material for secondary battery, and secondary battery containing same
CN107735890B (zh) * 2015-09-10 2020-11-10 Lg化学株式会社 用于二次电池的导电材料以及包含该导电材料的二次电池
WO2017052064A1 (ko) * 2015-09-25 2017-03-30 주식회사 엘지화학 탄소 나노튜브 분산액 및 이의 제조방법
US10468685B2 (en) 2015-09-25 2019-11-05 Lg Chem, Ltd. Carbon nanotube dispersion and method for producing same
WO2017095151A1 (ko) * 2015-11-30 2017-06-08 주식회사 엘지화학 이차전지용 양극 및 이를 포함하는 이차전지
US11196051B2 (en) 2015-11-30 2021-12-07 Lg Chem, Ltd. Positive electrode for secondary battery and secondary battery including the same
WO2017099481A1 (ko) * 2015-12-10 2017-06-15 주식회사 엘지화학 이차전지용 양극 및 이를 포함하는 이차전지
US11171322B2 (en) 2015-12-10 2021-11-09 Lg Chem, Ltd. Positive electrode having improved pore structure in positive electrode active material layer
CN112203977A (zh) * 2018-07-27 2021-01-08 Lg化学株式会社 碳纳米管、其制造方法以及包含该碳纳米管的用于一次电池的正极
CN112203977B (zh) * 2018-07-27 2023-09-05 Lg化学株式会社 碳纳米管、其制造方法以及包含该碳纳米管的用于一次电池的正极

Similar Documents

Publication Publication Date Title
WO2015047042A1 (ko) 높은 비표면적을 갖는 탄소나노튜브 및 그 제조 방법
WO2015005709A1 (ko) 담지촉매, 탄소나노튜브 집합체 및 그 제조방법
WO2014051271A1 (en) Catalyst composition for the synthesis of multi-walled carbon nanotube
US11090635B2 (en) Carbon nanotube having high specific surface area and method for manufacturing same
WO2020022822A1 (ko) 탄소나노튜브, 이의 제조방법 및 이를 포함하는 일차전지용 양극
WO2013105784A1 (ko) 카본나노튜브 및 그 제조방법
Ni et al. Kinetic study of carbon nanotube synthesis over Mo/Co/MgO catalysts
US9809458B2 (en) Method for controlling bulk density of carbon nanotube agglomerate
US10758898B2 (en) Method for manufacturing carbon nanotube agglomerate having controlled bulk density
CN103180243A (zh) 多孔石墨烯材料及其制备方法和作为电极材料的应用
WO2015008988A1 (ko) 담지촉매, 이의 제조방법 및 이를 이용하여 제조된 탄소나노구조체의 2차구조물
WO2020022725A1 (ko) 탄소나노튜브의 제조방법
KR20210036725A (ko) 탄소나노튜브 제조용 촉매
Chaisitsak et al. Hot filament enhanced CVD synthesis of carbon nanotubes by using a carbon filament
WO2017126777A1 (ko) 카본나노튜브 펠렛 및 이의 제조방법
Mahanandia et al. A one-step technique to prepare aligned arrays of carbon nanotubes
WO2016144092A1 (ko) 탄소나노구조물의 제조방법, 이에 의해 제조된 탄소나노구조물 및 이를 포함하는 복합재
WO2017126776A1 (ko) 카본나노튜브 펠렛 제조장치
JP2008169092A (ja) カーボンナノチューブの製造方法
WO2017126775A1 (ko) 카본나노튜브 펠렛 및 이의 제조방법
JP6094723B1 (ja) カーボンナノチューブ含有組成物の製造方法
WO2015047048A1 (ko) 탄소나노튜브 집합체의 벌크 밀도 조절 방법
WO2017099358A1 (ko) 도전재 분산액 및 이를 이용하여 제조한 리튬 이차전지
WO2018169366A1 (ko) 번들형 탄소나노튜브 및 이의 제조방법
Longkullabutra et al. Large-scale: synthesis, microstructure, and FT-IR property of SiC nanowires

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015544018

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014847473

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014847473

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14438165

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE