WO2015033916A1 - 車両用空気調和装置 - Google Patents

車両用空気調和装置 Download PDF

Info

Publication number
WO2015033916A1
WO2015033916A1 PCT/JP2014/073025 JP2014073025W WO2015033916A1 WO 2015033916 A1 WO2015033916 A1 WO 2015033916A1 JP 2014073025 W JP2014073025 W JP 2014073025W WO 2015033916 A1 WO2015033916 A1 WO 2015033916A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
compressor
heat exchanger
outdoor heat
radiator
Prior art date
Application number
PCT/JP2014/073025
Other languages
English (en)
French (fr)
Inventor
竜 宮腰
鈴木 謙一
Original Assignee
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社 filed Critical サンデン株式会社
Priority to US14/914,587 priority Critical patent/US10279654B2/en
Priority to CN201480049031.4A priority patent/CN105517824B/zh
Priority to DE112014004045.2T priority patent/DE112014004045T5/de
Publication of WO2015033916A1 publication Critical patent/WO2015033916A1/ja
Priority to US15/960,870 priority patent/US10220678B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00764Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being a vehicle driving condition, e.g. speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00914Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is a bypass of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00957Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising locations with heat exchange within the refrigerant circuit itself, e.g. cross-, counter-, or parallel heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00961Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising means for defrosting outside heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series

Definitions

  • the present invention relates to a heat pump type vehicle air conditioner that air-conditions the interior of a vehicle.
  • a compressor that compresses and discharges the refrigerant
  • a radiator that is provided in an air flow passage in the passenger compartment and dissipates the refrigerant
  • a refrigerant circuit composed of a heat absorber (evaporator) that is provided in the air flow passage and absorbs the refrigerant, and an outdoor heat exchanger that is provided outside the vehicle cabin and dissipates or absorbs the refrigerant, and is discharged from the compressor
  • a heat mode in which the radiated refrigerant is dissipated in the radiator and the refrigerant radiated in the radiator is absorbed in the outdoor heat exchanger, and the refrigerant discharged from the compressor is radiated in the radiator, and the refrigerant radiated in the radiator
  • a dehumidifying and heating mode in which heat is absorbed only in the heat absorber and
  • the refrigerant that has flowed out of the radiator is divided, and after the refrigerant that has been diverted is depressurized, heat is exchanged with the refrigerant that has flowed out of the radiator, and an injection circuit is provided to return to the middle of compression of the compressor, thereby Some have been developed to increase the refrigerant discharged from the compressor and improve the heating capability of the radiator (see, for example, Patent Document 2).
  • JP 2012-176660 A Japanese Patent No. 3985384
  • the refrigerant absorbs heat from the outside air in the outdoor heat exchanger. That is, since the outdoor heat exchanger becomes an evaporator, moisture in the outside air adheres to the outdoor heat exchanger as frost and grows. When frost is generated in the outdoor heat exchanger, it becomes a heat insulating material and hinders heat exchange between the outside air and the refrigerant.In such a case, the high temperature refrigerant from the compressor is allowed to flow through the outdoor heat exchanger to remove the frost. The frost mode will be executed. In that case, the heat absorption is performed by the heat absorber, so that the air blown into the vehicle interior through the air flow passage is cooled, and heating of the vehicle interior is inhibited. There was a problem.
  • the present invention has been made to solve the conventional technical problem, and in the defrosting mode for defrosting the outdoor heat exchanger, the outdoor heat exchanger is removed while maintaining the heating of the vehicle interior.
  • An object of the present invention is to provide a vehicle air conditioner that can realize frost without hindrance.
  • An air conditioner for a vehicle includes a compressor that compresses a refrigerant, an air flow passage through which air to be supplied to the vehicle interior flows, a radiator that is provided in the air flow passage and radiates heat from the refrigerant, and an air flow A heat absorber that absorbs the refrigerant by being provided in the road, an outdoor heat exchanger that is provided outside the passenger compartment to dissipate or absorb the refrigerant, and a control means, and is discharged from the compressor by the control means.
  • the refrigerant is radiated by a radiator, the radiated refrigerant is depressurized, and the outdoor heat exchanger absorbs heat to heat the interior of the vehicle.
  • a part of the refrigerant exiting the radiator is shunted.
  • An injection circuit for returning to the compressor is provided, and the control means operates the injection circuit to return the refrigerant to the compressor when defrosting by flowing a high-temperature refrigerant to the outdoor heat exchanger.
  • the control means when there is a heating request in the vehicle interior, causes the refrigerant discharged from the compressor to radiate heat with a radiator and an outdoor heat exchanger, thereby After depressurizing the refrigerant, a dehumidifying and cooling type defrosting mode in which heat is absorbed by a heat absorber is executed, and an injection circuit is operated.
  • a vehicular air conditioner according to the first aspect of the present invention, wherein the control means diverts a part of the refrigerant discharged from the compressor and passes through a radiator when there is a heating request in the passenger compartment.
  • the hot gas defrosting mode is performed in which the refrigerant flows into the outdoor heat exchanger without being discharged, and the radiated refrigerant is returned to the compressor, and the injection circuit is operated.
  • an air conditioner for a vehicle includes an outdoor fan that ventilates the outdoor heat exchanger in each of the above-described inventions, and the control means defrosts the outdoor heat exchanger when the outdoor heat exchanger is defrosted.
  • the outdoor air blower is operated when the temperature of the lamp is equal to or higher than a predetermined value.
  • the control means uses the radiator discharged from the compressor and the outdoor heat.
  • the dehumidifying and cooling type defrosting mode in which the heat is radiated by the exchanger and the radiated refrigerant is decompressed and then absorbed by the heat absorber is executed, and the injection circuit is not operated.
  • an air conditioner for a vehicle according to the second to fifth aspects of the present invention, wherein the control means uses an outdoor heat exchanger to cool the refrigerant discharged from the compressor when there is no request for heating the vehicle interior. Run a simple hot gas defrosting mode that releases heat and returns the released heat to the compressor, does not operate the injection circuit, or diverts part of the refrigerant discharged from the compressor and passes through the radiator. The hot gas defrosting mode is performed in which the refrigerant flows into the outdoor heat exchanger and dissipates heat, and the dissipated refrigerant is returned to the compressor, and the injection circuit is not operated.
  • an air conditioning apparatus for a vehicle according to each of the first and second aspects of the present invention, wherein the control means compresses when the power is supplied from an external power source to the compressor or a battery that supplies power to drive the compressor.
  • the refrigerant discharged from the machine is radiated with a radiator and an outdoor heat exchanger, and after depressurizing the radiated refrigerant, the dehumidifying and cooling type defrosting mode for absorbing heat with the heat absorber is performed, and the injection circuit is operated.
  • a part of the refrigerant discharged from the compressor is diverted to flow into the outdoor heat exchanger without passing through the heat radiator to dissipate the heat, and a hot gas defrosting mode is performed in which the released heat is returned to the compressor.
  • the injection circuit is operated and power is not supplied from an external power source, the refrigerant discharged from the compressor is radiated by the outdoor heat exchanger, and the radiated refrigerant is returned to the compressor.
  • Run the gas defrosting mode, the injection circuits without operating, or to perform a hot gas defrosting mode the injection circuits is characterized in that it does not operate.
  • the vehicle air conditioner according to an eighth aspect of the present invention is the vehicle air conditioner according to the eighth aspect, wherein the control means executes the simple hot gas defrosting mode when power is not supplied from an external power source and the remaining battery level is low.
  • the injection circuit is not operated, or the hot gas defrosting mode is executed and the injection circuit is not operated.
  • the air conditioner for a vehicle according to the invention of claim 9 is characterized in that, in each of the above inventions, the control means dissipates the heat discharged from the compressor by the outdoor heat exchanger until the vehicle interior temperature becomes lower than a predetermined value. After the decompression of the refrigerant, the reverse cycle defrosting mode is performed in which the heat is absorbed by the heat absorber, the injection circuit is not operated, and the refrigerant discharged from the compressor when the vehicle interior temperature becomes lower than a predetermined value.
  • the control means defrosts the outdoor heat exchanger
  • the vehicle interior temperature is lower than a predetermined value or the vehicle interior needs to be heated.
  • the introduction of outside air into the air flow passage is stopped.
  • the vehicle air conditioner according to the invention of claim 12 is characterized in that, in each of the above inventions, the control means defrosts the outdoor heat exchanger when the vehicle speed is a predetermined value or less.
  • the compressor that compresses the refrigerant, the air flow passage through which the air supplied to the passenger compartment flows, the radiator that is provided in the air flow passage to dissipate the refrigerant, and the air flow passage are provided.
  • the control means allows the refrigerant discharged from the compressor to In a vehicle air conditioner that heats the interior of a vehicle by depressurizing the refrigerant that has been radiated and depressurizing the radiated refrigerant, and then heating the interior of the vehicle by using an outdoor heat exchanger, a part of the refrigerant that has exited the radiator is diverted. And the control means operates the injection circuit to return the refrigerant to the compressor when defrosting by flowing a high-temperature refrigerant to the outdoor heat exchanger.
  • the control unit When there is a heating requirement
  • the refrigerant discharged from the compressor is radiated by the radiator and the outdoor heat exchanger, and after the decompressed refrigerant is decompressed, the dehumidifying and cooling type defrosting mode is performed in which the heat is absorbed by the heat absorber, and the injection circuit is operated.
  • the heating capacity of the radiator can be improved, and the vehicle interior temperature can be maintained.
  • the control means when there is a heating request in the vehicle compartment, A part of the refrigerant discharged from the machine is diverted to flow into the outdoor heat exchanger without passing through the radiator to dissipate the heat, and a hot gas defrosting mode is performed in which the released refrigerant is returned to the compressor.
  • the heating capacity of the radiator can be improved by the injection circuit without performing heat absorption in the heat absorber, and this is effective particularly in a situation where the vehicle interior temperature is extremely low.
  • the outdoor heat exchanger is provided with an outdoor fan for ventilating the outside air as in the invention of claim 4, and when the control means defrosts the outdoor heat exchanger, the temperature of the outdoor heat exchanger is a predetermined value or more.
  • the control means radiates the refrigerant discharged from the compressor with a radiator and an outdoor heat exchanger, and depressurizes the radiated refrigerant. After that, if the dehumidifying and cooling type defrosting mode in which heat is absorbed by the heat absorber is executed and the injection circuit is not operated, the injection circuit is operated in an environment where the outside air temperature is high and it is easy to maintain the heating capacity of the vehicle interior. Without this, more refrigerant can be supplied to the outdoor heat exchanger, and defrosting can be promoted.
  • the control means as in the sixth aspect of the invention simply dissipates the refrigerant discharged from the compressor in the outdoor heat exchanger and returns the dissipated refrigerant to the compressor.
  • Execute hot gas defrosting mode do not operate the injection circuit, or divert part of the refrigerant discharged from the compressor and let it flow into the outdoor heat exchanger without passing through the radiator to dissipate heat. If the hot gas defrosting mode for returning the refrigerant to the compressor is executed and the injection circuit is not operated, the outdoor heat exchanger can be quickly defrosted to minimize power consumption. Thus, it becomes extremely effective in an electric vehicle or the like.
  • the control means as in the invention of claim 7 includes: When power is supplied from an external power supply, dehumidifying and cooling type defrosting mode in which the refrigerant discharged from the compressor is dissipated by the radiator and the outdoor heat exchanger, and the radiated refrigerant is decompressed and then absorbed by the heat absorber.
  • the injection circuit is operated, or a part of the refrigerant discharged from the compressor is diverted to flow into the outdoor heat exchanger without passing through the radiator to dissipate the heat.
  • the refrigerant discharged from the compressor is transferred to the outdoor heat exchanger.
  • a hot gas defrosting mode for returning the refrigerant that has been heated and released to the compressor is executed, the injection circuit is operated, and the refrigerant discharged from the compressor is supplied to the outdoor heat exchanger when power is not supplied from an external power source. Execute a simple hot gas defrost mode to return the refrigerant that has been radiated and return it to the compressor and do not operate the injection circuit, or execute the hot gas defrost mode and do not operate the injection circuit.
  • the heating of the vehicle interior is maintained while the defrosting of the outdoor heat exchanger is performed in the dehumidifying and cooling type defrosting mode or the hot gas defrosting mode as in the inventions of claims 2 and 3. If not, let all refrigerant flow through the outdoor heat exchanger without operating the injection circuit in the simple hot gas defrost mode or hot gas defrost mode. And defrosting the speed, it is possible to reduce the power consumption.
  • the simple hot gas defrosting mode is executed and the injection circuit is operated.
  • the hot gas defrosting mode is executed and the injection circuit is not operated, so that when the battery is not plugged in and the remaining battery level is low, the simple hot gas removal that does not operate the injection circuit.
  • the frost mode or the hot gas defrost mode is executed, and accurate defrost control that takes into account the remaining battery level in addition to whether or not plugged in is possible.
  • control means causes the refrigerant discharged from the compressor to radiate heat in the outdoor heat exchanger until the vehicle interior temperature becomes lower than a predetermined value, and decompresses the radiated refrigerant. Run the reverse cycle defrost mode to absorb heat with the heat absorber, do not operate the injection circuit, execute the dehumidifying and cooling type defrost mode when the passenger compartment temperature is lower than the predetermined value, and also operate the injection circuit If the refrigerant also dissipates heat in the radiator, it is possible to realize control that satisfies both the rapid defrosting of the outdoor heat exchanger and the maintenance of heating in the passenger compartment.
  • control means defrosts the outdoor heat exchanger as in the invention of claim 10
  • the outside air to the air flow passage is By stopping the introduction, it is possible to stop the introduction of the outside air having a low temperature under the condition where the vehicle interior temperature is low and to maintain the heating capacity.
  • the dehumidifying and cooling type defrosting mode or the hot gas defrosting mode is executed as in the invention of the eleventh aspect, if the introduction of the outside air to the air flow passage is stopped, the heating capacity is similarly maintained. Can be achieved.
  • control means as in the invention of claim 12 defrosts the outdoor heat exchanger when the vehicle speed is equal to or lower than a predetermined value, thereby performing defrosting in a situation where there is little circulation of outside air to the outdoor heat exchanger, It is possible to improve the defrosting effect.
  • FIG. 2 is a Ph diagram in a reverse cycle defrost mode of the vehicle air conditioner of FIG. 1.
  • FIG. 2 is a Ph diagram in the first dehumidifying and cooling type defrosting mode of the vehicle air conditioner of FIG. 1.
  • It is a control block diagram regarding the compressor control in the reverse cycle defrost mode and the 1st dehumidification cooling type defrost mode by the controller of FIG.
  • It is a control block diagram regarding outdoor expansion valve control in the reverse cycle defrost mode and the first dehumidifying and cooling type defrost mode by the controller of FIG.
  • FIG. 3 is a control block diagram related to injection expansion valve control in a reverse cycle defrost mode, a first dehumidifying and cooling type defrost mode, and a hot gas defrost mode by the controller of FIG. 2. It is another control block diagram regarding the injection expansion valve control in the reverse cycle defrost mode, the 1st dehumidification cooling type defrost mode, and the hot gas defrost mode by the controller of FIG. It is a figure explaining determination of the target blowing temperature by the controller of FIG. It is a flowchart explaining the operation
  • FIG. 6 is a Ph diagram in a simple hot gas defrosting mode of the vehicle air conditioner of FIG. 1 executed in another embodiment of the present invention. It is a control block diagram regarding the compressor control in the simple hot gas defrost mode and the hot gas defrost mode by the controller of FIG. It is a flowchart explaining operation
  • FIG. 16 is a Ph diagram of the configuration of FIG. 15 in a hot gas defrost mode. It is a flowchart explaining the operation
  • FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 according to an embodiment of the present invention.
  • the vehicle of the embodiment to which the present invention is applied is an electric vehicle (EV) that does not have an engine (internal combustion engine), and travels by driving an electric motor for traveling with electric power charged in a battery.
  • the vehicle air conditioner 1 of the present invention is also driven by battery power. That is, the vehicle air conditioner 1 according to the embodiment selectively selects each operation mode such as heating, dehumidifying heating, dehumidifying cooling, and cooling by a heat pump operation using a refrigerant circuit in an electric vehicle that cannot be heated by engine waste heat. It is something to execute.
  • the present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and an electric motor for traveling, and is also applicable to ordinary vehicles that run on an engine. Needless to say.
  • a vehicle air conditioner 1 performs air conditioning (heating, cooling, dehumidification, and ventilation) in a passenger compartment of an electric vehicle, and includes an electric compressor (electric compressor) 2 that compresses refrigerant.
  • the radiator 4 is provided in the air flow passage 3 of the HVAC unit 10 through which the passenger compartment air is circulated to dissipate the high-temperature and high-pressure refrigerant discharged from the compressor 2 into the passenger compartment, and the refrigerant is decompressed and expanded during heating.
  • An outdoor expansion valve 6 composed of a motor-operated valve, and an outdoor unit that exchanges heat between the refrigerant and the outside air so as to function as a radiator (dissipates the refrigerant) during cooling, and as an evaporator (absorbs heat from the refrigerant) during heating
  • the outdoor heat exchanger 7 is provided with an outdoor fan 15 for exchanging heat between the outside air and the refrigerant.
  • the outdoor heat exchanger 7 has a receiver dryer section 14 and a supercooling section 16 in order on the downstream side of the refrigerant, and the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is an electromagnetic valve (open / close valve) 17 that is opened during cooling.
  • the outlet of the supercooling unit 16 is connected to the indoor expansion valve 8 via a check valve 18.
  • the receiver dryer section 14 and the supercooling section 16 structurally constitute a part of the outdoor heat exchanger 7, and the check valve 18 has a forward direction on the indoor expansion valve 8 side.
  • the refrigerant pipe 13B between the check valve 18 and the indoor expansion valve 8 is provided in a heat exchange relationship with the refrigerant pipe 13C exiting the evaporation capacity control valve 11 located on the outlet side of the heat absorber 9, and internal heat is generated by both.
  • the exchanger 19 is configured.
  • the refrigerant flowing into the indoor expansion valve 8 through the refrigerant pipe 13B is cooled (supercooled) by the low-temperature refrigerant that has exited the heat absorber 9 and passed through the evaporation capacity control valve 11.
  • the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched, and this branched refrigerant pipe 13D is downstream of the internal heat exchanger 19 via an electromagnetic valve (open / close valve) 21 that is opened during heating.
  • the refrigerant pipe 13C is connected in communication.
  • the refrigerant pipe 13E on the outlet side of the radiator 4 is branched in front of the refrigerant pipe 13I to which the outdoor expansion valve 6 is connected.
  • the branched refrigerant pipe 13F is an electromagnetic valve (open / close valve) that is opened during dehumidification. ) 22 and is connected to the refrigerant pipe 13B on the downstream side of the check valve 18.
  • a bypass pipe 13J is connected to the refrigerant pipe 13I located between the refrigerant pipe 13E and the outdoor heat exchanger 7 and connected to the outdoor expansion valve 6 in parallel with the outdoor expansion valve 6.
  • the bypass pipe 13J is provided with an electromagnetic valve (open / close valve) 20 that is opened in the cooling mode and bypasses the outdoor expansion valve 6 to flow the refrigerant.
  • the refrigerant pipe 13E immediately after exiting the radiator 4 (before branching to the refrigerant pipes 13F and 13I) is branched, and the branched refrigerant pipe 13K is provided with an injection expansion valve 30 comprising an electric valve for injection control.
  • the compressor 2 is in communication with the compressor 2 during compression.
  • coolant piping 13K between the exit side of this injection expansion valve 30 and the compressor 2 is provided in the refrigerant
  • the refrigerant circuit 13K, the injection expansion valve 30, and the discharge side heat exchanger 35 constitute an injection circuit 40.
  • the injection circuit 40 is a circuit for diverting a part of the refrigerant from the radiator 4 and returning it to the middle of compression of the compressor 2 (gas injection).
  • the injection expansion valve 30 opens, and a part of the refrigerant discharged from the radiator 4 is diverted to the refrigerant pipe 13K.
  • the injection expansion valve 30 decompresses the refrigerant that has flowed into the refrigerant pipe 13K, and then flows it into the discharge-side heat exchanger 35.
  • the refrigerant flowing into the discharge side heat exchanger 35 is discharged from the compressor 2 to the refrigerant pipe 13G, exchanges heat with the refrigerant before flowing into the radiator 4, and absorbs heat from the refrigerant flowing through the refrigerant pipe 13G to evaporate. It is said that.
  • Gas refrigerant to the compressor 2 is performed by evaporating the refrigerant diverted to the refrigerant pipe 13K in the discharge side heat exchanger 35.
  • the air flow passage 3 on the air upstream side of the heat absorber 9 is formed with each of an outside air inlet and an inside air inlet (represented by the inlet 25 in FIG. 1). 25 is provided with a suction switching damper 26 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation mode) which is air inside the passenger compartment and the outside air (outside air introduction mode) which is outside the passenger compartment. Yes. Furthermore, an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.
  • an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.
  • an air mix damper 28 is provided in the air flow passage 3 on the air upstream side of the radiator 4 to adjust the degree of flow of inside air and outside air to the radiator 4. Further, in the air flow passage 3 on the air downstream side of the radiator 4, each of a foot (blowing toward the passenger's feet), a vent (blowing toward the upper body of the occupant), and a differential (blowing to the inner surface of the windshield) are provided.
  • a blower outlet (represented by a blower outlet 29 in FIG. 1) is formed, and the blower outlet 29 is provided with a blower outlet switching damper 31 that performs switching control of air blowing from each of the blower outlets. .
  • reference numeral 32 in FIG. 2 denotes a controller (ECU) as a control means constituted by a microcomputer, and an input to the controller 32 is an outside air temperature sensor 33 for detecting the outside air temperature of the vehicle, and an outside air humidity is detected.
  • ECU controller
  • an input to the controller 32 is an outside air temperature sensor 33 for detecting the outside air temperature of the vehicle, and an outside air humidity is detected.
  • An outside air humidity sensor 34 an HVAC suction temperature sensor 36 that detects the temperature of air sucked into the air flow passage 3 from the suction port 25, an inside air temperature sensor 37 that detects the temperature of the air (inside air) in the vehicle interior, and the vehicle interior
  • the inside air humidity sensor 38 that detects the humidity of the air in the vehicle
  • the indoor CO 2 concentration sensor 39 that detects the carbon dioxide concentration in the vehicle interior
  • the blowout temperature sensor 41 that detects the temperature of the air blown from the blowout port 29 into the vehicle interior.
  • a sensor 48 a heat absorber pressure sensor 49 for detecting the refrigerant pressure of the heat absorber 9 (the pressure of the refrigerant in the heat absorber 9 or immediately after leaving the heat absorber 9), and the amount of solar radiation into the passenger compartment.
  • a photosensor-type solar radiation sensor 51 and the moving speed (vehicle speed) of the vehicle are detected.
  • Vehicle speed sensor 52 an air conditioning (air conditioner) operation unit 53 for setting a set temperature and switching of operation modes, the temperature of the outdoor heat exchanger 7 (the temperature of the refrigerant immediately after coming out of the outdoor heat exchanger 7, Alternatively, the outdoor heat exchanger temperature sensor 54 that detects the temperature of the outdoor heat exchanger 7 itself, and the refrigerant pressure of the outdoor heat exchanger 7 (in the outdoor heat exchanger 7 or immediately after exiting from the outdoor heat exchanger 7).
  • the outputs of the outdoor heat exchanger pressure sensor 56 for detecting the refrigerant pressure) are connected.
  • the input of the controller 32 further includes an injection pressure sensor 50 that detects the pressure of the injection refrigerant that flows into the refrigerant pipe 13K of the injection circuit 40 and returns to the middle of the compression of the compressor 2 via the discharge side heat exchanger 35;
  • Each output of an injection temperature sensor 55 that detects the temperature of the injection refrigerant is also connected.
  • the input of the compressor 32 is also connected to the output of an occupant sensor 57 that detects whether or not an occupant is in the passenger compartment.
  • the output of the controller 32 includes the compressor 2, the outdoor fan 15, the indoor fan (blower fan) 27, the suction switching damper 26, the air mix damper 28, the suction port switching damper 31, and the outdoor expansion.
  • the valve 6, the indoor expansion valve 8, the electromagnetic valves 22, 17, 21, 20, the injection expansion valve 30, and the evaporation capacity control valve 11 are connected. And the controller 32 controls these based on the output of each sensor, and the setting input in the air-conditioning operation part 53.
  • the controller 32 is roughly divided into a heating mode, a dehumidifying heating mode, an internal cycle mode, a dehumidifying and cooling mode, and an air conditioning operation mode of the cooling mode, and the defrosting mode is switched.
  • each air conditioning operation mode will be described.
  • the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. Deprived, cooled, and condensed into liquid.
  • the refrigerant liquefied in the radiator 4 exits the radiator 4, a part of the refrigerant is diverted to the refrigerant pipe 13K of the injection circuit 40, and mainly reaches the outdoor expansion valve 6 via the refrigerant pipe 13E.
  • the functional operation of the injection circuit 40 will be described later.
  • the refrigerant flowing into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7.
  • the refrigerant that has flowed into the outdoor heat exchanger 7 evaporates, and pumps heat from the outside air that is ventilated by traveling or by the outdoor blower 15 (heat pump).
  • the low-temperature refrigerant exiting the outdoor heat exchanger 7 enters the accumulator 12 from the refrigerant pipe 13C through the refrigerant pipe 13D and the electromagnetic valve 21, and after being gas-liquid separated there, the gas refrigerant is sucked into the compressor 2. repeat. Since the air heated by the radiator 4 is blown out from the air outlet 29, the vehicle interior is thereby heated.
  • the controller 32 controls the compressor 2 based on the refrigerant pressure Pci of the radiator 4 (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47 (or the discharge pressure sensor 42) and the target radiator pressure PCO. While controlling the number of revolutions, the valve opening degree of the outdoor expansion valve 6 is controlled based on the passing air volume of the radiator 4 and a target blowing temperature described later, and the degree of supercooling of the refrigerant at the outlet of the radiator 4 is controlled. The valve opening degree of the outdoor expansion valve 6 may be controlled based on the temperature of the radiator 4 or the outside air temperature instead of or in addition to them.
  • the controller 32 opens the electromagnetic valve 22 in the heating mode.
  • a part of the condensed refrigerant flowing through the refrigerant pipe 13E via the radiator 4 is diverted to reach the indoor expansion valve 8 via the electromagnetic valve 22 and the refrigerant pipes 13F and 13B via the internal heat exchanger 19.
  • the refrigerant After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 merges with the refrigerant from the refrigerant pipe 13D in the refrigerant pipe 13C through the evaporation capacity control valve 11 and the internal heat exchanger 19, and then repeats circulation sucked into the compressor 2 through the accumulator 12. . Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed.
  • the controller 32 has a refrigerant pressure Pci (high pressure of the refrigerant circuit R) of the radiator 4 and a target radiator pressure PCO detected by the radiator pressure sensor 47 (or the discharge pressure sensor 42) detected by the radiator pressure sensor 47.
  • the target heat absorber temperature TEO which is a target value of the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the temperature of the heat absorber 9, is controlled. Based on this, the valve opening degree of the outdoor expansion valve 6 is controlled.
  • coolant piping 13F reaches the indoor expansion valve 8 through the internal heat exchanger 19 from the refrigerant
  • the refrigerant evaporated in the heat absorber 9 flows through the refrigerant pipe 13C through the evaporation capacity control valve 11 and the internal heat exchanger 19, and repeats circulation sucked into the compressor 2 through the accumulator 12. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidification heating is performed in the vehicle interior, but in this internal cycle mode, the air flow path on the indoor side 3, the refrigerant is circulated between the radiator 4 (heat radiation) and the heat absorber 9 (heat absorption), so that heat from the outside air is not pumped up, and the heating capacity for the power consumption of the compressor 2 Is demonstrated. Since the entire amount of the refrigerant flows through the heat absorber 9 that exhibits the dehumidifying action, the dehumidifying capacity is higher than that in the dehumidifying and heating mode, but the heating capacity is lowered.
  • the controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 or the high pressure of the refrigerant circuit R described above. At this time, the controller 32 controls the compressor 2 by selecting the lower one of the compressor target rotational speeds obtained from either calculation, depending on the temperature of the heat absorber 9 or the high pressure. Even in this internal cycle mode, gas injection by the injection circuit 40 is not performed, so the injection expansion valve 30 is fully closed (fully closed position).
  • the controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21, the electromagnetic valve 22, and the electromagnetic valve 20. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 sets the air blown out from the indoor blower 27 to the heat radiator 4. Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 through the discharge-side heat exchanger 35. Since the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived and cooled, and condensates.
  • the refrigerant that has exited the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 that is controlled to open.
  • the refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B through the check valve 18, and reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 passes through the evaporation capacity control valve 11 and the internal heat exchanger 19, reaches the accumulator 12 through the refrigerant pipe 13 ⁇ / b> C, and repeats circulation sucked into the compressor 2 through the refrigerant pipe 13 ⁇ / b> C.
  • the air cooled and dehumidified by the heat absorber 9 is reheated (having a lower heat dissipation capacity than that during heating) in the process of passing through the radiator 4, thereby dehumidifying and cooling the vehicle interior. .
  • the controller 32 controls the number of revolutions of the compressor 2 based on the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48 and controls the valve opening degree of the outdoor expansion valve 6 based on the high pressure of the refrigerant circuit R described above. To control the refrigerant pressure of the radiator 4 (radiator pressure Pci). In addition, since the gas injection by the injection circuit 40 is not performed even in this dehumidifying and cooling mode, the injection expansion valve 30 is fully closed (fully closed position).
  • the controller 32 opens the electromagnetic valve 20 in the dehumidifying and cooling mode state (in this case, the outdoor expansion valve 6 is fully opened (the valve opening is controlled to an upper limit)).
  • the air mix damper 28 is in a state in which no air is passed through the radiator 4.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 through the discharge-side heat exchanger 35. Since the air in the air flow passage 3 is not ventilated to the radiator 4, the air only passes therethrough, and the refrigerant exiting the radiator 4 reaches the electromagnetic valve 20 and the outdoor expansion valve 6 through the refrigerant pipe 13 ⁇ / b> E.
  • the refrigerant bypasses the outdoor expansion valve 6 and passes through the bypass pipe 13J, and flows into the outdoor heat exchanger 7 as it is. It is air-cooled by the outside air and is condensed and liquefied.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B through the check valve 18, and reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled.
  • the refrigerant evaporated in the heat absorber 9 passes through the evaporation capacity control valve 11 and the internal heat exchanger 19, reaches the accumulator 12 through the refrigerant pipe 13 ⁇ / b> C, and repeats circulation sucked into the compressor 2 through the refrigerant pipe 13 ⁇ / b> C.
  • the air that has been cooled and dehumidified by the heat absorber 9 is blown into the vehicle interior from the outlet 29 without passing through the radiator 4, thereby cooling the vehicle interior.
  • the controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48. In this cooling mode, since the gas injection by the injection circuit 40 is not performed, the injection expansion valve 30 is fully closed (fully closed position).
  • Air-conditioning operation mode switching control The controller 32 selects the operation mode based on the outside air temperature Tam detected by the outside air temperature sensor 33 and the target outlet temperature TAO at the time of activation. Further, after the start-up, each of the operation modes is selected and switched according to changes in the environment such as the outside air temperature Tam and the target blowing temperature TAO and the set conditions. In this case, the controller 32 basically shifts from the heating mode to the dehumidifying heating mode, or from the dehumidifying heating mode to the heating mode, and from the dehumidifying heating mode to the dehumidifying cooling mode, or from the dehumidifying cooling mode to the dehumidifying heating mode.
  • shifting to the transition is made via the internal cycle mode.
  • the cooling mode is changed to the internal cycle mode, and the internal cycle mode is changed to the cooling mode.
  • the heating capacity of the radiator 4 is improved. Moreover, since the refrigerant
  • the controller 32 monitors the degree of superheat of the refrigerant toward the middle of compression of the compressor 2 from the pressure and temperature of the refrigerant after the discharge-side heat exchanger 35 detected by the injection pressure sensor 50 and the injection temperature sensor 55, respectively.
  • the valve opening degree of the injection expansion valve 30 is controlled so that a predetermined degree of superheat is obtained by heat exchange with the discharged refrigerant.
  • the discharge side heat exchanger 35 discharges from the compressor 2.
  • the heating capacity can be improved.
  • Example 1 the defrost mode of the vehicle air conditioner 1 according to the embodiment will be described with reference to FIGS. 3 to 11.
  • the controller 32 has a reverse cycle defrost mode, a first dehumidifying and cooling type defrosting mode, and a second dehumidifying and cooling type defrosting mode as the defrosting modes, and switches them according to the situation. And execute.
  • the first dehumidifying and cooling type defrosting mode and the second dehumidifying and cooling type defrosting mode are both included in the dehumidifying and cooling type defrosting mode of the present invention (for the simple hot gas defrosting mode and the hot gas defrosting mode). It will be described in another embodiment).
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 through the discharge-side heat exchanger 35, but the air in the air flow passage 3 is not vented to the radiator 4. Only passes, and the refrigerant exiting the radiator 4 reaches the electromagnetic valve 20 and the outdoor expansion valve 6 through the refrigerant pipe 13E. At this time, since the solenoid valve 20 is opened, the refrigerant bypasses the outdoor expansion valve 6 and passes through the bypass pipe 13J, flows into the outdoor heat exchanger 7 as it is, dissipates heat, and is condensed and liquefied. The frost adhering to the outdoor heat exchanger 7 is melted by the heat radiation at this time.
  • the refrigerant that has exited the outdoor heat exchanger 7 passes through the refrigerant pipe 13A through the electromagnetic valve 17 and the receiver dryer section 14 and the supercooling section 16 in sequence, enters the refrigerant pipe 13B through the check valve 18, and enters the internal heat exchanger 19.
  • the indoor expansion valve 8 After the refrigerant is depressurized by the indoor expansion valve 8, the refrigerant flows into the heat absorber 9, evaporates, absorbs heat from the air passing through the air flow passage 3, passes through the evaporation capacity control valve 11, and the internal heat exchanger 19, and then the refrigerant.
  • the circulation reaches the accumulator 12 through the pipe 13C and is sucked into the compressor 2 therethrough.
  • the injection circuit 40 is not operated (step S15 of FIG. 10).
  • the reverse cycle defrosting mode is performed, and the injection circuit is used at that time. 40 may be operated.
  • FIG. 3 shows a Ph diagram in the reverse cycle defrosting mode in that case.
  • the gas injection is not performed on the left side (reverse cycle defrosting mode of an example described later), the gas injection is performed on the right side. Shows each time. A portion indicated by 13K in the figure indicates the refrigerant to be gas-injected.
  • the refrigerant flow in the first dehumidifying and cooling type defrosting mode is the same as that in the dehumidifying and cooling mode described above. That is, in the first dehumidifying and cooling type defrosting mode, the controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21, the electromagnetic valve 22, and the electromagnetic valve 20. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 is in a state (MH) in which all the air blown out from the indoor blower 27 is passed through the radiator 4.
  • MH state
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 through the discharge-side heat exchanger 35. Since the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived and cooled, and condensates.
  • the refrigerant that has exited the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 that is controlled to open.
  • the refrigerant flowing into the outdoor heat exchanger 7 dissipates heat and condenses into liquid.
  • the frost adhering to the outdoor heat exchanger 7 is melted by the heat radiation at this time.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13A through the solenoid valve 17 to the receiver dryer section 14 and the supercooling section 16, and then enters the refrigerant pipe 13B through the check valve 18 to enter the internal heat exchanger 19. Then, the indoor expansion valve 8 is reached. After the refrigerant is depressurized by the indoor expansion valve 8, the refrigerant flows into the heat absorber 9, evaporates, absorbs heat from the air passing through the air flow passage 3, passes through the evaporation capacity control valve 11, and the internal heat exchanger 19, and then the refrigerant. The circulation reaches the accumulator 12 through the pipe 13C and is sucked into the compressor 2 therethrough.
  • FIG. 4 shows a Ph diagram when gas injection is performed in the first dehumidifying and cooling type defrosting mode. When the gas injection is not performed on the left side (dehumidifying cooling mode), the gas injection is performed on the right side. Each time is shown. A portion indicated by 13K in the figure indicates the refrigerant to be gas-injected.
  • the heating capacity by the radiator 4 and the defrosting capacity of the outdoor heat exchanger 7 are improved when the gas injection is performed by the injection circuit 40 (right side) and when it is not performed (left side). (Upper side of Ph diagram). On the other hand, it can be seen that the cooling action (the lower side of the Ph diagram) does not change much.
  • FIG. 5 shows the compressor 2 for the reverse cycle defrosting mode and the first dehumidifying and cooling type defrosting mode.
  • the F / B (feedback) manipulated variable calculator 59 calculates the F / B manipulated variable TGNCcfb of the compressor target rotational speed based on the target heat absorber temperature TEO and the heat absorber temperature Te. Then, the F / F manipulated variable TGNCcff computed by the F / F manipulated variable computing unit 58 and the F / B manipulated variable TGNCcfb computed by the F / B manipulated variable computing unit 59 are added by the adder 61, and the compressor OFF control unit After the limit of the control upper limit value and the control lower limit value is set by the limit setting unit 63 after 62 (the minimum rotation speed at which the compressor 2 can be operated is specified), it is determined as the compressor target rotation speed TGNCc. In the reverse cycle defrost mode and the first dehumidifying and cooling type defrost mode, the controller 32 controls the rotation speed of the compressor 2 based on the compressor target rotation speed TGNCc.
  • FIG. 6 shows an outdoor expansion valve in reverse cycle defrosting mode and first dehumidifying and cooling type defrost mode.
  • 6 is a control block diagram of a controller 32 for determining a target opening 6 (outdoor expansion valve target opening) TGECCVpc.
  • the F / F manipulated variable calculation unit 64 of the controller 32 adjusts the target radiator temperature TCO, the blower voltage BLV, the outside air temperature Tam, the air mix damper opening SW, the target heat absorber temperature TEO, and the target radiator pressure PCO. Based on this, the F / F manipulated variable TGECCVpcff of the outdoor expansion valve target opening is calculated.
  • the F / B manipulated variable calculator 66 calculates the F / B manipulated variable TGECCVpcfb of the outdoor expansion valve target opening based on the target radiator pressure PCO and the radiator pressure PCI. Then, the F / F manipulated variable TGECCVpcff computed by the F / F manipulated variable computing unit 64 and the F / B manipulated variable TGECCVpcfb computed by the F / B manipulated variable computing unit 66 are added by the adder 67, and the limit setting unit 68 After the control upper limit value and the control lower limit value are set, the outdoor expansion valve target opening degree TGECCVpc is determined. In the reverse cycle defrosting mode and the first dehumidifying and cooling type defrosting mode, the controller 32 controls the valve opening degree of the outdoor expansion valve 6 based on the outdoor expansion valve target opening degree TGECCVpc.
  • FIG. 7 shows the target opening (injection expansion valve target opening) TGECCVsh of the injection expansion valve 30 of the injection circuit 40 when the rotation speed NC of the compressor 2 is lower than the predetermined value N1 (in the case of a low rotation speed). It is a control block diagram of the controller 32 to determine.
  • gas injection is performed in the first dehumidifying and cooling type defrosting mode (including the case of performing gas injection in the above-described reverse cycle defrosting mode) and the hot gas defrosting mode.
  • the injection refrigerant superheat degree calculation unit 69 of the controller 32 performs the compression of the compressor 2 from the injection circuit 40 based on the difference between the temperature of the injection refrigerant (injection refrigerant temperature Tinj) detected by the injection temperature sensor 55 and the saturation temperature Tsatinj.
  • the degree of superheat (injection refrigerant superheat) SHinj of the returned injection refrigerant is calculated.
  • the F / B manipulated variable calculation unit 71 calculates the injection refrigerant superheat degree SHinj calculated by the injection refrigerant superheat degree calculation unit 69 and the target value of the superheat degree of the injection refrigerant returned from the injection circuit 40 during the compression of the compressor 2. Based on (target injection refrigerant superheat degree TGSHinj), the F / B manipulated variable TGECCVshfb of the injection expansion valve target opening is calculated.
  • the F / B manipulated variable calculation unit 71 operates when a predetermined injection request flag fINJONreq is “1” (set), and stops calculation when it is “0” (reset).
  • the F / B operation amount TGECCVshfb calculated by the F / B operation amount calculation unit 71 and the F / F operation amount TGECCVshff of the injection expansion valve 30 determined in advance are added by the adder 72, and the limit setting unit 73 After the control upper limit value and the control lower limit value are set, they are input to the injection possibility switching unit 74. Further, “0” (the injection expansion valve 30 is fully closed) is input to the injection possibility switching unit 74. When the injection request flag fINJONreq is “1” (set), the value passed through the limit setting unit 73 is the injection value.
  • the expansion valve target opening degree TGECCVsh is determined and output.
  • the injection availability switching unit 74 When the injection request flag fINJONreq is “0” (reset), the injection availability switching unit 74 outputs “0” as the injection expansion valve target opening TGECCVsh. That is, when the rotational speed NC of the compressor 2 is a low rotational speed lower than the predetermined value N1, when the injection request flag fINJONreq is set to “1”, the controller 32 determines the superheating degree SHinj of the injection refrigerant and the target injection refrigerant superheat.
  • the injection expansion valve target opening TGECCVsh of the injection expansion valve 30 is determined based on the degree TGSHinj, the valve opening is controlled, and when the injection request flag fINJONreq is reset to “0”, the injection expansion valve 30 Is closed (fully closed when the valve opening is “0”), and the gas injection by the injection circuit 40 is stopped.
  • FIG. 8 shows the target opening (injection expansion valve target opening) TGECCVpc of the injection expansion valve 30 of the injection circuit 40 when the rotation speed NC of the compressor 2 is equal to or higher than a predetermined value N1 (in the case of a high rotation speed). It is a control block diagram of the controller 32 to determine.
  • the gas injection in this case is also executed in the first dehumidifying and cooling type defrosting mode (including the case of performing gas injection in the above-described reverse cycle defrosting mode) and the hot gas defrosting mode.
  • the F / B manipulated variable calculator 76 calculates the F / B manipulated variable TGECCVpcfb of the target target opening of the injection expansion valve based on the target radiator pressure PCO and the radiator pressure PCI.
  • the F / B manipulated variable calculator 76 operates when the injection request flag fINJONreq is “1” (set), and stops calculating when it is “0” (reset). Then, the F / B manipulated variable TGECCVpcfb computed by the F / B manipulated variable computing unit 76 and the F / F manipulated variable TGECCVpcff in this case of the injection expansion valve 30 determined in advance are added by the adder 77 to set a limit.
  • the limit value is input to the injection availability switching unit 79. Further, “0” (the injection expansion valve 30 is fully closed) is input to the injection availability switching unit 79. When the injection request flag fINJONreq is “1” (set), the value passed through the limit setting unit 78 is The injection expansion valve target opening degree TGECCVpc is determined and output.
  • the injection availability switching unit 79 When the injection request flag fINJONreq is “0” (reset), the injection availability switching unit 79 outputs “0” as the injection expansion valve target opening TGECCVpc. That is, when the rotational speed NC of the compressor 2 is a high rotational speed equal to or higher than the predetermined value N1, when the injection request flag fINJONreq is set to “1”, the controller 32 sets the target radiator pressure PCO and the radiator pressure PCI.
  • the injection expansion valve target opening degree TGECCVpc of the injection expansion valve 30 is determined on the basis of the above, and the valve opening degree is controlled.
  • the target blowing temperature TAO is a target value of the air temperature blown from the blowout port 29 into the vehicle interior, and is calculated by the controller 32 from the following formula (I).
  • TAO (Tset ⁇ Tin) ⁇ K + Tbal (f (Tset, SUN, Tam)) (1)
  • Tset is the set temperature in the passenger compartment set by the air conditioning operation unit 53
  • Tin is the temperature of the passenger compartment air detected by the inside air temperature sensor 37
  • K is a coefficient
  • Tbal is the set temperature Tset
  • the solar radiation sensor 51 detects This is a balance value calculated from the amount of solar radiation SUN to be performed and the outside air temperature Tam detected by the outside air temperature sensor 33.
  • this target blowing temperature TAO is so high that the outside temperature Tam is low, as shown in FIG. 9, and it falls as the outside temperature Tam rises.
  • the controller 32 calculates the target radiator temperature TCO from the target blowing temperature TAO.
  • the controller 32 obtains the outdoor heat exchanger temperature of the outdoor heat exchanger 7 obtained from the outdoor heat exchanger temperature sensor 54 (for example, the refrigerant evaporation temperature at the outlet of the outdoor heat exchanger 7) TXO, and the outside air has low humidity. Based on the outdoor heat exchanger temperature (also the refrigerant evaporation temperature at the outlet of the outdoor heat exchanger 7) TXObase at the time of non-frosting when the outdoor heat exchanger 7 is not frosted in the environment. The frosting state of the heat exchanger 7 is detected. The controller 32 in this case determines the outdoor heat exchanger temperature TXObase at the time of no frost formation using the following formula (II).
  • Tam which is a parameter of the formula (II)
  • NC is the rotation speed of the compressor 2
  • BLV is the blower voltage of the indoor blower 27
  • VSP is the vehicle speed obtained from the vehicle speed sensor 52.
  • K1 to k4 are coefficients, which are obtained in advance by experiments.
  • the outside air temperature Tam is an index indicating the intake air temperature of the outdoor heat exchanger 7.
  • the index indicating the intake air temperature of the outdoor heat exchanger 7 is not limited to the outdoor air temperature Tam.
  • the rotational speed NC of the compressor 2 is an index indicating the refrigerant flow rate in the refrigerant circuit R. The higher the rotational speed NC (the higher the refrigerant flow rate), the lower the TXObase. Therefore, the coefficient k2 is a negative value.
  • the blower voltage BLV is an index indicating the amount of air passing through the radiator 4.
  • the index indicating the amount of air passing through the radiator 4 is not limited to this and may be the blower air amount of the indoor blower 27 or the air mix damper 28 opening SW.
  • the vehicle speed VSP is an index indicating the passing air speed of the outdoor heat exchanger 7. The lower the vehicle speed VSP (the lower the passing air speed of the outdoor heat exchanger 7), the lower the TXObase. Therefore, the coefficient k4 is a positive value.
  • the index indicating the passing air speed of the outdoor heat exchanger 7 is not limited to this, and the voltage of the outdoor blower 15 may be used.
  • the outdoor air temperature Tam, the rotational speed NC of the compressor 2, the blower voltage BLV of the indoor blower 27, and the vehicle speed VSP are used as parameters of the formula (II).
  • One load may be added as a parameter.
  • the target blowout temperature TAO, the rotational speed NC of the compressor 2, the blower air volume of the indoor blower 27, the inlet air temperature of the radiator 4 and the radiator temperature Tci of the radiator 4 can be considered.
  • the larger the value the lower the TXObase.
  • the parameters of the formula (II) are not limited to all of the above, and any one of them or a combination thereof may be used.
  • ⁇ TXO the difference ⁇ TXO
  • the solid line in FIG. 11 shows the change in the outdoor heat exchanger temperature TXO
  • the broken line shows the change in the outdoor heat exchanger temperature TXObase when there is no frost formation.
  • the outdoor heat exchanger temperature TXO is high and exceeds the outdoor heat exchanger temperature TXObase when there is no frost formation.
  • the temperature in the passenger compartment is warmed and the load on the vehicle air conditioner 1 is reduced. Therefore, the refrigerant flow rate and the air flow rate through the radiator 4 are also reduced.
  • the calculated TXObase (broken line in FIG. 11) rises.
  • the controller 32 causes the outdoor heat exchanger 7 to It determines that frost has occurred and defrost is necessary and issues a defrost request.
  • the outdoor heat exchanger temperature TXO is used to detect the frosting state.
  • the present invention is not limited to this, and the current refrigerant evaporation pressure of the outdoor heat exchanger 7 obtained from the outdoor heat exchanger pressure sensor 56 ( Outdoor heat exchanger pressure) PXO and frost state of outdoor heat exchanger 7 based on outdoor heat exchanger pressure PXObase at the time of non-frosting when the outside air is not frosted in the low humidity environment May be detected.
  • the means for detecting the frosted state of the outdoor heat exchanger 7 is not limited to the above, and the dew point temperature detected by the outdoor air temperature sensor 33 and the outdoor air humidity sensor 34 and the refrigerant evaporation temperature of the outdoor heat exchanger 7 (outdoor heat exchange).
  • the controller 32 may detect (estimate) the frosting state of the outdoor heat exchanger 7 based on the temperature of the vessel.
  • step S2 determines whether or not the current outside air temperature Tam detected by the outside air temperature sensor 34 is lower than a predetermined value T2.
  • the predetermined value T2 is a predetermined temperature value that can determine whether the outside air temperature Tam is low or high. If the outside air temperature Tam is lower than T2 in step S3, the controller 32 proceeds to step S4, and determines whether or not an occupant is currently in the passenger compartment based on the output of the occupant sensor 57.
  • step S5 determines whether there is a heating request. If the current air-conditioning operation mode is the heating mode (or dehumidifying heating mode) and the vehicle interior needs to be heated, the controller 32 determines that there is a heating request and proceeds to step S6, where the target radiator pressure (Target high pressure) PCO is set to a predetermined value P1 (high pressure).
  • step S7 the process proceeds to step S7, and the first dehumidifying and cooling type defrosting mode described above is executed. That is, the refrigerant is radiated by the radiator 4 and the outdoor heat exchanger 7, and the heat absorber 9 absorbs the heat. Thereby, the outdoor heat exchanger 7 is defrosted.
  • the outdoor expansion valve 6 is F / B controlled based on the target radiator pressure PCO as in the control block of FIG. 6 described above, and the air mix damper 28 is set to MH.
  • the indoor blower (blower) 27 is controlled in coordination with the blowout temperature to avoid occupant discomfort, and the suction switching damper 26 is set to the inside air circulation mode.
  • step S8 the controller 32 performs F / B control of the compressor 2 based on the target heat absorber temperature TEO as in the control block of FIG. 5 described above (the same as the cooling and dehumidifying cooling modes). Further, the injection circuit 40 is operated to perform gas injection during the compression of the compressor 2. In that case, when the rotational speed NC of the compressor 2 is a low rotational speed equal to or less than a predetermined value N1, as shown in the control blocks of FIGS. 7 and 8, the controller 32 performs injection injection valve 30 based on the injection superheat degree SHinj as shown in FIG. The valve opening is controlled by F / B to control the amount of gas injection.
  • the valve opening degree of the injection expansion valve 30 is F / B controlled based on the target radiator pressure PCO as shown in FIG. Control the amount.
  • the injection superheat degree SHinj is higher than 10 deg to prevent liquid back to the compressor 2.
  • step S9 the controller 32 proceeds to step S9, and when the outdoor heat exchanger temperature TXO is equal to or higher than a predetermined value TX1 (for example, + 25 ° C.), the outdoor blower 15 is operated (ON), and the outdoor heat exchanger 7 is forced to ventilate the outside air. To do.
  • a predetermined value TX1 for example, + 25 ° C.
  • TX2 for example, + 20 ° C. having a predetermined hysteresis with respect to TX1
  • the outdoor blower 15 is stopped (OFF).
  • step S5 when there is no heating request in step S5, the controller 32 proceeds to step S10, sets the target radiator pressure PCO to a predetermined value P2 (medium pressure, P1 ⁇ P2), and then proceeds to step S11 to perform the first dehumidification described above.
  • the cooling type defrost mode is executed.
  • step S8 and step S9 are sequentially executed.
  • step S4 the controller 32 proceeds from step S4 to step S12 to set the target radiator pressure PCO to P2 (medium pressure), and then to step It progresses to S13 and it is judged whether vehicle interior temperature is lower than predetermined value T1 (for example, +5 degreeC). If the passenger compartment temperature is relatively high immediately after the passenger gets off and is equal to or higher than the predetermined value T1, the controller 32 proceeds from step S13 to step S14, and executes the above-described reverse cycle defrosting mode.
  • predetermined value T1 for example, +5 degreeC
  • step S15 the controller 32 performs F / B control of the compressor 2 based on the target heat absorber temperature TEO as in the control block of FIG. 5 described above (the same as the cooling and dehumidifying cooling modes). However, the injection circuit 40 is not operated (OFF), and gas injection to the compressor 2 is not performed.
  • step S13 the controller 32 proceeds from step S13 to step S11, step S8, and step S9, and switches to the first dehumidifying and cooling type defrosting mode described above (the air mix damper 28 is MH), controlling the compressor 2 and the injection expansion valve 30 and the like so that the temperature of the outdoor heat exchanger 7 becomes a predetermined value (+ 25 ° C. to + 30 ° C.), and defrosting the outdoor heat exchanger 7. Heating by heat radiation of the radiator 4 is resumed by gas injection to raise the passenger compartment temperature.
  • step S3 if the outside air temperature Tam is a high environment equal to or higher than the predetermined value T2, the controller 32 proceeds from step S3 to step S16, and sets the target radiator pressure PCO to the predetermined value P3 (low pressure, P1 ⁇ P2 ⁇ P3). And it progresses to step S17 and performs the 2nd dehumidification cooling type defrost mode mentioned above. That is, the refrigerant is radiated by the radiator 4 and the outdoor heat exchanger 7, and the heat absorber 9 absorbs the heat. Thereby, the outdoor heat exchanger 7 is defrosted.
  • the outdoor expansion valve 6 is F / B controlled based on the target radiator pressure PCO as in the control block of FIG. 6 described above, and the air mix damper 28 is set to MH. Further, the indoor blower (blower) 27 is operated at a predetermined voltage V3 (V1 ⁇ V3), and the suction switching damper 26 is set to the inside air circulation mode.
  • step S15 the controller 32 performs F / B control of the compressor 2 based on the target heat absorber temperature TEO as in the control block of FIG. 5 described above (the same as the cooling and dehumidifying cooling modes). Further, the injection circuit 40 is not operated (OFF), and gas injection to the compressor 2 is not performed. As a result, more high-temperature refrigerant flows through the outdoor heat exchanger 7. At this time, the injection circuit 40 does not operate, but since the outside air temperature Tam is high, there is no problem with the vehicle interior temperature.
  • the controller 32 operates the injection circuit 40 to return the refrigerant in the middle of compression of the compressor 2 when defrosting by flowing the high-temperature refrigerant to the outdoor heat exchanger 7, and there is a request for heating in the vehicle interior.
  • the refrigerant discharged from the compressor 2 in step S7 is radiated by the radiator 4 and the outdoor heat exchanger 7, and the radiated refrigerant is depressurized, and then the first dehumidifying and cooling type heat absorber 9 absorbs heat. Since the frost mode is executed and the injection circuit 40 is operated in step S8, part of the refrigerant that has exited the radiator 4 by the injection circuit 40 is returned to the middle of compression of the compressor 2 to improve the heating capacity of the radiator 4.
  • the vehicle interior temperature can be maintained.
  • the outdoor heat exchanger temperature TXO of the outdoor heat exchanger 7 is equal to or higher than a predetermined value TX1, and the outdoor air is passed through the outdoor heat exchanger 7. Since the outdoor blower 15 is operated and stopped when it is lower than the predetermined value TX2, it is possible to prevent or suppress inconvenience that water vapor generated by defrosting reattaches to the outdoor heat exchanger 7.
  • the controller 32 executes the second dehumidifying and cooling type defrosting mode in step S17, so that the outside air temperature Tam is high and it is easy to maintain the heating capacity of the vehicle interior. Then, more refrigerant can be supplied to the outdoor heat exchanger 7 without operating the injection circuit 40, and defrosting can be promoted.
  • the controller 32 executes the reverse cycle defrosting mode described above in step S14 until the vehicle interior temperature becomes lower than the predetermined value T1, and if the vehicle interior temperature becomes lower than the predetermined value T1, the controller 32 executes the above-described operation in step S11. Since the first dehumidifying and cooling type defrosting mode is executed to dissipate the refrigerant in the radiator 4 as well, the control satisfying both the rapid defrosting of the outdoor heat exchanger 7 and the maintenance of heating in the vehicle interior is realized. Is possible.
  • the controller 32 defrosts the outdoor heat exchanger 7 when the vehicle interior temperature is lower than the predetermined value T1 or when it is necessary to heat the vehicle interior, the first dehumidifying and cooling type removal in step S11 or step S7. Since the suction switching damper 26 is set to the inside air circulation mode in the frost mode and the introduction of the outside air into the air flow passage 3 is stopped, the introduction of the outside air having a low temperature is stopped in a situation where the vehicle interior temperature is low, and the heating capacity is maintained. Will be able to.
  • the intake switching damper 26 is set to the inside air circulation mode to stop the introduction of outside air into the air flow passage 3, so that the heating capacity is similarly maintained. It becomes possible.
  • the controller 32 has a simple hot gas defrosting mode as the defrosting mode in addition to the first dehumidifying cooling type defrosting mode and the second dehumidifying cooling type defrosting mode described above. Switch between them according to.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 through the discharge-side heat exchanger 35, but the air in the air flow passage 3 is not vented to the radiator 4. Only passes, and the refrigerant exiting the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipe 13E. At this time, since the outdoor expansion valve 6 is fully opened, the refrigerant passes through the outdoor expansion valve 6 and the refrigerant pipe 13I, flows into the outdoor heat exchanger 7 as it is, radiates heat, and is condensed and liquefied. The frost adhering to the outdoor heat exchanger 7 is melted by the heat radiation at this time.
  • the refrigerant exiting the outdoor heat exchanger 7 enters the refrigerant pipe 13D from the refrigerant pipe 13A, and flows into the refrigerant pipe 13C on the downstream side of the internal heat exchanger 19 through the electromagnetic valve 21. Then, it is sucked into the compressor 2 through the accumulator 12. That is, the refrigerant does not flow through the heat absorber 9 in the simple hot gas defrosting mode.
  • the controller 32 when executing this simple hot gas defrosting mode, the controller 32 does not operate the injection circuit 40 and uses all of the refrigerant from the radiator 4 for defrosting the outdoor heat exchanger 7.
  • FIG. 12 shows a Ph diagram in the simple hot gas defrosting mode. In this case, the shape is a triangle as shown in FIG.
  • FIG. 13 shows the simple hot gas defrost mode (including a hot gas defrost mode described later).
  • the F / F manipulated variable calculator 82 of the controller 32 has an outside air temperature Tam obtained from the outside air temperature sensor 33, a blower voltage BLV of the indoor blower 27, the air mix damper opening SW of the air mix damper 28 described above, and a target heat release. Based on the compressor temperature TCO and the target radiator pressure PCO, the F / F manipulated variable TGNChff of the compressor target rotational speed is calculated.
  • the target radiator pressure PCO is calculated by the target value calculator 82 based on the radiator temperature TCO. Further, the F / B operation amount calculation unit 83 calculates the F / B operation amount TGNChfb of the compressor target rotation speed based on the target radiator pressure PCO and the radiator pressure PCI. Then, the F / F manipulated variable TGNCnff computed by the F / F manipulated variable computing unit 82 and the TGNChfb computed by the F / B manipulated variable computing unit 83 are added by the adder 84, and the control upper limit value and the control are controlled by the limit setting unit 86. After the lower limit is set, it is determined as the compressor target rotational speed TGNCh. In the simple hot gas defrosting mode and the hot gas defrosting mode described later, the controller 32 controls the rotation speed of the compressor 2 based on the compressor target rotation speed TGNCh.
  • step S21 If the controller 32 makes a defrost request in step S21, the process proceeds from step S21 to step S22, and determines whether or not the vehicle is currently plugged in.
  • the battery In an electric vehicle or a hybrid vehicle having a plug-in function, the battery can be charged from an external power source while the vehicle is stopped.
  • the controller 32 operates the compressor 2 (power supply from the battery or external power source). It is assumed that the compressor 2 has a function of operating by direct power supply from When the plug-in is in progress, the process proceeds from step S22 to step S23.
  • step S31 it is determined whether or not the remaining amount of the battery is lower than a predetermined value.
  • This predetermined value is a threshold that can sufficiently realize defrosting and heating by discharging the battery. And also when the battery remaining amount remains more than predetermined value, it progresses to step S23.
  • step S23 the controller 32 determines whether or not the current outside air temperature Tam detected by the outside air temperature sensor 34 is lower than the aforementioned predetermined value T2. If it is determined in step S23 that the outside air temperature Tam is lower than T2, the controller 32 proceeds to step S24 and determines whether an occupant is currently in the passenger compartment based on the output of the occupant sensor 57.
  • step S24 the controller 32 proceeds to step S25 and determines whether there is a heating request. If it is determined that there is a heating request as described above, the controller 32 proceeds to step S26 and sets the target radiator pressure (target high pressure) PCO to the predetermined value P1 (high pressure) described above.
  • target radiator pressure target high pressure
  • step S27 the process proceeds to step S27, and the first dehumidifying and cooling type defrosting mode described above is executed. That is, the refrigerant is radiated by the radiator 4 and the outdoor heat exchanger 7, and the heat absorber 9 absorbs the heat. Thereby, the outdoor heat exchanger 7 is defrosted.
  • the outdoor expansion valve 6 is F / B controlled based on the target radiator pressure PCO as in the control block of FIG. 6 described above, and the air mix damper 28 is set to MH.
  • the indoor blower (blower) 27 is controlled in coordination with the blowout temperature, and the suction switching damper 26 is set to the inside air circulation mode.
  • step S28 the controller 32 performs F / B control of the compressor 2 based on the target heat absorber temperature TEO as in the control block of FIG. 5 described above (same as the cooling and dehumidifying cooling modes). Further, the injection circuit 40 is operated to perform gas injection during the compression of the compressor 2. In that case, when the rotational speed NC of the compressor 2 is a low rotational speed equal to or less than a predetermined value N1, as shown in the control blocks of FIGS. 7 and 8, the controller 32 performs injection injection valve 30 based on the injection superheat degree SHinj as shown in FIG. The valve opening is controlled by F / B to control the amount of gas injection.
  • the valve opening degree of the injection expansion valve 30 is F / B controlled based on the target radiator pressure PCO as shown in FIG. Control the amount.
  • the injection superheat degree SHinj is set higher than 10 deg as described above.
  • the controller 32 proceeds to step S29, and when the outdoor heat exchanger temperature TXO is equal to or higher than a predetermined value TX1 (for example, + 25 ° C.) as described above, the outdoor fan 15 is operated (ON), and the outdoor heat exchanger 7 Forcibly ventilate.
  • a predetermined value TX1 for example, + 25 ° C.
  • TX2 for example, + 20 ° C. having a predetermined hysteresis with respect to TX1
  • the outdoor blower 15 is stopped (OFF).
  • step S25 the controller 32 proceeds to step S30, sets the target radiator pressure PCO to the above-described predetermined value P2 (medium pressure. P1 ⁇ P2), and then proceeds to step S33 to perform the above-described simple process.
  • Execute hot gas defrosting mode That is, the refrigerant is radiated by only the outdoor heat exchanger 7 and returned to the compressor 2 without passing through the heat absorber 9. Thereby, the outdoor heat exchanger 7 is defrosted.
  • the outdoor expansion valve 6 is fully opened, and the air mix damper 28 is MC.
  • the indoor blower (blower) 27 stops.
  • step S34 the controller 32 performs F / B control of the compressor 2 based on the target radiator temperature PCO as in the control block of FIG. 13 described above (same as in the heating mode). Further, the injection circuit 40 is not operated (OFF), and the high-temperature refrigerant from the compressor 2 is used to defrost the outdoor heat exchanger 7. Next, the controller 32 proceeds to step S29, and controls the operation of the outdoor fan 15 as described above.
  • step S24 If the occupant is not in step S24 and if the remaining battery level is lower than the predetermined value in step S31, the controller 32 proceeds to step S32 and sets the target radiator pressure PCO to P2 (medium pressure). Then, the process proceeds to step S33 to execute the simple hot gas defrosting mode. That is, when the occupant is not in the vehicle or when the remaining battery level is low, the high-temperature refrigerant is concentrated on the defrosting of the outdoor heat exchanger 7.
  • step S23 If the outside air temperature Tam is a high environment equal to or higher than the predetermined value T2 in step S23, the controller 32 proceeds from step S23 to step S35 to determine again whether or not the occupant is on board. It progresses to step S32 and step S33.
  • the routine proceeds to step S36, where the target radiator pressure PCO is set to the aforementioned predetermined value P3 (low pressure, P1 ⁇ P2 ⁇ P3), and the routine proceeds to step S37, where the second dehumidifying and cooling type removal described above is performed. Run the frost mode.
  • the refrigerant is dissipated by the radiator 4 and the outdoor heat exchanger 7 and the heat absorber 9 absorbs heat.
  • the outdoor heat exchanger 7 is defrosted.
  • the outdoor expansion valve 6 is F / B controlled based on the target radiator pressure PCO as in the control block of FIG. 6 described above, and the air mix damper 28 is set to MH.
  • the indoor blower (blower) 27 is operated at a predetermined voltage V3, and the suction switching damper 26 is set to the inside air circulation mode.
  • step S37 the controller 32 carries out F / B control of the compressor 2 based on target heat absorber temperature TEO like the control block of FIG. 5 mentioned above (same as a cooling and dehumidification cooling mode). Further, the injection circuit 40 is not operated (OFF), and gas injection to the compressor 2 is not performed. As a result, more high-temperature refrigerant flows through the outdoor heat exchanger 7. At this time, the injection circuit 40 does not operate, but since the outside air temperature Tam is high, there is no problem with the vehicle interior temperature.
  • the controller 32 when the outside air temperature Tam is equal to or higher than the predetermined value T2, the controller 32 causes the refrigerant discharged from the compressor 2 in step S37 to dissipate heat in the radiator 4 and the outdoor heat exchanger 7, After depressurizing the radiated refrigerant, the second dehumidifying and cooling type defrosting mode in which heat is absorbed by the heat absorber 9 is executed, and the injection circuit 40 is not operated in step S38. Therefore, the outside air temperature Tam is high and the heating capacity in the vehicle interior is increased. In an environment where it is easy to maintain, it is possible to supply more refrigerant to the outdoor heat exchanger 7 without operating the injection circuit 40 and to promote defrosting.
  • the controller 32 causes the refrigerant discharged from the compressor 2 in step S33 to radiate heat only by the outdoor heat exchanger 7, and the radiated refrigerant is not transferred through the heat absorber 9 to the compressor 2. Since the simple hot gas defrosting mode is returned to step S34 and the injection circuit 40 is not operated in step S34, the outdoor heat exchanger 7 can be quickly defrosted to minimize power consumption. It is extremely effective for electric vehicles and the like.
  • the refrigerant discharged from the compressor 2 in step S27 is radiated by the radiator 4 and the outdoor heat exchanger 7, and the radiated refrigerant is depressurized.
  • the first dehumidifying and cooling type defrosting mode for absorbing heat is executed, the injection circuit 40 is operated in step S28, and when power is not supplied from an external power source, the refrigerant discharged from the compressor 2 in step S33 is subjected to outdoor heat exchange. Since the simple hot gas defrosting mode is performed in which the heat is radiated by the cooler 7 and the radiated refrigerant is returned to the compressor 2 without going through the heat sink 9 and the injection circuit 40 is not operated in step S34.
  • the controller 32 executes the simple hot gas defrosting mode when the plug-in is not being performed in step S22 (the power is not supplied from the external power source) and the remaining battery level is low in step S31.
  • the injection circuit 40 is not operated, or the hot gas defrosting mode is executed and the injection circuit 40 is not operated. Therefore, when the battery is not plugged in and the remaining battery level is low, the injection circuit 40 is not operated.
  • the simple hot gas defrosting mode or the hot gas defrosting mode is executed, and accurate defrosting control that takes into consideration the remaining battery level in addition to whether or not the plug-in is performed becomes possible.
  • FIG. 15 the same reference numerals as those in FIG. 1 have the same or similar functions.
  • the refrigerant pipe 13G on the discharge side of the compressor 2 branches to a hot gas pipe (refrigerant pipe) 13H, and this branched hot gas pipe 13H is used when the outdoor heat exchanger 7 is defrosted.
  • the high-temperature refrigerant (hot gas) that has been opened and discharged from the compressor 2 flows directly into the outdoor heat exchanger 7 and is expanded outdoors via a flow rate adjusting valve (hot gas valve) 87 for adjusting the flow rate.
  • a flow rate adjusting valve hot gas valve
  • a refrigerant pipe 13I between the valve 6 and the outdoor heat exchanger 7 is connected in communication. Further, an electromagnetic valve 88 that is closed during defrosting and stops the refrigerant from moving toward the outdoor expansion valve 6 is attached to the refrigerant pipe 13E after exiting the radiator 4 and branching to the injection circuit 40 (FIG. 2). Added with a dashed line).
  • the controller 32 uses the hot gas pipe 13H as the defrost mode in addition to the first dehumidifying and cooling type defrosting mode, the second dehumidifying and cooling type defrosting mode, and the simple hot gas defrosting mode. It has a hot gas defrosting mode using and switches between them depending on the situation.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 is divided and flows directly into the outdoor heat exchanger 7 through the flow rate adjusting valve 87 and the hot gas pipe 13H. And it heat-radiates with the outdoor heat exchanger 7, and the adhering frost is melt
  • the refrigerant that has exited the outdoor heat exchanger 7 returns from the accumulator 12 to the compressor 2 through the refrigerant pipe 13A, the electromagnetic valve 21, and the refrigerant pipes 13D and 13C.
  • FIG. 16 shows a Ph diagram when gas injection is performed in this hot gas defrosting mode. In this case, a portion flowing in the injection circuit 40 appears in addition to FIG. Indicated by 13K).
  • step S41 If the controller 32 makes a defrost request in step S41, the controller 32 proceeds from step S41 to step S42, and determines whether or not the vehicle is currently plugged in. When the plug-in is in progress, the process proceeds from step S42 to step S43. When the plug-in is not in progress, the process proceeds to step S55, and it is determined whether or not the remaining battery level is lower than a predetermined value as described above. And also when the battery remaining amount remains more than predetermined value, it progresses to step S43.
  • step S43 the controller 32 determines whether or not the current outside air temperature Tam detected by the outside air temperature sensor 34 is lower than the aforementioned predetermined value T2. If the outside air temperature Tam is lower than T2 in step S43, the controller 32 proceeds to step S44 and determines whether or not an occupant is currently in the passenger compartment based on the output of the occupant sensor 57.
  • step S45 determines whether there is a heating request.
  • the controller 32 determines whether the vehicle interior temperature detected by the inside air temperature sensor 37 is lower than a predetermined value T2 (for example, 0 ° C.). If the current vehicle interior is cold and the vehicle interior temperature is lower than the predetermined value T2, the controller 32 proceeds to step S47, and the target radiator pressure (target high pressure) PCO is set to the aforementioned predetermined value P1A (P1A ⁇ P1). ).
  • step S48 the outdoor expansion valve 6 is fully closed, and the air mix damper 28 is MH.
  • the indoor blower (blower) 27 is controlled in coordination with the blowout temperature, and the suction switching damper 26 is set to the inside air circulation mode.
  • step S49 the controller 32 controls the compressor 2 based on the target radiator temperature PCO as shown in the control block of FIG. Further, the flow rate adjusting valve (hot gas valve) 87 is fully opened, and a part of the high-temperature refrigerant discharged from the compressor 2 is directly flowed into the outdoor heat exchanger 7 from the hot gas pipe 13H to release heat and defrost. Moreover, after operating the injection circuit 40 and radiating the remainder of the refrigerant
  • the controller 32 performs F / B control on the opening degree of the injection expansion valve 30 based on the injection superheat degree SHinj as in the control block of FIG. 7, and controls the gas injection
  • the controller 32 proceeds to step S50, and when the outdoor heat exchanger temperature TXO is equal to or higher than a predetermined value TX1 (for example, + 25 ° C.) as described above, the outdoor fan 15 is operated (ON), and the outdoor heat exchanger 7 Forcibly ventilate.
  • a predetermined value TX1 for example, + 25 ° C.
  • TX2 for example, + 20 ° C. having a predetermined hysteresis with respect to TX1
  • the outdoor blower 15 is stopped (OFF).
  • step S51 sets the target radiator pressure (target high pressure) PCO to the predetermined value P1 (high pressure) described above.
  • step S52 and step S53 performs the 1st dehumidification cooling type defrost mode mentioned above. That is, the refrigerant is radiated by the radiator 4 and the outdoor heat exchanger 7, and the heat absorber 9 absorbs the heat. Thereby, the outdoor heat exchanger 7 is defrosted.
  • the outdoor expansion valve 6 is F / B controlled based on the target radiator pressure PCO as in the control block of FIG. 6 described above, and the air mix damper 28 is set to MH.
  • the indoor blower (blower) 27 is controlled in coordination with the blowout temperature, and the suction switching damper 26 is set to the inside air circulation mode.
  • step S53 the controller 32 performs F / B control of the compressor 2 based on the target heat absorber temperature TEO as in the control block of FIG. 5 described above (the same as the cooling and dehumidifying cooling modes). Further, the injection circuit 40 is operated to perform gas injection during the compression of the compressor 2. In that case, when the rotational speed NC of the compressor 2 is a low rotational speed equal to or less than a predetermined value N1, as shown in the control blocks of FIGS. 7 and 8, the controller 32 performs injection injection valve 30 based on the injection superheat degree SHinj as shown in FIG. The valve opening is controlled by F / B to control the amount of gas injection.
  • the valve opening degree of the injection expansion valve 30 is F / B controlled based on the target radiator pressure PCO as shown in FIG. Control the amount.
  • the injection superheat degree SHinj is set higher than 10 deg as described above.
  • the controller 32 proceeds to step S50 and controls the operation of the outdoor fan 15 as described above.
  • step S45 the controller 32 proceeds to step S54, sets the target radiator pressure PCO to the aforementioned predetermined value P2 (medium pressure, P1 ⁇ P2), and then proceeds to step S57 and step S58.
  • P2 medium pressure, P1 ⁇ P2
  • step S57 the outdoor expansion valve 6 is fully opened, and the air mix damper 28 may be anywhere.
  • the indoor blower (blower) 27 stops.
  • step S58 the controller 32 performs F / B control of the compressor 2 based on the target radiator temperature PCO as in the control block of FIG. Further, the flow rate adjusting valve (hot gas valve) 87 is fully opened, and a part of the high-temperature refrigerant discharged from the compressor 2 is directly flowed into the outdoor heat exchanger 7 from the hot gas pipe 13H to release heat and defrost. In addition, the injection circuit 40 is not operated (OFF), and the outdoor heat exchanger 7 is defrosted using all the high-temperature refrigerant from the compressor 2. Next, the controller 32 proceeds to step S50, and controls the operation of the outdoor fan 15 as described above.
  • the flow rate adjusting valve (hot gas valve) 87 is fully opened, and a part of the high-temperature refrigerant discharged from the compressor 2 is directly flowed into the outdoor heat exchanger 7 from the hot gas pipe 13H to release heat and defrost.
  • the injection circuit 40 is not operated (OFF), and the outdoor heat exchanger 7 is defrosted
  • step S44 If the occupant is not in step S44 and if the remaining battery level is lower than the predetermined value in step S55, the controller 32 proceeds to step S56 and sets the target radiator pressure PCO to P2 (medium pressure). Then, the process proceeds to step S57 to execute the hot gas defrosting mode. That is, when the occupant is not in the vehicle or when the remaining battery level is low, the high-temperature refrigerant is concentrated on the defrosting of the outdoor heat exchanger 7.
  • step S43 determines again whether or not the occupant is on board. It progresses to step S56 and step S57.
  • the process proceeds to step S60, and the target radiator pressure PCO is set to the above-described predetermined value P3 (low pressure. P1A ⁇ P1 ⁇ P2 ⁇ P3), and then the process proceeds to step S61 and step S62. 2
  • the dehumidifying and cooling type defrosting mode is executed.
  • the refrigerant is dissipated by the radiator 4 and the outdoor heat exchanger 7 and the heat absorber 9 absorbs heat.
  • the outdoor heat exchanger 7 is defrosted.
  • the outdoor expansion valve 6 is F / B controlled based on the target radiator pressure PCO as in the control block of FIG. 6 described above, and the air mix damper 28 is set to MH.
  • the indoor blower (blower) 27 is operated at a predetermined voltage V3, and the suction switching damper 26 is set to the inside air circulation mode.
  • step S62 the controller 32 carries out F / B control of the compressor 2 based on target heat absorber temperature TEO like the control block of FIG. 5 mentioned above (same as a cooling and dehumidification cooling mode). Further, the injection circuit 40 is not operated (OFF), and gas injection to the compressor 2 is not performed. As a result, more high-temperature refrigerant flows through the outdoor heat exchanger 7. At this time, the injection circuit 40 does not operate, but since the outside air temperature Tam is high, there is no problem with the vehicle interior temperature.
  • the hot gas pipe 13H that can directly supply the refrigerant discharged from the compressor 2 to the outdoor heat exchanger 7 is provided, and the controller 32 starts from the compressor 2 when there is a heating request.
  • a part of the discharged refrigerant is diverted to flow into the outdoor heat exchanger 7 through the hot gas pipe 13H without passing through the radiator 4 to dissipate the heat, and the dissipated refrigerant is returned to the compressor 2 and the remaining refrigerant. Since the hot gas defrosting mode in which the heat is dissipated by the radiator 4 is executed and the injection circuit 40 is operated, the heating capacity of the radiator 4 can be improved by the injection circuit 40 without performing heat absorption in the heat absorber 9. It becomes effective especially in a situation where the temperature in the passenger compartment is extremely low.
  • the controller 32 causes the refrigerant discharged from the compressor 2 in step S61 to radiate heat at the radiator 4 and the outdoor heat exchanger 7, thereby radiating the refrigerant. Since the second dehumidifying and cooling type defrosting mode in which heat is absorbed by the heat absorber 9 is executed and the injection circuit 40 is not operated, the outside air temperature Tam is high and the heating capacity in the passenger compartment is easily maintained. More refrigerant can be supplied to the outdoor heat exchanger 7 without operating the injection circuit 40, and defrosting can be promoted.
  • the controller 32 diverts a part of the refrigerant discharged from the compressor 2 in step S57, and the outdoor heat exchanger 7 without passing through the radiator 4 by the hot gas pipe 13H.
  • the hot gas defrosting mode is performed in which the refrigerant that has radiated heat is returned to the compressor 2 and the remaining refrigerant is radiated by the radiator 4, and the injection circuit 40 is not operated. Therefore, the outdoor heat exchanger 7 The defrosting can be performed quickly to minimize power consumption, which is extremely effective in an electric vehicle or the like.
  • the hot gas defrosting mode described above is executed in step S48 when the vehicle interior temperature is low, and the refrigerant discharged from the compressor 2 in step S52 when the vehicle interior temperature is high. Is radiated by the radiator 4 and the outdoor heat exchanger 7, and after the decompressed refrigerant is decompressed, the first dehumidifying and cooling type defrosting mode in which heat is absorbed by the heat absorber 9 is executed to operate the injection circuit 40. In the case where power is not supplied from the external power source, a part of the refrigerant discharged from the compressor 2 is diverted in step S57 and flows into the outdoor heat exchanger 7 through the hot gas pipe 13H without passing through the radiator 4.
  • the hot gas defrosting mode is performed in which the heat is radiated, the radiated refrigerant is returned to the compressor 2 and the remaining refrigerant is radiated by the radiator 4, and the injection circuit 40 is not operated.
  • the plug-in is in the hot gas defrosting mode or the first dehumidifying and cooling type defrosting mode, the outdoor heat exchanger 7 is defrosted while maintaining the heating in the vehicle interior, and when not plugged in, Without operating the injection circuit 40 in the hot gas defrosting mode, all the refrigerant is allowed to flow through the outdoor heat exchanger 7 to quickly defrost and reduce power consumption.
  • FIG. 18 shows other control blocks of the controller 32 for determining the target rotational speed (compressor target rotational speed) TGNChg (in this case) of the compressor 2 for the hot gas defrosting mode and the simple hot gas defrosting mode.
  • the compressor target rotational speed TGNCh is calculated based on the target radiator temperature PCO and the radiator temperature PCI, but the target outdoor heat exchanger temperature of the outdoor heat exchanger temperature TXO of the outdoor heat exchanger 7 is calculated.
  • the target rotational speed of the compressor 2 may be calculated based on TGTXO and the outdoor heat exchanger temperature TXO.
  • the F / F manipulated variable calculation unit 91 of the controller 32 in this case is based on the outside air temperature Tam obtained from the outside air temperature sensor 33, the vehicle speed VSP obtained from the vehicle speed sensor 52, and the target outdoor heat exchanger temperature TGTXO. In this case, the F / F manipulated variable TGNChgff of the compressor target rotational speed is calculated.
  • the target outdoor heat exchanger temperature TGTXO is set to about + 25 ° C. in consideration of the predetermined value TX1 that is the threshold value for operating the outdoor fan 15 described above.
  • the F / B manipulated variable calculator 92 calculates the F / B manipulated variable TGNChgfb of the compressor target rotational speed in this case based on the target outdoor heat exchanger temperature TGTXO and the outdoor heat exchanger temperature TXO. . Then, the F / F manipulated variable TGNCngff calculated by the F / F manipulated variable calculator 91 and TGNChgfb calculated by the F / B manipulated variable calculator 92 are added by the adder 93, and the limit setting unit 94 controls the control upper limit value and the control. After the lower limit is set, it is determined as the compressor target speed TGNChg in this case.
  • the controller 32 sets the target outdoor heat exchanger temperature TGTXO and the outdoor heat exchanger temperature TXO as described above.
  • the rotational speed of the compressor 2 is subjected to F / B control based on the compressor target rotational speed TGNChg calculated based on the above.
  • the simple hot gas defrosting mode is executed in step S34 in the flowchart of FIG. 14 and step S57 in the flowchart of FIG. 17, but the present invention is not limited to this, and the hot gas defrosting mode is executed. You may do it.
  • the defrosting control of each embodiment may be executed when the vehicle speed detected by the vehicle speed sensor 52 is a predetermined value or less. That is, the outdoor heat exchanger 7 may be defrosted by the controller 32 only when the vehicle speed is lower than a predetermined value (for example, 10 km / h). In that case, it is possible to perform defrosting in a situation where the flow of outside air to the outdoor heat exchanger 7 is small, and to improve the defrosting effect (in the case where there is a shutter grill in front of the outdoor heat exchanger 7) Shall be closed during defrosting).
  • a predetermined value for example, 10 km / h
  • the present invention is applied to the vehicle air conditioner 1 that is switched and executed between the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, and the cooling mode.
  • the present invention is not limited thereto, and only the heating mode is performed. In addition, the present invention is effective.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

【課題】室外熱交換器を除霜する除霜モードにおいて、車室内の暖房を維持しながら、室外熱交換器の除霜を支障無く実現することができる車両用空気調和装置を提供する。 【解決手段】圧縮機(2)から吐出された冷媒を放熱器(4)にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器(7)にて吸熱させて車室内を暖房する。放熱器(4)を出た冷媒の一部を分流して圧縮機(2)に戻すインジェクション回路(40)を備える。コントローラ(32)は、室外熱交換器(7)に高温冷媒を流して除霜する際、インジェクション回路(40)を動作させて圧縮機(2)に冷媒を戻す。

Description

車両用空気調和装置
 本発明は、車両の車室内を空調するヒートポンプ方式の車両用空気調和装置に関するものである。
 近年の環境問題の顕在化から、ハイブリッド自動車や電気自動車が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、冷媒を圧縮して吐出する圧縮機と、車室内の空気流通路に設けられて冷媒を放熱させる放熱器(凝縮器)と、空気流通路に設けられて冷媒を吸熱させる吸熱器(蒸発器)と、車室外側に設けられて冷媒を放熱又は吸熱させる室外熱交換器等から構成される冷媒回路を備え、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を室外熱交換器において吸熱させる暖房モードと、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を吸熱器と室外熱交換器、又は、吸熱器のみにおいて吸熱させる除湿暖房モードと、圧縮機から吐出された冷媒を室外熱交換器において放熱させ、吸熱器において吸熱させる冷房モードと、圧縮機から吐出された冷媒を放熱器及び室外熱交換器において放熱させ、吸熱器において吸熱させる除湿冷房モードの各モードを実行するものが開発されている(例えば、特許文献1参照)。
 また、暖房モードにおいて放熱器から出た冷媒を分流し、この分流した冷媒を減圧した後、当該放熱器を出た冷媒と熱交換させ、圧縮機の圧縮途中に戻すインジェクション回路を設け、それにより圧縮機の吐出冷媒を増加させ、放熱器による暖房能力を向上させるものも開発されている(例えば、特許文献2参照)。
特開2012-176660号公報 特許第3985384号公報
 ここで、上記暖房モードでは室外熱交換器にて冷媒が外気中から吸熱する。即ち、室外熱交換器が蒸発器となるため、室外熱交換器には外気中の水分が霜となって付着し、成長するようになる。室外熱交換器に霜が生じるとそれが断熱材となって外気と冷媒との熱交換を阻害するため、係る場合には室外熱交換器に圧縮機からの高温冷媒を流して除霜する除霜モードを実行することになるが、その場合、吸熱器にて吸熱が行われることになるため、空気流通路を経て車室内に吹き出される空気が冷やされ、車室内の暖房が阻害されてしまう問題があった。
 本発明は、係る従来の技術的課題を解決するために成されたものであり、室外熱交換器を除霜する除霜モードにおいて、車室内の暖房を維持しながら、室外熱交換器の除霜を支障無く実現することができる車両用空気調和装置を提供することを目的とする。
 本発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、この空気流通路に設けられて冷媒を放熱させる放熱器と、空気流通路に設けられて冷媒を吸熱させる吸熱器と、車室外に設けられて冷媒を放熱又は吸熱させるための室外熱交換器と、制御手段とを備え、この制御手段により、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させて車室内を暖房するものであって、放熱器を出た冷媒の一部を分流して圧縮機に戻すインジェクション回路を備え、制御手段は、室外熱交換器に高温冷媒を流して除霜する際、インジェクション回路を動作させて圧縮機に冷媒を戻すことを特徴とする。
 請求項2の発明の車両用空気調和装置は、上記発明において制御手段は、車室内の暖房要求がある場合、圧縮機から吐出された冷媒を放熱器と室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる除湿冷房型除霜モードを実行すると共に、インジェクション回路を動作させることを特徴とする。
 請求項3の発明の車両用空気調和装置は、請求項1の発明において制御手段は、車室内の暖房要求がある場合、圧縮機から吐出された冷媒の一部を分流して放熱器を経ること無く室外熱交換器に流入させて放熱させ、放熱した当該冷媒を圧縮機に戻すホットガス除霜モードを実行すると共に、インジェクション回路を動作させることを特徴とする。
 請求項4の発明の車両用空気調和装置は、上記各発明において室外熱交換器に外気を通風する室外送風機を備え、制御手段は、室外熱交換器を除霜する際、当該室外熱交換器の温度が所定値以上で室外送風機を運転し、所定値より低い場合には停止することを特徴とする。
 請求項5の発明の車両用空気調和装置は、請求項2又は請求項3の発明において制御手段は、外気温度が所定値以上である場合、圧縮機から吐出された冷媒を放熱器と室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる除湿冷房型除霜モードを実行すると共に、インジェクション回路は動作させないことを特徴とする。
 請求項6の発明の車両用空気調和装置は、請求項2乃至請求項5の発明において制御手段は、車室内の暖房要求がない場合、圧縮機から吐出された冷媒を室外熱交換器にて放熱させ、放熱した当該冷媒を圧縮機に戻す簡易ホットガス除霜モードを実行し、インジェクション回路は動作させず、又は、圧縮機から吐出された冷媒の一部を分流して放熱器を経ること無く室外熱交換器に流入させて放熱させ、放熱した当該冷媒を圧縮機に戻すホットガス除霜モードを実行し、インジェクション回路は動作させないことを特徴とする。
 請求項7の発明の車両用空気調和装置は、上記各発明において制御手段は、外部電源から圧縮機、若しくは、当該圧縮機を駆動するために電力を供給するバッテリに給電されている場合、圧縮機から吐出された冷媒を放熱器と室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる除湿冷房型除霜モードを実行し、インジェクション回路を動作させ、又は、圧縮機から吐出された冷媒の一部を分流して放熱器を経ること無く室外熱交換器に流入させて放熱させ、放熱した当該冷媒を圧縮機に戻すホットガス除霜モードを実行し、インジェクション回路を動作させると共に、外部電源から給電されていない場合、圧縮機から吐出された冷媒を室外熱交換器にて放熱させ、放熱した当該冷媒を圧縮機に戻す簡易ホットガス除霜モードを実行し、インジェクション回路は動作させず、又は、ホットガス除霜モードを実行し、インジェクション回路は動作させないことを特徴とする。
 請求項8の発明の車両用空気調和装置は、上記発明において制御手段は、外部電源から給電されていない場合であって、バッテリの残量が少ない場合に、簡易ホットガス除霜モードを実行し、インジェクション回路は動作させず、又は、ホットガス除霜モードを実行し、インジェクション回路は動作させないことを特徴とする。
 請求項9の発明の車両用空気調和装置は、上記各発明において制御手段は、車室内温度が所定値より低くなるまで圧縮機から吐出された冷媒を室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる逆サイクル除霜モードを実行すると共に、インジェクション回路は動作させず、車室内温度が所定値より低くなった場合は、圧縮機から吐出された冷媒を放熱器と室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる除湿冷房型除霜モードを実行し、インジェクション回路を動作させることを特徴とする。
 請求項10の発明の車両用空気調和装置は、上記各発明において制御手段は、室外熱交換器を除霜する際、車室内温度が所定値より低い場合又は車室内を暖房する必要がある場合、空気流通路への外気の導入を停止することを特徴とする。
 請求項11の発明の車両用空気調和装置は、請求項2、請求項3、又は、請求項5の発明において制御手段は、除湿冷房型除霜モード又はホットガス除霜モードを実行する際、空気流通路への外気の導入を停止することを特徴とする。
 請求項12の発明の車両用空気調和装置は、上記各発明において制御手段は、車速が所定値以下の場合に室外熱交換器を除霜することを特徴とする。
 本発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、この空気流通路に設けられて冷媒を放熱させる放熱器と、空気流通路に設けられて冷媒を吸熱させる吸熱器と、車室外に設けられて冷媒を放熱又は吸熱させるための室外熱交換器と、制御手段とを備え、この制御手段により、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させて車室内を暖房する車両用空気調和装置において、放熱器を出た冷媒の一部を分流して圧縮機に戻すインジェクション回路を備え、制御手段は、室外熱交換器に高温冷媒を流して除霜する際、インジェクション回路を動作させて圧縮機に冷媒を戻すので、例えば請求項2の発明の如く車室内の暖房要求がある場合、圧縮機から吐出された冷媒を放熱器と室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる除湿冷房型除霜モードを実行し、インジェクション回路を動作させることにより、インジェクション回路により放熱器を出た冷媒の一部を圧縮機に戻し、放熱器による暖房能力を向上させ、車室内温度の維持を図ることができるようになる。
 また、室外熱交換器の除霜も支障無く実行することができるので、除霜モードの長期化に伴う電力消費の増大を回避し、特に電気自動車やハイブリッド自動車において有効なものとなる。
 また、室外熱交換器に圧縮機から吐出された冷媒を直接供給できる回路が設けられている場合には、例えば請求項3の発明の如く制御手段が、車室内の暖房要求がある場合、圧縮機から吐出された冷媒の一部を分流して放熱器を経ること無く室外熱交換器に流入させて放熱させ、放熱した当該冷媒を圧縮機に戻すホットガス除霜モードを実行し、インジェクション回路を動作させることにより、吸熱器における吸熱を行うこと無く、インジェクション回路により放熱器における暖房能力を向上させることができるようになり、特に車室内温度が極めて低い状況で有効なものとなる。
 この場合、請求項4の発明の如く室外熱交換器に外気を通風する室外送風機を備え、制御手段が、室外熱交換器を除霜する際、当該室外熱交換器の温度が所定値以上で、室外熱交換器に外気を通風する室外送風機を運転し、所定値より低い場合には停止することにより、除霜により生じた水蒸気が室外熱交換器に再付着する不都合を防止若しくは抑制することができるようになる。
 また、請求項5の発明の如く制御手段が、外気温度が所定値以上である場合、圧縮機から吐出された冷媒を放熱器と室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる除湿冷房型除霜モードを実行し、インジェクション回路は動作させないようにすれば、外気温度が高く、車室内の暖房能力を維持し易い環境下では、インジェクション回路を動作させずに室外熱交換器に冷媒をより多く供給し、除霜を促進させることができるようになる。
 一方、車室内の暖房要求がない場合は、請求項6の発明の如く制御手段が、圧縮機から吐出された冷媒を室外熱交換器にて放熱させ、放熱した当該冷媒を圧縮機に戻す簡易ホットガス除霜モードを実行し、インジェクション回路は動作させず、又は、圧縮機から吐出された冷媒の一部を分流して放熱器を経ること無く室外熱交換器に流入させて放熱させ、放熱した当該冷媒を圧縮機に戻すホットガス除霜モードを実行し、インジェクション回路は動作させないようにすれば、室外熱交換器の除霜を迅速に実行して電力消費を最低限とすることができるようになり、電気自動車等において極めて有効なものとなる。
 また、外部電源から圧縮機、若しくは、当該圧縮機を駆動するために電力を供給するバッテリに給電する所謂プラグインが可能な電気自動車やハイブリッド自動車では、請求項7の発明の如く制御手段が、外部電源から給電されている場合、圧縮機から吐出された冷媒を放熱器と室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる除湿冷房型除霜モードを実行し、インジェクション回路を動作させ、又は、圧縮機から吐出された冷媒の一部を分流して放熱器を経ること無く室外熱交換器に流入させて放熱させ、放熱した当該冷媒を圧縮機に戻すホットガス除霜モードを実行し、インジェクション回路を動作させると共に、外部電源から給電されていない場合、圧縮機から吐出された冷媒を室外熱交換器にて放熱させ、放熱した当該冷媒を圧縮機に戻すホットガス除霜モードを実行し、インジェクション回路を動作させると共に、外部電源から給電されていない場合、圧縮機から吐出された冷媒を室外熱交換器にて放熱させ、放熱した当該冷媒を圧縮機に戻す簡易ホットガス除霜モードを実行し、インジェクション回路は動作させず、又は、ホットガス除霜モードを実行し、インジェクション回路は動作させないようにすれば、プラグイン中は除湿冷房型除霜モード又はホットガス除霜モードで請求項2や請求項3の発明の如く室外熱交換器の除霜を行いながら車室内の暖房を維持し、プラグインされていないときは、簡易ホットガス除霜モード又はホットガス除霜モードでインジェクション回路を動作させずに室外熱交換器に全ての冷媒を流して迅速に除霜し、電力消費の削減を図ることができるようになる。
 この場合、請求項8の発明の如く制御手段が、外部電源から給電されていない場合であって、バッテリの残量が少ない場合に、簡易ホットガス除霜モードを実行し、インジェクション回路は動作させず、又は、ホットガス除霜モードを実行し、インジェクション回路は動作させないようにすることで、プラグインされておらず、且つ、バッテリ残量が少ない場合に、インジェクション回路を動作させない簡易ホットガス除霜モード又はホットガス除霜モードを実行することになり、プラグインされているか否かに加えてバッテリ残量も加味した的確な除霜制御が可能となる。
 また、請求項9の発明の如く制御手段が、車室内温度が所定値より低くなるまでは圧縮機から吐出された冷媒を室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる逆サイクル除霜モードを実行し、インジェクション回路は動作させず、車室内温度が所定値より低くなった場合は除湿冷房型除霜モードを実行し、インジェクション回路も動作させて放熱器でも冷媒を放熱させるようにすれば、室外熱交換器の除霜の迅速化と車室内の暖房維持の双方を満足する制御を実現することが可能となる。
 また、請求項10の発明の如く制御手段が、室外熱交換器を除霜する際、車室内温度が所定値より低い場合又は車室内を暖房する必要がある場合、空気流通路への外気の導入を停止することにより、車室内温度が低い状況下で温度の低い外気導入を停止し、暖房能力の維持を図ることができるようになる。
 また、請求項11の発明の如く除湿冷房型除霜モード又はホットガス除霜モードを実行する際にも、空気流通路への外気の導入を停止するようにすれば、同様に暖房能力の維持を図ることが可能となる。
 更に、請求項12の発明の如く制御手段が、車速が所定値以下の場合に室外熱交換器を除霜することにより、室外熱交換器への外気の流通が少ない状況で除霜を行い、除霜効果を向上させることが可能となる。
本発明を適用した一実施形態の車両用空気調和装置の構成図である。 図1の車両用空気調和装置のコントローラの電気回路のブロック図である。 図1の車両用空気調和装置の逆サイクル除霜モードにおけるP-h線図である。 図1の車両用空気調和装置の第1除湿冷房型除霜モードにおけるP-h線図である。 図2のコントローラによる逆サイクル除霜モード及び第1除湿冷房型除霜モードでの圧縮機制御に関する制御ブロック図である。 図2のコントローラによる逆サイクル除霜モード及び第1除湿冷房型除霜モードでの室外膨張弁制御に関する制御ブロック図である。 図2のコントローラによる逆サイクル除霜モード、第1除湿冷房型除霜モード及びホットガス除霜モードでのインジェクション膨張弁制御に関する制御ブロック図である。 図2のコントローラによる逆サイクル除霜モード、第1除湿冷房型除霜モード及びホットガス除霜モードでのインジェクション膨張弁制御に関するもう一つの制御ブロック図である。 図2のコントローラによる目標吹出温度の決定を説明する図である。 図2のコントローラの除霜制御に関する動作を説明するフローチャートである。 図2のコントローラによる室外熱交換器の着霜検知の一例を説明する図である。 本発明の他の実施例で実行する図1の車両用空気調和装置の簡易ホットガス除霜モードにおけるP-h線図である。 図2のコントローラによる簡易ホットガス除霜モード及びホットガス除霜モードでの圧縮機制御に関する制御ブロック図である。 図2のコントローラの除霜制御に関する他の実施例の動作を説明するフローチャートである。 本発明を適用した他の実施例の車両用空気調和装置の構成図である。 ホットガス除霜モードにおける図15の構成のP-h線図である。 図15の構成の場合のコントローラの除霜制御に関する動作を説明するフローチャートである。 図2のコントローラによる簡易ホットガス除霜モード及びホットガス除霜モードでの圧縮機制御に関する他の実施例の制御ブロック図である。
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。
 図1は本発明の一実施例の車両用空気調和装置1の構成図を示している。この場合、本発明を適用する実施例の車両は、エンジン(内燃機関)を有さない電気自動車(EV)であって、バッテリに充電された電力で走行用の電動モータを駆動して走行するものであり(何れも図示せず)、本発明の車両用空気調和装置1も、バッテリの電力で駆動されるものとする。即ち、実施例の車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路を用いたヒートポンプ運転により暖房、除湿暖房、除湿冷房、冷房等の各運転モードを選択的に実行するものである。
 尚、車両として電気自動車に限らず、エンジンと走行用の電動モータを供用する所謂ハイブリッド自動車にも本発明は有効であり、更には、エンジンで走行する通常の自動車にも適用可能であることは云うまでもない。
 実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機(電動コンプレッサ)2と、車室内空気が通気循環されるHVACユニット10の空気流通路3内に設けられて圧縮機2から吐出された高温高圧の冷媒を車室内に放熱させる放熱器4と、暖房時に冷媒を減圧膨張させる電動弁から成る室外膨張弁6と、冷房時には放熱器(冷媒を放熱)として機能し、暖房時には蒸発器(冷媒を吸熱)として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる電動弁から成る室内膨張弁8と、空気流通路3内に設けられて冷房時及び除湿時に車室内外から冷媒に吸熱させる吸熱器9と、吸熱器9における蒸発能力を調整する蒸発能力制御弁11と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。尚、室外熱交換器7には、外気と冷媒とを熱交換させるための室外送風機15が設けられている。
 また、室外熱交換器7は冷媒下流側にレシーバドライヤ部14と過冷却部16を順次有し、室外熱交換器7から出た冷媒配管13Aは冷房時に開放される電磁弁(開閉弁)17を介してレシーバドライヤ部14に接続され、過冷却部16の出口が逆止弁18を介して室内膨張弁8に接続されている。尚、レシーバドライヤ部14及び過冷却部16は構造的に室外熱交換器7の一部を構成しており、逆止弁18は室内膨張弁8側が順方向とされている。
 また、逆止弁18と室内膨張弁8間の冷媒配管13Bは、吸熱器9の出口側に位置する蒸発能力制御弁11を出た冷媒配管13Cと熱交換関係に設けられ、両者で内部熱交換器19を構成している。これにより、冷媒配管13Bを経て室内膨張弁8に流入する冷媒は、吸熱器9を出て蒸発能力制御弁11を経た低温の冷媒により冷却(過冷却)される構成とされている。
 また、室外熱交換器7から出た冷媒配管13Aは分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される電磁弁(開閉弁)21を介して内部熱交換器19の下流側における冷媒配管13Cに連通接続されている。更に、放熱器4の出口側の冷媒配管13Eは、室外膨張弁6が接続された冷媒配管13Iの手前で分岐しており、この分岐した冷媒配管13Fは除湿時に開放される電磁弁(開閉弁)22を介して逆止弁18の下流側の冷媒配管13Bに連通接続されている。
 また、冷媒配管13Eと室外熱交換器7の間に位置して室外膨張弁6が接続された冷媒配管13Iには、室外膨張弁6と並列となるかたちでバイパス配管13Jが接続されており、このバイパス配管13Jには、冷房モードにおいて開放され、室外膨張弁6をバイパスして冷媒を流すための電磁弁(開閉弁)20が介設されている。
 また、放熱器4を出た直後(冷媒配管13F、13Iに分岐する手前)の冷媒配管13Eは分岐しており、この分岐した冷媒配管13Kはインジェクション制御用の電動弁から成るインジェクション膨張弁30を介して圧縮機2の圧縮途中に連通接続されている。そして、このインジェクション膨張弁30の出口側と圧縮機2間の冷媒配管13Kは、圧縮機2の吐出側に位置する冷媒配管13Gと熱交換関係に設けられ、両者で吐出側熱交換器35を構成している。
 これら冷媒配管13K、インジェクション膨張弁30、及び、吐出側熱交換器35からインジェクション回路40が構成される。このインジェクション回路40は、放熱器4から出た冷媒の一部を分流して圧縮機2の圧縮途中に戻す(ガスインジェクション)ための回路であり、このインジェクション回路40が動作する場合、インジェクション膨張弁30が開き、放熱器4から出た冷媒の一部が冷媒配管13Kに分流される。
 このインジェクション膨張弁30は冷媒配管13Kに流入した冷媒を減圧した後、吐出側熱交換器35に流入させる。吐出側熱交換器35に流入した冷媒は、圧縮機2から冷媒配管13Gに吐出され、放熱器4に流入する前の冷媒と熱交換し、冷媒配管13Gを流れる冷媒から吸熱して蒸発する構成とされている。吐出側熱交換器35で冷媒配管13Kに分流された冷媒が蒸発することで、圧縮機2へのガスインジェクションが行われることになる。
 また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環モード)と、車室外の空気である外気(外気導入モード)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。
 また、放熱器4の空気上流側における空気流通路3内には、内気や外気の放熱器4への流通度合いを調整するエアミックスダンパ28が設けられている。更に、放熱器4の空気下流側における空気流通路3には、フット(乗員の足下に向けて吹き出す)、ベント(乗員の上半身に向けて吹き出す)、デフ(フロントガラスの内面に吹き出す)の各吹出口(図1では代表して吹出口29で示す)が形成されており、この吹出口29には上記各吹出口からの空気の吹き出しを切換制御する吹出口切換ダンパ31が設けられている。
 次に、図2において32はマイクロコンピュータから構成された制御手段としてのコントローラ(ECU)であり、このコントローラ32の入力には車両の外気温度を検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれる空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気(内気)の温度を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO2濃度センサ39と、吹出口29から車室内に吹き出される空気の温度を検出する吹出温度センサ41と、圧縮機2の吐出冷媒圧力を検出する吐出圧力センサ42と、圧縮機2の吐出冷媒温度を検出する吐出温度センサ43と、圧縮機2の吸込冷媒圧力を検出する吸込圧力センサ44と、放熱器4の温度(放熱器4から出た直後の冷媒の温度、又は、放熱器4自体の温度、又は、放熱器4にて加熱された直後の空気の温度)を検出する放熱器温度センサ46と、放熱器4の冷媒圧力(放熱器4内、又は、放熱器4を出た直後の冷媒の圧力)を検出する放熱器圧力センサ47と、吸熱器9の温度(吸熱器9から出た直後の冷媒の温度、又は、吸熱器9自体、又は、吸熱器9にて冷却された直後の空気の温度)を検出する吸熱器温度センサ48と、吸熱器9の冷媒圧力(吸熱器9内、又は、吸熱器9を出た直後の冷媒の圧力)を検出する吸熱器圧力センサ49と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52と、設定温度や運転モードの切り換えを設定するための空調(エアコン)操作部53と、室外熱交換器7の温度(室外熱交換器7から出た直後の冷媒の温度、又は、室外熱交換器7自体の温度)を検出する室外熱交換器温度センサ54と、室外熱交換器7の冷媒圧力(室外熱交換器7内、又は、室外熱交換器7から出た直後の冷媒の圧力)を検出する室外熱交換器圧力センサ56の各出力が接続されている。
 また、コントローラ32の入力には更に、インジェクション回路40の冷媒配管13Kに流入し、吐出側熱交換器35を経て圧縮機2の圧縮途中に戻るインジェクション冷媒の圧力を検出するインジェクション圧力センサ50と、該インジェクション冷媒の温度を検出するインジェクション温度センサ55の各出力も接続されている。更に、コンプレッサ32の入力には、車室内に乗員が乗車しているか否かを検出する乗員センサ57の出力も接続されている。
 一方、コントローラ32の出力には、前記圧縮機2と、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吸込口切換ダンパ31と、室外膨張弁6、室内膨張弁8と、各電磁弁22、17、21、20と、インジェクション膨張弁30と、蒸発能力制御弁11が接続されている。そして、コントローラ32は各センサの出力と空調操作部53にて入力された設定に基づいてこれらを制御する。
 以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。コントローラ32は実施例では大きく分けて暖房モードと、除湿暖房モードと、内部サイクルモードと、除湿冷房モードと、冷房モードの各空調運転モードと、除霜モードを切り換えて実行する。先ず、各空調運転モードについて説明する。
 (1)暖房モードの冷媒の流れ
 コントローラ32により(オート)、或いは、空調操作部53へのマニュアル操作により暖房モードが選択されると、コントローラ32は電磁弁21を開放し、電磁弁17、電磁弁22及び電磁弁20を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は吐出側熱交換器35を経た後、放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
 放熱器4内で液化した冷媒は放熱器4を出た後、一部はインジェクション回路40の冷媒配管13Kに分流され、主には冷媒配管13Eを経て室外膨張弁6に至る。尚、インジェクション回路40の機能作用については後述する。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる(ヒートポンプ)。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13D及び電磁弁21を経て冷媒配管13Cからアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4にて加熱された空気は吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。
 コントローラ32は、実施例では放熱器圧力センサ47(又は吐出圧力センサ42)が検出する放熱器4の冷媒圧力Pci(冷媒回路Rの高圧圧力)と目標放熱器圧力PCOに基づいて圧縮機2の回転数を制御すると共に、放熱器4の通過風量と後述する目標吹出温度に基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度を制御する。尚、室外膨張弁6の弁開度は、それらの代わりに或いはそれらに加えて放熱器4の温度や外気温度に基づいて制御してもよい。
 (2)除湿暖房モードの冷媒の流れ
 次に、除湿暖房モードでは、コントローラ32は上記暖房モードの状態において電磁弁22を開放する。これにより、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒の一部が分流され、電磁弁22を経て冷媒配管13F及び13Bより内部熱交換器19を経て室内膨張弁8に至るようになる。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cにて冷媒配管13Dからの冷媒と合流した後、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。
 コントローラ32は実施例では放熱器圧力センサ47が検出する放熱器圧力センサ47(又は吐出圧力センサ42)が検出する放熱器4の冷媒圧力Pci(冷媒回路Rの高圧圧力)と目標放熱器圧力PCOに基づいて圧縮機2の回転数を制御すると共に、吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)と吸熱器9の温度の目標値である目標吸熱器温度TEOに基づいて室外膨張弁6の弁開度を制御する。
 (3)内部サイクルモードの冷媒の流れ
 次に、内部サイクルモードでは、コントローラ32は上記除湿暖房モードの状態において室外膨張弁6を全閉とする(全閉位置)と共に、電磁弁21も閉じる。この室外膨張弁6と電磁弁21が閉じられることにより、室外熱交換器7への冷媒の流入、及び、室外熱交換器7からの冷媒の流出は阻止されることになるので、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒は電磁弁22を経て冷媒配管13Fに全て流れるようになる。そして、冷媒配管13Fを流れる冷媒は冷媒配管13Bより内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cを流れ、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになるが、この内部サイクルモードでは室内側の空気流通路3内にある放熱器4(放熱)と吸熱器9(吸熱)の間で冷媒が循環されることになるので、外気からの熱の汲み上げは行われず、圧縮機2の消費動力分の暖房能力が発揮される。除湿作用を発揮する吸熱器9には冷媒の全量が流れるので、上記除湿暖房モードに比較すると除湿能力は高いが、暖房能力は低くなる。
 コントローラ32は吸熱器9の温度、又は、前述した冷媒回路Rの高圧圧力に基づいて圧縮機2の回転数を制御する。このとき、コントローラ32は吸熱器9の温度によるか高圧圧力によるか、何れかの演算から得られる圧縮機目標回転数の低い方を選択して圧縮機2を制御する。尚、この内部サイクルモードでもインジェクション回路40によるガスインジェクションは行わないため、インジェクション膨張弁30は全閉とする(全閉位置)。
 (4)除湿冷房モードの冷媒の流れ
 次に、除湿冷房モードでは、コントローラ32は電磁弁17を開放し、電磁弁21、電磁弁22、及び、電磁弁20を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は吐出側熱交換器35を経て放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。
 放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至り、開き気味で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は逆止弁18を経て冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4を通過する過程で再加熱(暖房時よりも放熱能力は低い)されるので、これにより車室内の除湿冷房が行われることになる。
 コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度に基づいて圧縮機2の回転数を制御すると共に、前述した冷媒回路Rの高圧圧力に基づいて室外膨張弁6の弁開度を制御し、放熱器4の冷媒圧力(放熱器圧力Pci)を制御する。尚、この除湿冷房モードでもインジェクション回路40によるガスインジェクションは行わないため、インジェクション膨張弁30は全閉とする(全閉位置)。
 (5)冷房モードの冷媒の流れ
 次に、冷房モードでは、コントローラ32は上記除湿冷房モードの状態において電磁弁20を開き(この場合、室外膨張弁6は全開(弁開度を制御上限)を含む何れの弁開度でもよい)、エアミックスダンパ28は放熱器4に空気が通風されない状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は吐出側熱交換器35を経て放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されないので、ここは通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て電磁弁20及び室外膨張弁6に至る。
 このとき電磁弁20は開放されているので冷媒は室外膨張弁6を迂回してバイパス配管13Jを通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮液化する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は逆止弁18を経て冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却される。
 吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4を通過すること無く吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。この冷房モードにおいては、コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度に基づいて圧縮機2の回転数を制御する。尚、この冷房モードでもインジェクション回路40によるガスインジェクションは行わないため、インジェクション膨張弁30は全閉とする(全閉位置)。
 (6)空調運転モードの切換制御
 コントローラ32は起動時には外気温度センサ33が検出する外気温度Tamと目標吹出温度TAOとに基づいて運転モードを選択する。また、起動後は外気温度Tamや目標吹出温度TAO等の環境や設定条件の変化に応じて前記各運転モードを選択し、切り換えていく。この場合、コントローラ32は基本的には暖房モードから除湿暖房モードへ、或いは、除湿暖房モードから暖房モードへと移行し、除湿暖房モードから除湿冷房モードへ、或いは、除湿冷房モードから除湿暖房モードへと移行し、除湿冷房モードから冷房モードへ、或いは、冷房モードから除湿冷房モードへと移行するものであるが、除湿暖房モードから除湿冷房モードへ移行する際、及び、除湿冷房モードから除湿暖房モードへ移行する際には、前記内部サイクルモードを経由して移行する。また、冷房モードから内部サイクルモードへ、内部サイクルモードから冷房モードへ移行する場合もある。
 (7)インジェクション回路によるガスインジェクション
 次に、インジェクション回路40による圧縮機2へのガスインジェクションについて説明する。インジェクション膨張弁30が開いているとき、放熱器4を出て冷媒配管13Eに入り、その後、分流されてインジェクション回路40の冷媒配管13Kに流入した冷媒は、インジェクション膨張弁30で減圧された後、吐出側熱交換器35に入り、そこで圧縮機2の吐出冷媒(圧縮機2から吐出されて放熱器4に流入する前の冷媒)と熱交換し、吸熱して蒸発する。蒸発したガス冷媒は、その後、圧縮機2の圧縮途中に戻り、アキュムレータ12から吸い込まれて圧縮されている冷媒と共に更に圧縮された後、再度圧縮機2から冷媒配管13Gに吐出されることになる。
 インジェクション回路40から圧縮機2の圧縮途中に冷媒を戻すことにより、圧縮機2から吐出される冷媒量が増大するので、放熱器4における暖房能力は向上する。また、インジェクション回路40に分流される分、室外熱交換器7や吸熱器9の冷媒流量は減少することになるので、吸熱器9の温度低下は抑制されることになる。
 一方、圧縮機2に液冷媒が戻ると液圧縮を引き起こしてしまうので、インジェクション回路40から圧縮機2に戻す冷媒はガスでなければならない。そのためにコントローラ32は、インジェクション圧力センサ50及びインジェクション温度センサ55がそれぞれ検出する吐出側熱交換器35後の冷媒の圧力及び温度から圧縮機2の圧縮途中に向かう冷媒の過熱度を監視しており、吐出冷媒との熱交換で所定の過熱度が付くようにインジェクション膨張弁30の弁開度を制御するものであるが、実施例では吐出側熱交換器35において、圧縮機2から吐出されて放熱器4に流入する前の極めて高温の冷媒とインジェクション回路40を流れる冷媒とを熱交換させているので、大きな熱交換量が得られる。従って、インジェクション膨張弁30の弁開度を大きくしてインジェクション量を増やしても、冷媒は吐出側熱交換器35において十分に蒸発することができ、必要な過熱度が得られることになる。
 これにより、従来の如く放熱器後の冷媒とインジェクション冷媒とを熱交換させる場合に比して、圧縮機2へのガスインジェクション量を十分に確保し、圧縮機2の吐出冷媒量を増大させて暖房能力の向上を図ることができるようになる。
 (8)除霜モード(実施例1)
 次に、図3乃至図11を参照しながら実施例の車両用空気調和装置1の除霜モードについて説明する。上記暖房モードや除湿暖房モードでは室外熱交換器7で冷媒が蒸発するため、霜が成長する。室外熱交換器7に霜が成長すると外気との熱交換が阻害されるため、以下に説明する室外熱交換器7の除霜モードを実行する。この実施例の場合、コントローラ32は除霜モードとして、逆サイクル除霜モード、第1除湿冷房型除霜モード及び第2除湿冷房型除霜モードを有しており、状況に応じてそれらを切り換えて実行する。尚、第1除湿冷房型除霜モード及び第2除湿冷房型除霜モードは、何れも本発明における除湿冷房型除霜モードに含まれる(簡易ホットガス除霜モード及びホットガス除霜モードについては他の実施例で説明する)。
 (8-1)逆サイクル除霜モードの冷媒の流れ
 先ず、逆サイクル除霜モードの冷媒の流れについて説明する。この逆サイクル除霜モードにおける冷媒の流れ方は前述した冷房モードと同様である。即ち、逆サイクル除霜モードでは、コントローラ32は電磁弁20、及び、電磁弁17を開放し、電磁弁21、及び、電磁弁22を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は放熱器4に空気が通風されない状態(MC)とする。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は吐出側熱交換器35を経て放熱器4に流入するが、放熱器4には空気流通路3内の空気は通風されないので、ここは通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て電磁弁20及び室外膨張弁6に至る。このとき電磁弁20は開放されているので冷媒は室外膨張弁6を迂回してバイパス配管13Jを通過し、そのまま室外熱交換器7に流入して放熱し、凝縮液化する。このときの放熱で室外熱交換器7に付着した霜を融解する。
 室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次通過し、逆止弁18を経て冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発し、空気流通路3内を通過する空気から吸熱し、蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。
 尚、後述する実施例の逆サイクル除霜モードにおいてはインジェクション回路40を動作させない(図10のステップS15)。しかしながら、後述する第1除湿冷房型除霜モード(図10のステップS7、ステップS11、図14のステップS27、図17のステップS52)に代えて逆サイクル除霜モードを行い、その際にインジェクション回路40を動作させてもよい。図3はその場合の逆サイクル除霜モードにおけるP-h線図を示しており、左側はガスインジェクションを行わないとき(後述する実施例の逆サイクル除霜モード)、右側はガスインジェクションを行ったときをそれぞれ示している。図中の13Kで示す部分がガスインジェクションされる冷媒を示している。この図から明らかな如く、インジェクション回路40によりガスインジェクションを行った場合(右側)、行わない場合(左側)に比して室外熱交換器7の除霜能力が改善されることが期待できる(P-h線図の上辺)。一方、冷房作用(P-h線図の下辺)は余り変化が無い。
 (8-2)第1除湿冷房型除霜モードの冷媒の流れ
 次に、第1除湿冷房型除霜モードの冷媒の流れについて説明する。この第1除湿冷房型除霜モードにおける冷媒の流れ方は前述した除湿冷房モードと同様である。即ち、第1除湿冷房型除霜モードでは、コントローラ32は電磁弁17を開放し、電磁弁21、電磁弁22、及び、電磁弁20を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が全て放熱器4に通風される状態(MH)とする。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は吐出側熱交換器35を経て放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至り、開き気味で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで放熱し、凝縮液化する。このときの放熱で室外熱交換器7に付着した霜を融解する。
 室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流れ、逆止弁18を経て冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発し、空気流通路3内を通過する空気から吸熱し、蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。
 また、コントローラ32は後述する如く第1除湿冷房型除霜モードを実行する際、インジェクション回路40のインジェクション膨張弁30を開き、前述したように放熱器4を出た冷媒の一部を分流して圧縮機2の圧縮途中にガスインジェクションを行う。図4はこの第1除湿冷房型除霜モードでガスインジェクションを行った場合におけるP-h線図を示しており、左側はガスインジェクションを行わないとき(除湿冷房モード)、右側はガスインジェクションを行ったときをそれぞれ示している。図中の13Kで示す部分がガスインジェクションされる冷媒を示している。この図から明らかな如く、インジェクション回路40によりガスインジェクションを行った場合(右側)、行わない場合(左側)に比して放熱器4による暖房能力及び室外熱交換器7の除霜能力が改善される(P-h線図の上辺)。一方、冷房作用(P-h線図の下辺)は余り変化が無いことが分かる。
 (8-3)第2除湿冷房型除霜モードの冷媒の流れ
 尚、第2除湿冷房型除霜モードの冷媒の流れは前述した除湿冷房モードの場合と全く同様(但し、第2除湿冷房型除霜モードでは後述する如くガスインジェクション無し)となるので、説明を省略する。
 (8-4)逆サイクル除霜モード及び第1除湿冷房型除霜モードでの圧縮機の制御
 一方、図5は逆サイクル除霜モードと第1除湿冷房型除霜モード用の圧縮機2の目標回転数(圧縮機目標回転数)TGNCcを決定するコントローラ32の制御ブロック図である。コントローラ32のF/F(フィードフォワード)操作量演算部58は外気温度Tamと、ブロワ電圧BLVと、放熱器4の温度の目標値である目標放熱器温度TCOと、SW=(TAO-Te)/(TH-Te)で得られるエアミックスダンパ28のエアミックスダンパ開度SWと、吸熱器9の温度の目標値である目標吸熱器温度TEOに基づいて圧縮機目標回転数のF/F操作量TGNCcffを演算する。
 また、F/B(フィードバック)操作量演算部59は目標吸熱器温度TEOと吸熱器温度Teに基づいて圧縮機目標回転数のF/B操作量TGNCcfbを演算する。そして、F/F操作量演算部58が演算したF/F操作量TGNCcffとF/B操作量演算部59が演算したF/B操作量TGNCcfbは加算器61で加算され、圧縮機OFF制御部62(圧縮機2を運転可能な最低回転数を規定)を経てリミット設定部63で制御上限値と制御下限値のリミットが付けられた後、圧縮機目標回転数TGNCcとして決定される。逆サイクル除霜モードと第1除湿冷房型除霜モードにおいては、コントローラ32はこの圧縮機目標回転数TGNCcに基づいて圧縮機2の回転数を制御する。
 (8-5)逆サイクル除霜モード及び第1除湿冷房型除霜モードでの室外膨張弁の制御
 次に、図6は逆サイクル除霜モード及び第1除湿冷房型除霜モードにおける室外膨張弁6の目標開度(室外膨張弁目標開度)TGECCVpcを決定するコントローラ32の制御ブロック図である。コントローラ32のF/F操作量演算部64は目標放熱器温度TCOと、ブロワ電圧BLVと、外気温度Tamと、エアミックスダンパ開度SWと、目標吸熱器温度TEOと、目標放熱器圧力PCOに基づいて室外膨張弁目標開度のF/F操作量TGECCVpcffを演算する。
 また、F/B操作量演算部66は目標放熱器圧力PCOと放熱器圧力PCIに基づいて室外膨張弁目標開度のF/B操作量TGECCVpcfbを演算する。そして、F/F操作量演算部64が演算したF/F操作量TGECCVpcffとF/B操作量演算部66が演算したF/B操作量TGECCVpcfbは加算器67で加算され、リミット設定部68で制御上限値と制御下限値のリミットが付けられた後、室外膨張弁目標開度TGECCVpcとして決定される。逆サイクル除霜モード及び第1除湿冷房型除霜モードにおいては、コントローラ32はこの室外膨張弁目標開度TGECCVpcに基づいて室外膨張弁6の弁開度を制御する。
 (8-6)インジェクション膨張弁の制御1
 次に、図7は圧縮機2の回転数NCが所定値N1より低い場合(低回転数の場合)におけるインジェクション回路40のインジェクション膨張弁30の目標開度(インジェクション膨張弁目標開度)TGECCVshを決定するコントローラ32の制御ブロック図である。尚、実施例では後述する如くガスインジェクションは、第1除湿冷房型除霜モード(前述した逆サイクル除霜モードでガスインジェクションする場合を含む)と、ホットガス除霜モードで実行される。コントローラ32のインジェクション冷媒過熱度演算部69は、インジェクション温度センサ55が検出するインジェクション冷媒の温度(インジェクション冷媒温度Tinj)と、飽和温度Tsatuinjの差に基づき、インジェクション回路40から圧縮機2の圧縮途中に戻されるインジェクション冷媒の過熱度(インジェクション冷媒過熱度)SHinjを算出する。
 次に、F/B操作量演算部71はインジェクション冷媒過熱度演算部69が算出したインジェクション冷媒過熱度SHinjと、インジェクション回路40から圧縮機2の圧縮途中に戻されるインジェクション冷媒の過熱度の目標値(目標インジェクション冷媒過熱度TGSHinj)に基づいてインジェクション膨張弁目標開度のF/B操作量TGECCVshfbを演算する。また、F/B操作量演算部71は、所定のインジェクション要求フラグfINJONreqが「1」(セット)されているときに動作し、「0」(リセット)されているときには演算を停止する。
 そして、F/B操作量演算部71が演算したF/B操作量TGECCVshfbと、予め決定されているインジェクション膨張弁30のF/F操作量TGECCVshffが加算器72で加算され、リミット設定部73で制御上限値と制御下限値のリミットが付けられた後、インジェクション可否切換部74に入力される。このインジェクション可否切換部74には、更に「0」(インジェクション膨張弁30は全閉)が入力され、インジェクション要求フラグfINJONreqが「1」(セット)のときは、リミット設定部73を経た値がインジェクション膨張弁目標開度TGECCVshとして決定され、出力される。
 尚、インジェクション可否切換部74は、インジェクション要求フラグfINJONreqが「0」(リセット)のときは、「0」をインジェクション膨張弁目標開度TGECCVshとして出力する。即ち、圧縮機2の回転数NCが所定値N1より低い低回転数である場合、インジェクション要求フラグfINJONreqがセット「1」されているときには、コントローラ32はインジェクション冷媒の過熱度SHinjと目標インジェクション冷媒過熱度TGSHinjとに基づいてインジェクション膨張弁30のインジェクション膨張弁目標開度TGECCVshを決定し、その弁開度を制御すると共に、インジェクション要求フラグfINJONreqがリセット「0」されているときは、インジェクション膨張弁30を閉じ(弁開度「0」の全閉)、インジェクション回路40によるガスインジェクションを停止する。
 (8-7)インジェクション膨張弁の制御2
 次に、図8は圧縮機2の回転数NCが所定値N1以上の場合(高回転数の場合)におけるインジェクション回路40のインジェクション膨張弁30の目標開度(インジェクション膨張弁目標開度)TGECCVpcを決定するコントローラ32の制御ブロック図である。尚、この場合のガスインジェクションも、第1除湿冷房型除霜モード(前述した逆サイクル除霜モードでガスインジェクションする場合を含む)と、ホットガス除霜モードで実行される。
 この場合のF/B操作量演算部76は目標放熱器圧力PCOと放熱器圧力PCIに基づいてインジェクション膨張弁目標開度のF/B操作量TGECCVpcfbを演算する。また、F/B操作量演算部76は、インジェクション要求フラグfINJONreqが「1」(セット)されているときに動作し、「0」(リセット)されているときには演算を停止する。そして、F/B操作量演算部76が演算したF/B操作量TGECCVpcfbと、予め決定されているインジェクション膨張弁30のこの場合のF/F操作量TGECCVpcffが加算器77で加算され、リミット設定部78で制御上限値と制御下限値のリミットが付けられた後、インジェクション可否切換部79に入力される。このインジェクション可否切換部79には、更に「0」(インジェクション膨張弁30は全閉)が入力され、インジェクション要求フラグfINJONreqが「1」(セット)のときは、リミット設定部78を経た値がこの場合のインジェクション膨張弁目標開度TGECCVpcとして決定され、出力される。
 尚、インジェクション可否切換部79は、インジェクション要求フラグfINJONreqが「0」(リセット)のときは、「0」をインジェクション膨張弁目標開度TGECCVpcとして出力する。即ち、圧縮機2の回転数NCが所定値N1以上の高回転数である場合、インジェクション要求フラグfINJONreqがセット「1」されているときには、コントローラ32は目標放熱器圧力PCOと放熱器圧力PCIとに基づいてインジェクション膨張弁30のインジェクション膨張弁目標開度TGECCVpcを決定し、その弁開度を制御すると共に、インジェクション要求フラグfINJONreqがリセット「0」されているときは、インジェクション膨張弁30を閉じ(弁開度「0」の全閉)、インジェクション回路40によるガスインジェクションを停止する。
 また、前記目標吹出温度TAOは、吹出口29から車室内に吹き出される空気温度の目標値であり、下記式(I)からコントローラ32が算出する。
 TAO=(Tset-Tin)×K+Tbal(f(Tset、SUN、Tam))・・(I)
 ここで、Tsetは空調操作部53で設定された車室内の設定温度、Tinは内気温度センサ37が検出する車室内空気の温度、Kは係数、Tbalは設定温度Tsetや、日射センサ51が検出する日射量SUN、外気温度センサ33が検出する外気温度Tamから算出されるバランス値である。そして、一般的に、この目標吹出温度TAOは図9に示すように外気温度Tamが低い程高く、外気温度Tamが上昇するに伴って低下する。また、コントローラ32は、この目標吹出温度TAOから前記目標放熱器温度TCOを算出する。
 (8-8)除霜モードの制御(実施例1)
 次に、図10のフローチャートを参照しながら暖房モードにおけるコントローラ32による具体的な除霜モードの制御について説明する。コントローラ32は図10のステップS1で各センサからデータを読み込み、ステップS2で室外熱交換器7の除霜要求があるか否か判断する。
 ここで、室外熱交換器7の着霜状態の検知例について説明する。実施例の場合、コントローラ32は室外熱交換器温度センサ54から得られる室外熱交換器7の室外熱交換器温度(例えば、室外熱交換器7の出口の冷媒蒸発温度)TXOと、外気が低湿環境で室外熱交換器7に着霜していない無着霜時における当該室外熱交換器7の室外熱交換器温度(同じく室外熱交換器7の出口の冷媒蒸発温度)TXObaseとに基づき、室外熱交換器7の着霜状態を検知する。この場合のコントローラ32は、無着霜時における室外熱交換器温度TXObaseを、次式(II)を用いて決定する。
 TXObase=f(Tam、NC、BLV、VSP)
      =k1×Tam+k2×NC+k3×BLV+k4×VSP・・(II)
 ここで、式(II)のパラメータであるTamは外気温度センサ33から得られる外気温度、NCは圧縮機2の回転数、BLVは室内送風機27のブロワ電圧、VSPは車速センサ52から得られる車速であり、k1~k4は係数で、予め実験により求めておく。
 上記外気温度Tamは室外熱交換器7の吸込空気温度を示す指標であり、外気温度Tam(室外熱交換器7の吸込空気温度)が低くなる程、TXObaseは低くなる傾向となる。従って、係数k1は正の値となる。尚、室外熱交換器7の吸込空気温度を示す指標としては外気温度Tamに限られない。
 また、上記圧縮機2の回転数NCは冷媒回路R内の冷媒流量を示す指標であり、回転数NCが高い程(冷媒流量が多い程)、TXObaseは低くなる傾向となる。従って、係数k2は負の値となる。
 また、上記ブロワ電圧BLVは放熱器4の通過風量を示す指標であり、ブロワ電圧BLVが高い程(放熱器4の通過風量が大きい程)、TXObaseは低くなる傾向となる。従って、係数k3は負の値となる。尚、放熱器4の通過風量を示す指標としてはこれに限らず、室内送風機27のブロワ風量やエアミックスダンパ28開度SWでもよい。
 また、上記車速VSPは室外熱交換器7の通過風速を示す指標であり、車速VSPが低い程(室外熱交換器7の通過風速が低い程)、TXObaseは低くなる傾向となる。従って、係数k4は正の値となる。尚、室外熱交換器7の通過風速を示す指標としてはこれに限らず、室外送風機15の電圧でもよい。
 尚、実施例では式(II)のパラメータとして外気温度Tam、圧縮機2の回転数NC、室内送風機27のブロワ電圧BLV、及び、車速VSPを用いているが、これらに車両用室外熱交換器1の負荷をパラメータとして加えてもよい。この負荷を示す指標としては、目標吹出温度TAO、圧縮機2の回転数NC、室内送風機27のブロワ風量、放熱器4の入口空気温度、放熱器4の放熱器温度Tciが考えられ、負荷が大きい程、TXObaseは低くなる傾向となる。更に、車両の経年劣化(運転年数や運転回数)をパラメータに加えてもよい。また、式(II)のパラメータとしては、上記全てに限らず、それらのうちの何れか一つ、若しくは、それらの組み合わせでもよい。
 次にコントローラ32は、式(II)に現在の各パラメータの値を代入することで得られる無着霜時における室外熱交換器温度TXObaseと現在の室外熱交換器温度TXOとの差ΔTXO(ΔTXO=TXObase-TXO)を算出し、室外熱交換器温度TXOが無着霜時における室外熱交換器温度TXObaseより低下して、その差ΔTXOが所定の着霜検知閾値以上となった状態が所定時間以上継続した場合、室外熱交換器7に着霜が生じているものと判定する。
 図11の実線は室外熱交換器温度TXOの変化を示し、破線は無着霜時における室外熱交換器温度TXObaseの変化を示している。運転開始当初は室外熱交換器温度TXOは高く、無着霜時における室外熱交換器温度TXObaseを上回っている。暖房モードの進行に伴って車室内の温度は暖められ、車両用空気調和装置1の負荷は低下してくるので、前述した冷媒流量や放熱器4の通過風量も低下し、式(II)で算出されるTXObase(図11の破線)は上昇してくる。一方、室外熱交換器7に着霜が生じると外気との熱交換性能が悪化してくるので、室外熱交換器温度TXO(実線)は低下していき、やがてTXObaseを下回る。そして室外熱交換器温度TXOの低下が更に進行して、その差ΔTXO(TXObase-TXO)が着霜検知閾値以上となり、その状態が所定時間以上継続した場合、コントローラ32は室外熱交換器7に霜が発生し、除霜が必要であると判定して除霜要求を出す。
 尚、実施例では室外熱交換器温度TXOを採り上げて着霜状態の検知を行ったが、それに限らず、室外熱交換器圧力センサ56から得られる室外熱交換器7の現在の冷媒蒸発圧力(室外熱交換器圧力)PXOと、外気が低湿環境で室外熱交換器7に着霜していない無着霜時における当該室外熱交換器圧力PXObaseとに基づき、室外熱交換器7の着霜状態を検知するようにしてもよい。
 また、室外熱交換器7の着霜状態を検知する手段としては上記に限らず、外気温度センサ33と外気湿度センサ34が検出する露点温度と室外熱交換器7の冷媒蒸発温度(室外熱交換器温度)に基づいてコントローラ32が室外熱交換器7の着霜状態を検知(推定)するようにしてもよい。
 コントローラ32はステップS2で除霜要求ありとした場合、ステップS2からステップS3に進み、外気温度センサ34が検出する現在の外気温度Tamが所定値T2より低いか否か判断する。この所定値T2は外気温度Tamが低い環境か高い環境かを判断できる所定の温度値とする。そして、ステップS3で外気温度TamがT2より低い環境である場合、コントローラ32はステップS4に進み、乗員センサ57の出力に基づいて現在車室内に乗員が乗車しているか否か判断する。
 ステップS4で乗員乗車中である場合、コントローラ32はステップS5に進んで暖房要求があるか否か判断する。現在の空調運転モードが暖房モード(又は、除湿暖房モード)であり、車室内の暖房する必要がある状況である場合、コントローラ32は暖房要求有りと判断してステップS6に進み、目標放熱器圧力(目標高圧)PCOを所定値P1(高圧力)とする。
 次にステップS7に進み、前述した第1除湿冷房型除霜モードを実行する。即ち、放熱器4及び室外熱交換器7で冷媒を放熱させ、吸熱器9で吸熱させる。これにより、室外熱交換器7を除霜する。また、室外膨張弁6は前述した図6の制御ブロックの如く目標放熱器圧力PCOに基づいてF/B制御し、エアミックスダンパ28は前記MHとする。また、室内送風機(ブロワ)27を吹出温度に協調して制御し、乗員の不快感を回避すると共に、吸込切換ダンパ26を内気循環モードとする。
 また、ステップS8でコントローラ32は前述した図5の制御ブロックの如く目標吸熱器温度TEOに基づいて圧縮機2をF/B制御する(冷房、除湿冷房モードと同じ)。また、インジェクション回路40を動作させ、圧縮機2の圧縮途中にガスインジェクションを行う。その場合、コントローラ32は図7及び図8の制御ブロックの如く圧縮機2の回転数NCが所定値N1以下の低回転数のときは図7の如くインジェクション過熱度SHinjに基づいてインジェクション膨張弁30の弁開度をF/B制御し、ガスインジェクション量を制御する。また、圧縮機2の回転数NCが所定値N1より高い高回転数のときは図8の如く目標放熱器圧力PCOに基づいてインジェクション膨張弁30の弁開度をF/B制御し、ガスインジェクション量を制御する。但し、インジェクション過熱度SHinjは10degより高くして圧縮機2への液バックを防止する。
 次に、コントローラ32はステップS9に進み、室外熱交換器温度TXOが所定値TX1(例えば+25℃)以上のときは室外送風機15を運転(ON)し、室外熱交換器7に外気を強制通風する。一方、室外熱交換器温度TXOが所定値TX2(TX1に対して所定のヒステリシスを有する例えば+20℃)より低いときは室外送風機15を停止(OFF)する。
 一方、ステップS5で暖房要求が無い場合、コントローラ32はステップS10に進み、目標放熱器圧力PCOを所定値P2(中圧力。P1≧P2)とし、次にステップS11に進んで前述した第1除湿冷房型除霜モードを実行する。但し、この場合はステップS7とは異なり、室内送風機27は所定電圧V1で回転させるものとする。以後はステップS8、ステップS9を順次実行する。
 また、ステップS4で乗員が乗車していない場合(プラグイン等のために停車中)、コントローラ32はステップS4からステップS12に進み、目標放熱器圧力PCOをP2(中圧力)とし、次にステップS13に進んで車室内温度が所定値T1(例えば+5℃)より低いか否か判断する。乗員が降りた直後で車室内温度が比較的高く、所定値T1以上である場合、コントローラ32はステップS13からステップS14に進み、前述した逆サイクル除霜モードを実行する。
 即ち、室外熱交換器7のみで冷媒を放熱させ、吸熱器9で吸熱させる。これにより、室外熱交換器7を強力に除霜する。また、室外膨張弁6は全開とし、エアミックスダンパ28は前記MCとする。また、室内送風機(ブロワ)27は所定電圧V2(V2<V1)で運転される。また、ステップS15に進んでコントローラ32は前述した図5の制御ブロックの如く目標吸熱器温度TEOに基づいて圧縮機2をF/B制御する(冷房、除湿冷房モードと同じ)。但し、インジェクション回路40は動作させず(OFF)、圧縮機2へのガスインジェクションは行わない。
 これにより、室外熱交換器7の除霜に高温冷媒を集中させる。このとき吸熱器9では吸熱が行われるが、車室内に乗員は乗車していないので、車室内温度が低下しても特に支障はない。但し、車室内温度が所定値T1より低くなった場合、コントローラ32はステップS13からステップS11、ステップS8、ステップS9と進み、上述した第1除湿冷房型除霜モードに切り換え(エアミックスダンパ28は前記MH)、室外熱交換器7の温度が所定値(+25℃~+30℃)程度となるように圧縮機2及びインジェクション膨張弁30等を制御し、室外熱交換器7の除霜を行いながらガスインジェクションで放熱器4の放熱による暖房を再開して車室内温度を上昇させる。
 また、ステップS3で外気温度Tamが所定値T2以上の高い環境である場合、コントローラ32はステップS3からステップS16に進み、目標放熱器圧力PCOを所定値P3(低圧力。P1≧P2≧P3)とし、ステップS17に進んで前述した第2除湿冷房型除霜モードを実行する。即ち、放熱器4及び室外熱交換器7で冷媒を放熱させ、吸熱器9で吸熱させる。これにより、室外熱交換器7を除霜する。また、室外膨張弁6は前述した図6の制御ブロックの如く目標放熱器圧力PCOに基づいてF/B制御し、エアミックスダンパ28は前記MHとする。また、室内送風機(ブロワ)27は所定電圧V3(V1<V3)で運転され、吸込切換ダンパ26は内気循環モードとされる。
 そして、ステップS15に進んでコントローラ32は前述した図5の制御ブロックの如く目標吸熱器温度TEOに基づいて圧縮機2をF/B制御する(冷房、除湿冷房モードと同じ)。また、インジェクション回路40は動作させず(OFF)、圧縮機2へのガスインジェクションは行わない。これによって、室外熱交換器7に高温冷媒がより多く流れるようにする。このときインジェクション回路40は動作しないが、外気温度Tamは高い環境であるので、車室内温度には支障は生じない。
 以上のように、コントローラ32は室外熱交換器7に高温冷媒を流して除霜する際、インジェクション回路40を動作させて圧縮機2の圧縮途中に冷媒を戻すと共に、車室内の暖房要求がある場合、ステップS7で圧縮機2から吐出された冷媒を放熱器4と室外熱交換器7にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器9にて吸熱させる第1除湿冷房型除霜モードを実行し、ステップS8でインジェクション回路40を動作させるので、インジェクション回路40により放熱器4を出た冷媒の一部を圧縮機2の圧縮途中に戻し、放熱器4による暖房能力を向上させ、車室内温度の維持を図ることができるようになる。
 また、室外熱交換器7の除霜も支障無く実行することができるので、除霜の長期化に伴う電力消費の増大を回避し、特に電気自動車やハイブリッド自動車において有効なものとなる。
 この場合、コントローラ32はステップS9で室外熱交換器7を除霜する際、当該室外熱交換器7の室外熱交換器温度TXOが所定値TX1以上で、室外熱交換器7に外気を通風する室外送風機15を運転し、所定値TX2より低い場合には停止するので、除霜により生じた水蒸気が室外熱交換器7に再付着する不都合を防止若しくは抑制することができる。
 また、コントローラ32は外気温度Tamが所定値T2以上である場合、ステップS17で第2除湿冷房型除霜モードを実行するので、外気温度Tamが高く、車室内の暖房能力を維持し易い環境下では、インジェクション回路40を動作させずに室外熱交換器7に冷媒をより多く供給し、除霜を促進させることができるようになる。
 また、コントローラ32は、車室内温度が所定値T1より低くなるまではステップS14で前述した逆サイクル除霜モードを実行すると共に、車室内温度が所定値T1より低くなった場合はステップS11で前述した第1除湿冷房型除霜モードを実行して放熱器4でも冷媒を放熱させるので、室外熱交換器7の除霜の迅速化と車室内の暖房維持の双方を満足する制御を実現することが可能となる。
 また、コントローラ32は、室外熱交換器7を除霜する際、車室内温度が所定値T1より低い場合や車室内を暖房する必要がある場合、ステップS11やステップS7の第1除湿冷房型除霜モードで吸込切換ダンパ26を内気循環モードとし、空気流通路3への外気の導入を停止するので、車室内温度が低い状況下で温度の低い外気導入を停止し、暖房能力の維持を図ることができるようになる。また、ステップS17の第2除湿冷房型除霜モードを実行する際にも吸込切換ダンパ26を内気循環モードとして空気流通路3への外気の導入を停止するので、同様に暖房能力の維持を図ることが可能となる。
 (9)除霜モード(実施例2)
 次に、図12~図14を参照しながら、本発明の車両用空気調和装置1の他の実施例を説明する。この実施例の場合、コントローラ32は除霜モードとして、前述した第1除湿冷房型除霜モード、第2除湿冷房型除霜モードの他に、簡易ホットガス除霜モードを有しており、状況に応じてそれらを切り換えて実行する。
 (9-1)簡易ホットガス除霜モードの冷媒の流れ
 先ず、この場合の簡易ホットガス除霜モードの冷媒の流れについて説明する。この簡易ホットガス除霜モードでは、コントローラ32は電磁弁21を開放し、電磁弁17、電磁弁20、及び、電磁弁22を閉じる。また、室外膨張弁6は全開とする。そして、圧縮機2、及び、室外送風機15を運転し、室内送風機27は停止し、エアミックスダンパ28は放熱器4に空気が通風されない状態(MC)とする。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は吐出側熱交換器35を経て放熱器4に流入するが、放熱器4には空気流通路3内の空気は通風されないので、ここは通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至る。このとき室外膨張弁6は全開されているので、冷媒は室外膨張弁6、冷媒配管13Iを通過し、そのまま室外熱交換器7に流入して放熱し、凝縮液化する。このときの放熱で室外熱交換器7に付着した霜を融解する。
 室外熱交換器7を出た冷媒は冷媒配管13Aから冷媒配管13Dに入り、電磁弁21を経て内部熱交換器19の下流側の冷媒配管13Cに流入する。そして、アキュムレータ12を経て圧縮機2に吸い込まれる。即ち、この簡易ホットガス除霜モードでは吸熱器9には冷媒は流れない。尚、後述する如くこの簡易ホットガス除霜モードを実行する際には、コントローラ32はインジェクション回路40は動作させず、放熱器4から出た冷媒を全て室外熱交換器7の除霜に用いるようにする。図12はこの簡易ホットガス除霜モードにおけるP-h線図を示しており、この場合は同図に示すような三角形のかたちとなる。
 (9-2)簡易ホットガス除霜モード(ホットガス除霜モードを含む)での圧縮機の制御
 次に、図13は上記簡易ホットガス除霜モード(後述するホットガス除霜モードを含む)用の圧縮機2の目標回転数(圧縮機目標回転数)TGNChを決定するコントローラ32の制御ブロック図である。コントローラ32のF/F操作量演算部82は外気温度センサ33から得られる外気温度Tamと、室内送風機27のブロワ電圧BLVと、前述したエアミックスダンパ28のエアミックスダンパ開度SWと、目標放熱器温度TCOと、目標放熱器圧力PCOに基づいて圧縮機目標回転数のF/F操作量TGNChffを演算する。
 前記目標放熱器圧力PCOは上記放熱器温度TCOに基づいて目標値演算部82が演算する。更に、F/B操作量演算部83はこの目標放熱器圧力PCOと放熱器圧力PCIに基づいて圧縮機目標回転数のF/B操作量TGNChfbを演算する。そして、F/F操作量演算部82が演算したF/F操作量TGNCnffとF/B操作量演算部83が演算したTGNChfbは加算器84で加算され、リミット設定部86で制御上限値と制御下限値のリミットが付けられた後、圧縮機目標回転数TGNChとして決定される。前記簡易ホットガス除霜モードと後述するホットガス除霜モードにおいては、コントローラ32はこの圧縮機目標回転数TGNChに基づいて圧縮機2の回転数を制御する。
 (9-3)除霜モードの制御(実施例2)
 次に、図14のフローチャートを参照しながら暖房モードにおけるコントローラ32によるこの場合の具体的な除霜モードの制御について説明する。コントローラ32は図14のステップS20で各センサからデータを読み込み、ステップS21で室外熱交換器7の除霜要求があるか否か判断する。尚、この場合の室外熱交換器7の着霜状態の検知は前述した図10のステップS2の場合と同様であるので説明を省略する。
 コントローラ32はステップS21で除霜要求ありとした場合、ステップS21からステップS22に進み、現在自動車がプラグイン中であるか否か判断する。電気自動車やプラグイン機能を有するハイブリッド自動車では、停車中に外部電源からバッテリに充電が可能であり、この実施例の場合もコントローラ32は圧縮機2を運転(バッテリからの給電、若しくは、外部電源からの直接の給電で圧縮機2は動作)する機能を備えているものとする。そして、プラグイン中であるときはステップS22からステップS23に進む。
 尚、プラグイン中では無いときはステップS31に進み、バッテリの残量が所定値より低くなっているか否か判断する。この所定値は、バッテリの放電で除霜と暖房を十分実現可能なしきい値とする。そして、バッテリ残量が所定値以上残っている場合もステップS23に進む。
 コントローラ32はステップS23で、外気温度センサ34が検出する現在の外気温度Tamが前述した所定値T2より低いか否か判断する。そして、ステップS23で外気温度TamがT2より低い環境である場合、コントローラ32はステップS24に進み、乗員センサ57の出力に基づいて現在車室内に乗員が乗車しているか否か判断する。
 ステップS24で乗員乗車中である場合、コントローラ32はステップS25に進んで暖房要求があるか否か判断する。前述のように暖房要求有りと判断した場合、コントローラ32はステップS26に進み、目標放熱器圧力(目標高圧)PCOを前述した所定値P1(高圧力)とする。
 次にステップS27に進み、前述した第1除湿冷房型除霜モードを実行する。即ち、放熱器4及び室外熱交換器7で冷媒を放熱させ、吸熱器9で吸熱させる。これにより、室外熱交換器7を除霜する。また、室外膨張弁6は前述した図6の制御ブロックの如く目標放熱器圧力PCOに基づいてF/B制御し、エアミックスダンパ28は前記MHとする。また、室内送風機(ブロワ)27は吹出温度に協調して制御され、吸込切換ダンパ26は内気循環モードとされる。
 また、ステップS28でコントローラ32は前述した図5の制御ブロックの如く目標吸熱器温度TEOに基づいて圧縮機2をF/B制御する(冷房、除湿冷房モードと同じ)。また、インジェクション回路40を動作させ、圧縮機2の圧縮途中にガスインジェクションを行う。その場合、コントローラ32は図7及び図8の制御ブロックの如く圧縮機2の回転数NCが所定値N1以下の低回転数のときは図7の如くインジェクション過熱度SHinjに基づいてインジェクション膨張弁30の弁開度をF/B制御し、ガスインジェクション量を制御する。また、圧縮機2の回転数NCが所定値N1より高い高回転数のときは図8の如く目標放熱器圧力PCOに基づいてインジェクション膨張弁30の弁開度をF/B制御し、ガスインジェクション量を制御する。但し、前述同様にインジェクション過熱度SHinjは10degより高くする。
 次に、コントローラ32はステップS29に進み、前述同様に室外熱交換器温度TXOが所定値TX1(例えば+25℃)以上のときは室外送風機15を運転(ON)し、室外熱交換器7に外気を強制通風する。一方、室外熱交換器温度TXOが所定値TX2(TX1に対して所定のヒステリシスを有する例えば+20℃)より低いときは室外送風機15を停止(OFF)する。
 一方、ステップS25で暖房要求が無い場合、コントローラ32はステップS30に進み、目標放熱器圧力PCOを前述した所定値P2(中圧力。P1≧P2)とし、次にステップS33に進んで前述した簡易ホットガス除霜モードを実行する。即ち、室外熱交換器7のみで冷媒を放熱させ、吸熱器9を介すること無く圧縮機2に冷媒を戻す。これにより、室外熱交換器7を除霜する。また、室外膨張弁6は全開とし、エアミックスダンパ28は前記MCとする。また、室内送風機(ブロワ)27は停止する。
 また、ステップS34でコントローラ32は前述した図13の制御ブロックの如く目標放熱器温度PCOに基づいて圧縮機2をF/B制御する(暖房モードと同じ)。また、インジェクション回路40は動作させず(OFF)、圧縮機2からの高温冷媒を全て使用して室外熱交換器7の除霜を行う。次に、コントローラ32はステップS29に進み、前述同様に室外送風機15の運転を制御する。
 また、ステップS24で乗員が乗車していない場合、及び、ステップS31でバッテリ残量が所定値未満に低下している場合、コントローラ32はステップS32に進み、目標放熱器圧力PCOをP2(中圧力)とし、次にステップS33に進んで上記簡易ホットガス除霜モードを実行する。即ち、乗員が乗車していない場合やバッテリ残量が少ない場合は室外熱交換器7の除霜に高温冷媒を集中させる。
 また、ステップS23で外気温度Tamが所定値T2以上の高い環境である場合、コントローラ32はステップS23からステップS35に進み、乗員が乗車中か否か再度判断し、乗員が乗車していないときはステップS32、ステップS33へと進む。乗員が乗車しているときは、ステップS36に進んで目標放熱器圧力PCOを前述した所定値P3(低圧力。P1≧P2≧P3)とし、ステップS37に進んで前述した第2除湿冷房型除霜モードを実行する。
 即ち、プラグイン中で、外気温度Tamが高く、乗員が乗車中であるときは、放熱器4及び室外熱交換器7で冷媒を放熱させ、吸熱器9で吸熱させる。これにより、室外熱交換器7を除霜する。また、室外膨張弁6は前述した図6の制御ブロックの如く目標放熱器圧力PCOに基づいてF/B制御し、エアミックスダンパ28は前記MHとする。また、室内送風機(ブロワ)27は所定電圧V3で運転され、吸込切換ダンパ26は内気循環モードとされる。
 そして、ステップS37に進んでコントローラ32は前述した図5の制御ブロックの如く目標吸熱器温度TEOに基づいて圧縮機2をF/B制御する(冷房、除湿冷房モードと同じ)。また、インジェクション回路40は動作させず(OFF)、圧縮機2へのガスインジェクションは行わない。これによって、室外熱交換器7に高温冷媒がより多く流れるようにする。このときインジェクション回路40は動作しないが、外気温度Tamは高い環境であるので、車室内温度には支障は生じない。
 以上のように、この実施例では外気温度Tamが所定値T2以上である場合、コントローラ32はステップS37で圧縮機2から吐出された冷媒を放熱器4と室外熱交換器7にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器9にて吸熱させる第2除湿冷房型除霜モードを実行し、ステップS38でインジェクション回路40は動作させないので、外気温度Tamが高く、車室内の暖房能力を維持し易い環境下では、インジェクション回路40を動作させずに室外熱交換器7に冷媒をより多く供給し、除霜を促進させることができるようになる。
 一方、暖房要求がない場合コントローラ32は、ステップS33で圧縮機2から吐出された冷媒を室外熱交換器7のみにて放熱させ、放熱した当該冷媒を、吸熱器9を介さずに圧縮機2に戻す簡易ホットガス除霜モードを実行し、ステップS34でインジェクション回路40は動作させないので、室外熱交換器7の除霜を迅速に実行して電力消費を最低限とすることができるようになり、電気自動車等において極めて有効なものとなる。
 また、外部電源から給電されている場合、ステップS27で圧縮機2から吐出された冷媒を放熱器4と室外熱交換器7にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器9にて吸熱させる第1除湿冷房型除霜モードを実行し、ステップS28でインジェクション回路40を動作させると共に、外部電源から給電されていない場合、ステップS33で圧縮機2から吐出された冷媒を室外熱交換器7にて放熱させ、放熱した当該冷媒を、吸熱器9を介さずに圧縮機2に戻す簡易ホットガス除霜モードを実行し、ステップS34でインジェクション回路40を動作させないので、プラグイン中は第1除湿冷房型除霜モードで室外熱交換器7の除霜を行いながらインジェクション回路40で車室内の暖房を維持し、プラグインされていないときは、簡易ホットガス除霜モードとし、インジェクション回路40を動作させずに室外熱交換器7に全ての冷媒を流して迅速に除霜し、電力消費の削減を図ることができるようになる。
 この場合、コントローラ32はステップS22でプラグイン中ではない(外部電源から給電されていない)場合であって、ステップS31でバッテリの残量が少ない場合に、簡易ホットガス除霜モードを実行し、インジェクション回路40は動作させず、又は、ホットガス除霜モードを実行し、インジェクション回路40は動作させないので、プラグインされておらず、且つ、バッテリ残量が少ない場合に、インジェクション回路40を動作させない簡易ホットガス除霜モード又はホットガス除霜モードを実行することになり、プラグインされているか否かに加えてバッテリ残量も加味した的確な除霜制御が可能となる。
 (10)除霜モード(実施例3)
 次に、図15~図17を参照しながら、本発明の車両用空気調和装置1のもう一つの他の実施例を説明する。尚、図15において図1と同一符号は同一若しくは同様の機能を奏するものとする。この場合、車両用空気調和装置1では圧縮機2の吐出側の冷媒配管13Gはホットガス配管(冷媒配管)13Hに分岐し、この分岐したホットガス配管13Hは室外熱交換器7の除霜時に開放されて圧縮機2から吐出された高温冷媒(ホットガス)を直接室外熱交換器7に流入させ、且つ、その流量を調整するための流量調整弁(ホットガス弁)87を介して室外膨張弁6と室外熱交換器7間の冷媒配管13Iに連通接続されている。また、放熱器4を出てインジェクション回路40に分岐した後の冷媒配管13Eには除霜時に閉じられて冷媒が室外膨張弁6方向に向かうのを止める電磁弁88が取り付けられている(図2に破線で追加)。
 また、この実施例の場合、コントローラ32は除霜モードとして、前述した第1除湿冷房型除霜モード、第2除湿冷房型除霜モード、簡易ホットガス除霜モードの他に、ホットガス配管13Hを用いたホットガス除霜モードを有しており、状況に応じてそれらを切り換えて実行する。
 (10-1)ホットガス除霜モードの冷媒の流れ
 先ず、この場合のホットガス除霜モードの冷媒の流れについて説明する。このホットガス除霜モードでは、コントローラ32は電磁弁21を開放し、電磁弁17、電磁弁20、電磁弁22、及び、電磁弁88を閉じる。また、室外膨張弁6は全閉とし、流量調整弁87は開度が調整される。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は放熱器4に全ての空気が通風される状態(MH)とする。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は分流され、流量調整弁87、ホットガス配管13Hを経て室外熱交換器7に直接流入する。そして、室外熱交換器7で放熱し、付着した霜を強力に融解させる。室外熱交換器7を出た冷媒は、冷媒配管13A、電磁弁21、冷媒配管13D、13Cを経て、アキュムレータ12から圧縮機2に戻る。
 また、圧縮機2から吐出された冷媒の残りは吐出側熱交換器35を経て放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、ここで放熱するが、インジェクション膨張弁30が開いていれば、放熱器4を出た冷媒は電磁弁88が閉じていることにより、全てインジェクション回路40に流れ、圧縮機2の圧縮途中に戻されることになる。図16はこのホットガス除霜モードでガスインジェクションを行った場合のP-h線図を示しており、この場合は図12に加えてインジェクション回路40に流れる部分が現れることになる(同図に13Kで示す)。
 (10-2)除霜モードの制御(実施例3)
 次に、図17のフローチャートを参照しながら暖房モードにおけるコントローラ32によるこの場合の具体的な除霜モードの制御について説明する。コントローラ32は図17のステップS40で各センサからデータを読み込み、ステップS41で室外熱交換器7の除霜要求があるか否か判断する。尚、この場合の室外熱交換器7の着霜状態の検知も前述した図10のステップS2の場合と同様であるので説明を省略する。
 コントローラ32はステップS41で除霜要求ありとした場合、ステップS41からステップS42に進み、現在自動車がプラグイン中であるか否か判断する。そして、プラグイン中であるときはステップS42からステップS43に進む。尚、プラグイン中では無いときはステップS55に進み、バッテリの残量が前述同様に所定値より低くなっているか否か判断する。そして、バッテリ残量が所定値以上残っている場合もステップS43に進む。
 コントローラ32はステップS43で、外気温度センサ34が検出する現在の外気温度Tamが前述した所定値T2より低いか否か判断する。そして、ステップS43で外気温度TamがT2より低い環境である場合、コントローラ32はステップS44に進み、乗員センサ57の出力に基づいて現在車室内に乗員が乗車しているか否か判断する。
 ステップS44で乗員乗車中である場合、コントローラ32はステップS45に進んで暖房要求があるか否か判断する。前述のように暖房要求有りと判断した場合、コントローラ32は内気温度センサ37が検出する車室内温度が所定値T2(例えば0℃)より低いか否か判断す。現在の車室内が冷えていて車室内温度が所定値T2より低い場合、コントローラ32はステップS47に進み、目標放熱器圧力(目標高圧)PCOを前述した所定値P1A(P1A≧P1の更に高圧力)とする。
 次にステップS48、ステップS49へと進み、前述したホットガス除霜モードを実行する。即ち、ステップS48で室外膨張弁6は全閉、エアミックスダンパ28は前記MHとする。また、室内送風機(ブロワ)27は吹出温度に協調して制御され、吸込切換ダンパ26は内気循環モードとされる。
 また、ステップS49でコントローラ32は前述した図13の制御ブロックの如く目標放熱器温度PCOに基づいて圧縮機2をF/B制御する。また、流量調整弁(ホットガス弁)87を全開とし、圧縮機2から吐出された高温冷媒の一部をホットガス配管13Hから室外熱交換器7に直接流入させ、放熱させて除霜する。また、インジェクション回路40を動作させ、圧縮機2から吐出された冷媒の残りを放熱器4で放熱させた後、インジェクション回路40により、圧縮機2の圧縮途中に戻してガスインジェクションを行う。その場合、コントローラ32は図7の制御ブロックの如くインジェクション過熱度SHinjに基づいてインジェクション膨張弁30の弁開度をF/B制御し、ガスインジェクション量を制御する。
 次に、コントローラ32はステップS50に進み、前述同様に室外熱交換器温度TXOが所定値TX1(例えば+25℃)以上のときは室外送風機15を運転(ON)し、室外熱交換器7に外気を強制通風する。一方、室外熱交換器温度TXOが所定値TX2(TX1に対して所定のヒステリシスを有する例えば+20℃)より低いときは室外送風機15を停止(OFF)する。
 また、ステップS46で車室内温度が高く、所定値T2以上である場合、コントローラ32はステップS51に進み、目標放熱器圧力(目標高圧)PCOを前述した所定値P1(高圧力)とする。次にステップS52、ステップS53へと進み、前述した第1除湿冷房型除霜モードを実行する。即ち、放熱器4及び室外熱交換器7で冷媒を放熱させ、吸熱器9で吸熱させる。これにより、室外熱交換器7を除霜する。また、室外膨張弁6は前述した図6の制御ブロックの如く目標放熱器圧力PCOに基づいてF/B制御し、エアミックスダンパ28は前記MHとする。また、室内送風機(ブロワ)27は吹出温度に協調して制御され、吸込切換ダンパ26は内気循環モードとされる。
 また、ステップS53でコントローラ32は前述した図5の制御ブロックの如く目標吸熱器温度TEOに基づいて圧縮機2をF/B制御する(冷房、除湿冷房モードと同じ)。また、インジェクション回路40を動作させ、圧縮機2の圧縮途中にガスインジェクションを行う。その場合、コントローラ32は図7及び図8の制御ブロックの如く圧縮機2の回転数NCが所定値N1以下の低回転数のときは図7の如くインジェクション過熱度SHinjに基づいてインジェクション膨張弁30の弁開度をF/B制御し、ガスインジェクション量を制御する。また、圧縮機2の回転数NCが所定値N1より高い高回転数のときは図8の如く目標放熱器圧力PCOに基づいてインジェクション膨張弁30の弁開度をF/B制御し、ガスインジェクション量を制御する。但し、前述同様にインジェクション過熱度SHinjは10degより高くする。次に、コントローラ32はステップS50に進んで前述同様に室外送風機15の運転を制御する。
 一方、ステップS45で暖房要求が無い場合、コントローラ32はステップS54に進み、目標放熱器圧力PCOを前述した所定値P2(中圧力。P1≧P2)とし、次にステップS57、ステップS58へと進んでホットガス除霜モードを実行する。即ち、ステップS57で室外膨張弁6は全開とし、エアミックスダンパ28はどこでも良い。また、室内送風機(ブロワ)27は停止する。
 また、ステップS58でコントローラ32は前述した図13の制御ブロックの如く目標放熱器温度PCOに基づいて圧縮機2をF/B制御する。また、流量調整弁(ホットガス弁)87を全開とし、圧縮機2から吐出された高温冷媒の一部をホットガス配管13Hから室外熱交換器7に直接流入させ、放熱させて除霜する。尚、インジェクション回路40は動作させず(OFF)、圧縮機2からの高温冷媒を全て使用して室外熱交換器7の除霜を行う。次に、コントローラ32はステップS50に進み、前述同様に室外送風機15の運転を制御する。
 また、ステップS44で乗員が乗車していない場合、及び、ステップS55でバッテリ残量が所定値未満に低下している場合、コントローラ32はステップS56に進み、目標放熱器圧力PCOをP2(中圧力)とし、次にステップS57に進んで上記ホットガス除霜モードを実行する。即ち、乗員が乗車していない場合やバッテリ残量が少ない場合は室外熱交換器7の除霜に高温冷媒を集中させる。
 また、ステップS43で外気温度Tamが所定値T2以上の高い環境である場合、コントローラ32はステップS43からステップS59に進み、乗員が乗車中か否か再度判断し、乗員が乗車していないときはステップS56、ステップS57へと進む。乗員が乗車しているときは、ステップS60に進んで目標放熱器圧力PCOを前述した所定値P3(低圧力。P1A≧P1≧P2≧P3)とし、ステップS61、ステップS62に進んで前述した第2除湿冷房型除霜モードを実行する。
 即ち、プラグイン中で、外気温度Tamが高く、乗員が乗車中であるときは、放熱器4及び室外熱交換器7で冷媒を放熱させ、吸熱器9で吸熱させる。これにより、室外熱交換器7を除霜する。また、室外膨張弁6は前述した図6の制御ブロックの如く目標放熱器圧力PCOに基づいてF/B制御し、エアミックスダンパ28は前記MHとする。また、室内送風機(ブロワ)27は所定電圧V3で運転され、吸込切換ダンパ26は内気循環モードとされる。
 そして、ステップS62に進んでコントローラ32は前述した図5の制御ブロックの如く目標吸熱器温度TEOに基づいて圧縮機2をF/B制御する(冷房、除湿冷房モードと同じ)。また、インジェクション回路40は動作させず(OFF)、圧縮機2へのガスインジェクションは行わない。これによって、室外熱交換器7に高温冷媒がより多く流れるようにする。このときインジェクション回路40は動作しないが、外気温度Tamは高い環境であるので、車室内温度には支障は生じない。
 以上のように、この実施例では室外熱交換器7に圧縮機2から吐出された冷媒を直接供給できるホットガス配管13Hが設けられており、コントローラ32は暖房要求がある場合、圧縮機2から吐出された冷媒の一部を分流してホットガス配管13Hにより、放熱器4を経ること無く室外熱交換器7に流入させて放熱させ、放熱した当該冷媒を圧縮機2に戻し、残りの冷媒を放熱器4で放熱させるホットガス除霜モードを実行し、インジェクション回路40を動作させるので、吸熱器9における吸熱を行うこと無く、インジェクション回路40により放熱器4における暖房能力を向上させることができるようになり、特に車室内温度が極めて低い状況で有効なものとなる。
 また、この場合も外気温度Tamが所定値T2以上である場合、コントローラ32はステップS61で圧縮機2から吐出された冷媒を放熱器4と室外熱交換器7にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器9にて吸熱させる第2除湿冷房型除霜モードを実行し、インジェクション回路40は動作させないので、外気温度Tamが高く、車室内の暖房能力を維持し易い環境下では、インジェクション回路40を動作させずに室外熱交換器7に冷媒をより多く供給し、除霜を促進させることができるようになる。
 一方、車室内の暖房要求がない場合コントローラ32は、ステップS57で圧縮機2から吐出された冷媒の一部を分流してホットガス配管13Hにより、放熱器4を経ること無く室外熱交換器7に流入させて放熱させ、放熱した当該冷媒を圧縮機2に戻し、残りの冷媒を放熱器4で放熱させるホットガス除霜モードを実行し、インジェクション回路40は動作させないので、室外熱交換器7の除霜を迅速に実行して電力消費を最低限とすることができるようになり、電気自動車等において極めて有効なものとなる。
 また、外部電源から給電されている場合、車室内温度が低い場合はステップS48で前述したホットガス除霜モードを実行し、車室内温度が高い場合はステップS52で圧縮機2から吐出された冷媒を放熱器4と室外熱交換器7にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器9にて吸熱させる第1除湿冷房型除霜モードを実行し、インジェクション回路40を動作させると共に、外部電源から給電されていない場合、ステップS57で圧縮機2から吐出された冷媒の一部を分流してホットガス配管13Hにより、放熱器4を経ること無く室外熱交換器7に流入させて放熱させ、放熱した当該冷媒を圧縮機2に戻し、残りの冷媒を放熱器4で放熱させるホットガス除霜モードを実行し、インジェクション回路40は動作させないので、プラグイン中はホットガス除霜モードか第1除湿冷房型除霜モードで室外熱交換器7の除霜を行いながらインジェクション回路40で車室内の暖房を維持し、プラグインされていないときは、ホットガス除霜モードでインジェクション回路40を動作させずに室外熱交換器7に全ての冷媒を流して迅速に除霜し、電力消費の削減を図ることができるようになる。
 (11)簡易ホットガス除霜モード(ホットガス除霜モードを含む)での圧縮機の制御(実施例4)
 次に、図18は前記ホットガス除霜モード及び簡易ホットガス除霜モード用の圧縮機2の目標回転数(圧縮機目標回転数)TGNChg(この場合)を決定するコントローラ32の制御ブロックの他の実施例を示している。前記図13の例では、目標放熱器温度PCOと放熱器温度PCIに基づいて圧縮機目標回転数TGNChを算出したが、室外熱交換器7の室外熱交換器温度TXOの目標室外熱交換器温度TGTXOと、室外熱交換器温度TXOに基づいて圧縮機2の目標回転数を算出するようにしてもよい。
 即ち、コントローラ32のこの場合のF/F操作量演算部91は、外気温度センサ33から得られる外気温度Tamと、車速センサ52から得られる車速VSPと、目標室外熱交換器温度TGTXOに基づいてこの場合の圧縮機目標回転数のF/F操作量TGNChgffを演算する。
 尚、この場合の目標室外熱交換器温度TGTXOは、前述した室外送風機15を運転するしきい値である所定値TX1を考慮して、+25℃程度とする。
 また、この場合のF/B操作量演算部92は上記目標室外熱交換器温度TGTXOと室外熱交換器温度TXOに基づいてこの場合の圧縮機目標回転数のF/B操作量TGNChgfbを演算する。そして、F/F操作量演算部91が演算したF/F操作量TGNCngffとF/B操作量演算部92が演算したTGNChgfbは加算器93で加算され、リミット設定部94で制御上限値と制御下限値のリミットが付けられた後、この場合の圧縮機目標回転数TGNChgとして決定される。
 そして、この実施例の場合、前述した図14のフローチャートのステップS34で実行する簡易ホットガス除霜モードでの圧縮機2の制御、図17のフローチャートのステップS49で実行するホットガス除霜モードでの圧縮機2の制御、同フローチャートのステップS58で実行する簡易ホットガス除霜モードでの圧縮機2の制御において、コントローラ32は上記の如く目標室外熱交換器温度TGTXOと室外熱交換器温度TXOに基づいて算出した圧縮機目標回転数TGNChgに基づき、圧縮機2の回転数をF/B制御するものである。
 尚、各実施例では図14のフローチャートのステップS34、及び、図17のフローチャートのステップS57で簡易ホットガス除霜モードを実行するようにしたが、それに限らず、ホットガス除霜モードを実行するようにしてもよい。
 また、各実施例の除霜制御を、車速センサ52が検出する車速が所定値以下の場合に実行するようにしてもよい。即ち、コントローラ32により車速が所定値(例えば10km/h等)より低いときのみ室外熱交換器7を除霜するようにしてもよい。その場合には、室外熱交換器7への外気の流通が少ない状況で除霜を行い、除霜効果を向上させることが可能となる(尚、室外熱交換器7前方にシャッターグリルがある場合には、除霜中閉じるものとする)。
 更に、実施例では暖房モード、除湿暖房モード、除湿冷房モード、冷房モードの各運転モードを切り換えて実行する車両用空気調和装置1について本発明を適用したが、それに限らず、暖房モードのみ行うものにも本発明は有効である。
 更にまた、上記実施例で説明した冷媒回路Rの構成や各数値はそれに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能であることは云うまでもない。
 1 車両用空気調和装置
 2 圧縮機
 3 空気流通路
 4 放熱器
 6 室外膨張弁
 7 室外熱交換器
 8 室内膨張弁
 9 吸熱器
 11 蒸発能力制御弁
 17、20、21、22、88 電磁弁
 26 吸込切換ダンパ
 27 室内送風機(ブロワファン)
 28 エアミックスダンパ
 32 コントローラ(制御手段)
 30 インジェクション膨張弁
 40 インジェクション回路
 35 吐出側熱交換器
 87 流量調整弁
 R 冷媒回路

Claims (12)

  1.  冷媒を圧縮する圧縮機と、
     車室内に供給する空気が流通する空気流通路と、
     該空気流通路に設けられて冷媒を放熱させる放熱器と、
     前記空気流通路に設けられて冷媒を吸熱させる吸熱器と、
     前記車室外に設けられて冷媒を放熱又は吸熱させるための室外熱交換器と、
     制御手段とを備え、
     該制御手段により、前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記室外熱交換器にて吸熱させて前記車室内を暖房する車両用空気調和装置において、
     前記放熱器を出た冷媒の一部を分流して前記圧縮機に戻すインジェクション回路を備え、
     前記制御手段は、前記室外熱交換器に高温冷媒を流して除霜する際、前記インジェクション回路を動作させて前記圧縮機に冷媒を戻すことを特徴とする車両用空気調和装置。
  2.  前記制御手段は、前記車室内の暖房要求がある場合、前記圧縮機から吐出された冷媒を前記放熱器と室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させる除湿冷房型除霜モードを実行すると共に、前記インジェクション回路を動作させることを特徴とする請求項1に記載の車両用空気調和装置。
  3.  前記制御手段は、前記車室内の暖房要求がある場合、前記圧縮機から吐出された冷媒の一部を分流して前記放熱器を経ること無く前記室外熱交換器に流入させて放熱させ、放熱した当該冷媒を前記圧縮機に戻すホットガス除霜モードを実行すると共に、前記インジェクション回路を動作させることを特徴とする請求項1に記載の車両用空気調和装置。
  4.  前記室外熱交換器に外気を通風する室外送風機を備え、
     前記制御手段は、前記室外熱交換器を除霜する際、当該室外熱交換器の温度が所定値以上で前記室外送風機を運転し、所定値より低い場合には停止することを特徴とする請求項1乃至請求項3のうちの何れかに記載の車両用空気調和装置。
  5.  前記制御手段は、外気温度が所定値以上である場合、前記圧縮機から吐出された冷媒を前記放熱器と室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させる除湿冷房型除霜モードを実行すると共に、前記インジェクション回路は動作させないことを特徴とする請求項2又は請求項3に記載の車両用空気調和装置。
  6.  前記制御手段は、前記車室内の暖房要求がない場合、前記圧縮機から吐出された冷媒を前記室外熱交換器にて放熱させ、放熱した当該冷媒を前記圧縮機に戻す簡易ホットガス除霜モードを実行し、前記インジェクション回路は動作させず、又は、前記圧縮機から吐出された冷媒の一部を分流して前記放熱器を経ること無く前記室外熱交換器に流入させて放熱させ、放熱した当該冷媒を前記圧縮機に戻すホットガス除霜モードを実行し、前記インジェクション回路は動作させないことを特徴とする請求項2乃至請求項5のうちの何れかに記載の車両用空気調和装置。
  7.  前記制御手段は、外部電源から前記圧縮機、若しくは、当該圧縮機を駆動するために電力を供給するバッテリに給電されている場合、前記圧縮機から吐出された冷媒を前記放熱器と室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させる除湿冷房型除霜モードを実行し、前記インジェクション回路を動作させ、又は、前記圧縮機から吐出された冷媒の一部を分流して前記放熱器を経ること無く前記室外熱交換器に流入させて放熱させ、放熱した当該冷媒を前記圧縮機に戻すホットガス除霜モードを実行し、前記インジェクション回路を動作させると共に、
     前記外部電源から給電されていない場合、前記圧縮機から吐出された冷媒を前記室外熱交換器にて放熱させ、放熱した当該冷媒を前記圧縮機に戻す簡易ホットガス除霜モードを実行し、前記インジェクション回路は動作させず、又は、前記ホットガス除霜モードを実行し、前記インジェクション回路は動作させないことを特徴とする請求項1乃至請求項6のうちの何れかに記載の車両用空気調和装置。
  8.  前記制御手段は、前記外部電源から給電されていない場合であって、前記バッテリの残量が少ない場合に、前記簡易ホットガス除霜モードを実行し、前記インジェクション回路は動作させず、又は、前記ホットガス除霜モードを実行し、前記インジェクション回路は動作させないことを特徴とする請求項7に記載の車両用空気調和装置。
  9.  前記制御手段は、前記車室内温度が所定値より低くなるまで前記圧縮機から吐出された冷媒を前記室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させる逆サイクル除霜モードを実行すると共に、前記インジェクション回路は動作させず、
     前記車室内温度が所定値より低くなった場合は、前記圧縮機から吐出された冷媒を前記放熱器と室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させる除湿冷房型除霜モードを実行し、前記インジェクション回路を動作させることを特徴とする請求項1乃至請求項8のうちの何れかに記載の車両用空気調和装置。
  10.  前記制御手段は、前記室外熱交換器を除霜する際、前記車室内温度が所定値より低い場合又は車室内を暖房する必要がある場合、前記空気流通路への外気の導入を停止することを特徴とする請求項1乃至請求項9のうちの何れかに記載の車両用空気調和装置。
  11.  前記制御手段は、前記除湿冷房型除霜モード又は前記ホットガス除霜モードを実行する際、前記空気流通路への外気の導入を停止することを特徴とする請求項2、請求項3、又は、請求項5のうちの何れかに記載の車両用空気調和装置。
  12.  前記制御手段は、車速が所定値以下の場合に前記室外熱交換器を除霜することを特徴とする請求項1乃至請求項11のうちの何れかに記載の車両用空気調和装置。
PCT/JP2014/073025 2013-09-04 2014-09-02 車両用空気調和装置 WO2015033916A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/914,587 US10279654B2 (en) 2013-09-04 2014-09-02 Air conditioning device for vehicle
CN201480049031.4A CN105517824B (zh) 2013-09-04 2014-09-02 车辆用空调装置
DE112014004045.2T DE112014004045T5 (de) 2013-09-04 2014-09-02 Klimaanlagenvorrichtung für ein Fahrzeug
US15/960,870 US10220678B2 (en) 2013-09-04 2018-04-24 Air conditioning device for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-183187 2013-09-04
JP2013183187A JP6223753B2 (ja) 2013-09-04 2013-09-04 車両用空気調和装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/914,587 A-371-Of-International US10279654B2 (en) 2013-09-04 2014-09-02 Air conditioning device for vehicle
US15/960,870 Division US10220678B2 (en) 2013-09-04 2018-04-24 Air conditioning device for vehicle

Publications (1)

Publication Number Publication Date
WO2015033916A1 true WO2015033916A1 (ja) 2015-03-12

Family

ID=52628390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073025 WO2015033916A1 (ja) 2013-09-04 2014-09-02 車両用空気調和装置

Country Status (5)

Country Link
US (2) US10279654B2 (ja)
JP (1) JP6223753B2 (ja)
CN (1) CN105517824B (ja)
DE (1) DE112014004045T5 (ja)
WO (1) WO2015033916A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024090120A1 (ja) * 2022-10-25 2024-05-02 サンデン株式会社 車両用空調装置

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5999637B2 (ja) * 2012-11-09 2016-09-28 サンデンホールディングス株式会社 車両用空気調和装置
JP6271195B2 (ja) * 2013-09-18 2018-01-31 サンデンホールディングス株式会社 車両用空気調和装置
JP6207958B2 (ja) * 2013-10-07 2017-10-04 サンデンホールディングス株式会社 車両用空気調和装置
JP6134290B2 (ja) * 2014-04-24 2017-05-24 本田技研工業株式会社 車両用空調装置
JP6418779B2 (ja) * 2014-05-08 2018-11-07 サンデンホールディングス株式会社 車両用空気調和装置
JP6277888B2 (ja) * 2014-06-27 2018-02-14 株式会社デンソー 冷凍サイクル装置
CN104776630B (zh) * 2015-04-28 2017-05-03 广东美的暖通设备有限公司 多联机***
JP6738157B2 (ja) * 2016-02-26 2020-08-12 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP6590321B2 (ja) * 2016-03-25 2019-10-16 パナソニックIpマネジメント株式会社 車両用空調装置
BE1024700B1 (nl) 2016-10-25 2018-06-01 Atlas Copco Airpower Naamloze Vennootschap Regelaar voor het regelen van de snelheid van een motor die een oliegeïnjecteerde compressor aandrijft en werkwijze voor het regelen van die snelheid
WO2018078491A1 (en) * 2016-10-25 2018-05-03 Atlas Copco Airpower, Naamloze Vennootschap Controller unit for controlling the speed of a motor driving an oil injected compressor and method of controlling said speed
JP6807710B2 (ja) * 2016-11-14 2021-01-06 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP6900186B2 (ja) * 2016-12-21 2021-07-07 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
DE102017206135A1 (de) * 2017-04-10 2018-10-11 Ford Global Technologies, Llc Verfahren zur Enteisung eines außenluftseitigen Wärmetauschers eines Kraftfahrzeugklimatisierungssystems mit Wärmepumpe sowie Kraftfahrzeugklimatisierungssystem zur Durchführung des Verfahrens
JP6884028B2 (ja) 2017-04-26 2021-06-09 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP6963405B2 (ja) * 2017-04-26 2021-11-10 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP6863131B2 (ja) * 2017-06-28 2021-04-21 株式会社デンソー 空調装置
FR3069625B1 (fr) * 2017-07-28 2019-12-27 Valeo Systemes Thermiques Procede de gestion d’un circuit de climatisation inversible de vehicule automobile
JP2019051832A (ja) * 2017-09-15 2019-04-04 株式会社ヴァレオジャパン 冷凍サイクル装置
JP6925288B2 (ja) * 2018-01-30 2021-08-25 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP7153174B2 (ja) * 2018-05-28 2022-10-14 サンデン株式会社 車両用空気調和装置
JP7231348B2 (ja) * 2018-07-18 2023-03-01 サンデン株式会社 車両用空気調和装置
JP7164994B2 (ja) * 2018-08-27 2022-11-02 サンデン株式会社 車両用空気調和装置
JP2021031026A (ja) * 2019-08-29 2021-03-01 株式会社ヴァレオジャパン 車両用空調装置
KR20210026705A (ko) * 2019-09-02 2021-03-10 현대자동차주식회사 차량용 히트펌프 시스템
CN112172456B (zh) * 2020-10-19 2022-12-27 重庆邮电大学 一种电动汽车热泵空调除霜控制***及方法
JP2022148724A (ja) * 2021-03-24 2022-10-06 サンデン・オートモーティブクライメイトシステム株式会社 車両用空調装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09196522A (ja) * 1996-01-19 1997-07-31 Fujitsu General Ltd 空気調和機
JP2001030744A (ja) * 1999-07-26 2001-02-06 Denso Corp 冷凍サイクル装置
JP2001246930A (ja) * 2000-03-06 2001-09-11 Denso Corp 車両用ヒートポンプ装置
JP2006200890A (ja) * 2006-04-27 2006-08-03 Hitachi Ltd 空気調和機
JP2010111222A (ja) * 2008-11-05 2010-05-20 Denso Corp 車両用空調装置
JP2011240879A (ja) * 2010-05-20 2011-12-01 Autonetworks Technologies Ltd 車両用除霜制御装置
JP2012228945A (ja) * 2011-04-26 2012-11-22 Sanden Corp 車両用空気調和装置
JP2012233676A (ja) * 2011-04-21 2012-11-29 Denso Corp ヒートポンプサイクル
JP2013203221A (ja) * 2012-03-28 2013-10-07 Denso Corp 車両用の空調装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5704219A (en) * 1995-08-01 1998-01-06 Nippondenso Co., Ltd. Air conditioning apparatus
EP0800940A3 (en) * 1996-04-10 2001-06-06 Denso Corporation Vehicular air conditioning system for electric vehicles
JPH1026430A (ja) * 1996-07-12 1998-01-27 Denso Corp ガスインジェクション式ヒートポンプ装置
JP3952545B2 (ja) * 1997-07-24 2007-08-01 株式会社デンソー 車両用空調装置
US5996360A (en) * 1997-11-27 1999-12-07 Denso Corporation Refrigerant cycle system
JP3985384B2 (ja) 1998-09-24 2007-10-03 株式会社デンソー 冷凍サイクル装置
DE60031808T2 (de) 1999-07-26 2007-09-20 Denso Corp., Kariya Kühlkreisvorrichtung
JP3985394B2 (ja) * 1999-07-30 2007-10-03 株式会社デンソー 冷凍サイクル装置
US7299649B2 (en) * 2003-12-09 2007-11-27 Emerson Climate Technologies, Inc. Vapor injection system
JP5446524B2 (ja) * 2009-07-08 2014-03-19 株式会社デンソー 車両用空調装置
JP5358538B2 (ja) * 2010-08-31 2013-12-04 株式会社日立製作所 電動車両の駆動装置
JP5851704B2 (ja) 2011-02-25 2016-02-03 サンデンホールディングス株式会社 車両用空気調和装置
CN105020921B (zh) 2011-02-10 2017-08-15 三电控股株式会社 车辆用空气调节装置
JP5780166B2 (ja) * 2011-02-11 2015-09-16 株式会社デンソー ヒートポンプサイクル
JP5821756B2 (ja) * 2011-04-21 2015-11-24 株式会社デンソー 冷凍サイクル装置
WO2013001688A1 (ja) * 2011-06-29 2013-01-03 三菱電機株式会社 冷凍サイクル装置
JP5766293B2 (ja) * 2011-09-13 2015-08-19 三菱電機株式会社 冷凍空調装置
JP5772764B2 (ja) * 2011-10-05 2015-09-02 株式会社デンソー 統合弁およびヒートポンプサイクル
CN103423928B (zh) * 2012-05-21 2016-07-06 本田技研工业株式会社 车辆用空调装置
JP6088753B2 (ja) * 2012-06-13 2017-03-01 サンデンホールディングス株式会社 車両用空気調和装置
JP6047314B2 (ja) * 2012-06-29 2016-12-21 サンデンホールディングス株式会社 車両用空調装置
JP2014034371A (ja) * 2012-08-10 2014-02-24 Honda Motor Co Ltd 車両用空調装置
JP5967022B2 (ja) * 2012-11-16 2016-08-10 株式会社デンソー 冷凍サイクル装置
JP6083330B2 (ja) * 2012-11-16 2017-02-22 株式会社デンソー エジェクタ
US10155430B2 (en) * 2012-11-30 2018-12-18 Sanden Holdings Corporation Vehicle air-conditioning device
JP6271195B2 (ja) * 2013-09-18 2018-01-31 サンデンホールディングス株式会社 車両用空気調和装置
US20150153078A1 (en) * 2013-12-02 2015-06-04 Hyundai Motor Company Heat pump system for vehicle

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09196522A (ja) * 1996-01-19 1997-07-31 Fujitsu General Ltd 空気調和機
JP2001030744A (ja) * 1999-07-26 2001-02-06 Denso Corp 冷凍サイクル装置
JP2001246930A (ja) * 2000-03-06 2001-09-11 Denso Corp 車両用ヒートポンプ装置
JP2006200890A (ja) * 2006-04-27 2006-08-03 Hitachi Ltd 空気調和機
JP2010111222A (ja) * 2008-11-05 2010-05-20 Denso Corp 車両用空調装置
JP2011240879A (ja) * 2010-05-20 2011-12-01 Autonetworks Technologies Ltd 車両用除霜制御装置
JP2012233676A (ja) * 2011-04-21 2012-11-29 Denso Corp ヒートポンプサイクル
JP2012228945A (ja) * 2011-04-26 2012-11-22 Sanden Corp 車両用空気調和装置
JP2013203221A (ja) * 2012-03-28 2013-10-07 Denso Corp 車両用の空調装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024090120A1 (ja) * 2022-10-25 2024-05-02 サンデン株式会社 車両用空調装置

Also Published As

Publication number Publication date
US10220678B2 (en) 2019-03-05
CN105517824B (zh) 2018-05-18
US20180236845A1 (en) 2018-08-23
DE112014004045T5 (de) 2016-07-14
CN105517824A (zh) 2016-04-20
US10279654B2 (en) 2019-05-07
US20160201961A1 (en) 2016-07-14
JP2015048041A (ja) 2015-03-16
JP6223753B2 (ja) 2017-11-01

Similar Documents

Publication Publication Date Title
JP6223753B2 (ja) 車両用空気調和装置
JP6125325B2 (ja) 車両用空気調和装置
JP6040099B2 (ja) 車両用空気調和装置
JP6125312B2 (ja) 車両用空気調和装置
WO2018159142A1 (ja) 車両用空気調和装置
JP6192435B2 (ja) 車両用空気調和装置
JP6125330B2 (ja) 車両用空気調和装置
JP6241595B2 (ja) 車両用空気調和装置
WO2014084343A1 (ja) 車両用空気調和装置
WO2015025907A1 (ja) 車両用空気調和装置
WO2015041209A1 (ja) 車両用空気調和装置
WO2014073691A1 (ja) 車両用空気調和装置
WO2014073690A1 (ja) 車両用空気調和装置
WO2014073689A1 (ja) 車両用空気調和装置
JP6963405B2 (ja) 車両用空気調和装置
WO2016047590A1 (ja) 車両用空気調和装置
JP2014094677A5 (ja)
WO2017179594A1 (ja) 車両用空気調和装置
WO2017146266A1 (ja) 車両用空気調和装置
WO2018116962A1 (ja) 車両用空気調和装置
JP6047387B2 (ja) 車両用空気調和装置
WO2019155905A1 (ja) 車両用空気調和装置
JP6047388B2 (ja) 車両用空気調和装置
WO2017146267A1 (ja) 車両用空気調和装置
WO2018088124A1 (ja) 車両用空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14842609

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14914587

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014004045

Country of ref document: DE

Ref document number: 1120140040452

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14842609

Country of ref document: EP

Kind code of ref document: A1