WO2015041439A1 - Coaxial cable including graphene coating layer and manufacturing method therefor - Google Patents

Coaxial cable including graphene coating layer and manufacturing method therefor Download PDF

Info

Publication number
WO2015041439A1
WO2015041439A1 PCT/KR2014/008601 KR2014008601W WO2015041439A1 WO 2015041439 A1 WO2015041439 A1 WO 2015041439A1 KR 2014008601 W KR2014008601 W KR 2014008601W WO 2015041439 A1 WO2015041439 A1 WO 2015041439A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
coaxial cable
metal wire
metal
composite plating
Prior art date
Application number
PCT/KR2014/008601
Other languages
French (fr)
Korean (ko)
Inventor
양우석
김형근
유세현
Original Assignee
전자부품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전자부품연구원 filed Critical 전자부품연구원
Publication of WO2015041439A1 publication Critical patent/WO2015041439A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/18Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
    • H01B11/1808Construction of the conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/016Apparatus or processes specially adapted for manufacturing conductors or cables for manufacturing co-axial cables
    • H01B13/0165Apparatus or processes specially adapted for manufacturing conductors or cables for manufacturing co-axial cables of the layers outside the outer conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Definitions

  • the present invention relates to a coaxial cable and a manufacturing method, and more particularly to a coaxial cable and a manufacturing method comprising a graphene coating layer.
  • Coaxial cable is used in a wide variety of fields such as power, communication, control, equipment, transport, etc.
  • the demand is increasing due to the replacement of aging power grid and the construction of inter-national power grid.
  • Such a coaxial cable has excellent electrical conductivity because it usually uses a metal (copper, aluminum, etc.) as a material of the conductor, but sometimes it is difficult to exhibit sufficient ability as a conductive material for reasons such as strength drop, corrosion effect, and resistance increase. Therefore, in order to preserve or improve the electrical and thermal characteristics of coaxial cables, attempts have been made to develop new conductive materials or to provide functionality through surface treatment of existing conductive materials.
  • Graphene which is emerging as a new material, can deliver about 100 times more current per unit area than copper at room temperature, and its thermal conductivity is more than twice that of diamond, and its mechanical strength is more than 200 times stronger than steel.
  • the flexibility is excellent because it has the advantage that the conductivity does not decrease even if stretched or folded.
  • Embodiments of the present invention are to provide a coaxial cable and a manufacturing method excellent in electrical conductivity, thermal conductivity, mechanical strength, chemical resistance, corrosion resistance.
  • a metal wire located in the core; A composite plating layer having a form in which a same type or different type of metal wire, a different type of metal, and first graphene are mixed and plated on the surface of the metal wire; And a graphene coating layer on which the second graphene is coated on the surface of the composite plating layer.
  • the metal wire is electrolytically passed through an electrolyte in which homogeneous or dissimilar metals with the metal wire and graphite nanoflakes, graphene oxide, reduced graphene oxide or graphene nanoplatelets are dispersed.
  • a coaxial cable manufacturing method comprising a second step of forming a coating coating a second graphene on the surface of the composite plating layer may be provided.
  • Embodiments of the present invention to form a composite plating layer of a mixture of metal and graphene on the metal wire corresponding to the core of the coaxial cable, and to form a graphene layer on the composite plating layer to form a metal and graphene on the coaxial cable Functionality can be improved to improve electrical, thermal and mechanical properties.
  • low temperature processes such as microwave irradiation and IPL irradiation and various kinds of CVD methods may be used.
  • FIG. 1 is a view schematically showing a coaxial cable according to an embodiment of the present invention.
  • FIG. 2 is a view schematically showing a coaxial cable manufacturing method according to an embodiment of the present invention.
  • FIG. 1 is a view schematically showing a coaxial cable 100 according to an embodiment of the present invention.
  • the coaxial cable 100 is formed of a composite plating layer 120 formed to surround a metal wire 110 and a metal wire 110 positioned in a core, and a composite plating layer 120. It includes a graphene coating layer 130. In addition, an insulating envelope 140 may be formed on the surface of the graphene coating layer 130.
  • the metal wire 110 may be copper, iron, nickel, aluminum, gold, silver, platinum, or a combination thereof, and copper wire is commonly used.
  • the composite plating layer 120 is formed to surround the surface of the metal wire 110 and has a form in which the metal 121 and the first graphene 122 are mixed. That is, one material is not plated on the surface of the metal wire 110, but the metal 121 is partially plated and the first graphene 122 is plated on the other.
  • the metal 121 may be the same or different metals from the metal constituting the metal wire 110.
  • the metal wire 110 may be provided with a function according to another metal.
  • the metal 121 may be a metal such as aluminum, nickel, gold, silver, palladium, chromium, and the like, which is different from the copper wire, and may be coaxial with these metals. The effect of improving the electrical and thermal conductivity of the cable can be increased or the chemical / corrosion resistance can be improved.
  • the first graphene 122 is plated and formed on the surface of the metal wire 110 together with the metal 121.
  • Graphene (grapheme) is a plurality of carbon atoms are covalently linked to each other to form a polycyclic aromatic molecule, it is common to form a six-membered ring as a basic repeating unit.
  • the first graphene 122 was referred to as “first graphene 122" to distinguish the graphene forming the graphene coating layer 130 to be described later, and the graphene forming the graphene coating layer 130.
  • second graphene the graphene forming the graphene coating layer 130.
  • the method for forming the first graphene 122 and the graphene coating layer 130 will be described in the manufacturing method according to an embodiment of the present invention.
  • the graphene coating layer 130 is formed by coating the second graphene on the surface of the composite plating layer 120.
  • the graphene may be formed of a plurality of layers, for example, 10 to 1000 layers.
  • the insulating envelope 140 is coated on the surface of the graphene coating layer 130, and may be selected from the group consisting of enamel, photoresist resin, polyolefin, phenol resin, PMMA, PET, PVA, PI, and a combination thereof. It is not limited to this.
  • the embodiments of the present invention are the same or different types of metals 121 and the first graphene 122 and the graphene coating layer included in the metal wire 110 and the metal wire 110 included in the composite plating layer 120.
  • a coaxial cable excellent in electrical conductivity, thermal conductivity, mechanical strength, chemical resistance, and corrosion resistance can be provided.
  • the composite plating layer 120 having a form in which the metal 121 and the first graphene 122 are mixed by electroplating on the surface of the metal wire 110. And a second step of coating a second graphene on the surface of the composite plating layer 120.
  • FIG. 2 schematically illustrates a coaxial cable manufacturing method according to an embodiment of the present invention.
  • the metal wire 110 is passed through the plating bath 10 containing the electrolyte solution 11 to the surface of the metal wire 110, and the same or different metal 121 as the metal wire 110 and graphite.
  • a roll-to-roll process may be used, and a plurality of winders 1 and a drum 2 may be arranged.
  • the metal wire 110 may be dipped into the plating bath 10 while being moved by the winder 1 and the drums 2 (see FIG. 2).
  • the electrolyte (11, alcohol solution of perchloric acid, sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, oxalic acid aqueous solution, etc. can be used) metal 121 to be plated on the surface of the metal wire 110, graphite nano flakes (122a), graphene oxide, Reduced graphene oxide or graphene nanoplatelets are dispersed.
  • graphite nano flakes 122a when the graphite nano flakes 122a are dispersed, the first graphene 122 may be synthesized by performing a separate heat treatment, and graphene oxide, reduced graphene oxide, and graphene nanoplatelets may be synthesized.
  • the graphene nanoplatelets When dispersed, the graphene nanoplatelets are plated on the surface of the metal wire 110 to function as the first graphene 122.
  • the former case that is, the case where the graphite nano flakes 122a are dispersed will be described.
  • Electroplating is a process for performing plating by electrolysis of the electrolyte when a current is applied between the cathode and the anode immersed in the electrolyte
  • electrolytic plating is a general plating process, a detailed description thereof will be omitted. That is, the electroplating is performed while the metal wire 110 passes through the electrolyte solution 11 (for example, the anode is attached to the bottom of the plating bath, and the drum 2 can function as the cathode), and as a result, the metal wire 110
  • the metal 121 and the graphite nano flakes 122a are complex plated on the surface thereof.
  • the first graphene 122 is formed (synthesized) by heat-treating the plated graphite nano flakes 122a.
  • microwave irradiation and / or IPL (Intensed Pulse Light) irradiation may be used.
  • various other heat sources may be used. The reason for describing 'and / or' herein is that only microwave irradiation, only IPL irradiation, or both can be performed with the heat source.
  • Microwave irradiation corresponds to the electromagnetic radiation generated between Klystron and Magnetron with electromagnetic wave having a wavelength between radio wave and infrared ray.
  • the microwave heating method selectively vibrates only the material that absorbs frequency. Has the advantage of heating the material in such a way as to. Therefore, when the composite plating layer 120 is formed, only the graphite nano flakes 122a may be selectively heated.
  • IPL irradiation refers to a white short wavelength heat source using a flash lamp or xenon lamp to generate light in a wide band of 350nm to 1200nm.
  • the IPL irradiation has the advantage of rapidly changing the pulse and heating the graphite nano flakes 122a.
  • the first graphene 122 is formed by heat-treating the metal wire 110 formed by plating the metal 121 and the graphite nano flakes 122a on a surface thereof through a heat treatment equipment (20, microwave irradiation equipment, IPL irradiation equipment, etc.). ) May be formed, thereby completing the composite plating layer 120.
  • a heat treatment equipment (20, microwave irradiation equipment, IPL irradiation equipment, etc.).
  • an ionic liquid may be additionally added to the electrolyte solution 11 in order to lower the reaction temperature in the heat treatment process.
  • the ionic liquid refers to a material having physical properties in a liquid state even though it is composed of a combination of ions at room temperature.
  • the ionic liquid may include the following [Formula 1].
  • [Formula 1] is an imidazolium ionic liquid
  • R 1 and R 2 are the same or different, represent hydrogen or a hydrocarbon group of 1 to 16 carbon atoms, it may also contain a heteroatom .
  • X ⁇ represents an anion of an ionic liquid.
  • the cation of [Formula 1] is 1,3-dimethylimidazolium, 1,3-diethylimidazolium, 1-ethyl-3-methylimidazolium, 1-butyl-3-methylimidazolium, 1-hexyl-3-methylimidazolium, 1-octyl-3-methylimidazolium, 1-decyl-3-methylimidazolium, 1-dodecyl-3-methylimidazolium and 1-tetradecyl- It may include at least one selected from the group consisting of 3-methylimidazolium.
  • the anion of [Formula 1] may be an organic anion or an inorganic anion.
  • the anion is Br -, Cl -, I - , BF 4 -, PF 6 -, ClO 4 -, NO 3 -, AlCl 4 -, Al 2 Cl 7 -, AsF 6 -, SbF 6 -, CH 3 COO - , CF 3 COO -, CH 3 SO 3 -, C 2 H 5 SO 3 -, CH 3 SO 4 -, C 2 H 5 SO 4 -, CF 3 SO 3 -, (CF 3 SO 2) 2 N -, (CF 3 SO 2) 3 C -, (CF 3 CF 2 SO 2) 2 N -, C 4 F 9 SO 3 -, C 3 F 7 COO - , and (CF 3 SO 2) (CF 3 CO) N - It may include at least one selected from the group consisting of.
  • the ionic liquid may include the following [Formula 2].
  • [Formula 2] may be included as in [Formula 1] or optionally included.
  • [Formula 2] is a pyridinium-based ionic liquid
  • R 3 and R 4 are the same or different, represent hydrogen or a hydrocarbon group of 1 to 16 carbon atoms, it may also contain a heteroatom.
  • X ⁇ represents an anion of an ionic liquid.
  • the cation of [Formula 2] is 1-methylpyridinium, 1-ethylpyridinium, 1-butylpyridinium, 1-ethyl-3-methylpyridinium, 1-butyl-3-methylpyridinium, 1-hexyl- It may include at least one selected from the group consisting of 3-methylpyridinium and 1-butyl-3,4-dimethylpyridinium.
  • the anion of [Formula 2] may be an organic anion or an inorganic anion. Since the anion may be the same as or similar to the anion of [Formula 1], duplicate description will be omitted (step 1 above).
  • the graphene coating layer 130 (see FIG. 1) is formed by coating a second graphene on the surface of the composite plating layer 120.
  • the method of coating the second graphene is not specified and it is possible to use known methods.
  • CVD Chemical Vapor Deposition
  • RTCVD high-speed chemical vapor deposition
  • ICP-CVD inductively coupled plasma chemical vapor deposition
  • LPCVD low pressure Chemical Vapor Deposition
  • APCVD Atmospheric Chemical Vapor Deposition
  • MOCVD Metal Organic Chemical Vapor Deposition
  • PECVD Chemical Vapor Deposition
  • Current Direct Heating on the Catalyst Surface Current feeding CVD
  • Roll-to-Roll Roll-to-Roll chemical vapor deposition
  • the metal wire 110 having the composite plating layer 120 formed is placed in a furnace, and a reaction gas including a carbon source (methane, ethane, etc.) is supplied and heat treated at atmospheric pressure to thereby surface the composite plating layer 120.
  • a reaction gas including a carbon source methane, ethane, etc.
  • the first graphene present in the composite plating layer 120 may serve to supply a carbon source for synthesizing the second graphene.
  • the second graphene may be synthesized through at least one heat source of the microwave irradiation and the IPL irradiation.
  • a second graphene is formed by coating a polymer layer 131 including a carbon solid source on the surface of the composite plating layer 120 and heating the polymer layer 131 through at least one heat source of microwave irradiation and IPL irradiation.
  • FIG. 2 illustrates a state in which the polymer layer 131 is formed on the surface by moving the metal wire 110 having the composite plating layer 120 formed in a roll-to-roll manner and dipping the reaction vessel 30.
  • the polymer layer 131 may be formed using a conventional coating method such as spin coating and spray coating in addition to dipping.
  • the polymer layer 131 serves as a seed layer for graphene synthesis.
  • the carbon solid source included in the polymer layer 131 receives a high temperature, a part of the chemical structure of the polymer is decomposed and chemical bonds are recombined. It is arranged and the ring of the CC bond proceeds to play a role in synthesizing graphene.
  • the carbon solid source may be methane, ethane, and the like, and the polymer layer 131 may include polymethacrylate (PMMA), polystyrene (PS), acrylonitrile butadiene styrene (ABS), polyimide (PI), or Self-assembled monolayer (SAM) such as butyltriethoxysilane, trichlorooctylsilane, trichlorooctatesilane, and trimethoxyphenylsilane.
  • PMMA polymethacrylate
  • PS polystyrene
  • ABS acrylonitrile butadiene styrene
  • PI polyimide
  • SAM Self-assembled monolayer
  • the second graphene may be synthesized through microwave irradiation and / or IPL irradiation in the same manner as the synthesis of the first graphene, and the description thereof will be omitted. (More than 2 steps).
  • the method may further include forming an insulating envelope layer to surround the second graphene.
  • the insulating outer layer protects the composite plating layer 120 and the second graphene to maintain the function of the coaxial cable (3 steps above).
  • embodiments of the present invention to form a composite plating layer of a mixture of metal and graphene in a metal wire corresponding to the core of the coaxial cable, and to form a graphene layer on the composite plating layer to form a metal on the coaxial cable And imparting functionality according to graphene formation to improve electrical, thermal, and mechanical properties.
  • low temperature processes such as microwave irradiation and IPL irradiation and various kinds of CVD methods may be used.

Abstract

A coaxial cable including a graphene coating layer and a manufacturing method therefor are disclosed. The coaxial cable according to one embodiment of the present invention comprises: a metal wire located at a core; a composite plating layer having a mixture of a homogeneous metal or a heterogeneous metal of the metal wire and a first graphene, and plated on the surface of the metal wire; and a graphene coating layer having a second graphene coated on the surface of the composite plating layer.

Description

그래핀 코팅층을 포함하는 동축 케이블 및 제조방법Coaxial cable and manufacturing method comprising a graphene coating layer
본 발명은 동축 케이블 및 제조방법에 관한 것으로, 보다 상세하게는 그래핀 코팅층을 포함하는 동축 케이블 및 제조방법에 관한 것이다.The present invention relates to a coaxial cable and a manufacturing method, and more particularly to a coaxial cable and a manufacturing method comprising a graphene coating layer.
동축 케이블은 전력용, 통신용, 제어용, 기기용, 수송용 등 매우 다양한 분야에서 사용되고 있으며, 특히 전력용 동축 케이블의 경우에는 노후화된 전력망 교체 및 국가간 전력망 구축에 따라 그 수요가 증대되고 있다.Coaxial cable is used in a wide variety of fields such as power, communication, control, equipment, transport, etc. In particular, in the case of power coaxial cable, the demand is increasing due to the replacement of aging power grid and the construction of inter-national power grid.
이러한 동축 케이블은 도체의 재료로 보통 금속(구리, 알루미늄 등)을 사용하므로 도전율이 뛰어나지만, 경우에 따라 강도 저하, 부식 영향, 저항 증가 등의 이유로 도전재료로서의 충분한 능력을 발휘하기 어려울 때도 있다. 따라서 동축 케이블의 전기적, 열적 특성을 보존하거나 향상시키기 위하여 새로운 도전재료를 개발하거나 기존 도전재료의 표면처리 등을 통해 기능성을 부여하려는 시도들이 이루어지고 있는 실정이다.Such a coaxial cable has excellent electrical conductivity because it usually uses a metal (copper, aluminum, etc.) as a material of the conductor, but sometimes it is difficult to exhibit sufficient ability as a conductive material for reasons such as strength drop, corrosion effect, and resistance increase. Therefore, in order to preserve or improve the electrical and thermal characteristics of coaxial cables, attempts have been made to develop new conductive materials or to provide functionality through surface treatment of existing conductive materials.
이 중, 동축 케이블의 금속 선재 표면에 그래핀을 형성시키는 것은 좋은 대안이 될 수 있다. 신소재로 각광받고 있는 그래핀(Graphene)은 상온에서 구리에 비해 단위면적당 약 100배 많은 전류를 전달할 수 있을 뿐만 아니라, 열전도성이 다이아몬드보다 2배 이상 높고, 기계적 강도는 강철에 비해 200배 이상 강할뿐더러, 유연성이 뛰어나므로 늘리거나 접어도 전도성이 저하되지 않는 장점을 가지기 때문이다. Of these, forming graphene on the metal wire surface of the coaxial cable may be a good alternative. Graphene, which is emerging as a new material, can deliver about 100 times more current per unit area than copper at room temperature, and its thermal conductivity is more than twice that of diamond, and its mechanical strength is more than 200 times stronger than steel. In addition, since the flexibility is excellent because it has the advantage that the conductivity does not decrease even if stretched or folded.
따라서 그래핀을 동축 케이블에 적용시키기 위한 다양한 시도들이 이루어지고 있으며, 예를 들면 한국공개특허 제10-2012-0137844호가 있다.Therefore, various attempts have been made to apply graphene to coaxial cables, for example, Korean Patent Publication No. 10-2012-0137844.
본 발명의 실시예들은 도전율, 열전도도, 기계적 강도, 내화학성, 내부식성이 우수한 동축 케이블 및 제조방법을 제공하고자 한다.Embodiments of the present invention are to provide a coaxial cable and a manufacturing method excellent in electrical conductivity, thermal conductivity, mechanical strength, chemical resistance, corrosion resistance.
본 발명의 일 측면에 따르면, 코어에 위치하는 금속 선재; 상기 금속 선재와 동종 또는 이종 금속과, 제1 그래핀이 혼합된 형태를 갖는 것으로, 상기 금속 선재 표면에 도금 형성되는 복합도금층; 및 상기 복합도금층 표면에 제2 그래핀이 코팅 형성되는 그래핀 코팅층을 포함하는 동축 케이블이 제공될 수 있다. According to an aspect of the present invention, a metal wire located in the core; A composite plating layer having a form in which a same type or different type of metal wire, a different type of metal, and first graphene are mixed and plated on the surface of the metal wire; And a graphene coating layer on which the second graphene is coated on the surface of the composite plating layer.
또한, 본 발명의 다른 측면에 따르면, 금속 선재를 상기 금속 선재와 동종 또는 이종 금속과, 그래파이트 나노플레이크, 그래핀 옥사이드, 환원된 그래핀 옥사이드 또는 그래핀 나노플레이트렛이 분산된 전해액을 통과시켜 전해도금(electro plating)을 실시함으로써, 상기 금속 선재 표면에 상기 금속과 제1 그래핀이 혼합된 형태를 갖는 복합도금층을 형성하는 1단계; 및 상기 복합도금층 표면에 제2 그래핀을 코팅 형성하는 2단계를 포함하는 동축 케이블 제조방법이 제공될 수 있다.In addition, according to another aspect of the present invention, the metal wire is electrolytically passed through an electrolyte in which homogeneous or dissimilar metals with the metal wire and graphite nanoflakes, graphene oxide, reduced graphene oxide or graphene nanoplatelets are dispersed. Performing a plating process to form a composite plating layer having a mixture of the metal and the first graphene on the surface of the metal wire; And a coaxial cable manufacturing method comprising a second step of forming a coating coating a second graphene on the surface of the composite plating layer may be provided.
본 발명의 실시예들은 동축 케이블의 코어에 해당하는 금속 선재에 금속 및 그래핀이 혼합된 형태의 복합도금층을 형성하고, 상기 복합도금층 상부에 그래핀층을 형성함으로써 동축 케이블에 금속 및 그래핀 형성에 따른 기능성을 부여하여 전기적, 열적, 기계적 특성을 향상시킬 수 있다.Embodiments of the present invention to form a composite plating layer of a mixture of metal and graphene on the metal wire corresponding to the core of the coaxial cable, and to form a graphene layer on the composite plating layer to form a metal and graphene on the coaxial cable Functionality can be improved to improve electrical, thermal and mechanical properties.
또한, 그래핀 코팅층 형성에 있어 마이크로파 조사 및 IPL 조사와 같은 저온 공정과 다양한 종류의 CVD 방식을 이용할 수 있다.In addition, in forming the graphene coating layer, low temperature processes such as microwave irradiation and IPL irradiation and various kinds of CVD methods may be used.
도 1은 본 발명의 일 실시예에 따른 동축 케이블을 개략적으로 도시한 도면이다. 1 is a view schematically showing a coaxial cable according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 동축 케이블 제조방법을 개략적으로 도시한 도면이다.2 is a view schematically showing a coaxial cable manufacturing method according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들에 대하여 구체적으로 설명하도록 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 동축 케이블(100)을 개략적으로 도시한 도면이다. 1 is a view schematically showing a coaxial cable 100 according to an embodiment of the present invention.
도 1을 참조하면, 동축 케이블(100)은 코어(core)에 위치하는 금속 선재(110)와 금속 선재(110)를 감싸도록 형성된 복합도금층(120)과, 복합도금층(120)을 감싸도록 형성된 그래핀 코팅층(130)을 포함한다. 그리고 그래핀 코팅층(130)의 표면에는 절연 외피(140)가 형성될 수 있다. Referring to FIG. 1, the coaxial cable 100 is formed of a composite plating layer 120 formed to surround a metal wire 110 and a metal wire 110 positioned in a core, and a composite plating layer 120. It includes a graphene coating layer 130. In addition, an insulating envelope 140 may be formed on the surface of the graphene coating layer 130.
금속 선재(110)는 구리, 철, 니켈, 알루미늄, 금, 은, 백금 또는 이들의 조합일 수 있으며, 통상적으로는 구리 선재가 많이 사용된다. The metal wire 110 may be copper, iron, nickel, aluminum, gold, silver, platinum, or a combination thereof, and copper wire is commonly used.
복합도금층(120)은 금속 선재(110)의 표면을 둘러싸도록 형성되는 것으로, 금속(121) 및 제1 그래핀(122)이 혼합된 형태를 갖는다. 즉, 금속 선재(110)의 표면에는 하나의 물질이 도금되어 있는 것이 아니라, 일부에는 금속(121)이 도금되고 다른 일부에는 제1 그래핀(122)이 도금된 형태를 갖는다. The composite plating layer 120 is formed to surround the surface of the metal wire 110 and has a form in which the metal 121 and the first graphene 122 are mixed. That is, one material is not plated on the surface of the metal wire 110, but the metal 121 is partially plated and the first graphene 122 is plated on the other.
금속(121)은 금속 선재(110)를 이루는 금속과 동종 또는 이종 금속일 수 있다. 금속(121)이 금속 선재(110)를 이루는 금속과 이종 금속인 경우에는 금속 선재(110)에 다른 금속을 입힘에 따른 기능성을 부여할 수 있다. 예컨대 금속 선재(110)가 구리 선재인 경우, 금속(121)은 구리 선재와는 이종 금속에 해당하는 알루미늄, 니켈, 금, 은, 팔라듐, 크롬 등과 같은 금속일 수 있으며, 이들 금속들을 이용하여 동축 케이블의 전기 전도도, 열 전도도의 개선효과를 증대시키거나 내화학/내부식성을 향상시킬 수 있다. The metal 121 may be the same or different metals from the metal constituting the metal wire 110. When the metal 121 is a metal and a dissimilar metal constituting the metal wire 110, the metal wire 110 may be provided with a function according to another metal. For example, when the metal wire 110 is a copper wire, the metal 121 may be a metal such as aluminum, nickel, gold, silver, palladium, chromium, and the like, which is different from the copper wire, and may be coaxial with these metals. The effect of improving the electrical and thermal conductivity of the cable can be increased or the chemical / corrosion resistance can be improved.
제1 그래핀(122)은 금속(121)과 더불어 금속 선재(110) 표면에 도금 형성된다. 그래핀(grapheme)은 복수개의 탄소원자들이 서로 공유결합으로 연결되어 폴리시클릭 방향족 분자를 형성하는 것으로, 기본 반복단위로서 6원환을 형성하는 것이 일반적이다. The first graphene 122 is plated and formed on the surface of the metal wire 110 together with the metal 121. Graphene (grapheme) is a plurality of carbon atoms are covalently linked to each other to form a polycyclic aromatic molecule, it is common to form a six-membered ring as a basic repeating unit.
제1 그래핀(122)은 후술할 그래핀 코팅층(130)을 형성하는 그래핀과의 구분을 위하여 "제1 그래핀(122)"으로 칭하였고, 그래핀 코팅층(130)을 형성하는 그래핀을 이하에서는 "제2 그래핀"으로 칭하기로 한다. 한편, 제1 그래핀(122) 및 그래핀 코팅층(130)의 형성방법에 대해서는 본 발명의 일 실시예에 따른 제조방법에서 설명하기로 한다. The first graphene 122 was referred to as "first graphene 122" to distinguish the graphene forming the graphene coating layer 130 to be described later, and the graphene forming the graphene coating layer 130. Hereinafter referred to as "second graphene". On the other hand, the method for forming the first graphene 122 and the graphene coating layer 130 will be described in the manufacturing method according to an embodiment of the present invention.
그래핀 코팅층(130)은 복합도금층(120) 표면에 제2 그래핀을 코팅함으로써 형성된다. 제1 그래핀(122) 및 그래핀 코팅층(130)에서 상기 그래핀은 복수의 층으로 형성될 수 있으며, 예컨대 10 내지 1000층일 수 있다. The graphene coating layer 130 is formed by coating the second graphene on the surface of the composite plating layer 120. In the first graphene 122 and the graphene coating layer 130, the graphene may be formed of a plurality of layers, for example, 10 to 1000 layers.
절연 외피(140)는 그래핀 코팅층(130)의 표면에 코팅되는 것으로, 에나멜, 포토레지스트수지, 폴리올레핀, 페놀수지, PMMA, PET, PVA, PI 및 이들의 조합으로 이루어지는 군으로부터 선택될 수 있으며, 이에 한정되지는 않는다. The insulating envelope 140 is coated on the surface of the graphene coating layer 130, and may be selected from the group consisting of enamel, photoresist resin, polyolefin, phenol resin, PMMA, PET, PVA, PI, and a combination thereof. It is not limited to this.
상기와 같이 본 발명의 실시예들은 금속 선재(110)에 복합도금층(120)에 포함되는 금속 선재(110)와 동종 또는 이종의 금속(121) 및 제1 그래핀(122), 그리고 그래핀 코팅층(130)으로 금속 선재(110) 표면을 적층함으로써, 도전율, 열 전도도, 기계적 강도, 내화학성, 내부식성이 우수한 동축 케이블을 제공 가능하다. As described above, the embodiments of the present invention are the same or different types of metals 121 and the first graphene 122 and the graphene coating layer included in the metal wire 110 and the metal wire 110 included in the composite plating layer 120. By laminating the surface of the metal wire 110 to 130, a coaxial cable excellent in electrical conductivity, thermal conductivity, mechanical strength, chemical resistance, and corrosion resistance can be provided.
이하에서는 본 발명의 일 실시예에 따른 동축 케이블 제조방법에 대하여 설명하도록 한다. Hereinafter will be described a coaxial cable manufacturing method according to an embodiment of the present invention.
본 발명의 실시예에 따른 동축 케이블 제조방법은 금속 선재(110) 표면에 전해도금(electro plating)을 통해 금속(121) 및 제1 그래핀(122)이 혼합된 형태를 갖는 복합도금층(120)을 형성하는 1단계와, 복합도금층(120) 표면에 제2 그래핀을 코팅 형성하는 2단계를 포함한다. In the coaxial cable manufacturing method according to an embodiment of the present invention, the composite plating layer 120 having a form in which the metal 121 and the first graphene 122 are mixed by electroplating on the surface of the metal wire 110. And a second step of coating a second graphene on the surface of the composite plating layer 120.
관련하여 도 2에서는 본 발명의 일 실시예에 따른 동축 케이블 제조방법을 개략적으로 도시하고 있다. 도 2를 참조하면, 우선 금속 선재(110)를 전해액(11)이 담긴 도금조(10)를 통과시킴으로써 금속 선재(110) 표면에 금속 선재(110)와 동종 또는 이종 금속(121)과, 그래파이트 나노 플레이크(122a), 그래핀 옥사이드, 환원된 그래핀 옥사이드 또는 그래핀 나노플레이트렛(graphene nanoplatelet)을 전해 도금시킨다(도 2에서는 그래파이트 나노 플레이크(122a)가 도금된 경우를 도시하였음을 밝혀둔다). 2 schematically illustrates a coaxial cable manufacturing method according to an embodiment of the present invention. Referring to FIG. 2, first, the metal wire 110 is passed through the plating bath 10 containing the electrolyte solution 11 to the surface of the metal wire 110, and the same or different metal 121 as the metal wire 110 and graphite. Electroplating the nano flakes 122a, graphene oxide, reduced graphene oxide or graphene nanoplatelets (FIG. 2 shows the case where the graphite nanoflakes 122a are plated) .
금속 선재(110)를 도금조(10)에 통과시키는 방법은 롤투롤(Roll-to-Roll) 공정을 이용할 수 있으며, 복수개의 와인더(1, winder) 및 드럼(2, drum)을 배열하여 금속 선재(110)가 와인더(1) 및 드럼(2)들에 의해 이동되면서 도금조(10)에 디핑(dipping)되도록 할 수 있다(도 2 참조). As a method of passing the metal wire 110 through the plating bath 10, a roll-to-roll process may be used, and a plurality of winders 1 and a drum 2 may be arranged. The metal wire 110 may be dipped into the plating bath 10 while being moved by the winder 1 and the drums 2 (see FIG. 2).
전해액(11, 과염소산의 알코올 용액, 황산, 염산, 질산, 인산, 옥살산 수용액 등을 사용 가능함)에는 금속 선재(110) 표면에 도금될 금속(121)과 그래파이트 나노 플레이크(122a), 그래핀 옥사이드, 환원된 그래핀 옥사이드 또는 그래핀 나노플레이트렛이 분산되어 있다. 이 때, 그래파이트 나노 플레이크(122a)가 분산되어 있는 경우에는 별도의 열처리가 후행됨으로써 제1 그래핀(122)이 합성될 수 있으며, 그래핀 옥사이드, 환원된 그래핀 옥사이드, 그래핀 나노플레이트렛이 분산되어 있는 경우에는 상기 그래핀 나노플레이트렛이 금속 선재(110) 표면에 도금되어 제1 그래핀(122)으로 기능한다. 이하에서는 전자의 경우, 즉 그래파이트 나노 플레이크(122a)가 분산된 경우를 설명하도록 한다. The electrolyte (11, alcohol solution of perchloric acid, sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, oxalic acid aqueous solution, etc. can be used) metal 121 to be plated on the surface of the metal wire 110, graphite nano flakes (122a), graphene oxide, Reduced graphene oxide or graphene nanoplatelets are dispersed. In this case, when the graphite nano flakes 122a are dispersed, the first graphene 122 may be synthesized by performing a separate heat treatment, and graphene oxide, reduced graphene oxide, and graphene nanoplatelets may be synthesized. When dispersed, the graphene nanoplatelets are plated on the surface of the metal wire 110 to function as the first graphene 122. Hereinafter, the former case, that is, the case where the graphite nano flakes 122a are dispersed will be described.
전해도금(electro plating)은 전해액에 침지된 음극과 양극 사이에 전류를 가할 때, 전해액의 전기 분해에 의하여 도금을 수행하는 공정으로 전해도금은 일반적인 도금 공정인 바, 구체적인 설명은 생략하도록 한다. 즉, 금속 선재(110)가 전해액(11)을 통과하면서 전해도금이 실시되고(예컨대 도금조의 저면에 양극이 부착되고, 드럼(2)이 음극으로 기능할 수 있음), 그 결과 금속 선재(110)의 표면에는 금속(121) 및 그래파이트 나노 플레이크(122a)가 복합 도금된다. Electroplating (electro plating) is a process for performing plating by electrolysis of the electrolyte when a current is applied between the cathode and the anode immersed in the electrolyte, electrolytic plating is a general plating process, a detailed description thereof will be omitted. That is, the electroplating is performed while the metal wire 110 passes through the electrolyte solution 11 (for example, the anode is attached to the bottom of the plating bath, and the drum 2 can function as the cathode), and as a result, the metal wire 110 The metal 121 and the graphite nano flakes 122a are complex plated on the surface thereof.
다음으로 도금된 그래파이트 나노 플레이크(122a)를 열처리함으로써 제1 그래핀(122)을 형성(합성)하게 되는데, 이 때 열처리 방법으로는 마이크로파 조사 및/또는 IPL(Intensed Pulse Light) 조사가 이용될 수 있으며, 그 외의 다양한 열원이 이용될 수 있다. 여기에서 '및/또는'이라고 기재한 까닭은 상기 열원으로 마이크로파 조사만을 행하거나, IPL 조사만을 행하거나, 둘 다 행하는 것 모두가 가능하기 때문이다.Next, the first graphene 122 is formed (synthesized) by heat-treating the plated graphite nano flakes 122a. In this case, microwave irradiation and / or IPL (Intensed Pulse Light) irradiation may be used. And various other heat sources may be used. The reason for describing 'and / or' herein is that only microwave irradiation, only IPL irradiation, or both can be performed with the heat source.
마이크로파 조사는 라디오파와 적외선 사이의 파장을 가진 전자기파에 클라이스트론과 마그네트론에 의해 발생되는 파장이 1mm와 0.1m 사이의 전자기 방사에 해당하는 것으로, 마이크로파를 이용한 가열방식은 주파수를 흡수하는 물질만 선택적으로 진동시키는 방식으로 물질을 가열할 수 있는 장점을 갖는다. 따라서 복합도금층(120) 형성시에 그래파이트 나노 플레이크(122a)만을 선택 가열할 수 있다는 장점을 갖는다. Microwave irradiation corresponds to the electromagnetic radiation generated between Klystron and Magnetron with electromagnetic wave having a wavelength between radio wave and infrared ray. The microwave heating method selectively vibrates only the material that absorbs frequency. Has the advantage of heating the material in such a way as to. Therefore, when the composite plating layer 120 is formed, only the graphite nano flakes 122a may be selectively heated.
한편, IPL 조사는 350nm 내지 1200nm이 넓은 대역의 빛을 발생시키는 플래시 램프 또는 제논 램프(xenon lamp)를 이용하는 백색단파장 열원을 의미한다. 상기 IPL 조사는 급속도로 펄스를 바꾸어주며 그래파이트 나노 플레이크(122a)를 가열시킬 수 있는 장점을 갖는다. On the other hand, IPL irradiation refers to a white short wavelength heat source using a flash lamp or xenon lamp to generate light in a wide band of 350nm to 1200nm. The IPL irradiation has the advantage of rapidly changing the pulse and heating the graphite nano flakes 122a.
즉, 표면에 금속(121) 및 그래파이트 나노 플레이크(122a)가 도금 형성된 금속 선재(110)를 열처리 장비(20, 마이크로파 조사 장비, IPL 조사 장비 등)를 통과시켜 열처리함으로써, 제1 그래핀(122)을 형성할 수 있으며 이로써 복합도금층(120)이 완성된다. That is, the first graphene 122 is formed by heat-treating the metal wire 110 formed by plating the metal 121 and the graphite nano flakes 122a on a surface thereof through a heat treatment equipment (20, microwave irradiation equipment, IPL irradiation equipment, etc.). ) May be formed, thereby completing the composite plating layer 120.
한편, 상기 열처리 공정에 있어서 반응 온도를 낮추기 위하여 상기 전해액(11)에는 이온성 액체가 추가적으로 첨가될 수 있다. 상기 이온성 액체는 상온에서 이온들의 결합으로 구성되었음에도 액체 상태로 존재하는 물성을 지닌 물질을 의미한다. Meanwhile, an ionic liquid may be additionally added to the electrolyte solution 11 in order to lower the reaction temperature in the heat treatment process. The ionic liquid refers to a material having physical properties in a liquid state even though it is composed of a combination of ions at room temperature.
상기 이온성 액체는 하기 [화학식 1] 을 포함할 수 있다.The ionic liquid may include the following [Formula 1].
화학식 1
Figure PCTKR2014008601-appb-C000001
Formula 1
Figure PCTKR2014008601-appb-C000001
상기 [화학식 1]은 이미다졸리움계(imidazolium) 이온성 액체로, R1 및 R2 는 동일하거나 또는 상이하고, 수소 또는 탄소수 1 내지 16의 탄화수소기를 나타낸고, 헤테로원자를 포함하는 것도 가능하다. 한편, X-는 이온성 액체의 음이온을 나타낸다. [Formula 1] is an imidazolium ionic liquid, R 1 and R 2 are the same or different, represent hydrogen or a hydrocarbon group of 1 to 16 carbon atoms, it may also contain a heteroatom . On the other hand, X represents an anion of an ionic liquid.
상기 [화학식 1]의 양이온은 1,3-다이메틸이미다졸륨, 1,3-다이에틸이미다졸륨, 1-에틸-3-메틸이미다졸륨, 1-부틸-3-메틸이미다졸륨, 1-헥실-3-메틸이미다졸륨, 1-옥틸-3-메틸이미다졸륨, 1-데실-3-메틸이미다졸륨, 1-도데실-3-메틸이미다졸륨 및 1-테트라데실-3-메틸이미다졸륨으로 이루어진 군에서 선택되는 적어도 하나를 포함할 수 있다. The cation of [Formula 1] is 1,3-dimethylimidazolium, 1,3-diethylimidazolium, 1-ethyl-3-methylimidazolium, 1-butyl-3-methylimidazolium, 1-hexyl-3-methylimidazolium, 1-octyl-3-methylimidazolium, 1-decyl-3-methylimidazolium, 1-dodecyl-3-methylimidazolium and 1-tetradecyl- It may include at least one selected from the group consisting of 3-methylimidazolium.
상기 [화학식 1]의 음이온은 유기 음이온 또는 무기 음이온일 수 있다. 상기 음이온은 Br-, Cl-, I-, BF4 -, PF6 -, ClO4 -, NO3 -, AlCl4 -, Al2Cl7 -, AsF6 -, SbF6 -, CH3COO-, CF3COO-, CH3SO3 -, C2H5SO3 -, CH3SO4 -, C2H5SO4 -, CF3SO3 -, (CF3SO2)2N-, (CF3SO2)3C-, (CF3CF2SO2)2N-, C4F9SO3 -, C3F7COO- 및 (CF3SO2)(CF3CO)N-로 이루어진 군에서 선택되는 적어도 하나를 포함할 수 있다.The anion of [Formula 1] may be an organic anion or an inorganic anion. The anion is Br -, Cl -, I - , BF 4 -, PF 6 -, ClO 4 -, NO 3 -, AlCl 4 -, Al 2 Cl 7 -, AsF 6 -, SbF 6 -, CH 3 COO - , CF 3 COO -, CH 3 SO 3 -, C 2 H 5 SO 3 -, CH 3 SO 4 -, C 2 H 5 SO 4 -, CF 3 SO 3 -, (CF 3 SO 2) 2 N -, (CF 3 SO 2) 3 C -, (CF 3 CF 2 SO 2) 2 N -, C 4 F 9 SO 3 -, C 3 F 7 COO - , and (CF 3 SO 2) (CF 3 CO) N - It may include at least one selected from the group consisting of.
상기 이온성 액체는 하기 [화학식 2]를 포함할 수 있다. 하기 [화학식 2]는 상기 [화학식 1]과 같이 포함되거나, 선택적으로 포함될 수 있다. The ionic liquid may include the following [Formula 2]. [Formula 2] may be included as in [Formula 1] or optionally included.
화학식 2
Figure PCTKR2014008601-appb-C000002
Formula 2
Figure PCTKR2014008601-appb-C000002
상기 [화학식 2]는 피리디늄계(pyridinium) 이온성 액체로, R3 및 R4 는 동일하거나 또는 상이하고, 수소 또는 탄소수 1 내지 16의 탄화수소기를 나타낸고, 헤테로원자를 포함하는 것도 가능하다. 한편, X-는 이온성 액체의 음이온을 나타낸다.[Formula 2] is a pyridinium-based ionic liquid, R 3 and R 4 are the same or different, represent hydrogen or a hydrocarbon group of 1 to 16 carbon atoms, it may also contain a heteroatom. On the other hand, X represents an anion of an ionic liquid.
상기 [화학식 2]의 양이온은 1-메틸피리디늄, 1-에틸피리디늄, 1-부틸피리디늄, 1-에틸-3-메틸피리디늄, 1-부틸-3-메틸피리디늄, 1-헥실-3-메틸피리디늄 및 1-부틸-3,4-디메틸피리디늄으로 이루어진 군에서 선택되는 적어도 하나를 포함할 수 있다. The cation of [Formula 2] is 1-methylpyridinium, 1-ethylpyridinium, 1-butylpyridinium, 1-ethyl-3-methylpyridinium, 1-butyl-3-methylpyridinium, 1-hexyl- It may include at least one selected from the group consisting of 3-methylpyridinium and 1-butyl-3,4-dimethylpyridinium.
상기 [화학식 2]의 음이온은 유기 음이온 또는 무기 음이온일 수 있다. 상기 음이온은 상기 [화학식 1]의 음이온과 동일 또는 유사할 수 있으므로 중복 설명은 생략하도록 한다(이상 1단계).The anion of [Formula 2] may be an organic anion or an inorganic anion. Since the anion may be the same as or similar to the anion of [Formula 1], duplicate description will be omitted (step 1 above).
금속 선재(110) 표면에 복합도금층(120)을 형성한 다음에는, 복합도금층(120) 표면에 제2 그래핀을 코팅 형성함으로써 그래핀 코팅층(130, 도 1 참조)을 형성한ㄷ. 이 때, 제2 그래핀을 코팅 형성하는 방법은 특정되지 않으며 공지의 방법들을 이용하는 것이 가능하다. After the composite plating layer 120 is formed on the surface of the metal wire 110, the graphene coating layer 130 (see FIG. 1) is formed by coating a second graphene on the surface of the composite plating layer 120. At this time, the method of coating the second graphene is not specified and it is possible to use known methods.
예컨대 제2 그래핀을 코팅 형성하는 방법으로 CVD(화학기상증착법) 방식을 이용할 수 있으며, 여기에서 상기 CVD 방식은 고속화학기상증착(RTCVD), 유도결합플라즈마 화학기상증착(ICP-CVD), 저압 화학기상증착(LPCVD), 상압화학기상증착(APCVD), 금속 유기화학기상증착(MOCVD), 화학기상증착(PECVD), 촉매 표면 위 전류 직접가열 화학기상상증착법(Current feeding CVD) 또는 롤투롤(Roll-to-Roll) 화학기상증착 방식(Kobayashi et al, Appl.Phys.Lett.102,023112, 2013)등이 있을 수 있다. 이러한 CVD 방식은 복합도금층(120)이 형성된 금속 선재(110)를 로(Furnace)에 넣고, 탄소 소스(메탄, 에탄 등)를 포함하는 반응가스를 공급하고 상압에서 열처리 함으로서 복합도금층(120) 표면에 제2 그래핀을 합성할 수 있다. 이 때, 복합도금층(120)에 존재하는 제1 그래핀은 제2 그래핀 합성을 위한 탄소 소스를 공급하는 기능을 할 수 있다.For example, CVD (Chemical Vapor Deposition) can be used as a method of coating the second graphene, wherein the CVD method is a high-speed chemical vapor deposition (RTCVD), inductively coupled plasma chemical vapor deposition (ICP-CVD), low pressure Chemical Vapor Deposition (LPCVD), Atmospheric Chemical Vapor Deposition (APCVD), Metal Organic Chemical Vapor Deposition (MOCVD), Chemical Vapor Deposition (PECVD), Current Direct Heating on the Catalyst Surface (Current feeding CVD) or Roll-to-Roll ( Roll-to-Roll) chemical vapor deposition (Kobayashi et al, Appl. Phys. Lett. 102,023112, 2013). In the CVD method, the metal wire 110 having the composite plating layer 120 formed is placed in a furnace, and a reaction gas including a carbon source (methane, ethane, etc.) is supplied and heat treated at atmospheric pressure to thereby surface the composite plating layer 120. In the second graphene can be synthesized. In this case, the first graphene present in the composite plating layer 120 may serve to supply a carbon source for synthesizing the second graphene.
상술한 CVD 방식 이외에도 상술한 마이크로파 조사 및 IPL 조사 중 적어도 1 이상의 열원을 통해 제2 그래핀을 합성할 수 있다. In addition to the CVD method described above, the second graphene may be synthesized through at least one heat source of the microwave irradiation and the IPL irradiation.
예컨대, 복합도금층(120) 표면에 탄소 고체 소스를 포함하는 고분자층(131)을 코팅하고, 고분자층(131)을 마이크로파 조사 및 IPL 조사 중 적어도 1 이상의 열원을 통해 가열함으로써 제2 그래핀을 형성할 수 있다. 도 2의 우측에는 복합도금층(120)이 형성된 금속 선재(110)를 롤투롤 방식으로 이동시켜 반응 용기(30)에 디핑(dipping)시킴으로써 표면에 고분자층(131)을 형성되는 모습을 도시하고 있다. 물론 고분자층(131)의 형성은 디핑 이외에도 스핀코팅, 스프레이 코팅과 같은 통상의 코팅 방법을 이용하여 형성될 수도 있다. For example, a second graphene is formed by coating a polymer layer 131 including a carbon solid source on the surface of the composite plating layer 120 and heating the polymer layer 131 through at least one heat source of microwave irradiation and IPL irradiation. can do. 2 illustrates a state in which the polymer layer 131 is formed on the surface by moving the metal wire 110 having the composite plating layer 120 formed in a roll-to-roll manner and dipping the reaction vessel 30. . Of course, the polymer layer 131 may be formed using a conventional coating method such as spin coating and spray coating in addition to dipping.
여기에서 고분자층(131)은 그래핀 합성을 위한 시드층 역할을 수행하는 것으로, 고분자층(131)에 포함되는 탄소 고체 소스는 높은 온도를 받으면 고분자의 화학구조 중 일부가 분해되어 화학결합이 재배열되고 C-C 결합의 고리화가 진행되어 그래핀을 합성하는 역할을 한다. 상기 탄소 고체 소스는 메탄, 에탄 등이 있으며, 고분자층(131)의 종류로는 폴리메타크릴레이트(PMMA), 폴리스티렌(PS), 아크릴로니트릴부타디엔스티렌(ABS), 폴리이미드(PI), 또는 부틸트리에톡시실란, 트리클로로옥틸실란, 트리클로로옥타테실실란, 트리메톡시페닐실란과 같은 자기조립단분자막(SAM)일 수 있다. Here, the polymer layer 131 serves as a seed layer for graphene synthesis. When the carbon solid source included in the polymer layer 131 receives a high temperature, a part of the chemical structure of the polymer is decomposed and chemical bonds are recombined. It is arranged and the ring of the CC bond proceeds to play a role in synthesizing graphene. The carbon solid source may be methane, ethane, and the like, and the polymer layer 131 may include polymethacrylate (PMMA), polystyrene (PS), acrylonitrile butadiene styrene (ABS), polyimide (PI), or Self-assembled monolayer (SAM) such as butyltriethoxysilane, trichlorooctylsilane, trichlorooctatesilane, and trimethoxyphenylsilane.
고분자층(131)의 형성후에는 제1 그래핀을 합성하는 것과 마찬가지의 방법으로 마이크로파 조사 및/또는 IPL 조사를 통하여 제2 그래핀을 합성할 수 있으며, 이에 대해서는 상술하였으므로 중복 설명을 생략하도록 한다(이상 2단계). After the formation of the polymer layer 131, the second graphene may be synthesized through microwave irradiation and / or IPL irradiation in the same manner as the synthesis of the first graphene, and the description thereof will be omitted. (More than 2 steps).
상기와 같이 금속 선재(110)의 표면에 복합도금층(120) 및 제2 그래핀을 적층한 후에는 상기 제2 그래핀을 감싸도록 절연 외피층을 형성하는 공정을 더 포함할 수 있다. 상기 절연 외피층은 복합도금층(120) 및 제2 그래핀을 보호함으로써 동축 케이블의 기능을 유지시킨다(이상 3단계).After stacking the composite plating layer 120 and the second graphene on the surface of the metal wire 110 as described above, the method may further include forming an insulating envelope layer to surround the second graphene. The insulating outer layer protects the composite plating layer 120 and the second graphene to maintain the function of the coaxial cable (3 steps above).
상술한 바와 같이, 본 발명의 실시예들은 동축 케이블의 코어에 해당하는 금속 선재에 금속 및 그래핀이 혼합된 형태의 복합도금층을 형성하고, 상기 복합도금층 상부에 그래핀층을 형성함으로써 동축 케이블에 금속 및 그래핀 형성에 따른 기능성을 부여하여 전기적, 열적, 기계적 특성을 향상시킬 수 있다.As described above, embodiments of the present invention to form a composite plating layer of a mixture of metal and graphene in a metal wire corresponding to the core of the coaxial cable, and to form a graphene layer on the composite plating layer to form a metal on the coaxial cable And imparting functionality according to graphene formation to improve electrical, thermal, and mechanical properties.
또한, 그래핀 코팅층 형성에 있어 마이크로파 조사 및 IPL 조사와 같은 저온 공정과 다양한 종류의 CVD 방식을 이용할 수 있다.In addition, in forming the graphene coating layer, low temperature processes such as microwave irradiation and IPL irradiation and various kinds of CVD methods may be used.
이상, 본 발명의 실시예들에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면 특허청구범위에 기재된 본 발명의 사상으로부터 벗어나지 않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이며, 이 또한 본 발명의 권리범위 내에 포함된다고 할 것이다.As described above, embodiments of the present invention have been described, but those skilled in the art may add, change, delete, or add elements within the scope not departing from the spirit of the present invention described in the claims. The present invention may be modified and changed in various ways, etc., which will also be included within the scope of the present invention.

Claims (8)

  1. 코어에 위치하는 금속 선재;A metal wire located in the core;
    상기 금속 선재와 동종 또는 이종 금속과, 제1 그래핀이 혼합된 형태를 갖는 것으로, 상기 금속 선재 표면에 도금 형성되는 복합도금층; 및A composite plating layer having a form in which a same type or different type of metal wire, a different type of metal, and first graphene are mixed and plated on the surface of the metal wire; And
    상기 복합도금층 표면에 제2 그래핀이 코팅 형성되는 그래핀 코팅층을 포함하는 동축 케이블.A coaxial cable comprising a graphene coating layer on which the second graphene coating is formed on the surface of the composite plating layer.
  2. 청구항 1에 있어서, The method according to claim 1,
    상기 금속 선재는 구리 선재이고, 상기 이종 금속은 알루미늄, 니켈, 금, 은, 팔라듐, 크롬 중에서 선택되는 동축 케이블.The metal wire is a copper wire, the dissimilar metal is coaxial cable selected from aluminum, nickel, gold, silver, palladium, chromium.
  3. 금속 선재를 상기 금속 선재와 동종 또는 이종 금속과, 그래파이트 나노플레이크, 그래핀 옥사이드, 환원된 그래핀 옥사이드 또는 그래핀 나노플레이트렛이 분산된 전해액을 통과시켜 전해도금(electro plating)을 실시함으로써, 상기 금속 선재 표면에 상기 금속과 제1 그래핀이 혼합된 형태를 갖는 복합도금층을 형성하는 1단계; 및The electroplating is performed by passing a metal wire through an electrolytic solution in which homogeneous or dissimilar metals with the metal wire and graphite nanoflakes, graphene oxide, reduced graphene oxide or graphene nanoplatelets are dispersed. Forming a composite plating layer having a form in which the metal and the first graphene are mixed on a metal wire surface; And
    상기 복합도금층 표면에 제2 그래핀을 코팅 형성하는 2단계를 포함하는 동축 케이블 제조방법.A coaxial cable manufacturing method comprising the step of forming a coating coating a second graphene on the surface of the composite plating layer.
  4. 청구항 3에 있어서,The method according to claim 3,
    상기 1단계는 상기 전해액에 이종 금속 및 그래파이트 나노플레이크가 분산된 경우에는 상기 전해 도금 후에 상기 그래파이트 나노플레이크를 열처리함으로써 제1 그래핀을 형성하고, In the first step, when the dissimilar metal and the graphite nanoflakes are dispersed in the electrolyte, the first graphene is formed by heat treating the graphite nanoflakes after the electrolytic plating.
    상기 열처리 방법은 마이크로파 조사 및/또는 IPL(Intensed Pulse Light) 조사인 동축 케이블 제조방법.The heat treatment method is microwave irradiation and / or IPL (Intensed Pulse Light) irradiation coaxial cable manufacturing method.
  5. 청구항 3 또는 청구항 4에 있어서, The method according to claim 3 or 4,
    상기 전해액에는 이온성 액체가 더 첨가되고, An ionic liquid is further added to the electrolyte solution,
    상기 이온성 액체는 하기 [화학식 1] 및/또는 하기 [화학식 2]를 포함하는 동축 케이블 제조방법.The ionic liquid is a coaxial cable manufacturing method comprising the following [formula 1] and / or [formula 2].
    [화학식 1][Formula 1]
    Figure PCTKR2014008601-appb-I000001
    Figure PCTKR2014008601-appb-I000001
    (여기에서, R1 및 R2 는 동일하거나 또는 상이하고, 수소 또는 탄소수 1 내지 16의 탄화수소기를 나타냄. 또한, 헤테로원자를 포함할 수도 있음. 한편, X-는 이온성 액체의 음이온을 나타냄.(Wherein R 1 and R 2 are the same or different and represent hydrogen or a hydrocarbon group of 1 to 16 carbon atoms. It may also contain heteroatoms. On the other hand, X represents an anion of an ionic liquid.
    [화학식 2][Formula 2]
    Figure PCTKR2014008601-appb-I000002
    Figure PCTKR2014008601-appb-I000002
    (여기에서, R3 및 R4 는 동일하거나 또는 상이하고, 수소 또는 탄소수 1 내지 16의 탄화수소기를 나타냄. 또한, 헤테로원자를 포함할 수도 있음. 한편, X-는 이온성 액체의 음이온을 나타냄.)Wherein R 3 and R 4 are the same or different and represent hydrogen or a hydrocarbon group of 1 to 16 carbon atoms, and may also contain heteroatoms, while X represents an anion of an ionic liquid. )
  6. 청구항 5에 있어서, The method according to claim 5,
    상기 2단계는 상기 복합도금층 표면에 탄소 고체 소스를 포함하는 고분자층을 코팅하는 2-1단계; 및Step 2-1 includes coating a polymer layer including a carbon solid source on the surface of the composite plating layer; And
    상기 고분자층을 마이크로파 조사 및 IPL(Intensed Pulse Light) 조사 중 적어도 1 이상의 열원을 통해 가열함으로써 제2 그래핀을 형성하는 2-2단계를 포함하는 동축 케이블 제조방법.And forming a second graphene by heating the polymer layer through at least one or more heat sources of microwave irradiation and IPL (Intensed Pulse Light) irradiation.
  7. 청구항 5에 있어서, The method according to claim 5,
    상기 2단계는 CVD(화학기상증착법) 방식에 의해 이루어지고, 상기 CVD 방식은 고속 화학기상증착(RTCVD), 저압 화학기상증착(LPCVD), 상압 화학기상증착(APCVD),촉매 표면 위 전류 직접가열 화학기상상증착법(Current feeding CVD), 등 롤투롤(Roll-to-Roll) 화학기상증착 방식을 포함하는 동축 케이블 제조방법.The second step is performed by CVD (chemical vapor deposition) method, the CVD method is a high-speed chemical vapor deposition (RTCVD), low pressure chemical vapor deposition (LPCVD), atmospheric chemical vapor deposition (APCVD), direct current heating on the catalyst surface Chemical feeding method (Current feeding CVD), etc. Coaxial cable manufacturing method including a roll-to-roll chemical vapor deposition method.
  8. 청구항 5에 있어서, The method according to claim 5,
    상기 제2 그래핀을 감싸는 절연 외피층을 형성하는 3단계를 더 포함하는 동축 케이블 제조방법.The coaxial cable manufacturing method further comprising the step of forming an insulating outer layer surrounding the second graphene.
PCT/KR2014/008601 2013-09-23 2014-09-16 Coaxial cable including graphene coating layer and manufacturing method therefor WO2015041439A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0112375 2013-09-23
KR20130112375A KR101503283B1 (en) 2013-09-23 2013-09-23 Coaxial cable comprising graphene coating layer and method the same

Publications (1)

Publication Number Publication Date
WO2015041439A1 true WO2015041439A1 (en) 2015-03-26

Family

ID=52689055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/008601 WO2015041439A1 (en) 2013-09-23 2014-09-16 Coaxial cable including graphene coating layer and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR101503283B1 (en)
WO (1) WO2015041439A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3104369A1 (en) * 2015-06-09 2016-12-14 Korea Institute of Science and Technology Composite electric wire structure and method for manufacturing the same
IT201700020695A1 (en) * 2017-03-14 2018-09-14 Vincenzo Tagliaferri New electrical or data transmission cables with high electrical conductivity and / or high data transmission speed.
US10714231B2 (en) 2016-07-26 2020-07-14 Haesung Ds Co., Ltd. Graphene wire, cable employing the same, and method of manufacturing the same
WO2021066761A1 (en) * 2019-10-03 2021-04-08 Sakar Murat A copper wire with increased conductivity by electrophoretic storage method using graphene conductivity and a method for production
IT202000012319A1 (en) 2020-05-26 2021-11-26 Domenico Barbieri WIRES, STRANDS, RIGID AND FLEXIBLE ROPES WITH HIGH ELECTRICAL, PHYSICO-CHEMICAL AND ENVIRONMENTAL PERFORMANCES FOR THE PURPOSES OF ELECTRIC CONDUCTION, AND A METHOD FOR THEIR PREPARATION.

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170028036A (en) * 2015-09-03 2017-03-13 전자부품연구원 Graphene-covered metal wire and manufacturing method thereof
KR20180014554A (en) * 2016-08-01 2018-02-09 해성디에스 주식회사 Graphene wire and Manufacturing method thereof
KR20240027948A (en) 2022-08-24 2024-03-05 재단법인 한국탄소산업진흥원 GnP/carbon fiber/TPU composite electromagnetic wave shielding film and method for manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100748228B1 (en) * 2006-02-28 2007-08-09 한국과학기술원 Method of making metal/carbon nanotube composite materials by electroplating
KR20120137844A (en) * 2011-06-13 2012-12-24 엘에스전선 주식회사 Insulation cable including graphene coating layer
KR20130058389A (en) * 2011-11-25 2013-06-04 전자부품연구원 Method for metal wire with graphene surface

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100748228B1 (en) * 2006-02-28 2007-08-09 한국과학기술원 Method of making metal/carbon nanotube composite materials by electroplating
KR20120137844A (en) * 2011-06-13 2012-12-24 엘에스전선 주식회사 Insulation cable including graphene coating layer
KR20130058389A (en) * 2011-11-25 2013-06-04 전자부품연구원 Method for metal wire with graphene surface

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3104369A1 (en) * 2015-06-09 2016-12-14 Korea Institute of Science and Technology Composite electric wire structure and method for manufacturing the same
US9905331B2 (en) 2015-06-09 2018-02-27 Korea Institute Of Science And Technology Composite electric wire structure and method for manufacturing the same
US10714231B2 (en) 2016-07-26 2020-07-14 Haesung Ds Co., Ltd. Graphene wire, cable employing the same, and method of manufacturing the same
IT201700020695A1 (en) * 2017-03-14 2018-09-14 Vincenzo Tagliaferri New electrical or data transmission cables with high electrical conductivity and / or high data transmission speed.
WO2018167041A1 (en) 2017-03-14 2018-09-20 Vincenzo Tagliaferri Electric or data transmission cables having high electrical conductivity and/or high data transmission speed
WO2021066761A1 (en) * 2019-10-03 2021-04-08 Sakar Murat A copper wire with increased conductivity by electrophoretic storage method using graphene conductivity and a method for production
IT202000012319A1 (en) 2020-05-26 2021-11-26 Domenico Barbieri WIRES, STRANDS, RIGID AND FLEXIBLE ROPES WITH HIGH ELECTRICAL, PHYSICO-CHEMICAL AND ENVIRONMENTAL PERFORMANCES FOR THE PURPOSES OF ELECTRIC CONDUCTION, AND A METHOD FOR THEIR PREPARATION.
WO2021239658A1 (en) 2020-05-26 2021-12-02 Barbieri Domenico Wires, strands, rigid and flexible ropes having high electric, physico-chemical and environmental performances

Also Published As

Publication number Publication date
KR101503283B1 (en) 2015-03-17

Similar Documents

Publication Publication Date Title
WO2015041439A1 (en) Coaxial cable including graphene coating layer and manufacturing method therefor
Jarosz et al. Carbon nanotube wires and cables: near-term applications and future perspectives
Molina et al. Conducting fabrics of polyester coated with polypyrrole and doped with graphene oxide
Zhang et al. Study on the synthesis of PANI/CNT nanocomposite and its anticorrosion mechanism in waterborne coatings
EP3104369B1 (en) Composite electric wire structure and method for manufacturing the same
KR20140033555A (en) Method for separating carbon nanotubes
Soni et al. Microarchitectures of carbon nanotubes for reversible Na plating/stripping toward the development of room‐temperature Na–S batteries
US20130048337A1 (en) Carbon-based substrates with organometallic fillers
WO2017039055A1 (en) Graphene composite metal wire and method for manufacturing same
CN114835932B (en) Copper nanowire/aramid nanofiber composite conductive film and preparation method thereof
WO2017159917A1 (en) Method for fabricating electrically conductive carbon paper
CN107887060A (en) The data center power sources light-duty fire-resisting flexible cable of graphene copper composite core
JP2015504485A (en) Conductive members using carbon-based substrate coating
WO2019083665A1 (en) Lightweight carbon nanotube cable comprising a pair of plated twisted wires
KR101561639B1 (en) Cables having a coating layer of graphene
WO2024025065A1 (en) Heating cable
US10395791B2 (en) Electrically conductive nanowire Litz braids
KR101517811B1 (en) Heat dissipation carbon typed sheet and method the same
Guo et al. Fabrication of high-performance carbon nanotube/copper composite fibers by interface thiol-modification
DE4104325A1 (en) METHOD FOR PRODUCING A RESISTANT ELECTRICALLY INSULATING COATING ON COPPER MATERIAL SURFACES
Sarvi et al. Facile one step‐synthesis and characterisation of high aspect ratio core‐shell copper‐polyaniline nanowires
JP4729708B2 (en) Carbon fiber-conductive polymer composite film and method for producing the same
CN204792036U (en) Enameled wire with dysmorphism cross section
Patil et al. Investigations on Nanocomposites of Silver Nanosticks and Polyaniline for Supercapacitor Application
Krukiewicz et al. Poly (3, 4-ethylenedioxythiophene) growth on the surface of horizontally aligned MWCNT electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14846258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14846258

Country of ref document: EP

Kind code of ref document: A1