WO2017159917A1 - Method for fabricating electrically conductive carbon paper - Google Patents

Method for fabricating electrically conductive carbon paper Download PDF

Info

Publication number
WO2017159917A1
WO2017159917A1 PCT/KR2016/004032 KR2016004032W WO2017159917A1 WO 2017159917 A1 WO2017159917 A1 WO 2017159917A1 KR 2016004032 W KR2016004032 W KR 2016004032W WO 2017159917 A1 WO2017159917 A1 WO 2017159917A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon paper
carbon
electrical conductivity
conductivity
thermal conductivity
Prior art date
Application number
PCT/KR2016/004032
Other languages
French (fr)
Korean (ko)
Inventor
권용범
권성은
Original Assignee
권용범
(주)시엔케이
권성은
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 권용범, (주)시엔케이, 권성은 filed Critical 권용범
Publication of WO2017159917A1 publication Critical patent/WO2017159917A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/23Oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Definitions

  • 'PI' film plastic materials such as polyimide film (hereinafter referred to as 'PI' film), which are excellent in heat resistance, chemical resistance, and electrical insulation, are calcined at a very high temperature of 2000 ° C or higher through a specific process, the original material It is changed to a carbon compound having a super thermal conductivity different from that of a carbon sheet (carbon sheet such as PGS (Pyrolytic Graphite Sheet), hereinafter referred to as 'Carbon-Paper').
  • carbon sheet such as PGS (Pyrolytic Graphite Sheet)
  • Such carbon paper has excellent thermal conductivity and electrical conductivity.
  • the electrical conductivity is significantly lower than that of conductive metals such as copper (Cu) and aluminum (Al).
  • the present invention is to enhance the electrical conductivity properties of the 'carbon paper' to the level of the conductive metal, and the additives are grafted into the raw material (plastic, such as PI, etc.) or the finished material 'carbon paper' by physical or chemical processes.
  • the present invention relates to a technique for increasing electrical conductivity.
  • polyimides have attracted attention as future core materials in IT and aerospace because of their excellent electrical insulation, high thermal stability and excellent mechanical properties, and have been used as advanced high-performance industrial materials.
  • strength, flexibility, and non-igniting self-extinguishing in a wide temperature range from minus 269 ° C. to 400 ° C. have been known as the most excellent materials in existing plastics.
  • the PI film when fired at a very high temperature of 2000 °C or higher through a specific process, it is changed into a carbon material, that is, a carbon paper, having properties different from those of the original PI film.
  • Carbon film produced in this way has high thermal conductivity (more than 1000W) and heat dissipation characteristics unlike the existing PI film, and has electrical conductivity as opposed to the inherent characteristics of PI, which was excellent in electrical insulation. Appears much lower than.
  • diamond is very good in thermal conductivity while insulator and CNT is good in electrical conductivity.
  • Electroconductive carbon paper pursued in the present invention is to increase the applicability by having an excellent electrical conductivity with high thermal conductivity.
  • the present invention aims to make the carbon paper fundamentally conductive in a simple and low cost.
  • carbon materials having excellent electrical conductivity are used to increase the electrical conductivity of carbon paper to a level similar to that of a general conductive metal.
  • CNT Carbon nano tube
  • conductive metal powder conductive metal powder
  • graphene powder etc.
  • PI film By making a PI film by mixing it into a PI chip, which is the raw material of paper, 'Carbon Paper' made of the film after ultra-high temperature firing improves its electrical conductivity, or various methods of vacuum on the surface of 'Carbon Paper'
  • the present invention relates to increasing the electrical conductivity of 'carbon paper' at low cost by depositing and coating conductive materials by deposition or plating.
  • the method of mixing the conductive material may use a chemical or physical method.
  • the PI is manufactured in the form of a wire
  • a carbon wire having excellent electrical conductivity and thermal conductivity can be produced.
  • Carbon wire manufactured in this way can replace the existing copper wire, especially when combined with the transmission line, the advantages can be dramatically exhibited.
  • 1 is a manufacturing process of the PI film and PI roll using a PI (Chip).
  • FIG. 2 is a process chart of making a chip by mixing a PI chip and an electrically conductive material (Dopant).
  • 3 is a process chart made in the form of film and roll using a doped chip.
  • the thermal conductivity is more than 5 times that of copper, and the carbon paper (PGS (Pyrolytic Graphite Sheet) such as PGS (Pyrolytic Graphite Sheet)) with excellent physical and chemical properties has the same electrical conductivity as the material with high electrical conductivity such as copper or aluminum. It is.
  • Polyimide (PI) a raw material of 'carbon paper', has been attracting attention as a core material of future industries due to its excellent electrical insulation, high thermal stability and excellent mechanical properties.
  • the PI film When the PI film is fired at an ultra-high temperature of 2000 °C or higher, it is converted into a 'carbon paper' composed of carbon having properties different from those of the original PI film.
  • the carbon paper produced in this way has excellent thermal conductivity (more than 1000W) as opposed to the physical properties of the existing PI film, and also exhibits electrical conductivity. .
  • the method to be realized in the present invention may be divided into three types, which are distinguished from the existing methods.
  • plastic materials such as PI film, which is the raw material of 'carbon paper', and inducing electrical conductivity
  • PI film which is the raw material of 'carbon paper'
  • 'Conductive metal film is formed on the surface.
  • Ion-Implanter is used to inject ION to enhance the conductive properties on the' carbon paper 'surface.
  • PI film is made by passing a PI made in the form of a chip as shown in FIG. 1 through a film molding machine.
  • the method to be implemented in the present invention first, the raw material of the PI chip as shown in [2] Dopant (metal powder or CNT (Carbon nano tube), and graphene (Graphene) powder) and excellent electrical conductivity New chips are made by mixing in a manner such as dispersion (Diffusion).
  • the chip thus made is made into a film form by passing through a film molding machine as shown in FIG.
  • Dopant injected into the raw material PI in the above-mentioned manner acts as a factor inducing electrical conductivity during the ultra-high temperature firing process where carbon paper is formed, thereby changing carbon paper into a highly conductive molecular structure, or It itself serves to increase conductivity.
  • the gas atmosphere dopant injection method which is commonly used in semiconductor processes, is a method of increasing the electrical conductivity by first converting the dopant into a gas form and plastically manufacturing 'carbon paper' in the gas. .
  • Dopant Gas is not easy to input into raw materials because the carbon paper is made at a very high temperature of more than 2000 °C and the thermal energy of carbon paper itself is too high. That is, the energy of the dopant gas is small, which makes it difficult to inject the dopant.
  • the dopant can be easily injected into the raw material because the dopant is originally added in the manufacturing process of the raw material of the PI chip.
  • a PI chip is passed through a film molding machine to make a PI film.
  • the film thus made is made of carbon paper through an ultra-high temperature process of more than 2000 °C °C.
  • an electrically conductive film is formed by depositing a metal such as copper (Cu) and aluminum (Al) having high electrical conductivity on the surface by vacuum deposition as shown in FIG.
  • the carbon paper coated with the conductive metal has high electrical conductivity due to the metal coated on the surface thereof, and also has excellent thermal conductivity depending on the characteristics of the carbon paper itself.
  • the vacuum deposition method may use various methods such as PVD (Physical Vapor Deposition), CVD (Chemical Vapor Deposition).
  • the carbon paper has a basic electrical conductivity properties it can be used to form an electrically conductive metal film on the surface by using a metal plating method as shown in FIG.
  • Ion-Implanter is used to inject ION to enhance the conduction characteristics on the surface of 'carbon paper'.
  • This method is a method commonly used in semiconductor manufacturing processes and uses ion-implanters to inject specific ions that can increase electrical conductivity onto the surface of a target material, that is, carbon paper. By increasing the electrical conductivity on the surface.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Paper (AREA)

Abstract

When a plastic material that is excellent in terms of heat resistance, electric insulating property, chemical resistance, and the like, such as polyimide film, is sintered/processed through a specific process at a super-high temperature of 2000ºC or higher, the material changes characteristics and becomes "carbon paper", which is a carbon compound having super-thermal conductivity different from the original characteristics of the material. The carbon paper has a very excellent thermal conductivity and exhibits a degree of electric conductivity, but the electric conductivity is substantially lower than that of copper (Cu), aluminum (Al), or the like. A cutting-edge electronic product is, in some cases, required to have a power supplying or grounding function while being able to draw heat to a desired location within a short period of time. Such a case requires both high thermal conductivity and high electric conductivity. Such a request has conventionally been satisfied by bonding "carbon paper" and a conductive material, such as a copper or aluminum thin plate, by a physical or chemical method. However, the purpose of the present invention is to improve the electric conductivity of "carbon paper", in addition to its unique characteristics, by adding a process of injecting an electrically conductive dopant, a process of vacuum-depositing a highly electrically conductive metal, a plating process, a process of injecting electrically conductive inductive ions, or the like to the "carbon paper" fabricating process.

Description

전기전도성 카본페이퍼의 제작방법Manufacturing method of electrically conductive carbon paper
내열성, 내화학성, 전기절연성 등이 뛰어난 폴리이미드필름(Polyimide(이하‘PI'라 한다.) film)등의 플라스틱소재를 특정 공정을 통해 2000℃℃ 이상의 초고온으로 소성(燒成)하면 원래 그 소재가 가진 특성과는 다른 초 열전도 특성을 가진 카본(Carbon)화합물( PGS (Pyrolytic Graphite Sheet) 등의 카본시트, 이하‘카본페이퍼(Carbon-Paper)'라 한다.)로 변하게 된다.When plastic materials such as polyimide film (hereinafter referred to as 'PI' film), which are excellent in heat resistance, chemical resistance, and electrical insulation, are calcined at a very high temperature of 2000 ° C or higher through a specific process, the original material It is changed to a carbon compound having a super thermal conductivity different from that of a carbon sheet (carbon sheet such as PGS (Pyrolytic Graphite Sheet), hereinafter referred to as 'Carbon-Paper').
이러한 카본페이퍼는 열전도성이 뛰어나며 전기 전도성도 띄게 된다. 그러나 전기전도성에 있어서는 구리(Cu)나 알루미늄(Al) 등의 전도성 금속에 비해 현격히 낮은 특성을 가진다.Such carbon paper has excellent thermal conductivity and electrical conductivity. However, the electrical conductivity is significantly lower than that of conductive metals such as copper (Cu) and aluminum (Al).
본 발명은 이러한‘카본페이퍼’에 전기전도특성을 전도성금속 수준으로 높이기 위한 것으로 원소재(原素材, PI 등의 플라스틱)나 완성 소재인 ‘카본페이퍼’에 물리적 또는 그리고 화학적인 공정으로 첨가물을 접목함으로서 전기전도성을 높이는 기술에 관한 것이다.The present invention is to enhance the electrical conductivity properties of the 'carbon paper' to the level of the conductive metal, and the additives are grafted into the raw material (plastic, such as PI, etc.) or the finished material 'carbon paper' by physical or chemical processes. The present invention relates to a technique for increasing electrical conductivity.
미국의 NASA에서는 우주선 부품으로 사용하기위해 극한 환경에서 버틸 수 있는 플라스틱의 개발을 민간기업인 듀퐁에 의뢰하여 1964년 Kapton이라는 상품명으로 폴리이미드가 개발되었다.NASA in the United States commissioned DuPont, a private company, to develop a plastic that can withstand extreme conditions for use in spacecraft parts. Polyimide was developed in 1964 under the trade name Kapton.
이러한 폴리이미드는 뛰어난 전기절연성과 높은 열안정성 그리고 우수한 기계적 특성 등으로 IT 및 우주항공 분야에서 미래 핵심소재로 주목을 받아왔으며 첨단 고기능성 산업용 소재로 사용되어져왔다. 특히 영하 269℃℃에서 영상400℃℃까지의 광범위한 온도영역에서의 강도, 유연성, 불이 붙지 않는 자기소화성 등은 현존하는 플라스틱 중 가장 뛰어난 재료로 알려져 왔다.These polyimides have attracted attention as future core materials in IT and aerospace because of their excellent electrical insulation, high thermal stability and excellent mechanical properties, and have been used as advanced high-performance industrial materials. In particular, strength, flexibility, and non-igniting self-extinguishing in a wide temperature range from minus 269 ° C. to 400 ° C. have been known as the most excellent materials in existing plastics.
그러나 PI Film을 특정 공정을 통해 2000℃℃이상의 초고온으로 소성하게 되면 원래 PI Film이 가졌던 특성과는 다른 물성을 가진 탄소(Carbon)소재, 즉 ‘카본페이퍼’로 바뀌게 된다.However, when the PI film is fired at a very high temperature of 2000 ℃ or higher through a specific process, it is changed into a carbon material, that is, a carbon paper, having properties different from those of the original PI film.
이렇게 제작된 ‘카본페이퍼’는 기존의 PI Film과는 달리 높은 열전도성(1000W 이상)과 방열특성을 띄게 되며 전기절연성이 뛰어나던 PI의 고유특성과는 반대로 전기전도성을 가지게 되는데 구리 등의 전도성 물질보다는 훨씬 낮게 나타난다.Carbon film produced in this way has high thermal conductivity (more than 1000W) and heat dissipation characteristics unlike the existing PI film, and has electrical conductivity as opposed to the inherent characteristics of PI, which was excellent in electrical insulation. Appears much lower than.
카본화합물은 그라파이트(Graphite), 그래핀(Graphene), 다이아몬드(Diamond), 탄소나노튜브(CNT), 퓰러랜(Fullerene) 등의 다양한 형태로 존재하는데 그 물리적 화학적 특성은 판이하게 다른 특성을 가진다. 예를 들면, 다이아몬드는 열전도 특성이 아주 우수한 반면 절연체이고 CNT는 전기전도성이 우수하다.Carbon compounds exist in various forms such as graphite, graphene, diamond, carbon nanotube (CNT) and fullerene, and their physical and chemical properties have different characteristics. For example, diamond is very good in thermal conductivity while insulator and CNT is good in electrical conductivity.
본 발명에서 추구하는 전기전도성 카본페이퍼는 높은 열전도특성과 함께 뛰어난 전기전도특성을 가지게 함으로서 그 응용성을 높이는데 있다.Electroconductive carbon paper pursued in the present invention is to increase the applicability by having an excellent electrical conductivity with high thermal conductivity.
‘카본페이퍼’를 첨단 산업분야에 접목할 경우, 필요에 따라서는 빠른 시간에 열을 원하는 곳으로 뽑아내면서 동시에 전원 또는 접지의 기능으로 이용하기위한 전기전도성이 요구되기도 한다.Incorporating 'carbon paper' into high-tech industries demands the need for electrical conductivity to draw heat to the desired location at the same time and use it as a power or grounding function.
기존에는 이러한 요구에 대하여 ‘카본페이퍼’에 구리나 알미늄 박판(薄板) 등의 전기전도성 물질을 물리적 또는 화학적 방법으로 합착함으로서 그 문제를 해결 하였다. 그러나 이러한 방식은 별도의 소재(구리 등)와 합착공정이 부가되게 됨으로서 높은 비용 상승과 함께 공정의 복잡성 등으로 인해 많은 문제점들을 가지고 있다.In the past, this problem was solved by bonding electrically conductive materials such as copper or aluminum sheets to carbon paper by physical or chemical methods. However, this method has a number of problems due to the complexity of the process, such as a high cost increase due to the addition of a separate material (copper, etc.) and the bonding process.
그러나 본 발명은 간단하고 낮은 비용으로 ‘카본페이퍼’에 근본적으로 전기전도성을 가지게 하는데 그 목적이 있다.However, the present invention aims to make the carbon paper fundamentally conductive in a simple and low cost.
본 발명은 카본페이퍼가 기본적으로 가지고 있던 전기전도성을 일반적인 전도성 금속과 비슷한 수준으로 높이기 위해 전기전도특성이 뛰어난 물질(CNT(Carbon nano tube), 전도성 금속분말, 그래핀(Graphene)분말 등)을 카본페이퍼의 원 소재가 되는 PI 칩(chip)에 혼합하여 PI Film을 제작함으로서 초고온 소성 후 그 필름으로 제작된‘카본페이퍼’가 전기전도특성이 높아지도록 하거나, ‘카본페이퍼’표면에 다양한 방식의 진공증착방식 또는 그리고 도금방식으로 전도성물질을 증착, 코팅함으로서 낮은 비용으로 ‘카본페이퍼’의 전기전도성을 높이는 것에 관한 것이다.According to the present invention, carbon materials having excellent electrical conductivity (CNT (Carbon nano tube), conductive metal powder, graphene powder, etc.) are used to increase the electrical conductivity of carbon paper to a level similar to that of a general conductive metal. By making a PI film by mixing it into a PI chip, which is the raw material of paper, 'Carbon Paper' made of the film after ultra-high temperature firing improves its electrical conductivity, or various methods of vacuum on the surface of 'Carbon Paper' The present invention relates to increasing the electrical conductivity of 'carbon paper' at low cost by depositing and coating conductive materials by deposition or plating.
이때 전도성 물질의 혼합방법은 화학적 또는 그리고 물리적 방식을 사용한다.In this case, the method of mixing the conductive material may use a chemical or physical method.
본 발명을 통해 제작된 전기전도성이 높은 ‘카본페이퍼’는 고유의 열전도특성과 방열특성과 결합하여 산업분야에서 엄청난 응용 분야가 발생하게 된다.Highly conductive "carbon paper" produced through the present invention is combined with the inherent thermal conductivity and heat dissipation characteristics will cause a tremendous application in the industrial field.
특히 산업이 점점 더 고도화 되면서 첨단전자제품의 경우에는 제품자체에서 발생되는 열이 제품에 결정적 충격을 주는 가장 큰 원인중의 하나로 부각되고 있으며, 따라서 그에 따른 열의 처리가 큰 문제의 하나로 대두되고 있다. 그러나 본 발명을 통한 ‘카본페이퍼’를 접목할 경우 그 문제를 손쉽게 해결할 수 있으며, 열 방출목적뿐만 아니라 전극 및 접지, 전자파차폐의 기능으로도 확대하여 적용함으로서 더 큰 효과를 얻을 수 있다.In particular, as the industry becomes more advanced, in the case of high-tech electronic products, the heat generated from the product itself is emerging as one of the biggest causes of the decisive impact on the product, and thus the treatment of heat is one of the big problems. However, when grafting the 'carbon paper' through the present invention, the problem can be easily solved, and it is possible to obtain a greater effect by expanding the application of not only the heat emission purpose but also the electrode, the ground, and the electromagnetic shielding function.
그 외에도 본 발명을 접목하며 PI를 선(線, Wire)의 형태로 제작하면 전기전도성 및 열전도성이 뛰어난 카본선(Carbon wire)을 제작할 수 있다. 이렇게 제작된 카본선(Carbon Wire)은 기존의 구리전선을 대체 할 수 있으며, 특히 송전선로 등에 접목할 경우 그 장점이 획기적으로 발휘 될 수 있다.In addition, by incorporating the present invention, if the PI is manufactured in the form of a wire, a carbon wire having excellent electrical conductivity and thermal conductivity can be produced. Carbon wire manufactured in this way can replace the existing copper wire, especially when combined with the transmission line, the advantages can be dramatically exhibited.
도 1은 PI 소재(Chip)를 이용한 PI Film 및 PI Roll의 제작공정도이다. 1 is a manufacturing process of the PI film and PI roll using a PI (Chip).
도 2는 PI Chip과 전기전도성 물질(Dopant)을 혼합하여 Chip를 만드는 공정도이다. 2 is a process chart of making a chip by mixing a PI chip and an electrically conductive material (Dopant).
도 3은 Dopant된 Chip를 이용하여 Film과 Roll의 형태로 만드는 공정도이다.3 is a process chart made in the form of film and roll using a doped chip.
도 4는 진공증착장비의 예시이다.4 is an illustration of a vacuum deposition equipment.
도 5는 도금방식의 예시이다.5 is an example of a plating method.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 여기에서 설명하는 실시예에 한정되지 않는다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like parts throughout the specification.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 포함한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제어하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification, when a part includes a certain component, this means that it may further include other components rather than controlling other components unless otherwise stated.
본 발명을 실시하기 위한 구체적인 내용은 Specific details for practicing the present invention
열전도특성이 구리의 5배 이상으로 탁월하며 물리적, 화학적 특성이 뛰어난 카본페이퍼(PGS (Pyrolytic Graphite Sheet) 등의 카본시트)를 구리나 알루미늄 등과 같이 전기전도도가 높은 물질과 같은 수준의 전기전도도를 가지게 하는 것이다.The thermal conductivity is more than 5 times that of copper, and the carbon paper (PGS (Pyrolytic Graphite Sheet) such as PGS (Pyrolytic Graphite Sheet)) with excellent physical and chemical properties has the same electrical conductivity as the material with high electrical conductivity such as copper or aluminum. It is.
‘카본페이퍼’의 원소재인 폴리이미드(PI)는 뛰어난 전기절연성과 높은 열 안정성 및 우수한 기계적 특성 등으로 미래산업의 핵심소재로 주목을 받아왔다. Polyimide (PI), a raw material of 'carbon paper', has been attracting attention as a core material of future industries due to its excellent electrical insulation, high thermal stability and excellent mechanical properties.
이러한 PI Film을 2000℃℃이상의 초고온으로 소성하여 가공하게 되면 원래 PI Film이 가진 특성과는 다른 물성을 가진 탄소(Carbon)로 구성된 ‘카본페이퍼’로 바뀌게 된다. When the PI film is fired at an ultra-high temperature of 2000 ℃ or higher, it is converted into a 'carbon paper' composed of carbon having properties different from those of the original PI film.
이렇게 제작된 ‘카본페이퍼’는 기존의 PI Film의 물성과는 반대로 뛰어난 열전도성(1000W 이상)을 가지게 되며, 전기전도성도 띄게 되는데 이때 전기전도성은 구리 등의 전도성 물질과 비교할 때 현저히 떨어진다고 할 수 있다. The carbon paper produced in this way has excellent thermal conductivity (more than 1000W) as opposed to the physical properties of the existing PI film, and also exhibits electrical conductivity. .
따라서 이러한 ‘카본페이퍼’에 전기전도성을 높여 그 응용분야를 높이기 위한 여러 가지 방법들이 시도되어 왔다.Therefore, various methods have been attempted to increase the electric conductivity of such 'carbon paper' and its application field.
그러나 본 발명에서 실현하고자하는 방법은 기존의 방법과는 구분되는 것으로 크게 세가지 형태로 나눌 수 있다.However, the method to be realized in the present invention may be divided into three types, which are distinguished from the existing methods.
첫째 ‘카본페이퍼’의 원소재인 PI film 등의 플라스틱 소재에 전기전도성을 가지게 하는 첨가물질(Dopant)을 투입함으로서 전기전도성을 유도하는 방식과, 둘째 진공증착 또는 그리고 도금 등의 방식으로 ‘카본페이퍼’표면에 전도성 금속막을 형성하는 방식, 셋째 Ion-Implanter를 이용하여 ‘카본페이퍼’ 표면에 전도특성을 높이는 ION을 주입하는 방식이다.First, by injecting electrical conductivity into plastic materials such as PI film, which is the raw material of 'carbon paper', and inducing electrical conductivity, and second, 'carbon paper' by vacuum deposition or plating. 'Conductive metal film is formed on the surface. Thirdly, Ion-Implanter is used to inject ION to enhance the conductive properties on the' carbon paper 'surface.
i) ‘카본페이퍼’의 원소재인 PI film 등의 플라스틱소재에 전기전도성을 가지게 하는 첨가물질(Dopant)을 투입함으로서 전기전도성을 유도하는 방식.i) A method of inducing electrical conductivity by injecting an additive material having electrical conductivity into plastic materials such as PI film, which is a raw material of 'carbon paper'.
통상 film 형태의 PI를 만들기 위해서는 [도1]과 같이 칩(Chip)의 형태로 만들어진 PI를 필름성형기를 통과시킴으로 PI Film이 만들어진다.In order to make a PI in the form of a film in general, PI film is made by passing a PI made in the form of a chip as shown in FIG. 1 through a film molding machine.
그러나 본 발명에서 구현하고자하는 방식은, 먼저 원소재인 PI 칩을 [도2]와 같이 전기전도특성이 우수한 Dopant(금속분말이나 CNT(Carbon nano tube), 그리고 그래핀(Graphene)분말 등)와 분산(分散, Diffusion) 등의 방식으로 혼합하여 새로운 칩을 만든다.However, the method to be implemented in the present invention, first, the raw material of the PI chip as shown in [2] Dopant (metal powder or CNT (Carbon nano tube), and graphene (Graphene) powder) and excellent electrical conductivity New chips are made by mixing in a manner such as dispersion (Diffusion).
이렇게 만들어진 칩을 [도3]과 같이 필름성형기를 통과시킴으로서 필름 형태로 만들고, The chip thus made is made into a film form by passing through a film molding machine as shown in FIG.
그 만들어진 필름을 2000℃℃이상의 초고온 공정을 통하여 소성하게 되면 첨가물(Dopant)이 들어간 전기전도성이 높아진 카본페이퍼가 만들어지게 된다.When the produced film is calcined through an ultra high temperature process of 2000 ° C. or higher, carbon paper having high electrical conductivity containing an additive is made.
상기에 언급한 방식으로 원소재인 PI에 투입된 Dopant는 카본페이퍼가 형성되는 초고온의 소성과정에서 전기전도성을 유도하는 인자로 작용하여 카본페이퍼를 전기전도성이 뛰어난 분자구조로 바뀌게 하는 역할을 하거나 Dopant 그 자체가 전도성을 높이는 역할을 하게 한다.Dopant injected into the raw material PI in the above-mentioned manner acts as a factor inducing electrical conductivity during the ultra-high temperature firing process where carbon paper is formed, thereby changing carbon paper into a highly conductive molecular structure, or It itself serves to increase conductivity.
그러나 본 발명의 방식과는 달리 흔히 반도체 공정에서 사용되어지는 Gas분위기 Dopant주입방식은 투입하고자하는 Dopant를 먼저 Gas형태로 만들고 그 만들어진 Gas속에서 ‘카본페이퍼’를 소성 제작함으로서 전기전도성을 높이는 방식이다. 그러나 이 경우 ‘카본페이퍼’가 만들어지는 공정이 2000℃℃이상의 초고온상태로서 카본페이퍼 자체의 열에너지가 너무 크기 때문에 Dopant Gas가 원소재에 투입되기가 쉽지 않다. 즉 Dopant Gas의 에너지가 작아 Dopant의 주입이 사실상 어렵게 된다.However, unlike the method of the present invention, the gas atmosphere dopant injection method, which is commonly used in semiconductor processes, is a method of increasing the electrical conductivity by first converting the dopant into a gas form and plastically manufacturing 'carbon paper' in the gas. . In this case, however, Dopant Gas is not easy to input into raw materials because the carbon paper is made at a very high temperature of more than 2000 ℃ and the thermal energy of carbon paper itself is too high. That is, the energy of the dopant gas is small, which makes it difficult to inject the dopant.
그러나 본 발명의 방식을 활용할 경우 원소재인 PI 칩의 제작공정에서 원천적으로 Dopant가 투입됨으로서 손쉽게 Dopant를 원소재에 주입할 수 있는 장점이 있다.However, when the method of the present invention is utilized, the dopant can be easily injected into the raw material because the dopant is originally added in the manufacturing process of the raw material of the PI chip.
2) 진공증착 또는 그리고 도금 등의 방식으로 ‘카본페이퍼’표면에 전도성 금속막을 형성하는 방식.2) A method of forming a conductive metal film on the surface of 'carbon paper' by vacuum deposition or plating.
먼저 [도1]에서와 같이 PI 칩을 필름성형기를 통과시켜 PI film으로 만든다. 이렇게 만들어진 필름은 2000℃℃이상의 초고온 공정을 거치면서 카본페이퍼로 만들어지게 된다.First, as shown in FIG. 1, a PI chip is passed through a film molding machine to make a PI film. The film thus made is made of carbon paper through an ultra-high temperature process of more than 2000 ℃ ℃.
이렇게 만들어진 카본페이퍼를 전기전도특성이 우수하게하기위해 표면에 전기전도성이 높은 구리(Cu), 알루미늄(Al) 등의 금속을 [도4]와 같이 진공 증착방식으로 증착함으로서 전기전도성 막을 형성한다.In order to make the carbon paper thus excellent in electrical conductivity, an electrically conductive film is formed by depositing a metal such as copper (Cu) and aluminum (Al) having high electrical conductivity on the surface by vacuum deposition as shown in FIG.
이와 같이 전기전도성 금속이 코팅된 카본페이퍼는 표면에 코팅된 금속으로 인해 전기전도성이 높아지게 되며 또한 카본페이퍼 자체가 가졌던 특성에 따라 열전도성도 우수해 지게 된다.As described above, the carbon paper coated with the conductive metal has high electrical conductivity due to the metal coated on the surface thereof, and also has excellent thermal conductivity depending on the characteristics of the carbon paper itself.
이때 진공증착 방식은 PVD(Physical Vapor Deposition), CVD(Chemical Vapor Deposition) 등의 다양한 방식을 사용할 수 있다.At this time, the vacuum deposition method may use various methods such as PVD (Physical Vapor Deposition), CVD (Chemical Vapor Deposition).
그리고 카본페이퍼는 기본적인 전기전도 특성을 가지고 있기 때문에 그를 이용하여 금속 도금방식으로 [도5]와 같이 표면에 전기전도성 금속 막을 형성 시킬 수 있다.And since the carbon paper has a basic electrical conductivity properties it can be used to form an electrically conductive metal film on the surface by using a metal plating method as shown in FIG.
또한 위에서 언급한 진공증착방식과 도금방식을 병행하여 수행함으로서 더 뛰어난 전기전도성 막을 형성 할 수도 있다.In addition, by performing the above-described vacuum deposition method and plating method in parallel, it is possible to form a more excellent conductive film.
3) Ion-Implanter를 이용하여 ‘카본페이퍼’ 표면에 전도특성을 높이는 ION을 주입하는 방식.3) Ion-Implanter is used to inject ION to enhance the conduction characteristics on the surface of 'carbon paper'.
이 방식은 반도체 제조공정에서 흔히 사용되어지는 방식으로 전기전도성을 높일 수 있는 특정 이온을 표적(Target)이 되는 물질, 즉 ‘카본페이퍼’의 표면에 이온 주입장치(Ion-Implanter)를 사용하여 주입함으로서 표면에 전기전도특성을 높이는 방식이다.This method is a method commonly used in semiconductor manufacturing processes and uses ion-implanters to inject specific ions that can increase electrical conductivity onto the surface of a target material, that is, carbon paper. By increasing the electrical conductivity on the surface.
이상에서 기술한 내용들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어 단일 형으로 설명되어 있는 각 구성요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성요소들도 결합 된 형태로 실시될 수 있다.It is to be understood that the above description is exemplary in all respects and not restrictive. For example, each component described in a single form may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본 발명의 범위는 상세한 설명보다는 후술하는 특허 청구범위에 의하여 나타내어지며, 청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 고안의 범위에 포함되는 것으로 해석되어야 한다. The scope of the present invention is shown by the following claims rather than the detailed description, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be construed as being included in the scope of the present invention.
[부호의 설명][Description of the code]
1. PI Chip 1.PI Chip
2. PI Film 2. PI Film
3. PI Roll 3. PI Roll
4. 전도성 물질분말 4. Conductive material powder
5. 전도성 물질이 Dopant된 Chip 5. Chip doped with conductive material
6. Dopant된 Film 6. Dopant Film
7. Dopant된 Roll 7. Dopant Roll

Claims (6)

  1. 높은 전기전도성과 초 열전도 특성을 동시에 가지는 카본페이퍼(PGS(Pyrolytic Graphite Sheet) 등의 카본시트)를 만들기 위한 공정에 있어서 In the process for making carbon paper (carbon sheet such as PGS (Pyrolytic Graphite Sheet)) which has both high electrical conductivity and super thermal conductivity
    원소재로 사용되어지는 폴리이미드(PI) 등의 플라스틱소재에 전기전도성을 유도하거나 높이기 위해 전기전도성 유도물질(금속분말, CNT(Carbon Nano Tube), 그래핀(Graphene) 등의 분말)을 혼합하여 필름형태로 만들고,In order to induce or increase the electrical conductivity to plastic materials such as polyimide (PI) used as the raw material, a conductive material (metal powder, powder of carbon nanotube), graphene (graphene, etc.) is mixed To form a film,
    이렇게 만들어진 필름을 2000℃℃이상의 초고온 공정을 통하여 ‘카본페이퍼’를 제작함으로서 열전도특성 뿐만 아니라 전기전도 특성이 우수한 ‘카본페이퍼’를 만드는 방식.The film is made of carbon paper through ultra-high temperature process of 2000 ℃ or higher to make carbon paper with excellent thermal conductivity as well as electrical conductivity.
  2. 폴리이미드(PI) 등의 플라스틱을 사용하여 2000℃℃이상의 초고온 공정을 통하여 만들어진 카본페이퍼’나 제1항의 방식으로 만들어진 ‘카본페이퍼’의 표면에 전기전도성을 높이기 위해 진공증착 또는 그리고 도금 등의 방식으로 전도성 금속 막을 형성시킴으로서 열전도특성 뿐만 아니라 전기전도성이 우수한 ‘카본페이퍼’를 만드는 방식.Method of vacuum deposition or plating to increase the electrical conductivity on the surface of carbon paper made by ultra high temperature process over 2000 ℃ using carbon such as polyimide (PI) or carbon paper made by the method of claim 1 Forming a conductive metal film to make 'carbon paper' with excellent electrical conductivity as well as thermal conductivity.
  3. 폴리이미드(PI) 등의 플라스틱을 사용하여 2000℃℃이상의 초고온 공정을 통하여 만들어진 카본페이퍼’나 제1항의 방식으로 만들어진 ‘카본페이퍼’의 표면에 , Ion-Implanter를 이용하여 전기전도특성을 높이기 위한 특정 ION을 주입함으로서 열전도특성 뿐만 아니라 전기전도성도 뛰어난 ‘카본페이퍼’로 만드는 방식.In order to improve the electric conductivity by using Ion-Implanter on the surface of carbon paper made by ultra high temperature process over 2000 ℃ using polyimide (PI) or carbon paper made by the method of claim 1 By injecting specific ion, it is a method of making 'carbon paper' that has excellent electric conductivity as well as thermal conductivity.
  4. 제 1 항, 제 2 항, 제 3 항을 병행 혼합하여 전기전도 특성을 높이는 방식.Method of increasing the electrical conductivity characteristics by mixing the claim 1, 2, 3 in parallel.
  5. 제 1 항, 제 2 항, 제 3 항, 제4항의 방법을 이용하여 카본페이퍼를 Sheet형태가 아닌 선(Wire)의 형태로 제작함으로서 전기전도도와 열전도도가 탁월한 선형(Wire)소재를 만드는 방식.Method of making a linear material having excellent electrical conductivity and thermal conductivity by manufacturing carbon paper in the form of a wire rather than a sheet using the method of claim 1, 2, 3, and 4. .
  6. 제 1 항, 제 2 항, 제 3 항, 제4항, 제5항의 방법을 이용하여 만들어진 소재를 열전도도가 우수한 전극, 접지, 전자파차폐소재, 전선 등으로 활용하는 방식.Claim 1, 2, 3, 4, 5 is a method of using a material made using the method of the electrode, grounding, electromagnetic shielding material, wires, etc. with excellent thermal conductivity.
PCT/KR2016/004032 2016-03-18 2016-04-18 Method for fabricating electrically conductive carbon paper WO2017159917A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0032431 2016-03-18
KR1020160032431A KR101997120B1 (en) 2016-03-18 2016-03-18 The production Method of high electricity Carbon-paper

Publications (1)

Publication Number Publication Date
WO2017159917A1 true WO2017159917A1 (en) 2017-09-21

Family

ID=59851121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/004032 WO2017159917A1 (en) 2016-03-18 2016-04-18 Method for fabricating electrically conductive carbon paper

Country Status (2)

Country Link
KR (1) KR101997120B1 (en)
WO (1) WO2017159917A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4056735A1 (en) 2021-03-09 2022-09-14 Studiengesellschaft Kohle mbH Process for the preparation of an electrode for electrolytic applications
US11508498B2 (en) 2019-11-26 2022-11-22 Trimtabs Ltd Cables and methods thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102078974B1 (en) 2019-08-28 2020-02-18 도레이첨단소재 주식회사 Manufacturing method of carbon papers having excellent thermal conductivity and carbon papers manufactured therefrom
KR20210133454A (en) 2020-04-29 2021-11-08 도레이첨단소재 주식회사 Carbon fiber carbon sheet and manufacturing method thereof
KR102504825B1 (en) 2021-01-26 2023-02-28 금오공과대학교 산학협력단 Carbon paper using carbon fiber having excellent dispersibility and Manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0579983A1 (en) * 1992-07-02 1994-01-26 Sumitomo Electric Industries, Limited Impurity-containing hard carbon film
JP2007320775A (en) * 2005-07-28 2007-12-13 Kaneka Corp Graphite film and method for producing the same
KR20080031741A (en) * 2005-06-21 2008-04-10 에스지엘 카본 악티엔게젤샤프트 Metal-coated graphite film
KR101263545B1 (en) * 2007-05-17 2013-05-13 가부시키가이샤 가네카 Graphite film and graphite composite film
KR101473432B1 (en) * 2014-06-13 2014-12-16 에스케이씨 주식회사 Method for fabricating graphite

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0579983A1 (en) * 1992-07-02 1994-01-26 Sumitomo Electric Industries, Limited Impurity-containing hard carbon film
KR20080031741A (en) * 2005-06-21 2008-04-10 에스지엘 카본 악티엔게젤샤프트 Metal-coated graphite film
JP2007320775A (en) * 2005-07-28 2007-12-13 Kaneka Corp Graphite film and method for producing the same
KR101263545B1 (en) * 2007-05-17 2013-05-13 가부시키가이샤 가네카 Graphite film and graphite composite film
KR101473432B1 (en) * 2014-06-13 2014-12-16 에스케이씨 주식회사 Method for fabricating graphite

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11508498B2 (en) 2019-11-26 2022-11-22 Trimtabs Ltd Cables and methods thereof
US11823814B2 (en) 2019-11-26 2023-11-21 Trimtabs Ltd Cables and methods thereof
EP4056735A1 (en) 2021-03-09 2022-09-14 Studiengesellschaft Kohle mbH Process for the preparation of an electrode for electrolytic applications
WO2022189212A1 (en) 2021-03-09 2022-09-15 Studiengesellschaft Kohle Mbh Process for the preparation of an electrode for electrolytic applications

Also Published As

Publication number Publication date
KR20170108474A (en) 2017-09-27
KR101997120B1 (en) 2019-07-05

Similar Documents

Publication Publication Date Title
WO2017159917A1 (en) Method for fabricating electrically conductive carbon paper
Zhou et al. Enhanced thermal conductivity and dielectric properties of Al/β-SiCw/PVDF composites
US5224030A (en) Semiconductor cooling apparatus
US7449631B2 (en) Coaxial cable
WO2015147501A1 (en) Catecholamine-flaky graphite based polymer complex for preparation of composite
KR20170097692A (en) Boron nitride nanotube enhanced electrical components
US6403697B1 (en) Carbon black, method for its preparation and its applications
Zhou et al. High dielectric permittivity and low loss in PVDF filled by core-shell Zn@ ZnO particles
WO2018084518A1 (en) Epoxy paste composition including silver-coated copper nanowires having core-shell structure, and conductive film including same
CN104319008A (en) High-temperature-resistant low-loss compound insulation coaxial cable
CN105061855A (en) Preparation method of thermal conductive electrical insulating material
CN102702965A (en) Antifouling flashover coating applied to insulators and application method thereof
KR101856665B1 (en) Heat-radiating coating composition and preparation method thereof
WO2014129696A1 (en) Method for manufacturing heat-dissipating plate having excellent heat conductivity in thickness direction and heat-dissipating plate manufactured by method
WO2015016490A1 (en) Method for manufacturing ceramic-coated graphite
Ni et al. Coordinating of thermal and dielectric properties for cyanate ester composites filled with silica‐coated sulfonated graphene oxide hybrids
KR20190053666A (en) Carbon material composites
KR102081783B1 (en) The production Method of high electricity Carbon-paper
WO2021015580A1 (en) Thermal dissipation composite material and manufacturing method thereof
US20240006095A1 (en) Conductive wire, conductive coil, and conductive device
WO2013162108A1 (en) Metal-carbon composite, preparation method thereof, and paste prepared using same
Duan et al. Scalable, mechanically-robust, fire-resistance MXene/PEDOT: PSS/PBO film for efficient electromagnetic interference shielding and Joule heating performance
CN204516474U (en) A kind of high temperature resistant low-loss compound inslation coaxial cable
Yang et al. Regulating dielectric performances of Poly (vinylidene fluoride) nanocomposites by individually controlling shell thickness of Core@ Double‐Shells structured nanowires
WO2020067839A1 (en) Composite material

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02.01.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16894648

Country of ref document: EP

Kind code of ref document: A1