WO2015016305A1 - 排気系の状態検出装置 - Google Patents

排気系の状態検出装置 Download PDF

Info

Publication number
WO2015016305A1
WO2015016305A1 PCT/JP2014/070198 JP2014070198W WO2015016305A1 WO 2015016305 A1 WO2015016305 A1 WO 2015016305A1 JP 2014070198 W JP2014070198 W JP 2014070198W WO 2015016305 A1 WO2015016305 A1 WO 2015016305A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
engine
intake
thermal efficiency
oxygen concentration
Prior art date
Application number
PCT/JP2014/070198
Other languages
English (en)
French (fr)
Inventor
哲史 塙
伊海 佳昭
Original Assignee
いすゞ自動車株式会社
株式会社トランストロン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社, 株式会社トランストロン filed Critical いすゞ自動車株式会社
Priority to CN201480042373.3A priority Critical patent/CN105408608B/zh
Priority to US14/908,291 priority patent/US20160169168A1/en
Priority to EP14832681.2A priority patent/EP3029304A4/en
Publication of WO2015016305A1 publication Critical patent/WO2015016305A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • F02M26/47Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition the characteristics being temperatures, pressures or flow rates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/144Sensor in intake manifold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • F02D41/1447Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/33Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage controlling the temperature of the recirculated gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/49Detecting, diagnosing or indicating an abnormal function of the EGR system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0618Actual fuel injection timing or delay, e.g. determined from fuel pressure drop

Definitions

  • the present invention relates to an exhaust system state detection device, and more particularly to an exhaust system state detection device that detects the temperature of exhaust gas discharged from an engine.
  • an exhaust gas recirculation device (Exhaust Gas Recirculation: hereinafter referred to as an EGR device) that circulates a part of engine exhaust to an intake system.
  • the EGR device includes an EGR cooler that cools EGR gas and the like in a pipe that connects an exhaust system and an intake system.
  • the output of the exhaust temperature sensor is delayed in response to the actual change in exhaust temperature. For this reason, when various controls of the engine are performed based on the exhaust temperature sensor, there is a possibility that the control is delayed and optimal control for the operating state cannot be realized.
  • An object of the present invention is to provide an exhaust system state detection device capable of effectively detecting the exhaust temperature with a simple configuration.
  • the disclosed exhaust system state detection device includes an oxygen concentration detection unit that detects an intake oxygen concentration of an engine, an operation state detection unit that detects an operation state of the engine, and the detected intake oxygen concentration. Based on a fuel injection start timing set according to the operating state and a first model equation that defines at least a prestored relationship between the intake oxygen concentration, the injection start timing, and the indicated thermal efficiency change amount, the indicated thermal efficiency change of the engine On the basis of the illustrated thermal efficiency change amount calculating means for calculating the amount, the calculated thermal efficiency change amount to be calculated, and a second model expression defining the relationship between at least the exhaust temperature and the indicated thermal efficiency change amount stored in advance. Exhaust temperature calculating means for calculating the exhaust temperature.
  • the exhaust temperature can be detected effectively with a simple configuration.
  • FIG. 1 is a schematic overall configuration diagram illustrating an exhaust system state detection device according to an embodiment of the present invention. It is a flowchart which shows the control content by the state detection apparatus of the exhaust system which concerns on one Embodiment of this invention.
  • a diesel engine (hereinafter simply referred to as an engine) 10 is provided with an intake manifold 10A and an exhaust manifold 10B.
  • An intake passage 11 for introducing fresh air is connected to the intake manifold 10A, and an exhaust passage 12 for releasing exhaust gas to the atmosphere is connected to the exhaust manifold 10B.
  • the exhaust passage 12 is provided with a turbine 14B of the supercharger 14 and an exhaust aftertreatment device (not shown) in order from the exhaust upstream side.
  • a MAF sensor 32, a compressor 14 ⁇ / b> A of the supercharger 14, an intercooler 15, an intake air temperature sensor 33, an intake oxygen concentration sensor (oxygen concentration detection means) 34, and a boost pressure sensor 35 are sequentially arranged from the intake upstream side. Is provided. Sensor values detected by these sensors 32 to 35 are output to an electrically connected electronic control unit (hereinafter referred to as ECU) 40.
  • ECU electronice control unit
  • the EGR device 20 includes an EGR passage 21 that circulates part of exhaust gas to the intake system, an EGR cooler (circulation exhaust cooling means) 22 that cools EGR gas, and an EGR valve 23 that adjusts the EGR gas flow rate. . Further, an EGR cooler outlet temperature sensor (exhaust temperature detecting means) 36 for detecting the temperature of the EGR gas cooled by the EGR cooler 22 is provided in the EGR passage 21 downstream (exit) from the EGR cooler 22. . The sensor value detected by the EGR cooler outlet temperature sensor 36 is output to the electrically connected ECU 40.
  • the engine rotation sensor 30 detects the rotation speed of a crankshaft (not shown).
  • the accelerator opening sensor 31 detects an accelerator opening corresponding to a depression amount of an accelerator pedal (not shown). Sensor values detected by these sensors 30 and 31 are output to the electrically connected ECU 40.
  • the engine rotation sensor 30 and the accelerator opening sensor 31 are preferable as an example of the driving state detection means.
  • the ECU 40 performs various controls such as fuel injection of the engine 10, and includes a known CPU, ROM, RAM, input port, output port, and the like.
  • the ECU 40 also includes a fuel injection control unit 41, a thermal efficiency calculation unit (illustrated thermal efficiency change amount calculation unit) 42, an exhaust temperature calculation unit (exhaust temperature calculation unit) 43, and an EGR cooler diagnosis unit (diagnosis unit) 44.
  • a thermal efficiency calculation unit illustrated thermal efficiency change amount calculation unit
  • exhaust temperature calculation unit exhaust temperature calculation unit
  • EGR cooler diagnosis unit diagnosis unit
  • the fuel injection control unit 41 determines the fuel injection timing of a fuel injection device (not shown) of the engine 10 based on the rotation speed N input from the engine rotation sensor 30 and the accelerator opening Q input from the accelerator opening sensor 31. Control the fuel injection amount.
  • the illustrated thermal efficiency calculation unit 42 calculates the indicated thermal efficiency change amount ⁇ i of the engine 10 based on sensor values detected by the various sensors 30 to 36, a model equation described later, and the like. Hereinafter, the calculation procedure will be described in detail.
  • the energy storage in the cylinder of the engine 10 is expressed by the following equation (1) indicating the relationship among the exhaust energy H ex , the intake energy H in , the fuel combustion energy Q fuel , the cooling loss energy U hloss, and the illustrated work W id of the engine 10. ).
  • the indicated thermal efficiency ⁇ i of the engine 10 is expressed by the following formula (2) indicating the ratio of the indicated work W id and the combustion energy Q fuel .
  • Equation (4) assuming that the fuel injection amount is constant and the change in the cooling loss energy U hloss is small, the exhaust energy change amount ⁇ H ex is approximated by Equation (5) below.
  • the engine outlet exhaust temperature T 3 is obtained as follows: constant pressure specific heat of intake: C p, in , exhaust flow rate: m ex , reference exhaust energy: H ex, ref , reference intake energy: It is expressed by the following formula (7) (second model formula) where H in, ref , exhaust energy: H in , and combustion energy: Q fuel .
  • a correction value map (not shown) that prescribes the relationship between the engine speed N, the accelerator opening Q, and the intake oxygen concentration
  • the illustrated thermal efficiency calculation unit 42 reads and substitutes values corresponding to the operating state of the engine 10 from these maps into the equation (9), and the intake oxygen concentration X O2 input from the intake oxygen concentration sensor 34 and the fuel injection control.
  • the injection start timing ⁇ determined by the unit 41 is substituted.
  • the indicated thermal efficiency change amount ⁇ i reflecting the change amount from the reference intake oxygen concentration X O2, ref and the change amount from the reference injection start timing ⁇ ref is calculated in real time according to the operating state of the engine 10. It is comprised so that.
  • the exhaust temperature calculation unit 43 calculates the engine outlet exhaust temperature T 3 in real time based on the formula (7). More specifically, the ECU 40 includes a reference value map (not shown) showing the relationship between the engine speed N, the accelerator opening Q, and the reference intake energy Hin , ref , which has been created in advance through experiments or the like, and the engine speed N A reference value map (not shown) indicating the relationship between the accelerator opening Q and the reference exhaust energy Hex, ref is stored.
  • Exhaust temperature calculator 43 along with reading the value corresponding from these maps on the operating state of the engine 10, constant pressure specific heat C p of the intake, in, intake air temperature T 2 and the following equation showing the relationship between the intake air flow rate m in ( The intake energy H in is calculated from 10).
  • the exhaust temperature calculation unit 43 calculates the combustion energy Q fuel of the fuel from the following formula (11) showing the relationship between the lower heating value h l of the fuel and the fuel injection amount m fuel .
  • the exhaust temperature calculation unit 43 then substitutes the values read from the map, the values calculated from the equations (10) and (11), the constant pressure specific heat C p, ex of the exhaust gas, and the exhaust flow rate m ex into the equation (7). it is, calculates the engine outlet exhaust temperature T 3. Thereby, the engine outlet exhaust temperature T 3 which changes according to the operating state of the engine 10 is calculated in real time.
  • the exhaust flow rate mex may be detected directly by an exhaust flow rate sensor (not shown), or may be estimated based on the operating state of the engine 10 ascertained from the engine speed N and the accelerator opening Q. Good.
  • the EGR cooler diagnosis unit 44 determines whether the EGR cooler 22 has failed based on the engine outlet exhaust temperature T 3 calculated by the exhaust temperature calculation unit 43 and the EGR cooler outlet temperature T 4 input from the EGR cooler outlet temperature sensor 36. Run diagnostics.
  • the ECU 40 stores a lower limit threshold value T min indicating a failure of the EGR cooler 22 obtained in advance by experiments or the like.
  • the failure means that, for example, soot and oil in the exhaust adheres to fins (not shown) of the EGR cooler 22 and the heat exchange between the EGR gas and the cooling water is hindered, thereby significantly reducing the cooling efficiency. It means the state that was made to.
  • the EGR cooler diagnosis unit 44 determines that the EGR cooler 22 is in failure when the temperature difference ⁇ T between the engine outlet exhaust temperature T 3 and the EGR cooler outlet temperature T 4 becomes lower than the lower limit threshold T min .
  • the failure determination is not necessarily based on the temperature difference ⁇ T, and may be performed based on the ratio T 3 / T 4 between the engine outlet exhaust temperature T 3 and the EGR cooler outlet temperature T 4 .
  • step 100 sensor values of various sensors 30 to 36 are input to the ECU 40.
  • the intake oxygen concentration X O2, ref and the reference injection start timing ⁇ ref are read.
  • step 120 based on the values read from the various maps in step 110, the intake oxygen concentration X O2 input from the intake oxygen concentration sensor 34, and the injection start timing ⁇ determined by the fuel injection control unit 41, The indicated thermal efficiency change ⁇ i is calculated from the model equation (9).
  • step 130 according to the operating state of the engine 10, reference intake energy H in the reference value map, ref, the reference exhaust energy H ex, with ref is read, equation (10), exhaust energy H in the (11) The combustion energy Q fuel is calculated.
  • step 140 based on the indicated thermal efficiency variation ⁇ i calculated in step 120, the value read from the map in step 130, and the values calculated from equations (10) and (11), the model of equation (7) is used.
  • the engine outlet exhaust temperature T 3 is calculated from the equation.
  • step 150 failure of the EGR cooler 22 is determined based on the difference ⁇ T between the engine outlet exhaust temperature T 3 calculated in step 140 and the EGR cooler outlet temperature T 4 input from the EGR cooler outlet temperature sensor 36.
  • the present control is returned to step 100. Thereafter, each control step from Step 100 to Step 160 is repeatedly executed until the ignition key is turned off.
  • the temperature of the exhaust discharged from the engine is directly measured using an exhaust temperature sensor provided in the exhaust passage. Since this exhaust temperature sensor has a response delay with respect to the actual exhaust temperature, there has been a problem in causing various delays in various engine controls.
  • the exhaust system state detection device calculates the indicated thermal efficiency change ⁇ i of the engine 10 in real time from the model equation represented by the above-described formula (9), and also shows the indicated thermal efficiency change ⁇ .
  • the engine outlet exhaust gas temperature T 3 is calculated in real time from i and the model equation represented by the above equation (7). That is, without using the exhaust gas temperature sensor caused the response delay, by using a pre-defined model equation, and is configured to compute the engine outlet exhaust temperature T 3 rapidly and accurately.
  • the exhaust system state detection device of the present embodiment it is possible to effectively detect (calculate) the engine outlet exhaust temperature T 3 with a simple configuration using a model formula.
  • exhaust gas temperature sensors have been provided on the upstream side and the downstream side of the EGR cooler in order to diagnose the EGR cooler. For this reason, there is a problem that the diagnosis is influenced by the response delay of the exhaust temperature sensor and the cost of the entire apparatus is increased due to the increase in the number of sensors.
  • the exhaust system state detection device of the present embodiment is inputted from the engine outlet exhaust temperature T 3 calculated in real time from the model formula shown by the above formula (7) and the EGR cooler outlet temperature sensor 36. Based on the temperature difference ⁇ T with the EGR cooler outlet temperature T 4 , the failure of the EGR cooler 22 is determined.
  • the exhaust system state detection device of the present embodiment it is possible to quickly and accurately diagnose the EGR cooler 22 without being affected by the response delay of the sensor. Further, the upstream exhaust temperature sensor can be omitted, and the cost increase due to the increase in the number of sensors can be effectively suppressed.
  • the engine outlet exhaust temperature T 3 calculated by the exhaust temperature calculation unit 43 has been described as being used for the diagnosis of the EGR cooler 22.
  • the control of the EGR gas amount and the exhaust aftertreatment device (not shown) You may comprise so that it may be used for control.
  • the engine 10 is not limited to a diesel engine, and can be widely applied to other engines such as a gasoline engine. In any of these cases, the same effects as those of the above-described embodiment can be achieved.
  • Engine 20 EGR device 22 EGR cooler (circulation exhaust cooling means) 30 Engine rotation sensor (operating state detection means) 31 Accelerator opening sensor (operating state detection means) 34 Intake oxygen concentration sensor (oxygen concentration detection means) 35 Boost pressure sensor 36 EGR cooler outlet temperature sensor (exhaust temperature detection means) 40 ECU 42 Thermal efficiency calculation section (thermal efficiency change calculation means) 43 Exhaust temperature calculation unit (exhaust temperature calculation means) 44 EGR cooler diagnostic unit (diagnostic means)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

排気系の状態検出装置に関し、簡素な構成で、排気温度を効果的に検出する。 エンジン(10)の吸気酸素濃度を検出する吸気酸素濃度センサ(32)と、運転状態を検出するエンジン回転センサ(30)、アクセル開度センサ(31)と、吸気酸素濃度、燃料の噴射開始時期及び、予め記憶した吸気酸素濃度と噴射開始時期と図示熱効率変化量との関係を規定する第1モデル式に基づいて、エンジン(10)の図示熱効率変化量を演算する図示熱効率演算部(42)と、図示熱効率変化量及び、予め記憶した排気温度と図示熱効率変化量との関係を規定した第2モデル式に基づいて、エンジン(10)の排気温度を演算する排気温度演算部(43)とを備えた。

Description

排気系の状態検出装置
 本発明は、排気系の状態検出装置に関し、特に、エンジンから排出される排気の温度を検出する排気系の状態検出装置に関する。
 従来、エンジンの排気の一部を吸気系に環流する排気環流装置(Exhaust Gas Recirculation:以下、EGR装置)が知られている。EGR装置は、排気系と吸気系とを接続する配管に、EGRガスを冷却するEGRクーラ等を備えて構成されている。
 EGRクーラ内に排気中のオイルや煤が付着すると、冷却効率の低下を招き、高温状態のEGRガスが吸気系に再循環される。このような課題に着目し、EGRクーラの上流側及び下流側に排気温度センサをそれぞれ設け、これらセンサの温度差に基づいてEGRクーラの冷却効率を診断する技術が知られている(例えば、特許文献1参照)。
特開2009-114871号公報
 ところで、排気温度センサの出力は、実際の排気温度の変化に対して応答遅れを生じる。そのため、排気温度センサに基づいてエンジンの各種制御を行うと、制御に遅れが生じ、運転状態に最適な制御を実現できない可能性がある。
 また、EGRクーラの上流側及び下流側に排気温度センサをそれぞれ設ける構成では、センサ数の増加により装置全体のコスト上昇を招く課題もある。
 本発明の目的は、簡素な構成で、排気温度を効果的に検出することができる排気系の状態検出装置を提供することにある。
 開示の排気系の状態検出装置は、エンジンの吸気酸素濃度を検出する酸素濃度検出手段と、前記エンジンの運転状態を検出する運転状態検出手段と、検出される前記吸気酸素濃度、検出される前記運転状態に応じて設定される燃料噴射開始時期及び、予め記憶した少なくとも吸気酸素濃度と噴射開始時期と図示熱効率変化量との関係を規定する第1モデル式に基づいて、前記エンジンの図示熱効率変化量を演算する図示熱効率変化量演算手段と、演算される前記図示熱効率変化量及び、予め記憶した少なくとも排気温度と図示熱効率変化量との関係を規定した第2モデル式に基づいて、前記エンジンの排気温度を演算する排気温度演算手段とを備える。
 開示の排気系の状態検出装置によれば、簡素な構成で、排気温度を効果的に検出することができる。
本発明の一実施形態に係る排気系の状態検出装置を示す模式的な全体構成図である。 本発明の一実施形態に係る排気系の状態検出装置による制御内容を示すフローチャートである。
 以下、図1,2に基づいて、本発明の一実施形態に係る排気系の状態検出装置を説明する。同一の部品には同一の符号を付してあり、それらの名称及び機能も同じである。したがって、それらについての詳細な説明は繰返さない。
 図1に示すように、ディーゼルエンジン(以下、単にエンジン)10には、吸気マニホールド10A及び、排気マニホールド10Bが設けられている。吸気マニホールド10Aには新気を導入する吸気通路11が接続され、排気マニホールド10Bには排気を大気に放出する排気通路12が接続されている。
 排気通路12には、排気上流側から順に、過給機14のタービン14B、図示しない排気後処理装置が設けられている。吸気通路11には、吸気上流側から順に、MAFセンサ32、過給機14のコンプレッサ14A、インタークーラ15、吸気温度センサ33、吸気酸素濃度センサ(酸素濃度検出手段)34、ブースト圧センサ35が設けられている。これらセンサ32~35で検出されるセンサ値は、電気的に接続された電子制御ユニット(以下、ECU)40に出力される。
 EGR装置20は、排気の一部を吸気系に環流するEGR通路21と、EGRガスを冷却するEGRクーラ(環流排気冷却手段)22と、EGRガス流量を調整するEGRバルブ23とを備えている。また、EGRクーラ22よりも下流側(出口)のEGR通路21には、EGRクーラ22で冷却されたEGRガスの温度を検出するEGRクーラ出口温度センサ(排気温度検出手段)36が設けられている。EGRクーラ出口温度センサ36で検出されるセンサ値は、電気的に接続されたECU40に出力される。
 エンジン回転センサ30は、図示しないクランク軸の回転数を検出する。アクセル開度センサ31は、図示しないアクセルペダルの踏み込み量に応じたアクセル開度を検出する。これらセンサ30,31で検出されるセンサ値は、電気的に接続されたECU40に出力される。なお、エンジン回転センサ30やアクセル開度センサ31は、運転状態検出手段の一例として好ましい。
 ECU40は、エンジン10の燃料噴射等の各種制御を行うもので、公知のCPUやROM、RAM、入力ポート、出力ポート等を備え構成されている。また、ECU40は、燃料噴射制御部41と、図示熱効率演算部(図示熱効率変化量演算手段)42と、排気温度演算部(排気温度演算手段)43と、EGRクーラ診断部(診断手段)44とを一部の機能要素として有する。これら各機能要素は、一体のハードウェアであるECU40に含まれるものとして説明するが、これらのいずれか一部を別体のハードウェアに設けることもできる。
 燃料噴射制御部41は、エンジン回転センサ30から入力される回転数N及び、アクセル開度センサ31から入力されるアクセル開度Qに基づいて、エンジン10の図示しない燃料噴射装置による燃料噴射時期や燃料噴射量を制御する。
 図示熱効率演算部42は、各種センサ30~36で検出されるセンサ値及び、後述するモデル式等に基づいて、エンジン10の図示熱効率変化量Δηiを演算する。以下、その演算手順を詳述する。
 エンジン10の筒内におけるエネルギ保存は、排気エネルギHex、吸気エネルギHin、燃料の燃焼エネルギQfuel、冷却損失エネルギUhloss及び、エンジン10の図示仕事Widの関係を示す以下の数式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 また、エンジン10の図示熱効率ηiは、図示仕事Widと燃焼エネルギQfuelとの比を示す以下の数式(2)で表される。
Figure JPOXMLDOC01-appb-M000002
 数式(1)に数式(2)の図示仕事Widを代入すると、排気エネルギHexは以下の数式(3)で表される。
Figure JPOXMLDOC01-appb-M000003
 さらに、数式(3)に基づいて、基準排気エネルギHex,refからの変化量ΔHexを計算すると以下の数式(4)で表される。
Figure JPOXMLDOC01-appb-M000004
 数式(4)において、燃料噴射量は一定、冷却損失エネルギUhlossの変化は微小であると仮定すると、排気エネルギの変化量ΔHexは以下の数式(5)で近似される。
Figure JPOXMLDOC01-appb-M000005
 さらに、エンジン10から排出される排気温度(以下、エンジン出口排気温度)T3は、数式(4)のΔHex=Hex-Hex,refから以下の数式(6)で表される。
Figure JPOXMLDOC01-appb-M000006
 数式(6)に数式(5)を代入すると、エンジン出口排気温度T3は、吸気の定圧比熱:Cp,in、排気流量:mex、基準排気エネルギ:Hex、ref、基準吸気エネルギ:Hin、ref、排気エネルギ:Hin、燃焼エネルギ:Qfuelとする以下の数式(7)(第2モデル式)で表される。
Figure JPOXMLDOC01-appb-M000007
 ここで、図示熱効率ηiの変化要因として、燃料の噴射開始時期φ及び、吸気酸素濃度XO2を考慮する。図示熱効率変化量Δηiの吸気酸素濃度XO2に対する変化を線形と仮定すると、図示熱効率変化量Δηiはテイラー展開により、吸気酸素濃度:XO2、噴射開始時期:φ、吸入酸素濃度補正係数:k1,O2、基準吸入酸素濃度:XO2、ref、噴射開始時期補正係数:kn(n=1,2),soi、基準噴射開始時期:φrefとする以下の数式(8)で近似される。
Figure JPOXMLDOC01-appb-M000008
 数式(8)において、噴射開始時期φと吸入酸素濃度XO2との相互作用項の影響を微小と仮定すると、図示熱効率変化量Δηiは以下の数式(9)(第1モデル式)で表される。
Figure JPOXMLDOC01-appb-M000009
 図示熱効率演算部42は、この数式(9)に基づいて、図示熱効率変化量Δηiをリアルタイムで演算する。より詳しくは、ECU40には、予め実験等により作成したエンジン回転数Nとアクセル開度Qと吸入酸素濃度補正係数k1,O2との関係を規定する補正値マップ(不図示)及び、エンジン回転数Nとアクセル開度Qと基準吸入酸素濃度XO2、refとの関係を規定する基準値マップ(不図示)が記憶されている。さらに、ECU40には、予め実験等により作成したエンジン回転数Nとアクセル開度Qと噴射開始時期補正係数kn(n=1,2),soiとの関係を規定する補正値マップ(不図示)及び、エンジン回転数Nとアクセル開度Qと基準噴射開始時期φrefとの関係を規定する基準値マップ(不図示)が記憶されている。
 図示熱効率演算部42は、数式(9)にこれらマップからエンジン10の運転状態に応じた値を読み取って代入すると共に、吸気酸素濃度センサ34から入力される吸気酸素濃度XO2及び、燃料噴射制御部41で決定される噴射開始時期φをそれぞれ代入する。これにより、基準吸入酸素濃度XO2、refからの変化量及び、基準噴射開始時期φrefからの変化量を反映した図示熱効率変化量Δηiが、エンジン10の運転状態に応じてリアルタイムで演算されるように構成されている。
 排気温度演算部43は、数式(7)に基づいて、エンジン出口排気温度T3をリアルタイムで演算する。より詳しくは、ECU40には、予め実験等により作成したエンジン回転数Nとアクセル開度Qと基準吸気エネルギHin、refとの関係を示す基準値マップ(不図示)及び、エンジン回転数Nとアクセル開度Qと基準排気エネルギHex、refとの関係を示す基準値マップ(不図示)が記憶されている。
 排気温度演算部43は、これらマップからエンジン10の運転状態に応じた値を読み取ると共に、吸気の定圧比熱Cp,in、吸気温度T2及び、吸気流量minの関係を示す以下の数式(10)から吸気エネルギHinを演算する。
Figure JPOXMLDOC01-appb-M000010
 さらに、排気温度演算部43は、燃料の低位発熱量hl及び、燃料噴射量mfuelの関係を示す以下の数式(11)から燃料の燃焼エネルギQfuelを演算する。
Figure JPOXMLDOC01-appb-M000011
 そして、排気温度演算部43は、マップから読み取った値や数式(10),(11)から演算した値及び、排気の定圧比熱Cp,ex、排気流量mexを数式(7)に代入することで、エンジン出口排気温度T3を演算する。これにより、エンジン10の運転状態に応じて変化するエンジン出口排気温度T3がリアルタイムで演算されるように構成されている。なお、排気流量mexは、図示しない排気流量センサで直接的に検出してもよく、又は、エンジン回転数N及びアクセル開度Qから把握されるエンジン10の運転状態に基づいて推定してもよい。
 EGRクーラ診断部44は、排気温度演算部43で演算されるエンジン出口排気温度T3と、EGRクーラ出口温度センサ36から入力されるEGRクーラ出口温度T4とに基づいて、EGRクーラ22の故障診断を実行する。
 より詳しくは、ECU40には、予め実験等で求めたEGRクーラ22の故障を示す下限閾値Tminが記憶されている。ここで、故障とは、例えば、EGRクーラ22の図示しないフィン等に排気中の煤やオイルが付着し、EGRガスと冷却水との間の熱交換が妨げられることで、冷却効率を著しく低下させた状態をいう。
 EGRクーラ診断部44は、エンジン出口排気温度T3とEGRクーラ出口温度T4との温度差ΔTが下限閾値Tminよりも低くなった場合は、EGRクーラ22を故障と判定する。なお、故障判定は、必ずしも温度差ΔTに基づく必要はなく、エンジン出口排気温度T3とEGRクーラ出口温度T4との比T3/T4に基づいて行われてもよい。
 次に、図2に基づいて、本実施形態の排気系の状態検出装置による制御フローを説明する。
 まず、イグニッションキーのON操作と同時に、ステップ100では、各種センサ30~36のセンサ値がECU40に入力される。
 ステップ110では、エンジン10の運転状態に応じて、補正値マップから吸入酸素濃度補正係数k1,O2及び、噴射開始時期補正係数kn(n=1,2),soi、基準値マップから基準吸入酸素濃度XO2、ref及び、基準噴射開始時期φrefがそれぞれ読み取られる。
 ステップ120では、ステップ110で各種マップから読み取った値と、吸気酸素濃度センサ34から入力される吸気酸素濃度XO2と、燃料噴射制御部41で決定される噴射開始時期φとに基づいて、数式(9)のモデル式から図示熱効率変化量Δηiが演算される。
 ステップ130では、エンジン10の運転状態に応じて、基準値マップから基準吸入エネルギHin、ref、基準排気エネルギHex、refが読み取られると共に、数式(10),(11)から排気エネルギHin、燃焼エネルギQfuelが演算される。
 ステップ140では、ステップ120で演算された図示熱効率変化量Δηi、ステップ130でマップから読み取った値及び、数式(10),(11)から演算された値に基づいて、数式(7)のモデル式からエンジン出口排気温度T3が演算される。
 ステップ150では、ステップ140で演算されたエンジン出口排気温度T3と、EGRクーラ出口温度センサ36から入力されるEGRクーラ出口温度T4との差ΔTに基づいて、EGRクーラ22の故障が判定される。温度差ΔTが下限閾値Tminよりも低い場合(YES)、ステップ160でEGRクーラ22は故障と判定される。一方、温度差ΔTが下限閾値Tmin以上の場合(NO)、本制御はステップ100に戻される。その後、ステップ100~160までの各制御ステップは、イグニッションキーのOFF操作まで繰り返し実行される。
 次に、本実施形態に係る排気系の状態検出装置による作用効果を説明する。
 従来は、排気通路に設けた排気温度センサを用いて、エンジンから排出される排気の温度を直接的に測定していた。この排気温度センサには、実際の排気温度に対して応答遅れが生じるため、エンジンの各種制御に遅れを引き起こす課題があった。
 これに対し、本実施形態の排気系の状態検出装置は、上述の数式(9)で示されるモデル式からエンジン10の図示熱効率変化量Δηiをリアルタイムで演算すると共に、この図示熱効率変化量Δηi及び、上述の数式(7)で示されるモデル式からエンジン出口排気温度T3をリアルタイムで演算する。すなわち、応答遅れの生じる排気温度センサを用いることなく、予め規定したモデル式を用いることで、エンジン出口排気温度T3を迅速且つ高精度に演算するように構成されている。
 したがって、本実施形態の排気系の状態検出装置によれば、モデル式を用いた簡素な構成で、エンジン出口排気温度T3を効果的に検出(演算)することが可能になる。
 また、従来は、EGRクーラの診断を行うために、EGRクーラの上流側及び下流側に排気温度センサをそれぞれ設けていた。そのため、診断に排気温度センサの応答遅れの影響を与えると共に、センサ数の増加により装置全体のコスト上昇を招く課題があった。
 これに対し、本実施形態の排気系の状態検出装置は、上述の数式(7)で示されるモデル式からリアルタイムで演算されるエンジン出口排気温度T3と、EGRクーラ出口温度センサ36から入力されるEGRクーラ出口温度T4との温度差ΔTに基づいて、EGRクーラ22の故障を判定するように構成されている。
 したがって、本実施形態の排気系の状態検出装置によれば、センサの応答遅れの影響を受けることなく、EGRクーラ22の診断を迅速且つ正確に行うことが可能になる。また、上流側の排気温度センサを省略することが可能となり、センサ数の増加によるコスト上昇を効果的に抑制することもできる。
 なお、本発明は、上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。
 例えば、上述の実施形態では、排気温度演算部43で演算されるエンジン出口排気温度T3をEGRクーラ22の診断に用いるものとして説明したが、EGRガス量の制御や図示しない排気後処理装置の制御に用いるように構成してもよい。また、エンジン10はディーゼルエンジンに限定されず、ガソリンエンジン等の他のエンジンにも広く適用することが可能である。これら何れの場合も、上述の実施形態と同様の作用効果を奏することができる。
 10 エンジン
 20 EGR装置
 22 EGRクーラ(環流排気冷却手段)
 30 エンジン回転センサ(運転状態検出手段)
 31 アクセル開度センサ(運転状態検出手段)
 34 吸気酸素濃度センサ(酸素濃度検出手段)
 35 ブースト圧センサ
 36 EGRクーラ出口温度センサ(排気温度検出手段)
 40 ECU
 42 図示熱効率演算部(図示熱効率変化量演算手段)
 43 排気温度演算部(排気温度演算手段)
 44 EGRクーラ診断部(診断手段)

Claims (4)

  1.  エンジンの吸気酸素濃度を検出する酸素濃度検出手段と、
     前記エンジンの運転状態を検出する運転状態検出手段と、
     検出される前記吸気酸素濃度、検出される前記運転状態に応じて設定される燃料の噴射開始時期及び、予め記憶した少なくとも吸気酸素濃度と噴射開始時期と図示熱効率変化量との関係を規定する第1モデル式に基づいて、前記エンジンの図示熱効率変化量を演算する図示熱効率変化量演算手段と、
     演算される前記図示熱効率変化量及び、予め記憶した少なくとも排気温度と図示熱効率変化量との関係を規定した第2モデル式に基づいて、前記エンジンの排気温度を演算する排気温度演算手段と、を備える排気系の状態検出装置。
  2.  前記エンジンの吸気系と排気系とを接続する環流排気流路に設けられて環流排気を冷却する環流排気冷却手段と、
     前記環流排気冷却手段よりも排気下流側の環流排気流路に設けられた排気温度検出手段と、
     前記排気温度演算手段で演算される排気温度と、前記排気温度検出手段で検出される排気温度とに基づいて、前記環流排気冷却手段の冷却効率を診断する診断手段と、をさらに備える
     請求項1に記載の排気系の状態検出装置。
  3.  前記第1モデル式は、前記運転状態に応じて設定される基準吸気酸素濃度と、前記運転状態に応じて設定される吸気酸素濃度補正係数と、前記運転状態に応じて設定される基準噴射開始時期と、前記運転状態に応じて設定される噴射開始時期補正係数と、を含む
     請求項1又は2に記載の排気系の状態検出装置。
  4.  前記第2モデル式は、前記運転状態に応じて設定される基準排気エネルギと、前記運転状態に応じて設定される基準吸気エネルギと、少なくとも吸入空気量及び吸気温度から演算される吸気エネルギと、前記運転状態に応じて設定される燃料噴射量から演算される燃焼エネルギとを含む
     請求項1から3の何れか一項に記載の排気系の状態検出装置。
PCT/JP2014/070198 2013-07-31 2014-07-31 排気系の状態検出装置 WO2015016305A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480042373.3A CN105408608B (zh) 2013-07-31 2014-07-31 排气***的状态检测装置
US14/908,291 US20160169168A1 (en) 2013-07-31 2014-07-31 Exhaust system state detection device
EP14832681.2A EP3029304A4 (en) 2013-07-31 2014-07-31 Exhaust system state detection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-159191 2013-07-31
JP2013159191A JP6125942B2 (ja) 2013-07-31 2013-07-31 排気系の状態検出装置

Publications (1)

Publication Number Publication Date
WO2015016305A1 true WO2015016305A1 (ja) 2015-02-05

Family

ID=52431832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070198 WO2015016305A1 (ja) 2013-07-31 2014-07-31 排気系の状態検出装置

Country Status (5)

Country Link
US (1) US20160169168A1 (ja)
EP (1) EP3029304A4 (ja)
JP (1) JP6125942B2 (ja)
CN (1) CN105408608B (ja)
WO (1) WO2015016305A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014185546A (ja) * 2013-03-22 2014-10-02 Toyota Motor Corp 車両の制御装置および制御方法
JP6146192B2 (ja) * 2013-07-31 2017-06-14 いすゞ自動車株式会社 診断装置
JP6381728B1 (ja) 2017-04-19 2018-08-29 三菱電機株式会社 内燃機関の制御装置
JP6534425B2 (ja) 2017-06-27 2019-06-26 三菱電機株式会社 内燃機関の制御装置及び制御方法
IT201800009912A1 (it) 2018-10-30 2019-01-30 Universita' Degli Studi Di Modena E Reggio Emilia Apparato di misure calorimetriche e procedimento di rilevazione della composizione di un gas, del contenuto di catrami di un gas e dell’efficienza di gassificazione di un impianto di trasformazione in gas.
JP7435284B2 (ja) * 2020-06-15 2024-02-21 トヨタ自動車株式会社 エンジン装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03503196A (ja) * 1988-02-10 1991-07-18 ザ ブロークン ヒル プロプライエタリィ カンパニー リミテッド 燃料の酸素富化
JPH11241820A (ja) * 1998-02-25 1999-09-07 Gastar Corp ガス燃焼装置
JP2003065169A (ja) * 2001-08-24 2003-03-05 Toyota Motor Corp ディーゼルエンジンの燃焼制御
JP2003286820A (ja) * 2002-03-27 2003-10-10 Nissan Diesel Motor Co Ltd エンジンの排気浄化装置
JP2006266182A (ja) * 2005-03-24 2006-10-05 Shin Ace:Kk ディーゼルエンジンの作動方法
JP2009114871A (ja) 2007-11-02 2009-05-28 Nissan Motor Co Ltd 内燃機関の排気還流制御装置
JP2011007131A (ja) * 2009-06-26 2011-01-13 Denso Corp 排気還流制御装置
JP2013087673A (ja) * 2011-10-17 2013-05-13 Mitsubishi Motors Corp エンジンの制御装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6848434B2 (en) * 2003-03-17 2005-02-01 Cummins, Inc. System for diagnosing operation of an EGR cooler
CN1869423A (zh) * 2005-05-25 2006-11-29 海尔集团公司 发动机驱动式空调装置及控制方法
FR2908825B1 (fr) * 2006-11-17 2009-01-30 Renault Sas Estimation d'une temperature de gaz d'echappement en sortie d'un circuit egr d'un moteur a combustion
US7810476B2 (en) * 2007-03-06 2010-10-12 Gm Global Technology Operations, Inc. Method and apparatus for estimating exhaust temperature of an internal combustion engine
DE102008001418A1 (de) * 2008-04-28 2009-10-29 Robert Bosch Gmbh Verfahren und Vorrichtung zur Adaption des Wirkungsgrads eines Kühlers im Rückführungskreis von Abgas in einem Verbrennungsmotor
WO2011048632A1 (ja) * 2009-10-22 2011-04-28 トヨタ自動車株式会社 排気温度測定装置および排気温度測定方法
JP5133332B2 (ja) * 2009-12-15 2013-01-30 日立オートモティブシステムズ株式会社 内燃機関の制御装置
JP2011163251A (ja) * 2010-02-12 2011-08-25 Mitsubishi Heavy Ind Ltd ディーゼルエンジンの燃料噴射制御装置および方法
DE102010035026A1 (de) * 2010-08-20 2012-02-23 Fev Motorentechnik Gmbh Verfahren zur Korrektur einer mittels einer Kraftstoffeinspritzvorrichtung eingespritzten Kraftstoffmenge in einer Verbrennungskraftmaschine
JP5481737B2 (ja) * 2010-09-30 2014-04-23 サンデン株式会社 内燃機関の廃熱利用装置
KR101251526B1 (ko) * 2011-06-13 2013-04-05 기아자동차주식회사 저압 이지알 시스템 및 저압 이지알 쿨러 효율 진단방법
JP5897403B2 (ja) * 2012-05-25 2016-03-30 日野自動車株式会社 異常検出方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03503196A (ja) * 1988-02-10 1991-07-18 ザ ブロークン ヒル プロプライエタリィ カンパニー リミテッド 燃料の酸素富化
JPH11241820A (ja) * 1998-02-25 1999-09-07 Gastar Corp ガス燃焼装置
JP2003065169A (ja) * 2001-08-24 2003-03-05 Toyota Motor Corp ディーゼルエンジンの燃焼制御
JP2003286820A (ja) * 2002-03-27 2003-10-10 Nissan Diesel Motor Co Ltd エンジンの排気浄化装置
JP2006266182A (ja) * 2005-03-24 2006-10-05 Shin Ace:Kk ディーゼルエンジンの作動方法
JP2009114871A (ja) 2007-11-02 2009-05-28 Nissan Motor Co Ltd 内燃機関の排気還流制御装置
JP2011007131A (ja) * 2009-06-26 2011-01-13 Denso Corp 排気還流制御装置
JP2013087673A (ja) * 2011-10-17 2013-05-13 Mitsubishi Motors Corp エンジンの制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3029304A4

Also Published As

Publication number Publication date
EP3029304A4 (en) 2017-04-12
JP6125942B2 (ja) 2017-05-10
EP3029304A1 (en) 2016-06-08
CN105408608B (zh) 2019-03-19
US20160169168A1 (en) 2016-06-16
CN105408608A (zh) 2016-03-16
JP2015031170A (ja) 2015-02-16

Similar Documents

Publication Publication Date Title
JP6144568B2 (ja) センサ出力値推定装置
JP6146192B2 (ja) 診断装置
US9976503B2 (en) Method for estimating charge air cooler condensation storage and/or release with an intake oxygen sensor
JP4049158B2 (ja) 内燃機関の燃料噴射制御装置
US9650946B2 (en) Method for estimating charge air cooler condensation storage and/or release with two intake oxygen sensors
WO2015016305A1 (ja) 排気系の状態検出装置
JP4715799B2 (ja) 内燃機関の排気還流装置
JP6435361B2 (ja) 内燃機関の制御装置
JP6281324B2 (ja) 内燃機関の制御装置
JP2009287410A (ja) 内燃機関のNOx生成量推定装置
WO2013018895A1 (ja) 空気流量センサ校正装置
JPWO2018142510A1 (ja) 内燃機関の吸気制御方法及び吸気制御装置
CN112020599A (zh) 避免柴油发动机气缸停用期间压缩机喘振的***和方法
JP6542592B2 (ja) ターボ過給機付きエンジンの制御装置
JP2011179425A (ja) 内燃機関の排気還流装置
JP5930288B2 (ja) 内燃機関
WO2013073450A1 (ja) NOxセンサの異常診断方法、NOxセンサの異常診断システム、及び内燃機関
WO2016159019A1 (ja) 排気ガス推定装置
JP2008019730A (ja) 内燃機関の排気還流装置
JP2017002821A (ja) 内燃機関の制御装置
JP4910844B2 (ja) 内燃機関の排気浄化装置
JP2015137642A (ja) 内燃機関のNOx量推定方法
JP5874342B2 (ja) NOxセンサの異常診断方法、NOxセンサの異常診断システム、及び内燃機関のNOx排出濃度推定方法
JP5915111B2 (ja) NOxセンサの異常診断方法、NOxセンサの異常診断システム、及び内燃機関のNOx排出濃度推定方法
JP2015055236A (ja) Egrガス温度推定装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480042373.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14832681

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14908291

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014832681

Country of ref document: EP