WO2015033665A1 - 二次電池の制御装置及び制御方法 - Google Patents

二次電池の制御装置及び制御方法 Download PDF

Info

Publication number
WO2015033665A1
WO2015033665A1 PCT/JP2014/068334 JP2014068334W WO2015033665A1 WO 2015033665 A1 WO2015033665 A1 WO 2015033665A1 JP 2014068334 W JP2014068334 W JP 2014068334W WO 2015033665 A1 WO2015033665 A1 WO 2015033665A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
voltage
circuit voltage
open circuit
actual
Prior art date
Application number
PCT/JP2014/068334
Other languages
English (en)
French (fr)
Inventor
荻原 航
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to EP14842703.2A priority Critical patent/EP3043413A4/en
Priority to JP2015535362A priority patent/JP6128225B2/ja
Priority to CN201480055087.0A priority patent/CN105612652B/zh
Priority to US14/916,885 priority patent/US9906060B2/en
Priority to KR1020167007480A priority patent/KR101777526B1/ko
Publication of WO2015033665A1 publication Critical patent/WO2015033665A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a control device and a control method for charging and discharging a secondary battery.
  • a secondary battery such as a lithium secondary battery, for the purpose of high capacity, Li y [M 1 (1 -b) Mn b] O 2 or Li y [M 1 (1- b) Mn b] O 1.
  • a positive electrode active material made of a solid solution material such as 5 + c (M 1 is a metal element) has been studied (Patent Document 1).
  • the problem to be solved by the present invention is to provide a control device and a control method for a secondary battery that can control the secondary battery with high accuracy.
  • the present invention extracts an estimated voltage from a voltage-SOC reference curve acquired in advance based on an SOC obtained from an actual voltage or current of a secondary battery for a secondary battery using a positive electrode active material made of a solid solution material. And the said subject is solved by determining the difference
  • the estimated voltage is obtained by substituting the SOC obtained from the actually detected voltage or current into the voltage-SOC reference curve acquired in advance, and how much error the actual voltage has with respect to the estimated voltage. Therefore, when this error is large, it is possible to take a predetermined measure for eliminating the error. As a result, the secondary battery can be controlled with high accuracy, and overcharge and overdischarge can be suppressed.
  • FIG. 4A shows an example of the voltage-SOC reference
  • FIG. (1) explaining the subject of the secondary battery using a solid solution positive electrode.
  • FIG. (2) explaining the subject of the secondary battery using a solid solution positive electrode.
  • FIG. (3) explaining the subject of the secondary battery using a solid solution positive electrode.
  • FIG. (4) explaining the subject of the secondary battery using a solid solution positive electrode. It is a graph which shows the relationship of the capacity retention with respect to the frequency
  • FIG. 1 is a plan view showing an example of a secondary battery that is a charge control target of the control method and control device of the present invention
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
  • the secondary battery 10 that is a charge control target include a lithium secondary battery such as a lithium ion secondary battery.
  • the secondary battery shown below is an example of the charge control target of the control method and the control device of the present invention, and a secondary battery having a structure other than this is also included in the charge control target of the present invention.
  • the secondary battery 10 shown in FIGS. 1 and 2 is connected to an electrode laminate 101 having three positive plates 102, seven separators 103, and three negative plates 104, and the electrode laminate 101, respectively.
  • the number of constituents of the positive electrode plate 102, the separator 103, and the negative electrode plate 104 is not particularly limited, and the electrode laminate 101 is configured by one positive electrode plate 102, three separators 103, and one negative electrode plate 104.
  • the number of the positive electrode plate 102, the separator 103, and the negative electrode plate 104 may be appropriately selected as necessary.
  • the positive electrode plate 102 constituting the electrode laminate 101 includes a positive electrode side current collector 102a extending to the positive electrode tab 105 and a positive electrode active material layer formed on both main surfaces of a part of the positive electrode side current collector 102a. And have.
  • the positive electrode side current collector 102a constituting the positive electrode plate 102 can be formed of an electrochemically stable metal foil such as an aluminum foil, an aluminum alloy foil, a copper titanium foil, or a stainless steel foil having a thickness of about 20 ⁇ m.
  • the positive electrode active material layer constituting the positive electrode plate 102 is a mixture of a positive electrode active material, a conductive agent such as carbon black, and a binder such as an aqueous dispersion of polyvinylidene fluoride or polytetrafluoroethylene, It is formed by applying to a part of the main surface of the positive electrode side current collector 102a, drying and pressing.
  • the positive electrode active material layer is formed of a positive electrode active material made of a solid solution material.
  • a solid solution material used for such a positive electrode active material For example, the solid solution lithium containing transition metal oxide represented by following General formula (1) is mentioned.
  • Li Li 1.5 [Ni a Co b Mn c [Li] d ] O 3 (1)
  • the solid solution lithium-containing transition metal oxide of this example has a layered structure part and a part (a layered structure Li 2 MnO 3 ) that changes to a spinel structure by charging or charging / discharging in a predetermined potential range.
  • the layered structure Li 2 MnO 3 was changed to the spinel structure LiMn 2 O 4 , and the portions that changed to the spinel structure were all changed to the spinel structure LiMn 2 O 4 .
  • the spinel structure change ratio of the solid solution lithium-containing transition metal oxide is 0.25 or more and less than 1.0.
  • “Spinel structure change ratio” means that Li 2 MnO 3 having a layered structure in the solid solution lithium-containing transition metal oxide is changed to LiMn 2 O 4 having a spinel structure by charging or charging / discharging in a predetermined potential range.
  • the ratio of the spinel structure when the layered structure Li 2 MnO 3 in the solid solution lithium-containing transition metal oxide is all changed to the spinel structure LiMn 2 O 4 is defined as 1. . Specifically, it is defined by the following formula.
  • spinel structure change ratio for a battery assembled using a positive electrode in which the solid solution lithium-containing transition metal oxide is used as a positive electrode active material, a charge charged from initial state A before charging to 4.5 V A case as shown in FIG. 3 will be described as an example, in which the state is set to state B, further passed through a plateau region, overcharged state C charged to 4.8V, and discharged state D further discharged to 2.0V. To do.
  • the “actual capacity of the plateau region” in the above formula is the plateau region in FIG. 3 (specifically, the region from 4.5 V to 4.8 V (the actual capacity V BC of the region BC from the charged state B to the overcharged state C) The actual capacity of the plateau region), which is the region resulting from the change in the crystal structure.
  • the practical amount V AB in the region AB from the initial state A to the charged state B charged to 4.5 V is a layered structure part. It corresponds to the composition (y) and the theoretical capacity (V L ) of LiMO 2 , and the actual capacity V BC of the region BC in the overcharged state C charged from 4.5 to 4.8 V is charged to spinel.
  • composition ratio of Li 2 MnO 3 in the solid solution can be calculated from the composition formula of the solid solution lithium-containing transition metal oxide.
  • the presence or absence of the layered structure site and the spinel structure site in the solid solution lithium-containing transition metal oxide can be determined by the presence of a peculiar peak in the layered structure and the spinel structure by X-ray diffraction analysis (XRD), and the ratio is It can be determined from the measurement and calculation of the capacity as described above.
  • the spinel structure change ratio does not become 1.0, and when it is less than 0.25, a discharge capacity and capacity retention comparable to those of a conventional solid solution lithium-containing transition metal oxide can be realized even if high. Only a solid solution lithium-containing transition metal oxide is obtained.
  • the spinel structure change ratio of the solid solution lithium-containing transition metal oxide is more preferably 0.4 or more and less than 0.9.
  • the spinel structure change ratio of the solid solution lithium-containing transition metal oxide is 0.6 or more and 0.8 or less.
  • Such a solid solution lithium-containing transition metal oxide can achieve a high discharge capacity and capacity retention when used as a positive electrode active material of a lithium ion secondary battery. It is suitably used for secondary batteries. As a result, it can be suitably used as a lithium-ion secondary battery for vehicle drive power or auxiliary power. In addition to this, the present invention can be sufficiently applied to lithium ion secondary batteries for home use and portable devices.
  • the production method of the solid solution lithium-containing transition metal oxide of this example will be described.
  • lithium compounds such as sulfates and nitrates, nickel compounds, cobalt compounds And a raw material containing a manganese compound are mixed to obtain a mixture, and then the resulting mixture is baked in an inert gas atmosphere at 800 ° C. to 1000 ° C. for 6 hours to 24 hours.
  • inert gas atmosphere 800 ° C. to 1000 ° C. for 6 hours to 24 hours.
  • a mixture is obtained by mixing raw materials including lithium compounds such as sulfates and nitrates, nickel compounds, cobalt compounds and manganese compounds, The obtained mixture is fired at 800 ° C. or higher and 1000 ° C. or lower for 6 hours or longer and 24 hours or shorter to obtain a fired product, and then the obtained fired product is heated at 600 ° C. or higher and 800 ° C. or lower in an inert gas atmosphere.
  • the manufacturing method of the solid solution lithium containing transition metal oxide to heat-process can be mentioned.
  • the binder (binder) to be added to the positive electrode active material layer as necessary is not particularly limited.
  • polyvinylidene fluoride, polyimide, styrene / butadiene rubber, carboxymethyl cellulose, polypropylene, polytetrafluoroethylene, polyacrylonitrile, and polyamide are more preferable.
  • These suitable binders are excellent in heat resistance, have a very wide potential window, are stable at both the positive electrode potential and the negative electrode potential, and can be used for the positive electrode (and negative electrode) active material layer.
  • the material is not limited to these, and a known material conventionally used as a binder for a lithium ion secondary battery can be used. These binders may be used alone or in combination of two or more.
  • the amount of the binder contained in the positive electrode active material layer is not particularly limited as long as it can bind the positive electrode active material, but preferably 0.5 to 15 mass with respect to the positive electrode active material layer. %, More preferably 1 to 10% by mass.
  • the conductive auxiliary agent added to the positive electrode active material layer as necessary is blended to improve the conductivity of the positive electrode active material layer.
  • a conductive support agent carbon materials, such as carbon black, such as acetylene black, a graphite, and a vapor growth carbon fiber, can be mentioned, for example.
  • carbon black such as acetylene black, a graphite, and a vapor growth carbon fiber
  • an electronic network inside the positive electrode active material layer is effectively formed, which can contribute to improvement of the output characteristics of the battery.
  • the conventionally well-known material used as a conductive support agent for lithium ion secondary batteries can be used. These conductive assistants may be used alone or in combination of two or more.
  • the conductive binder having the functions of the conductive assistant and the binder may be used in place of the conductive assistant and the binder, or one or both of the conductive assistant and the binder. You may use together.
  • the conductive binder for example, commercially available TAB-2 (manufactured by Hosen Co., Ltd.) can be used.
  • the density of the positive electrode active material layer is preferably 2.5 g / cm 3 or more and 3.0 g / cm 3 or less.
  • the density of the positive electrode active material layer is less than 2.5 g / cm 3 , it is difficult to improve the discharge capacity because the weight (filling amount) per unit volume cannot be improved.
  • the density of the positive electrode active material layer exceeds 3.0 g / cm 3 , the amount of voids in the positive electrode active material layer is remarkably reduced, and the permeability of the non-aqueous electrolyte and the lithium ion diffusibility may be reduced. is there.
  • each positive electrode side current collector 102 a constituting the three positive electrode plates 102 having such a solid solution positive electrode active material layer is joined to the positive electrode tab 105.
  • the positive electrode tab 105 for example, an aluminum foil having a thickness of about 0.2 mm, an aluminum alloy foil, a copper foil, or a nickel foil can be used.
  • the negative electrode plate 104 constituting the electrode laminate 101 includes a negative electrode current collector 104a extending to the negative electrode tab 106, and a negative electrode active material layer formed on both main surfaces of a part of the negative electrode current collector 104a. And have.
  • the negative electrode side current collector 104a of the negative electrode plate 104 is an electrochemically stable metal foil such as a nickel foil, a copper foil, a stainless steel foil, or an iron foil having a thickness of about 10 ⁇ m.
  • the negative electrode active material layer constituting the negative electrode plate 104 includes, as the negative electrode active material, lithium, a lithium alloy, or a negative electrode material capable of occluding and releasing lithium, and if necessary, a binder or a conductive material.
  • An auxiliary agent may be included.
  • the negative electrode active material layer is prepared, for example, by adding a binder such as polyvinylidene fluoride and a solvent such as N-2-methylpyrrolidone to a negative electrode active material such as non-graphitizable carbon, graphitizable carbon, or graphite.
  • each negative electrode plate 104 is configured to be joined to a single negative electrode tab 106.
  • Examples of the negative electrode material capable of inserting and extracting lithium include graphite (natural graphite, artificial graphite, etc.), which is highly crystalline carbon, low crystalline carbon (soft carbon, hard carbon), carbon black (Ketjen) Carbon materials such as black, acetylene black, channel black, lamp black, oil furnace black, thermal black), fullerenes, carbon nanotubes, carbon nanofibers, carbon nanohorns, carbon fibrils (containing 10% by mass or less of silicon nanoparticles) Silicon (Si), germanium (Ge), tin (Sn), lead (Pb), aluminum (Al), indium (In), zinc (Zn), hydrogen (H), calcium (Ca), strontium( r), barium (Ba), ruthenium (Ru), rhodium (Rh), iridium (Ir), palladium (Pd), platinum (Pt), silver (Ag), gold (Au), cadmium (Cd), mercury ( Hg), gallium (Ga), thallium (T
  • Lithium - can be exemplified transition metal composite oxide. However, it is not limited to these, The conventionally well-known material used as a negative electrode active material for lithium ion secondary batteries can be used. These negative electrode active materials may be used alone or in combination of two or more.
  • the carbon material is made of a graphite material that is coated with an amorphous carbon layer and is not scaly, and the BET specific surface area of the carbon material is 0.8 m 2 / g or more and 1.5 m 2. It is preferable that the tap density is 0.9 g / cm 3 or more and 1.2 g / cm 3 or less.
  • a carbon material made of a graphite material that is coated with an amorphous carbon layer and is not scale-like is preferable because of its high lithium ion diffusibility into the graphite layered structure.
  • the BET specific surface area of such a carbon material is 0.8 m 2 / g or more and 1.5 m 2 / g or less because the capacity retention can be further improved. Furthermore, when the tap density of such a carbon material is 0.9 g / cm 3 or more and 1.2 g / cm 3 or less, the weight (filling amount) per unit volume can be improved, and the discharge capacity is improved. be able to.
  • the negative electrode active material layer containing at least the carbon material and the binder has a BET specific surface area of 2.0 m 2 / g or more and 3.0 m 2 / g or less.
  • the BET specific surface area of the negative electrode active material layer is 2.0 m 2 / g or more and 3.0 m 2 / g or less, the permeability of the non-aqueous electrolyte can be improved, and the capacity retention is further improved. Gas generation due to decomposition of the non-aqueous electrolyte can be suppressed.
  • the BET specific surface area of the negative electrode active material layer containing at least a carbon material and a binder after pressure molding is preferably 2.01 m 2 / g or more and 3.5 m 2 / g or less. is there.
  • the BET specific surface area of the negative electrode active material layer after pressure molding is set to 2.01 m 2 / g or more and 3.5 m 2 / g or less.
  • the increase in the BET specific surface area before and after pressure press molding of the negative electrode active material layer containing at least the carbon material and the binder is 0.01 m 2 / g or more and 0.5 m 2 / g or less. Is preferred. Since the BET specific surface area after pressure forming of the negative electrode active material layer can be 2.01 m 2 / g or more and 3.5 m 2 / g or less, the permeability of the non-aqueous electrolyte can be improved. Capacity retention can be improved and gas generation due to decomposition of the non-aqueous electrolyte can be suppressed.
  • each active material layer active material layer on one side of the current collector
  • the thickness of each active material layer is not particularly limited, and conventionally known knowledge about the battery can be referred to as appropriate.
  • the thickness of each active material layer is usually about 1 to 500 ⁇ m, preferably 2 to 100 ⁇ m, taking into consideration the intended use of the battery (emphasis on output, energy, etc.) and ion conductivity.
  • the optimum particle size is different for expressing the unique effect of each active material, the optimum particle size for expressing each unique effect may be mixed and used. There is no need to make the particle size of the material uniform.
  • the average particle size of the oxide may be approximately the same as the average particle size of the positive electrode active material included in the existing positive electrode active material layer, and is not particularly limited. . From the viewpoint of higher output, it is preferably in the range of 1 to 20 ⁇ m.
  • the “particle diameter” refers to the outline of active material particles (observation surface) observed using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). It means the maximum distance among any two points.
  • the value of “average particle size” is the average value of the particle size of particles observed in several to several tens of fields using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The calculated value shall be adopted.
  • the particle diameters and average particle diameters of other components can be defined in the same manner. However, it is not limited to such a range at all, and it goes without saying that it may be outside this range as long as the effects of the present embodiment can be expressed effectively.
  • the separator 103 of the electrode laminate 101 prevents the short circuit between the positive electrode plate 102 and the negative electrode plate 104 described above, and may have a function of holding an electrolyte.
  • the separator 103 is a microporous film made of, for example, a polyolefin such as polyethylene (PE) or polypropylene (PP) having a thickness of about 25 ⁇ m. When an overcurrent flows, the pores of the layer are generated by the heat generation. It is also blocked and has a function of cutting off current.
  • the positive electrode plates 102 and the negative electrode plates 104 are alternately stacked via the separators 103, and the separators 103 are stacked on the uppermost layer and the lowermost layer. Is formed.
  • the electrolyte contained in the secondary battery 10 includes an electrolyte solution held in the separator 103, a polymer gel electrolyte, a solid polymer electrolyte, and a layer structure, and further includes a polymer gel electrolyte and a solid polymer.
  • the electrolyte solution is preferably one that is usually used in a lithium ion secondary battery, and specifically has a form in which a supporting salt (lithium salt) is dissolved in an organic solvent.
  • lithium salt examples include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), lithium hexafluoroarsenate (LiAsF 6 ), six Inorganic acid anion salts such as lithium fluorotantalate (LiTaF 6 ), lithium tetrachloroaluminate (LiAlCl 4 ), lithium decachlorodecaborate (Li 2 B 10 Cl 10 ), lithium trifluoromethanesulfonate (LiCF 3) Organic acids such as SO 3 ), lithium bis (trifluoromethanesulfonyl) imide (Li (CF 3 SO 2 ) 2 N), lithium bis (pentafluoroethanesulfonyl) imide (Li (C 2 F 5 SO 2 ) 2 N) List at least one lithium salt selected from anionic salts Can.
  • LiPF 6 lithium
  • organic solvent examples include cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC); chain carbonates such as dimethyl carbonate (DMC), methyl ethyl carbonate (EMC), and diethyl carbonate (DEC).
  • cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC)
  • chain carbonates such as dimethyl carbonate (DMC), methyl ethyl carbonate (EMC), and diethyl carbonate (DEC).
  • Ethers such as tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-dibutoxyethane; lactones such as ⁇ -butyrolactone; nitriles such as acetonitrile; methyl propionate Esters such as amides; Amides such as dimethylformamide; One using at least one selected from methyl acetate and methyl formate, or a mixture using an organic solvent such as an aprotic solvent can be used. .
  • polymer gel electrolyte examples include those containing a polymer constituting the polymer gel electrolyte and an electrolytic solution in a conventionally known ratio. For example, from the viewpoint of ionic conductivity, it is desirable that the content be about several mass% to 98 mass%.
  • the polymer gel electrolyte is a solid polymer electrolyte having ion conductivity containing the above-described electrolytic solution usually used in a lithium ion secondary battery.
  • the present invention is not limited to this, and includes a structure in which a similar electrolyte solution is held in a polymer skeleton having no lithium ion conductivity.
  • Examples of the polymer having no lithium ion conductivity used for the polymer gel electrolyte include polyvinylidene fluoride (PVdF), polyvinyl chloride (PVC), polyacrylonitrile (PAN), and polymethyl methacrylate (PMMA). Can be used. However, it is not necessarily limited to these. In addition, since polyacrylonitrile (PAN), polymethyl methacrylate (PMMA), and the like are in a class that has almost no ionic conductivity, it can be a polymer having the ionic conductivity.
  • the polymer used for the polymer gel electrolyte is exemplified as a polymer having no lithium ion conductivity.
  • the solid polymer electrolyte examples include a structure in which the lithium salt is dissolved in polyethylene oxide (PEO), polypropylene oxide (PPO), and the like, and does not contain an organic solvent. Therefore, when the electrolyte layer is composed of a solid polymer electrolyte, there is no fear of liquid leakage from the battery, and the battery reliability can be improved.
  • PEO polyethylene oxide
  • PPO polypropylene oxide
  • the thickness of the electrolyte layer of the secondary battery 10 is preferably thin from the viewpoint of reducing internal resistance.
  • the thickness of the electrolyte layer is usually 1 to 100 ⁇ m, preferably 5 to 50 ⁇ m.
  • a polymer gel electrolyte or a solid polymer electrolyte matrix polymer can exhibit excellent mechanical strength by forming a cross-linked structure.
  • a suitable polymerization initiator is used to polymerize a polymer for forming a polymer electrolyte (for example, polyethylene oxide (PEO) or polypropylene oxide (PPO)) by thermal polymerization, ultraviolet polymerization, A polymerization treatment such as radiation polymerization or electron beam polymerization may be performed.
  • the electrode laminate 101 configured as described above is housed and sealed in the upper exterior member 107 and the lower exterior member 108.
  • the upper exterior member 107 and the lower exterior member 108 for sealing the electrode laminate 101 are laminated with a resin film such as polyethylene or polypropylene or a metal foil such as aluminum laminated with a resin such as polyethylene or polypropylene. It is made of a material having flexibility such as a resin-metal thin film laminate material, and the upper exterior member 107 and the lower exterior member 108 are heat-sealed to lead the positive electrode tab 105 and the negative electrode tab 106 to the outside. In this state, the electrode laminate 101 is sealed.
  • the positive electrode tab 105 and the negative electrode tab 106 are provided with a seal film 109 in order to ensure adhesion between the upper exterior member 107 and the lower exterior member 108 at a portion in contact with the upper exterior member 107 and the lower exterior member 108.
  • a seal film 109 in order to ensure adhesion between the upper exterior member 107 and the lower exterior member 108 at a portion in contact with the upper exterior member 107 and the lower exterior member 108.
  • the sealing film 109 can comprise from the synthetic resin material excellent in electrolyte solution resistance and heat-fusion properties, such as polyethylene, modified polyethylene, a polypropylene, a modified polypropylene, or an ionomer.
  • the secondary battery using the solid solution positive electrode such as Li 2 MnO 3 described above has a technical problem that although it has a large discharge capacity, it has poor cycle characteristics and is likely to deteriorate when repeated charging and discharging at a high potential. . That is, as shown in FIG. 7, it is known that a secondary battery using a solid solution system positive electrode has a reduced capacity retention rate when it is repeatedly charged and discharged.
  • the cause of such deterioration of cycle characteristics is considered as follows. That is, in a secondary battery using a solid solution positive electrode, when a constant voltage charge is performed for a long time at a high voltage as shown in FIG. 6A, transition metal ions such as Mn ions and Ni ions are eluted from the positive electrode.
  • Mn ions and Ni ions eluted from the positive electrode are electrodeposited on the negative electrode as shown in FIG. 6B.
  • the electrolytic solution is decomposed by Mn or Ni electrodeposited on the negative electrode, and the decomposition product is deposited on the negative electrode.
  • the deposit causes the movement of Li ions as shown in FIG. 6D.
  • This causes inhibition of the battery (which increases internal resistance). That is, a capacity that cannot be discharged remains in the battery due to such an increase in internal resistance. If this capacity is left as it is, the positive electrode potential at the time of charging shifts and the positive electrode potential increases, thereby promoting deterioration.
  • the remaining capacity becomes a value that cannot be ignored by repeating charging and discharging, and in order to suppress the occurrence of an error in the SOC, the actual actual open circuit voltage of the secondary battery is reduced.
  • the actual SOC based on the actual open circuit voltage or the actual current of the secondary battery is detected, the estimated open circuit voltage is calculated from the actual SOC and the voltage-SOC reference curve acquired in advance, and these actual open circuits are calculated. The degree of coincidence between the voltage and the estimated open circuit voltage is determined.
  • FIG. 4A is a block diagram showing an electric vehicle to which a control device according to an embodiment of the present invention is applied
  • FIG. 4B is a block diagram showing details of the charging controller of FIG. 4A
  • FIG. 4C is stored in the storage unit of FIG. 4B.
  • FIG. 5 is a flowchart showing a control method according to an embodiment of the present invention.
  • the electric vehicle of this example includes the above-described secondary battery 10, the charging controller 20, the electric drive system 30, the current sensor 40, the voltage sensor 50, the charger 60, and the power.
  • An input / output terminal 70, an in-vehicle battery 80, and a stationary battery 90 are provided.
  • the electric drive system 30 of this example is configured by a motor generator and an inverter that receive an electrode supply from the secondary battery 10 to output a driving force to the drive wheels and supply charging power to the secondary battery 10 during regeneration. Yes.
  • the charger 60 receives a control command from the charge control device 20 and controls charging / discharging of the secondary battery 10, and supplies discharge power of the secondary battery 10 to the in-vehicle battery 80 or the stationary battery 90.
  • the power input / output terminal 70 is connected to a commercial power source to supply power to the secondary battery 10, or is connected to the stationary battery 90 to supply discharge power from the secondary battery 10 to the stationary battery 90.
  • the charging control device 20 of this example is a control device for controlling charging / discharging of the secondary battery 10 via the charger 60, and charging / discharging current flowing in the secondary battery 10 detected by the current sensor 40, Based on the open circuit voltage of the secondary battery 10 detected by the voltage sensor 50, the charging and discharging of the secondary battery 10 are controlled and the SOC of the secondary battery 10 is calculated.
  • the current sensor 40 measures the charge / discharge current flowing through the secondary battery 10 and outputs it to the charge controller 20.
  • the voltage sensor 50 measures the open circuit voltage of the secondary battery 10 (voltage between both terminals of the secondary battery 10 in a no-load state) and outputs it to the charge controller 20.
  • the measurement of the open circuit voltage of the secondary battery 10 by the voltage sensor 50 can be performed in a power-off state such as when the vehicle is stopped when the power supply from the secondary battery 10 is interrupted.
  • a plurality of the open circuit voltage of the secondary battery 10 detected by the voltage sensor 50 and the current value detected by the current sensor 40 are sampled, and the current value is obtained from the IV characteristic regression line obtained from the sampling data. It is also possible to obtain the open circuit voltage when is zero and use this as the open circuit voltage (see Japanese Patent Application Laid-Open No. 2002-243813).
  • the charging controller 20 of this example is configured by a CPU or MPU, ROM, and RAM, and includes an SOC detection unit 22, a storage unit 24, and a voltage error determination unit 26 as shown in FIG. 4B.
  • the SOC detection unit 22 calculates the current SOC of the secondary battery 10 by integrating the current values during charging and discharging detected by the current sensor 40, or is detected by the voltage sensor 50 instead.
  • the present SOC of the secondary battery 10 is calculated from the open circuit voltage.
  • the storage unit 24 is a memory that stores a voltage-SOC reference curve indicating the relationship between the open circuit voltage of the secondary battery 10 and the SOC, and an example of the voltage-SOC reference curve stored in the storage unit 24 is shown in FIG. Shown in The voltage error determination unit 26 inputs the actual SOC value calculated by the SOC detection unit 22, and substitutes the actual SOC into the voltage-SOC reference curve stored in the storage unit 24, thereby estimating the open circuit voltage V 1. To extract. Then, the estimated open circuit voltage V1 is compared with the actual open circuit voltage V detected by the voltage sensor 50, and the degree of coincidence is determined.
  • Degree of coincidence is determined by the voltage error decision unit 26 is determined based on the difference ⁇ V between the estimated open-circuit voltages V 1 and the actual open-circuit voltage V, the difference ⁇ V is detected by the voltage sensor 50 as long as it is within a predetermined range While it is determined that there is no error between the actual open circuit voltage V and the true open circuit voltage, when the difference ⁇ V is outside the predetermined range, it is determined that there is an error in the actual open circuit voltage V detected by the voltage sensor 50. When it is determined that there is no error in the actual open circuit voltage V, the actual open circuit voltage V detected by the voltage sensor 50 is used for charge / discharge control of the secondary battery 10, but the actual open circuit voltage V has an error. Is determined, discharge processing for approximating the error ⁇ V to zero is executed. Details of this discharge process will be described later.
  • step S ⁇ b> 1 the charging controller 20 starts detecting the current value A flowing through the secondary battery 10 by the current sensor 40, and the voltage value V applied to both terminals of the secondary battery 10 by the voltage sensor 50. Start detecting. Further, the current number of times of charging M and the number of times of discharging process N in step S6 are counted. Then, it is determined whether the current number of charging times M is less than the reference charging times M 0 set in advance at step S2, if the reference number of charge cycles M0 less then proceeds to step S3, the reference charge count M0 If exceeded, the process proceeds to step S9.
  • step S9 the secondary battery 10 is discharged at a preset discharge rate.
  • step S9 or without error ⁇ V of JitsuHiraku circuit voltage V to be described later, by temporarily performing the discharge process when performing the charging process exceeds a predetermined number of times M 0, the error ⁇ V of the actual open-circuit voltage V It is supposed to prevent the outbreak.
  • step S3 the current actual SOC of the secondary battery 10 is calculated using the current and / or voltage detected in step S1.
  • the actual SOC can be calculated by accumulating the current values during charging and discharging detected by the current sensor 40 or from the open circuit voltage detected by the voltage sensor 50.
  • step S4 using the actual SOC calculated in the step S3, the voltage -SOC reference curve shown in FIG. 4C stored in the storage unit 24, obtains an estimated open-circuit voltage V 1. As shown in FIG. 4C, the open circuit voltage of the voltage -SOC reference curve corresponding to the value of the actual SOC and the actual open circuit voltage V 1.
  • step S5 the absolute value of the difference between the actual and the open circuit voltage V detected by the estimated open circuit voltage V 1 and step S1 obtained in step S4
  • step S5 if the absolute value of the difference ⁇ V between the actual open circuit voltage V and the estimated open-circuit voltage V 1 is less than the predetermined value a, the actual open-circuit voltage V it is determined that where there is no error in question It progresses to step S11 and the charging / discharging process of the secondary battery 10 is performed using the value of the actual open circuit voltage detected by step S1.
  • step S5 if the absolute value of the difference ⁇ V between the actual open circuit voltage V and the estimated open-circuit voltages V 1 is equal to or more than a predetermined value a, the error occurs in question to the actual open-circuit voltage V
  • step S6 discharge processing for eliminating the error ⁇ V is executed.
  • This discharge process is performed in a state that does not affect the driving of the secondary battery 10, and is executed before, for example, the next charging, but is shown as a continuous routine in the flowchart shown in FIG. 5 for convenience of explanation.
  • the discharge treatment in this example is preferably performed at a discharge rate of 1C or less.
  • the discharge rate of 1 C refers to a current value a [A] at which discharge ends when a secondary battery having a nominal capacity value a [Ah] is discharged at a constant current for 1 hour.
  • next step 7 it is determined whether or not the number N of discharge processes has reached a preset reference number N 0 or more. If the current number of discharge processes N has not reached the preset reference number of discharge processes N 0 , the process returns to step S1 to determine whether or not the error ⁇ V of the actual open circuit voltage V has been eliminated by the discharge process of step S6.
  • the second discharge process is executed in the subsequent step S6.
  • the error ⁇ V of the actual open-circuit voltage V until the discharge processing number N reaches the reference discharge processing number N 0 persists repeated.
  • the discharge rate stepwise with respect to the first discharge rate it is preferable to reduce the discharge rate stepwise with respect to the first discharge rate.
  • the discharge rate of the first discharge process is 1 C
  • the discharge rate of the second discharge process is 0.1 C
  • the discharge rate of the third discharge process is 0.05 C.
  • step S5 if the absolute value of the difference ⁇ V between the actual open circuit voltage V and the estimated open-circuit voltages V 1 in step S5 is less than a predetermined value a, It is determined that the error of the actual open circuit voltage V has been eliminated, the process proceeds to step S11, and the charging / discharging process of the secondary battery 10 is executed using the value of the actual open circuit voltage detected in step S1 of the routine.
  • step S5 In contrast, even running N 0 times discharge treatment, if the absolute value of the difference ⁇ V between the actual open circuit voltage V and the estimated open-circuit voltages V 1 in step S5 is still higher than a predetermined value a, JitsuHirakiro It is determined that the error of the voltage V is not eliminated by the discharge process, and the process proceeds to step S8, where the preset upper limit voltage during charging is changed to a value lower than the previous value. As a result, an appropriate upper limit voltage corresponding to the degree of deterioration of the secondary battery 10 is set, so that overcharging can be prevented.
  • step S6 power is released from the secondary battery 10 when the discharge process of step S6 is executed, and this power is supplied to the in-vehicle battery 80 and the stationary battery 90 by controlling the charger 60 by the charge controller 20. It is desirable to do. As a result, the remaining capacity power of the secondary battery 10 can be effectively used without being wasted.
  • Example 1 (Preparation of negative electrode) Graphite powder, acetylene black as a conductive additive, and polyvinylidene fluoride PVDF as a binder are blended in a mass ratio of 90: 5: 5, and N-methylpyrrolidone is added as a solvent and mixed. A negative electrode slurry was prepared. A copper foil was used as a current collector, and the negative electrode slurry obtained above was applied to each current collector and dried under vacuum for 24 hours to obtain a target negative electrode.
  • Mixing was performed to prepare a positive electrode slurry.
  • An aluminum foil was used as a current collector, and the positive electrode slurry obtained above was applied and dried under vacuum for 24 hours to obtain a target positive electrode.
  • Example 2 In Example 1, when the cell voltage error ⁇ V after resting for 1 minute after discharge exceeds 3 V during 100 charge / discharge cycles, or when 50 charge / discharge cycles are repeated, 0. After discharging to 2 V at a current density equivalent to 1 C, after resting for 15 minutes, if the cell voltage error ⁇ V still exceeds 3 V, control is performed to discharge to 2 V at a current density equivalent to 0.05 C The test was performed under the same conditions as in Example 1 except that. The battery capacity before starting this charge / discharge cycle and the capacity after 100 charge / discharge cycles were measured, and the capacity retention was calculated to be 96%.
  • Example 1 Comparative Example 1 >> In Example 1, the test was performed under the same conditions as in Example 1 except that the discharge treatment of FIG. 5 was not performed. The battery capacity before starting this charge / discharge cycle and the capacity after 100 charge / discharge cycles were measured, and the capacity retention rate was calculated to be 25%.
  • Examples 1 and 2 in which the discharge process is performed have durability after 100 cycles. It was confirmed that it improved by 70% or more. Further, from the results of Examples 1 and 2, it was confirmed that the capacity retention rate was slightly improved in Example 2 in which the discharge treatment was performed a plurality of times.
  • the discharge rate in the discharge process is set to 1 C or less, so that the complete discharge can be performed regardless of the specific resistance of the material constituting the secondary battery. This also eliminates the SOC error, thereby preventing overcharging.
  • the discharge process is performed a plurality of times, so even if a complete discharge cannot be achieved by a single discharge process, the discharge process is completed by performing the discharge process a plurality of times. It can be discharged.
  • the discharge rate is decreased for each discharge process in a plurality of discharge processes, so that the discharge is performed with respect to the internal resistance of the secondary battery in the first discharge process. Even when complete discharge cannot be performed due to a large current value, complete discharge can be performed in the subsequent discharge process.
  • the charging upper limit voltage of the secondary battery is set to the predetermined value. As a result, the overcharge can be prevented.
  • the discharge process is performed according to the number of times of charging regardless of the error determination of the actual open circuit voltage.
  • the error can be eliminated.
  • the discharge power generated by the discharge process is stored in the stationary battery 90 connected via the external charger or another in-vehicle battery 80 mounted on the vehicle.
  • the remaining capacity power of the secondary battery 10 can be used effectively without being wasted.
  • the solid solution material is a solid solution lithium-containing transition metal oxide represented by Li 1.5 [Ni a Co b Mn c [Li] d ] O 3 as a positive electrode active material. Since it uses, the secondary battery which can implement
  • the voltage sensor 50 corresponds to a voltage detection unit according to the present invention
  • the SOC detection unit 22 corresponds to an SOC detection unit according to the present invention
  • the storage unit 24 corresponds to a storage unit according to the present invention
  • the voltage The error determination unit 26 corresponds to an estimated voltage calculation unit and a determination unit according to the present invention
  • the charging controller 20 corresponds to a control unit according to the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 正極材料として固溶体材料からなる正極活物質を用いた二次電池(10)の制御装置(20)において、前記二次電池の実際の実開路電圧を検出する電圧検出手段(50)と、前記二次電池の実開路電圧及び/又は実際の電流に基づいて実際のSOCを検出するSOC検出手段(22)と、前記二次電池の開路電圧とSOCとの関係を示す電圧-SOC基準曲線を記憶する記憶手段(24)と、前記SOC検出手段で検出された実際のSOCと前記記憶手段に記憶された電圧-SOC基準曲線とから推定開路電圧を演算する推定電圧演算手段(26)と、前記電圧検出手段により検出された実開路電圧と前記推定電圧演算手段により演算された推定開路電圧との一致度を判定する判定手段(26)と、を備える。

Description

二次電池の制御装置及び制御方法
 本発明は、二次電池の充放電などの制御装置及び制御方法に関するものである。
 リチウム二次電池などの二次電池において、高容量化を目的として、Li[M (1-b)Mn]O又はLi[M (1-b)Mn]O1.5+c(Mは金属元素)といった固溶体材料からなる正極活物質が検討されている(特許文献1)。
特開2004-538610号公報
 しかしながら、上記固溶体材料からなる正極活物質を用いた二次電池は、充放電を繰返すと、放電末期における拡散律速によってリチウムLiが正極活物質に戻り難く、完全放電ができない。このため、実際の電池電圧を計測してSOC(State of Charge)を求めても、真のSOCとの誤差が大きくなることがあり、二次電池を精度よく制御することができないという問題がある。
 本発明が解決しようとする課題は、二次電池を精度よく制御できる二次電池の制御装置及び制御方法を提供することである。
 本発明は、固溶体材料からなる正極活物質を用いた二次電池に対し、二次電池の実際の電圧又は電流から求めたSOCに基づいて予め取得された電圧-SOC基準曲線から推定電圧を抽出し、実際の電圧と推定電圧との誤差を判定することによって上記課題を解決する。
 本発明によれば、実際に検出した電圧又は電流から求めたSOCを、予め取得された電圧-SOC基準曲線に代入して推定電圧を求め、実際の電圧が推定電圧に対してどの程度の誤差があるかを判定するので、この誤差が大きい場合には当該誤差を解消するための所定の措置を採ることができる。その結果、二次電池を高精度で制御することができ、過充電や過放電を抑制することができる。
本発明の制御方法及び制御装置の充電制御対象である二次電池の一例を示す平面図である。 図1のII-II線に沿う断面図である。 スピネル構造変化割合の定義を説明するグラフ図である。 本発明の一実施の形態に係る充電制御装置を適用した電気自動車を示すブロック図である。 図4Aの充電制御器の細部を示すブロック図である。 図4Bの記憶部に記憶される電圧-SOC基準曲線の一例を示す図である。 本発明の一実施の形態に係る充電制御方法を示すフローチャートである。 固溶体正極を用いた二次電池の課題を説明する図(その1)である。 固溶体正極を用いた二次電池の課題を説明する図(その2)である。 固溶体正極を用いた二次電池の課題を説明する図(その3)である。 固溶体正極を用いた二次電池の課題を説明する図(その4)である。 固溶体正極を用いた二次電池の充放電回数に対する容量保持率の関係を示すグラフである。
 以下、本発明の一実施の形態を図面に基づいて説明する。初めに充電制御対象である二次電池の一例を説明したのち、本発明の一実施の形態に係る制御方法及び制御装置を説明する。
《二次電池の構成例》
 図1は本発明の制御方法及び制御装置の充電制御対象である二次電池の一例を示す平面図、図2は図1のII-II線に沿う断面図である。充電制御対象となる二次電池10としては、たとえば、リチウムイオン二次電池などのリチウム系二次電池などが挙げられる。ただし、以下に示す二次電池は本発明の制御方法及び制御装置の充電制御対象の一例であって、これ以外の構造を有する二次電池も本発明の充電制御対象に含まれる。
 図1及び図2に示す二次電池10は、3枚の正極板102、7枚のセパレータ103及び3枚の負極板104を有する電極積層体101と、当該電極積層体101にそれぞれ接続された正極タブ105及び負極タブ106と、これら電極積層体101及び正極タブ105、負極タブ106を収容して封止する上部外装部材107及び下部外装部材108と、特に図示しない電解液とから構成されている。なお、正極板102、セパレータ103及び負極板104の各構成枚数は特に限定されず、1枚の正極板102、3枚のセパレータ103及び1枚の負極板104で電極積層体101を構成してもよく、また必要に応じて正極板102、セパレータ103及び負極板104の枚数を適宜選択してもよい。
 電極積層体101を構成する正極板102は、正極タブ105まで伸びている正極側集電体102aと、この正極側集電体102aの一部の両主面にそれぞれ形成された正極活物質層とを有する。正極板102を構成する正極側集電体102aは、たとえば厚さ20μm程度のアルミニウム箔、アルミニウム合金箔、銅チタン箔又はステンレス箔等の電気化学的に安定した金属箔で構成することができる。
 正極板102を構成する正極活物質層は、正極活物質と、カーボンブラック等の導電剤と、ポリフッ化ビニリデンやポリ四フッ化エチレンの水性ディスパージョン等の結着剤とを混合したものを、正極側集電体102aの一部の主面に塗布し、乾燥及びプレスすることにより形成されている。特に本例に係る二次電池10は、固溶体材料からなる正極活物質により正極活物質層が構成されている。このような正極活物質に用いられる固溶体材料としては、特に限定されないが、たとえば、下記一般式(1)で表される固溶体リチウム含有遷移金属酸化物が挙げられる。
 Li1.5[NiCoMn[Li]]O…(1)
(式(1)中、Liはリチウム、Niはニッケル、Coはコバルト、Mnはマンガン、Oは酸素を示し、a、b、c及びdは、0<a<1.4、0≦b<1.4、0<c<1.4、0.1<d≦0.4、a+b+c+d=1.5、1.1≦a+b+c<1.4の関係を満足する。)
 そして、本例の固溶体リチウム含有遷移金属酸化物は、層状構造部位と、所定の電位範囲における充電又は充放電を行うことによりスピネル構造に変化する部位(層状構造のLiMnO)とを有し、当該固溶体リチウム含有遷移金属酸化物における層状構造のLiMnOがスピネル構造のLiMnに変化し、且つ、スピネル構造に変化する部位がスピネル構造のLiMnに全て変化した場合の割合を1としたとき、当該固溶体リチウム含有遷移金属酸化物のスピネル構造変化割合が0.25以上1.0未満である。
 「スピネル構造変化割合」とは、所定の電位範囲における充電又は充放電を行うことにより、当該固溶体リチウム含有遷移金属酸化物における層状構造のLiMnOがスピネル構造のLiMnに変化した割合を規定するものであって、当該固溶体リチウム含有遷移金属酸化物における層状構造のLiMnOがスピネル構造のLiMnに全て変化した場合のスピネル構造変化割合を1としたものである。具体的には、下記式にて定義される。
Figure JPOXMLDOC01-appb-M000001
 「スピネル構造変化割合」の定義について、当該固溶体リチウム含有遷移金属酸化物を正極活物質とした正極を用いて組み立てた電池について、充電開始前の初期状態Aから、4.5Vまで充電された充電状態Bとし、更にプラトー領域を経て、4.8Vまで充電された過充電状態Cとし、更に2.0Vまで放電された放電状態Dとする、図3に示すような場合を例に挙げて説明する。上記式における「プラトー領域の実容量」は、図3におけるプラトー領域(具体的には4.5Vから4.8Vまでの領域(充電状態Bから過充電状態Cまでの領域BCの実容量VBC;プラトー領域の実容量)であり、結晶構造が変化していることに起因する領域である。)の実容量を計測すればよい。
 また、実際には、組成式(1)の固溶体リチウム含有遷移金属酸化物において、初期状態Aから4.5Vまで充電された充電状態Bまでの領域ABの実用量VABは層状構造部位であるLiMOの組成(y)と理論容量(V)に相当し、4.5Vまで充電された充電状態Bから4.8Vまで充電された過充電状態Cの領域BCの実容量VBCはスピネル構造部位であるLiMnOの組成比(x)と理論容量(V)に相当することから、初期状態Aから所定のプラトー領域までに計測した実容量(V)を(V=VAB+VBC)とすると、VAB=y(V)、VBC=x(V)Kであるので、下記式を用いて計算することもできる(Mは、ニッケル(Ni)、コバルト(Co)及びマンガン(Mn)からなる群より選ばれる少なくとも1種を示す。)。
 さらに、「固溶体中のLiMnOの組成比」は、固溶体リチウム含有遷移金属酸化物の組成式から算出することができる。なお、固溶体リチウム含有遷移金属酸化物における層状構造部位とスピネル構造部位の有無は、X線回折分析(XRD)よる層状構造及びスピネル構造に特異なピークの存在により判定することができ、その割合は、上述したような容量の計測・計算から判定することができる。
 また、スピネル構造変化割合が1.0となることはなく、0.25未満の場合は、高くても従来の固溶体リチウム含有遷移金属酸化物と同程度の放電容量や容量保持率を実現し得る固溶体リチウム含有遷移金属酸化物が得られるだけである。
 本例の固溶体リチウム含有遷移金属酸化物は、組成式(1)において、a、b、c及びdが0<a<1.4、0≦b<1.4、0<c<1.4、0.1<d≦0.4、a+b+c+d=1.5、1.1≦a+b+c<1.4の関係を満足しない場合は、固溶体における構造が安定化しない。
 また、本例の固溶体リチウム含有遷移金属酸化物は、組成式(1)において、a、b、c及びdは、0<a<1.35、0≦b<1.35、0<c<1.35、0.15<d≦0.35、a+b+c+d=1.5、1.15≦a+b+c<1.35の関係を満足し、所定の電位範囲における充電又は充放電を行うことにより、当該固溶体リチウム含有遷移金属酸化物のスピネル構造変化割合が0.4以上0.9未満であることがより好適である。
 さらに、本例の固溶体リチウム含有遷移金属酸化物は、組成式(1)において、a、b、c及びdは、0<a<1.3、0≦b<1.3、0<c<1.3、0.15<d≦0.35、a+b+c+d=1.5、1.2≦a+b+c<1.3の関係を満足し、所定の電位範囲における充電又は充放電を行うことにより、当該固溶体リチウム含有遷移金属酸化物のスピネル構造変化割合が0.6以上0.8以下であることが最も好適である。
 このような固溶体リチウム含有遷移金属酸化物は、リチウムイオン二次電池の正極活物質として用いた場合、高い放電容量及び容量保持率を実現し得るため、リチウムイオン二次電池用正極やリチウムイオン二次電池に好適に用いられる。その結果、車両の駆動電源用や補助電源用のリチウムイオン二次電池として好適に利用できる。このほかにも、家庭用や携帯機器用のリチウムイオン二次電池にも十分に適用可能である。
 本例の固溶体リチウム含有遷移金属酸化物の製造方法について説明すると、まず、固溶体リチウム含有遷移金属酸化物前駆体の製造方法の一例としては、硫酸塩や硝酸塩などのリチウム化合物、ニッケル化合物、コバルト化合物及びマンガン化合物を含む原料を混合して混合物を得、次いで、得られた混合物を不活性ガス雰囲気下、800℃以上1000℃以下、6時間以上24時間以下で焼成する固溶体リチウム含有遷移金属酸化物の製法方法を挙げることができる。
 また、固溶体リチウム含有遷移金属酸化物前駆体の製造方法の他の一例としては、硫酸塩や硝酸塩などのリチウム化合物、ニッケル化合物、コバルト化合物及びマンガン化合物を含む原料を混合して混合物を得、次いで、得られた混合物を800℃以上1000℃以下、6時間以上24時間以下で焼成して焼成物を得、しかる後、得られた焼成物を不活性ガス雰囲気下、600℃以上800℃以下で熱処理する固溶体リチウム含有遷移金属酸化物の製法方法を挙げることができる。
 正極活物質層に必要に応じて添加する結着剤(バインダー)としては、特に限定されるものではないが、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリアクリロニトリル(PAN)、ポリイミド(PI)、ポリアミド(PA)、セルロース、カルボキシメチルセルロース(CMC)、エチレン-酢酸ビニル共重合体、ポリ塩化ビニル(PVC)、スチレン・ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム、エチレン・プロピレン・ジエン共重合体、スチレン・ブタジエン・スチレンブロック共重合体及びその水素添加物、スチレン・イソプレン・スチレンブロック共重合体及びその水素添加物などの熱可塑性高分子、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン・テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂、ビニリデンフルオライド-ヘキサフルオロプロピレン系フッ素ゴム(VDF-HFP系フッ素ゴム)、ビニリデンフルオライド-ヘキサフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-HFP-TFE系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン系フッ素ゴム(VDF-PFP系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-PFP-TFE系フッ素ゴム)、ビニリデンフルオライド-パーフルオロメチルビニルエーテル-テトラフルオロエチレン系フッ素ゴム(VDF-PFMVE-TFE系フッ素ゴム)、ビニリデンフルオライド-クロロトリフルオロエチレン系フッ素ゴム(VDF-CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴム、エポキシ樹脂等が挙げられる。なかでも、ポリフッ化ビニリデン、ポリイミド、スチレン・ブタジエンゴム、カルボキシメチルセルロース、ポリプロピレン、ポリテトラフルオロエチレン、ポリアクリロニトリル、ポリアミドであることがより好ましい。これらの好適なバインダーは、耐熱性に優れ、さらに電位窓が非常に広く正極電位、負極電位双方に安定であり正極(及び負極)活物質層に使用が可能である。
 ただしこれらに限定されるものではなく、リチウムイオン二次電池用の結着剤として従来用いられている公知の材料を用いることができる。これらの結着剤は、1種のみを単独で用いてもよく、2種以上を併用してもよい。
 正極活物質層に含まれるバインダー量は、正極活物質を結着することができる量であれば特に限定されるものではないが、好ましくは正極活物質層に対して、0.5~15質量%であり、より好ましくは1~10質量%である。
 正極活物質層に必要に応じて添加する導電助剤とは、正極活物質層の導電性を向上させるために配合されるものである。導電助剤としては、例えば、アセチレンブラック等のカーボンブラック、グラファイト、気相成長炭素繊維などの炭素材料を挙げることができる。正極活物質層が導電助剤を含むと、正極活物質層の内部における電子ネットワークが効果的に形成され、電池の出力特性の向上に寄与し得る。ただし、これらに限定されるものではなく、リチウムイオン二次電池用の導電助剤として用いられている従来公知の材料を用いることができる。これらの導電助剤は、1種のみを単独で用いてもよく、2種以上を併用してもよい。
 また、上記導電助剤と結着剤の機能を併せ持つ導電性結着剤をこれら導電助剤と結着剤に代えて用いてもよいし、又はこれら導電助剤と結着剤の一方若しくは双方と併用してもよい。導電性結着剤としては、例えば、既に市販のTAB-2(宝泉株式会社製)を用いることができる。
 さらに、正極活物質層の密度は、2.5g/cm以上3.0g/cm以下であることが好適である。正極活物質層の密度が2.5g/cm未満である場合には、単位体積当たりの重量(充填量)を向上させることができないため、放電容量を向上させることが難しい。また、正極活物質層の密度が3.0g/cmを超える場合には、正極活物質層の空隙量が著しく減少し、非水電解液の浸透性やリチウムイオン拡散性が低下することがある。
 図1及び図2に戻り、このような固溶体正極活物質層を有する、3枚の正極板102を構成する各正極側集電体102aが、正極タブ105に接合されている。正極タブ105としては、たとえば、厚さ0.2mm程度のアルミニウム箔、アルミニウム合金箔、銅箔、又はニッケル箔等を用いることができる。
 電極積層体101を構成する負極板104は、負極タブ106まで伸びている負極側集電体104aと、当該負極側集電体104aの一部の両主面にそれぞれ形成された負極活物質層とを有する。負極板104の負極側集電体104aは、例えば、厚さ10μm程度のニッケル箔、銅箔、ステンレス箔又は、鉄箔等の電気化学的に安定した金属箔である。
 負極板104を構成する負極活物質層は、負極活物質として、リチウム、リチウム合金、又はリチウムを吸蔵及び放出することが可能な負極材料を含んでおり、必要に応じて、結着剤や導電助剤を含んでいてもよい。なお、結着剤や導電助剤は上記説明したものを用いることができる。負極活物質層は、たとえば、難黒鉛化炭素、易黒鉛化炭素又は黒鉛等の負極活物質に、ポリフッ化ビニリデン等の結着剤とN-2-メチルピロリドン等の溶剤を加えてスラリーを調製して負極側集電体104aの一部の両主面に塗布し、乾燥及びプレスすることにより形成されている。なお、本例の二次電池10では、3枚の負極板104は、負極板104を構成する各負極側集電体104aが、単一の負極タブ106に接合されるような構成となっている。すなわち、本実施形態の二次電池10では、各負極板104は、単一の共通の負極タブ106に接合された構成となっている。
 リチウムを吸蔵及び放出することが可能な負極材料としては、例えば、高結晶性カーボンであるグラファイト(天然グラファイト、人造グラファイト等)、低結晶性カーボン(ソフトカーボン、ハードカーボン)、カーボンブラック(ケッチェンブラック、アセチレンブラック、チャンネルブラック、ランプブラック、オイルファーネスブラック、サーマルブラック等)、フラーレン、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、カーボンフィブリルなどの炭素材料(10質量%以下のケイ素ナノ粒子を含むものを含む。);ケイ素(Si)、ゲルマニウム(Ge)、スズ(Sn)、鉛(Pb)、アルミニウム(Al)、インジウム(In)、亜鉛(Zn)、水素(H)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、ルテニウム(Ru)、ロジウム(Rh)、イリジウム(Ir)、パラジウム(Pd)、白金(Pt)、銀(Ag)、金(Au)、カドミウム(Cd)、水銀(Hg)、ガリウム(Ga)、タリウム(Tl)、炭素(C)、窒素(N)、アンチモン(Sb)、ビスマス(Bi)、酸素(O)、硫黄(S)、セレン(Se)、テルル(Te)、塩素(Cl)等のリチウムと合金化する元素の単体、及びこれらの元素を含む酸化物(一酸化ケイ素(SiO)、SiO(0<x<2)、二酸化スズ(SnO)、SnO(0<x<2)、SnSiOなど)及び炭化物(炭化ケイ素(SiC)など)等;リチウム金属等の金属材料;リチウム-チタン複合酸化物(チタン酸リチウム:LiTi12)等のリチウム-遷移金属複合酸化物を挙げることができる。しかしながら、これらに限定されるものではなく、リチウムイオン二次電池用の負極活物質として用いられている従来公知の材料を用いることができる。これらの負極活物質は、1種のみを単独で用いてもよく、2種以上を併用してもよい。
 また、本例においては、炭素材料が、非晶質炭素層で表面が被覆され、且つ鱗片状ではない黒鉛材料からなり、炭素材料のBET比表面積が0.8m/g以上1.5m/g以下であり且つタップ密度が0.9g/cm以上1.2g/cm以下であることが好適である。非晶質炭素層で表面が被覆され、且つ鱗片状ではない黒鉛材料からなる炭素材料は、黒鉛層状構造へのリチウムイオン拡散性が高く好ましい。また、このような炭素材料のBET比表面積が0.8m/g以上1.5m/g以下であると、更に容量保持率を向上させることができるため、好ましい。更に、このような炭素材料のタップ密度が0.9g/cm以上1.2g/cm以下であると、単位体積当たりの重量(充填量)を向上させることができ、放電容量を向上させることができる。
 さらに、本例においては、炭素材料及び結着剤を少なくとも含む負極活物質層のBET比表面積が2.0m/g以上3.0m/g以下であることが好適である。負極活物質層のBET比表面積が2.0m/g以上3.0m/g以下であることにより、非水電解液の浸透性を向上させることができ、更に容量保持率を向上させ、非水電解液の分解によるガス発生を抑制できる。また、本例においては、炭素材料及び結着剤を少なくとも含む負極活物質層の加圧成型後のBET比表面積が2.01m/g以上3.5m/g以下であることが好適である。負極活物質層の加圧成形後のBET比表面積が2.01m/g以上3.5m/g以下とすることにより、非水電解液の浸透性を向上させることができ、更に容量保持率を向上させ、非水電解液の分解によるガス発生を抑制できる。さらに、本例においては、炭素材料及び結着剤を少なくとも含む負極活物質層の加圧プレス成型前後のBET比表面積の増加分が0.01m/g以上0.5m/g以下であることが好適である。負極活物質層の加圧成形後のBET比表面積が2.01m/g以上3.5m/g以下とすることができるため、非水電解液の浸透性を向上させることができ、更に容量保持率を向上させ、非水電解液の分解によるガス発生を抑制できる。
 また、各活物質層(集電体片面の活物質層)の厚さについても特に限定されるものではなく、電池についての従来公知の知見を適宜参照することができる。一例を挙げると、各活物質層の厚さは、電池の使用目的(出力重視、エネルギー重視など)、イオン伝導性を考慮し、通常1~500μm程度、好ましくは2~100μmである。さらに、活物質それぞれ固有の効果を発現する上で、最適な粒径が異なる場合には、それぞれの固有の効果を発現する上で最適な粒径同士を混合して用いればよく、全ての活物質の粒径を均一化させる必要はない。例えば、正極活物質として粒子形態の酸化物を用いる場合、酸化物の平均粒子径は、既存の正極活物質層に含まれる正極活物質の平均粒子径と同程度であればよく、特に制限されない。高出力化の観点からは、好ましくは1~20μmの範囲であればよい。なお、本明細中において、「粒子径」とは、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用いて観察される活物質粒子(観察面)の輪郭線上の任意の2点間の距離のうち、最大の距離を意味する。「平均粒子径」の値としては、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数~数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。他の構成成分の粒子径や平均粒子径も同様に定義することができる。ただし、このような範囲に何ら制限されるものではなく、本実施形態の作用効果を有効に発現できるものであれば、この範囲を外れていてもよいことは言うまでもない。
 電極積層体101のセパレータ103は、上述した正極板102と負極板104との短絡を防止するもので、電解質を保持する機能を備えてもよい。このセパレータ103は、例えば、厚さ25μm程度のポリエチレン(PE)やポリプロピレン(PP)等のポリオレフィン等から構成される微多孔性膜であり、過電流が流れると、その発熱によって層の空孔が閉塞され、電流を遮断する機能をも有するものである。そして、図2に示すように、正極板102と負極板104とは、セパレータ103を介して交互に積層され、さらにその最上層及び最下層にセパレータ103がそれぞれ積層され、これにより電極積層体101が形成されている。
 二次電池10に含有される電解質は、セパレータ103に保持させた電解液、高分子ゲル電解質、固体高分子電解質を用いて層構造を形成したもの、更には、高分子ゲル電解質や固体高分子電解質を用いて積層構造を形成したものなどを挙げることができる。ここで、電解液としては、例えば、通常リチウムイオン二次電池で用いられるものであることが好ましく、具体的には、有機溶媒に支持塩(リチウム塩)が溶解した形態を有する。リチウム塩としては、例えば、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)、過塩素酸リチウム(LiClO)、六フッ化ヒ酸リチウム(LiAsF)、六フッ化タンタル酸リチウム(LiTaF)、四塩化アルミニウム酸リチウム(LiAlCl)、リチウムデカクロロデカホウ素酸(Li10Cl10)等の無機酸陰イオン塩、トリフルオロメタンスルホン酸リチウム(LiCFSO)、リチウムビス(トリフルオロメタンスルホニル)イミド(Li(CFSON)、リチウムビス(ペンタフルオロエタンスルホニル)イミド(Li(CSON)等の有機酸陰イオン塩の中から選ばれる、少なくとも1種類のリチウム塩等を挙げることができる。また、有機溶媒としては、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)等の環状カーボネート類;ジメチルカーボネート(DMC)、メチルエチルカーボネート(EMC)、ジエチルカーボネート(DEC)等の鎖状カーボネート類;テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタン、1,2-ジブトキシエタン等のエーテル類;γ-ブチロラクトン等のラクトン類;アセトニトリル等のニトリル類;プロピオン酸メチル等のエステル類;ジメチルホルムアミド等のアミド類;酢酸メチル、蟻酸メチルの中から選ばれる少なくともから1種類又は2種以上を混合した、非プロトン性溶媒等の有機溶媒を用いたものなどが使用できる。
 高分子ゲル電解質としては、高分子ゲル電解質を構成するポリマーと電解液を従来公知の比率で含有したものを挙げることができる。例えば、イオン伝導度などの観点から、数質量%~98質量%程度とするのが望ましい。高分子ゲル電解質は、イオン導伝性を有する固体高分子電解質に、通常リチウムイオン二次電池で用いられる上記電解液を含有させたものである。しかしながら、これに限定されるものではなく、リチウムイオン導伝性を持たない高分子の骨格中に、同様の電解液を保持させたものも含まれる。高分子ゲル電解質に用いられるリチウムイオン導伝性を持たない高分子としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリ塩化ビニル(PVC)、ポリアクリロニトリル(PAN)、ポリメチルメタクリレート(PMMA)などが使用できる。ただし、これらに限られるわけではない。なお、ポリアクリロニトリル(PAN)、ポリメチルメタクリレート(PMMA)などは、どちらかと言うとイオン伝導性がほとんどない部類に入るものであるため、上記イオン伝導性を有する高分子とすることもできるが、ここでは高分子ゲル電解質に用いられるリチウムイオン導伝性を持たない高分子として例示したものである。
 固体高分子電解質は、例えばポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)などに上記リチウム塩が溶解して成る構成を有し、有機溶媒を含まないものを挙げることができる。したがって、電解質層が固体高分子電解質から構成される場合には電池からの液漏れの心配がなく、電池の信頼性が向上させることができる。
 二次電池10の電解質層の厚みは、内部抵抗を低減させるという観点からは薄い方が好ましい。電解質層の厚みは、通常1~100μmであり、好ましくは5~50μmである。なお、高分子ゲル電解質や固体高分子電解質のマトリックスポリマーは、架橋構造を形成することによって、優れた機械的強度を発現させることができる。架橋構造を形成させるには、適当な重合開始剤を用いて、高分子電解質形成用の重合性ポリマー(例えば、ポリエチレンオキシド(PEO)やポリプロピレンオキシド(PPO))に対して熱重合、紫外線重合、放射線重合、電子線重合等の重合処理を施せばよい。
 以上のように構成されている電極積層体101は、上部外装部材107及び下部外装部材108に収容されて封止されている。電極積層体101を封止するための上部外装部材107及び下部外装部材108は、たとえば、ポリエチレンやポリプロピレンなどの樹脂フィルムや、アルミニウムなどの金属箔の両面をポリエチレンやポリプロピレンなどの樹脂でラミネートした、樹脂-金属薄膜ラミネート材など、柔軟性を有する材料で形成されており、これら上部外装部材107及び下部外装部材108を熱融着することにより、正極タブ105及び負極タブ106を外部に導出させた状態で、電極積層体101が封止されることとなる。
 なお、正極タブ105及び負極タブ106には、上部外装部材107及び下部外装部材108と接触する部分に、上部外装部材107及び下部外装部材108との密着性を確保するために、シールフィルム109が設けられている。シールフィルム109としては、特に限定されないが、たとえば、ポリエチレン、変性ポリエチレン、ポリプロピレン、変性ポリプロピレン、又は、アイオノマー等の耐電解液性及び熱融着性に優れた合成樹脂材料から構成することができる。
《制御方法及び制御装置》
 さて、上述したLiMnOなどの固溶体系の正極を用いた二次電池は、放電容量は大きいものの、サイクル特性が悪く、高電位で充放電を繰り返すと劣化し易いという技術的課題がある。すなわち、図7に示すように、固溶体系正極を用いた二次電池は、充放電を繰り返すと容量保持率が低下することが知られている。こうしたサイクル特性の劣化の原因は次のように考えられる。すなわち、固溶体正極を用いた二次電池において、図6Aに示すように高電圧にて長時間定電圧充電を施すと、正極からMnイオンやNiイオンなどの遷移金属イオンが溶出する。これらMnイオンやNiイオンの析出電位はLiイオンよりも高いことから、正極から溶出したMnイオンやNiイオンは図6Bに示すように負極に電析する。そして、図6Cに示すように負極に電析したMnやNiによって電解液が分解し、その分解物が負極上に堆積し、その結果、図6Dに示すように堆積物がLiイオンの移動を阻害することになり、これが電池の劣化(内部抵抗が高くなる)の原因となる。すなわち、こうした内部抵抗の増加により放電しきれない容量が電池に残存し、これをそのままの状態に放置すると充電時の正極電位がずれ、正極電位が高くなることで劣化が促進される。
 このため、本例の制御方法及び制御装置では、充放電を繰り返すことで残容量が無視できない値となり、これによりSOCに誤差が生じることを抑制するために、二次電池の実際の実開路電圧を検出し、二次電池の実開路電圧又は実際の電流に基づく実際のSOCを検出し、この実際のSOCと予め取得された電圧-SOC基準曲線とから推定開路電圧を演算し、これら実開路電圧と推定開路電圧との一致度を判定する。そして、実開路電圧と推定開路電圧との一致度が高ければ実開路電圧を用いて二次電池の充放電を制御し、一致度が低ければその差を小さくするための放電処理を実行する。図4Aは本発明の一実施の形態に係る制御装置を適用した電気自動車を示すブロック図、図4Bは図4Aの充電制御器の細部を示すブロック図、図4Cは図4Bの記憶部に記憶される電圧-SOC基準曲線の一例を示す図、図5は本発明の一実施の形態に係る制御方法を示すフローチャートである。
 本例の電気自動車は、図4Aに示すように、上述した二次電池10と、充電制御器20と、電気駆動システム30と、電流センサ40と、電圧センサ50と、充電器60と、電力入出力端子70と、車載バッテリ80と、定置バッテリ90と、を備える。本例の電気駆動システム30は、二次電池10から電極供給を受けて走行駆動力を駆動輪に出力するとともに回生時には充電用電力を二次電池10に供給するモータジェネレータ及びインバータで構成されている。充電器60は、充電制御装置20からの制御指令を受けて二次電池10の充放電を制御するとともに、二次電池10の放電電力を車載バッテリ80又は定置バッテリ90に供給する。また電力入出力端子70は、商用電源に接続されて二次電池10に電力を供給したり、定置バッテリ90に接続されて二次電池10からの放電電力を定置バッテリ90に供給したりする。
 本例の充電制御装置20は、充電器60を介して二次電池10の充放電を制御するための制御装置であり、電流センサ40により検出される二次電池10に流れる充放電電流や、電圧センサ50により検出される二次電池10の開路電圧に基づいて、二次電池10の充電および放電の制御や二次電池10のSOCの算出を行なう。電流センサ40は、二次電池10に流れる充放電電流を測定して充電制御器20へ出力する。また電圧センサ50は、二次電池10の開路電圧(無負荷状態における二次電池10の両端子間電圧)を測定して充電制御器20へ出力する。なお、電圧センサ50による二次電池10の開路電圧の測定は、二次電池10からの電力供給が遮断されている車両停車時など電源OFFの状態に行うことができる。またはこれに代えて、電圧センサ50で検出される二次電池10の開路電圧と電流センサ40で検出される電流値をそれぞれ複数サンプリングし、これらサンプリングデータから得られるIV特性の回帰直線から電流値がゼロのときの開路電圧を求め、これを開路電圧としてもよい(特開2002-243813号公報参照)。
 本例の充電制御器20は、CPU又はMPU及びROM,RAMから構成され、図4Bに示すように、SOC検出部22と、記憶部24と、電圧誤差判定部26とを備える。SOC検出部22は、電流センサ40で検出される充電時及び放電時の電流値を積算することで現在の二次電池10のSOCを演算したり、又はこれに代えて電圧センサ50で検出される開路電圧から現在の二次電池10のSOCを演算したりする。
 記憶部24は、その二次電池10の開路電圧とSOCとの関係を示す電圧-SOC基準曲線を記憶するメモリであり、この記憶部24に記憶される電圧-SOC基準曲線の一例を図4Cに示す。電圧誤差判定部26は、SOC検出部22で演算された実SOCの値を入力し、記憶部24に記憶されている電圧-SOC基準曲線に当該実SOCを代入することで推定開路電圧Vを抽出する。そして、この推定開路電圧V1と、電圧センサ50で検出された実開路電圧Vとを比較し、その一致度を判定する。
 電圧誤差判定部26にて判定される一致度は、推定開路電圧Vと実開路電圧Vとの差ΔVに基づいて判定され、その差ΔVが所定範囲内であれば電圧センサ50で検出される実開路電圧Vと真の開路電圧に誤差はないと判定する一方、その差ΔVが所定範囲外であるときは電圧センサ50で検出される実開路電圧Vに誤差があると判定する。そして、実開路電圧Vに誤差がないと判定された場合には、電圧センサ50により検出される実開路電圧Vを二次電池10の充放電制御に用いるが、実開路電圧Vに誤差があると判定された場合には、その誤差ΔVをゼロに近似させるための放電処理を実行する。この放電処理の詳細は後述する。
 次に、図5を参照しながら図4A及び図4Bの充電制御器20並びに本発明の一実施の形態に係る二次電池の制御方法を説明する。まずステップS1にて、充電制御器20は、電流センサ40により二次電池10に流れる電流値Aの検出を開始するとともに、電圧センサ50により二次電池10の両端子に印加される電圧値Vの検出を開始する。また、現在の充電回数MとステップS6の放電処理回数Nをカウントする。次いで、ステップS2にて現在の充電回数Mが予め設定された基準充電回数M以下であるか否かを判定し、基準充電回数M0以下である場合はステップS3へ進むが、基準充電回数M0を超えた場合にはステップS9へ進む。このステップS9では予め設定された放電レートで二次電池10の放電処理を実行し、ステップS10にて現在の充電回数MをリセットしてM=0回に戻したのち本例のルーチンを終了する。このステップS9では、後述する実開路電圧Vの誤差ΔVの有無に拘わらず、所定回数Mを超える充電処理を行った場合には一旦放電処理を実行することで、実開路電圧Vの誤差ΔVの発生を未然に予防することとしている。
 ステップS3では、ステップS1で検出された電流及び/又は電圧を用いて二次電池10の現在の実SOCを演算する。この実SOCの演算は、既述したように電流センサ40で検出された充電時及び放電時の電流値を積算することや、電圧センサ50で検出された開路電圧から演算することができる。ステップS4では、ステップS3で演算された実SOCと、記憶部24に記憶された図4Cに示す電圧-SOC基準曲線とを用いて、推定開路電圧Vを求める。図4Cに示すように、実SOCの値に相当する電圧-SOC基準曲線の開路電圧を実開路電圧Vとする。ステップS5では、ステップS4で求められた推定開路電圧VとステップS1で検出された実開路電圧Vとの差の絶対値|V-V|を演算し、この差の絶対値が予め設定された所定値a以上であるか否かを判定する。実開路電圧が推定開路電圧より高い方にずれている場合も低い方にずれている場合もこれを修正する趣旨である。ステップS5において、実開路電圧Vと推定開路電圧Vとの差ΔVの絶対値が所定値a未満である場合は、実開路電圧Vには問題となる誤差が生じていないものと判断してステップS11へ進み、ステップS1で検出された実開路電圧の値を用いて二次電池10の充放電処理を実行する。
 これに対して、ステップS5において、実開路電圧Vと推定開路電圧Vとの差ΔVの絶対値が所定値a以上である場合は、実開路電圧Vには問題となる誤差が生じているものと判断してステップS6へ進み、当該誤差ΔVを解消するための放電処理を実行する。なおこの放電処理は、二次電池10の駆動に影響を及ぼさない状態で行われ、たとえば次回の充電前に実行されるが、図5に示すフローチャートでは説明の都合上、連続したルーチンとして示すこととする。本例の放電処理は1C以下の放電レートで行うことが好ましい。ここで1Cの放電レートとは、公称容量値a[Ah]の二次電池を1時間定電流放電すると放電終了となる電流値a[A]をいう。たとえば、公称容量値が2.2Ahの二次電池10の場合には、1C=2.2Aである。放電レートを1C以下に設定することで、二次電池10を構成する材料の固有抵抗に拘わらず完全放電させることができる。
 次のステップ7では放電処理回数Nが予め設定された基準放電処理回数N以上に達したか否かを判定する。現在の放電処理回数Nが予め設定された基準放電処理回数Nに達していない場合はステップS1へ戻り、ステップS6の放電処理によって実開路電圧Vの誤差ΔVが解消されたか否かを次のステップS3~S5で判定し、未だ実開路電圧Vの誤差ΔVの絶対値が所定値a以上である場合は続くステップS6にて2回目の放電処理を実行する。そして、放電処理回数Nが基準放電処理回数Nに達するまで実開路電圧Vの誤差ΔVが解消されない場合はこれを繰り返す。
 2回目以降の放電処理においては、放電レートを1回目の放電レートに対して段階的に減少させることが好ましい。たとえば1回目の放電処理の放電レートが1Cである場合に、2回目の放電処理の放電レートを0.1Cとし、3回目の放電処理の放電レートを0.05Cとする。このように複数回の放電処理において放電レートを放電工程毎に減少させることで、最初の放電工程において二次電池10の内部抵抗に対して放電電流値が大きいために完全放電できない場合であっても、それ以降の放電工程にて完全放電させることができる。
 以上のように複数回(N未満)の放電処理を実行した結果、ステップS5において実開路電圧Vと推定開路電圧Vとの差ΔVの絶対値が所定値a未満になった場合は、実開路電圧Vの誤差が解消されたものと判断してステップS11へ進み、そのルーチンのステップS1で検出された実開路電圧の値を用いて二次電池10の充放電処理を実行する。
 これに対して、N回の放電処理を実行しても、ステップS5において実開路電圧Vと推定開路電圧Vとの差ΔVの絶対値が未だ所定値a以上である場合は、実開路電圧Vの誤差は放電処理によっては解消されないものと判断してステップS8へ進み、予め設定されている充電時の上限電圧をそれまでの値より低い値に変更する。これにより二次電池10の劣化度に応じた適切な上限電圧が設定されるので過充電を防止することができる。
 ちなみに、ステップS6の放電処理を実行する際に二次電池10から電力が放出されるが、充電制御器20によって充電器60を制御することで、この電力を車載バッテリ80や定置バッテリ90に供給することが望ましい。これにより、二次電池10の残容量電力を無駄にすることなく有効利用することができる。
 以下、本発明をより具体化した実施例及び比較例でさらに詳細に説明する。
《実施例1》
(負極の作製)
 グラファイト粉末と、導電助剤としてのアセチレンブラックと、バインダーとしてポリフッ化ビニリデンPVDFをそれぞれ90:5:5の質量比となるように配合し、これにN-メチルピロリドンを溶媒として添加して混合し、負極スラリーを作製した。集電体として銅箔を使用し、上記で得られた負極スラリーを集電体にそれぞれ塗布し、真空下において24時間乾燥し、目的の負極を得た。
(正極の作製)
 正極活物質として、Li1.85Ni0.18Co0.10Mn0.87(上記(1)式において、a=0.18,b=0.10,c=0.87,d=0.35)と、導電助剤としてのアセチレンブラックと、バインダーとしてポリフッ化ビニリデンPVDFを90:5:5の質量比になるように配合し、これにN-メチルピロリドンを溶媒として添加して混合し、正極スラリーを作製した。集電体としてアルミ箔を使用し、上記で得られた正極スラリーを塗布し、真空下において24時間乾燥し、目的の正極を得た。
(電池の作製)
 上記で作製した負極と正極をそれぞれ対向させ、この間にポリオレフィン製セパレータを配置した。この負極・セパレータ・正極の積層体をアルミラミネート製セルに配し、電解液として、リチウム塩として1Mの六フッ化リン酸リチウムLiPFをエチレンカーボネートEC及びジエチルカーボネートDECからなる有機溶媒に1:2で混合したものをセル内に注入して密閉し、リチウムイオン二次電池を得た。
(容量保持率特性評価試験)
 上記のようにして作製したリチウムイオン二次電池について、充放電サイクル試験を行い、放電容量保持率について検証した。すなわち、30℃の雰囲気下において、定電流-定電圧充電方式にて、電流密度を1C相当、上限電圧を4.45Vとして充電し、1分間休止させた後、定電流放電方式にて電流密度を1C相当にて2Vまで放電し、この充放電サイクルを100回繰り返した。またこのサイクルの間に、放電後1分間休止させた後のセル電圧の誤差ΔVが3Vを上回る場合、又は50回の充放電を繰り返した場合には、0.1C相当の電流密度にて2Vまで放電する制御(図5のステップS6)を1回実行した。この充放電サイクルを開始する前の電池容量と100回の充放電サイクルを実施した後の容量をそれぞれ測定し、容量保持率を算出したところ、95%であった。
《実施例2》
 実施例1において、100回の充放電サイクルの間に、放電後1分間休止させた後のセル電圧の誤差ΔVが3Vを上回る場合、又は50回の充放電を繰り返した場合には、0.1C相当の電流密度にて2Vまで放電した後、15分間休止させたのち、未だセル電圧の誤差ΔVが3Vを上回る場合には、0.05C相当の電流密度にて2Vまで放電する制御を実行した以外は実施例1と同じ条件で試験を行った。この充放電サイクルを開始する前の電池容量と100回の充放電サイクルを実施した後の容量をそれぞれ測定し、容量保持率を算出したところ、96%であった。
《比較例1》
 実施例1において、図5の放電処理を行わないこと以外は実施例1と同じ条件で試験を行った。この充放電サイクルを開始する前の電池容量と100回の充放電サイクルを実施した後の容量をそれぞれ測定し、容量保持率を算出したところ、25%であった。
《考察》
 実施例1,2及び比較例1の結果から、図5のステップS6の放電処理を実施しない比較例1に比べて、放電処理を実施した実施例1及び2は、100サイクル後の耐久性が70%以上も向上することが確認された。また、実施例1及び2の結果から、放電処理を複数回行った実施例2の方が容量保持率が若干向上することも確認された。
 以上のとおり、本例の二次電池の制御装置及び制御方法によれば、二次電池10における実開路電圧Vの誤差ΔVを検知した場合には、完全放電する放電処理を実行して当該誤差を解消するので、二次電池10を定電圧充電してもSOCの誤差が解消され、これにより過充電を防止することができ、また平均電圧も向上することになる。
 また本例の二次電池の制御装置及び制御方法によれば、放電処理における放電レートを1C以下に設定するので、二次電池を構成する材料の固有抵抗に拘わらず完全放電させることができる。これによってもSOCの誤差が解消されるため、過充電を防止することができる。
 また本例の二次電池の制御装置及び制御方法によれば、放電処理を複数回実施するので、1回の放電処理では完全放電できない場合であっても、複数回放電処理を行うことで完全放電させることができる。
 また本例の二次電池の制御装置及び制御方法によれば、複数回の放電処理において、放電レートを放電工程毎に減少させるので、最初の放電工程において二次電池の内部抵抗に対して放電電流値が大きいために完全放電できない場合であっても、それ以降の放電工程にて完全放電させることができる。
 また本例の二次電池の制御装置及び制御方法によれば、1回または複数回の放電処理を実施しても実電圧の誤差が解消できない場合に、二次電池の充電上限電圧を所定値だけ低下させるので、これによっても過充電を防止することができる。
 また本例の二次電池の制御装置及び制御方法によれば、実開路電圧の誤差判定に拘わらず、充電回数に応じて放電処理を実施するので、実開路電圧の誤差が生じる予兆段階で当該誤差を解消することができる。
 また本例の二次電池の制御装置及び制御方法によれば、放電処理による放電電力を外部充電器を介して接続された定置バッテリ90又は車両に搭載された別の車載バッテリ80に蓄電するので、二次電池10の残容量電力を無駄にすることなく有効利用することができる。
 また本例の制御方法及び制御装置によれば、固溶体材料がLi1.5[NiCoMn[Li]]Oで表される固溶体リチウム含有遷移金属酸化物を正極活物質に用いるので、高い放電容量及び容量保持率を実現し得る二次電池を提供することができる。
 上記電圧センサ50は本発明に係る電圧検出手段に相当し、上記SOC検出部22は本発明に係るSOC検出手段に相当し、上記記憶部24は本発明に係る記憶手段に相当し、上記電圧誤差判定部26は本発明に係る推定電圧演算手段及び判定手段に相当し、上記充電制御器20は本発明に係る制御手段に相当する。
10…二次電池
 101…電極積層体
 102…正極板
 102a…正極側集電体
 103…セパレータ
 104…負極板
 104a…負極側集電体
 105…正極タブ
 106…負極タブ
 107…上部外装部材
 108…下部外装部材
 109…シールフィルム
20…充電制御器
30…電気駆動システム
40…電流センサ
50…電圧センサ
60…充電器
70…電力入出力端子
80…車載バッテリ
90…定置バッテリ

Claims (12)

  1.  正極材料として固溶体材料からなる正極活物質を用いた二次電池の制御装置において、
     前記二次電池の実際の実開路電圧を検出する電圧検出手段と、
     前記二次電池の実開路電圧及び/又は実際の電流に基づいて実際のSOCを検出するSOC検出手段と、
     前記二次電池の開路電圧とSOCとの関係を示す電圧-SOC基準曲線を記憶する記憶手段と、
     前記SOC検出手段で検出された実際のSOCと前記記憶手段に記憶された電圧-SOC基準曲線とから推定開路電圧を演算する推定電圧演算手段と、
     前記電圧検出手段により検出された実開路電圧と前記推定電圧演算手段により演算された推定開路電圧との一致度を判定する判定手段と、を備える二次電池の制御装置。
  2.  前記判定手段は、前記実開路電圧と前記推定開路電圧との差が所定範囲内であるか否かにより前記一致度を判定する請求項1に記載の二次電池の制御装置。
  3.  前記判定手段により前記実開路電圧と前記推定開路電圧との差が前記所定範囲内であると判定された場合は、前記実開路電圧を用いて前記二次電池を制御し、
     前記判定手段により前記実開路電圧と前記推定開路電圧との差が前記所定範囲外であると判定された場合は、当該差を小さくするための放電処理を次の充電処理の前に実行する制御手段をさらに備える請求項1又は2に記載の二次電池の制御装置。
  4.  前記制御手段は、1C以下の放電レートで前記放電処理を実行する請求項3に記載の二次電池の制御装置。
     ただし、1Cの放電レートとは、公称容量値a[Ah]の二次電池を1時間定電流放電すると放電終了となる電流値a[A]をいう。
  5.  前記放電処理を複数回実行する請求項3又は4に記載の二次電池の制御装置。
  6.  前記複数回の放電処理において、放電レートを段階的に減少させる請求項5に記載の二次電池の制御装置。
  7.  前記判定手段により、前記放電処理を実行した後の前記実開路電圧と前記推定開路電圧との差が前記所定範囲外であると判定された場合に、
     前記制御手段は、次の充電処理を行う際の上限電圧をそれまでの上限電圧より低い上限電圧に設定する請求項3~6のいずれか一項に記載の二次電池の制御装置。
  8.  前記制御手段は、前記判定手段による判定結果に拘わらず、所定回数の充電処理を実行した場合に、放電処理を実行する請求項2~7のいずれか一項に記載の二次電池の制御装置。
  9.  前記制御手段は、前記放電処理による電力を、外部制御装置を介して接続された定置電池に供給する制御を実行する請求項3~8のいずれか一項に記載の二次電池の制御装置。
  10.  前記制御手段は、前記放電処理による電力を、車両に搭載された他の二次電池に供給する制御を実行する請求項3~8のいずれか一項に記載の二次電池の制御装置。
  11.  前記固溶体材料が、
     組成式Li1.5[NiCoMn[Li]]O
    (組成式中、Liはリチウム、Niはニッケル、Coはコバルト、Mnはマンガン、Oは酸素を示し、a、b、c及びdは、0<a<1.4、0≦b<1.4、0<c<1.4、0.1<d≦0.4、a+b+c+d=1.5、1.1≦a+b+c<1.4の関係を満足する。)で表される固溶体リチウム含有遷移金属酸化物であって、
     層状構造部位と、所定の電位範囲における充電又は充放電を行うことによりスピネル構造に変化する部位とを有し、
     当該固溶体リチウム含有遷移金属酸化物における層状構造のLiMnOがスピネル構造のLiMnに全て変化した場合のスピネル構造変化割合を1としたとき、当該固溶体リチウム含有遷移金属酸化物のスピネル構造変化割合が0.25以上1.0未満である請求項1~10のいずれか一項に記載の二次電池の制御装置。
  12.  正極材料として固溶体材料からなる正極活物質を用いた二次電池を充放電制御する制御方法において、
     前記二次電池の実際の実開路電圧を検出するステップと、
     前記二次電池の実開路電圧又は実際の電流に基づく実際のSOCを検出するステップと、
     前記二次電池の開路電圧とSOCとの関係を示す電圧-SOC基準曲線を記憶するステップと、
     前記SOC検出手段で検出された実際のSOCと前記記憶手段に記憶された電圧-SOC基準曲線とから推定開路電圧を演算するステップと、
     前記電圧検出手段により検出された実開路電圧と前記推定電圧演算手段により演算された推定開路電圧との一致度を判定するステップと、を備える二次電池の制御方法。
PCT/JP2014/068334 2013-09-06 2014-07-09 二次電池の制御装置及び制御方法 WO2015033665A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14842703.2A EP3043413A4 (en) 2013-09-06 2014-07-09 CONTROL DEVICE AND METHOD FOR CONTROLLING RECHARGEABLE BATTERY
JP2015535362A JP6128225B2 (ja) 2013-09-06 2014-07-09 二次電池の制御装置及び制御方法
CN201480055087.0A CN105612652B (zh) 2013-09-06 2014-07-09 二次电池的控制装置和控制方法
US14/916,885 US9906060B2 (en) 2013-09-06 2014-07-09 Control device and control method for a secondary battery
KR1020167007480A KR101777526B1 (ko) 2013-09-06 2014-07-09 2차 전지의 제어 장치 및 제어 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013184878 2013-09-06
JP2013-184878 2013-09-06

Publications (1)

Publication Number Publication Date
WO2015033665A1 true WO2015033665A1 (ja) 2015-03-12

Family

ID=52628153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068334 WO2015033665A1 (ja) 2013-09-06 2014-07-09 二次電池の制御装置及び制御方法

Country Status (6)

Country Link
US (1) US9906060B2 (ja)
EP (1) EP3043413A4 (ja)
JP (1) JP6128225B2 (ja)
KR (1) KR101777526B1 (ja)
CN (1) CN105612652B (ja)
WO (1) WO2015033665A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018041686A (ja) * 2016-09-09 2018-03-15 日産自動車株式会社 電気デバイス用正極及びそれを用いたリチウムイオン電池

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015154593A (ja) * 2014-02-14 2015-08-24 ソニー株式会社 充放電制御装置、電池パック、電子機器、電動車両および充放電制御方法
JP6627878B2 (ja) * 2015-07-21 2020-01-08 株式会社村田製作所 充電方法、電池装置、充電装置、電池パック、電動車両及び蓄電装置
JP6658689B2 (ja) * 2017-07-18 2020-03-04 トヨタ自動車株式会社 電池システム及び電池システムを搭載した車両
JP7040284B2 (ja) * 2018-05-23 2022-03-23 トヨタ自動車株式会社 二次電池の劣化状態推定方法、劣化状態推定装置、制御方法、及び制御システム
JP2020038146A (ja) * 2018-09-05 2020-03-12 トヨタ自動車株式会社 二次電池システムおよび二次電池のsoc推定方法
KR102244141B1 (ko) 2018-10-12 2021-04-22 주식회사 엘지화학 배터리 관리 장치 및 방법
CN109655758B (zh) * 2018-12-29 2020-12-11 蜂巢能源科技有限公司 电池开路电压测量方法及***
CN111180817B (zh) * 2019-12-31 2021-04-23 Oppo广东移动通信有限公司 电池组均衡方法和装置、电子设备、计算机可读存储介质
CN112290649A (zh) * 2020-11-23 2021-01-29 国网北京市电力公司 充电控制方法、装置、存储介质及处理器
JP7344191B2 (ja) 2020-12-21 2023-09-13 矢崎総業株式会社 バックアップバッテリ制御モジュール及びバックアップバッテリ制御システム
CN114122500A (zh) * 2021-11-24 2022-03-01 东莞新能安科技有限公司 电化学装置及其控制方法、电子装置、介质和充电装置
EP4383376A1 (en) * 2022-10-13 2024-06-12 Contemporary Amperex Technology Co., Limited Electrode assembly, secondary battery, battery pack, and electric apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243813A (ja) 2001-02-16 2002-08-28 Nissan Motor Co Ltd 二次電池の電池容量劣化演算装置
JP2004538610A (ja) 2001-08-07 2004-12-24 スリーエム イノベイティブ プロパティズ カンパニー リチウムイオンバッテリー用の改良されたカソード組成物
JP2011135657A (ja) * 2009-12-22 2011-07-07 Sanyo Electric Co Ltd バッテリシステム及びこれを備える車両並びにバッテリシステムの電流制限状態検出方法
JP2012075866A (ja) * 2010-09-10 2012-04-19 Fujifilm Corp 超音波診断装置
WO2013115390A1 (ja) * 2012-02-01 2013-08-08 日産自動車株式会社 固溶体リチウム含有遷移金属酸化物、非水電解質二次電池用正極及び非水電解質二次電池

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003224901A (ja) * 2001-10-30 2003-08-08 Yamaha Motor Co Ltd 電池容量管理方法及びその装置、並びに車両動力用電池の容量管理装置
US7038426B2 (en) * 2003-12-16 2006-05-02 The Boeing Company Method for prolonging the life of lithium ion batteries
US7570024B2 (en) * 2004-04-06 2009-08-04 Cobasys, Llc Battery state of charge voltage hysteresis estimator
KR100669477B1 (ko) * 2005-12-22 2007-01-16 삼성에스디아이 주식회사 배터리의 soc 보정 방법 및 이를 이용한 배터리 관리시스템
EP1983602A4 (en) * 2007-01-11 2011-03-16 Panasonic Corp DEGRADING DETECTION METHOD FOR A SECONDARY LITHIUM CELL, DEGRADATION KNOWLEDGE, DEGRADING DEPRESSION DEVICE AND CELL PACKAGE WITH THE SAME BATTERY CHARGER
JP4997994B2 (ja) * 2007-01-31 2012-08-15 富士通株式会社 電池の残量予測装置
CN101632028B (zh) * 2007-04-19 2013-05-22 松下电动车辆能源股份有限公司 用于检测蓄电装置的充电状态的装置和方法
US8143851B2 (en) 2008-02-15 2012-03-27 Apple Inc. Power source having a parallel cell topology
US8575896B2 (en) 2008-02-15 2013-11-05 Apple Inc. Parallel battery architecture with shared bidirectional converter
JP5496612B2 (ja) * 2009-11-11 2014-05-21 三洋電機株式会社 電池の充放電可能電流演算方法及び電源装置並びにこれを備える車両
US9726732B2 (en) * 2010-06-22 2017-08-08 GM Global Technology Operations LLC Adaptive battery parameter extraction and SOC estimation for lithium-ion battery
US9885757B2 (en) 2011-04-01 2018-02-06 Atieva, Inc. Method and apparatus for determining the state-of-charge of a battery
JP5970978B2 (ja) * 2011-07-04 2016-08-17 日産自動車株式会社 電気デバイス用正極活物質、電気デバイス用正極及び電気デバイス
KR101863036B1 (ko) * 2011-11-30 2018-06-01 주식회사 실리콘웍스 배터리 잔존전하량 추정방법 및 배터리 관리시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243813A (ja) 2001-02-16 2002-08-28 Nissan Motor Co Ltd 二次電池の電池容量劣化演算装置
JP2004538610A (ja) 2001-08-07 2004-12-24 スリーエム イノベイティブ プロパティズ カンパニー リチウムイオンバッテリー用の改良されたカソード組成物
JP2011135657A (ja) * 2009-12-22 2011-07-07 Sanyo Electric Co Ltd バッテリシステム及びこれを備える車両並びにバッテリシステムの電流制限状態検出方法
JP2012075866A (ja) * 2010-09-10 2012-04-19 Fujifilm Corp 超音波診断装置
WO2013115390A1 (ja) * 2012-02-01 2013-08-08 日産自動車株式会社 固溶体リチウム含有遷移金属酸化物、非水電解質二次電池用正極及び非水電解質二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3043413A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018041686A (ja) * 2016-09-09 2018-03-15 日産自動車株式会社 電気デバイス用正極及びそれを用いたリチウムイオン電池

Also Published As

Publication number Publication date
CN105612652A (zh) 2016-05-25
EP3043413A4 (en) 2016-09-21
JP6128225B2 (ja) 2017-05-24
KR101777526B1 (ko) 2017-09-11
US20160218544A1 (en) 2016-07-28
CN105612652B (zh) 2018-01-16
EP3043413A1 (en) 2016-07-13
JPWO2015033665A1 (ja) 2017-03-02
KR20160044583A (ko) 2016-04-25
US9906060B2 (en) 2018-02-27

Similar Documents

Publication Publication Date Title
JP6128225B2 (ja) 二次電池の制御装置及び制御方法
CN106898820B (zh) 通过控制负电极的电压窗口来提高电池寿命
WO2015033666A1 (ja) 二次電池の充電方法及び充電装置
TWI587562B (zh) 鋰離子電池用正極活性物質層之製造方法及鋰離子電池用正極活性物質層
JP5975024B2 (ja) 負極にリチウムをドープ及び脱ドープする方法及びリチウム二次電池用負極の製造方法
CN108232155B (zh) 二次电池、二次电池用电极和活性物质、电池组
CN106716684B (zh) 非水电解质蓄电元件用负极、非水电解质蓄电元件和蓄电装置
EP2277230A2 (en) High energy lithium ion secondary batteries
US9385398B2 (en) Method for manufacturing lithium secondary battery
JP6206259B2 (ja) リチウム二次電池用正極の製造方法およびリチウム二次電池用正極ならびに造粒物
KR20190008637A (ko) 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
JP6656370B2 (ja) リチウムイオン二次電池および組電池
CN108370064B (zh) 二次电池、电池组、电动车辆、电力储存***、电动工具以及电子设备
CN107431203A (zh) 正极活性物质和电池
JP2017010716A (ja) リチウムイオン電池及びリチウムイオン電池システム
JP5626035B2 (ja) リチウムイオン二次電池の前処理方法及び使用方法
JP2019040796A (ja) 非水電解質二次電池
JP6406267B2 (ja) リチウムイオン電池システム
JP6119641B2 (ja) 円筒形非水電解液二次電池
WO2015033659A1 (ja) 二次電池の充電方法及び充電装置
JP2006024392A (ja) リチウムイオン二次電池の充電方法
JP2015156280A (ja) 二次電池用活物質、二次電池用電極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2019061874A (ja) 蓄電素子の製造方法
JP6167775B2 (ja) 二次電池の制御装置及び制御方法
JP6244623B2 (ja) 非水電解質二次電池の製造方法及び非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14842703

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015535362

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14916885

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167007480

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014842703

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014842703

Country of ref document: EP