WO2015016490A1 - 세라믹이 코팅된 흑연의 제조방법 - Google Patents

세라믹이 코팅된 흑연의 제조방법 Download PDF

Info

Publication number
WO2015016490A1
WO2015016490A1 PCT/KR2014/005784 KR2014005784W WO2015016490A1 WO 2015016490 A1 WO2015016490 A1 WO 2015016490A1 KR 2014005784 W KR2014005784 W KR 2014005784W WO 2015016490 A1 WO2015016490 A1 WO 2015016490A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphite
ceramic
coated
precursor
group
Prior art date
Application number
PCT/KR2014/005784
Other languages
English (en)
French (fr)
Inventor
심상은
최성철
김민재
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140072934A external-priority patent/KR101682899B1/ko
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to CN201480041396.2A priority Critical patent/CN105636903B/zh
Publication of WO2015016490A1 publication Critical patent/WO2015016490A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/016Additives defined by their aspect ratio

Definitions

  • the present invention relates to a process for the simple and economic synthesis of ceramic coated graphite.
  • the heat dissipation polymer composite in order to use the heat dissipation polymer composite as a package of an electronic product, it must have not only high thermal conductivity but also excellent electric insulation. Accordingly, a filler having excellent thermal conductivity and electrical insulation is required.
  • a filler having both excellent thermal conductivity and electrical insulation has been developed by coating an electrically insulating ceramic on graphite.
  • the drying process is essentially followed, which results in lengthy and complicated overall process times and low productivity. Therefore, in order to continuously mass-produce ceramic coated graphite, a simpler process method is required.
  • Korean Patent Publication No. 10-0895521 discloses a carbon nanotube transparent conductive film using a spray coating and a method of manufacturing the same.
  • Conventional ceramic-coated graphite production method comprises the steps of preparing a coating solution by mixing and dispersing carbon nanotubes, dispersants and solvents; And spraying the coating solution on a substrate at a spray pressure of 0.05 to 60 kgf / cm 2 , and drying the coating solution, wherein the carbon nanotube content in the coating solution is 0.01 to 100 parts by weight based on 100 parts by weight of the total coating solution. It is characterized in that 20 parts by weight.
  • the present invention aims to simplify the process to provide a method for producing graphite uniformly coated with a ceramic having high productivity and economy, and excellent thermal conductivity and electrical insulation.
  • the present invention is graphite (A); Preparation of ceramic-coated graphite having an electrical resistance in the range of 10 8 to 10 16 dl / sq by sol-gel method, including ceramic (B) chemically bonded to the lateral defects of the graphite (A) Provide a method.
  • a pyrene derivative When coating the ceramic on the graphite, a pyrene derivative may be further added as a dispersant.
  • a step of sufficiently dispersing graphite (A) having an average diameter of 10 ⁇ m 1000 ⁇ m size for 0.1 to 20 parts by weight for 1 minute to 5 minutes to 100 parts by weight of the alcohol solvent (step a); Introducing a basic catalyst into the dispersed solution and titrating to pH 9-12 (step b); And (c) coating the ceramic (B) on the graphite surface by introducing 10 to 300 parts by weight of the ceramic precursor to be coated on a solution in which the graphite is sufficiently dispersed, relative to 100 parts by weight of the introduced graphite.
  • a pyrene derivative may be further added as a dispersant.
  • FIG. 1 is a schematic diagram showing the difference in ceramic coating by the sol-gel method on the graphite having a high aspect ratio and the graphite having a low aspect ratio according to the present invention.
  • FIG. 2 is a scanning electron micrograph of a sample in which silica (SiO 2 ) is coated on graphite having a low aspect ratio.
  • FIG. 3 is a scanning electron micrograph of a sample coated with silica (SiO 2 ) coated on graphite having a high aspect ratio.
  • Figure 4 is a scanning electron micrograph taken by the aspect ratio of 100,000-fold magnification for the coated sample by the addition of pyrene derivatives to lower the graphite silica (SiO 2).
  • the present invention is graphite (A); Preparation of ceramic-coated graphite comprising a ceramic (B) chemically bonded to the lateral defect portion of the graphite (A), and having an electrical resistance in the range of 10 8 to 10 16 kW / sq by the sol-gel method It relates to a method, wherein the graphite is an ellipse selected from the group consisting of 10: 1 to 200: 1 aspect ratio, the ceramic is one or more selected from the group consisting of magnesium oxide, aluminum oxide, zinc oxide, zirconium oxide and silica. Characterized in that it provides a ceramic coated graphite. In the process of coating the ceramic on the graphite, the surface modification process of the graphite may be omitted.
  • the present invention is graphite (A); Ceramic (B) and pyrene derivatives (C) are mixed and chemically bonded to the lateral defects of the graphite (A), but have an electrical resistance in the range of 10 8 to 10 16 ⁇ s / sq by the sol-gel method.
  • a method for producing a ceramic coated graphite is provided.
  • the present invention comprises the steps of sufficiently dispersing graphite (A) having an average diameter of 10 ⁇ m 1000 ⁇ m size 0.1 to 70 parts by weight for 1 minute to 5 minutes to 100 parts by weight of alcohol solvent (step a); Introducing a basic catalyst into the dispersed solution and titrating to pH 9-12 (step b); And (c) coating the ceramic (B) on the graphite surface by introducing 10 to 300 parts by weight of the ceramic precursor to be coated on a solution in which the graphite is sufficiently dispersed, relative to 100 parts by weight of the introduced graphite.
  • the graphite may be an elliptic graphite selected from the group consisting of 10: 1 to 200: 1 aspect ratio
  • the ceramic may be at least one ceramic selected from the group consisting of magnesium oxide, aluminum oxide, zinc oxide, zirconium oxide, and silica. Can be.
  • a pyrene derivative represented by the following Chemical Formula 1 may be further added as a dispersant.
  • R is carboxylic acid, (C 1 to C 10 ) alkylcarboxylic acid, amine, (C 1 to C 10 ) alkylamine, (C 1 to C 10 ) alkylcarboxylic halogen, (C 1 to C 10 ) Alkylcarboxylic hydrazide and (C 1 to C 10 ) alkylcarboxylic acid N-hydroxysuccinimide ester.
  • the pyrene derivative, the pyrene derivative or a salt thereof is 1-pyrene butyryl chloride, 1-pyrene butyryl hydrazide, 1-pyrenemethylamine hydrochloride, 1-pyrenecarboxylic acid, 1 It may be at least one pyrene derivative selected from the group consisting of pyrene valeric acid, 1-pyrene butyric acid N-hydroxysuccinamide, ⁇ -oxo-1-pyrene butyric acid and 1-pyrene butyric acid.
  • the alcohol solution of step a may be one or more selected from the group consisting of methanol, ethanol, propanol, butanol, acetone, toluene, dimethylformamide and xylene
  • step a Basic catalysts for titrating pH at are ammonium hydroxide, tetrapropyl ammonium chloride, tetrapropyl ammonium hydroxide, potassium hydroxide, tetrabutylammonium bromide, tetrabutylammonium chloride and tetrabutylammonium hydroxide. It may be one or two or more selected from the group consisting of, but is not limited thereto.
  • the graphite in step c may be 0.1 to 70 parts by weight, 5 to 50 parts by weight or 10 to 40 parts by weight relative to 100 parts by weight of ethanol, and the ceramic precursor is 10 to 300 parts by weight, 10 to 10 parts by weight of the graphite To 250 parts by weight or 15 to 300 parts by weight, but is not limited thereto.
  • the pyrene derivative of step c may be added in an amount of 1 to 100 parts by weight based on 100 parts by weight of the graphite.
  • the ceramic precursor may be one or two or more selected from the group consisting of magnesia precursor, alumina precursor, zinc oxide precursor, zirconia precursor and silica precursor, but is not limited thereto.
  • the magnesia precursor may be one or two or more selected from the group consisting of magnesium nitrate (Mg (NO 3 ) 2 .6H 2 O), magnesium acetate tetrahydrate and magnesium methoxide
  • the alumina precursor may be one or two or more selected from the group consisting of aluminum nitrate nonahydrate, aluminum isopropoxide, and aluminum sec-butoxide
  • the zinc oxide precursor is zinc At least one of zinc nitrate, zinc acetate, and the zirconia precursor is ZrO (NO 3 ) 2 .2H 2 O, Zr (NO 3 ) 2 .xH 2 O and zirconium n-propoxy.
  • the sieve is composed of APpropyl (Aminopropyltriethoxysilane), APTMS (Aminopropyltrimethoxysilane), MPTES (3-mercaptopropyltriethoxysilane), MPTMS (3-mercaptopropyltrimethoxysilane), TEOS (Tetraethyl Orthosilicate), TMOS (Tetramethyl Orthosilicate) and TPOS (Tetrapropyl Orthosilicate) It may be two or more, but is not limited thereto.
  • the coating may be reacted for 6 to 24 hours at a temperature of 15 to 80 °C, 15 to 75 °C or 20 to 80 °C.
  • the present invention provides a method for producing a high thermal conductivity resin in which 10 to 98% by weight of the ceramic coated graphite and 2 to 90% by weight of the conductive resin are kneaded at room temperature to 350 ° C.
  • an elliptic graphite having an aspect ratio of 10: 1 to 200: 1 or less at 10 nm at 1000 nm is sufficiently dispersed for 1 to 5 minutes by introducing 0.1 to 70 parts by weight with respect to 100 parts by weight of an alcohol solvent. .
  • Basic catalyst is introduced into the dispersed solution and titrated to pH 9-12. Thereafter, the ceramic precursor to be coated on the sufficiently dispersed solution of graphite is introduced into the ceramic surface by introducing 10 to 300 parts by weight relative to 100 parts by weight of the introduced graphite.
  • the shape, amount, uniformity, and thickness of the ceramic coated on the graphite surface can be controlled according to the conditions of the sol-gel method, the amount of the precursor, and the type of the precursor, and thus the thermal conductivity and the electrical insulation of the ceramic coated graphite are obtained. Can be adjusted.
  • pyrene derivatives may be added as a dispersant based on 100 parts by weight of graphite.
  • the electrical insulation was increased when the pyrene derivative was mixed and coated on the ceramic precursor, and the ceramic precursor was uniformly dispersed.
  • the surface of the silica-coated graphite was photographed at a magnification of 100000 times with a scanning electron microscope, and the results are shown in FIG. 2.
  • the surface of the graphite coated with silica was observed in a scanning electron microscope, and is shown in FIG. 4.
  • An electrically insulating high thermal conductivity resin was prepared by kneading 60 wt% of silica coated graphite prepared in Example 3 as an electrically insulating filler and 40 wt% of high density polyethylene (HDPE) as an resin at 260 ° C. using an internal mixer. .
  • HDPE high density polyethylene
  • An electrically insulating high thermal conductivity resin was prepared by kneading 60 wt% of the silica coated graphite prepared in Example 4 as an electrically insulating filler and 40 wt% of high density polyethylene (HDPE) as an resin at 260 ° C. using an internal mixer. .
  • HDPE high density polyethylene
  • Example 5 60 wt% of the alumina coated graphite prepared in Example 5 and 40 wt% of high density polyethylene (HDPE) as a resin were kneaded at 260 ° C. using an internal mixer to prepare an electrically insulating high thermal conductivity resin. .
  • HDPE high density polyethylene
  • Example 6 60% by weight of zinc oxide coated graphite prepared in Example 6 as the electrically insulating thermally conductive filler and 40% by weight of high density polyethylene (HDPE) as a resin were kneaded at 260 ° C. using an internal mixer to prepare an electrically insulating high thermally conductive resin. It was.
  • HDPE high density polyethylene
  • Example 7 60 wt% of the zirconium oxide coated graphite prepared in Example 7 and 40 wt% of high density polyethylene (HDPE) as a resin were kneaded at 260 ° C. using an internal mixer to prepare an electrically insulating high thermal conductivity resin. It was.
  • HDPE high density polyethylene
  • Example 8 60 wt% of the magnesium oxide coated graphite prepared in Example 8 as the electrically insulating heat conductive filler and 40 wt% of the high density polyethylene (HDPE) as the resin were kneaded at 260 ° C. using an internal mixer to prepare an electrically insulating high thermal conductive resin. It was.
  • HDPE high density polyethylene
  • the surface of the graphite coated with silica was observed in a scanning electron microscope and shown in FIG. 3.
  • silica-coated aspect ratio (Cheap Tubes Inc., Graphite Nanoplatelets) coated with silica of Comparative Example 2 was 1000: 1, and 40 wt% of high density polyethylene (HDPE) was used as a resin. The mixture was kneaded at 260 ° C. to prepare an electrically insulating high thermal conductivity resin.
  • HDPE high density polyethylene
  • Sheet resistance was measured according to ASTM D 257 for the ceramic-coated graphite prepared in Examples and Comparative Examples.
  • the thermal conductivity (vertical direction: ⁇
  • the sheet resistance of the graphite coated with various kinds of ceramics of the above examples is shown in Table 1 below, and the results of measuring the thermal conductivity and sheet resistance of the ceramic composite in which the ceramics coated with the ceramics of the examples of Table 1 were introduced are shown below. Table 2 shows.
  • Example 1 Ceramic type Low aspect ratio graphite (% by weight) High aspect ratio graphite (% by weight) Precursor (% by weight) Pyrene derivative (wt%) pH Sheet resistance ( ⁇ / sq)
  • Example 1 Silica One - 120 - 11 1.1 ⁇ 10 10
  • Example 2 Silica 10 - 120 - 11 1.2 ⁇ 10 10
  • Example 3 Silica 15 - 120 - 11 1.0 ⁇ 10 10
  • Example 4 Silica 15 - 120 20 11 5.0 ⁇ 10 13
  • Example 5 Alumina 10 - 120 - 11 2.4 ⁇ 10 13
  • Example 6 Zinc oxide 10 - 120 - 11 3.8 ⁇ 10 13
  • Example 7 Zirconium oxide 10 - 120 - 11 7.4 ⁇ 10 13
  • Example 8 Magnesium oxide 10 - 120 - 11 5.7 ⁇ 10 13 Comparative Example 1 - - - - - - - 40 Comparative Example 2 Silica 15 120 - 11 3.7 ⁇ 10 7
  • the amount of graphite is% by weight based on ethanol
  • the amount of precursor is% by weight of the precursor to graphite added during sol-gel synthesis
  • the amount of pyrene derivative is% by weight of pyrene derivative to graphite.
  • the sheet resistance of graphite having a low aspect ratio as the substrate of the silica coating was higher than that of the graphite having a high aspect ratio of the graphite prepared as the substrate of the silica coating.
  • the value was measured about 270 times higher. This shows that when silica is coated on graphite having low aspect ratios of Examples 1 to 3, the surface of the graphite is uniformly coated to exhibit excellent electrical insulation effect.
  • Example 4 when coating the ceramic precursor mixed with the pyrene derivative, the surface resistance value was measured about 5000 times higher than in the case of Example 3 without using the pyrene derivative.
  • Pyrene derivatives have good adsorption of four benzene rings on the graphite surface, which helps the graphite to disperse in solution.
  • the pyrene derivative has a high electronegativity at the terminal and has high affinity with the silica precursor TEOS, so that the silica was uniformly coated on the graphite surface when mixed with the pyrene-based material.
  • Figure 4 shows that when the pyrene derivative is used as a scanning electron microscope image of a sample coated with a mixture of ceramic and pyrene derivative in graphite according to an embodiment of the present invention, it can be seen that silica is uniformly coated on the graphite surface.
  • the contact area of the liver is wider, indicating that electricity is relatively well communicated.
  • Example 9 Comparing Example 9 and Example 10, the electrical insulation of the HDPE composite using graphite coated with silica using pyrene derivatives at about the same content is about 140 times higher. This is because, as compared with FIG. 3 and FIG. 4, when the pyrene derivative is used, the ceramic coating is more uniform and the surface is smooth, which greatly increases the insulation of the coated graphite itself.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Ceramic Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Dispersion Chemistry (AREA)
  • Structural Engineering (AREA)

Abstract

본 발명은 흑연(A)과; 상기 흑연(A)의 측면(lateral) 결함 부분에 화학적으로 결합된 세라믹(B)을 포함하며, 졸-겔법으로 108 내지 1016 Ω/sq 범위의 전기저항을 가지는 세라믹이 코팅된 흑연의 제조방법을 제공한다.

Description

세라믹이 코팅된 흑연의 제조방법
본 발명은 세라믹이 코팅된 흑연을 간단하면서 경제적으로 합성하는 제조방법에 관한 것이다.
전자제품 성능의 급격한 향상과 함께 발열량이 증가하면서 작동온도 증가에 따른 성능 하락과 반복되는 열팽창에 의한 인쇄회로기판의 파괴 등이 큰 이슈로 떠올랐다. 전자제품에 사용되는 대부분의 패키지는 고분자 복합체이며, 이 고분자 수지의 낮은 열전도도를 증가시켜 전자제품 내부에서 발생하는 열을 외부로 효과적으로 배출시키려는 시도가 전세계적으로 연구되는 실정이다.
이와 같은 목적으로 방열 고분자 복합체가 전자제품의 패키지로 사용되기 위해서는 높은 열전도도 수치뿐만 아니라 우수한 전기 절연성을 가지고 있어야 한다. 따라서, 열전도성이 우수하면서 전기절연성을 지니는 충진제가 요구 되는데, 종래의 기술에서는 전기적으로 절연성을 지닌 세라믹을 흑연에 코팅하여 우수한 열전도도와 전기절연성을 같이 가진 충진제를 개발하였다. 하지만, 흑연의 표면에 고른 코팅을 위하여 제조방법에 흑연의 표면을 개질하는 공정이 들어가 있다. 이 공정 이후 건조공정이 필수적으로 따라오게 되는데, 이는 전체 공정시간이 길어지며 복잡해져 생산성이 낮아지는 결과를 낳는다. 따라서, 세라믹이 코팅된 흑연을 연속적으로 대량 생산하기 위해서는 보다 간단한 공정방법이 요구된다.
대한민국 등록특허공보 제10-0895521호는 스프레이 코팅을 이용한 탄소나노튜브 투명도전막 및 그 제조방법을 개시하고 있다.
종래의 세라믹이 코팅된 흑연의 제조방법은 탄소나노튜브, 분산제 및 용매를 혼합 및 분산하여 코팅 용액을 준비하는 단계; 및 기질상에 상기 코팅 용액을 분사압력 0.05 내지 60 kgf/cm2 에서 스프레이하고, 이를 건조하는 단계를 포함하고, 상기 코팅 용액에서 탄소 나노튜브의 함량은 코팅 용액의 총중량 100 중량부에 대하여 0.01 내지 20 중량부인 것을 특징으로 한다.
그러나 종래의 세라믹이 코팅된 흑연의 제조방법은 모재에 잉크를 분사 또는 프린트하여 코팅한 후 이를 소성, 건조 등의 방법으로 정착시켜 코팅 제품을 얻기 때문에, 공정이 복잡하고 각 공정에서 발생하는 다양한 관리 요인들로 인해 비용이 높아지고 수율이 낮아지는 문제가 있었다.
본 발명은 공정을 단순화하여 생산성과 경제성이 높고 우수한 열전도성과 전기절연성을 갖는 세라믹이 균일하게 코팅된 흑연을 제조하는 방법을 제공하고자 한다.
본 발명은 흑연(A)과; 상기 흑연(A)의 측면(lateral) 결함 부분에 화학적으로 결합된 세라믹(B)을 포함하여, 졸-겔법으로 108 내지 1016 Ω/sq 범위의 전기저항을 가지는 세라믹이 코팅된 흑연의 제조방법을 제공한다.
상기 흑연에 세라믹을 코팅하는 경우 분산제로써 파이렌 유도체를 더 첨가할 수 있다.
또한 평균직경 10 ㎚ 에서 1000 ㎛ 크기를 지닌 흑연(A)을 알코올 용매 100 중량부 대비 0.1 내지 20 중량부를 1분 내지 5분 동안 충분히 분산시키는 단계(a단계); 상기 분산된 용액에 염기성 촉매를 도입하여 pH 9 내지 12 로 적정하는 단계(b단계); 및 상기 흑연이 충분히 분산된 용액에 코팅하고자 하는 세라믹 전구체를 상기 도입된 흑연 100 중량부 대비 10 내지 300 중량부를 도입하여 흑연 표면에 세라믹(B)을 코팅시키는 단계(c단계)를 포함하는 세라믹이 코팅된 흑연의 제조방법을 제공한다.
상기 c단계에서 분산제로써 파이렌 유도체를 더 첨가할 수 있다.
본 발명에 따른 종횡비가 작은 흑연을 기질로 사용하는 경우에 흑연의 표면 개질 과정을 생략할 수 있으므로, 공정의 단순화로 인한 생산성 향상과 높은 경제성을 갖는다. 또한 세라믹에 파이렌유도체를 첨가하고 세라믹을 균일하게 분산시켜 전기절연성을 크게 증가시킨다.
도 1은 종횡비가 높은 흑연과 본 발명에 따른 종횡비가 낮은 흑연에 졸-겔법으로 세라믹 코팅 시 차이점을 나타낸 모식도이다.
도 2는 종횡비가 낮은 흑연에 실리카(SiO2)가 코팅된 샘플을 100000배 확대하여 찍은 주사전자현미경 사진이다.
도 3는 종횡비가 높은 흑연에 실리카(SiO2)가 코팅된 샘플을 100000배 확대하여 찍은 주사전자현미경 사진이다.
도 4는 종횡비가 낮은 흑연에 파이렌 유도체를 첨가하여 실리카(SiO2)가 코팅된 샘플을 100000배 확대하여 찍은 주사전자현미경 사진이다.
본 발명은 흑연(A)과; 상기 흑연(A)의 측면(lateral) 결함 부분에 화학적으로 결합된 세라믹(B)을 포함하며, 졸-겔법으로 108 내지 1016 Ω/sq 범위의 전기저항을 가지는 세라믹이 코팅된 흑연의 제조방법에 관한 것으로, 상기 흑연은 종횡비가 10:1 내지 200:1 로 이루어진 군에서 선택된 타원형이고, 상기 세라믹은 산화마그네슘, 산화알루미늄, 산화아연, 산화지르코늄 및 실리카로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하여 세라믹이 코팅된 흑연을 제공하한다. 흑연에 세라믹을 코팅하는 과정에 있어서 흑연의 표면 개질 과정을 생략할 수 있다.
본 발명은 흑연(A)과; 상기 흑연(A)의 측면(lateral) 결함 부분에 세라믹(B)과 파이렌유도체(C)를 혼합하여 화학적으로 결합시키되, 졸-겔법으로 108 내지 1016 Ω/sq 범위의 전기저항을 가지는 세라믹이 코팅된 흑연의 제조방법을 제공한다.
또한 본 발명은 평균직경 10 ㎚ 에서 1000 ㎛ 크기를 지닌 흑연(A)을 알코올 용매 100 중량부 대비 0.1 내지 70 중량부를 1분 내지 5분 동안 충분히 분산시키는 단계(a단계); 상기 분산된 용액에 염기성 촉매를 도입하여 pH 9 내지 12 로 적정하는 단계(b단계); 및 상기 흑연이 충분히 분산된 용액에 코팅하고자 하는 세라믹 전구체를 상기 도입된 흑연 100 중량부 대비 10 내지 300 중량부를 도입하여 흑연 표면에 세라믹(B)을 코팅시키는 단계(c단계)를 포함하는 세라믹이 코팅된 흑연의 제조방법을 제공한다.
상기 흑연은 종횡비가 10:1 내지 200:1 로 이루어진 군에서 선택된 타원형의 흑연일 수 있고, 상기 세라믹은 산화마그네슘, 산화알루미늄, 산화아연, 산화지르코늄 및 실리카로 이루어진 군에서 선택된 1종 이상의 세라믹일 수 있다.
상기 흑연에 세라믹을 코팅하는 경우 분산제로써 하기 화학식 1로 표시되는 파이렌 유도체를 더 첨가할 수 있다.
화학식 1
Figure PCTKR2014005784-appb-C000001
상기 화학식 1에서, R은 카르복시산, (C1 내지 C10)알킬카르복시산, 아민, (C1 내지 C10)알킬아민, (C1 내지 C10)알킬카르복실릭 할로겐, (C1 내지 C10)알킬카르복실릭 하이드라지드 및 (C1 내지 C10)알킬카르복실산 N-하이드록시숙신이미드 에스테르로 이루어진 군에서 선택될 수 있다.
또한 상기 파이렌유도체는 상기 파이렌유도체 또는 이의 염은 1-파이렌부티릴 클로라이드, 1-파이렌부티릴 하이드라지드, 1-파이렌메틸아민 하이드로클로라이드, 1-파이렌카르복실산, 1-파이렌발레르산, 1-파이렌부티르산 N-하이드록시숙신아미드, γ-옥소-1-파이렌부티르산 및 1-파이렌부티르산으로 이루어진 군에서 선택된 1종이상의 파이렌유도체일 수 있다.
본 발명의 한 구체예에서, 상기 a단계의 상기 알코올 용액은 메탄올, 에탄올, 프로판올, 부탄올, 아세톤, 톨루엔, 다이메틸포름아마이드 및 자일렌으로 이루어진 군에서 선택되는 1종 이상일 수 있고, 상기 a단계에서 pH를 적정하는 염기성 촉매의 종류는 암모늄 하이드록사이드, 테트라프로필 암모늄 클로라이드, 테트라프로필 암모늄 하이드록사이드, 포테슘 하이드록사이드, 테트라부틸암모늄 브로마이드, 테트라부틸암모늄 클로라이드 및 테트라부틸암모늄 하이드록사이드로 이루어진 군에서 선택된 하나 또는 둘 이상일 수 있으나, 이에 한정되는 것은 아니다.
또한 상기 c단계의 상기 흑연은 에탄올 100 중량부 대비 0.1 내지 70 중량부, 5 내지 50 중량부 또는 10 내지 40 중량부일 수 있고, 상기 세라믹 전구체는 상기 흑연 100 중량부 대비 10 내지 300 중량부, 10 내지 250 중량부 또는 15 내지 300 중량부일 수 있으나 이에 한정되는 것은 아니다.
상기 c단계의 파이렌 유도체는 상기 흑연 100 중량부 대비 1 내지 100 중량부로 첨가될 수 있다.
본 발명의 다른 구체예에서, 상기 세라믹 전구체는 마그네시아 전구체, 알루미나 전구체, 산화아연 전구체, 지르코니아 전구체 및 실리카 전구체로 이루어진 군에서 선택된 하나 또는 둘 이상일 수 있으나 이에 한정되는 것은 아니다.
상기 마그네시아 전구체는 마그네슘 나이트레이트(Mg(NO3)2·6H2O), 마그네슘 아세테이트 테트라하이 드레이트(magnesium acetate tetrahydrate) 및 마그네슘 메톡사이드(Magnesium methoxide)로 이루어진 군에서 선택된 하나 또는 둘 이상일 수 있고, 상기 알루미나 전구체는 알루미늄 나이트레이트(Aluminum nitrate nonahydrate), 알루미늄 이소 프로폭사이드(Aluminum isopropoxide) 및 알루미늄 세크 뷰톡사이드(Aluminiumsec- butoxide)로 이루어진 군에서 선택된 하나 또는 둘 이상일 수 있으며, 상기 산화아연 전구체는 징크 나이트레이트(zinc nitrate), 징크 아세테이트(zinc acetate) 중 하나 이상일 수 있고, 상기 지르코니아 전구체는 ZrO(NO3)2·2H2O, Zr(NO3)2·xH2O 및 지르코늄 n-프로폭사이드 (Zirconium n-propoxide)로 이루어진 군에서 선택된 하나 또는 둘 이상일 수 있으며, 상기 실리카 전구체는 APTES(Aminopropyltriethoxysilane), APTMS(Aminopropyltrimethoxysilane), MPTES(3-mercaptopropyltriethoxysilane), MPTMS(3-mercaptopropyltrimethoxysilane), TEOS(Tetraethyl Orthosilicate), TMOS(Tetramethyl Orthosilicate) 및 TPOS(Tetrapropyl Orthosilicate)로 이루어진 군에서 선택된 하나 또는 둘 이상일 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 또 다른 실시예에서, 상기 코팅은 15 내지 80 ℃, 15 내지 75 ℃ 또는 20 내지 80 ℃의 온도에서 6 내지 24 시간 동안 반응킬 수 있다.
또한 상기의 제조방법으로 제조된 세라믹이 코팅된 흑연 10 내지 98 중량% 와 전도성 수지 2 내지 90 중량% 를 상온 내지 350 ℃ 에서 혼련하는 고열전도성 수지의 제조방법을 제공한다.
보다 상세하게는 10 ㎚에서 1000 ㎛ 크기를 지닌 종횡비가 10:1 내지 200:1 이하의 타원형의 흑연을 알코올 용매 100 중량부 대비 0.1 내지 70 중량부를 도입하여 1분 내지 5분 동안 충분히 분산시켜준다. 상기 분산된 용액에 염기성 촉매를 도입하여 pH 9 내지 12 로 적정한다. 이후 상기의 흑연이 충분히 분산된 용액에 코팅하고자 하는 세라믹 전구체를 상기의 도입된 흑연의 100 중량부 대비 10 내지 300 중량부를 도입하여 흑연 표면에 세라믹을 코팅시킨다. 이때 졸-겔 법의 조건, 전구체의 양, 종류에 따라 흑연 표면에 코팅되는 세라믹의 모양, 양, 균일성, 및 두께를 조절할 수 있으며, 이에 따라 얻어지는 세라믹이 코팅된 흑연의 열전도성 및 전기절연성을 조절할 수 있다.
또한 상기 흑연 100 중량부에 대해 분산제로써 파이렌유도체 1 내지 100 중량부를 첨가할 수 있다.
세라믹 전구체에 파이렌유도체를 혼합하여 코팅하는 경우 전기절연성이 증가하였으며, 세라믹 전구체가 균일하게 분산된 코팅을 하였다.
이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
<실시예 1>
상온에서 100 g의 에탄올에 종횡비가 200:1 이고 6 ㎛ 크기의 흑연(Timcal, KS6) 1 g을 도입하고 2분간 교반 후, pH 11이 되도록 암모니아 수용액을 첨가하였다. 이후, 1.2 g의 TEOS를 도입하고 12시간 동안 교반한 후 필터링과 건조과정을 거쳐 실리카가 코팅된 흑연을 제조하였다.
<실시예 2>
상온에서 100 g의 에탄올에 종횡비가 200:1 이고 6 ㎛ 크기의 흑연(Timcal, KS6) 10 g을 도입하고 2분간 교반 후, pH 11이 되도록 암모니아 수용액을 첨가하였다. 이후, 12 g의 TEOS를 도입하고 12시간 동안 교반한 후 필터링과 건조과정을 거쳐 실리카가 코팅된 흑연을 제조하였다.
<실시예 3>
상온에서 100 g의 에탄올에 종횡비가 200:1 이고 6 ㎛ 크기의 흑연(Timcal, KS6) 15 g을 도입하고 2분간 교반 후, pH 11이 되도록 암모니아 수용액을 첨가하였다. 이후, 18 g의 TEOS를 도입하고 12시간 동안 교반한 후 필터링과 건조과정을 거쳐 실리카가 코팅된 흑연을 제조하였다.
제조된 실리카가 코팅된 흑연의 표면을 주사전자현미경으로 100000배 확대 촬영하였으며, 그 결과를 도 2에 나타내었다.
<실시예 4>
상온에서 100 g의 에탄올에 종횡비가 200:1 이고 6 ㎛ 크기의 흑연(Timcal, KS6) 15 g과 파이렌유도체인 1-파이렌카복실산(1-Pyrenecarboxylic acid) 3 g을 도입하고 2분간 교반 후, pH 11이 되도록 암모니아 수용액을 첨가하였다. 이후, 18 g의 TEOS를 도입하고 12시간 동안 교반한 후 필터링과 건조과정을 거쳐 실리카가 코팅된 흑연을 제조하였다.
제조된 실리카로 코팅된 흑연의 표면을 주사전자현미경으로 관찰하여 도 4에 나타내었다.
<실시예 5>
상온에서 100 g의 에탄올에 종횡비가 200:1 이고 6 ㎛ 크기의 흑연(Timcal, KS6) 10 g과 파이렌유도체인 1-파이렌카복실산(1-Pyrenecarboxylic acid) 2 g을 도입하고 2분간 교반 후, pH 11이 되도록 암모니아 수용액을 첨가하였다. 이후, 12 g의 알루미늄 나이트레이트를 도입하고 12시간 동안 교반한 후 필터링과 건조과정을 거쳐 알루미나가 코팅된 흑연을 제조하였다.
<실시예 6>
상온에서 100 g의 에탄올에 종횡비가 200:1 이고 6 ㎛ 크기의 흑연(Timcal, KS6) 10 g과 파이렌유도체인 1-파이렌카복실산(1-Pyrenecarboxylic acid) 2 g을 도입하고 2분간 교반 후, pH 11이 되도록 암모니아 수용액을 첨가하였다. 이후, 12 g의 징크 나이트레이트를 도입하고 12시간 동안 교반한 후 필터링과 건조과정을 거쳐 산화아연이 코팅된 흑연을 제조하였다.
<실시예 7>
상온에서 100 g의 에탄올에 종횡비가 200:1 이고 6 ㎛ 크기의 흑연(Timcal, KS6) 10 g과 파이렌유도체인 1-파이렌카복실산(1-Pyrenecarboxylic acid) 2 g을 도입하고 2분간 교반 후,12 g의 지르코늄 n-프로폭사이드를 도입하고 12시간 동안 교반한 후 필터링과 건조과정을 거쳐 산화지르코늄이 코팅된 흑연을 제조하였다.
<실시예 8>
상온에서 100 g의 에탄올에 종횡비가 200:1 이고 6 ㎛ 크기의 흑연(Timcal, KS6) 10 g과 파이렌유도체인 1-파이렌카복실산(1-Pyrenecarboxylic acid) 2 g을 도입하고 2분간 교반 후, pH 11이 되도록 암모니아 수용액을 첨가하였다. 이후, 12 g의 마그네슘 나이트레이트를 도입하고 12시간 동안 교반한 후 필터링과 건조과정을 거쳐 산화마그네슘이 코팅된 흑연을 제조하였다.
<실시예 9>
전기절연성 열전도성 충진제로서 실시예 3에서 제조한 실리카가 코팅된 흑연 60 중량%, 수지로서 고밀도 폴리에틸렌(HDPE) 40 중량%를 Internal Mixer를 이용하여 260 ℃에서 혼련하여 전기절연성 고열전도성 수지를 제조하였다.
<실시예 10>
전기절연성 열전도성 충진제로서 실시예 4에서 제조한 실리카가 코팅된 흑연 60 중량%, 수지로서 고밀도 폴리에틸렌(HDPE) 40 중량%를 Internal Mixer를 이용하여 260 ℃에서 혼련하여 전기절연성 고열전도성 수지를 제조하였다.
<실시예 11>
전기절연성 열전도성 충진제로서 실시예 5에서 제조한 알루미나가 코팅된 흑연 60 중량%, 수지로서 고밀도 폴리에틸렌(HDPE) 40 중량%를 Internal Mixer를 이용하여 260 ℃에서 혼련하여 전기절연성 고열전도성 수지를 제조하였다.
<실시예 12>
전기절연성 열전도성 충진제로서 실시예 6에서 제조한 산화아연이 코팅된 흑연 60 중량%, 수지로서 고밀도 폴리에틸렌(HDPE) 40 중량%를 Internal Mixer를 이용하여 260 ℃에서 혼련하여 전기절연성 고열전도성 수지를 제조하였다.
<실시예 13>
전기절연성 열전도성 충진제로서 실시예 7에서 제조한 산화지르코늄이 코팅된 흑연 60 중량%, 수지로서 고밀도 폴리에틸렌(HDPE) 40 중량%를 Internal Mixer를 이용하여 260 ℃에서 혼련하여 전기절연성 고열전도성 수지를 제조하였다.
<실시예 14>
전기절연성 열전도성 충진제로서 실시예 8에서 제조한 산화마그네슘이 코팅된 흑연 60 중량%, 수지로서 고밀도 폴리에틸렌(HDPE) 40 중량%를 Internal Mixer를 이용하여 260 ℃에서 혼련하여 전기절연성 고열전도성 수지를 제조하였다.
<비교예 1>
종횡비가 200:1 이고 6 ㎛ 크기의 흑연(Timcal, KS6)을 준비하였다.
<비교예 2>
상온에서 100 g의 에탄올에 종횡비가 1000:1 이고 6 ㎛ 크기의 흑연(Cheap Tubes Inc., Graphite Nanoplatelets) 15 g을 도입하고 2분간 교반 후, pH 11이 되도록 암모니아 수용액을 첨가하였다. 이후, 18 g의 TEOS를 도입하고 12시간 동안 교반한 후 필터링과 건조과정을 거쳐 실리카가 코팅된 흑연을 제조하였다.
제조된 실리카로 코팅된 흑연의 표면을 주사전자현미경으로 관찰하여 도 3에 나타내었다.
<비교예 3>
전기절연성 열전도성 충진제로서 종횡비가 200:1 이고 6 ㎛ 크기의 흑연(Timcal, KS6) 60 중량%, 수지로서 고밀도 폴리에틸렌(HDPE) 40 중량%를 Internal Mixer를 이용하여 260 ℃에서 혼련하여 전기절연성 고열전도성 수지를 제조하였다.
<비교예 4>
전기절연성 열전도성 충진제로서 비교예 2의 실리카가 코팅된 종횡비가 1000:1 이고 6㎛ 크기의 흑연(Cheap Tubes Inc., Graphite Nanoplatelets) 60 중량%, 수지로서 고밀도 폴리에틸렌(HDPE) 40 중량%를 Internal Mixer를 이용하여 260 ℃에서 혼련하여 전기절연성 고열전도성 수지를 제조하였다.
<비교예 5>
종횡비가 200:1 인 6 ㎛ 크기의 흑연(Timcal, KS6) 20 g을 도입하고 황산(98%) 20 g과 질산(63%) 60 g을 도입하고 교반하면서 110℃에서 24시간동안 가열하였으며 필터링과 건조과정을 거쳐, 표면이 산화 개질된 흑연을 얻었다. 산화 개질된 흑연 15 g을 상온에서 100g 에탄올에 넣고 pH 11이 되도록 암모니아 수용액을 첨가하였다. 이후, 상온과 질소분위기에서 18 g의 TEOS를 넣고 12시간 동안 교반한 후 필터링과 건조과정을 거쳐 실리카가 코팅된 흑연을 제조하였다. 상기의 전기절연성 열전도성 충진제로서 제조된 실리카가 코팅된 흑연 60 중량%, 수지로서 고밀도 폴리에틸렌(HDPE) 40 중량%를 Internal Mixer를 이용하여 260 ℃에서 혼련하여 전기절연성 고열전도성 수지를 제조하였다.
<실험예> 물성평가
상기 실시예 및 비교예에서 제조한 세라믹이 코팅된 흑연에 대해 ASTM D 257에 준하여 면저항을 측정하였다. 또한 상기 실시예 및 비교예에서 제조한 세라믹이 코팅된 흑연 충진재가 도입된 전기절연성 고열전도성 수지 조성물에 대하여 ASTM E1461 에 준하여 열전도도(수직방향: Λ, 수평방향: Λ)를 측정하였다. 상기예의 여러 종류의 세라믹이 코팅된 흑연의 면저항을 조성과 함께 하기 표 1에 나타내었으며, 표 1의 실시예의 세라믹이 코팅된 흑연이 도입된 고분자 복합체의 열전도도 및 면저항 측정 결과를 조성과 함께 하기 표 2에 나타내었다.
표 1
세라믹 종류 종횡비가 낮은 흑연(중량%) 종횡비가 높은 흑연(중량%) 전구체(중량%) 파이렌유도체(중량%) pH 면저항(Ω/sq)
실시예 1 실리카 1 - 120 - 11 1.1×1010
실시예 2 실리카 10 - 120 - 11 1.2×1010
실시예 3 실리카 15 - 120 - 11 1.0×1010
실시예 4 실리카 15 - 120 20 11 5.0×1013
실시예 5 알루미나 10 - 120 - 11 2.4×1013
실시예 6 산화아연 10 - 120 - 11 3.8×1013
실시예 7 산화지르코늄 10 - 120 - 11 7.4×1013
실시예 8 산화마그네슘 10 - 120 - 11 5.7×1013
비교예 1 - - - - - - 40
비교예 2 실리카 15 120 - 11 3.7×107
표 2
충진제(중량%) HDPE(중량%) 열전도도(Λl, W/mK) 열전도도(Λ, W/mK) 면저항(Ω/sq)
실시예 9 실리카-종횡비 낮은 흑연(60) 40 6.9 1.9 5.6×1012
실시예 10 실리카-종횡비 낮은 흑연(60) 40 7.1 2.0 7.9×1014
실시예 11 알루미나-종횡비 낮은 흑연(60) 40 7.5 2.5 6.4×1014
실시예 12 산화아연-종횡비 낮은 흑연(60) 40 7.6 2.5 2.7×1014
실시예 13 산화지르코늄-종횡비 낮은 흑연(60) 40 7.3 2.1 1.8×1014
실시예 14 산화마그네슘-종횡비 낮은 흑연(60) 40 7.6 2.2 3.6×1014
비교예 3 종횡비가 낮은 흑연(60) 40 8.7 3.4 5.9×100
비교예 4 실리카-종횡비 높은 흑연(60) 40 8.1 3.0 1.4×108
비교예 5 흑연 개질 과정을 도입하여 제조한 실리카-종횡비 낮은 흑연(60) 40 4.3 1.2 2.3×1013
상기 표 1에서 흑연의 양은 에탄올에 대한 중량% 이며, 전구체의 양은 졸-겔 합성 시 첨가되는 흑연에 대한 전구체의 중량% 이고, 파이렌유도체의 양은 흑연에 대한 파이렌유도체의 중량%이다.
상기 표 1에 나타난 바와 같이, 모든 실시예와 비교예 1을 비교하여 보면, 종횡비가 낮은 흑연에 별도의 표면 개질 과정 없이 세라믹 코팅하였을 때의 샘플의 면저항 수치가 절연성을 나타내는 것을 알 수 있다.
실시예 3 내지 실시예 4 및 비교예 2의 면저항 수치를 비교해 보면, 종횡비가 낮은 흑연을 실리카 코팅의 기질로 사용하여 제조하였을 때가 종횡비가 높은 흑연을 실리카 코팅의 기질로 사용하여 제조하였을 때보다 면저항 수치가 약 270배 높게 측정되었다. 이는 실시예 1 내지 실시예 3의 종횡비가 낮은 흑연에 실리카가 코팅될 때 흑연의 표면에 골고루 코팅이 되어 우수한 전기 절연효과를 나타내는 것을 보여준다.
반면, 비교예 2의 종횡비가 높은 흑연에 실리카를 코팅하면 상대적으로 표면에 고른 코팅이 되지 않아 면저항이 보다 낮음을 알 수 있다. 이는 본 발명의 종횡비가 낮은 흑연을 세라믹 코팅의 기질로 사용하여 개질 공정을 생략해도, 흑연의 표면에 세라믹 코팅이 고르게 되며 우수한 전기절연성을 가지게 된다는 것을 보여준다.
한편 실시예 4를 확인하여 보면 세라믹 전구체를 파이렌유도체와 혼합하여 코팅하는 경우 파이렌유도체를 사용하지 않은 실시예 3의 경우 보다 면저항 수치가 약 5000배 높게 측정되었다. 파이렌유도체는 벤젠고리가 4개인 파이렌기가 흑연표면에 잘 흡착되어 흑연이 용액 내에서 잘 분산되도록 도와준다. 파이렌유도체는 말단에 전기음성도가 큰 작용기를 지니고 있어 실리카 전구체인 TEOS와 친화성이 높아 파이렌계 물질과 혼합하여 코팅하는 경우에 흑연표면에 실리카가 균일하게 코팅되는 것을 확인하였다.
도 4는 본 발명의 일실시예에 따른 흑연에 세라믹과 파이렌유도체를 혼합하여 코팅한 샘플의 주사전자현미경 이미지로 파이렌유도체를 사용한 경우 흑연 표면에 실리카가 고르게 코팅된 것을 알 수 있다.
실시예 5 내지 실시예 8을 보면, 알루미나, 산화아연, 산화지르코늄 및 산화마그네슘을 종횡비가 낮은 흑연에 별도의 표면 개질 과정 없이 세라믹 코팅을 진행하여도 실시예 1 내지 실시예 4와 마찬가지로 우수한 전기절연성을 가진다는 것을 보여준다.
상기 표 2의 실시예 9 내지 실시예 14을 비교예 3의 흑연이 도입된 HDPE 복합체와 비교해보면, 실시예 3, 실시예 4, 실시예 5, 실시예 6, 실시예 7 및 실시예 8에서 제조한 세라믹이 코팅된 종횡비가 낮은 흑연이 도입된 HDPE 복합체의 면저항은 모두 1012Ω/sq 이상으로 전기적으로 절연성인 것을 확인 할 수 있다.
실시예 9와 비교예 4를 비교해보면, 종횡비가 낮은 흑연에 실리카를 코팅한 샘플이 도입된 HDPE 복합체의 면저항 수치가 종횡비가 높은 흑연에 실리카를 코팅한 샘플이 도입된 HDPE 복합체보다 월등히 우수함을 알 수 있다. 이는 표 1의 실시예에서 실시한 종횡비가 낮은 흑연에 세라믹을 코팅하였을 때 흑연 표면에 고르고 견고하게 코팅이 되었기 때문에 실시예 1 내지 실시예 8의 샘플과 HDPE의 Internal Mixer 안 270 ℃의 혼련 과정에서 발생하는 높은 전단(Shear)에서도 세라믹 코팅 구조가 깨지지 않아 절연성이 유지가 되는 반면, 비교예 4에서는 절연성인 HDPE가 배합되었으나, 흑연 표면에서 코팅이 균일하게 되지 않아, 혼련 과정에서 세라믹 코팅 구조가 깨져 흑연간의 접촉 면적이 넓어져 전기가 상대적으로 잘 통하게 된다는 것을 보여준다. 이는 흑연 표면 개질 공정을 생략하여도, 종횡비가 낮은 흑연에 세라믹을 코팅하면 고분자와 복합화를 하여도 본래의 물성인 열전도도와 전기절연성을 잘 유지하기 때문에 본 발명의 우수함을 증명한다.
실시예 9와 실시예 10을 비교하면, 동일 함량에서 파이렌유도체를 이용하여 실리카로 코팅된 흑연을 이용한 HDPE 복합체의 전기 절연성이 약 140배 높다. 이는 도 3과 도 4에 비교한 바와 같이, 파이렌유도체를 사용할 경우 세라믹 코팅이 더욱 균일하며 표면이 매끈하게 되어 코팅된 흑연 자체의 절연성이 크게 증가하였기 때문이다.
비교예 5의 흑연 표면 개질 과정이 도입된 제조방법으로 세라믹이 코팅된 흑연을 제조하였을 때, 실시예 9보다 다소 높은 전기절연성을 보여준다. 이는 일반적으로 행하여지는 탄소재료의 표면 산화반응을 통한 표면처리 과정에서 흑연의 결정성이 파괴되기 때문에 전기전도성이 감소하게 되어 결과적으로 절연성이 다소 상승한다. 또한 이러한 흑연의 결정성 파괴는 열전도도를 현격하게 감소시키는 문제를 야기한다. 따라서 흑연 표면 개질 과정 생략으로 인한 공정의 단순성으로 경제성과 생산의 용이성을 고려한다면 본 발명의 세라믹이 코팅된 흑연 제조 방법이 종래의 기술보다 월등히 우수하다는 것을 증명한다.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.

Claims (11)

  1. 흑연(A)과; 상기 흑연(A)의 측면(lateral) 결함 부분에 화학적으로 결합된 세라믹(B)을 포함하며, 졸-겔법으로 108 내지 1016 Ω/sq 범위의 전기저항을 가지는 세라믹이 코팅된 흑연의 제조방법:
    A: 흑연으로서 종횡비가 10:1 내지 200:1 로 이루어진 군에서 선택된 타원형의 흑연,
    B: 산화마그네슘, 산화알루미늄, 산화아연, 산화지르코늄 및 실리카로 이루어진 군에서 선택된 1종 이상의 세라믹.
  2. 청구항 1에 있어서, 상기 흑연에 세라믹을 코팅하는 경우 분산제로써 하기 화학식 1로 표시되는 파이렌 유도체 또는 이의 염을 더 첨가하는 세라믹이 코팅된 흑연의 제조방법:
    [화학식 1]
    Figure PCTKR2014005784-appb-I000001
    상기 화학식 1에서, R은 카르복시산, (C1 내지 C10)알킬카르복시산, 아민, (C1 내지 C10)알킬아민, (C1 내지 C10)알킬카르복실릭 할로겐, (C1 내지 C10)알킬카르복실릭 하이드라지드 및 (C1 내지 C10)알킬카르복실산 N-하이드록시숙신이미드 에스테르로 이루어진 군에서 선택됨.
  3. 청구항 2에 있어서, 상기 파이렌유도체 또는 이의 염은 1-파이렌부티릴 클로라이드, 1-파이렌부티릴 하이드라지드, 1-파이렌메틸아민 하이드로클로라이드, 1-파이렌카르복실산, 1-파이렌발레르산, 1-파이렌부티르산 N-하이드록시숙신아미드, γ-옥소-1-파이렌부티르산 및 1-파이렌부티르산으로 이루어진 군에서 선택된 1종이상인 것을 특징으로 하는 세라믹이 코팅된 흑연의 제조방법.
  4. 평균직경 10 ㎚ 에서 1000 ㎛ 크기를 지닌 흑연(A)을 알코올 용매 100 중량부 대비 0.1 내지 70 중량부를 도입하여 1분 내지 5분 동안 충분히 분산시키는 단계(a단계);
    상기 분산된 용액에 염기성 촉매를 도입하여 pH 9 내지 12 로 적정하는 단계(b단계); 및
    상기 흑연이 분산된 용액에 코팅하고자 하는 세라믹 전구체를 상기 흑연 100 중량부 대비 10 내지 300 중량부를 첨가하여 흑연 표면에 세라믹(B)을 코팅시키는 단계(c단계)를 포함하는 세라믹이 코팅된 흑연의 제조방법:
    A: 흑연으로서 종횡비가 10:1 내지 200:1 로 이루어진 군에서 선택된 타원형의 흑연,
    B: 산화마그네슘, 산화알루미늄, 산화아연, 산화지르코늄 및 실리카로 이루어진 군에서 선택된 1종 이상의 세라믹.
  5. 청구항 4에 있어서, 상기 c단계에서 하기 화학식 1로 표시되는 파이렌 유도체 또는 이의 염을 흑연 100 중량부에 대해 1 내지 100중량부 더 첨가하는 것을 특징으로 하는 세라믹이 코팅된 흑연의 제조방법:
    [화학식 1]
    Figure PCTKR2014005784-appb-I000002
    상기 화학식 1에서, R은 카르복시산, (C1 내지 C10)알킬카르복시산, 아민, (C1 내지 C10)알킬아민, (C1 내지 C10)알킬카르복실릭 할로겐, (C1 내지 C10)알킬카르복실릭 하이드라지드 및 (C1 내지 C10)알킬카르복실산 N-하이드록시숙신이미드 에스테르로 이루어진 군에서 선택됨.
  6. 청구항 5에 있어서, 상기 파이렌유도체 또는 이의 염은 1-파이렌부티릴 클로라이드, 1-파이렌부티릴 하이드라지드, 1-파이렌메틸아민 하이드로클로라이드, 1-파이렌카르복실산, 1-파이렌발레르산, 1-파이렌부티르산 N-하이드록시숙신아미드, γ-옥소-1-파이렌부티르산 및 1-파이렌부티르산으로 이루어진 군에서 선택된 1종이상인 것을 특징으로 하는 세라믹이 코팅된 흑연의 제조방법.
  7. 청구항 4에 있어서, 상기 알코올 용매는 메탄올, 에탄올, 프로판올, 부탄올, 아세톤, 톨루엔, 다이메틸포름아마이드 및 자일렌으로 이루어진 군에서 선택된 하나 또는 둘 이상인 것을 특징으로 하는 세라믹이 코팅된 흑연의 제조방법.
  8. 청구항 4에 있어서, 상기 염기성 촉매는 암모늄 하이드록사이드, 테트라프로필 암모늄 클로라이드, 테트라프로필 암모늄 하이드록사이드, 포테슘 하이드록사이드, 테트라부틸암모늄 브로마이드, 테트라부틸암모늄 클로라이드 및 테트라부틸암모늄 하이드록사이드로 이루어진 군에서 선택된 하나 또는 둘 이상인 것을 특징으로 하는 세라믹이 코팅된 흑연의 제조방법.
  9. 청구항 4에 있어서,
    상기 세라믹 전구체는 마그네시아 전구체(ⓐ), 알루미나 전구체(ⓑ), 산화아연 전구체(ⓒ), 지르코니아 전구체(ⓓ) 및 실리카 전구체(ⓔ)로 이루어진 군에서 선택된 하나 또는 둘 이상인 것을 특징으로 하는 세라믹이 코팅된 흑연의 제조방법:
    ⓐ: 마그네슘 나이트레이트(Mg(NO3)2·6H2O), 마그네슘 아세테이트 테트라하이 드레이트(magnesium acetate tetrahydrate) 및 마그네슘 메톡사이드(Magnesium methoxide)로 이루어진 군에서 선택된 하나 또는 둘 이상인 것인, 마그네시아 전구체,
    ⓑ: 알루미늄 나이트레이트(Aluminum nitrate nonahydrate), 알루미늄 이소 프로폭사이드(Aluminum isopropoxide) 및 알루미늄 세크 뷰톡사이드(Aluminiumsec- butoxide)로 이루어진 군에서 선택된 하나 또는 둘 이상인 것인, 알루미나 전구체,
    ⓒ: 징크 나이트레이트(zinc nitrate), 징크 아세테이트(zinc acetate) 중 하나 이상의 산화아연 전구체,
    ⓓ: ZrO(NO3)2·H2O, Zr(NO3)2·xH2O 및 지르코늄 n-프로폭사이드 (Zirconium n-propoxide)로 이루어진 군에서 선택된 하나 또는 둘 이상인 것인, 지르코니아 전구체,
    ⓔ: APTES(Aminopropyltriethoxysilane), APTMS(Aminopropyltrimethoxysilane), MPTES(3-mercaptopropyltriethoxysilane), MPTMS(3-mercaptopropyltrimethoxysilane), TEOS(Tetraethyl Orthosilicate), TMOS(Tetramethyl Orthosilicate) 및 TPOS(Tetrapropyl Orthosilicate)로 이루어진 군에서 선택된 하나 또는 둘 이상인 것인, 실리카 전구체.
  10. 청구항 4에 있어서, 상기 코팅은 15 내지 80 ℃의 온도에서 6 내지 24 시간 동안 반응시키는 것을 특징으로 하는 세라믹이 코팅된 흑연의 제조방법.
  11. 청구항 1 내지 10 중 어느 한 항의 제조방법으로 제조된 세라믹이 코팅된 흑연 10 내지 98 중량%와 전도성 수지 2 내지 90 중량%를 혼련하는 것을 특징으로 하는 고열전도성 수지의 제조방법.
PCT/KR2014/005784 2013-08-01 2014-06-30 세라믹이 코팅된 흑연의 제조방법 WO2015016490A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480041396.2A CN105636903B (zh) 2013-08-01 2014-06-30 陶瓷涂层石墨制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130091527 2013-08-01
KR10-2013-0091527 2013-08-01
KR1020140072934A KR101682899B1 (ko) 2013-08-01 2014-06-16 세라믹이 코팅된 흑연의 제조방법
KR10-2014-0072934 2014-06-16

Publications (1)

Publication Number Publication Date
WO2015016490A1 true WO2015016490A1 (ko) 2015-02-05

Family

ID=52426789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/005784 WO2015016490A1 (ko) 2013-08-01 2014-06-30 세라믹이 코팅된 흑연의 제조방법

Country Status (3)

Country Link
US (1) US9617456B2 (ko)
JP (1) JP5935156B2 (ko)
WO (1) WO2015016490A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10468057B2 (en) * 2018-02-28 2019-11-05 Western Digital Technologies, Inc. Flexure and actuator system for magnetic recording device
CN111320868B (zh) 2018-12-17 2023-02-28 杜邦聚合物有限公司 具有高介电常数和低介电损耗的聚合物组合物
CN115159988A (zh) * 2021-04-02 2022-10-11 国家能源投资集团有限责任公司 耐高温蓄热材料及其制备方法与应用、用于制备耐高温蓄热材料的组合物及其应用
KR102631853B1 (ko) * 2021-11-22 2024-01-30 재단법인 한국탄소산업진흥원 난연.절연.방열 복합소재용 박리흑연 충진재 제조 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09321191A (ja) * 1996-05-31 1997-12-12 Tokai Rubber Ind Ltd 熱伝導性高分子成形体
JP2007107151A (ja) * 2005-10-17 2007-04-26 Showa Denko Kk シリカ被覆炭素繊維
KR20070066732A (ko) * 2005-12-22 2007-06-27 재단법인 포항산업과학연구원 실리카가 코팅된 흑연의 제조방법
KR101218508B1 (ko) * 2012-01-17 2013-01-03 인하대학교 산학협력단 세라믹-탄소 복합체 및 그 제조방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030211724A1 (en) 2002-05-10 2003-11-13 Texas Instruments Incorporated Providing electrical conductivity between an active region and a conductive layer in a semiconductor device using carbon nanotubes
WO2004052559A2 (en) 2002-12-06 2004-06-24 Eikos, Inc. Optically transparent nanostructured electrical conductors
JP5092341B2 (ja) * 2006-10-12 2012-12-05 三菱瓦斯化学株式会社 絶縁化超微粉末および高誘電率樹脂複合材料
KR100895521B1 (ko) 2007-10-12 2009-04-30 (주)탑나노시스 스프레이 코팅을 이용한 탄소나노튜브 투명도전막 및 그제조방법
DE102009012675A1 (de) * 2009-03-13 2010-09-16 Bayer Materialscience Ag Verfahren zur Dispergierung graphitartiger Nanoteilchen
JP6162693B2 (ja) * 2011-06-24 2017-07-12 ブルーワー サイエンス アイ エヌ シー. 導電性を改善した溶解性の高いカーボンナノチューブ
JPWO2013021831A1 (ja) * 2011-08-10 2015-03-05 三菱瓦斯化学株式会社 高誘電率な樹脂複合材料、及びその製造方法
JP5967890B2 (ja) * 2011-09-30 2016-08-10 日本タングステン株式会社 膜状の無機材料
US20150291429A1 (en) * 2012-07-27 2015-10-15 National Center For Nanoscience And Technology Method for treating single wall carbon nanotube

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09321191A (ja) * 1996-05-31 1997-12-12 Tokai Rubber Ind Ltd 熱伝導性高分子成形体
JP2007107151A (ja) * 2005-10-17 2007-04-26 Showa Denko Kk シリカ被覆炭素繊維
KR20070066732A (ko) * 2005-12-22 2007-06-27 재단법인 포항산업과학연구원 실리카가 코팅된 흑연의 제조방법
KR101218508B1 (ko) * 2012-01-17 2013-01-03 인하대학교 산학협력단 세라믹-탄소 복합체 및 그 제조방법

Also Published As

Publication number Publication date
JP2015030664A (ja) 2015-02-16
US20150034857A1 (en) 2015-02-05
JP5935156B2 (ja) 2016-06-15
US9617456B2 (en) 2017-04-11

Similar Documents

Publication Publication Date Title
WO2015016490A1 (ko) 세라믹이 코팅된 흑연의 제조방법
WO2017105065A1 (ko) 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 산화금속-실리카 복합 에어로겔
KR101218508B1 (ko) 세라믹-탄소 복합체 및 그 제조방법
WO2014030782A1 (ko) 탄화규소가 코팅된 탄소섬유 복합체 및 그 제조방법
WO2010090480A2 (ko) 탄소계 입자/구리로 된 복합재료의 제조방법
WO2012018242A2 (ko) 탄소소재를 이용한 고효율 방열도료 조성물
WO2017026722A1 (ko) 고온 소결형 도전성 페이스트용 은 분말의 제조방법
WO2017171279A1 (ko) 구형 실리카 에어로겔 과립의 제조방법 및 이에 의해 제조되는 구형 실리카 에어로겔 과립
WO2021125726A1 (ko) 실란화 보론 나이트라이드 복합체 및 이의 제조 방법
WO2019066262A1 (ko) 탄소나노튜브 슬러리 조성물
WO2016195311A2 (ko) 그래핀 분산안정제용 합성수용성고분자, 그 고분자를 포함하는 고안정성 콜로이드 그래핀용액, 그 그래핀용액을 포함하는 그래핀하이드로겔 및 그래핀에어로겔
WO2017115921A1 (ko) 그래핀 분산액 및 그래핀-고분자 복합체 제조방법, 및 이를 이용한 배리어 필름 제조방법
WO2013103199A1 (ko) 무기바인더를 포함한 유리섬유 보드 및 그의 제조 방법
WO2023013938A1 (ko) 팽창성 흑연을 사용한 전도성 박막의 제조방법
WO2024096397A1 (ko) 실리콘-그래핀 복합 음극재 및 그 제조방법
WO2016043396A1 (ko) 질소 도핑된 그래핀의 제조방법 및 이로부터 제조된 질소 도핑된 그래핀
WO2013105780A1 (ko) 카본나노튜브용 균질 담지 촉매의 제조방법
WO2017052057A1 (ko) 카본나노튜브를 포함하는 고강도 고분자
WO2021015580A1 (ko) 방열복합소재 및 그 제조 방법
WO2012015262A2 (en) Silicon carbide and method for manufacturing the same
WO2020262780A1 (ko) 고팽창 흑연 제조용 조성물, 고팽창 흑연 및 이의 제조 방법
WO2020122684A1 (ko) 마그네시아 및 그 제조 방법, 및 고열전도성 마그네시아 조성물, 이를 이용한 마그네시아 세라믹스
WO2020071841A1 (ko) 은 분말 및 이의 제조 방법
WO2022139272A1 (ko) 이차전지 전극용 도전재 선분산 슬러리와 그 제조방법 및 도전재 선분산 슬러리를 적용하여 제조된 전극과 상기 전극을 구비한 이차전지
WO2017069574A1 (en) Silicon carbide composite and power storage device including same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14831556

Country of ref document: EP

Kind code of ref document: A1