WO2015015721A1 - 半導体装置、および電力変換装置 - Google Patents

半導体装置、および電力変換装置 Download PDF

Info

Publication number
WO2015015721A1
WO2015015721A1 PCT/JP2014/003678 JP2014003678W WO2015015721A1 WO 2015015721 A1 WO2015015721 A1 WO 2015015721A1 JP 2014003678 W JP2014003678 W JP 2014003678W WO 2015015721 A1 WO2015015721 A1 WO 2015015721A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching elements
voltage
switching
semiconductor device
diodes
Prior art date
Application number
PCT/JP2014/003678
Other languages
English (en)
French (fr)
Inventor
後藤 周作
祐輔 岩松
寺澤 章
井平 靖久
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to AU2014297873A priority Critical patent/AU2014297873A1/en
Priority to NZ717553A priority patent/NZ717553A/en
Priority to EP14831328.1A priority patent/EP3029821B1/en
Publication of WO2015015721A1 publication Critical patent/WO2015015721A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration

Definitions

  • the present invention generally relates to a semiconductor device and a power conversion device, and more particularly to a semiconductor device including an inverter circuit and a clamp circuit, and a power conversion device including the semiconductor device.
  • This inverter circuit is used for a power converter such as a general-purpose power converter that drives a motor or the like, a power converter that constitutes a UPS (uninterruptible power supply), or a power conditioner that links a distributed power supply to the system.
  • a power converter such as a general-purpose power converter that drives a motor or the like, a power converter that constitutes a UPS (uninterruptible power supply), or a power conditioner that links a distributed power supply to the system.
  • UPS uninterruptible power supply
  • an inverter circuit is configured by bridge-connecting a plurality of switching elements.
  • a semiconductor device in which six switching elements connected in a bridge are housed in one package to form a three-phase inverter circuit (for example, Japanese Patent No. 3212791, hereinafter referred to as “Document 1”).
  • FIG. 15 shows a circuit configuration in which a clamp circuit 102 is provided in the subsequent stage of the inverter circuit 101.
  • the inverter circuit 101 includes switching elements Q101 to Q104 and diodes D101 to D104. Switching elements Q101 to Q104 are connected by a full bridge. Diodes D101 to D104 are connected in reverse parallel to switching elements Q101 to Q104 in a one-to-one relationship.
  • the clamp circuit 102 includes switching elements Q105 and Q106 and diodes D105 and D106. Switching elements Q105 and Q106 are connected in series between the output terminals of inverter circuit 101. Diodes D105 and D106 are connected in reverse parallel to switching elements Q105 and Q106 on a one-to-one basis.
  • the clamp circuit 102 is configured by the following two methods.
  • discrete elements are used as the elements constituting the clamp circuit 102.
  • the discrete element is mounted on the substrate, there is a problem that the shape of the conductor forming the wiring on the substrate becomes complicated.
  • each element constituting the clamp circuit 102 for example, a semiconductor device modularized as in Document 1 is used.
  • the problem by the first method can be solved.
  • the conventional modularized semiconductor device does not have a circuit configuration dedicated to the clamp circuit, but constitutes a general-purpose inverter circuit, for example. Therefore, when the clamp circuit is configured using a conventional modularized semiconductor device, unnecessary elements remain in the semiconductor device, which is disadvantageous in terms of cost.
  • a current path (an electric wire, a conductor on the board, etc.) connecting the inverter circuit 101 and the clamp circuit 102 may be relatively long. . Therefore, the impedance of the current path between the inverter circuit 101 and the clamp circuit 102 increases, and the loss due to the resistance component increases. Also, voltage fluctuations and noise due to the inductance component of the current path are likely to occur.
  • the present invention has been made in view of the above-mentioned reasons, and an object of the present invention is to shorten a current path between the inverter circuit and the clamp circuit so as to suppress loss, voltage fluctuation, and noise generated in the current path, and to reduce the cost.
  • An object of the present invention is to provide an excellent semiconductor device.
  • the semiconductor device includes a plurality of first switching elements connected in a full bridge, and converts the DC voltage into an AC voltage and outputs it when the first switching element is turned on / off.
  • An inverter circuit, a conductive path made of a conductor connected to the output of the inverter circuit, and a second switching element are connected to the conductive path, and the second switching element is turned on to turn the And a clamp circuit for conducting between the conductive paths, wherein the inverter circuit, the conductive path, and the clamp circuit are housed in one package.
  • a power conversion device of the present invention includes the semiconductor device of the present invention and a drive circuit that drives the first switching element and the second switching element of the semiconductor device.
  • FIG. 1 is a circuit diagram illustrating a configuration of a semiconductor device according to an embodiment. It is a circuit diagram which shows the structure of the power converter device of embodiment. It is explanatory drawing which shows operation
  • FIG. 1 shows an example of a circuit configuration of a semiconductor device 10 of the present embodiment.
  • the semiconductor device 10 includes an inverter circuit 1, a clamp circuit 2, and conductive paths 3a and 3b.
  • the clamp circuit 2 is provided in the subsequent stage of the inverter circuit 1 through the conductive paths 3a and 3b.
  • the semiconductor device 10 includes DC terminals T1 and T2, AC terminals T3 and T4, and drive terminals T11 to T16.
  • the semiconductor device 10 mounts each element (switching element, diode, etc.) which comprises the inverter circuit 1 and the clamp circuit 2 on a board
  • the electrical wiring (including the conductive paths 3a and 3b) connected to each element is constituted by a conductor formed on the substrate.
  • the inverter circuit 1 includes four sets of switching elements Q1 to Q4 (first switching elements) and four sets of diodes D1 to D4 (first diodes).
  • Switching elements Q1 to Q4 are composed of IGBT (Insulated Gate Bipolar Transistor).
  • the series circuit of the switching elements Q1, Q2 and the series circuit of the switching elements Q3, Q4 are connected between the DC terminals T1-T2.
  • the collector of switching element Q1 is connected to DC terminal T1, the emitter of switching element Q1 and the collector of switching element Q2 are connected, and the emitter of switching element Q2 is connected to DC terminal T2.
  • the collector of switching element Q3 is connected to DC terminal T1, the emitter of switching element Q3 and the collector of switching element Q4 are connected, and the emitter of switching element Q4 is connected to DC terminal T2. That is, the switching elements Q1 to Q4 are connected by a full bridge between the DC terminals T1 and T2.
  • the connection point between the switching elements Q1 and Q2 and the connection point between the switching elements Q3 and Q4 are the output of the inverter circuit 1.
  • the diodes D1 to D4 are connected in reverse parallel to the switching elements Q1 to Q4 on a one-to-one basis.
  • One end of the conductive path 3a is connected to the connection point of the switching elements Q1 and Q2, and the other end of the conductive path 3a is connected to the AC terminal T3.
  • One end of the conductive path 3b is connected to the connection point of the switching elements Q3 and Q4, and the other end of the conductive path 3b is connected to the AC terminal T4.
  • the clamp circuit 2 includes switching elements Q5 and Q6 (second switching elements) and diodes D5 and D6 (second diodes).
  • Switching elements Q5 and Q6 are formed of IGBTs.
  • the series circuit of the switching elements Q5 and Q6 is connected between the conductive paths 3a-3b.
  • the emitter of switching element Q5 is connected to conductive path 3a, the collector of switching element Q5 and the collector of switching element Q6 are connected, and the emitter of switching element Q6 is connected to conductive path 3b.
  • the diodes D5 and D6 are connected in reverse parallel to the switching elements Q5 and Q6 on a one-to-one basis.
  • the gates of the switching elements Q1 to Q6 are connected to the drive terminals T11 to T16 on a one-to-one basis.
  • the switching elements Q1 to Q6 are turned on / off by each drive signal input from the drive terminals T11 to T16.
  • FIG. 2 shows a configuration of a power conversion device using the semiconductor device 10.
  • the DC terminals T1 and T2 of the semiconductor device 10 are connected to a DC power source 11 that outputs a DC voltage V1 (for example, DC 320V). Furthermore, the AC terminal T3 of the semiconductor device 10 is connected to one end of the reactor 12a, and the AC terminal T4 is connected to one end of the reactor 12b. A capacitor 13 is connected between the other ends of the reactors 12 a and 12 b, and a voltage across the capacitor 13 (output voltage Vo) is applied to the load 14.
  • V1 for example, DC 320V
  • the drive circuit 15 has a function of driving the switching elements Q1 to Q6.
  • the drive circuit 15 includes a control unit 15a and six drivers 15b.
  • the six drivers 15b are connected to the switching elements Q1 to Q6 on a one-to-one basis.
  • the control unit 15a controls each of the control signals corresponding to the switching elements Q1 to Q6 on the basis of the detected values of the output voltage Vo applied to the load 14 and the output current Io supplied to the load 14.
  • the signal is output to the driver 15b connected to the switching element corresponding to the signal.
  • the control signal is a signal for controlling on / off of the switching element.
  • Each of the six drivers 15b generates a drive signal for turning on / off the switching element connected to the driver 15b according to the control signal input from the control unit 15a.
  • Each of the six drivers 15b is connected to the driver 15b via a drive terminal connected to the switching element connected to the driver 15b among the plurality of drive terminals T11 to T16.
  • a drive signal is output to the gate of the switching element.
  • FIG. 3 shows the operation of each part in one cycle of the output voltage Vo (50 Hz / 60 Hz) of the power converter.
  • Vo the output voltage Vo
  • the load 14 is connected to the commercial power system, the output voltage Vo is output with the phase and amplitude synchronized with the system voltage.
  • a PWM (Pulse Width Modulation) operation in which the switching elements Q1, Q4 are repeatedly turned on and off is performed, the switching element Q5 is kept on, and the switching elements Q2, Q3, Q6 are kept off.
  • the output voltage Vo is controlled to a positive half-cycle waveform.
  • the PWM operation in which the switching elements Q2 and Q3 are repeatedly turned on and off is performed, the switching element Q6 is maintained in the on state, and the switching elements Q1, Q4 and Q5 are maintained in the off state, whereby the output voltage Vo is negative. Controlled to a half-cycle waveform.
  • the AC voltage (alternating voltage) V2 between the AC terminals T3 and T4 can take three values “V1”, “0”, and “ ⁇ V1” by the operation of the inverter circuit 1.
  • the value that the AC voltage V2 can take in a general bipolar drive inverter is binary.
  • the amplitude value (absolute value) of the AC voltage V2 can be reduced with the same output as compared with the case where the AC voltage V2 takes two values. Therefore, the switching loss of switching elements Q1 to Q4 and the iron loss of reactors 12a and 12b are reduced, so that the power efficiency of the circuit can be increased.
  • FIG. 4 shows an enlarged waveform of the range X (part of the positive half cycle) in FIG.
  • the switching elements Q1, Q4 are on, the switching elements Q2, Q3 are off, the switching element Q5 is on, and the switching element Q6 is off.
  • the current Ion on the negative electrode path of the DC power supply 11 (see FIG. 5) ⁇ positive electrode of the DC power supply 11 ⁇ switching element Q1 ⁇ conductive path 3a ⁇ reactor 12a ⁇ capacitor 13 ⁇ reactor 12b ⁇ conductive path 3b ⁇ switching element Q4 ⁇ ) Flows. Since the current Ion flows from the collector to the emitter in the switching elements Q1 and Q4, conduction loss occurs in the switching elements Q1 and Q4. On the other hand, no current flows through the diodes D1 to D4. In the period Ta, the amplitude of the alternating voltage V2 is “V1”.
  • the switching elements Q1 and Q4 are turned off.
  • the collector-emitter voltage of switching elements Q1 and Q4 changes from “substantially 0” to “V1 / 2”, and the current flowing through switching elements Q1 and Q4 is “Ion”. ⁇ Changes to “0”. Therefore, switching loss occurs in switching elements Q1 and Q4 when they are turned off. Further, since the energy accumulated in the reactors 12a and 12b is released, the return current Ir (see FIG. 6) starts to flow through the diode D6 and the switching element Q5.
  • the switching elements Q1 and Q4 are turned on.
  • the collector-emitter voltage of switching elements Q1 and Q4 changes from “V1 / 2” to “approximately 0”, and the current flowing through switching elements Q1 and Q4 is “0”. ⁇ Changes to “Ion”. Therefore, the switching elements Q1 and Q4 generate a switching loss when turned on. Since the diode D6 changes from a forward bias to a reverse bias, a reverse recovery loss (recovery loss) occurs.
  • the switching elements Q1 and Q4 maintain the ON state, and the operation is the same as that in the period Ta.
  • the current flowing through the conductive paths 3a and 3b becomes “0” when the return current Ir is generated, and becomes the current Ion when the return current Ir is not generated, so that a discontinuous current waveform is obtained. That is, the current of PWM frequency (switching frequency) of switching elements Q1, Q4 and switching elements Q2, Q3 flows through conductive paths 3a, 3b.
  • the emitter potential (reference potential of the drive voltage) of the switching element Q1 and the emitter potential (reference potential of the drive voltage) of the switching element Q5 are connected via the conductive path 3a. That is, the emitter of the switching element Q1 and the emitter potential of the switching element Q5 are connected via the conductive path 3a. Furthermore, the emitter potential of the switching element Q3 (reference potential of the drive voltage) and the emitter potential of the switching element Q6 (reference potential of the drive voltage) are connected via the conductive path 3b. That is, the emitter of the switching element Q3 and the emitter potential of the switching element Q6 are connected via the conductive path 3a.
  • the drive power supply for the switching elements Q1 and Q5 can be shared, the drive power supply for the switching elements Q3 and Q6 can be shared, and the drive power supply for the switching elements can be easily configured.
  • the driving voltage becomes “the emitter potential of the IGBT” when the switching elements Q1 to Q6 are turned off.
  • the driving voltage is about “IGBT emitter potential + 10V”.
  • the maximum drive voltage that can be applied between the gate and the emitter of the switching elements Q1 to Q6 is determined in advance.
  • the driving power source of the switching element is shared, a difference in the emitter potential of each switching element occurs due to a voltage drop due to the impedance of the conductive path, and the driving voltage applied to the gate of the switching element exceeds the maximum driving voltage.
  • the path length of the conductive path 3a is long and the impedance of the conductive path 3a is large.
  • the emitter potential of the switching element Q5 decreases due to the voltage drop due to the impedance of the conductive path 3a, and the driving voltage of the switching element Q5 exceeds the maximum driving voltage.
  • the path length of the conductive path 3b is long and the impedance of the conductive path 3b is large.
  • the drive power sources of the switching elements Q3 and Q6 are shared, the emitter potential of the switching element Q6 is lowered due to the voltage drop due to the impedance of the conductive path 3b, and the drive voltage of the switching element Q6 exceeds the maximum drive voltage. there is a possibility.
  • the inverter circuit 1, the conductive paths 3a and 3b, and the clamp circuit 2 can be housed in one package 10a, and the path length of the conductive paths 3a and 3b can be shortened. The voltage drop can be suppressed. Therefore, common use of the drive power supply for switching elements Q1 and Q5 and common use of the drive power supply for switching elements Q3 and Q6 can be realized.
  • the conductive path 3a has a loss (for example, a voltage due to the current Ion) generated in the conductive path 3a at the PWM frequency of the switching element so that each drive voltage of the switching elements Q1 and Q5 is equal to or less than a predetermined maximum drive voltage. It is set to a path length that can suppress (descent).
  • the conductive path 3b has a loss (for example, a voltage due to the current Ion) generated in the conductive path 3b at the PWM frequency of the switching element so that each drive voltage of the switching elements Q3 and Q6 is equal to or less than a predetermined maximum drive voltage. It is set to a path length that can suppress (descent).
  • FIG. 7 shows a configuration example of the driving power source for the switching elements Q1 to Q6.
  • the drivers 15b of the switching elements Q1 and Q5 generate drive signals from the voltage Vs1 of the drive power supply E1, and share the drive power supplies of the switching elements Q1 and Q5.
  • the drivers 15b of the switching elements Q3 and Q6 generate a drive signal from the voltage Vs2 of the drive power supply E2, and share the drive power supply of the switching elements Q3 and Q6.
  • each driver 15b of the switching elements Q2 and Q4 generates a drive signal from the voltage Vs3 of the drive power supply E3, and shares the drive power supply of the switching elements Q2 and Q4.
  • FIG. 8A shows types of loss generated in the switching elements of the inverter circuit 1 and the clamp circuit 2.
  • FIG. 8B shows the types of losses that occur in the diodes of the inverter circuit 1 and the clamp circuit 2.
  • the switching elements Q1 to Q4 of the inverter circuit 1 since the switching elements Q1 to Q4 of the inverter circuit 1 generate both a conduction loss and a switching loss, characteristics of both a low collector-emitter voltage and a high switching speed are required. Since almost no current flows through the diodes D1 to D4 of the inverter circuit 1, almost no conduction loss or reverse recovery loss occurs.
  • the switching elements Q5 and Q6 of the clamp circuit 2 cause conduction loss, but almost no switching loss occurs. Therefore, lowering the collector-emitter voltage is given priority over speeding up switching. Since the return current Ir flows through the diodes D5 and D6 of the clamp circuit 2 and a conduction loss and a reverse recovery loss occur, both characteristics of lowering the forward voltage and shortening the reverse recovery time are required.
  • switching elements Q1 to Q4 are preferably elements capable of high-speed switching as compared with switching elements Q5 and Q6.
  • Switching elements Q5 and Q6 are preferably elements having a low collector-emitter voltage. In this case, the circuit loss of the semiconductor device 10 can be reduced and the power efficiency of the circuit can be improved. Moreover, since inexpensive elements can be used for the switching elements Q5 and Q6, the cost can be reduced.
  • the diodes D5 and D6 have a smaller loss during reverse recovery than the diodes D1 to D4.
  • the reverse recovery loss in the diodes D5 and D6 can be reduced, and the power efficiency of the circuit can be improved.
  • the reverse recovery (recovery) of the diode is a phenomenon in which a reverse current flows from the cathode toward the anode in order to charge the capacitance of the junction when the diode changes from the forward bias state to the reverse bias state.
  • the diodes D5 and D6 preferably have a lower forward voltage than the diodes D1 to D4. In this case, the diodes D5 and D6 have a small conduction loss and can improve the power efficiency of the circuit. In addition, since inexpensive elements can be used for the diodes D1 to D4, the cost can be reduced.
  • FIG. 9 shows another configuration of the clamp circuit 2.
  • the clamp circuit 2 shown in FIG. 9 includes a series circuit of a diode D11 (second diode) having a cathode connected to the conductive path 3a and a diode D12 (second diode) having a cathode connected to the conductive path 3b. Further, the clamp circuit 2 includes a series circuit of a diode D13 (second diode) having an anode connected to the conductive path 3a and a diode D14 (second diode) having an anode connected to the conductive path 3b.
  • the clamp circuit 2 includes a switching element Q11 (first switching element) made of an IGBT connected between a connection point of the diodes D11 and D12 and a connection point of the diodes D13 and D14.
  • the switching element Q11 When the switching element Q11 is turned on, the return current Ir flows through the clamp circuit 2. In this case, since the return current Ir passes through two diodes (diodes D11 and D14 or diodes D12 and D13), it is more effective to use elements having low forward voltages for the diodes D11 to D14.
  • the switching elements Q1 to Q4 are preferably formed of a wide gap semiconductor.
  • wide gap semiconductors for the switching elements Q1 to Q4
  • the conduction loss can be reduced by 20 to 50% and the switching loss can be reduced by 60 to 75% compared to the case of using a silicon material.
  • silicon carbide (SiC), gallium nitride (GaN), or the like is used for the wide gap semiconductor.
  • MOSFETs Metal-Oxide-Semiconductor Field-Effect Transistors
  • MOSFETs Metal-Oxide-Semiconductor Field-Effect Transistors
  • the switching frequency can be easily increased, and the reactors 12a and 12b can be downsized.
  • the diodes D1 to D4 can be MOSFET parasitic diodes, the number of elements can be reduced.
  • the clamp circuit 2 may be configured by connecting switching elements Q21 and Q22 (second switching elements) made of thyristors or GTOs (Gate-Turn-Off thyristors) in parallel in opposite directions. .
  • switching elements Q21 and Q22 second switching elements
  • GTOs Gate-Turn-Off thyristors
  • the loss can be reduced by the forward voltage of the diodes D5 and D6 as compared with the clamp circuit 2 (see FIG. 1) using the IGBT.
  • the switching element used in the clamp circuit 2 is not required to have a high switching speed, an element having a relatively low switching speed such as a thyristor or GTO can be used.
  • a thyristor or GTO for the clamp circuit 2, it is possible to reduce the cost and increase the capacity.
  • the switching elements Q5 and Q6 of the clamp circuit 2 may be constituted by MOSFETs.
  • the on-resistance is generally small, so that conduction loss can be suppressed.
  • the efficiency can be improved in a region where the current capacity is small.
  • the parasitic diode of the MOSFET switching elements Q5, Q6
  • the reverse recovery loss may be relatively large. Therefore, a single diode element is added and used as the diodes D5, D6. In some cases.
  • the clamp circuit 2 may be configured by using switching elements Q31 and Q32 (second switching elements) made of reverse blocking IGBTs.
  • the clamp circuit 2 of FIG. 13 is provided between the conductive paths 3a-3b with the collector of the switching element Q31 connected to the emitter of the switching element Q32 and the collector of the switching element Q32 connected to the emitter of the switching element Q31.
  • the diodes D5 and D6 that bear the reverse withstand voltage are not required, so that the size and cost can be reduced by reducing the number of elements.
  • the voltage between both ends of the clamp circuit 2 is the sum (about 3 V) of the ON voltage of the switching element and the forward voltage of the diode.
  • the voltage between both ends of the clamp circuit 2 becomes only the ON voltage (about 1.5 V) of the switching element, and the conduction loss can be reduced.
  • a wide gap semiconductor may be used for the switching elements Q5 and Q6 of the clamp circuit 2.
  • the reverse recovery loss can be reduced by 80% or more compared to the case of using a silicon material, so that loss reduction and high efficiency can be achieved.
  • the switching elements Q5 and Q6 of the clamp circuit 2 may be connected as shown in FIG.
  • the collector of switching element Q5 is connected to conductive path 3a
  • the emitter of switching element Q5 and the emitter of switching element Q6 are connected
  • the collector of switching element Q6 is connected to conductive path 3b.
  • the diodes D5 and D6 are connected in reverse parallel to the switching elements Q5 and Q6 on a one-to-one basis.
  • the semiconductor device 10 can achieve circuit miniaturization and cost reduction.
  • the semiconductor device 10 includes the inverter circuit 1, the conductive paths 3a and 3b, and the clamp circuit 2 in one package 10a so that the path lengths of the conductive paths 3a and 3b are shortened. Is easy to share.
  • the semiconductor device 10 may have a converter function for converting alternating current input between the alternating current terminals T3 and T4 into direct current and outputting direct current from between the direct current terminals T1 and T2. That is, the first operation (inverter operation) in which the semiconductor device 10 converts the DC voltage V1 into the AC voltage V2 and outputs the second operation, and the second operation in which the semiconductor device 10 converts the AC voltage V2 into the DC voltage V1 and outputs it. (Converter operation) may be switchable.
  • the control method of the switching elements Q1 to Q6 is substantially the same as in the inverter operation shown in FIG. 3, and the power transmission direction is reverse.
  • the direction of power transmission is automatically determined by the magnitude relationship between the DC voltage V1 between the DC terminals T1 and T2 and the AC voltage V2 between the AC terminals T3 and T4.
  • the DC power source 11 is constituted by a storage battery, charge / discharge control of this storage battery becomes possible.
  • the semiconductor device 10 of the present embodiment includes a plurality of switching elements Q1 to Q4 (first switching elements) connected in a full bridge.
  • the semiconductor device 10 includes an inverter circuit 1, conductive paths 3a and 3b, and a clamp circuit.
  • the inverter circuit 1 converts a DC voltage into an AC voltage and outputs it by turning on / off the plurality of switching elements Q1 to Q4.
  • the conductive paths 3 a and 3 b are made of a conductor connected to the output of the inverter circuit 1.
  • the clamp circuit 2 includes a plurality of switching elements Q5 and Q6 (second switching elements) and is connected to the conductive paths 3a and 3b. When the plurality of switching elements Q5 and Q6 are turned on, the clamp circuit 2 is connected between the conductive paths. Is made conductive.
  • the inverter circuit 1, the conductive paths 3a and 3b, and the clamp circuit 2 are housed in one package.
  • the inverter circuit 1, the conductive paths 3 a and 3 b, and the clamp circuit 2 are housed in one package, so that the conductivity formed between the inverter circuit 1 and the clamp circuit 2.
  • the route length of the road can be shortened. Therefore, the impedance of the conductive paths 3a and 3b can be reduced.
  • loss in wiring resistance is suppressed.
  • voltage fluctuations and noise can be suppressed by reducing the inductance components of the conductive paths 3a and 3b.
  • unnecessary elements that are not used remain in the semiconductor device 10, which is advantageous in terms of cost.
  • the current path between the inverter circuit 1 and the clamp circuit 2 can be shortened, loss, voltage fluctuation, and noise occurring in the current path can be suppressed, and the cost can be improved. There is an effect.
  • the conductive paths 3a and 3b are as follows so as to satisfy a predetermined condition. Is preferably set.
  • the conducting lines 3a and 3b are set to have a path length capable of suppressing loss generated in the conducting paths 3a and 3b at the switching frequency of the inverter circuit 1.
  • the predetermined condition is that each drive voltage of switching elements Q1 to Q4 and switching elements Q5 and Q6 is equal to or less than a predetermined maximum drive voltage.
  • the common drive power supply means that the reference potential of the drive voltage of one or more switching elements Q1 to Q4 and the reference potential of the drive voltage of one or more switching elements Q5 and Q6 are connected to the conductive paths 3a and 3b. Is to connect through.
  • the semiconductor device 10 can suppress loss generated in the conductive paths 3a and 3b.
  • the plurality of switching elements Q1 to Q4 are preferably elements capable of high-speed switching rather than the plurality of switching elements Q5 and Q6.
  • an inexpensive element can be used for the switching elements Q5 and Q6, so that the cost can be reduced.
  • the semiconductor device 10 includes a plurality of first diodes D1 to D4 connected in reverse parallel to the plurality of switching elements Q1 to Q4 in a one-to-one relationship and a plurality of switching elements Q5 and Q6 in a one-to-one reverse parallel connection.
  • a plurality of connected second diodes D5 and D6 are provided.
  • the plurality of second diodes D5 and D6 preferably have a smaller loss during reverse recovery than the plurality of first diodes D1 to D4.
  • the reverse recovery loss in the diodes D5 and D6 can be reduced, and the power efficiency of the circuit can be improved.
  • the semiconductor device 10 includes a plurality of first diodes D1 to D4 connected in reverse parallel to the plurality of switching elements Q1 to Q4 in a one-to-one relationship and a plurality of switching elements Q5 and Q6 in a one-to-one reverse parallel connection.
  • a plurality of connected second diodes D5 and D6 are provided.
  • the plurality of second diodes D5 and D6 preferably have a forward voltage lower than that of the plurality of first diodes D1 to D4.
  • the diodes D5 and D6 have a small conduction loss, and the power efficiency of the circuit can be improved.
  • the plurality of switching elements Q1 to Q4 are preferably formed of a wide gap semiconductor.
  • the conduction loss and the switching loss can be reduced as compared with the case where a silicon material is used for the switching elements Q1 to Q4, so that the loss can be reduced and the efficiency can be improved.
  • the semiconductor device 10 includes a plurality of first diodes D1 to D4 connected in reverse parallel to the plurality of switching elements Q1 to Q4 in a one-to-one relationship and a plurality of switching elements Q5 and Q6 in a one-to-one reverse parallel connection.
  • a plurality of connected second diodes D5 and D6 are provided.
  • the plurality of second diodes D5 and D6 are preferably formed of a wide gap semiconductor.
  • This configuration makes it possible to reduce the reverse recovery loss compared to the case of using a silicon material, thereby reducing loss and increasing efficiency.
  • the power conversion device of the present embodiment includes the semiconductor device 10 of the present embodiment, and a drive circuit 15 that drives the plurality of switching elements Q1 to Q4 and the plurality of switching elements Q5 and Q6 of the semiconductor device 10.
  • the inverter circuit 1, the conductive paths 3a and 3b, and the clamp circuit 2 are housed in one package.
  • the route length of the road can be shortened. Therefore, the impedance of the conductive paths 3a and 3b can be reduced.
  • loss in wiring resistance is suppressed.
  • voltage fluctuations and noise can be suppressed by reducing the inductance components of the conductive paths 3a and 3b.
  • the semiconductor device 10 since the semiconductor device 10 has a dedicated circuit configuration for the inverter circuit 1 and the clamp circuit 2, unnecessary elements that are not used remain in the semiconductor device 10, which is advantageous in terms of cost.
  • the current path between the inverter circuit 1 and the clamp circuit 2 can be shortened, loss, voltage fluctuation, and noise occurring in the current path can be suppressed, and the cost can be improved. There is an effect.
  • the clamp circuit 2 includes a plurality of switching elements Q5 and Q6, and the drive circuit 15 drives the plurality of switching elements Q5 and Q6 using a common driving power source.
  • the semiconductor device 10 of the power conversion device can achieve circuit miniaturization and cost reduction.
  • the drive circuit 15 drives the plurality of switching elements Q1 to Q4 and the plurality of switching elements Q5 and Q6 using a common driving power source.
  • the semiconductor device 10 is configured to be switchable between a first operation in which the DC voltage is converted into an AC voltage and output, and a second operation in which the semiconductor device 10 converts the AC voltage into a DC voltage and outputs the second operation. It is preferable.
  • the power converter can smoothly switch between the inverter operation and the converter operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)

Abstract

 半導体装置(10)は、フルブリッジ接続された4つのスイッチング素子(Q1~Q4)がオン・オフすることによって直流電圧を交流電圧に変換して出力するインバータ回路(1)と、インバータ回路(1)の出力に接続した導体からなる2つの導電路(3a,3b)と、2つのスイッチング素子(Q5,Q6)がオンすることによって2つの導電路(3a,3b)間を導通させるクランプ回路(2)とを備え、インバータ回路(1)と2つの導電路(3a,3b)とクランプ回路(2)とは、一つのパッケージ(10a)内に収められている。

Description

半導体装置、および電力変換装置
 本発明は、一般に半導体装置および電力変換装置、より詳細にはインバータ回路、クランプ回路を備える半導体装置、および半導体装置を備える電力変換装置に関する発明である。
 従来、直流を交流に変換するインバータ回路を構成した半導体装置がある。このインバータ回路は、モータ等を駆動する汎用の電力変換装置、UPS(無停電電源装置)を構成する電力変換装置、分散電源を系統に連系させるパワーコンディショナ等の電力変換装置に用いられる。
 インバータ回路は、一般に、複数のスイッチング素子をブリッジ接続して構成される。例えば、ブリッジ接続した6個のスイッチング素子を1つのパッケージ内に収めて3相インバータの回路を構成した半導体装置がある(例えば、日本国特許番号第3212791、以下「文献1」という。)。
 図15は、インバータ回路101の後段にクランプ回路102を設けた回路構成を示す。
 インバータ回路101は、スイッチング素子Q101~Q104、ダイオードD101~D104を備える。スイッチング素子Q101~Q104はフルブリッジ接続される。ダイオードD101~D104は、スイッチング素子Q101~Q104に1対1に逆並列接続される。
 クランプ回路102は、スイッチング素子Q105,Q106、ダイオードD105,D106を備える。スイッチング素子Q105,Q106は、インバータ回路101の出力端間に直列接続される。ダイオードD105,D106は、スイッチング素子Q105,Q106に1対1に逆並列接続される。
 従来、インバータ回路101を構成する各素子を1つのパッケージ内に収めてモジュール化した半導体装置(インバータモジュール)はある。しかしながら、クランプ回路102を素子(スイッチング素子、ダイオード)の過不足なく構成するようにモジュール化された半導体装置は存在しない。そこで従来は、以下の2つの方法でクランプ回路102を構成していた。
 第1の方法は、クランプ回路102を構成する各素子としてディスクリート素子を用いる。この場合、各素子の特性バラツキ・温度バラツキの影響を補正する必要があり、さらには全ての素子の温度管理が難しいという課題がある。また、ディスクリート素子を基板に実装した場合、基板上の配線を形成する導体の形状が複雑になるという課題もある。
 第2の方法は、クランプ回路102を構成する各素子として、例えば文献1のようにモジュール化された半導体装置を用いる。この場合、第1の方法による課題は解決可能である。しかしながら、従来のモジュール化された半導体装置は、クランプ回路に専用の回路構成ではなく、例えば汎用のインバータ回路を構成している。したがって、従来のモジュール化された半導体装置を用いてクランプ回路を構成する場合、半導体装置内に使用しない不要な素子が残るため、コスト面で不利になる。
 また、第1の方法および第2の方法に共通の課題として、インバータ回路101とクランプ回路102との間を接続する電流経路(電線、基板上の導体等)が比較的長くなるということもある。したがって、インバータ回路101-クランプ回路102間の電流経路のインピーダンスが大きくなり、抵抗成分による損失が大きくなる。また、この電流経路のインダクタンス成分による電圧変動やノイズが発生しやすかった。
 本発明は、上記事由に鑑みてなされており、その目的は、インバータ回路-クランプ回路間の電流経路を短くして、この電流経路に発生する損失、電圧変動、ノイズを抑制でき、且つコスト面に優れた半導体装置を提供することにある。
 本発明の半導体装置は、フルブリッジ接続された複数の第1のスイッチング素子を含んで構成されて、前記第1のスイッチング素子がオン・オフすることによって直流電圧を交流電圧に変換して出力するインバータ回路と、前記インバータ回路の出力に接続した導体からなる導電路と、第2のスイッチング素子を含んで構成されて、前記導電路に接続され、前記第2のスイッチング素子がオンすることによって前記導電路間を導通させるクランプ回路とを備え、前記インバータ回路と前記導電路と前記クランプ回路とは、一つのパッケージ内に収められたことを特徴とする。
 本発明の電力変換装置は、本発明の半導体装置と、前記半導体装置の前記第1のスイッチング素子および前記第2のスイッチング素子を駆動する駆動回路とを備えることを特徴とする。
実施形態の半導体装置の構成を示す回路図である。 実施形態の電力変換装置の構成を示す回路図である。 実施形態の電力変換装置の各部の動作を示す説明図である。 実施形態の電力変換装置の各部の動作を示す説明図である。 実施形態の電流Ionの経路を示す回路図である。 実施形態の還流電流Irの経路を示す回路図である。 実施形態のスイッチング素子の駆動電源の構成例を示す回路図である。 図8A,8Bは、実施形態のスイッチング素子およびダイオードに発生する損失の種類を示す表図である。 実施形態のクランプ回路の別の構成を示す回路図である。 実施形態のインバータ回路の別の構成を示す回路図である。 実施形態のクランプ回路の別の構成を示す回路図である。 実施形態のクランプ回路の別の構成を示す回路図である。 実施形態のクランプ回路の別の構成を示す回路図である。 実施形態のクランプ回路の別の構成を示す回路図である。 従来の構成を示す回路図である。
 以下、本発明の実施の形態を図面に基づいて説明する。
  (実施形態)
 図1は、本実施形態の半導体装置10の回路構成の一例を示す。この半導体装置10は、インバータ回路1と、クランプ回路2と、導電路3a,3bとを備えており、インバータ回路1の後段に導電路3a,3bを介してクランプ回路2が設けられる。さらに、半導体装置10は、直流端子T1,T2、交流端子T3,T4、駆動端子T11~T16を備える。
 そして、半導体装置10は、インバータ回路1およびクランプ回路2を構成する各素子(スイッチング素子、ダイオード等)を基板(図示なし)上に実装して、1つのパッケージ10a内に収めている。すなわち、半導体装置10は、インバータ回路1とクランプ回路2とをモジュール化している。各素子に接続する電気的配線(導電路3a,3bを含む)は、基板上に形成した導体によって構成される。
 インバータ回路1は、4組のスイッチング素子Q1~Q4(第1のスイッチング素子)、4組のダイオードD1~D4(第1のダイオード)を備える。
 スイッチング素子Q1~Q4は、IGBT(Insulated Gate Bipolar Transistor)で構成される。スイッチング素子Q1,Q2の直列回路、およびスイッチング素子Q3,Q4の直列回路は、直流端子T1-T2間に接続している。そして、スイッチング素子Q1のコレクタが直流端子T1に接続し、スイッチング素子Q1のエミッタとスイッチング素子Q2のコレクタとが接続し、スイッチング素子Q2のエミッタが直流端子T2に接続している。さらに、スイッチング素子Q3のコレクタが直流端子T1に接続し、スイッチング素子Q3のエミッタとスイッチング素子Q4のコレクタとが接続し、スイッチング素子Q4のエミッタが直流端子T2に接続している。すなわち、スイッチング素子Q1~Q4は、直流端子T1-T2間においてフルブリッジ接続している。そして、スイッチング素子Q1,Q2の接続点、およびスイッチング素子Q3,Q4の接続点が、インバータ回路1の出力となる。
 ダイオードD1~D4は、スイッチング素子Q1~Q4に1対1に逆並列接続している。
 導電路3aの一端は、スイッチング素子Q1,Q2の接続点に接続し、導電路3aの他端は、交流端子T3に接続している。また、導電路3bの一端は、スイッチング素子Q3,Q4の接続点に接続し、導電路3bの他端は、交流端子T4に接続している。
 クランプ回路2は、スイッチング素子Q5,Q6(第2のスイッチング素子)、ダイオードD5,D6(第2のダイオード)を備える。スイッチング素子Q5,Q6は、IGBTで構成される。スイッチング素子Q5,Q6の直列回路は、導電路3a-3b間に接続している。スイッチング素子Q5のエミッタが導電路3aに接続し、スイッチング素子Q5のコレクタとスイッチング素子Q6のコレクタとが接続し、スイッチング素子Q6のエミッタが導電路3bに接続している。ダイオードD5,D6は、スイッチング素子Q5,Q6に1対1に逆並列接続している。
 そして、スイッチング素子Q1~Q6の各ゲートは、駆動端子T11~T16に1対1に接続している。スイッチング素子Q1~Q6は、駆動端子T11~T16から入力される各駆動信号によってオン・オフ駆動される。
 図2は、半導体装置10を用いた電力変換装置の構成を示す。
 半導体装置10の直流端子T1,T2は、直流電圧V1(例えば、DC320V)を出力する直流電源11に接続している。さらに、半導体装置10の交流端子T3は、リアクトル12aの一端が接続し、交流端子T4は、リアクトル12bの一端が接続している。リアクトル12a,12bの各他端間にはコンデンサ13が接続し、コンデンサ13の両端電圧(出力電圧Vo)が負荷14に印加される。
 そして、駆動回路15が、スイッチング素子Q1~Q6を駆動する機能を有しており、駆動回路15は、制御部15aと、6個のドライバ15bとで構成される。6個のドライバ15bは、スイッチング素子Q1~Q6に1対1に接続している。制御部15aは、負荷14に印加される出力電圧Vo、負荷14へ供給される出力電流Ioの検出値に基づいて、スイッチング素子Q1~Q6と1対1に対応する各制御信号を、当該制御信号に対応するスイッチング素子と接続されたドライバ15bへ出力する。ここで、制御信号とは、スイッチング素子をオン・オフ制御する信号である。6個のドライバ15bのそれぞれは、当該ドライバ15bに接続されたスイッチング素子をオン・オフ駆動する駆動信号を、制御部15aから入力された制御信号に応じて生成する。そして、6個のドライバ15bのそれぞれは、複数の駆動端子T11~T16のうち、当該ドライバ15bと接続されたスイッチング素子と1対1に接続された駆動端子を介して、当該ドライバ15bに接続されたスイッチング素子のゲートへ駆動信号を出力する。
 次に、電力変換装置の動作を図3、図4を用いて説明する。
 図3は、電力変換装置の出力電圧Vo(50Hz/60Hz)の1周期分における各部の動作を示す。なお、負荷14が商用電力系統に接続されている場合、出力電圧Voは、位相および振幅を系統電圧に同期させて出力される。
 まず、スイッチング素子Q1,Q4がオン・オフを繰り返すPWM(Pulse Width Modulation)動作を行い、スイッチング素子Q5がオン状態を維持し、スイッチング素子Q2,Q3,Q6がオフ状態を維持する。これにより、出力電圧Voは正の半周期波形に制御される。また、スイッチング素子Q2,Q3がオン・オフを繰り返すPWM動作を行い、スイッチング素子Q6がオン状態を維持し、スイッチング素子Q1,Q4,Q5がオフ状態を維持することによって、出力電圧Voは負の半周期波形に制御される。
 そして、交流端子T3-T4間の交流電圧(交番電圧)V2は、インバータ回路1の動作によって、「V1」,「0」,「-V1」の3値をとり得る。一方、一般的なバイポーラ駆動方式のインバータにおいて交流電圧V2がとり得る値は、2値となる。本実施形態では、交流電圧V2が3値をとり得るので、2値をとる場合に比べて、同一出力であれば交流電圧V2の振幅値(絶対値)を小さくできる。したがって、スイッチング素子Q1~Q4のスイッチング損失、リアクトル12a,12bの鉄損が下がるため、回路の電力効率を高くできる。
 図4は、図3中の範囲X(正の半周期の一部)の拡大波形を示す。
 まず、期間Taにおいて、スイッチング素子Q1,Q4がオン、スイッチング素子Q2,Q3がオフ、スイッチング素子Q5がオン、スイッチング素子Q6がオフしている。この期間Taにおいて、直流電源11の正極 → スイッチング素子Q1 → 導電路3a → リアクトル12a → コンデンサ13 → リアクトル12b → 導電路3b → スイッチング素子Q4 → 直流電源11の負極の経路で電流Ion(図5参照)が流れる。そして、スイッチング素子Q1,Q4ではコレクタからエミッタに向かって電流Ionが流れるので、スイッチング素子Q1,Q4に導通損が発生する。一方、ダイオードD1~D4には電流が流れない。また、期間Taにおいて、交流電圧V2の振幅は「V1」となる。
 次に、期間Tbにおいて、スイッチング素子Q1,Q4がターンオフする。スイッチング素子Q1,Q4がターンオフするとき、スイッチング素子Q1,Q4のコレクタ-エミッタ間電圧は、「略0」 → 「V1/2」に変化し、スイッチング素子Q1,Q4を流れる電流は、「Ion」 → 「0」に変化する。したがって、スイッチング素子Q1,Q4は、ターンオフ時にスイッチング損が発生する。また、リアクトル12a,12bに蓄積されたエネルギーが放出されるため、ダイオードD6およびスイッチング素子Q5には、還流電流Ir(図6参照)が流れ始める。
 次に、期間Tcにおいて、ダイオードD6およびスイッチング素子Q5には、還流電流Irが流れる。したがって、ダイオードD6およびスイッチング素子Q5には、導通損が発生する。
 次に、期間Tdにおいて、スイッチング素子Q1,Q4がターンオンする。スイッチング素子Q1,Q4がターンオンするとき、スイッチング素子Q1,Q4のコレクタ-エミッタ間電圧は、「V1/2」 → 「略0」に変化し、スイッチング素子Q1,Q4を流れる電流は、「0」 → 「Ion」に変化する。したがって、スイッチング素子Q1,Q4は、ターンオン時にスイッチング損が発生する。ダイオードD6は、順方向バイアスから逆方向バイアスに変化するため、逆回復損(リカバリ損)が発生する。
 次に、期間Teにおいて、スイッチング素子Q1,Q4がオン状態を維持しており、期間Taと同様の動作になる。
 また、導電路3a,3bを流れる電流は、還流電流Irの発生時には「0」となり、還流電流Irが発生していない時には電流Ionとなるので、不連続な電流波形となる。すなわち、導電路3a,3bには、スイッチング素子Q1,Q4およびスイッチング素子Q2,Q3のPWM周波数(スイッチング周波数)の電流が流れる。
 なお、抵抗成分R1a,R1bの抵抗値をRp、インバータ回路1の出力電流をIpとした場合、導電路3a,3bにおける損失P1は、P1=Ip・Rpとなる。さらに、インダクタンス成分L1a,L1bのインダクタンス値をLpとすると、導電路3a,3bにおける電圧降下Vaは、Va=Ip・Rp+Lp{∂Ip/∂t}となる。
 また、図2において、スイッチング素子Q1のエミッタ電位(駆動電圧の基準電位)と、スイッチング素子Q5のエミッタ電位(駆動電圧の基準電位)とは、導電路3aを介して接続している。つまり、スイッチング素子Q1のエミッタと、スイッチング素子Q5のエミッタ電位とが、導電路3aを介して接続されている。さらに、スイッチング素子Q3のエミッタ電位(駆動電圧の基準電位)と、スイッチング素子Q6のエミッタ電位(駆動電圧の基準電位)とは、導電路3bを介して接続している。つまり、スイッチング素子Q3のエミッタと、スイッチング素子Q6のエミッタ電位とが、導電路3aを介して接続されている。そして、導電路3a,3bの抵抗成分R1a,R1bおよびインダクタンス成分L1a,L1bの削減により、導電路3a,3bによる電圧降下を抑制することができる。したがって、スイッチング素子Q1,Q5の駆動電源を共通化でき、スイッチング素子Q3,Q6の駆動電源を共通化でき、スイッチング素子の駆動電源を簡易に構成することができる。
 ここで、スイッチング素子Q1~Q6をIGBTで構成した場合、スイッチング素子Q1~Q6のオフ時において、駆動電圧は「IGBTのエミッタ電位」となる。スイッチング素子Q1~Q6のオン時において、駆動電圧は「IGBTのエミッタ電位+10V」程度となる。
 また、スイッチング素子Q1~Q6には、ゲート-エミッタ間に印加可能な最大駆動電圧が予め決められている。しかしながら、スイッチング素子の駆動電源を共通化した場合、導電路のインピーダンスによる電圧降下によって、各スイッチング素子のエミッタ電位に差が生じ、スイッチング素子のゲートに印加される駆動電圧が最大駆動電圧を上回ってしまう可能性がある。例えば、導電路3aの経路長が長くて、導電路3aのインピーダンスが大きいとする。この場合、スイッチング素子Q1,Q5の駆動電源を共通化すると、導電路3aのインピーダンスによる電圧降下によって、スイッチング素子Q5のエミッタ電位が下がって、スイッチング素子Q5の駆動電圧が最大駆動電圧を上回ってしまう可能性がある。また、導電路3bの経路長が長くて、導電路3bのインピーダンスが大きいとする。この場合、スイッチング素子Q3,Q6の駆動電源を共通化すると、導電路3bのインピーダンスによる電圧降下によって、スイッチング素子Q6のエミッタ電位が下がって、スイッチング素子Q6の駆動電圧が最大駆動電圧を上回ってしまう可能性がある。
 しかしながら、本実施形態では、インバータ回路1と導電路3a,3bとクランプ回路2とを一つのパッケージ10a内に収めて、導電路3a,3bの経路長を短くできるので、導電路3a,3bでの電圧降下を抑制可能となる。したがって、スイッチング素子Q1,Q5の駆動電源の共通化、およびスイッチング素子Q3,Q6の駆動電源の共通化を実現できる。
 すなわち、導電路3aは、スイッチング素子Q1,Q5の各駆動電圧が予め決められた最大駆動電圧以下になるように、スイッチング素子のPWM周波数において導電路3aに発生する損失(例えば、電流Ionによる電圧降下)を抑制可能な経路長に設定される。また、導電路3bは、スイッチング素子Q3,Q6の各駆動電圧が予め決められた最大駆動電圧以下になるように、スイッチング素子のPWM周波数において導電路3bに発生する損失(例えば、電流Ionによる電圧降下)を抑制可能な経路長に設定される。
 図7は、スイッチング素子Q1~Q6の駆動電源の構成例を示す。スイッチング素子Q1,Q5の各ドライバ15bは、駆動電源E1の電圧Vs1から駆動信号を生成しており、スイッチング素子Q1,Q5の駆動電源を共通化している。スイッチング素子Q3,Q6の各ドライバ15bは、駆動電源E2の電圧Vs2から駆動信号を生成しており、スイッチング素子Q3,Q6の駆動電源を共通化している。
 さらに、スイッチング素子Q2,Q4のエミッタ電位(駆動電圧の基準電位)も共通である。そこで、スイッチング素子Q2,Q4の各ドライバ15bは、駆動電源E3の電圧Vs3から駆動信号を生成しており、スイッチング素子Q2,Q4の駆動電源を共通化している。
 次に、図8Aは、インバータ回路1およびクランプ回路2のスイッチング素子に発生する損失の種類を示す。図8Bは、インバータ回路1およびクランプ回路2のダイオードに発生する損失の種類を示す。
 まず、インバータ回路1のスイッチング素子Q1~Q4は、導通損とスイッチング損の両方が発生するため、コレクタ-エミッタ間電圧の低電圧化、スイッチングの高速化の両方の特性が求められる。インバータ回路1のダイオードD1~D4は、電流が殆ど流れないため、導通損、逆回復損ともに殆ど発生しない。
 クランプ回路2のスイッチング素子Q5,Q6は、導通損が発生するが、スイッチング損が殆ど発生しないため、スイッチングの高速化よりも、コレクタ-エミッタ間電圧の低電圧化が優先される。クランプ回路2のダイオードD5,D6は還流電流Irが流れて、導通損および逆回復損が発生するので、順方向電圧の低電圧化、逆回復時間の短時間化の両方の特性が求められる。
 したがって、スイッチング素子Q1~Q4は、スイッチング素子Q5,Q6に比べて高速スイッチングが可能な素子を用いることが好ましい。また、スイッチング素子Q5,Q6は、コレクタ-エミッタ間電圧が低い素子を用いることが好ましい。この場合、半導体装置10の回路損失を低減させて、回路の電力効率を向上させることができる。また、スイッチング素子Q5,Q6には廉価な素子を用いることができるので、コスト削減が可能になる。
 また、ダイオードD5,D6は、ダイオードD1~D4より逆回復(リカバリ)時の損失が小さいことが好ましい。この場合、ダイオードD5,D6における逆回復損を削減して、回路の電力効率の向上を図ることができる。このダイオードの逆回復(リカバリ)は、ダイオードが順バイアス状態から逆バイアス状態に変化した場合、接合部の容量を充電するためにカソードからアノードに向かって逆方向電流が流れる現象である。
 また、ダイオードD5,D6は、ダイオードD1~D4より順方向電圧が低いことが好ましい。この場合、ダイオードD5,D6は導通損が小さくなり、回路の電力効率の向上を図ることができる。また、ダイオードD1~D4には廉価な素子を用いることができるので、コスト削減が可能になる。
 また図9は、クランプ回路2の別の構成を示す。図9に示すクランプ回路2は、導電路3aにカソードを接続したダイオードD11(第2のダイオード)と導電路3bにカソードを接続したダイオードD12(第2のダイオード)との直列回路を備える。さらに、クランプ回路2は、導電路3aにアノードを接続したダイオードD13(第2のダイオード)と導電路3bにアノードを接続したダイオードD14(第2のダイオード)との直列回路を備える。さらに、クランプ回路2は、ダイオードD11,D12の接続点とダイオードD13,D14の接続点との間に接続されたIGBTからなるスイッチング素子Q11(第1のスイッチング素子)を備える。そして、スイッチング素子Q11がオンすることによって、還流電流Irがクランプ回路2を流れる。この場合、還流電流Irが2つのダイオード(ダイオードD11,D14またはダイオードD12,D13)を通るので、ダイオードD11~D14に順方向電圧が低い素子を用いることはより効果的になる。
 また、図10に示すように、スイッチング素子Q1~Q4は、ワイドギャップ半導体で形成されることが好ましい。スイッチング素子Q1~Q4にワイドギャップ半導体を用いることによって、シリコン材料を用いた場合に比べて導通損を20~50%削減でき、スイッチング損を60~75%削減できるため、損失低減、高効率化が可能になる。なお、ワイドギャップ半導体には、例えば炭化ケイ素(SiC)、窒化ガリウム(GaN)等が用いられる。
 また、スイッチング素子Q1~Q4にMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)を用いてもよい。スイッチング素子Q1~Q4にMOSFETを用いることによって、スイッチング周波数の高周波化が容易になり、リアクトル12a,12bの小型化を図ることができる。また、ダイオードD1~D4にはMOSFETの寄生ダイオードを用いることができるので、素子数を削減できる。
 また図11に示すように、サイリスタあるいはGTO(Gate Turn Offサイリスタ)からなるスイッチング素子Q21,Q22(第2のスイッチング素子)を互いに逆方向に並列接続して、クランプ回路2を構成してもよい。この場合、ダイオードを用いないので、IGBTを用いたクランプ回路2(図1参照)に比べてダイオードD5,D6の順方向電圧分だけ損失を削減できる。また、クランプ回路2に用いるスイッチング素子には、早いスイッチング速度を要求されないので、サイリスタ、GTO等のスイッチング速度が比較的遅い素子を用いることができる。而して、クランプ回路2にサイリスタあるいはGTOを用いることによって、低コスト化、大容量化を図ることができる。
 また図12に示すように、クランプ回路2のスイッチング素子Q5,Q6をMOSFETで構成してもよい。スイッチング素子Q5,Q6をIGBTで構成した場合と比べて(図1参照)、一般にオン抵抗が小さいので、導通損を抑制できる。特に電流容量が小さい領域での効率向上を図ることができる。なお、MOSFET(スイッチング素子Q5,Q6)の寄生ダイオードをダイオードD5,D6として用いた場合、逆回復損が比較的大きくなることがあるので、単体のダイオード素子を追加してダイオードD5,D6として用いる場合もある。
 また図13に示すように、逆阻止IGBTからなるスイッチング素子Q31,Q32(第2のスイッチング素子)を用いてクランプ回路2を構成してもよい。図13のクランプ回路2は、スイッチング素子Q31のコレクタをスイッチング素子Q32のエミッタに接続し、スイッチング素子Q32のコレクタをスイッチング素子Q31のエミッタに接続して、導電路3a-3b間に設けられている。この場合、図1のクランプ回路2と比較して、逆耐圧を担うダイオードD5,D6が不要となるため、素子数の削減によって小型化、低コスト化を図ることができる。
 図1のクランプ回路2が導通した場合、クランプ回路2の両端間の電圧は、スイッチング素子のオン電圧とダイオードの順方向電圧との和(3V程度)になる。一方、図13のクランプ回路2が導通した場合、クランプ回路2の両端間の電圧は、スイッチング素子のオン電圧(1.5V程度)のみになり、導通損を削減することができる。
 また、クランプ回路2のスイッチング素子Q5,Q6にワイドギャップ半導体を用いてもよい。スイッチング素子Q5,Q6にワイドギャップ半導体を用いることによって、シリコン材料を用いた場合に比べて逆回復損を80%以上削減できるため、損失低減、高効率化が可能になる。
 また、クランプ回路2のスイッチング素子Q5,Q6を図14のように接続してもよい。この場合、スイッチング素子Q5のコレクタが導電路3aに接続し、スイッチング素子Q5のエミッタとスイッチング素子Q6のエミッタとが接続し、スイッチング素子Q6のコレクタが導電路3bに接続している。ダイオードD5,D6は、スイッチング素子Q5,Q6に1対1に逆並列接続している。
 すなわち、図14のクランプ回路2は、スイッチング素子Q5,Q6のエミッタ電位(駆動電圧の基準電位)が共通となる。そして、スイッチング素子Q5,Q6のそれぞれに1対1に接続されたドライバ15bは、駆動電源E4の電圧Vs4から駆動信号を生成しており、スイッチング素子Q5,Q6の駆動電源を共通化している。したがって、半導体装置10は、回路の小型化、コストダウンを図ることができる。また、半導体装置10は、インバータ回路1と導電路3a,3bとクランプ回路2とを一つのパッケージ10a内に収めて、導電路3a,3bの経路長を短くしており、スイッチング素子の駆動電源の共通化を容易にしている。
 また、半導体装置10は、交流端子T3-T4間に入力された交流を直流に変換し、直流端子T1-T2間から直流を出力するコンバータ機能を具備してもよい。すなわち、半導体装置10が直流電圧V1を交流電圧V2に変換して出力する第1の動作(インバータ動作)と、半導体装置10が交流電圧V2を直流電圧V1に変換して出力する第2の動作(コンバータ動作)とを切り替え可能に構成してもよい。半導体装置10がコンバータとして動作する場合、スイッチング素子Q1~Q6の制御方法は、図3に示すインバータ動作時と略同様であり、電力の伝達方向が逆方向となる。この電力の伝達方向は、直流端子T1-T2間の直流電圧V1と、交流端子T3-T4間の交流電圧V2との大小関係によって自動的に決まる。而して、インバータ動作とコンバータ動作との切り替えをスムーズに行うことができる。また、直流電源11を蓄電池で構成した場合、この蓄電池の充放電制御が可能になる。
  (まとめ)
 以上説明したように、本実施形態の半導体装置10は、フルブリッジ接続された複数のスイッチング素子Q1~Q4(第1のスイッチング素子)を含んで構成されている。半導体装置10は、インバータ回路1と、導電路3a,3bと、クランプ回路とを備える。インバータ回路1は、複数のスイッチング素子Q1~Q4がオン・オフすることによって直流電圧を交流電圧に変換して出力する。導電路3a,3bは、インバータ回路1の出力に接続した導体からなる。クランプ回路2は、複数のスイッチング素子Q5,Q6(第2のスイッチング素子)を含んで構成されて、導電路3a,3bに接続され、複数のスイッチング素子Q5,Q6がオンすることによって導電路間を導通させる。インバータ回路1と導電路3a,3bとクランプ回路2とは、一つのパッケージ内に収められている。
 この構成によると、半導体装置10では、インバータ回路1と導電路3a,3bとクランプ回路2とは、一つのパッケージ内に収められるので、インバータ回路1とクランプ回路2との間に形成される導電路の経路長を短くすることができる。したがって、導電路3a,3bのインピーダンスが削減可能になる。導電路3a,3bの抵抗成分の削減により、配線抵抗での損失が抑制される。また、導電路3a,3bのインダクタンス成分の削減により、電圧変動やノイズを抑制できる。また、半導体装置10は、インバータ回路1およびクランプ回路2の専用の回路構成であるので、半導体装置10内に使用しない不要な素子が残ることがなく、コスト面で有利になる。
 而して、半導体装置10では、インバータ回路1-クランプ回路2間の電流経路を短くして、この電流経路に発生する損失、電圧変動、ノイズを抑制でき、且つコスト面に優れた装置になるという効果がある。
 ここで、半導体装置10では、複数のスイッチング素子Q1~Q4および複数のスイッチング素子Q5,Q6の駆動電源を共通化した場合、所定条件を満たすように、導電路3a,3bは、以下のように、設定されることが好ましい。導線路3a,3bは、インバータ回路1のスイッチング周波数において導電路3a,3bに発生する損失を抑制可能な経路長に設定される。ここで、所定条件とは、スイッチング素子Q1~Q4およびスイッチング素子Q5,Q6の各駆動電圧が予め決められた最大駆動電圧以下になることである。また、駆動電源を共通化とは、1つ以上のスイッチング素子Q1~Q4の駆動電圧の基準電位と、1つ以上のスイッチング素子Q5,Q6の駆動電圧の基準電位とを導電路3a,3bを介して接続することである。
 この構成によると、半導体装置10は、導電路3a,3bに発生する損失を抑制することができる。
 ここで、複数のスイッチング素子Q1~Q4は、複数のスイッチング素子Q5,Q6よりも、高速スイッチングが可能な素子であることが好ましい。
 この構成によると、スイッチング素子Q5,Q6には廉価な素子を用いることができるので、コスト削減が可能になる。
 ここで、半導体装置10は、複数のスイッチング素子Q1~Q4に1対1に逆並列接続された複数の第1のダイオードD1~D4と、複数のスイッチング素子Q5,Q6に1対1に逆並列接続された複数の第2のダイオードD5,D6とを備える。複数の第2のダイオードD5,D6は、複数の第1のダイオードD1~D4より逆回復時の損失が小さいことが好ましい。
 この構成によると、ダイオードD5,D6における逆回復損を削減して、回路の電力効率の向上を図ることができる。
 ここで、半導体装置10は、複数のスイッチング素子Q1~Q4に1対1に逆並列接続された複数の第1のダイオードD1~D4と、複数のスイッチング素子Q5,Q6に1対1に逆並列接続された複数の第2のダイオードD5,D6とを備える。複数の第2のダイオードD5,D6は、複数の第1のダイオードD1~D4より順方向電圧が低いことが好ましい。
 この構成によると、ダイオードD5,D6は導通損が小さくなり、回路の電力効率の向上を図ることができる。
 ここで、複数のスイッチング素子Q1~Q4は、ワイドギャップ半導体で形成されることが好ましい。
 この構成によると、スイッチング素子Q1~Q4にシリコン材料を用いた場合に比べて導通損およびスイッチング損を削減できるため、損失低減、高効率化が可能になる。
 ここで、半導体装置10は、複数のスイッチング素子Q1~Q4に1対1に逆並列接続された複数の第1のダイオードD1~D4と、複数のスイッチング素子Q5,Q6に1対1に逆並列接続された複数の第2のダイオードD5,D6とを備える。複数の第2のダイオードD5,D6は、ワイドギャップ半導体で形成されることが好ましい。
 この構成によると、シリコン材料を用いた場合に比べて逆回復損を削減できるため、損失低減、高効率化が可能になる。
 本実施形態の電力変換装置は、本実施形態の半導体装置10と、半導体装置10の複数のスイッチング素子Q1~Q4および複数のスイッチング素子Q5,Q6を駆動する駆動回路15とを備える。
 この構成によると、電力変換装置では、インバータ回路1と導電路3a,3bとクランプ回路2とは、一つのパッケージ内に収められるので、インバータ回路1とクランプ回路2との間に形成される導電路の経路長を短くすることができる。したがって、導電路3a,3bのインピーダンスが削減可能になる。導電路3a,3bの抵抗成分の削減により、配線抵抗での損失が抑制される。また、導電路3a,3bのインダクタンス成分の削減により、電圧変動やノイズを抑制できる。また、半導体装置10は、インバータ回路1およびクランプ回路2の専用の回路構成であるので、半導体装置10内に使用しない不要な素子が残ることがなく、コスト面で有利になる。
 而して、電力変換装置では、インバータ回路1-クランプ回路2間の電流経路を短くして、この電流経路に発生する損失、電圧変動、ノイズを抑制でき、且つコスト面に優れた装置になるという効果がある。
 ここで、クランプ回路2は、複数のスイッチング素子Q5,Q6を備え、駆動回路15は、共通の駆動電源を用いて複数のスイッチング素子Q5,Q6を駆動することが好ましい。
 この構成によると、電力変換装置の半導体装置10は、回路の小型化、コストダウンを図ることができる。
 ここで、駆動回路15は、共通の駆動電源を用いて複数のスイッチング素子Q1~Q4および複数のスイッチング素子Q5,Q6を駆動することが好ましい。
 この構成によると、電力変換装置では、スイッチング素子Q1~Q4およびスイッチング素子Q5,Q6の駆動電源を簡易に構成することができる。
 ここで、半導体装置10が直流電圧を交流電圧に変換して出力する第1の動作と、半導体装置10が交流電圧を直流電圧に変換して出力する第2の動作とを切り替え可能に構成することが好ましい。
 この構成によると、電力変換装置では、インバータ動作とコンバータ動作との切り替えをスムーズに行うことができる。

Claims (11)

  1.  フルブリッジ接続された複数の第1のスイッチング素子を含んで構成されて、前記複数の第1のスイッチング素子がオン・オフすることによって直流電圧を交流電圧に変換して出力するインバータ回路と、
     前記インバータ回路の出力に接続した導体からなる導電路と、
     複数の第2のスイッチング素子を含んで構成されて、前記導電路に接続され、前記複数の第2のスイッチング素子がオンすることによって前記導電路間を導通させるクランプ回路とを備え、
     前記インバータ回路と前記導電路と前記クランプ回路とは、一つのパッケージ内に収められた
     ことを特徴とする半導体装置。
  2.  前記複数の第1のスイッチング素子のうち1つ以上の第1のスイッチング素子の駆動電圧の基準電位と、前記複数の第2のスイッチング素子のうち1つ以上の第2のスイッチング素子の駆動電圧の基準電位とを前記導電路を介して接続して、当該第1のスイッチング素子および当該第2のスイッチング素子の駆動電源を共通化した場合、前記導電路は、前記第1のスイッチング素子および前記第2のスイッチング素子の各駆動電圧が予め決められた最大駆動電圧以下になるように、前記インバータ回路のスイッチング周波数において前記導電路に発生する損失を抑制可能な経路長に設定されることを特徴とする請求項1記載の半導体装置。
  3.  前記複数の第1のスイッチング素子は、前記複数の第2のスイッチング素子よりも、高速スイッチングが可能な素子であることを特徴とする請求項1または2記載の半導体装置。
  4.  前記複数の第1のスイッチング素子に1対1に逆並列接続された複数の第1のダイオードと、前記複数の第2のスイッチング素子に1対1に逆並列接続された複数の第2のダイオードとを備え、
     前記複数の第2のダイオードは、前記複数の第1のダイオードより逆回復時の損失が小さい
     ことを特徴とする請求項1乃至3いずれか一項に記載の半導体装置。
  5.  前記複数の第1のスイッチング素子に1対1に逆並列接続された複数の第1のダイオードと、前記複数の第2のスイッチング素子に1対1に逆並列接続された複数の第2のダイオードとを備え、
     前記複数の第2のダイオードは、前複数の記第1のダイオードより順方向電圧が低い
     ことを特徴とする請求項1乃至4いずれか一項に記載の半導体装置。
  6.  前記複数の第1のスイッチング素子は、ワイドギャップ半導体で形成されることを特徴とする請求項1乃至5いずれか一項に記載の半導体装置。
  7.  前記複数の第1のスイッチング素子に1対1に逆並列接続された複数の第1のダイオードと、前記複数の第2のスイッチング素子に1対1に逆並列接続された複数の第2のダイオードとを備え、前記複数の第2のダイオードは、ワイドギャップ半導体で形成されることを特徴とする請求項1乃至6いずれか一項に記載の半導体装置。
  8.  請求項1乃至7いずれか一項に記載の半導体装置と、前記半導体装置の前記複数の第1のスイッチング素子および前記複数の第2のスイッチング素子を駆動する駆動回路とを備えることを特徴とする電力変換装置。
  9.  前記クランプ回路は、前記複数の第2のスイッチング素子を備え、
     前記駆動回路は、共通の駆動電源を用いて前記複数の第2のスイッチング素子を駆動する
     ことを特徴とする請求項8記載の電力変換装置。
  10.  前記駆動回路は、共通の駆動電源を用いて前記複数の第1のスイッチング素子および前記複数の第2のスイッチング素子を駆動することを特徴とする請求項8記載の電力変換装置。
  11.  前記半導体装置が直流電圧を交流電圧に変換して出力する第1の動作と、前記半導体装置が交流電圧を直流電圧に変換して出力する第2の動作とを切り替え可能に構成することを特徴とする請求項8乃至10いずれか記載の電力変換装置。
     
PCT/JP2014/003678 2013-08-02 2014-07-10 半導体装置、および電力変換装置 WO2015015721A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2014297873A AU2014297873A1 (en) 2013-08-02 2014-07-10 Semiconductor device and power conversion device
NZ717553A NZ717553A (en) 2013-08-02 2014-07-10 Semiconductor device and power conversion device
EP14831328.1A EP3029821B1 (en) 2013-08-02 2014-07-10 Semiconductor device and power conversion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013161017A JP6136011B2 (ja) 2013-08-02 2013-08-02 半導体装置、および電力変換装置
JP2013-161017 2013-08-02

Publications (1)

Publication Number Publication Date
WO2015015721A1 true WO2015015721A1 (ja) 2015-02-05

Family

ID=52431284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003678 WO2015015721A1 (ja) 2013-08-02 2014-07-10 半導体装置、および電力変換装置

Country Status (5)

Country Link
EP (1) EP3029821B1 (ja)
JP (1) JP6136011B2 (ja)
AU (1) AU2014297873A1 (ja)
NZ (1) NZ717553A (ja)
WO (1) WO2015015721A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016149837A (ja) * 2015-02-10 2016-08-18 パナソニックIpマネジメント株式会社 回路モジュールおよびそれを用いたインバータ装置
JP2017127116A (ja) * 2016-01-13 2017-07-20 パナソニックIpマネジメント株式会社 電力変換システム及び電力変換装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6516181B2 (ja) * 2015-03-11 2019-05-22 パナソニックIpマネジメント株式会社 電力変換回路およびそれを用いた電力変換装置
JP6555521B2 (ja) * 2015-08-28 2019-08-07 パナソニックIpマネジメント株式会社 電力変換装置
JP6586349B2 (ja) * 2015-11-04 2019-10-02 株式会社日立製作所 電力変換装置および制御方法
CN117175565A (zh) 2017-03-29 2023-12-05 太阳能安吉科技有限公司 旁路电路和在电力***中旁通电力模块的方法
WO2021002017A1 (ja) * 2019-07-04 2021-01-07 三菱電機株式会社 3レベル電力変換装置
WO2021019603A1 (ja) 2019-07-26 2021-02-04 三菱電機株式会社 電力変換装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3212791B2 (ja) 1994-02-10 2001-09-25 株式会社東芝 半導体装置
US7046534B2 (en) * 2004-02-09 2006-05-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. DC/AC converter to convert direct electric voltage into alternating voltage or into alternating current
JP2009089541A (ja) * 2007-10-01 2009-04-23 Toshiba Carrier Corp 系統連系インバータ装置
JP2010532148A (ja) * 2007-06-29 2010-09-30 エスエムエー ソーラー テクノロジー アーゲー 電気エネルギーを送電網に供給するための装置
WO2012132127A1 (ja) * 2011-03-25 2012-10-04 三洋電機株式会社 電力変換装置
JP2012228035A (ja) * 2011-04-18 2012-11-15 Mitsubishi Electric Corp インバータ装置
JP2013074634A (ja) * 2011-09-26 2013-04-22 Mitsubishi Electric Corp インバータ装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10221592A1 (de) * 2002-05-15 2003-12-04 Fraunhofer Ges Forschung Wechselrichter sowie Verfahren zum Umwandeln einer elektrischen Gleichspannung in einen Wechselstrom
JP2010115045A (ja) * 2008-11-07 2010-05-20 Toshiba Corp 電力変換装置におけるインバータ装置
DE102011081111A1 (de) * 2011-08-17 2013-02-21 Siemens Aktiengesellschaft Wechselrichteranordnung
CN202309553U (zh) * 2011-10-20 2012-07-04 东南大学 一种非隔离光伏并网逆变器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3212791B2 (ja) 1994-02-10 2001-09-25 株式会社東芝 半導体装置
US7046534B2 (en) * 2004-02-09 2006-05-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. DC/AC converter to convert direct electric voltage into alternating voltage or into alternating current
JP2010532148A (ja) * 2007-06-29 2010-09-30 エスエムエー ソーラー テクノロジー アーゲー 電気エネルギーを送電網に供給するための装置
JP2009089541A (ja) * 2007-10-01 2009-04-23 Toshiba Carrier Corp 系統連系インバータ装置
WO2012132127A1 (ja) * 2011-03-25 2012-10-04 三洋電機株式会社 電力変換装置
JP2012228035A (ja) * 2011-04-18 2012-11-15 Mitsubishi Electric Corp インバータ装置
JP2013074634A (ja) * 2011-09-26 2013-04-22 Mitsubishi Electric Corp インバータ装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016149837A (ja) * 2015-02-10 2016-08-18 パナソニックIpマネジメント株式会社 回路モジュールおよびそれを用いたインバータ装置
WO2016128817A1 (ja) * 2015-02-10 2016-08-18 パナソニックIpマネジメント株式会社 回路モジュールおよびそれを用いたインバータ装置
US20180019682A1 (en) * 2015-02-10 2018-01-18 Panasonic Intellectual Property Management Co., Ltd. Circuit module and inverter device using same
EP3258589A4 (en) * 2015-02-10 2018-02-21 Panasonic Intellectual Property Management Co., Ltd. Circuit module and inverter device using same
US10727756B2 (en) 2015-02-10 2020-07-28 Panasonic Intellectual Property Management Co., Ltd. Circuit module having less noise and inverter device using same
JP2017127116A (ja) * 2016-01-13 2017-07-20 パナソニックIpマネジメント株式会社 電力変換システム及び電力変換装置
EP3404820A4 (en) * 2016-01-13 2019-03-06 Panasonic Intellectual Property Management Co., Ltd. POWER CONVERSION SYSTEM AND POWER CONVERTING DEVICE
AU2016386975B2 (en) * 2016-01-13 2019-08-15 Panasonic Intellectual Property Management Co., Ltd. Power conversion system and power conversion device
US10601339B2 (en) 2016-01-13 2020-03-24 Panasonic Intellectual Property Management Co., Ltd. Power conversion system including power conversion devices which operate in parallel, and power conversion device

Also Published As

Publication number Publication date
EP3029821A4 (en) 2017-05-10
JP2015033217A (ja) 2015-02-16
JP6136011B2 (ja) 2017-05-31
NZ717553A (en) 2017-08-25
EP3029821B1 (en) 2021-06-30
EP3029821A1 (en) 2016-06-08
AU2014297873A1 (en) 2016-03-17

Similar Documents

Publication Publication Date Title
JP6136011B2 (ja) 半導体装置、および電力変換装置
US8848405B2 (en) Highly efficient half-bridge DC-AC converter
US8791662B2 (en) Power semiconductor module, electric-power conversion apparatus, and railway vehicle
US8351231B2 (en) Power conversion device
JP4594477B2 (ja) 電力半導体モジュール
JP5369922B2 (ja) 3レベル電力変換装置
US10707776B2 (en) 3-level power conversion circuit including serially-connected switching element and diode
US20150249403A1 (en) Multilevel Power Conversion Circuit and Device
EP2728734A1 (en) A three-level neutral-point-clamped inverter
US10554150B2 (en) Three-level inverter
EP3484038B1 (en) Method and system for operating a phase-leg of a three-level active neutral point clamped converter
WO2019154138A1 (zh) 一种用于逆变器或整流器的电桥电路
US9143078B2 (en) Power inverter including SiC JFETs
JP5095803B2 (ja) 電力半導体モジュール
US20170117820A1 (en) Semiconductor device
WO2018233358A1 (zh) 变流器及其驱动方法
JP5619673B2 (ja) スイッチング回路及び半導体モジュール
JP2014217270A (ja) 3レベル電力変換装置用ハーフブリッジ
US20180342961A1 (en) Power Converter
JP4724251B2 (ja) 電力半導体モジュール
US11165359B2 (en) Power conversion system configured to perform power conversion between direct current and three-phase alternating current
JP2015033222A (ja) 半導体素子の駆動装置およびそれを用いる電力変換装置
JPWO2014024596A1 (ja) インバータ駆動回路
JP6508505B2 (ja) インバータ回路
Kanale et al. Design considerations for developing 1.2 kv 4h-sic bidfet-enabled power conversion systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014831328

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014297873

Country of ref document: AU

Date of ref document: 20140710

Kind code of ref document: A