WO2015039398A1 - 智能功率模块及其制造方法 - Google Patents

智能功率模块及其制造方法 Download PDF

Info

Publication number
WO2015039398A1
WO2015039398A1 PCT/CN2013/090357 CN2013090357W WO2015039398A1 WO 2015039398 A1 WO2015039398 A1 WO 2015039398A1 CN 2013090357 W CN2013090357 W CN 2013090357W WO 2015039398 A1 WO2015039398 A1 WO 2015039398A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
tubes
igbt
power module
gate
Prior art date
Application number
PCT/CN2013/090357
Other languages
English (en)
French (fr)
Inventor
冯宇翔
Original Assignee
广东美的制冷设备有限公司
冯宇翔
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201320587706.3U external-priority patent/CN203481230U/zh
Priority claimed from CN201310435355.9A external-priority patent/CN104112740B/zh
Application filed by 广东美的制冷设备有限公司, 冯宇翔 filed Critical 广东美的制冷设备有限公司
Publication of WO2015039398A1 publication Critical patent/WO2015039398A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4334Auxiliary members in encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49517Additional leads
    • H01L23/49531Additional leads the additional leads being a wiring board
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49562Geometry of the lead-frame for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Definitions

  • the invention belongs to the field of electronic device manufacturing processes, and in particular relates to an intelligent power module and a manufacturing method thereof.
  • Intelligent Power Module is a power-driven product that combines power electronics and integrated circuit technology.
  • the IPM integrates a power switching device and a high voltage driving circuit, and has built-in fault detection circuits such as overvoltage, overcurrent, and overheating.
  • IPM receives MCU on the one hand (Microprogrammed Control The control signal of Unit, the microprogram controller drives the subsequent circuit to work, and on the other hand sends the status detection signal of the system back to the MCU.
  • MCU Microprogrammed Control
  • the microprogram controller drives the subsequent circuit to work, and on the other hand sends the status detection signal of the system back to the MCU.
  • IPM has won more and more large markets with its high integration and high reliability. It is especially suitable for inverters and various inverter power supplies for driving motors. It is frequency control and metallurgical machinery.
  • the VCC end of the tube 101 is used as the low voltage area of the smart power module 100.
  • the power supply positive terminal VDD, VDD is generally 15V; the HIN1 end of the HVIC tube 101 is used as the U phase upper arm input end UHIN of the intelligent power module 100.
  • the HIN2 end of the HVIC tube 101 serves as the V-phase upper arm input end VHIN of the intelligent power module 100; the HIN3 end of the HVIC tube 101 serves as the W-phase upper arm input end WHIN of the intelligent power module 100; the LIN1 end of the HVIC tube 101 serves as The U-phase lower arm input terminal ULIN of the intelligent power module 100; the LIN2 end of the HVIC tube 101 serves as the V-phase lower arm input end VLIN of the intelligent power module 100; the LIN3 end of the HVIC tube 101 serves as the W-phase of the intelligent power module 100.
  • Bridge arm input WLIN is the six inputs of the U, V, and W three phases of the intelligent power module 100 receive an input signal of 0 to 5V.
  • the GND end of the HVIC tube 101 serves as the low-voltage area power supply negative terminal COM of the smart power module 100; the VB1 end of the HVIC tube 101 serves as the U-phase high-voltage area power supply positive terminal UVB of the intelligent power module 100; the HO1 end and the U of the HVIC tube 101 Phase bridge IGBT (Insulated Gate Bipolar Translator, the gate of the transistor 121 is connected; the VS1 end of the HVIC transistor 101 and the emitter of the IGBT transistor 121, FRD (Fast Recovery Diode, fast recovery diode) anode of the tube 111, collector of the U-phase lower arm IGBT tube 124, cathode of the FRD tube 114, and as the U-phase high-voltage region of the intelligent power module 100, the power supply negative terminal UVS; HVIC tube 101
  • the VB2 end is used as the U-phase high voltage area power supply positive terminal VVB of the intelligent power module 100; the HO3 end
  • the collector of the IGBT tube 121, the cathode of the FRD tube 111, the collector of the IGBT tube 122, the cathode of the FRD tube 112, the collector of the IGBT tube 123, and the cathode of the FRD tube 113 are connected as a high voltage input of the smart power module 100.
  • Terminal P, P is usually connected to 300V.
  • the function of the HVIC tube 101 is to transmit the 0 ⁇ 5V logic signals of the input terminals HIN1, HIN2, HIN3 and LIN1, LIN2, LIN3 to the output terminals HO1, HO2, HO3 and LO1, LO2, LO3, respectively, HO1, HO2, HO3 is a logic signal of VS ⁇ VS+15V, and LO1, LO2, and LO3 are logic signals of 0-15V.
  • Fig. 1(C) is a plan view of the smart power module 100 after the encapsulating resin is taken out
  • Fig. 1(D) is a cross-sectional view taken along line X-X' of Fig. 1(B).
  • the smart power module 100 has a structure including: a circuit substrate 206; a circuit wiring 208 formed on the insulating layer 207 provided on the surface of the circuit substrate 206; IGBT tubes 121 to 126 and FRD tubes 111 fixed on the circuit wiring 208. ⁇ 116, HVIC tube 101 and other components; metal wire 205 connecting component and circuit wiring 208; pin 201 connected to circuit wiring 208; at least one surface of circuit board 206 is sealed by sealing resin 202, in order to improve sealing performance All of the circuit board 206 is sealed, and in order to improve heat dissipation, the back surface of the aluminum substrate 206 is exposed to the outside.
  • the current intelligent power module controls 6 IGBT tubes by one HVIC tube, resulting in long traces and easy interference between lines; and, from HVIC tubes to 6 IGBT tubes.
  • the distance is different, which makes it difficult to control the transmission signal transmission of the six IGBT tubes.
  • the circuit wiring on the substrate is too large, the area of the substrate is increased, resulting in an increase in the area of the current smart power module, and an increase in the smart power module.
  • the manufacturing cost affects the popularity of the intelligent power module in the low-end field.
  • the distance between the components is large, and the wire connecting the components through the metal wire is long, which affects The reliability of the state line, and there is a risk of causing the line during the molding process.
  • the invention aims to solve the deficiencies of the prior art, and provides an intelligent power module that ensures that the driving signals of the power device are transmitted with the same number of traces, can reduce the area of the intelligent power module, ensure that the driving signal transmission is the same, easy to control, and improve reliability. Sex and performance.
  • an intelligent power module includes:
  • a metal substrate wherein a surface thereof is covered with an insulating layer
  • circuit wiring layer formed on a surface of the insulating layer
  • each of the gate driving tubes serving as a driving circuit of the corresponding IGBT tube, and a driving end of each of the gate driving tubes and the IGBT tube
  • the gate electrical connections have the same length of the trace
  • a metal wire is connected between the circuit wiring layer, the IGBT transistor and the gate driving tube to form a preset circuit.
  • a plurality of the gate driving tubes are respectively disposed on the emitters of the plurality of IGBT tubes, and a driving end of the gate driving tubes is connected to a gate of the IGBT tubes through the metal lines.
  • the preset positions on the circuit wiring layer for setting the IGBT tubes are arranged in an array.
  • the plurality of gate drive tubes comprise an equal number of HVIC tubes and LVIC tubes.
  • the gate drive tubes are six, including three HVIC tubes and three LVIC tubes.
  • the FRD tube is also included in the same number as the IGBT tube, and the plurality of FRD tubes are respectively fixed to the circuit wiring layer through the IGBT tube.
  • the cathode of the FRD tube is fixed to the collector of the IGBT tube, and the anode is electrically connected to the emitter of the IGBT tube through the metal line.
  • a sealing resin that at least completely covers all elements on the upper surface of the metal substrate is further included.
  • a pin is further included, and at an edge of the metal substrate, a pin pad for configuring a pin is formed, the pin being connected to the pin pad and extending outward from the metal substrate.
  • the independent gate drive tubes are arranged on the corresponding IGBT tubes, and the traces from the gate drive tubes to the gates of the IGBT tubes can be the same, thereby effectively ensuring the dynamic characteristics of the IGBT tubes.
  • the sameness; and the trace of the gate drive tube is no longer a concentrated trace of a region.
  • Setting a plurality of independent gate drive tubes can reduce the distance from the trace to the gate drive tube, so that the trace is greatly reduced.
  • the invention reduces the instability caused by the long wiring and also saves the area of the circuit wiring layer, thereby greatly reducing the area of the metal substrate of the smart power module, and further reducing the cost.
  • Another object of the present invention is to provide a method for manufacturing an intelligent power module, comprising the following steps:
  • a metal substrate is formed, and one surface of the metal substrate is covered with an insulating layer, and a circuit wiring layer is disposed on the surface of the insulating layer;
  • a gate drive tube having the same number as the IGBT tube and serving as a drive circuit of the corresponding IGBT tube, wherein a driving end of each of the gate drive tubes is electrically connected to a gate of the IGBT tube
  • the length of the trace is the same;
  • a metal line is connected between the circuit wiring layer, the IGBT tube, and the gate driving tube to form a preset circuit.
  • the step of setting the same number as the IGBT tube and respectively serving as the gate driving tube of the driving circuit of the corresponding IGBT tube comprises:
  • a driving end of the gate driving tube is connected to a gate of the IGBT transistor through the metal line.
  • the preset positions on the circuit wiring layer for setting the IGBT tubes are arranged in an array.
  • the plurality of gate drive tubes comprise an equal number of HVIC tubes and LVIC tubes.
  • the method further includes:
  • the same number of FRD tubes as the IGBT tubes are provided, and the plurality of FRD tubes are respectively fixed to the circuit wiring layer by the IGBT tubes.
  • the step of setting the same number of FRD tubes as the IGBT tube comprises:
  • a cathode of the FRD tube is fixed to a collector of the IGBT tube, and an anode is electrically connected to an emitter of the IGBT tube through the metal line.
  • the method further comprises:
  • a metal substrate is placed in a cavity formed inside the mold, and then a sealing resin is injected from a gate of the mold.
  • the step of injecting the sealing resin from the gate of the mold further comprises:
  • a small amount of sealing resin remaining on the back surface of the metal substrate is removed, and the back surface of the metal substrate is exposed from the sealing resin.
  • the method further includes:
  • the pins are mounted on the circuit wiring layer by solder.
  • the above-mentioned intelligent power module manufacturing method is manufactured by using the different steps of assembling the IGBT tube and assembling the gate driving tube, so that the two types of circuit elements can be fixed by different solder and welding parameters, and can be fixed from certain To reduce the parameter requirements of the welding process to a certain extent, it has a positive effect on improving the welding quality and the welding yield rate, and reduces the routing and reduces the risk of causing the punching line during the molding process.
  • Figure 1 (A) is a circuit schematic diagram of a conventional intelligent power module
  • Figure 1 (B) is a front view of a conventional smart power module
  • FIG. 1(C) is a schematic structural view of a conventional smart power module after taking out the encapsulating resin
  • Figure 1 (D) is a cross-sectional view taken along line X-X' of Figure 1 (B);
  • FIG. 2(A) is a schematic circuit diagram of an intelligent power module according to an embodiment of the present invention.
  • FIG. 2(B) is a front elevational view of an intelligent power module according to an embodiment of the present invention.
  • FIG. 2(C) is a schematic structural view of the top view of FIG. 2(B);
  • Figure 2 (D) is a cross-sectional view taken along line X-X' of Figure 2 (B) in an embodiment of the present invention
  • FIG. 3(A) is a schematic circuit diagram of an intelligent power module according to another embodiment of the present invention.
  • FIG. 3(B) is a schematic structural diagram of a top view of an intelligent power module according to another embodiment of the present invention.
  • Figure 3 (C) is a cross-sectional view showing another embodiment of the present invention.
  • 4(A) and 4(B) are processes for providing a substrate, an insulating layer, and a circuit wiring layer according to an embodiment of the present invention
  • 5(A) and 5(B) are processes for setting an IGBT tube, an FRD tube, and a lead according to an embodiment of the present invention
  • 6(A) and 6(B) are processes for setting a gate driving tube according to a first embodiment of the present invention
  • FIG. 7(A) and 7(B) are diagrams showing a state in which a state line is connected and cleaned according to an embodiment of the present invention
  • Figure 8 is a sealing process according to an embodiment of the present invention.
  • FIG. 9 is a process of performing lead rib forming and testing according to an embodiment of the present invention.
  • the smart power module 1 includes a metal substrate 306, an insulating layer 307, a circuit wiring layer 308, and a plurality of IGBT tubes. 20.
  • the circuit wiring layer 308 is formed on the surface of the insulating layer 307.
  • a plurality of IGBT tubes 20 are disposed at a predetermined position 308A on the circuit wiring layer 308; the number of gate driving tubes 40 is the same as that of the IGBT tube 20, and each of the gate driving tubes 40 serves as a driving circuit of the corresponding IGBT tube 20, and each The drive terminals (HO, LO) of the gate drive tubes 40 are electrically connected to the gates of the IGBT tubes 20 in the same length.
  • the metal line 305 is connected between the circuit wiring layer 308, the IGBT tube 20, and the gate driving tube 40 to form a preset circuit.
  • the traces from the gate drive tube 40 to the gate of the IGBT tube 20 can be made the same, so that the dynamic characteristics of the IGBT tube 20 can be effectively ensured.
  • a plurality of gate driving tubes 40 are respectively disposed on the emitters of the plurality of IGBT tubes 20, and the driving ends of the gate driving tubes 40 (HO, LO shown in FIG. 2(A)) pass.
  • the metal line 305 is connected to the gate of the IGBT tube 20.
  • the gate driving tube 40 can be disposed on one side of the corresponding IGBT tube 20, and the routing from the gate driving tube 40 to the gate of the IGBT tube 20 can be ensured to be the same, and will not be Increase the routing of the intelligent power module 1.
  • the smart power module 1 further includes a pin 301 on the edge of which a pin pad 308B for configuring the pin 301 is formed.
  • the circuit wiring layer 308 includes a pin pad 308B adjacent to the surface edge of the metal substrate 306, and the pin 301 is connected to the pin pad 308B and extends outward from the metal substrate.
  • a plurality of pin pads 308B for arranging the leads 301 may be provided on one side, two sides, three sides, or four sides of the metal substrate 306 depending on the function.
  • the plurality of gate drive tubes 40 include an equal number of HVIC tubes for driving the upper arm and LVIC for driving the lower arm (Low Voltage) Integrated Circuits, low voltage integrated circuits).
  • HVIC tubes for driving the upper arm
  • LVIC for driving the lower arm
  • the predetermined locations 308A on the circuit wiring layer 308 for arranging the IGBT tubes 20 are arranged in an array.
  • the preset position 308A is the same as the IGBT tube 20, and is used to fix the circuit pattern of the IGBT tube 20, and the preset position 308A for setting the IGBT tube 20 is arranged in an array.
  • the preset position 308A may be a matrix arrangement or a circle. Shape array arrangement, etc.
  • the smart power module 1 further includes the same FRD tube 10 as the IGBT tube 20, and the plurality of FRD tubes 10 are respectively fixed to the circuit wiring through the IGBT tube 20. Layer 308. Further, The cathode of the FRD tube 10 is fixed to the collector of the IGBT tube 20, and the anode of the FRD tube 10 is electrically connected to the emitter of the IGBT tube 20 through the metal line 305.
  • the IGBT tube 20 and the FRD tube 10 are fixed to the circuit wiring layer 308 to constitute a predetermined circuit.
  • the facets of the six IGBT tubes 20 having the emitter and the gate facing up and having the collector face down, and the face of the FRD tube 1 having the anode facing upward and having the cathode face down.
  • the circuit wiring layer 308 is made of a metal such as copper, and the circuit wiring layer 308 is formed on a specific position on the metal substrate 306 according to a predetermined circuit; according to power requirements, it can be designed to a thickness of 0.035 mm or 0.07 mm, etc., for general smart power.
  • the module is preferably designed to be 0.07 mm, and the thickness of 0.07 mm is used in this embodiment.
  • the HVIC tube 41 is fixed to the IGBT tube 21, the HVIC tube 42 is fixed to the IGBT tube 22, the HVIC tube 43 is fixed to the IGBT tube 23, the LVIC tube 44 is fixed to the IGBT tube 24, and the LVIC tube 45 is fixed to the IGBT tube 25.
  • the LVIC tube 46 is fixed to the IGBT tube 26.
  • the position where the HVIC tubes 41, 42, 43 and the LVIC tubes 44, 45, 46 are fixed on the IGBT tube is the emitter of the IGBT tube, and the area of the emitter is not for the general rated current 30A of the IGBT tube 20. Will be less than 6mm2, for general single-arm HVIC tubes 41, 42, 43 and single-arm LVIC tubes 44, 45, 46, the area will not be greater than 2mm2.
  • the U-phase upper arm output circuit 41 (HVIC tube 41), the V-phase upper arm output circuit 41 (HVIC tube 42), and the W-phase upper arm output circuit 41 (HVIC tube 43) are three drive upper arm IGBT tubes
  • the one-arm HVIC tubes of 21, 22, and 23 have the same structure.
  • the function is to transmit the 0 ⁇ 5V logic signal of the input terminal HIN to the output end (ie, the driving end) HO, where HO is VS ⁇ VS+15V.
  • the U-phase upper arm output circuit, the V-phase upper arm output circuit, and the W-phase upper arm output circuit need to be processed by a high-pressure-resistant flow chip, sometimes for Reduce costs, use the 650V BCD process, and sometimes reduce the pressure structure design difficulty, using the 650V SOI process.
  • U-phase lower arm output circuit (LVIC tube 44), V-phase lower arm output circuit (LVIC tube 45), W-phase lower arm output circuit (LVIC tube 46) are three drive lower-arm IGBT tubes 24, 25 , 26 single-arm LVIC tubes, their structure is exactly the same, the role is to pass the input LIN LIN 0 ⁇ 5V logic signal to the output (ie drive) LO, where LO is 0 ⁇ 15V logic signal; due to U The phase bridge output circuit, the V-phase lower arm output circuit, and the W-phase lower arm output circuit do not need to be subjected to a high-voltage flow-through process. To reduce cost, the LVIC tube can be realized by a low-cost process such as BIPOLAR or COMS.
  • VCC U-phase upper arm output circuit 41, U-phase lower arm output circuit 44 VCC, V-phase upper arm output circuit 42, V-phase lower-bridge output circuit 45 VCC, W-phase upper arm output circuit 43, W phase
  • the VCC of the lower arm output circuit 44 is connected and serves as the VDD terminal of the smart power module 1, and VDD is the low-voltage power supply of the smart power module 1, and VDD is generally 15V.
  • the HIN end of the U-phase upper arm output circuit 41 serves as the U-phase upper arm input end UHIN of the intelligent power module 1; the HIN end of the V-phase upper arm output circuit 42 serves as the V-phase upper arm input end of the intelligent power module 1.
  • the HIN end of the W-phase upper arm output circuit 43 serves as the W-phase upper arm input terminal WHIN of the intelligent power module 1;
  • the LIN end of the U-phase lower arm output circuit 44 serves as the U-phase lower arm of the intelligent power module 1
  • the LIN end of the V-phase lower arm output circuit 45 serves as the V-phase lower arm input terminal VLIN of the intelligent power module 1;
  • the LIN end of the W-phase lower arm output circuit 46 serves as the W phase of the intelligent power module 1
  • the input end of the bridge arm WLIN; here, the six inputs of the U, V, W three phases of the intelligent power module 1 receive an input signal of 0 ⁇ 5V.
  • the GND terminal of 45 is connected to the GND terminal of the W-phase lower bridge output circuit 46, and serves as the COM terminal of the intelligent power module 1, and COM is the negative terminal of the VDD power supply.
  • the VB end of the U-phase upper arm output circuit 41 serves as the U-phase high-voltage area power supply positive terminal UVB of the intelligent power module 1; the VB end of the V-phase upper arm output circuit 42 serves as the V-phase high-voltage area power supply of the intelligent power module 1.
  • the VB end of the W-phase upper arm output circuit 41 serves as the W-phase high-voltage area power supply positive terminal WVB of the intelligent power module 1; the HO end of the U-phase upper arm output circuit 41 is connected to the gate of the IGBT tube 21; The VS terminal of the U-phase upper arm output circuit 41 is connected to the emitter of the IGBT tube 21, the anode of the FRD tube 11, the collector of the IGBT tube 24, and the cathode of the FRD tube 14, and serves as the U-phase high voltage of the intelligent power module 1.
  • the power supply negative terminal UVS; the HO end of the V-phase upper arm output circuit 42 is connected to the gate of the IGBT tube 22, the VS end of the V-phase upper arm output circuit 42 and the emitter of the IGBT tube 22, and the FRD tube 12
  • the anode, the collector of the IGBT tube 25, and the cathode of the FRD tube 15 are connected, and serve as the V-phase high voltage region power supply negative terminal VVS of the intelligent power module 1.
  • the HO end of the W-phase upper arm output circuit 43 is connected to the gate of the IGBT tube 23, and the VS terminal of the W-phase upper arm output circuit 43 and the emitter of the IGBT tube 23, the anode of the FRD tube 13, and the set of the IGBT tube 26.
  • the electrode, the cathode of the FRD tube 16 is connected, and serves as the W-phase high-voltage region power supply negative terminal WVS of the intelligent power module 1.
  • the collector of the IGBT transistor 21, the cathode of the FRD tube 11, the collector of the IGBT tube 22, the cathode of the FRD tube 12, the collector of the IGBT tube 23, and the cathode of the FRD tube 13 are connected as a high voltage input of the smart power module 1.
  • Terminal P, the high voltage input terminal P is generally connected to 300V.
  • the LO end of the U-phase lower arm output circuit 44 is connected to the gate of the IGBT tube 24, and the emitter of the IGBT tube 24 is connected to the anode of the FRD tube 14 and serves as the U-phase low voltage reference terminal UN of the intelligent power module 1;
  • the LO end of the phase bridge output circuit 45 is connected to the gate of the IGBT tube 25.
  • the emitter of the IGBT tube 25 is connected to the anode of the FRD tube 15 and serves as the V-phase low voltage reference terminal VN of the intelligent power module 1;
  • the LO terminal of the lower arm output circuit 46 is connected to the gate of the IGBT transistor 26, and the emitter of the IGBT transistor 26 is connected to the anode of the FRD transistor 16 and serves as the W-phase low voltage reference terminal WN of the smart power module 1.
  • the smart power module 1 of the present invention has a metal substrate 306 having an insulating layer 307 formed on its surface, a circuit wiring layer 308 disposed on the insulating layer 307, and an IGBT tube 21 and an IGBT tube 22 disposed on the circuit wiring layer 308.
  • the IGBT tube 23, the IGBT tube 24, the IGBT tube 25, the IGBT tube 26 and the FRD tube 11, the FRD tube 12, the FRD tube 13, the FRD tube 14, the FRD tube 15, and the FRD tube 16 are disposed at the edge portion of the circuit wiring layer 308.
  • a lead 301 is provided for connecting a metal wire 305 which electrically connects the above elements, and a sealing resin 302 which seals the circuit and at least completely covers all elements on the upper surface of the metal substrate 306.
  • the metal substrate 306 is a rectangular plate made of aluminum of a material such as 1100. In order to improve the corrosion resistance of the sheet, the surface may be anodized. In order to save manufacturing costs, in some applications where corrosion resistance is not high, only the surface of the aluminum may be subjected to wire drawing.
  • the thickness of the metal substrate 306 can be selected to be 1.5 mm.
  • the insulating layer 307 is formed on at least one surface of the metal substrate 306, and is filled with a filler such as alumina at a high concentration in a resin material such as an epoxy resin to improve thermal conductivity.
  • the circuit wiring layer 308 is made of a metal such as copper, and is formed at a specific position on the metal substrate 306. It can be designed to have a thickness of 0.035 mm or 0.07 mm according to power requirements. For a general smart power module, it is preferably designed to be 0.07 mm. In the present embodiment, a thickness of 0.07 mm is employed.
  • a pin pad 308B for arranging the pin 301 is formed at the edge of the metal substrate 306, a pin pad 308B for arranging the pin 301 is formed at the edge of the metal substrate 306, a pin pad 308B for arranging the pin 301 is formed.
  • a plurality of pin pads 308B for arranging the leads 301 are provided in the vicinity of both sides of the metal substrate 306, and a plurality of pins for arranging one side, three sides, and four sides of the metal substrate 306 may be provided for configuration according to functions. Pin pad 308B of pin 301.
  • the IGBT tubes 21 to 26 and the FRD tubes 11 to 16 are fixed to the circuit wiring layer 308 to constitute a predetermined circuit.
  • the six IGBT tubes 21 to 26 have the face and the gate with the emitter and the gate facing upward, and the collector with the face down, and the FRD tubes 11 to 16 have the anode face up and the cathode face down. installation.
  • the HVIC tube 41 is fixed to the IGBT tube 21, the HVIC tube 42 is fixed to the IGBT tube 22, the HVIC tube 43 is fixed to the IGBT tube 23, the LVIC tube 44 is fixed to the IGBT tube 24, and the LVIC tube 45 is fixed to the IGBT tube 25.
  • the LVIC tube 46 is fixed to the IGBT tube 26.
  • the positions at which the HVIC tubes 21, 22, and 23 and the LVIC tubes 24, 25, and 26 are fixed to the IGBT tubes 21 to 26 are the emitters of the IGBT tubes 21 to 26, and for a general rated current of 30 A,
  • the area of the emitter is not less than 6mm2.
  • the metal wire 15 may be an aluminum wire, a gold wire or a copper wire, and each circuit component (such as the IGBT pipe 20, the FRD pipe 10, the gate drive pipe 40 shown in FIG. 2(C)) and the circuit wiring layer 308 are bonded by bonding. An electrical connection relationship is established between them, and is sometimes used to establish an electrical connection relationship between the pin 301 and the circuit wiring layer 308.
  • the pin 301 is fixed to a pin pad 308B provided on the edge of the metal substrate 306, and has a function of inputting and outputting, for example, with the outside.
  • a conductive adhesive such as solder.
  • the lead 301 is generally made of a metal such as copper.
  • the surface of the copper is formed by electroless plating and electroplating to form a nickel-tin alloy layer.
  • the thickness of the alloy layer is generally 5 ⁇ m. The plating layer protects the copper from corrosion and oxidation, and improves solderability.
  • the sealing layer 302 may be molded by a transfer molding using a thermosetting resin, or may be molded by a injection molding using a thermoplastic resin.
  • the sealing layer 302 completely seals all the elements on the upper surface of the metal substrate 306, and for the intelligent power module with high compactness, the whole of the metal substrate 306 is generally sealed.
  • the heat dissipation of the power module exposes the back surface of the metal substrate 306.
  • the smart power modules 1 are disposed on the corresponding IGBT tubes 20 by the respective independent gate driving tubes 40, and the lengths of the traces from the gate driving tubes 40 to the gates of the IGBT tubes 20 can be the same.
  • the symmetry of the dynamic characteristics of the IGBT tube 20 can be effectively ensured, so that the driving signal transmission identity of the IGBT tube 10 is easy to control; the trace of the gate driving tube 40 is no longer a centralized trace to an area, and multiple independent sets are provided.
  • the gate drive tube 40 can reduce the distance from the trace to the gate drive tube 40, so that the trace is greatly reduced, the instability caused by the long trace is reduced, and the area of the circuit wiring layer is saved, thereby enabling the smart power module.
  • the area of the metal substrate 306 of 1 is greatly reduced, and the cost is further reduced.
  • a method for manufacturing an intelligent power module includes the following steps:
  • step S11 the metal substrate 306 is formed, and one surface of the metal substrate 306 is covered with an insulating layer 307, and a circuit wiring layer 308 is disposed on the surface of the insulating layer 307.
  • step S12 the IGBT tube 20 is disposed at a plurality of preset positions 308A on the circuit wiring layer 308.
  • step S13 a gate drive tube 40 having the same number as the IGBT tube 20 and serving as a drive circuit of the corresponding IGBT tube 20 is provided, wherein the drive end of each gate drive tube 40 is electrically connected to the gate of the IGBT tube 20.
  • the length of the trace is the same.
  • step S14 a metal line 305 is connected between the circuit wiring layer 308, the IGBT tube 20, and the gate driving tube 40 to form a preset circuit.
  • step S11 specifically includes: disposing a plurality of gate driving tubes 40 on the emitters of the plurality of IGBT tubes 20 respectively; passing the driving ends (HO, LO) of the gate driving tubes 40 through the metal lines 305 is connected to the gate of the IGBT tube 20.
  • the gate driving tube 40 can be disposed on one side of the corresponding IGBT tube 20, and the routing from the gate driving tube 40 to the gate of the IGBT tube 20 can be ensured to be the same, and will not be Increase the routing of the intelligent power module 1.
  • the preset positions 308A on the circuit wiring layer 308 for setting the IGBT tubes 20 are arranged in an array.
  • the preset position 308A is the same as the IGBT tube 20, and is used to fix the circuit pattern of the IGBT tube 20, and the preset position 308A for setting the IGBT tube 20 is arranged in an array.
  • the preset position 308A may be a matrix arrangement or a circle. Shape array arrangement, etc.
  • the plurality of gate drive tubes 40 includes an equal number of HVIC tubes and LVIC tubes.
  • there are six gate drive tubes 40 numbered 41, 42, 43, 44, 45, 46, respectively, including three HVIC tubes 41, 42, 43 and three LVICs. Tubes 44, 45, 46.
  • the method further includes: setting the same number of FRD tubes as the IGBT tubes 20, and the plurality of FRD tubes are respectively fixed to the circuit wiring layer 308 through the IGBT tubes 20.
  • the cathode of the FRD tube is fixed to the collector of the IGBT tube 20, and the anode is electrically connected to the emitter of the IGBT tube 20 through the metal line 305.
  • the method for manufacturing the smart power module of the present invention includes the steps of: providing an insulating layer 307 on the surface of the aluminum substrate 306; forming a circuit wiring layer 3308 on the surface of the insulating layer 307; and configuring the circuit wiring layer 308. a process of arranging a plurality of IGBT tubes and FRD tubes 10; a step of arranging HVIC tubes 41 to 43 and LVIC tubes 44 to 46 on IGBT tube 20; a step of connecting each circuit element and circuit wiring 306 with metal wires 305; baking and molding The process of forming the lead 301; the process of performing the functional test.
  • this step is a step of forming an insulating layer 307 on an aluminum substrate of a suitable size and forming a circuit wiring on the surface of the insulating layer 307.
  • an aluminum substrate 306 of a suitable size is prepared according to the required circuit layout.
  • a size of 44 mm ⁇ 20 mm can be selected, and both sides are subjected to an anti-corrosion treatment.
  • An insulating layer 307 is provided on the surface of at least one surface of the aluminum substrate. Further, a copper foil as a conductive pattern is adhered to the surface of the insulating layer 307. Then, the copper foil produced in this step is etched, and the copper foil is partially removed to form the circuit wiring layer 308.
  • an aluminum substrate having a suitable size can be formed by directly cutting a 1 m ⁇ 1 m aluminum material, or by forming a V groove by using an aluminum material of 1 m ⁇ 1 m, and then cutting.
  • this step is a step of mounting the IGBT tube 20, the FRD tube 10, and the lead 301 on the circuit wiring layer 308.
  • the IGBT tube 20, the FRD tube 10, and the lead 301 are attached to predetermined positions of the circuit wiring layer 308 by solder such as solder paste.
  • solder paste soldering in order to reduce the void ratio after solder paste soldering and to perform cost control, it is conceivable to use a reflow furnace with nitrogen protection for solder paste fixing, and if the cost permits, vacuum reflow may also be considered.
  • the melting temperature of the solder paste is generally around 280 °C.
  • this step is a step of mounting an HVIC tube and an LVIC tube at the emitter position of the IGBT tube 20.
  • an HVIC tube is mounted on the IGBT tube 20
  • an HVIC tube is mounted on the three IGBT tubes 20
  • an LVIC tube is mounted on the three IGBT tubes 20.
  • the back surface of the HVIC tube and the LVIC tube is not an electrode such as GND, silver paste or the like having conductivity may be used as a fixing material
  • a non-conductive red plastic may be used. Etc. as a fixing material.
  • the silver paste or the red glue is cured by baking at 175 ° C, where the curing temperature of the silver or red glue is about 170 ° C, and the curing time is about 2 hours. Since the baking temperature is much lower than the melting temperature of the solder paste, the soldering effect of the IGBT tube 20, the FRD tube 10, and the lead 301 is not affected during this heating.
  • this step is a step of forming an electrical connection between the circuit component and the circuit wiring layer 308 by the metal wire 305.
  • the IGBT tube 20 Referring to the plan view 7 (A) and the side view 7 (B), the IGBT tube 20, the FRD tube 10, the gate drive tube 40 (HVIC tube and LVIC tube), and the wiring (metal line 305) of the circuit wiring layer 308 are connected.
  • the aluminum wire of the appropriate diameter is selected as the bonding wire.
  • the parts used for signal control such as the HVIC tube and the LVIC tube, it is also conceivable to use a 15 ⁇ m gold wire or a 38 ⁇ m aluminum wire as the bonding wire.
  • the power tube portion such as the IGBT tube 20 and the FRD tube 10
  • an aluminum wire of 200 ⁇ m to 400 ⁇ m is used for bonding.
  • the metal substrate 306 is baked in an oxygen-free environment, the baking time should not be less than 2 hours, and the baking temperature is selected to be 125 °C.
  • the metal substrate 306 on which the pins 301 are arranged is transferred to the molds 44 and 45.
  • the positioning of the metal substrate 306 is performed by bringing a specific portion of the pin 301 into contact with the fixture 46.
  • the metal substrate 306 is placed in a cavity formed inside the mold 50, and then the sealing resin is injected from the gate 53.
  • the method of performing the sealing can be carried out by transfer molding using a thermosetting resin or injection molding using a thermosetting resin. Further, the gas inside the sealing resin cavity corresponding to the injection from the gate 53 is discharged to the outside through the exhaust port 54.
  • the side of the pin 301 should not be completely selected, that is, the upper side of FIG. 7(A).
  • one side of the pin 301 should be selected, that is, FIG. 7 (FIG. 7) A) below.
  • the back surface of the metal substrate 306 is in close contact with the lower mold 45, but a small amount of sealing resin is still entered between the back surface of the metal substrate 306 and the lower mold 45. Therefore, after demolding, laser etching or grinding is required. A small amount of the sealing resin remaining on the back surface of the metal substrate 306 is removed, and the back surface of the metal substrate 306 is exposed from the sealing resin, and the upper portion of the back surface of the metal substrate 306 is sealed with a sealing resin.
  • this step is a step of performing the function of testing the function of the lead 11 and performing the function of the module.
  • the above-described smart power module 1 is completed after the process.
  • the portion other than the lead 301 is sealed with a sealing resin.
  • This step is required depending on the length and shape to be used.
  • the external lead 301 is cut at a position of a broken line, and sometimes bent into a certain shape to facilitate subsequent assembly.
  • the module into the test equipment, carry out the routine electrical parameter test, generally including the insulation withstand voltage, static power consumption, delay time and other test items, the test is qualified.
  • routine electrical parameter test generally including the insulation withstand voltage, static power consumption, delay time and other test items
  • the smart power module 1 shown in Fig. 2 is completed by the above steps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

一种智能功率模块及其制造方法,智能功率模块(1)包括金属基板(306),其中一表面覆盖有绝缘层(307);电路布线层(308),形成于绝缘层(307)表面;多个IGBT管(20),设置在电路布线层(308)上的预设位置;栅极驱动管(40),数量与IGBT管(20)相同,每个栅极驱动管(40)分别作为相应的IGBT管(20)的驱动电路,且每个栅极驱动管(40)的驱动端与IGBT管(20)的栅极电连接的走线长度相同;金属线(305),连接于电路布线层(308)、IGBT管(20)和栅极驱动管(40)之间以形成预设电路。保证从栅极驱动管(40)到IGBT管(20)栅极的走线可以做到相同,使得IGBT管(20)动态特性的相同性,并且也不会增加智能功率模块的走线。

Description

智能功率模块及其制造方法
技术领域
   本发明属于电子器件制造工艺领域,尤其涉及一种智能功率模块及其制造方法。
背景技术
   智能功率模块(Intelligent Power Module,IPM)是一种将电力电子和集成电路技术结合的功率驱动类产品。IPM把功率开关器件和高压驱动电路集成在一起,并内藏有过电压、过电流和过热等故障检测电路。IPM一方面接收MCU(Microprogrammed Control Unit,微程序控制器)的控制信号,驱动后续电路工作,另一方面将***的状态检测信号送回MCU。与传统分立方案相比,IPM以其高集成度、高可靠性等优势赢得越来越大的市场,尤其适合于驱动电机的变频器及各种逆变电源,是变频调速,冶金机械,电力牵引,伺服驱动,变频家电的一种理想电力电子器件。
   现行智能功率模块100的电路原理如图1(A)所示:
   HVIC(High Voltage Integrated Circuit,高压集成电路)管101的VCC端作为智能功率模块100的低压区供电电源正端VDD,VDD一般为15V;HVIC管101的HIN1端作为智能功率模块100的U相上桥臂输入端UHIN;HVIC管101的HIN2端作为智能功率模块100的V相上桥臂输入端VHIN;HVIC管101的HIN3端作为智能功率模块100的W相上桥臂输入端WHIN;HVIC管101的LIN1端作为智能功率模块100的U相下桥臂输入端ULIN;HVIC管101的LIN2端作为智能功率模块100的V相下桥臂输入端VLIN;HVIC管101的LIN3端作为智能功率模块100的W相下桥臂输入端WLIN。在此,智能功率模块100的U、V、W三相的六路输入接收0~5V的输入信号。
   HVIC管101的GND端作为智能功率模块100的低压区供电电源负端COM;HVIC管101的VB1端作为智能功率模块100的U相高压区供电电源正端UVB;HVIC管101的HO1端与U相上桥臂IGBT(Insulated Gate Bipolar Translator,绝缘栅门极晶体管)管121的栅极相连;HVIC管101的VS1端与IGBT管121的发射极、FRD(Fast Recovery Diode,快速恢复二极管)管111的阳极、U相下桥臂IGBT管124的集电极、FRD管114的阴极相连,并作为智能功率模块100的U相高压区供电电源负端UVS;HVIC管101的VB2端作为智能功率模块100的U相高压区供电电源正端VVB;HVIC管101的HO3端与V相上桥臂IGBT管123的栅极相连;HVIC管101的VS2端与IGBT管122的发射极、FRD管112的阳极、V相下桥臂IGBT管125的集电极、FRD管115的阴极相连,并作为智能功率模块100的W相高压区供电电源负端VVS;HVIC管101的VB3端作为智能功率模块100的W相高压区供电电源正端WVB;HVIC管101的HO3端与W相上桥臂IGBT管123的栅极相连;HVIC管101的VS3端与IGBT管123的发射极、FRD管113的阳极、W相下桥臂IGBT管126的集电极、FRD管116的阴极相连,并作为智能功率模块100的W相高压区供电电源负端WVS;HVIC管101的LO1端与IGBT管124的栅极相连;HVIC管101的LO2端与IGBT管125的栅极相连;HVIC管101的LO3端与IGBT管126的栅极相连;IGBT管124的发射极与FRD管114的阳极相连,并作为智能功率模块100的U相低电压参考端UN;IGBT管125的发射极与FRD管115的阳极相连,并作为智能功率模块100的V相低电压参考端VN;IGBT管126的发射极与FRD管116的阳极相连,并作为智能功率模块100的W相低电压参考端WN。
   IGBT管121的集电极、FRD管111的阴极、IGBT管122的集电极、FRD管112的阴极、IGBT管123的集电极、FRD管113的阴极相连,并作为智能功率模块100的高电压输入端P,P一般接300V。
   HVIC管101的作用是:将输入端HIN1、HIN2、HIN3和LIN1、LIN2、LIN3的0~5V的逻辑信号分别传到输出端HO1、HO2、HO3和LO1、LO2、LO3,其中HO1、HO2、HO3是VS~VS+15V的逻辑信号,LO1、LO2、LO3是0~15V的逻辑信号。
   参照图1(B)说明现有智能功率模块100的结构。图1(C)是智能功率模块100的取出封装树脂后的俯视图,图1(D)是图1(B)的X-X’线剖面图。
   智能功率模块100具有如下结构,其包括:电路基板206;设于电路基板206表面上的绝缘层207上形成的电路布线208;被固定在电路布线208上的IGBT管121~126、FRD管111~116、HVIC管101等元器件;连接元器件和电路布线208的金属线205;与电路布线208连接的引脚201;电路基板206的至少一面被密封树脂202密封,为了提高密封性,会将电路基板206全部密封,为了提高散热性,会使铝基板206的背面露出到外部的状态下进行密封。
   从图1(C)可以看出,现行的智能功率模块由1枚HVIC管控制6枚IGBT管,导致走线很长,线路间容易造成干扰;并且,由于从HVIC管到6枚IGBT管的距离不相同,导致6枚IGBT管的驱动信号传输相同性难以控制;此外,因为基板上的电路布线过多势必增加基板的面积,导致现行智能功率模块的面积加大,增加了智能功率模块的制造成本,影响了智能功率模块在低端领域的普及;另外,由于需要留出电路布线面积,导致元器件间距离较大,通过金属线使元器件间产生连接的邦线较长,影响了邦线的可靠性,并且有在模制过程中有引起冲线的风险。   
发明内容
   本发明旨在解决现有技术的不足,提供一种保证走线少,功率器件的驱动信号传输相同的智能功率模块,可降低智能功率模块的面积,保证其驱动信号传输相同易于控制,提高可靠性及性能。
   本发明是这样实现的,一种智能功率模块,包括:
   金属基板,其中一表面覆盖有绝缘层;
   电路布线层,形成于所述绝缘层表面;
   多个IGBT管,设置在所述电路布线层上的预设位置;
   栅极驱动管,数量与所述IGBT管相同,每个所述栅极驱动管分别作为相应的所述IGBT管的驱动电路,且每个所述栅极驱动管的驱动端与所述IGBT管的栅极电连接的走线长度相同;
   金属线,连接于所述电路布线层、IGBT管和栅极驱动管之间以形成预设电路。
   优选地,多个所述栅极驱动管分别设置于多个所述IGBT管的发射极上,所述栅极驱动管的驱动端通过所述金属线与所述IGBT管的栅极连接。
   优选地,所述电路布线层上用于设置所述IGBT管的预设位置呈阵列排布。
   优选地,多个所述栅极驱动管包括数量相等的HVIC管和LVIC管。
   优选地,所述栅极驱动管为6个,其中包括3个HVIC管和3个LVIC管。
   优选地,还包括数量与所述IGBT管相同的FRD管,多个FRD管分别通过所述IGBT管固定于所述电路布线层。
   优选地,所述FRD管的阴极固定于所述IGBT管的集电极、阳极通过所述金属线与所述IGBT管的发射极电连接。
   优选地,还包括至少完全覆盖所述金属基板上表面所有元素的密封树脂。
   优选地,还包括引脚,在所述金属基板的边缘,形成有用于配置引脚的引脚焊盘,所述引脚与引脚焊盘连接并且自所述金属基板向外延伸。
   上述智能功率模块的有益效果是:由各自独立的栅极驱动管配置在对应IGBT管上,从栅极驱动管到IGBT管栅极的走线可以做到相同,从而可有效保证IGBT管动态特性的相同性;而且栅极驱动管的走线不再是一个区域的集中式走线,设置多个各自独立的栅极驱动管可以减少走线到栅极驱动管的距离,使得走线大大减少,减少走线过长带来的不稳定性同时也节省电路布线层的面积,从而使智能功率模块的金属基板的面积大幅减小,使成本进一步降低。
   本发明的另一目的在于提供一种智能功率模块的制造方法,包括以下步骤:
   制作金属基板,并于所述金属基板的其中一表面覆盖绝缘层,于所述绝缘层表面布设电路布线层;
   于所述电路布线层上的多个预设位置配设IGBT管;
   设置数量与所述IGBT管相同且分别作为相应的所述IGBT管的驱动电路的栅极驱动管,其中,每个所述栅极驱动管的驱动端与所述IGBT管的栅极电连接的走线长度相同;
   于所述电路布线层、IGBT管和栅极驱动管之间连接金属线以形成预设电路。
   优选地,所述设置数量与所述IGBT管相同且分别作为相应的所述IGBT管的驱动电路的栅极驱动管的步骤包括:
   将多个所述栅极驱动管分别设置于多个所述IGBT管的发射极上;
   将所述栅极驱动管的驱动端通过所述金属线与所述IGBT管的栅极连接。
   优选地,所述于所述电路布线层上的多个预设位置配设IGBT管的步骤中,所述电路布线层上用于设置所述IGBT管的预设位置呈阵列排布。
   优选地,多个所述栅极驱动管包括数量相等的HVIC管和LVIC管。
   优选地,在所述于所述电路布线层上的多个预设位置配设IGBT管的步骤之后还包括:
   设置数量与所述IGBT管相同的FRD管,该多个FRD管分别通过所述IGBT管固定于所述电路布线层。
   优选地,所述设置数量与所述IGBT管相同的FRD管的步骤包括:
   将所述FRD管的阴极固定于所述IGBT管的集电极、阳极通过所述金属线与所述IGBT管的发射极电连接。
   优选地,所述设置数量与所述IGBT管相同的FRD管的步骤之后还包括:
   在形成于模具内部的模腔中放置金属基板,然后由模具的浇口注入密封树脂。
   优选地,所述由模具的浇口注入密封树脂的步骤之后还包括:
   将残留在金属基板背面的少量密封树脂去除,使金属基板的背面从密封树脂露出。
   优选地,所述于所述电路布线层上的多个预设位置配设IGBT管的步骤之后还包括:
   通过焊料将引脚安装在电路布线层上。   
   上述智能功率模块的制造方法制造上述的智能功率模块由于装配IGBT管和装配栅极驱动管使用不同的工序进行,从而可以通过不同的焊料和焊接参数对此两类电路元件进行固定,可以从一定程度上降低对焊接工艺的参数要求,对提高焊接质量和焊接成品率有积极作用,而且减少了走线,降低了在模制过程中有引起冲线的风险。   
附图说明
   图1(A)为现有的智能功率模块的电路原理图;
   图1(B)为现有的智能功率模块的正面图;
   图1( C)为现有的智能功率模块的取出封装树脂后的俯视图结构示意图;
   图1(D)为图1(B)的X-X’线剖面图;
   图2(A)为本发明一实施例提供的智能功率模块的电路原理图;
   图2(B)为本发明一实施例提供的智能功率模块的正面图;
   图2(C)是图2(B)的俯视图结构示意图;
   图2(D)是本发明一个实施例中的图2(B)中沿X-X’线的剖面图;
   图3(A)为本发明另一实施例提供的智能功率模块的电路原理图;
   图3(B)为本发明另一实施例提供的智能功率模块的俯视图结构示意图;
   图3(C)是本发明另一个实施例中的剖面图;
   图4(A)、4(B)是本发明实施例提供的设置基板、绝缘层及电路布线层的工序;
   图5(A)、5(B)为本发明实施例提供的设置IGBT管、FRD管、引脚的工序;
   图6(A)、6(B)为本发明第一实施例提供的设置栅极驱动管的工序;
   图7(A)、7(B)为本发明实施例提供的进行邦线连接及清洗工序;
   图8为本发明实施例提供的密封工序;
   图9为本发明实施例提供的进行引脚切筋成型并进行测试的工序。   
具体实施方式
   为了使本发明要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
   结合图2(A)、2(B)、2(C)、2(D),在一个实施例中,智能功率模块1包括金属基板306、绝缘层307、电路布线层308、多个IGBT管20、数量与IGBT管20相同的FRD管10、数量与IGBT管20相同的栅极驱动管40和金属线305。
   金属基板306其中一表面覆盖有绝缘层307。电路布线层308形成于绝缘层307的表面。多个IGBT管20设置在电路布线层308上的预设位置308A;栅极驱动管40数量与IGBT管20相同,每个栅极驱动管40分别作为相应的IGBT管20的驱动电路,且每个栅极驱动管40的驱动端(HO、LO)与IGBT管20的栅极电连接的走线长度相同。金属线305连接于电路布线层308、IGBT管20和栅极驱动管40之间以形成预设电路。从栅极驱动管40到IGBT管20栅极的走线可以做到相同,从而可有效保证IGBT管20动态特性的相同性。
   在优选的实施例中,多个栅极驱动管40分别设置于多个IGBT管20的发射极上,栅极驱动管40的驱动端(如图2(A)所示的HO、LO)通过金属线305与IGBT管20的栅极连接。在其他实施方式中,栅极驱动管40可以设置于相应的IGBT管20的一侧,也可以保证从栅极驱动管40到IGBT管20栅极的走线可以做到相同,并且也不会增加智能功率模块1的走线。
   进一步地,智能功率模块1还包括引脚301,在金属基板306的边缘,形成有用于配置引脚301的引脚焊盘308B。电路布线层308包括靠近金属基板306的表面边缘的引脚焊盘308B,引脚301与引脚焊盘308B连接并自金属基板向外延伸。根据功能需要,也可在金属基板306的一边、两边、三边或四边附近设置多个用于配置引脚301的引脚焊盘308B。
   在优选的实施例中,多个栅极驱动管40包括数量相等的用于驱动上桥臂的HVIC管和驱动下桥臂的LVIC(Low Voltage Integrated Circuits,低压集成电路)管。 参考3(A)和3(B),栅极驱动管40为6个,分别标号为41、42、43、44、45、46,其中包括3个HVIC管41、42、43和3个LVIC管44、45、46。
   在优选的实施例中,电路布线层308上用于设置IGBT管20的预设位置308A呈阵列排布。预设位置308A数量与IGBT管20相同,并用以固定IGBT管20的电路图案,而且该用于设置IGBT管20的预设位置308A呈阵列排布。具体是,根据金属基板306的形状以及引脚301所设置的位置,为减少引脚301与IGBT管20、栅极驱动管40的电路布线长度,预设位置308A的可以是矩阵排布、圆形阵列排布等。
   如图2(A)、2(C)所示,本实施例中,智能功率模块1还包括数量与IGBT管20相同的FRD管10,多个FRD管10分别通过IGBT管20固定于电路布线层308。进一步地, FRD管10的阴极固定于IGBT管20的集电极、FRD管10的阳极通过金属线305与IGBT管20的发射极电连接。
   IGBT管20和FRD管10被固定在电路布线层308上构成规定的电路。在此,6枚IGBT管20的具有发射极和栅极的面朝上、具有集电极的面朝下安装,FRD管1的具有阳极的面朝上、具有阴极的面朝下安装。
   电路布线层308由铜等金属构成,电路布线层308根据预设的电路形成于金属基板306上的特定位;根据功率需要,可设计成0.035mm或0.07mm等的厚度,对于一般的智能功率模块,优先考虑设计成0.07mm,本实施例中采用0.07mm的厚度。
   参考图3(A)、3(B)和3(C),以相关电路原理进一步说明智能功率模块1的具体实施方式。
   HVIC管41被固定IGBT管21上,HVIC管42被固定IGBT管22上,HVIC管43被固定IGBT管23上,LVIC管44被固定IGBT管24上,LVIC管45被固定IGBT管25上,LVIC管46被固定IGBT管26上。在此,HVIC管41、42、43和LVIC管44、45、46在IGBT管上被固定的位置为IGBT管的发射极,对于一般的额定电流为30A的IGBT管20,发射极的面积不会小于6mm2,对于一般的单臂HVIC管41、42、43和单臂LVIC管44、45、46,面积不会大于2mm2。
   U相上桥臂输出电路41(HVIC管41)、V相上桥臂输出电路41(HVIC管42)、W相上桥臂输出电路41(HVIC管43)是3枚驱动上桥臂IGBT管21、22、23的单臂HVIC管,他们的结构完全相同,作用是将输入端HIN的0~5V的逻辑信号传到输出端(即驱动端)HO,其中HO是VS~VS+15V的逻辑信号;由于VS的会在0~300V之间变化,所以U相上桥臂输出电路、V相上桥臂输出电路、W相上桥臂输出电路需要耐高压的流片工艺实现,有时为了降低成本,使用650V的BCD工艺,有时为了降低耐压结构设计难度,使用650V的SOI工艺。
   U相下桥臂输出电路(LVIC管44)、V相下桥臂输出电路(LVIC管45)、W相下桥臂输出电路(LVIC管46)是3枚驱动下桥臂IGBT管24、25、26的单臂LVIC管,他们的结构完全相同,作用是将输入端LIN的0~5V的逻辑信号传到输出端(即驱动端)LO,其中LO是0~15V的逻辑信号;由于U相下桥臂输出电路、V相下桥臂输出电路、W相下桥臂输出电路无需耐高压的流片工艺实现,为了降低成本,LVIC管可以通过低成本的BIPOLAR或COMS等低压工艺实现。
   U相上桥臂输出电路41、U相下桥臂输出电路44的VCC、V相上桥臂输出电路42、V相下桥输出电路45的VCC、W相上桥臂输出电路43、W相下桥臂输出电路44的VCC相连,并作为智能功率模块1的VDD端,VDD是智能功率模块1的低压区供电电源,VDD一般为15V。
   U相上桥臂输出电路41的HIN端作为智能功率模块1的U相上桥臂输入端UHIN;V相上桥臂输出电路42的HIN端作为智能功率模块1的V相上桥臂输入端VHIN;W相上桥臂输出电路43的HIN端作为智能功率模块1的W相上桥臂输入端WHIN;U相下桥臂输出电路44的LIN端作为智能功率模块1的U相下桥臂输入端ULIN;V相下桥臂输出电路45的LIN端作为智能功率模块1的V相下桥臂输入端VLIN;W相下桥臂输出电路46的LIN端作为智能功率模块1的W相下桥臂输入端WLIN;在此,智能功率模块1的U、V、W三相的六路输入接收0~5V的输入信号。
   U相上桥输出电路41的GND端、V相上桥输出电路42的GND端、W相上桥输出电路43的GND端、U相下桥输出电路44的GND端、V相下桥输出电路45的GND端、W相下桥输出电路46的GND端相连,并作为智能功率模块1的COM端,COM为VDD供电电源的负端。
   U相上桥臂输出电路41的VB端作为智能功率模块1的U相高压区供电电源正端UVB;V相上桥臂输出电路42的VB端作为智能功率模块1的V相高压区供电电源正端VVB;W相上桥臂输出电路41的VB端作为智能功率模块1的W相高压区供电电源正端WVB;U相上桥臂输出电路41的HO端与IGBT管21的栅极相连,U相上桥臂输出电路41的VS端与IGBT管21的射极、FRD管11的阳极、IGBT管24的集电极、FRD管14的阴极相连,并作为智能功率模块1的U相高压区供电电源负端UVS;V相上桥臂输出电路42的HO端与IGBT管22的栅极相连,V相上桥臂输出电路42的VS端与IGBT管22的射极、FRD管12的阳极、IGBT管25的集电极、FRD管15的阴极相连,并作为智能功率模块1的V相高压区供电电源负端VVS。
   W相上桥臂输出电路43的HO端与IGBT管23的栅极相连,W相上桥臂输出电路43的VS端与IGBT管23的射极、FRD管13的阳极、IGBT管26的集电极、FRD管16的阴极相连,并作为智能功率模块1的W相高压区供电电源负端WVS。
   IGBT管21的集电极、FRD管11的阴极、IGBT管22的集电极、FRD管12的阴极、IGBT管23的集电极、FRD管13的阴极相连,并作为智能功率模块1的高电压输入端P,高电压输入端P一般接300V。
   U相下桥臂输出电路44的LO端与IGBT管24的栅极相连,IGBT管24的射极与FRD管14的阳极相连,并作为智能功率模块1的U相低电压参考端UN;V相下桥臂输出电路45的LO端与IGBT管25的栅极相连,IGBT管25的射极与FRD管15的阳极相连,并作为智能功率模块1的V相低电压参考端VN;W相下桥臂输出电路46的LO端与IGBT管26的栅极相连,IGBT管26的射极与FRD管16的阳极相连,并作为智能功率模块1的W相低电压参考端WN。
   参照图3(B)、3(C),另一实施例的智能功率模块1的结构图。
   本发明的智能功率模块1具有在表面上形成有由绝缘层307的金属基板306,配置在绝缘层307上的电路布线层308,配置在电路布线层308上的IGBT管21、IGBT管22、IGBT管23、IGBT管24、IGBT管25、IGBT管26和FRD管11、FRD管12、FRD管13、FRD管14、FRD管15、FRD管16,配置在电路布线层308的边缘部分的引脚301,用于连使上述各元素间形成电连接的金属线305,和密封该电路且至少完全覆盖金属基板306上表面所有元素的密封树脂302。
   以下以一个实施例说明智能功率模块1各构成要素。
   金属基板306是由1100等材质的铝构成的矩形板材。为了提高板材的耐腐蚀性,有时会对表面进行阳极氧化,为了节约制造成本,在某些对抗腐蚀性要求不高的应用场合,也可只对铝材表面进行拉丝处理。金属基板306的厚度可选用1.5mm。
   绝缘层307形成于金属基板306至少一个表面,并在环氧树脂等树脂材料内高浓度填充氧化铝等填料提高热导率。
   电路布线层308由铜等金属构成,形成于金属基板306上的特定位置,根据功率需要,可设计成0.035mm或0.07mm等的厚度,对于一般的智能功率模块,优先考虑设计成0.07mm,本实施例中采用0.07mm的厚度。特别地,在金属基板306的边缘,形成有用于配置引脚301的引脚焊盘308B。在此,在金属基板306的两边附近设置多个用于配置引脚301的引脚焊盘308B,根据功能需要,也可在金属基板306的一边、三边、四边附近设置多个用于配置引脚301的引脚焊盘308B。
   IGBT管21~26和FRD管11~16被固定在电路布线层308上构成规定的电路。在此,6枚IGBT管21~26的具有射极和栅极的面朝上、具有集电极的面朝下安装,FRD管11~16的具有阳极的面朝上、具有阴极的面朝下安装。
   HVIC管41被固定IGBT管21上,HVIC管42被固定IGBT管22上,HVIC管43被固定IGBT管23上,LVIC管44被固定IGBT管24上,LVIC管45被固定IGBT管25上,LVIC管46被固定IGBT管26上。在此,HVIC管21、22、23和LVIC管24、25、26在IGBT管21~26上被固定的位置为IGBT管21~26的发射极,对于一般的额定电流为30A的IGBT管,发射极的面积不会小于6mm2,对于一般的单臂HVIC管21、22、23和单臂LVIC管24、25、26,面积不会大于2 mm2。
   金属线15可以是铝线、金线或铜线,通过邦定使各电路元件(如图2(C)所示的IGBT管20、FRD管10、栅极驱动管40)和电路布线层308之间建立电连接关系,有时还用于使引脚301和电路布线层308建立电连接关系。
   引脚301被固定在设于金属基板306边缘的引脚焊盘308B上,其具有例如与外部进行输入、输出的作用。在此,设计成相对两边上设有多条引脚301,引脚301和引脚焊盘308B通过焊锡等导电电性粘结剂焊接。引脚301一般采用铜等金属制成,铜表面通过化学镀和电镀形成一层镍锡合金层,合金层的厚度一般为5μm,镀层可保护铜不被腐蚀氧化,并可提高可焊接性。
   密封层302可通过传递模方式使用热硬性树脂模制,也可通过注入模方式使用热塑性树脂模制。在此,密封层302完全密封金属基板306上表面上的所有元素,而对于致密性要求高的智能功率模块,一般会对金属基板306的整体也进行密封处理,本实施例中,为了提高智能功率模块的散热性,金属基板306的背面露出。
   参考3(C),上述智能功率模块1由各自独立的栅极驱动管40配置在对应IGBT管20上,从栅极驱动管40到IGBT管20栅极的走线长度可以做到相同,从而可有效保证IGBT管20动态特性的相同性,使得IGBT管10的驱动信号传输相同性易于控制;栅极驱动管40的走线不再是到一个区域的集中式走线,设置多个各自独立的栅极驱动管40可以减少走线到栅极驱动管40的距离,使得走线大大减少,减少走线过长带来的不稳定性同时也节省电路布线层的面积,从而使智能功率模块1的金属基板306的面积大幅减小,使成本进一步降低。   
   结合图4至图9,一种智能功率模块的制造方法,包括以下步骤:
   步骤S11,制作金属基板306,并于金属基板306的其中一表面覆盖绝缘层307,于绝缘层307表面布设电路布线层308。
   步骤S12,于电路布线层308上的多个预设位置308A配设IGBT管20。
   步骤S13,设置数量与IGBT管20相同且分别作为相应的IGBT管20的驱动电路的栅极驱动管40,其中,每个栅极驱动管40的驱动端与IGBT管20的栅极电连接的走线长度相同。
   步骤S14,于电路布线层308、IGBT管20和栅极驱动管40之间连接金属线305以形成预设电路。
   在优选的实施例中,步骤S11具体包括:将多个栅极驱动管40分别设置于多个IGBT管20的发射极上;将栅极驱动管40的驱动端(HO、LO)通过金属线305与IGBT管20的栅极连接。在其他实施方式中,栅极驱动管40可以设置于相应的IGBT管20的一侧,也可以保证从栅极驱动管40到IGBT管20栅极的走线可以做到相同,并且也不会增加智能功率模块1的走线。
   在优选的实施例中,步骤S12中,电路布线层308上用于设置IGBT管20的预设位置308A呈阵列排布。预设位置308A数量与IGBT管20相同,并用以固定IGBT管20的电路图案,而且该用于设置IGBT管20的预设位置308A呈阵列排布。具体是,根据金属基板306的形状以及引脚301所设置的位置,为减少引脚301与IGBT管20、栅极驱动管40的电路布线长度,预设位置308A的可以是矩阵排布、圆形阵列排布等。
   在优选的实施例中,多个栅极驱动管40包括数量相等的HVIC管和LVIC管。参考3(A)和3(B),栅极驱动管40为6个,分别标号为41、42、43、44、45、46,其中包括3个HVIC管41、42、43和3个LVIC管44、45、46。
   在优选的实施例中,在步骤S12之后还包括:设置数量与IGBT管20相同的FRD管,该多个FRD管分别通过IGBT管20固定于电路布线层308。
   其中,将FRD管的阴极固定于IGBT管20的集电极、阳极通过金属线305与IGBT管20的发射极电连接。
   在另一个实施例中,本发明智能功率模块的制造方法包括:在铝基板306表面上设置绝缘层307的工序;在绝缘层307的表面上形成电路布线层3308工序;在电路布线层308配置多个IGBT管和FRD管10的工序;在IGBT管20上配置HVIC管41~43和LVIC管44~46的工序;用金属线305连接各电路元件和电路布线306的工序;烘烤并模制的工序;对引脚301进行成型的工序;进行功能测试的工序。
   以下说明的各工序的详细情况。
   第一工序:参照图4,本工序是在大小合适的铝基板上形成绝缘层307并在绝缘层307表面形成电路布线的工序。
   首先,参照俯视图4(A)和侧视图4(B),根据需要的电路布局准备大小合适的铝基板306,对于一般的智能功率模块可选取44mm×20mm的大小,两面进行防蚀处理。在铝基板的至少一面的表面上设有绝缘层307。另外,在绝缘层307的表面粘贴有作为导电图案的铜箔。然后将该工序制造的铜箔进行蚀刻,局部地除去铜箔,形成电路布线层308。
   在此,大小合适的铝基板的形成可以通过直接对1m×1m的铝材进行冲切等方式形成,也可通过先1m×1m的铝材形成V槽,然后剪切的方式形成。
   第二工序:参照图5,本工序是在电路布线层308上安装IGBT管20、FRD管10和引脚301的工序。
   参照俯视图5(A)和侧视图5(B),通过锡膏等焊料将IGBT管20、FRD管10和引脚301安装在电路布线层308的规定位置。
   在此,为了减小锡膏焊接后的空洞率,并且进行成本控制,可以考虑使用具有氮气保护的回流炉进行锡膏固定,如果成本允许,也可以考虑使用真空回流的形式。锡膏的融化温度一般为280℃左右。
   第三工序:参考图6,本工序是在IGBT管20的射极位置安装HVIC管和LVIC管的工序。
   首先,参照俯视图6(A)和侧视图6(B),在IGBT管20上安装HVIC管,在三个IGBT管20上安装HVIC管,在三个IGBT管20上安装LVIC管。 在此,如果HVIC管和LVIC管的背面并非GND等电极,可以使用具有导电性的银胶等作为固定材料,如果HVIC管和LVIC管的背面为GND等电极,可以使用非导电性的红胶等作为固定材料。
   其次,通过175℃烘烤的形式,将银胶或红胶固化,在此,银胶或红胶的固化温度为170℃左右,固化时间约为2小时。因为烘烤温度远低于锡膏的融化温度,所以在此加热过程中,不会影响到IGBT管20、FRD管10和引脚301的焊接效果。
   第四工序:参考图7,本工序是通过金属线305在电路元件和电路布线层308间形成电连接的工序。
   参照俯视图7(A)和侧视图7(B),进行IGBT管20、FRD管10、栅极驱动管40(HVIC管和LVIC管)和电路布线层308的邦线(金属线305)连接。
   根据通流能力需要,选择适当直径的铝线作为邦定线,对于用于信号控制的部分,如HVIC管和LVIC管,也可考虑使用15μm的金线或38μm的铝线作为邦定线。对功率管部分,如IGBT管20和FRD管10,邦定使用200μm~400μm的铝线。
   考虑到邦线机台震动对邦定线的影响,可使用先邦粗线再邦细线的方式;出于防静电考虑,可使用先邦细线再邦粗线的方式。具体根据机台的震动幅度和机台邦头的防静电效果而定。
   第五工序:参照图8,说明由密封层302密封铝基板306的工序。
   在无氧环境中对金属基板306进行烘烤,烘烤时间不应小于2小时,烘烤温度和选择125℃。将配置好引脚301的金属基板306搬送到模型44及45。通过使引脚301的特定部分与固定装置46接触,进行金属基板306的定位。
   合模时,在形成于模具50内部的模腔中放置金属基板306,然后由浇口53注入密封树脂。进行密封的方法可采用使用热硬性树脂的传递模模制或使用热硬性树脂的注入模模制。而且,对应自浇口53注入的密封树脂模腔内部的气体通过排气口54排放到外部。对于浇口53位置的选择,应选择不完全具有引脚301的一边,即图7(A)的上边,对于排气口54的选择,应选择完全具有引脚301的一边,即图7(A)的下边。
   在此,金属基板306的背面紧贴在下模45上,但仍会有少量密封树脂进入到金属基板306的背面和下模型45之间,因此,在脱模后,需要进行激光蚀刻或者研磨,将残留在金属基板306背面的少量密封树脂去除,使金属基板306的背面从密封树脂露出,而金属基板306的背面以上部分被密封树脂密封。
   第六工序:参照图8,本工序是进行引脚11切筋成型并进行模块功能测试的工序,上述的智能功率模块1经由此工序后制品完成。
在前工序即传递模模装工序使除引脚301以外的其他部分都被密封树脂密封。本工序根据使用的长度和形状需要,例如,在虚线的位置将外部引脚301切断,有时还会折弯成一定形状,便于后续装配。
然后将模块放入测试设备中,进行常规的电参数测试,一般包括绝缘耐压、静态功耗、迟延时间等测试项目,测试合格者为成品。
利用上述工序,完成图2所示的智能功率模块1。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (18)

  1. 一种智能功率模块,其特征在于,包括:
       金属基板,其中一表面覆盖有绝缘层;
       电路布线层,形成于所述绝缘层表面;
       多个IGBT管,设置在所述电路布线层上的预设位置;
       栅极驱动管,数量与所述IGBT管相同,每个所述栅极驱动管分别作为相应的所述IGBT管的驱动电路,且每个所述栅极驱动管的驱动端与所述IGBT管的栅极电连接的走线长度相同;
       金属线,连接于所述电路布线层、IGBT管和栅极驱动管之间以形成预设电路。
  2. 如权利要求1所述的智能功率模块,其特征在于,多个所述栅极驱动管分别设置于多个所述IGBT管的发射极上,所述栅极驱动管的驱动端通过所述金属线与所述IGBT管的栅极连接。
  3. 如权利要求1所述的智能功率模块,其特征在于,所述电路布线层上用于设置所述IGBT管的预设位置呈阵列排布。
  4. 如权利要求1所述的智能功率模块,其特征在于,多个所述栅极驱动管包括数量相等的HVIC管和LVIC管。
  5. 如权利要求4所述的智能功率模块,其特征在于,所述栅极驱动管为6个,其中包括3个HVIC管和3个LVIC管。
  6. 如权利要求1所述的智能功率模块,其特征在于,还包括数量与所述IGBT管相同的FRD管,多个FRD管分别通过所述IGBT管固定于所述电路布线层。
  7. 如权利要求6所述的智能功率模块,其特征在于,所述FRD管的阴极固定于所述IGBT管的集电极、阳极通过所述金属线与所述IGBT管的发射极电连接。
  8. 如权利要求6所述的智能功率模块,其特征在于,还包括至少完全覆盖所述金属基板上表面所有元素的密封树脂。
  9. 如权利要求1所述的智能功率模块,其特征在于,还包括引脚,在所述金属基板的边缘,形成有用于配置引脚的引脚焊盘,所述引脚与引脚焊盘连接并且自所述金属基板向外延伸。
  10. 一种智能功率模块的制造方法,其特征在于,包括以下步骤:
       制作金属基板,并于所述金属基板的其中一表面覆盖绝缘层,于所述绝缘层表面布设电路布线层;
       于所述电路布线层上的多个预设位置配设IGBT管;
       设置数量与所述IGBT管相同且分别作为相应的所述IGBT管的驱动电路的栅极驱动管,其中,每个所述栅极驱动管的驱动端与所述IGBT管的栅极电连接的走线长度相同;
       于所述电路布线层、IGBT管和栅极驱动管之间连接金属线以形成预设电路。
  11. 如权利要求10所述的智能功率模块的制造方法,其特征在于,所述设置数量与所述IGBT管相同且分别作为相应的所述IGBT管的驱动电路的栅极驱动管的步骤包括:
       将多个所述栅极驱动管分别设置于多个所述IGBT管的发射极上;
       将所述栅极驱动管的驱动端通过所述金属线与所述IGBT管的栅极连接。
  12. 如权利要求10所述的智能功率模块的制造方法,其特征在于,所述于所述电路布线层上的多个预设位置配设IGBT管的步骤中,所述电路布线层上用于设置所述IGBT管的预设位置呈阵列排布。
  13. 如权利要求10所述的智能功率模块的制造方法,其特征在于,多个所述栅极驱动管包括数量相等的HVIC管和LVIC管。
  14. 如权利要求10所述的智能功率模块的制造方法,其特征在于,在所述于所述电路布线层上的多个预设位置配设IGBT管的步骤之后还包括:
       设置数量与所述IGBT管相同的FRD管,该多个FRD管分别通过所述IGBT管固定于所述电路布线层。
  15. 如权利要求14所述的智能功率模块的制造方法,其特征在于,所述设置数量与所述IGBT管相同的FRD管的步骤包括:
       将所述FRD管的阴极固定于所述IGBT管的集电极、阳极通过所述金属线与所述IGBT管的发射极电连接。
  16. 如权利要求14所述的智能功率模块的制造方法,其特征在于,所述设置数量与所述IGBT管相同的FRD管的步骤之后还包括:
       在形成于模具内部的模腔中放置金属基板,然后由模具的浇口注入密封树脂。
  17. 权利要求15所述的智能功率模块的制造方法,其特征在于,所述由模具的浇口注入密封树脂的步骤之后还包括:
       将残留在金属基板背面的少量密封树脂去除,使金属基板的背面从密封树脂露出。
  18. 如权利要求10的智能功能模块的制造方法,其特征在于,所述于所述电路布线层上的多个预设位置配设IGBT管的步骤之后还包括:
       通过焊料将引脚安装在电路布线层上。
PCT/CN2013/090357 2013-09-23 2013-12-24 智能功率模块及其制造方法 WO2015039398A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201310435355.9 2013-09-23
CN201320587706.3U CN203481230U (zh) 2013-09-23 2013-09-23 智能功率模块
CN201320587706.3 2013-09-23
CN201310435355.9A CN104112740B (zh) 2013-09-23 2013-09-23 智能功率模块及其制造方法

Publications (1)

Publication Number Publication Date
WO2015039398A1 true WO2015039398A1 (zh) 2015-03-26

Family

ID=52688144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090357 WO2015039398A1 (zh) 2013-09-23 2013-12-24 智能功率模块及其制造方法

Country Status (1)

Country Link
WO (1) WO2015039398A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108829972A (zh) * 2018-06-13 2018-11-16 张家港首驱动力科技有限公司 一种igbt驱动电路布线设计
CN113345874A (zh) * 2020-03-02 2021-09-03 珠海零边界集成电路有限公司 一种智能功率模块、封装结构及封装结构的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150776A (ja) * 1998-11-17 2000-05-30 Toshiba Corp 半導体モジュール
JP3922698B2 (ja) * 2002-07-26 2007-05-30 株式会社日立製作所 半導体装置
CN101436819A (zh) * 2007-07-30 2009-05-20 通用汽车环球科技运作公司 具有集成栅极驱动电路的功率电子装置
JP2012175881A (ja) * 2011-02-24 2012-09-10 Mitsubishi Electric Corp 電力変換装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150776A (ja) * 1998-11-17 2000-05-30 Toshiba Corp 半導体モジュール
JP3922698B2 (ja) * 2002-07-26 2007-05-30 株式会社日立製作所 半導体装置
CN101436819A (zh) * 2007-07-30 2009-05-20 通用汽车环球科技运作公司 具有集成栅极驱动电路的功率电子装置
JP2012175881A (ja) * 2011-02-24 2012-09-10 Mitsubishi Electric Corp 電力変換装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108829972A (zh) * 2018-06-13 2018-11-16 张家港首驱动力科技有限公司 一种igbt驱动电路布线设计
CN113345874A (zh) * 2020-03-02 2021-09-03 珠海零边界集成电路有限公司 一种智能功率模块、封装结构及封装结构的制备方法
CN113345874B (zh) * 2020-03-02 2024-04-16 珠海零边界集成电路有限公司 一种智能功率模块、封装结构及封装结构的制备方法

Similar Documents

Publication Publication Date Title
JP5643752B2 (ja) 半導体装置
US10028400B2 (en) Semiconductor device
JP6288254B2 (ja) 半導体モジュールおよびその製造方法
US11652478B2 (en) Power modules having an integrated clamp circuit and process thereof
WO2014103133A1 (ja) 半導体装置
CN111095760A (zh) 电力转换装置
WO2015039398A1 (zh) 智能功率模块及其制造方法
US10497586B2 (en) Semiconductor device and a method of manufacturing the same
WO2022005099A1 (ko) 파워모듈 및 그 제조방법
US11189608B2 (en) Semiconductor device
US11652473B2 (en) Power modules having an integrated clamp circuit and process thereof
JPH06283639A (ja) 混成集積回路
JP5812974B2 (ja) 半導体装置
JP6906583B2 (ja) 半導体パワーモジュール
JP5062029B2 (ja) 半導体装置
JP2003324176A (ja) リードフレーム、半導体パワーモジュール、および、その製造方法
JPH0897255A (ja) 電力用半導体装置
JPH06283638A (ja) 混成集積回路
US20180233464A1 (en) Semiconductor module
JP3096536B2 (ja) 混成集積回路
JP2019146323A (ja) 電源モジュール
WO2021230615A1 (ko) 파워모듈 및 그 제조방법
US20240222231A1 (en) Power device module with dummy pad die layout
WO2022005133A1 (ko) 파워모듈
US20170053860A1 (en) High-frequency, high-output device unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893722

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13893722

Country of ref document: EP

Kind code of ref document: A1