WO2015032343A1 - 一种gis电子互感器测试***及其方法 - Google Patents

一种gis电子互感器测试***及其方法 Download PDF

Info

Publication number
WO2015032343A1
WO2015032343A1 PCT/CN2014/085982 CN2014085982W WO2015032343A1 WO 2015032343 A1 WO2015032343 A1 WO 2015032343A1 CN 2014085982 W CN2014085982 W CN 2014085982W WO 2015032343 A1 WO2015032343 A1 WO 2015032343A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
transformer
test
gis
isolation switch
Prior art date
Application number
PCT/CN2014/085982
Other languages
English (en)
French (fr)
Inventor
张勤
叶国雄
郭克勤
刘彬
黄华
童悦
刘翔
胡蓓
万罡
冯翔翔
邬文亮
陈鹏
杨帆
邓小聘
王焱
王晓周
代静
汪英英
熊俊军
刘勇
Original Assignee
国家电网公司
中国电力科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家电网公司, 中国电力科学研究院 filed Critical 国家电网公司
Priority to CA2927519A priority Critical patent/CA2927519A1/en
Priority to EP14842552.3A priority patent/EP3045930B1/en
Publication of WO2015032343A1 publication Critical patent/WO2015032343A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3271Testing of circuit interrupters, switches or circuit-breakers of high voltage or medium voltage devices
    • G01R31/3272Apparatus, systems or circuits therefor
    • G01R31/3274Details related to measuring, e.g. sensing, displaying or computing; Measuring of variables related to the contact pieces, e.g. wear, position or resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/62Testing of transformers

Definitions

  • the invention relates to a GIS electronic transformer testing system and a method thereof, in particular to a GIS electronic transformer testing system and a testing method thereof based on an isolated switch for capacitive capacitive low current.
  • the object of the present invention is to propose a GIS electronic transformer test system based on the isolation switch for capacitive low current, which can simulate various electromagnetic radiations received by the system, and then propose an electromagnetic compatibility test method that meets the requirements of on-site electromagnetic protection. Improve the protection performance of the electronic transformer and reduce the failure rate of electromagnetic protection.
  • a GIS electronic transformer testing system based on an isolated switch for capacitive capacitive small current comprising: two sleeves, GIS pipeline between two sleeves, wherein one of the sleeves is a power sleeve,
  • the power bushing is connected to a high voltage test transformer connected in parallel with each other and a capacitor divider for protecting the power source, the capacitor divider is used to reduce the resonance effect caused by the higher power source impedance, and the other bushing is Negative a load sleeve coupled to the load capacitor, having a first isolation switch in the GIS conduit proximate the power sleeve; a first calibration between the first isolation switch and the load sleeve a transient test system, a first electronic transformer to be tested, a second electronic voltage transformer to be tested, and a second calibration primary transient voltage test system; wherein the first electronic transformer to be tested is close to the first An isolating switch, the second electronic voltage transformer to be tested is close to the load bushing, and the first electronic transformer to be tested is an electronic current
  • the second calibration primary transient voltage test system is disposed adjacent to the second electronic voltage transformer to be tested; the secondary converter is connected to the transformer to be tested at one end, and the merged unit is connected to the other end. And the other end connected to said merging unit fault recorder, the fault recorder connected to an output of the merging unit.
  • a second isolation switch is further disposed between the first electronic transformer to be tested and the second electronic voltage transformer to be tested.
  • the length of the GIS pipe is adjustable, and the bottom of the power bushing has a sliding rail for telescoping the GIS pipe, and the sliding rail can slide left and right.
  • the capacitive low current values of the first and second isolation switches are 0.1 to 0.8 A.
  • the output current of the high voltage test transformer is 2A; the first and second isolation switches are provided with an electric operating mechanism and an AC 220V operating power supply.
  • a sink cabinet is installed near the GIS pipeline, and the secondary converter and the merging unit are all placed in the sink cabinet.
  • the primary transient current testing system comprises a primary transient current sensor
  • the primary transient voltage testing system comprises a transient voltage sensor, a high speed acquisition card and a measuring upper computer, and the high speed acquisition card 3 respectively
  • the output of the transient current sensor and the primary transient voltage sensor is described and transmitted to the measurement upper computer through data transmission.
  • the primary transient voltage sensor is a hand hole voltage sensor
  • the hand hole voltage sensor comprises a sensing electrode installed inside the GIS hand hole, a hand hole cover plate and the sensing electrode and the hand hole An insulating film between the cover plates, a layer of the insulating film is sandwiched between the sensing electrode and the hand hole cover plate to form a low voltage arm capacitor of the voltage divider, and the high voltage arm capacitor is formed between the sensing electrode and the high voltage bus bar.
  • the primary transient current sensor uses an air-core coil to measure the air core coil at the high voltage bus current measurement;
  • the GIS is installed with a shielding box, and the high-speed acquisition card, the trigger system, the optical fiber control system and the power supply of the test system are placed in the shielding box.
  • a method for testing a test system of a GIS electronic transformer based on a split-capacitance capacitive small current comprising the following steps: testing a GIS electronic transformer based on a capacitively coupled small current based on an isolating switch
  • the method of testing the system includes the following steps:
  • Step 1 Build the GIS-type electronic transformer test system based on the isolation switch
  • Step 2 Ensure that the merging unit is placed in the sink cabinet, the merging unit is normally powered, and the communication with the fault recorder is normal;
  • Step 3 closing the second isolation switch, the first isolation switch is in an open state, and the output voltage of the high voltage test transformer is raised to Where Um is the highest voltage of the line;
  • Step 4 Closing the first isolation switch, recording two test system test data and secondary fault recording data
  • Step 5 After the interval is 2 minutes, the first isolation switch DS1 is opened, and two test system test data and secondary fault recording data are recorded;
  • Step 6 Repeat steps 4 to 5, 9 times, for a total of 10 times, the first isolation switch is divided and operated.
  • the method further comprises the following steps:
  • Step 7 closing the first isolation switch, the second isolation switch is in an open state, and raising the output voltage of the high voltage test transformer to Where Um is the highest voltage of the line;
  • Step 8 Closing the second isolation switch, recording the primary transient test system test data 101, 104 and secondary fault recording data;
  • Step 9 After the interval of 2 minutes, the second isolation switch DS2 is opened, and the primary transient test system test data 101, 104 and the secondary fault recorded data are recorded;
  • Step 10 Repeat steps 8 to 9 9 times for a total of 10 times, the second isolation switch DS2 is divided and operated, and then the test ends.
  • the GIS electronic transformer test system based on the isolation switch and the capacitive small current of the isolating switch, the voltage value and the current value of the high voltage bus bar in the GIS pipeline when the isolating switch is opened and closed are tested, thereby comparing with the output of the product to be tested. Correct.
  • 110KV, 220KV, 500KV isolating switch can be built in the laboratory to separate the capacitive low current test circuit, and the electronic transformer is connected in series to the test circuit to simulate the on-site isolation switch opening and closing the empty conductor and the capacitive small current load process. Produce similar site transient strong interference and evaluate the electromagnetic protection performance of the electronic transformer under this condition.
  • the test platform can be used in the electromagnetic environment of 110KV, 220KV, 500KV voltage level during power transmission and power failure.
  • 1 is a dimension drawing of a 220KV GIS pipe installation according to an embodiment of the present invention
  • 2 is a 220KV test circuit diagram based on an embodiment of the present invention
  • FIG. 3 is a 220KV test layout diagram based on an embodiment of the present invention.
  • FIG. 4 is a structural diagram of a hand hole voltage sensor according to an embodiment of the present invention.
  • FIG. 5 is a structural diagram of a primary transient voltage sensor installation of a GIS pipeline according to an embodiment of the present invention
  • FIG. 6 is a structural view showing the installation of a transient current sensor of a GIS pipeline according to an embodiment of the present invention
  • 101 a first calibration transient test system
  • 102 a first electronic transformer to be tested
  • 103 a second electronic voltage transformer to be tested
  • 104 a second calibration transient voltage test system
  • 105 a power supply casing
  • 106 load casing
  • 110 secondary converter
  • 111 merge unit
  • 112 fault recorder
  • 113 high speed acquisition card
  • 114 measurement upper machine
  • 201 high voltage bus
  • 202 induction electrode
  • 204 hand hole cover
  • 205 hand hole
  • 206 GIS housing
  • 301 shielding box
  • 302 battery
  • 303 inverter power; 1, position 1; 2, position 2; Position 3; 4, position 4.
  • the electromagnetic environment of the substation mainly includes the strong electromagnetic interference caused by the substation under the conditions of isolation switch and circuit breaker operation, lightning and system short circuit.
  • the lightning impulse test conducted in the test chamber is used as a test method to evaluate the electromagnetic interference resistance of the electronic transformer, but considering the energy of the artificial lightning impulse test and the entire test arrangement, the lightning impulse test and the real lightning edge are carried out in the test chamber.
  • the condition difference of lightning rod discharge in substation is relatively large. Firstly, the amplitude and energy of the lightning current simulated under artificial conditions are obviously weaker than the actual ones. Secondly, in the manual test, the arrangement of the test equipment is obviously inconsistent with the actual situation. Therefore, the artificial lightning test cannot fully simulate the actual situation on site, and the test results will not be too good.
  • the operation of the on-site isolation switch can generate strong electromagnetic interference.
  • the characteristics of the isolation switch interference source are as follows:
  • the amplitude range is several thousand amps
  • the duration of harassment is long, 200ms to several seconds;
  • the isolation switch interference source is a high-intensity interference source. If it is used to test the electromagnetic compatibility test of the electronic transformer, the electromagnetic protection performance of the electronic transformer can be evaluated to the utmost. Isolation switch In the process of split capacitors, multiple arc breakdown and extinction transient processes will occur in one test loop. This transient process will generate multiple pulse currents, transient overvoltages and pulsed magnetic fields, using the standard voltages in the primary loop.
  • the standard current sensor measures the value of the primary voltage and current and records it. At the same time, it records the output value of the tested electronic transformer after passing through the merging unit, and compares and observes the measured primary voltage and current waveform values with the output characteristics of the tested electronic transformer. The working state of the electronic transformer during the whole test process can be used to judge the electromagnetic anti-jamming performance of the tested electronic transformer.
  • a GIS electronic transformer test system is introduced by taking a 220KV GIS pipeline as an example.
  • a 220KV GIS pipe installation dimensional drawing, test circuit diagram and test layout are respectively disclosed in accordance with the present invention.
  • the GIS electronic transformer test system includes two BSG bushings with GIS pipes between the two BSG bushings, one of which is a power bushing 105, which is connected to a high voltage test in parallel with each other.
  • Transformer U1 and a capacitive voltage divider C1 for protecting the power supply the capacitive voltage divider C1 is for reducing the resonance effect caused by the higher power supply impedance
  • the other of the bushings is the load bushing 106, the load The bushing is connected to the load capacitor C2. Since the GIS-type electronic transformers are all products of the capacitor division principle with small capacitance, it is necessary to increase the load capacitance C2 to better simulate the actual situation.
  • the load capacitance C2 helps to stabilize the bus charging current with a deviation of ⁇ 10%.
  • a first isolation switch DS1 is disposed in the GIS pipeline adjacent to the power supply sleeve, and a first calibration primary transient test system 101 and a first electronic transformer to be tested are disposed between the first isolation switch DS1 and the load sleeve 102.
  • the first electronic transformer 102 to be tested is close to the first isolating switch DS1, and the second electronic voltage transformer 103 to be tested is close to the load bushing.
  • the first electronic transformer 102 to be tested is an electronic current transformer.
  • the secondary converter 110 is connected to the electronic transformer 102.103 to be tested at one end, and the combining unit 111 is connected to the other end. The other end of the combining unit 111 is connected to the fault recorder 112, and the fault recorder 112 is used to connect the output of the combining unit 111.
  • the first calibration primary transient test system 101 is disposed adjacent to the first electronic transformer 102 to be tested, and is a transient current test system corresponding to the first electronic transformer to be tested, or a transient voltage and current test. A combination of systems.
  • the second calibration primary transient voltage testing system 104 is disposed adjacent to the second electronic voltage transformer 103 to be tested, and is a transient voltage testing system corresponding to the second electronic voltage transformer to be tested.
  • the specific position of the electronic transformer to be tested in the position in the GIS pipeline is not fixed and can be located at different positions in the pipeline, thereby simulating the transient at different positions from the first isolation switch DS1. Voltage or current.
  • the electronic transformers 102 and 103 to be tested are located on the load side, that is, between the first isolation switch DS1 and the load sleeve, and only have a different distance from the isolation switch. Therefore, the length of the pipeline can be studied on the load side. The effects of transient voltage and transient current.
  • the length of the GIS pipe is adjustable, and the bottom of the power supply casing 105 has a sliding rail for telescopically moving the GIS pipe, and can slide left and right, so that different GIS pipes can be simulated, thereby further facilitating research on different GISs.
  • GIS pipe length adjustable and telescopic slides can be compatible with samples of electronic transformers of different manufacturing units.
  • the test circuit can perform the study of transient parameters in the following two ways:
  • Method 1 The power supply is placed on the right side, the load is placed on the left side, the DS2 is normally closed, and the DS1 is opened and closed.
  • the data tested by the two sets of transient test systems are the transient voltage waveforms on the load side (between the isolating switch and the load). Only the difference from the distance of the isolating switch can be studied, so the influence of the length of the pipe on the transient voltage on the load side can be studied.
  • Mode 2 The power is placed on the right side, the load is placed on the left side, the DS1 is normally closed, and the DS2 is opened and closed.
  • the data tested by the two sets of transient test systems are the load side (between the isolating switch and the load) and the power side (the isolating switch). Transient voltage waveform between the power supply and the power supply, so the difference between the load side and the power supply side transient voltage can be studied.
  • the first calibration primary transient test system and the second calibration primary transient voltage test system may be a commonly used primary transient current voltage measurement system, but preferably, for example, the primary transient current voltage measurement of Embodiment 2. system.
  • the position of the electronic transformer to be tested in the GIS pipeline is not fixed and can be located at different positions in the pipeline, thereby simulating a transient voltage or current at a different position from the first isolation switch DS1. .
  • the location of the specific electronic transformer to be tested and the primary transient test system can be set in 220KV.
  • ES represents the grounding switch
  • DS represents the isolating switch
  • EVT represents the electronic voltage transformer test sample
  • ECT represents the electronic current transformer test sample
  • ECVT represents the electronic current-voltage combined transformer Sample.
  • the test platform can simultaneously connect an EVT at location 2 and an ECT or ECVT at location 3. Place a transient voltage sensor at position 1, position 4, and a transient current sensor at position 4.
  • a first calibration primary transient current, a voltage test system, a first electronic current-voltage combined transformer, a second isolation switch, and a second standby are sequentially installed between the first isolation switch DS1 and the load sleeve.
  • Electronic voltage transformer and second calibration transient voltage test system are sequentially installed between the first isolation switch DS1 and the load sleeve.
  • the electronic transformer to be tested and the one-time transient test system are set at different positions of the pipeline, as long as the electronic power to be tested is set near the power supply bushing.
  • the flow transformer, or the electronic current-voltage combined transformer to be tested adds the electronic voltage transformer to be tested close to the load casing, and simultaneously sets a corresponding calibration primary transient test system.
  • the output current 2A of the high voltage test transformer 101; the GIS type first isolation switch DS1 and the second isolation switch DS2 are equipped with an electric operating mechanism and an AC 220V operating power supply.
  • the GIS pipeline is installed near an empty cabinet.
  • the secondary converter 110 and the merging unit 110 of the electronic transformer to be tested are placed in the sink cabinet.
  • the power supply of the sink cabinet is DC 220V, and the DC screen is used for power supply. .
  • the capacitive small current values of the first and second isolation switches are 0.1 to 0.8 A (steady state), and the specific values are shown in Table 1.
  • the actual load capacitance does not need to be exactly the same as the calculation result, and there is a deviation of ⁇ 10% according to the actual conditions.
  • the steady-state voltage changes under the two states of closing and opening.
  • the power supply change should be ⁇ 10%.
  • the primary part, the secondary connection and the electronic merging unit of the tested electronic transformer were completely assembled and connected according to the actual use conditions.
  • the electronic transformer was charged and operated under normal working conditions.
  • the electromagnetic compatibility of the electronic transformer with the isolation switch is combined with the capacitive small current test.
  • the basic principle is to test the electromagnetic compatibility of the electronic transformer under the condition of strong electromagnetic interference. Therefore, the condition of strong electromagnetic interference is important for the test.
  • the main parameters of the isolating switch small current process are: voltage, current, electric field, magnetic field, and shell potential rise. Among them, voltage and current are the most important parameters, so measuring voltage and current is the key step of the immunity test of the electronic transformer under the condition that the isolation switch is divided into small capacitive current.
  • the system 101 includes a transient current sensor, a transient voltage sensor, a high speed acquisition card 113, and a measurement upper computer 114.
  • the high speed acquisition card 113 collects the output of the transient current sensor and the primary transient voltage sensor, respectively, and passes the data.
  • the transmission mode for example, photoelectric conversion, is transmitted to the measurement upper computer 114 for post-data processing.
  • the second calibration primary transient voltage testing system 104 includes a transient voltage sensor.
  • the high speed acquisition card 113 collects the output of the transient voltage sensor and transmits it to the measurement upper computer 114 for data processing by data transmission, for example, photoelectric conversion.
  • the high-speed capture card 113 can be powered by laser power, battery, and solar energy.
  • the measurement upper computer can use any available computing device such as an industrial control machine, a notebook, a PC, or the like.
  • the test system includes a corresponding standard sensor, and the high-speed capture card 113 collects the output of the standard sensor and transmits it to the measurement upper computer 114 for data processing through data transmission, for example, photoelectric conversion.
  • a sigma cabinet is installed near the GIS pipeline, and the secondary converter and merging unit of the electronic transformer to be tested are placed in the sink cabinet.
  • the high-speed acquisition card and battery-powered module of the transient test system are placed in a shielding box on the outer wall of the GIS pipe.
  • the notebook host computer and the fault recorder are placed in the personnel operation room.
  • the transient electromagnetic process of the isolating switch operation is an extremely complicated process, featuring a frequency bandwidth (50 Hz to 100 MHz) and a long duration (several seconds).
  • the measurement frequency band and anti-interference performance of the front probe and the measurement system are
  • the length of the recorded data has high requirements, and the “standard measurement” is used for the requirement in the relevant standards.
  • the calibration primary transient voltage sensor is a structure diagram of a hand-operated voltage sensor. It includes a sensing electrode 202 mounted inside the GIS hand hole 205, a hand hole cover 204 and an insulating film 203 between the sensing electrode and the hand hole cover, wherein the insulating film may be a plastic film. A layer of the insulating film 203 is sandwiched between the sensing electrode 202 and the hand hole cover 204 to form a low voltage arm capacitor of the voltage divider. The high voltage arm capacitor of the voltage divider is formed between the sensing electrode 202 and the high voltage bus 201 to form a capacitor.
  • the pressure device measures the transient overvoltage between the GIS internal high voltage bus and the GIS housing.
  • a GIS pipe primary transient voltage sensor mounting structure diagram is exemplarily disclosed.
  • a shielding box 301 is independently mounted outside the hand hole 205, and the oscilloscope type high speed acquisition card 113, the trigger system (not shown), the optical fiber control system (not shown), and the power supply of the test system are placed in the shield.
  • the shielding box 301 is directly mounted on the GIS outlet to prevent the influence of the electromagnetic interference and the electromagnetic interference on the measurement system.
  • the power source includes a battery 302 and an inverter power source 303.
  • the GIS-type calibration primary transient current sensor uses an air-core coil to measure the air-core coil at the high-voltage bus current measurement.
  • 6 is a schematic diagram of a GIS pipe primary transient current sensor installation structure according to an embodiment of the present invention, and the air-core coil is output to an oscilloscope-type high-speed acquisition card 113 for measurement.
  • a shielding box 301 is independently installed outside the hand hole.
  • the oscilloscope type high speed acquisition card 113 of the test system, the trigger system (not shown), the optical fiber control system (not shown) and its power supply are placed in the shielding box 301, and the shielding box 301 is directly mounted on the GIS outlet.
  • the power source includes a battery 302 and an inverter power source 303.
  • the calibration transient transient voltage current test system of different voltage levels has the same principle, and the high voltage arm capacitance can be determined according to the determined capacitance sensor voltage division ratio and low voltage arm capacitance.
  • the required high voltage can be obtained by selecting the hand hole depth. Arm capacitance.
  • the coupling capacitance between the multiple conductors can be calculated, and the design size of the GIS hand hole can be determined according to the required high-voltage arm capacitance value.
  • This embodiment discloses a test method using the GIS type electronic transformer test system based on Embodiments 1 and 2.
  • the first isolation switch DS1 is opened, and the test data 101, 104 and the secondary fault recording data of the primary transient test system are recorded;
  • the data tested by the two sets of transient voltage test systems are the transient voltage waveforms on the load side (between the isolating switch and the load), only the difference from the distance of the isolating switch.
  • the first isolation switch DS1 can be normally closed, and the DS2 is opened and closed.
  • the data tested by the two sets of transient voltage test systems are the load side (between the isolating switch and the load) and the power side (between the isolating switch and the power source). The transient voltage waveform, so the difference between the load side and the power side transient voltage can be studied.
  • the first isolation switch DS1 is closed, and the second isolation switch DS2 is in an open state, and the output voltage of the high voltage test transformer is increased.
  • Um is the highest voltage of the line;
  • the second isolation switch DS2 is opened, and the test data 101, 104 and the secondary fault recording data of the primary transient test system are recorded;
  • the sample is not damaged; there is no communication interruption, packet loss, quality change of the merging unit; the output unit output is not allowed to be abnormal (the output abnormal single output exceeds 100% of the rated secondary output or two consecutive outputs) More than 40% of rated secondary output).
  • the GIS electronic transformer test system based on the isolation switch and the capacitive small current of the isolating switch, the voltage value and the current value of the high voltage bus bar when the isolating switch is opened and closed are tested to be compared with the output of the product to be tested.
  • the invention is beneficial to solve the electromagnetic compatibility problem of the primary circuit and improve the electromagnetic compatibility protection measures.
  • the design of standard standard high-frequency current and voltage sensors is also proposed.
  • 110KV, 220KV, 500KV isolating switch can be built in the laboratory to separate the capacitive low current test circuit, and the electronic transformer is connected in series to the test circuit to simulate the on-site isolation switch opening and closing the empty conductor and the capacitive small current load process. Produce similar site transient strong interference and evaluate the electromagnetic protection performance of the electronic transformer under this condition.
  • the test platform can be used in the electromagnetic environment of 110KV, 220KV, 500KV voltage level during power transmission and power failure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Testing Relating To Insulation (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

一种基于隔离开关分合容性小电流的GIS电子式互感器的测试***,包括连接一根BSG套管上的高压试验变压器,电容分压器,在另一根BSG套管上的负载电容,以及在两根所述套管之间的隔离开关,校准一次暂态测试***和待测电子式互感器,二次转换器一端连接待测电子式互感器,另一端连接合并单元,合并单元的另一端连接故障录波器。测试隔离开关开合时的高压母线上的电压值和电流值,从而与待测电子互感器的输出作比对。通过该测试***,可以模拟110KV、220KV、500KV电压等级在送电和断电过程中的电磁环境,模拟现场隔离开关开合空导线及容性小电流负荷过程,产生类似现场暂态强干扰,考核在该条件下电子式互感器的电磁防护性能。

Description

一种GIS电子互感器测试***及其方法 技术领域
本发明涉及一种GIS电子互感器的测试***及其方法,具体的,涉及一种基于隔离开关分合容性小电流的GIS电子互感器测试***及其测试方法。
背景技术
随着智能电网的建设,在智能电网中广泛地使用了电子互感器。国家电网公司科技发展规划提出的“建设统一坚强智能电网”的战略目标,对电子互感器产品的质量和性能,产品运行的可靠性、稳定性和精确度提出了更高的要求。而其中电磁干扰是影响电子互感器可靠性和稳定性的一个重要因素。
国内外目前对于电子互感器电磁兼容的检测认识还停留在现有标准的基础上,其试验项目和技术要求不能完全满足在高电压等级中运行的电子设备的实际需要。国内电子互感器的应用推广时间不长,其电磁兼容的问题暴露的还不十分显著,但由于电子互感器在电力***的重要作用,重视电磁兼容问题就十分必要。
从变电站常见的电磁干扰的类型、特性和其对电子互感器的干扰耦合路径可以看出,在变电站环境中,电子互感器容易受干扰的原因主要是由于其设备更接近一次回路,在开关操作、***短路的条件下,通过直接传导和电磁场耦合更容易受到干扰,而其布置、合并单元及其供电模块也非常容易通过电磁辐射或地电位抬升的原因产生干扰。而这些干扰的强度远远超过目前电磁兼容标准规定的干扰水平,这也是目前电子互感器已通过了电磁兼容试验,在现场出现电磁防护故障的主要原因。为了彻底验证在现场条件下,电子互感器抗强干扰的能力,就必须采用与实际情况最接近的试验方法来验证。为此需研究并提出一种满足现场电磁防护要求的电磁兼容试验方法,以提高电子互感器的防护性能,降低电磁防护的故障率。
发明内容
本发明的目的在于提出基于隔离开关分合容性小电流的GIS电子互感器测试***,使得能够模拟***受到的各种电磁辐射,进而提出一种满足现场电磁防护要求的电磁兼容试验方法,以提高电子互感器的防护性能,降低电磁防护的故障率。
为达此目的,本发明采用以下技术方案:
一种基于隔离开关分合容性小电流的GIS电子互感器测试***,包括:包括两根套管,在两根套管之间具有GIS管道,其中一根所述套管为电源套管,所述电源套管连接着彼此并联的高压试验变压器和用于保护电源的电容分压器,所述电容分压器用以降低因较高电源阻抗引起的谐振效应,另一根所述套管为负 载套管,所述负载套管连接着负载电容,在靠近所述电源套管的GIS管道中具有第一隔离开关;在所述第一隔离开关和所述负载套管之间具有第一校准一次暂态测试***、第一待测电子互感器、第二待测电子式电压互感器和第二校准一次暂态电压测试***;其中,所述第一待测电子互感器靠近所述第一隔离开关,所述第二待测电子式电压互感器靠近所述负载套管,第一待测电子互感器为电子式电流互感器,或者电子式电流电压组合互感器,所述第一校准一次暂态测试***在第一待测电子互感器的邻近设置,为对应于所述第一待测电子互感器的一次暂态电流测试***、或者一次暂态电压和电流测试***的组合,所述第二校准一次暂态电压测试***在第二待测电子式电压互感器的邻近设置;二次转换器一端连接待测的所述互感器,另一端连接合并单元,所述合并单元的另一端连接故障录波器,所述故障录波器用于连接合并单元的输出。
优选地,在所述第一待测电子互感器和所述第二待测电子式电压互感器之间还具有第二隔离开关。
优选地,所述GIS管道长短可调,所述电源套管的底部具有伸缩所述GIS管道用的滑轨,所述滑轨能够左右滑动。
优选地,所述第一和第二隔离开关的分合的容性小电流数值为0.1~0.8A。
优选地,所述高压试验变压器的输出电流为2A;所述第一和第二隔离开关配电动操动机构、交流220V操作电源。
优选地,所述GIS管道附近安装有汇空柜,所述二次转换器和所述合并单元都置于所述汇空柜内。
优选地,所述一次暂态电流测试***包括一次暂态电流传感器,所述一次暂态电压测试***包括一次暂态电压传感器,高速采集卡和测量上位机,所述高速采集卡3分别采集所述一次暂态电流传感器和所述一次暂态电压传感器的输出,并通过数据传输方式传输给测量上位机。
优选地,所述一次暂态电压传感器为手孔式电压传感器,所述手孔式电压传感器包括安装于GIS手孔内部的感应电极,手孔盖板和位于所述感应电极和所述手孔盖板之间绝缘薄膜,所述感应电极和所述手孔盖板之间夹有一层所述绝缘薄膜构成分压器的低压臂电容,所述感应电极和高压母线之间构成高压臂电容,组成电容分压器,测量所述高压母线和GIS外壳之间的暂态过电压;所述一次暂态电流传感器使用空心线圈,把所述空心线圈套在所述高压母线电流测量处测量;在GIS的拔口安装有屏蔽箱,所述测试***的所述高速采集卡、触发***、光纤控制***及其电源置于所述屏蔽箱内。
一种上述基于隔离开关分合容性小电流的GIS电子式互感器的测试***进行测试的方法,包括如下步骤:一种上述基于隔离开关分合容性小电流的GIS电子式互感器的测试***进行测试的方法,包括如下步骤:
步骤1:搭建所述基于隔离开关的GIS式电子互感器测试***;
步骤2:保证所述合并单元置于所述汇空柜内,所述合并单元正常带电运行,与所述故障录波仪通信正常;
步骤3:闭合所述第二隔离开关,所述第一隔离开关处于分闸状态,将所述高压试验变压器输出电压升至
Figure PCTCN2014085982-appb-000001
其中Um为线路最高电压;
步骤4:闭合所述第一隔离开关,记录两个所述测试***测试数据和二次故障录波数据;
步骤5:间隔2分钟后打开所述第一隔离开关DS1,记录两个所述测试***测试数据和二次故障录波数据;
步骤6:重复4至5步骤9次,共10次所述第一隔离开关合分操作。
优选地,还包括如下步骤:
步骤7:闭合所述第一隔离开关,所述第二隔离开关处于分闸状态,将所述高压试验变压器输出电压升至
Figure PCTCN2014085982-appb-000002
其中Um为线路最高电压;
步骤8:闭合所述第二隔离开关,记录所述一次暂态测试***测试数据101,104和二次故障录波数据;
步骤9:间隔2分钟后打开所述第二隔离开关DS2,记录所述一次暂态测试***测试数据101,104和二次故障录波数据;
步骤10:重复8至9步骤9次,共10次所述第二隔离开关DS2合分操作,然后试验结束。
因此,根据本发明的基于隔离开关分合容性小电流的GIS电子互感器测试***,测试隔离开关开合时GIS管道中高压母线的电压值和电流值,从而与待测试品的输出作比对。这样,可以在试验室搭建110KV、220KV、500KV隔离开关分合容性小电流试验回路,同时将电子互感器串联接入试验回路,模拟现场隔离开关开合空导线及容性小电流负荷过程,产生类似现场暂态强干扰,考核在该条件下电子互感器的电磁防护性能。该试验平台可用于110KV、220KV、500KV电压等级在送电和断电过程中的电磁环境。
附图说明
图1是基于本发明实施例的220KV的GIS管道安装尺寸图;
图2是基于本发明实施例的220KV测试电路图;
图3是基于本发明实施例的220KV测试布置图;
图4是基于本发明实施例的手孔式电压传感器结构图;
图5是基于本发明实施例的GIS管道一次暂态电压传感器安装结构图;
图6是基于本发明实施例的GIS管道一次暂态电流传感器安装结构图;
图中的附图标记所分别指代的为:
101、第一校准一次暂态测试***;102、第一待测电子互感器;103、第二待测电子式电压互感器;104、第二校准一次暂态电压测试***;105、电源套管; 106、负载套管;110、二次转换器;111、合并单元;112、故障录播仪;113、高速采集卡;114、测量上位机;201、高压母线;202、感应电极;203、绝缘薄膜;204、手孔盖板;205、手孔;206、GIS壳体;301、屏蔽箱;302、蓄电池;303、逆变电源;1,为位置1;2,为位置2;3,为位置3;4,为位置4。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。
变电站电磁环境主要包括隔离开关和断路器操作、雷电和***短路等几种情况下,在变电站内引起的强电磁干扰现象。
对于在试验室内进行的雷电冲击试验作为考核电子互感器抗电磁干扰能力的试验方法,但是考虑到人工雷电冲击试验的能量及整个试验布置情况,在试验室内进行的雷电冲击试验与真实的雷电沿变电站内避雷针放电的条件差比比较大,首先是人工条件下模拟的雷电流幅值、能量都明显弱于实际;其次是人工试验中,参试设备的布置与实际明显不符。因此人工雷电试验不能完全模拟现场实际,其试验效果不会太好。
在试验室进行的人工接地试验也存在类似问题,其最大缺陷在于人工模拟的短路电流的条件与实际情况差别大,其幅值、持续时间等明显弱于实际情况,因此在人工接地试验条件下,对电子互感器抗干扰能力的考核也不充分。若在变电站进行1:1的真型人工接地试验则能提供比较好的试验条件,以提供对电子互感器的考核,但是此种试验的危险性大,对站内多数弱电设备都有强烈的干扰。试验可能会造成其它不必要的损失或留下隐患,从而对变电站日后正常运行有一定危害,因此在电力***内极少进行类似的试验。
因此,人工雷电冲击和人工接地试验都存在比较明显的缺陷。通过理论分析和实践经验,现场隔离开关的操作可以产生较强的电磁干扰,隔离开关干扰源的特点如下:
1)在一次回路产生过电压,幅值范围1.0p.u.~2.8p.u.;
2)在一次回路产生高频脉冲电流,幅值范围在几千安;
3)一次电压电流频率范围宽,50Hz~100MHz;
4)骚扰持续时间长,200ms~数秒;
5)电弧击穿-熄灭放电次数多,几百到上千次;
6)产生电磁辐射;
7)产生外壳电位升,幅值范围,几千伏到几十千伏。
因此可知,隔离开关干扰源是一种高强度的干扰源,如果用于检验电子互感器的电磁兼容性试验,可最大限度考核电子互感器的电磁防护性能。隔离开关在 分合电容器过程中,在一次试验回路将产生多次电弧击穿和熄灭暂态过程,此暂态过程将产生多次脉冲电流、暂态过电压及脉冲磁场,利用一次回路中的标准电压和标准电流传感器测量一次电压电流的数值并记录,同时记录被试电子互感器在经过合并单元后输出值,依据测量到的一次电压、电流波形数值与被试电子互感器的输出特性比对并观测电子互感器在整个试验过程中的工作状态,就可以来判别被试电子互感器的电磁抗干扰性能。
实施例1:
在本实施例中,以220KV的GIS管道为例,介绍GIS电子互感器测试***。参见附图1-3,分别公开了根据本发明的220KV的GIS管道安装尺寸图,测试电路图和测试布置图。
GIS电子互感器测试***包括两根BSG套管,在两根BSG套管之间具有GIS管道,其中一根所述套管为电源套管105,所述电源套管连接着彼此并联的高压试验变压器U1和用于保护电源的电容分压器C1,所述电容分压器C1用以降低因较高电源阻抗引起的谐振效应,另一根所述套管为负载套管106,所述负载套管连接着负载电容C2,由于GIS式电子互感器全部属于电容量较小的电容分压原理的产品,因此需要增加负载电容C2以更好地模拟实际情况。具体的来说,负载电容C2有助于稳定母线充电电流,偏差在±10%。在靠近所述电源套管的GIS管道中具有第一隔离开关DS1,在第一隔离开关DS1和所述负载套管之间具有第一校准一次暂态测试***101、第一待测电子互感器102、第二待测电子式电压互感器103和第二校准一次暂态电压测试***104。第一待测电子互感器102靠近所述第一隔离开关DS1,第二待测电子式电压互感器103靠近所述负载套管,其中,第一待测电子互感器102为电子式电流互感器ECT,或者电子式电流电压组合互感器ECVT,设立第二待测电子式电压互感器EVT是由于暂态电压受到距离隔离开关的距离的影响较大,因此在第一待测电子互感器与负载套管之间增设第二待测电子式电压互感器。二次转换器110一端连接待测电子互感器102.103,另一端连接合并单元111,合并单元111的另一端连接故障录波器112,故障录波器112用于连接合并单元111的输出。
所述第一校准一次暂态测试***101在第一待测电子互感器102的邻近设置,为对应于第一待测电子互感器的一次暂态电流测试***、或者一次暂态电压和电流测试***的组合。所述第二校准一次暂态电压测试***104在第二待测电子式电压互感器103的邻近设置,为对应于第二待测电子式电压互感器的一次暂态电压测试***。
应当知道,所述待测电子互感器在GIS管道中的位置中的具***置并不固定,能够位于管道中的不同位置处,由此可以模拟在距离第一隔离开关DS1不同位置处的暂态电压或者电流。
在此方案中,待测电子互感器102、103均位于负载侧,即位于第一隔离开关DS1和负载套管之间,只有离隔离开关距离的不同,因此,可以研究管道的长短对负载侧暂态电压和暂态电流的影响。
因此,优选地,GIS管道长短可调,所述电源套管105的底部具有伸缩所述GIS管道用的滑轨,可左右滑动,因此可以模拟不同的GIS管道,进而进一步有利于研究不同的GIS管道的长短对负载侧暂态电压和暂态电流的影响。
同时,GIS管道长短可调和伸缩用滑轨可以兼容不同制造单位的电子互感器的样品。
优选地,为了研究负载侧和电源侧暂态电流和暂态电压的不同,在所述第一待测电子互感器和所述第二待测电子式电压互感器之间还具有辅助用的第二隔离开关DS2,这样扩充了该电流的试验能力,因此,该试验电路可以完成以以下两种方式进行暂态参数的研究:
方式1:电源置于右侧,负载置于左侧,DS2常闭,开合DS1,两套暂态测试***测试的数据都是负载侧(隔离开关与负载之间)的暂态电压波形,只有离隔离开关距离不同的区别,因此可以研究管道长短对负载侧暂态电压的影响。
方式2:电源置于右侧,负载置于左侧,DS1常闭,开合DS2,两套暂态测试***测试的数据分别是负载侧(隔离开关与负载之间)和电源侧(隔离开关与电源之间)的暂态电压波形,因此可以研究负载侧和电源侧暂态电压的不同。
其中,第一校准一次暂态测试***和第二校准一次暂态电压测试***,可以为常用的一次暂态电流电压测量***,但优选地,可以为例如实施例2的一次暂态电流电压测量***。
如上所述,所述待测电子互感器在GIS管道中的位置并不固定,能够位于管道中的不同位置处,由此可以模拟在距离第一隔离开关DS1不同位置处的暂态电压或者电流。
例如,在220KV中可以设置具体的待测电子互感器的和一次暂态测试***的位置。参见附图1-3,在图中,ES表示接地开关,DS表示隔离开关,EVT表示电子式电压互感器试品,ECT表示电子式电流互感器试品,ECVT表示电子式电流电压组合互感器试品。该试验平台可同时在位置2处接入一台EVT、在位置3处安装ECT或者ECVT。在位置1,位置4处分别放置一个一次暂态电压传感器,在位置4处放置一次暂态电流传感器。
即,在所述第一隔离开关DS1和负载套管之间依次安装第一校准一次暂态电流、电压测试***、第一待测电子式电流电压组合互感器、第二隔离开关、第二待测电子式电压互感器、第二校准一次暂态电压测试***。
对于本领域技术人员而言,在不同的电压等级中,在管道的不同位置设置待测电子互感器的和一次暂态测试***,只要在靠近电源套管处设置待测电子式电 流互感器,或者待测电子式电流电压组合互感器,在靠近负载套管增置待测电子式电压互感器,同时分别设置对应的校准一次暂态测试***即可。
优选地,高压试验变压器101的输出电流2A;GIS式第一隔离开关DS1和第二隔离开关DS2配电动操动机构、交流220V操作电源。在实际测量中,GIS管道就近安装了一个汇空柜,待测电子互感器的二次转换器110和合并单元110都置于汇空柜内,汇空柜电源为直流220V,采用直流屏供电。
根据隔离开关相关标准内容,在试验中,所述第一和第二隔离开关的分合的容性小电流数值为0.1~0.8A(稳态),具体数值见表1。实际负载电容不需要与计算结果精确一致,可以按照实际条件存在±10%的偏差。
表1 试验电容电流
Figure PCTCN2014085982-appb-000003
试验中由于高压变压器101内阻的原因,在合闸和分闸两种状态下,其稳态电压有变化,按GB1985-2004《高压交流隔离开关和接地开关》的要求其电源变化应≤±10%。
试验中,被试电子互感器一次部分、二次连接及电子合并单元按实际使用条件进行完整装配连接,在试验过程电子互感器带电并按正常工况运行。
实施例2:
采用隔离开关分合容性小电流试验电子互感器的电磁兼容性,其基本原理是在产生强电磁干扰的条件下,测试电子互感器的电磁兼容性,因此强电磁干扰条件参数是试验的重要参数之一。隔离开关分合容性小电流过程的主要参数有:电压,电流,电场,磁场,外壳电位升。其中电压和电流是最主要的参数,因此测量电压和电流是电子互感器在隔离开关分合容性小电流条件下的抗扰度试验的关键步骤。
参见附图3,以220KV为例,其中包括根据本发明实施例的第一校准一次暂态电流电压测试***和第二校准一次暂态电压测试***,其中,第一校准一次暂态电流电压测试***101包括一次暂态电流传感器、一次暂态电压传感器、高速采集卡113和测量上位机114,所述高速采集卡113分别采集一次暂态电流传感器和一次暂态电压传感器的输出,并通过数据传输方式,例如光电转换传输给测量上位机114进行后期数据处理。第二校准一次暂态电压测试***104包括一次暂态电压传感器,高速采集卡113采集一次暂态电压传感器的输出,并通过数据传输方式,例如光电转换传输给测量上位机114进行后期数据处理。
在实际使用中,可以通过激光供能,电池,太阳光供能的方式给高速采集卡113供电。测量上位机可以采用工业控制机、笔记本、PC等任何可用的计算装置。
即,测试***包括对应的标准传感器,高速采集卡113采集标准传感器的输出,并通过数据传输方式,例如光电转换传输给测量上位机114进行后期数据处理。
在实际测量中,GIS管道就近安装了一个汇空柜,待测电子互感器的二次转换器、合并单元都置于汇空柜内。暂态测试***的高速采集卡、电池供能模块置于GIS管道外壁的一个屏蔽盒内。笔记本上位机和故障录波仪置于人员操作间内。
特别的,隔离开关操作的暂态电磁过程是一个极为复杂过程,具有频带宽(50Hz~100MHz),持续时间长(数秒)的特点,对前置探头和测量***的测量频带、抗干扰性能、记录数据的长度都有较高的要求,有关标准中对此要求用“专业测量”。
因此,参见附图4,公开了基于电容分压原理的GIS式所述校准一次暂态电压传感器的结构图,所述校准一次暂态电压传感器为手孔式电压传感器结构图。其包括安装于GIS手孔205内部的感应电极202,手孔盖板204和位于感应电极和手孔盖板之间绝缘薄膜203,其中绝缘薄膜可以为塑料薄膜。感应电极202和手孔盖板204之间夹有一层所述绝缘薄膜203构成分压器的低压臂电容,感应电极202和高压母线201之间构成分压器的高压臂电容,组成一个电容分压器,测量GIS内部高压母线和GIS外壳之间的暂态过电压。
当具体安装时,参见图5,示例性地公开了GIS管道一次暂态电压传感器安装结构图。在手孔205外部独立安装有屏蔽箱301,所述测试***的示波器型高速采集卡113、触发***(图中未示出)、光纤控制***(图中未示出)及其电源置于屏蔽箱301内,屏蔽箱301直接安装于GIS的拔口上,以防止由于辐射电磁干扰和传导电磁干扰对测量***的影响。所述电源包括蓄电池302和逆变电源303。
GIS式校准一次暂态电流传感器使用空心线圈,把空心线圈套在高压母线电流测量处测量。参见图6基于本发明实施例的GIS管道一次暂态电流传感器安装结构图,空心线圈输出到示波器型的高速采集卡113进行测量,同样地,在手孔外部独立安装有屏蔽箱301,所述测试***的示波器型高速采集卡113、触发***(图中未示出)、光纤控制***(图中未示出)及其电源置于屏蔽箱301内,屏蔽箱301直接安装于GIS的拔口上,以防止由于辐射电磁干扰和传导电磁干扰对测量***的影响。所述电源包括蓄电池302和逆变电源303。
应当知道,不同电压等级的校准一次暂态电压电流测试***原理相同,根据已确定的电容传感器分压比和低压臂电容,可以确定高压臂电容。给定GIS结构尺寸、手孔直径、电极直径和厚度,通过选择手孔深度,可以获得需要的高压 臂电容。借助电场仿真,可以计算多导体间的耦合电容,根据需要的高压臂电容值,确定GIS手孔的设计尺寸。
实施例3:
本实施例公开了利用基于实施例1、2的GIS式电子互感器测试***的测试方法。
1、按照图1-3构建基于隔离开关的GIS式电子互感器测试***;
2、保证合并单元111置于汇空柜内,合并单元正常带电运行,与故障录波仪112通信正常;
3、闭合第二隔离开关DS2,第一隔离开关DS1处于分闸状态,将所述高压试验变压器输出电压升至
Figure PCTCN2014085982-appb-000004
其中Um为线路最高电压;
4、闭合所述第一隔离开关,记录所述一次暂态测试***测试数据101,104和二次故障录波数据;
5、间隔2分钟后打开所述第一隔离开关DS1,记录所述一次暂态测试***测试数据101,104和二次故障录波数据;
6、重复4至5步骤9次,共10次第一隔离开关合分操作;
这样结束了第一部分试验。在该部分试验中,两套暂态电压测试***测试的数据都是负载侧(隔离开关与负载之间)的暂态电压波形,只有离隔离开关距离不同的区别。
进一步的,可以常闭第一隔离开关DS1,开合DS2,两套暂态电压测试***测试的数据分别是负载侧(隔离开关与负载之间)和电源侧(隔离开关与电源之间)的暂态电压波形,因此可以研究负载侧和电源侧暂态电压的不同。
因此,还包括如下步骤:
7、闭合第一隔离开关DS1,第二隔离开关DS2处于分闸状态,将所述高压试验变压器输出电压升
Figure PCTCN2014085982-appb-000005
至其中Um为线路最高电压;
8、闭合所述第二隔离开关DS2,记录所述一次暂态测试***测试数据101,104和二次故障录波数据;
9、间隔2分钟后打开所述第二隔离开关DS2,记录所述一次暂态测试***测试数据101,104和二次故障录波数据;
10、重复8至9步骤9次,共10次所述第二隔离开关DS2合分操作,然后试验结束。
在试验中,应当注意:试品不损坏;不出现合并单元通信中断、丢包、品质改变;不允许合并单元输出异常(输出异常单点输出超过额定二次输出的100%或连续两点输出超过额定二次输出的40%)。
因此,根据本发明的基于隔离开关分合容性小电流的GIS电子互感器测试***,测试隔离开关开合时高压母线上的电压值和电流值,从而与待测试品的输出作比对。
本发明有利于解决一次回路电磁兼容问题,提高电磁兼容防护措施。同时还提出了标准的标准高频电流、电压传感器的设计。
这样,可以在试验室搭建110KV、220KV、500KV隔离开关分合容性小电流试验回路,同时将电子互感器串联接入试验回路,模拟现场隔离开关开合空导线及容性小电流负荷过程,产生类似现场暂态强干扰,考核在该条件下电子互感器的电磁防护性能。该试验平台可用于110KV、220KV、500KV电压等级在送电和断电过程中的电磁环境。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施方式仅限于此,对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单的推演或替换,都应当视为属于本发明由所提交的权利要求书确定保护范围。

Claims (10)

  1. 一种基于隔离开关分合容性小电流的GIS电子互感器测试***,包括:
    包括两根套管,在两根套管之间具有GIS管道,其中一根所述套管为电源套管,所述电源套管连接着彼此并联的高压试验变压器和用于保护电源的电容分压器,所述电容分压器用以降低因较高电源阻抗引起的谐振效应,另一根所述套管为负载套管,所述负载套管连接着负载电容,在靠近所述电源套管的GIS管道中具有第一隔离开关;
    其特征在于:
    在所述第一隔离开关和所述负载套管之间具有第一校准一次暂态测试***、第一待测电子互感器、第二待测电子式电压互感器和第二校准一次暂态电压测试***;
    其中,所述第一待测电子互感器靠近所述第一隔离开关,所述第二待测电子式电压互感器靠近所述负载套管,第一待测电子互感器为电子式电流互感器,或者电子式电流电压组合互感器,
    所述第一校准一次暂态测试***在第一待测电子互感器的邻近设置,为对应于所述第一待测电子互感器的一次暂态电流测试***、或者一次暂态电压和电流测试***的组合,所述第二校准一次暂态电压测试***在第二待测电子式电压互感器的邻近设置;
    二次转换器一端连接待测的所述互感器,另一端连接合并单元,所述合并单元的另一端连接故障录波器,所述故障录波器用于连接合并单元的输出。
  2. 根据权利要求1所述的基于隔离开关分合容性小电流的GIS电子互感器测试***,其特征在于:
    在所述第一待测电子互感器和所述第二待测电子式电压互感器之间还具有第二隔离开关。
  3. 根据权利要求2所述的基于隔离开关分合容性小电流的GIS电子互感器测试***,其特征在于:
    所述GIS管道长短可调,所述电源套管的底部具有伸缩所述GIS管道用的滑轨,所述滑轨能够左右滑动。
  4. 根据权利要求2所述的基于隔离开关分合容性小电流的GIS电子互感器测试***,其特征在于:
    优选的,所述第一和第二隔离开关的分合的容性小电流数值为0.1~0.8A。
  5. 根据权利要求2所述的基于隔离开关分合容性小电流的GIS电子互感器测试***,其特征在于:
    所述高压试验变压器的输出电流为2A;所述第一和第二隔离开关配电动操动机构、交流220V操作电源。
  6. 根据权利要求3-5中任意一项所述的基于隔离开关分合容性小电流的GIS电子互感器测试***,其特征在于:
    所述GIS管道附近安装有汇空柜,所述二次转换器和所述合并单元都置于所述汇空柜内。
  7. 根据权利要求6所述的基于隔离开关分合容性小电流的GIS电子互感器测试***,其特征在于:
    所述一次暂态电流测试***包括一次暂态电流传感器,所述一次暂态电压测试***包括一次暂态电压传感器,高速采集卡和测量上位机,所述高速采集卡3 分别采集所述一次暂态电流传感器和所述一次暂态电压传感器的输出,并通过数据传输方式传输给测量上位机。
  8. 根据权利要求7所述的基于隔离开关分合容性小电流的GIS电子互感器测试***,其特征在于:
    所述一次暂态电压传感器为手孔式电压传感器,所述手孔式电压传感器包括安装于GIS手孔内部的感应电极,手孔盖板和位于所述感应电极和所述手孔盖板之间绝缘薄膜,所述感应电极和所述手孔盖板之间夹有一层所述绝缘薄膜构成分压器的低压臂电容,所述感应电极和高压母线之间构成高压臂电容,组成电容分压器,测量所述高压母线和GIS外壳之间的暂态过电压;
    所述一次暂态电流传感器使用空心线圈,把所述空心线圈套在所述高压母线电流测量处测量;
    在GIS的拔口安装有屏蔽箱,所述测试***的所述高速采集卡、触发***、光纤控制***及其电源置于所述屏蔽箱内。
  9. 一种利用权利要求7或8所述的基于隔离开关分合容性小电流的GIS电子式互感器的测试***进行测试的方法,其特征在于:
    步骤1:搭建所述基于隔离开关的GIS式电子互感器测试***;
    步骤2:保证所述合并单元置于所述汇空柜内,所述合并单元正常带电运行,与所述故障录波仪通信正常;
    步骤3:闭合所述第二隔离开关,所述第一隔离开关处于分闸状态,将所述高压试验变压器输出电压升至
    Figure PCTCN2014085982-appb-100001
    其中Um为线路最高电压;
    步骤4:闭合所述第一隔离开关,记录两个所述测试***测试数据和二次故障录波数据;
    步骤5:间隔2分钟后打开所述第一隔离开关DS1,记录两个所述测试***测试数据和二次故障录波数据;
    步骤6:重复4至5步骤9次,共10次所述第一隔离开关合分操作。
  10. 根据权利要求9所述的进行测试的方法,其特征在于,还包括如下步骤:
    步骤7:闭合所述第一隔离开关,所述第二隔离开关处于分闸状态,将所述高压试验变压器输出电压升至
    Figure PCTCN2014085982-appb-100002
    其中Um为线路最高电压;
    步骤8:闭合所述第二隔离开关,记录所述一次暂态测试***测试数据101,104和二次故障录波数据;
    步骤9:间隔2分钟后打开所述第二隔离开关DS2,记录所述一次暂态测试***测试数据101,104和二次故障录波数据;
    步骤10:重复8至9步骤9次,共10次所述第二隔离开关DS2合分操作,然后试验结束。
PCT/CN2014/085982 2013-09-09 2014-09-05 一种gis电子互感器测试***及其方法 WO2015032343A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA2927519A CA2927519A1 (en) 2013-09-09 2014-09-05 A gis electronic instrument transformer test system and method thereof
EP14842552.3A EP3045930B1 (en) 2013-09-09 2014-09-05 Testing system of gis electronic mutual inductor and method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310407523.3 2013-09-09
CN201310407523.3A CN103487780B (zh) 2013-09-09 2013-09-09 一种gis电子互感器测试***及其方法

Publications (1)

Publication Number Publication Date
WO2015032343A1 true WO2015032343A1 (zh) 2015-03-12

Family

ID=49828150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/085982 WO2015032343A1 (zh) 2013-09-09 2014-09-05 一种gis电子互感器测试***及其方法

Country Status (4)

Country Link
EP (1) EP3045930B1 (zh)
CN (1) CN103487780B (zh)
CA (1) CA2927519A1 (zh)
WO (1) WO2015032343A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105137135A (zh) * 2015-08-13 2015-12-09 国家电网公司 一种隔离开关模拟电磁骚扰源
CN105353332A (zh) * 2015-10-29 2016-02-24 中国电力科学研究院 一种电子式互感器长期带电性能考核方法及***
CN106526435A (zh) * 2016-10-17 2017-03-22 国网安徽省电力公司电力科学研究院 有源电子式电压互感器用电压转换器冲击测试装置及方法
CN107728096A (zh) * 2017-09-28 2018-02-23 山东泰开互感器有限公司 一种电容式电压互感器试验***
CN107907848A (zh) * 2017-10-27 2018-04-13 国网浙江省电力公司杭州供电公司 用于电子式互感器的检测方法
CN110261808A (zh) * 2019-06-10 2019-09-20 国网湖南省电力有限公司 一种车载gis式表源装置
CN112485745A (zh) * 2020-11-17 2021-03-12 广东电网有限责任公司计量中心 一种自带隔离开关的仿真平台
CN112816930A (zh) * 2020-12-31 2021-05-18 国家电网有限公司 一种用于确定电子式互感器辐射抗扰度的试验方法及***
CN113484592A (zh) * 2021-04-25 2021-10-08 南方电网科学研究院有限责任公司 一种直流输电测量***及其测量延时的测试方法
CN114062752A (zh) * 2021-11-18 2022-02-18 浙江天正电气股份有限公司 互感器处理方法和互感器与计量芯的一致性实现方法
CN113466685B (zh) * 2021-06-30 2024-05-14 国网陕西省电力有限公司电力科学研究院 一种微缩型gis电磁骚扰模拟试验装置及方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103487780B (zh) * 2013-09-09 2016-03-23 国家电网公司 一种gis电子互感器测试***及其方法
CN103969537B (zh) * 2014-06-04 2017-08-25 贵州电力试验研究院 模拟量、数字量混合采集的互感器干扰源测试***及方法
CN104155626B (zh) * 2014-08-15 2017-03-08 国家电网公司 一种检测电压互感器抵御地电位升高能力的***
CN104597425B (zh) * 2015-01-21 2019-06-14 国家电网公司 一种适用于gis电子式互感器带电考核平台
CN106443144A (zh) * 2015-08-11 2017-02-22 中国电力科学研究院 一种特高压gis用分布式暂态过电压监测***
CN105301400A (zh) * 2015-11-10 2016-02-03 中国电力科学研究院 一种特高压交流设备运行工况模拟***
CN106168658B (zh) * 2016-08-31 2023-06-02 贵州电网有限责任公司 一种减小电压互感器二次压降的装置及方法
CN106646320B (zh) * 2016-10-09 2019-06-11 国网江苏省电力公司电力科学研究院 基于站内联合测量的电子式电流互感器异常辨识方法
CN106680549A (zh) * 2016-12-29 2017-05-17 国家电网公司 一种gis暂态模拟电磁骚扰源
CN107271945B (zh) * 2017-06-26 2020-05-12 国家电网公司 一种***级电子式互感器电磁兼容试验***及方法
CN107490719A (zh) * 2017-08-09 2017-12-19 国网山东省电力公司经济技术研究院 Gis内基于罗氏线圈原理的电子式互感器
CN108051769A (zh) * 2017-12-12 2018-05-18 中国西电电气股份有限公司 一种电容式电压互感器暂态响应试验装置及试验方法
CN108089082B (zh) * 2018-01-16 2023-11-24 中国南方电网有限责任公司超高压输电公司曲靖局 高压直流中性母线避雷器性能在线监测***及方法
DE102018204076A1 (de) * 2018-03-16 2019-09-19 Siemens Aktiengesellschaft Vorrichtung aufweisend einen Messwandler
CN110888098A (zh) * 2018-09-07 2020-03-17 中国电力科学研究院有限公司 一种电子式互感器的敏感部件的测试方法
CN111273167B (zh) * 2018-12-05 2022-06-03 西安高压电器研究院股份有限公司 一种隔离开关小感性电流开合试验电路
CN109814060A (zh) * 2019-01-03 2019-05-28 广西电网有限责任公司贵港供电局 多台高压电流互感器的检定***及其方法
CN110441575B (zh) * 2019-05-28 2022-09-27 中国电力科学研究院有限公司 一种共箱型气体绝缘金属封闭开关设备gis电子式电压互感器
CN110161445B (zh) * 2019-06-11 2024-03-08 沈阳仪表科学研究院有限公司 汽车电流传感器自动测试装置
CN111693926A (zh) * 2020-07-20 2020-09-22 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 一种电压互感器校验***
CN114384830A (zh) * 2020-10-20 2022-04-22 中国电力科学研究院有限公司 一种用于智能电网采集单元的电磁干扰确定方法及***
CN112710978A (zh) * 2020-11-30 2021-04-27 国网北京市电力公司 抗直流互感器的检测***
CN112731210B (zh) * 2020-12-09 2021-12-17 江苏核电有限公司 一种不拆高压侧gis的主变压器电气预防性试验方法
CN113189386A (zh) * 2021-05-11 2021-07-30 国网山东省电力公司泰安供电公司 Gis快速暂态过电压光学在线监测***
CN113311373A (zh) * 2021-06-24 2021-08-27 广东电网有限责任公司 一种直流电压互感器校验仪的校准方法及校准装置
CN113625215B (zh) * 2021-10-12 2021-12-31 国网江西省电力有限公司电力科学研究院 基于分段测试的电压互感器异常校准方法及装置
CN114019323A (zh) * 2021-11-01 2022-02-08 国网陕西省电力公司电力科学研究院 一种同频同相交流耐压试验控制***及方法
CN113985271B (zh) * 2021-11-04 2024-06-11 中铁武汉电气化局集团有限公司 地铁gis高压开关柜***检测装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101504432A (zh) * 2009-01-24 2009-08-12 国网电力科学研究院 变电站暂态电磁场测量方法
CN101881813A (zh) * 2010-06-17 2010-11-10 国网电力科学研究院 模拟gis变电站中产生特快速瞬态过电压的方法及试验回路
CN102565647A (zh) * 2012-02-14 2012-07-11 重庆市电力公司电力科学研究院 Gis耐压测试***
CN103487780A (zh) * 2013-09-09 2014-01-01 国家电网公司 一种gis电子互感器测试***及其方法
CN203502582U (zh) * 2013-09-09 2014-03-26 国家电网公司 基于隔离开关分合容性小电流的gis电子互感器测试***

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0879965A (ja) * 1994-09-05 1996-03-22 Nissin Electric Co Ltd ガス絶縁開閉装置の事故点標定方法
CN102087347B (zh) * 2009-12-08 2013-05-29 张建 一种电流互感器的带电测试方法及其应用
CN102043139B (zh) * 2010-12-16 2013-03-27 中国人民解放军空军工程大学 电流互感器校验装置及采用该装置校验电流互感器的方法
CN103257293B (zh) * 2013-04-27 2015-09-02 国家电网公司 一种输电线路雷电电磁暂态动模实验***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101504432A (zh) * 2009-01-24 2009-08-12 国网电力科学研究院 变电站暂态电磁场测量方法
CN101881813A (zh) * 2010-06-17 2010-11-10 国网电力科学研究院 模拟gis变电站中产生特快速瞬态过电压的方法及试验回路
CN102565647A (zh) * 2012-02-14 2012-07-11 重庆市电力公司电力科学研究院 Gis耐压测试***
CN103487780A (zh) * 2013-09-09 2014-01-01 国家电网公司 一种gis电子互感器测试***及其方法
CN203502582U (zh) * 2013-09-09 2014-03-26 国家电网公司 基于隔离开关分合容性小电流的gis电子互感器测试***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3045930A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105137135A (zh) * 2015-08-13 2015-12-09 国家电网公司 一种隔离开关模拟电磁骚扰源
CN105353332A (zh) * 2015-10-29 2016-02-24 中国电力科学研究院 一种电子式互感器长期带电性能考核方法及***
CN105353332B (zh) * 2015-10-29 2023-11-14 中国电力科学研究院 一种电子式互感器长期带电性能考核方法及***
CN106526435B (zh) * 2016-10-17 2023-04-18 国网安徽省电力公司电力科学研究院 有源电子式电压互感器用电压转换器冲击测试装置及方法
CN106526435A (zh) * 2016-10-17 2017-03-22 国网安徽省电力公司电力科学研究院 有源电子式电压互感器用电压转换器冲击测试装置及方法
CN107728096A (zh) * 2017-09-28 2018-02-23 山东泰开互感器有限公司 一种电容式电压互感器试验***
CN107728096B (zh) * 2017-09-28 2024-03-22 山东泰开互感器有限公司 一种电容式电压互感器试验***
CN107907848A (zh) * 2017-10-27 2018-04-13 国网浙江省电力公司杭州供电公司 用于电子式互感器的检测方法
CN110261808A (zh) * 2019-06-10 2019-09-20 国网湖南省电力有限公司 一种车载gis式表源装置
CN110261808B (zh) * 2019-06-10 2024-04-16 国网湖南省电力有限公司 一种车载gis式表源装置
CN112485745A (zh) * 2020-11-17 2021-03-12 广东电网有限责任公司计量中心 一种自带隔离开关的仿真平台
CN112816930A (zh) * 2020-12-31 2021-05-18 国家电网有限公司 一种用于确定电子式互感器辐射抗扰度的试验方法及***
CN113484592A (zh) * 2021-04-25 2021-10-08 南方电网科学研究院有限责任公司 一种直流输电测量***及其测量延时的测试方法
CN113466685B (zh) * 2021-06-30 2024-05-14 国网陕西省电力有限公司电力科学研究院 一种微缩型gis电磁骚扰模拟试验装置及方法
CN114062752A (zh) * 2021-11-18 2022-02-18 浙江天正电气股份有限公司 互感器处理方法和互感器与计量芯的一致性实现方法

Also Published As

Publication number Publication date
EP3045930B1 (en) 2018-05-16
CN103487780A (zh) 2014-01-01
CA2927519A1 (en) 2015-03-12
EP3045930A4 (en) 2017-05-17
EP3045930A1 (en) 2016-07-20
CN103487780B (zh) 2016-03-23

Similar Documents

Publication Publication Date Title
WO2015032343A1 (zh) 一种gis电子互感器测试***及其方法
CN103487679B (zh) 一种ais电子互感器测试***及其方法
CN103091609B (zh) 一种gis局部放电在线监测装置性能检测***及其方法
CN106093591B (zh) 一种中性点不接地配电网电容电流测量***及方法
CN203299270U (zh) 一种用于准确测量cvt电网侧电压谐波的装置
CN202854255U (zh) 一种电容式电压互感器测试装置
CN203502582U (zh) 基于隔离开关分合容性小电流的gis电子互感器测试***
CN104777366A (zh) 抗干扰输电线路高压绝缘电阻测试装置
CN203324403U (zh) 含分布式电源的配电网馈线保护数字动态测试***
CN203502581U (zh) 基于隔离开关分合容性小电流的ais电子互感器测试***
CN205539343U (zh) 基于电容分压法vfto测量传感器的局放一体化探头
CN107462760A (zh) 一种用于强电磁环境下的高压开关瞬态地电位测试***
CN204515022U (zh) 抗干扰输电线路高压绝缘电阻测试装置
CN207882327U (zh) 一种基于宽频大量程ct的电网电压全频域监测装置
CN206832926U (zh) 用于查找电缆故障及进行交直流耐压测试的一体化装置
CN104330596A (zh) 移动式直流积污试验电源***
CN209280789U (zh) 一种通过消弧线圈测量电容电流的装置
CN204142784U (zh) 移动式直流积污试验电源***
CN203466630U (zh) 一种微机保护测控装置
CN203535206U (zh) Gis局部放电仿真***
CN206649114U (zh) 一种用于开关柜中压电缆局放检测的辅助装置
Tong et al. The optimal design of electromagnetic compatibility for electronic transformer
Zhang et al. Characteristics analysis of switching transient disturbance to secondary equipment port of 1000kV substation
Cheng et al. Research on field electromagnetic compatibility test method of system level for electronic transformers
Hailong et al. Research on detection system for 10kV distribution switcher of both Primary and secondary technology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14842552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014842552

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014842552

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2927519

Country of ref document: CA