WO2015012210A1 - ヘテロ縮合環化合物 - Google Patents

ヘテロ縮合環化合物 Download PDF

Info

Publication number
WO2015012210A1
WO2015012210A1 PCT/JP2014/069153 JP2014069153W WO2015012210A1 WO 2015012210 A1 WO2015012210 A1 WO 2015012210A1 JP 2014069153 W JP2014069153 W JP 2014069153W WO 2015012210 A1 WO2015012210 A1 WO 2015012210A1
Authority
WO
WIPO (PCT)
Prior art keywords
furo
ring
dihydrofuro
dihydro
group
Prior art date
Application number
PCT/JP2014/069153
Other languages
English (en)
French (fr)
Inventor
圭悟 田中
尚 福山
則夫 村井
航 板野
廣田 信介
大介 飯田
宏 東
Original Assignee
エーザイ・アール・アンド・ディー・マネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エーザイ・アール・アンド・ディー・マネジメント株式会社 filed Critical エーザイ・アール・アンド・ディー・マネジメント株式会社
Priority to EP14829168.5A priority Critical patent/EP3026054B1/en
Priority to US14/904,860 priority patent/US9975910B2/en
Priority to JP2015528264A priority patent/JP6453216B2/ja
Publication of WO2015012210A1 publication Critical patent/WO2015012210A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/22Tin compounds
    • C07F7/2208Compounds having tin linked only to carbon, hydrogen and/or halogen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/025Boronic and borinic acid compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/027Organoboranes and organoborohydrides

Definitions

  • the present invention relates to a hetero-fused ring compound.
  • Patent Document 1 Compounds having an ortho-dimethylheteroaromatic ring have been utilized in drug discovery research such as a therapeutic drug for stroke (tetramethylpyrazine) (Patent Document 1) and an ulcer drug revaprazan (Patent Documents 1 and 2).
  • Non-patent Document 1 Since water solubility is generally known to be related to absorption of oral agents, an increase in fat solubility or a decrease in water solubility may inhibit drug absorption (Non-patent Document 2). Another concern is related to reduced metabolic stability.
  • Non-Patent Document 3 and Non-Patent Document 4 when an aromatic ring or heteroaromatic ring is substituted with an ortho-dimethyl group, the main metabolic reaction may occur at the ortho-dimethyl group.
  • the stroke therapeutic drug tetramethylpyrazine it has been shown that the ortho-dimethyl group moiety is rapidly metabolized and the half-life is short in humans (Non-patent Document 5). Therefore, a new biological equivalent of a heteroaromatic ring compound having an ortho-dimethyl group, that is, a compound that exhibits the same pharmacological effect while reducing the concern about decreased water solubility and decreased metabolic stability. Further, there is a need for compounds that can be used as synthetic intermediates.
  • Patent Documents 3 and 4 and Non-Patent Documents 6 to 9 are known, but the synthesizable heterocycles and substituents are limited, and However, only a multi-step synthesis method has been disclosed, and synthesis of compounds having a wide range of substituents has been limited.
  • the problem to be solved by the present invention is to provide a new biological equivalent of a compound having an ortho-dimethylheteroaromatic ring and a synthetic intermediate thereof.
  • [1] A compound represented by the general formula (I) or a salt thereof.
  • ring Z is a 5- or 6-membered heteroaromatic ring having one or two heteroatoms in the ring
  • X 1 represents a hydrogen atom, a hydroxyl group, a hydroxy C 1-6 alkyl group, —B (OH) 2 , a boronic acid ester group, a cyclic boronic acid ester group, a boranyl group, a cyclic boranyl group, —BF 3 M n1 (where n1 is means 0 or 1, M denotes an alkali metal), -.
  • R 12 represents a hydrogen atom or —CO 2 R 18 (R 18 represents a hydrogen atom, a C 1-6 alkyl group, or a protecting group for a carboxy group).
  • X 1 and X 2 are simultaneously hydrogen atoms, and excluding the following compounds: 5,7-dihydro-furo [3,4-b] pyridin-3-amine, 5,7-dihydro-furo [3,4-b] pyridin-2 (1H) -one, 3-bromo-5,7-dihydro-furo [3,4-b] pyridine, 5,7-dihydro-furo [3,4-b] pyridine-2-carboxylic acid, 5,7-dihydro-furo [3,4-b] pyridine-3-carboxylic acid, 1,3-dihydro-furo [3,4-c] pyridine-6-carboxaldehyde, 1,3-dihydro-furo [3,4-c] pyridin-6-ylmethanol, 3,4-dihydro-furo [3,4-b] pyrazin-2 (1H) -one, 4-chloro-5,7-dihydro-furo [3,4
  • a compound represented by the general formula (II) or a salt thereof [Wherein ring Z1 is a 5-membered heteroaromatic ring having one or two heteroatoms in the ring, X 1 and X 2 have the same definition as described in [1].
  • X 1 and X 2 are simultaneously hydrogen atoms, and excluding the following compounds: 2-bromo-4,6-dihydro-thieno [2,3-c] furan, 3-bromo-4,6-dihydro-thieno [2,3-c] furan, 4,6-dihydro-furo [3,4-b] furan-3-carboxylic acid, 4,6-dihydro-1H-furo [3,4-c] pyrazole-3-carboxylic acid, 3-bromo-4,6-dihydro-furo [3,4-d] isoxazole, and 4,6-dihydro-furo [3,4-d] isoxazole-3-carboxylic acid.
  • the ring Z1 is a thiophene ring, furan ring, pyrrolidine ring, thiazole ring, oxazole ring, imidazole ring, isothiazole ring, isoxazole ring or pyrazole ring. Or a salt thereof according to [2].
  • the condensed ring composed of the ring Z1 and the adjacent ring is a thieno [2,3-c] furan ring, furo [2,3-c] furan.
  • ring Z2 is a heteroaromatic ring to one or two perforated to 6 membered hetero atoms in the ring
  • X 1 and X 2 are the same as those defined according to [1].
  • X 1 and X 2 are simultaneously hydrogen atoms, and excluding the following compounds: 5,7-dihydro-furo [3,4-b] pyridin-3-amine, 5,7-dihydro-furo [3,4-b] pyridin-2 (1H) -one, 3-bromo-5,7-dihydro-furo [3,4-b] pyridine, 5,7-dihydro-furo [3,4-b] pyridine-2-carboxylic acid, 5,7-dihydro-furo [3,4-b] pyridine-3-carboxylic acid, 1,3-dihydro-furo [3,4-c] pyridine-6-carboxaldehyde, 1,3-dihydro-furo [3,4-c] pyr
  • X 1 is —B (OH) 2 , a boronic acid ester group, a cyclic boronic acid ester group, —BF 3 M n1 (n1 represents 0 or 1, and M represents an alkali metal), -Sn (R 12) (R 13 ) (R 14) (R 12, R 13 and R 14 are the same or different, it means a C 1-6 alkyl group.) or -L (L is a leaving group Or a salt thereof according to any one of [1] to [7].
  • R a1 to R a6 are the same or different and each represents a C 1-6 alkyl group.
  • a new biological equivalent of a compound having an ortho-dimethylheteroaromatic ring and its can be a synthetic intermediate.
  • a method for producing the synthetic intermediate can be provided.
  • the structural formula of a compound may represent a certain isomer for convenience, but in the present invention, all geometrical isomers generated from the structure of the compound, optical isomers based on asymmetric carbon, stereo It includes isomers such as isomers and tautomers, and isomer mixtures, and is not limited to the description of the formula for convenience, and may be either isomer or mixture. Therefore, the compound of the present invention may have an asymmetric carbon atom in the molecule, and an optically active substance and a racemate may exist. However, the present invention is not limited and includes both. In addition, crystal polymorphs may exist but are not limited in the same manner, and any one of the crystal forms may be a single crystal form or a mixture of crystal forms. , Hydrates and solvates.
  • the compound according to the present invention includes not only a free form but also a salt.
  • the “salt” in the present specification is not particularly limited as long as it forms a salt with the compound represented by the general formula (I).
  • Inorganic acid salts of: organic acid salts such as acetate, carbonate, p-toluenesulfonic acid; inorganic base salts such as lithium salt, sodium salt, calcium salt; organic base salts such as pyridinium salt, tetrabutylammonium salt; glutamic acid Acidic amino acid salts such as arginine; and basic amino acid salts such as arginine.
  • C 1-6 alkyl group means a linear or branched alkyl group having 1 to 6 carbon atoms. Specific examples thereof include a methyl group, an ethyl group, 1-propyl group, 2-propyl group, 2-methyl-1-propyl group, 2-methyl-2-propyl group, 1-butyl group, 2-butyl group, 1-pentyl group, 2-pentyl group, 3- Examples include pentyl group, 1-hexyl group, 2-hexyl group, 3-hexyl group and the like.
  • hydroxy C 1-6 alkyl group means a C 1-6 alkyl group having a hydroxyl group, and examples thereof include a hydroxymethyl group.
  • halogen atom means a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • the “boronic acid ester group” in the present specification refers to, for example, the following general formula (Y-1) [Wherein, R 7 and R 8 are the same or different and each represents a C 1-6 alkyl group. ] The substituent represented by these is mentioned.
  • cyclic boronic acid ester group means, for example, the following general formulas (Y-2) to (Y-13): [Wherein R 1 to R 6 and R 9 are the same or different and each represents a C 1-6 alkyl group. ] The substituent represented by these is mentioned.
  • the “boranyl group” in the present specification is, for example, the following general formula (Y-14) [Wherein, R 10 and R 11 are the same or different and each represents a C 1-6 alkyl group. ] The substituent represented by these is mentioned.
  • cyclic boranyl group means, for example, the following formula (Y-15) The substituent represented by these is mentioned.
  • the “5- or 6-membered heteroaromatic ring having one or two heteroatoms in the ring” means that the number of atoms constituting the ring is 5 or 6, An aromatic monocyclic group having 1 or 2 heteroatoms selected from oxygen, sulfur and nitrogen atoms.
  • Examples of such 5- or 6-membered heteroaromatic rings include furyl, thienyl, pyrrolyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, pyridyl, pyrazinyl, pyridazinyl, A pyrimidinyl group etc. are mentioned.
  • the “leaving group” in the present specification means that a compound represented by the general formula (I) or (V) is used as a starting material and is easily removed when it is used in the subsequent reaction. Any group can be used as long as it generates a bond, and examples thereof include a halogen atom, a methanesulfonyloxy group, a p-toluenesulfonyloxy group, and a trifluoromethanesulfonyloxy group. Examples of a preferable leaving group include a halogen atom, and more preferably a chlorine atom.
  • examples of the “carboxy-protecting group” include carboxylic acid-protecting groups generally known to those skilled in the art.
  • Examples of the protected carboxy group include trialkylsilyl ester, tert-butyl ester, benzyl ester, and oxazoline.
  • amino-protecting group examples include amino-protecting groups generally known to those skilled in the art, such as formyl group, acetyl group, benzoyl group, nicotinoyl group, trichloro group, and the like.
  • Amide protecting group such as acetyl group or trifluoroacetyl group; Cyclic imide protecting group such as phthaloyl group or 2,3-diphenylmaleoyl group; Sulfonamide protecting group such as p-toluenesulfonyl group or tert-butyloxy Carbamates such as carbonyl group, methyloxycarbonyl group, ethyloxycarbonyl group, benzyloxycarbonyl group, allyloxycarbonyl group, p-methoxybenzylcarbonyl group, p-nitrobenzyloxycarbonyl group or 9-fluorenylmethyloxycarbonyl group
  • System protecting group Although the like, preferably, a formyl group, tert- butyloxycarbonyl group or phthaloyl group.
  • Ring Z in the compound represented by the general formula (I) means a 5- to 6-membered heteroaromatic ring having 1 to 2 heteroatoms in the ring, and is represented by the general formula (II)
  • ring Z1 in the compound or the like is a 5-membered ring, it is preferably a thiophene ring, furan ring, pyrrole ring, thiazole ring, oxazole ring, imidazole ring, isothiazole ring, isoxazole ring or pyrazole ring, more preferably ,
  • a condensed ring composed of ring Z1 and an adjacent ring is a thieno [2,3-c] furan ring, a furo [2,3-c] furan ring, a furo [3,4-b] pyrrole ring, a furo [3, 4-d] thiazole ring, furo [3,4-d] oxazole ring, furo [3,
  • X 1 in the compound represented by the general formula (I) is a hydrogen atom, a hydroxyl group, a hydroxy C 1-6 alkyl group, —B (OH) 2 , a boronic acid ester group, a cyclic boronic acid ester group, a boranyl group, A cyclic boranyl group, —BF 3 M n1 (n1 represents 0 or 1, M represents an alkali metal), —Sn (R 12 ) (R 13 ) (R 14 ) (R 12 , R 13 and R 14 is the same or different and represents a C 1-6 alkyl group.), -L (L represents a leaving group), a carboxy group, a formyl group, -NR 16 R 17 (R 16 and R 17 is the same or different and represents a hydrogen atom, a C 1-6 alkyl group, or a protecting group for an amino group, or an amino group together with a nitrogen atom to which R 16 and R 17 are bonded.
  • Means protecting group but preferably —B (OH) 2 , boronate ester group, cyclic boronate ester group, —BF 3 M n1 (n1 represents 0 or 1, and M represents an alkali metal. ), -Sn (R 12 ) (R 13 ) (R 14 ) (R 12 , R 13 and R 14 are the same or different and each represents a C 1-6 alkyl group) or -L (L is desorbed). Means a leaving group).
  • X 2 in the compound represented by the general formula (I) is a hydrogen atom or —CO 2 R 18 (R 18 represents a hydrogen atom or a C 1-6 alkyl group), preferably a hydrogen atom.
  • R 18 represents a hydrogen atom or a C 1-6 alkyl group
  • X 1 in the compound represented by the general formula (I) is a hydroxyl group
  • a compound having proton tautomerism is also included in the compound represented by the general formula (I). Examples of such a compound include 2-pyridone and 2-pyridazinone.
  • R a1 to R a6 are the same or different and each is a C 1-6 alkyl group, preferably, R a1 to R a6 are all n-butyl groups. .
  • the compound represented by the general formula (I) can be produced by the method described below, and can also be produced by a person skilled in the art improving the method described below based on ordinary knowledge. However, the manufacturing method of the compound represented by general formula (I) is not limited to these.
  • Step A is a step of obtaining compound (IV).
  • Step A includes, for example, a step of obtaining compound (IV) from compound (1a) (step A-1), a compound (3a) obtained from compound (1a) (step A-2), and then compound (3a). ) And compound (2a) to obtain compound (IV) (step A-3).
  • R a1 to R a6 are as defined above.
  • Step A-1 is a step for producing compound (IV) by reacting an anion produced by the reaction of lithium diisopropylamide with compound (1a) and iodo (iodomethoxy) methane.
  • This step A-1 can be carried out with reference to the reaction conditions, post-reaction operations, purification methods, etc. described in Production Example 1-3 and Production Example 1-4, which will be described later. If so, optimal reaction conditions and the like can be easily determined.
  • Step A-1 can also be performed under a stream or atmosphere of an inert gas such as nitrogen or argon.
  • the solvent used in step A-1 is not particularly limited as long as it can dissolve the starting materials to some extent and does not inhibit the reaction performed in step A-1.
  • the solvent used in Step A-1 include ether solvents such as tetrahydrofuran, 1,2-dimethoxyethane, methyl-tert-butyl ether, cyclopentyl methyl ether, diethyl ether, diisopropyl ether, dibutyl ether, and dicyclopentyl ether, Any solvent selected from the group consisting of aromatic hydrocarbon solvents such as benzene and toluene, aliphatic hydrocarbon solvents such as heptane and hexane, and mixed solvents thereof can be used.
  • a particularly preferred solvent is tetrahydrofuran.
  • the reaction time in step A-1 usually varies depending on the type of starting material used, the type of solvent, the reaction temperature, etc., and those skilled in the art can easily select a preferable reaction time.
  • a mixture of an anion prepared by reacting compound (1a) and lithium diisopropylamide at 0 ° C. (external temperature of the reaction vessel) and iodo (iodomethoxy) methane is stirred at room temperature for 1 hour.
  • the preferred reaction temperature of the reaction between the compound prepared by anionizing compound (1a) and iodo (iodomethoxy) methane depends on the kind of starting material used as described above, but this reaction is carried out at 0 ° C. to room temperature ( The external temperature of the reaction vessel), more preferably, it is preferably carried out with stirring at room temperature.
  • lithium diisopropylamide it is preferable to use 2 to 3 moles of lithium diisopropylamide, more preferably 2 to 2.5 moles of lithium diisopropylamide per mole of iodo (iodomethoxy) methane.
  • Step A-2 is a step for producing a compound (3a) by reacting an anion produced by the reaction of lithium diisopropylamide with the compound (1a) and paraformaldehyde.
  • this step A-2 it can be carried out with reference to the reaction conditions, the post-reaction operation, the purification method, etc. described in Production Example 1-1 to be described later. Reaction conditions and the like can be determined.
  • Step A-2 can also be performed under a stream or atmosphere of an inert gas such as nitrogen or argon.
  • the solvent used in Step A-2 is not particularly limited as long as it can dissolve the starting materials to some extent and does not inhibit the reaction performed in Step A-2.
  • the solvent used in Step A-2 include ether solvents such as tetrahydrofuran, 1,2-dimethoxyethane, methyl-tert-butyl ether, cyclopentyl methyl ether, diethyl ether, diisopropyl ether, dibutyl ether, and dicyclopentyl ether, Any solvent selected from the group consisting of aromatic hydrocarbon solvents such as benzene and toluene, aliphatic hydrocarbon solvents such as heptane and hexane, and mixed solvents thereof can be used.
  • a particularly preferred solvent is tetrahydrofuran.
  • the reaction time in step A-2 usually varies depending on the type of starting material used, the type of solvent, the reaction temperature, etc., and those skilled in the art can easily select a preferable reaction time.
  • a mixture of an anion prepared from compound (1a) and lithium diisopropylamide at 0 ° C. (external temperature of reaction vessel) and paraformaldehyde is stirred at room temperature for 30 minutes.
  • the preferred reaction temperature of the reaction between the compound prepared by anionizing compound (1a) and paraformaldehyde depends on the kind of starting material used as described above, but this reaction is carried out at 0 ° C. to room temperature (outside the reaction vessel). (Warm), more preferably with stirring at room temperature.
  • Step A-3 In this step A-3, tributyl ((chloromethoxy) methyl) stannane is prepared from compound (3a), paraformaldehyde and chlorotrimethylsilane, and is produced by reaction of lithium diisopropylamide with compound (2a). In this step, compound (IV) is produced by adding an anion.
  • step A-3 it can be carried out with reference to the reaction conditions, post-reaction operations, purification methods, etc. described in Production Example 1-2, which will be described later. Reaction conditions and the like can be determined.
  • Step A-3 can also be performed under a stream or atmosphere of an inert gas such as nitrogen or argon.
  • the solvent used in step A-3 is not particularly limited as long as it can dissolve the starting materials to some extent and does not inhibit the reaction performed in step A-3.
  • the solvent used in Step A-3 include ether solvents such as tetrahydrofuran, 1,2-dimethoxyethane, methyl-t-butyl ether, cyclopentyl methyl ether, diethyl ether, diisopropyl ether, dibutyl ether, and dicyclopentyl ether, Any solvent selected from the group consisting of aromatic hydrocarbon solvents such as benzene and toluene, aliphatic hydrocarbon solvents such as heptane and hexane, and mixed solvents thereof can be used.
  • a particularly preferred solvent is tetrahydrofuran.
  • the reaction time in step A-3 usually varies depending on the type of starting material used, the type of solvent, the reaction temperature, etc., and those skilled in the art can easily select a preferable reaction time.
  • the reaction time for preparing tributyl ((chloromethoxy) methyl) stannane from compound (3a), paraformaldehyde, and chlorotrimethylsilane is 2 to 3 hours at room temperature.
  • the reaction time of the anionized compound prepared from compound (1a) and lithium diisopropylamide at 0 ° C. (external temperature of the reaction vessel) and tributyl ((chloromethoxy) methyl) stannane is 1 hour at room temperature. is there.
  • the reaction temperature for preparing tributyl ((chloromethoxy) methyl) stannane from compound (3a), paraformaldehyde and chlorotrimethylsilane depends on the type of starting material used as described above, but is preferably room temperature.
  • the preferred reaction temperature for the reaction of the compound prepared by anionizing compound (1a) with tributyl ((chloromethoxy) methyl) stannane depends on the type of starting material used as described above, but preferably at room temperature. is there.
  • Process B This step is a step of obtaining compound (I).
  • Step B-1 is a step of producing compound (I) by a coupling reaction between compound (V) and compound (IV) in an appropriate solvent.
  • ring Z, X 1 , X 2 , R a1 to R a6 , Q 1 and Q 2 have the same definitions as above.
  • This reaction can also be carried out under a stream or atmosphere of an inert gas such as nitrogen or argon.
  • an inert gas such as nitrogen or argon.
  • any compound selected from commercially available compounds and known compounds, or compounds that can be produced from these compounds using a known method can be used.
  • Step B-1 is performed in the presence of a metal catalyst effective as a catalyst for this reaction.
  • a metal catalyst effective as a catalyst for this reaction.
  • a palladium catalyst is particularly preferable.
  • Specific examples of the palladium catalyst include palladium acetate (II), tris (dibenzylideneacetone) dipalladium (0), bis (dibenzylideneacetone) palladium (0), palladium on carbon, bis (triphenylphosphine) palladium (II).
  • Chloride, tetrakis (triphenylphosphine) palladium (0) and the like, and palladium (II) acetate, tris (dibenzylideneacetone) dipalladium (0), and bis (dibenzylideneacetone) palladium (0) are particularly preferred.
  • the metal catalyst is preferably used in an amount of 0.001 to 0.5 mol, more preferably 0.05 to 0.2 mol, relative to 1 mol of the compound (V).
  • Step B-1 is particularly preferably performed in the presence of a phosphine compound together with the metal catalyst.
  • a halogen compound such as lithium chloride or a silicon compound such as tert-butyldimethylchlorosilane can be added.
  • Examples of the phosphine compound include triphenylphosphine, 2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl, 2-dicyclohexylphosphino-2 ′, 6′-diisopropoxybiphenyl, 2-dicyclohexylphosphino- 2 ′, 4 ′, 6′-triisopropylbiphenyl, 2- [bis [3,5-bis (trifluoromethyl) phenyl] phosphino] -3,6-dimethoxy-2 ′, 4 ′, 6′-triisopropyl -1,1'-biphenyl and the like, and 2-dicyclohexylphosphino-2 ', 4', 6'-triisopropylbiphenyl is particularly preferable.
  • the amount of the phosphine compound used is preferably 0.001 to 2 mol, more preferably 0.05 to 0.8 mol, relative to 1 mol of the compound (V).
  • the halogen compound lithium chloride, tetrabutylammonium chloride, and potassium iodide are particularly preferable. Further, the amount of the halogen compound used is preferably 1 to 3 moles relative to 1 mole of the compound (V).
  • tert-butyldimethylchlorosilane is particularly preferable.
  • the amount of the silicon compound used is preferably 1 to 2 mol per 1 mol of compound (V).
  • Step B-1 1 to 1.5 mol of compound (IV) is preferably used relative to 1 mol of compound (V), more preferably 1 to 1.2 mol equivalent.
  • the solvent used in Step B-1 is not particularly limited as long as it can dissolve the starting materials to some extent and does not inhibit the reaction.
  • the solvent include ether solvents such as tetrahydrofuran, 1,2-dimethoxyethane, methyl-tert-butyl ether, cyclopentyl methyl ether, diethyl ether, diisopropyl ether, dibutyl ether and dicyclopentyl ether, and aromatics such as benzene and toluene.
  • Specific examples include hydrocarbon solvents, fatty hydrocarbon solvents such as heptane and hexane, amide solvents such as N, N-dimethylformamide and N-methylpyrrolidinone, and mixed solvents thereof. , 4-dioxane.
  • Step B-1 Specific reaction conditions in Step B-1, post-treatment of the reaction, and purification method are described by referring to the conditions described in Example 1, Example 2, Example 4, and Examples 6 to 14 described later. Even when starting materials other than those shown in the examples are used, those skilled in the art can easily determine optimum conditions for carrying out the reaction.
  • the reaction temperature and reaction time in step B-1 depend on the type of starting material used, the type of solvent used, and the reaction temperature, but those skilled in the art can easily determine the optimum reaction temperature and reaction time.
  • the reaction temperature is usually preferably 50 ° C. to 150 ° C. (external temperature of the reaction vessel), more preferably 80 ° C. to 140 ° C. (external temperature of the reaction vessel).
  • the reaction is preferably carried out for 1 to 72 hours with stirring, and more preferably carried out for 1 to 20 hours.
  • X 1 in the compound (I) is a hydroxyl group, —B (OH) 2 , boronic ester group, cyclic boronic ester group, boranyl group, cyclic boranyl group, —BF 3 M n1 , —Sn (R 12 ) ( Compounds (I-1) to (I-5) which are R 13 ) (R 14 ) or a leaving group can also be produced by the following Step B-2 to Step B-8.
  • ring Z, X 2 , R a1 to R a6 , R 12 to R 14 , L and n1 are as defined above.
  • U represents —B (OH) 2 , a boronic ester group, a cyclic boronic ester group, a substituted boranyl group or a cyclic boranyl group.
  • Step B-2 is a step of producing compound (I-1) by a coupling reaction of compound (V-1) in which X 1 in compound (V) is a hydroxyl group and compound (IV).
  • the compound (V-1) any compound selected from commercially available compounds and known compounds, or compounds that can be produced from these compounds by a known method can be used. This step can be performed under the same conditions as in step B-1.
  • the hydroxyl group of compound (V-1) may be protected or deprotected using an appropriate protecting group as necessary.
  • the step of protecting the hydroxyl group and the step of deprotecting the protecting group of the hydroxyl group are described in, for example, Protective Groups in Organic Synthesis, third edition, pp. 246-287, 1999, JOHN WILEY & SONS, INC, etc., can be performed by methods generally used by those skilled in the art.
  • an ether-based protecting group such as tert-butyldimethylsilyl ether or methoxymethyl ether
  • an ester-based protecting group such as pivaloate
  • Step B-3 is a step of producing compound (I-2) by converting the hydroxyl group of compound (I-1) to a leaving group such as a trifluoromethanesulfonyloxy group.
  • This step is performed by, for example, Synthesis, Vol. 44, pp. 1631-1636; 2012, Tetrahedron Letters, Vol. 53, pp. 377-379; 2012, Tetrahedron Letters, Vol. 52, pp. 6346-6348; 2011, Journal of Medicinal Chemistry, Vol. 55, pp. 10610-10629; 2012, Journal of Medicinal Chemistry, Vol. 55, pp. 10475-10489; 2012, Journal of Medicinal Chemistry, Vol. 54, pp.
  • Step B-4 is a step of producing compound (I-3) by converting the leaving group of compound (I-2) into a substituted stannyl group.
  • This step is performed by, for example, Synthesis, Vol. 44, pp. 3496-3504; 2012, Organic Letters, Vol. 14, pp. 4630-4633; 2012, Synthesis, Vol. 44, pp. 2959-2963; 2012, Tetrahedron, Vol. 69, pp. 902-909; 2013, Journal of the American Chemical Society, Vol. 133, pp. 17777-17785; 2011, Chemistry-A European Journal, Vol. 18, pp. 5565-5573; 2012, etc., and can be performed by a method generally used by those skilled in the art.
  • Step B-5 is a step for producing compound (I-4) by converting the leaving group of compound (I-2) into a boron-containing substituent such as a boronic ester group.
  • This step is described, for example, in Chemical & Pharmaceutical Bulletin, Vol. 31, pp. 4573; 1982, Journal of Medicinal Chemistry, Vol. 51, pp. 6280-6292; 2008, Journal of Organometallic Chemistry, Vol. 292, pp. 119-132; 1985, Tetrahedron Letters, Vol. 53, pp. 4873-4876; 2012, Journal of Medicinal Chemistry, Vol. 51, pp. 2008, European Journal of Organic Chemistry, No. 6280-6292; 7, pp. 1678-1684; 2006, etc., and can be performed by a method generally used by those skilled in the art.
  • Step B-6 is a step of producing compound (I-5) by converting the boron-containing substituent of compound (I-4) into a trifluoroboron substituent. This step is described in, for example, Journal of Medicinal Chemistry, Vol. 54, pp. 6761-6770; 2011, Organic Letters, Vol. 14, pp. 5058-5061; 2012, Tetrahedron, Vol. 69, pp. 1546-1552; 2013, etc., and can be performed by a method generally used by those skilled in the art.
  • Step B-7 is a step of producing compound (I-5) by converting the leaving group of compound (I-2) into a trifluoroboron substituent. This step is described in, for example, Organic Letters, Vol. 14, pp. 4814-4817; 2012, Journal of the American Chemical Society, Vol. 134, pp. 11667-11673; 2012, Journal of the American Chemical Society, Vol. 132, pp. 17701-17703; 2010, Tetrahedron, Vol. 68, pp. 1351-1358; 2012, Organic Letters, Vol. 14, pp. 5058-5061; 2012, Journal of Medicinal Chemistry, Vol. 54, pp. 5174-5184; 2011, etc., and can be performed by a method generally used by those skilled in the art.
  • Step B-8 is a step for producing compound (I-2) by reacting compound (V-2) in which X 1 of compound (V) is a leaving group with compound (IV).
  • compound (V-2) any compound selected from commercially available compounds and known compounds, or compounds that can be produced from these compounds by a known method can be used. This step can be performed under the same conditions as in step B-1.
  • Steps B-9 to B-11 Compound (I-6) in which X 1 in compound (I) is a carboxy group can also be produced by the following steps B-9 to B-11. [Wherein, rings Z, X 2 , Q 1 , Q 2 , R a1 to R a6 are as defined above]. R 000 means a protecting group for carboxylic acid. ]
  • Step B-9 is a step of producing compound (V-4) by protecting the carboxylic acid of compound (V-3).
  • Compound (V-3) can be produced by using a commercially available compound and a known compound, or a known method from these compounds. This process is performed by, for example, Protective Groups in Organic Synthesis, third edition, pp. 369-451, 1999, JOHN WILEY & SONS, INC, and the like.
  • As the kind of the protecting group for example, an ester-based protecting group such as methyl ester can be used, and any protecting group can be used as long as it is suitable for Step B-10 and Step B-11. More specifically, this step can be performed with reference to the reaction conditions, post-reaction operations, purification methods and the like described in Example 2 or Example 10 described later.
  • Step B-10 is a step of producing compound (Ia) by a coupling reaction of compound (V-4) and compound (IV). This step can be performed under the same conditions as in step B-1. More specifically, this step was performed with reference to the reaction conditions, post-reaction operations, purification methods, etc. described in Example 2, Example 8, Example 10, Example 11, and Example 12 described later. Can be done.
  • Step B-11 is a step of producing compound (I-6) by deprotecting the protecting group for the carboxylic acid of compound (Ia).
  • This process is performed by, for example, Protective Groups in Organic Synthesis, third edition, pp. 246-287, 1999, JOHN WILEY & SONS, INC, etc. More specifically, this step can be performed with reference to the reaction conditions, post-reaction operations, purification methods and the like described in Example 3 described later.
  • Step B-12 Compound (I-7) in which X 1 of compound (I) is NR 16 N 17 can be produced by the following step B-12. [Wherein, ring Z, X 2 , Q 1 , Q 2 , R a1 to R a6 , R 16 and R 17 have the same meanings as defined above]. ]
  • Compound (V-5) can be produced by using a commercially available compound and a known compound, or a known method from these compounds.
  • the compound (I-7) can be obtained by a method known from the corresponding primary or secondary amine, for example, Protective Groups in Organic Synthesis, third edition, pp. 494-592, 1999, JOHN WILEY & SONS, INC.
  • Any kind of protecting group can be used as long as it is suitable for the step B-12 and the subsequent deprotection step.
  • a carbamate-based protecting group such as a tert-butoxycarbonyl group
  • Cyclic imide-based protecting groups such as N-phthalimide can be used.
  • amine protection and deprotection can be carried out with reference to the reaction conditions, post-reaction operations, purification methods and the like described in Example 9 described later.
  • Step B-12 is a step of producing compound (I-7) by a coupling reaction of compound (V-5) and compound (IV). This step can be performed under the same conditions as in step B-1. More specifically, this step was performed with reference to the reaction conditions, post-reaction operations, purification methods, etc. described in Example 6, Example 7, Example 9, Example 11, and Example 14 described later. Can be done. [Wherein, rings Z and X 2 have the same definitions as above. Hal means a halogen atom. ]
  • Step B-13 is a step for producing compound (I-8) by converting the carboxy group of compound (I-6) to an amine protected with a tert-butoxycarbonyl group.
  • Compound (I-6) can be produced by using a commercially available compound and a known compound, or a known method from these compounds. This step is described in, for example, Journal of Medicinal Chemistry, Vol. 48, pp. 1886-1900; 2005, etc., can be used. More specifically, this step can be performed with reference to the reaction conditions, post-reaction operations, purification methods and the like described in Example 40 described later.
  • Step B-14 is a step for producing compound (I-9) by deprotecting the amine protecting group of compound (I-8).
  • Compound (I-8) can be produced by using a commercially available compound and a known compound, or a known method from these compounds. This process is performed by, for example, Protective Groups in Organic Synthesis, third edition, pp. 520-525, 1999, JOHN WILEY & SONS, INC, etc., can be used. More specifically, this step can be performed with reference to reaction conditions, post-reaction operations, purification methods and the like described in Example 41 described later.
  • Step B-15 is a step of producing compound (I-10) by converting the amino group of compound (I-9) to halogen.
  • Compound (I-9) can be produced by using a commercially available compound and a known compound, or a known method from these compounds. This step is performed, for example, in Bioorganic and Medicinal Chemistry, Vol. 7, pp. 1845-1855; 1999, etc., can be used. More specifically, this step can be performed with reference to the reaction conditions, post-reaction operations, purification methods and the like described in Example 32 and Example 33 described later.
  • the starting material tributyl ⁇ [(tributylstannyl) methoxy] methyl ⁇ stannane was prepared by the following two synthetic methods.
  • n-butyllithium 1.6 M hexane solution, 3.8 mL, 6.2 mmol
  • Tributyltin hydride 1.7 mL, 6.2 mmol
  • the reaction mixture was cooled to ⁇ 78 ° C., and at the same temperature, a mixture of the above crude tributyl ((chloromethoxy) methyl) stannane and tetrahydrofuran (5 mL) was added dropwise.
  • the reaction mixture was gradually warmed to room temperature and further stirred at the same temperature for 1 hour.
  • Water was added to the reaction mixture, and the mixture was extracted with diethyl ether.
  • the organic layer was washed with saturated brine, and the organic layer was dried over anhydrous magnesium sulfate.
  • the reaction mixture was brought to ⁇ 78 ° C., and iodo (iodomethoxy) methane (500 mg, 1.7 mmol) described in Production Example 1-3 was added at the same temperature.
  • the reaction mixture was gradually brought to room temperature and stirred at the same temperature for 1 hour.
  • Water was added to the reaction mixture, and the mixture was extracted with diethyl ether.
  • the organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate.
  • the reaction mixture was stirred at 100 ° C. for 10 hours.
  • the reaction mixture was cooled to room temperature and filtered through celite. Water was added to the filtrate and extracted twice with ethyl acetate. The organic layers were combined, washed successively with water and saturated brine, and dried over anhydrous sodium sulfate.
  • Example 3 4,6-Dihydrofuro [3,4-b] furan-2-carboxylic acid To a mixture of methyl 4,6-dihydrofuro [3,4-b] furan-2-carboxylate (13 mg, 75 ⁇ mol) and ethanol (2.0 mL) described in Example 2 was added 5M aqueous sodium hydroxide (30 ⁇ L) at room temperature. ) And stirred at 70 ° C. for 1 hour. The reaction mixture was brought to room temperature, the solvent was evaporated under reduced pressure, and water was added. The aqueous layer was washed with ether, neutralized with 2M hydrochloric acid (200 ⁇ L), and extracted twice with ethyl acetate.
  • Example 14 4-Amino-5,7-dihydrofuro [3,4-d] pyrimidine 5-Bromo-6-chloropyrimidin-4-amine (15 mg, 0.070 mmol), tributyl ⁇ [(tributylstannyl) methoxy] methyl ⁇ stannane (53 mg, 0.084 mmol), tris described in Preparation Example 1-1 1,4-Dioxane (0.7 mL) was added to a mixture of (dibenzylideneacetone) dipalladium (6.4 mg, 0.0070 mmol) and X-Phos (13 mg, 0.028 mmol), and 135 ° C. under microwave irradiation. For 2 hours.
  • Example 15 1-Bromo-5,7-dihydrofuro [3,4-d] pyridazine A mixture of 2,3,4,6-tetrahydro-2H-furo [3,4-d] pyridazin-3-one (10 mg, 0.072 mmol) and phosphorous tribromide (0.3 mL) described in Example 1 was added to 130 Stir at 30 ° C. for 30 minutes. The reaction mixture was poured into ice and neutralized by dropwise addition of 5N aqueous sodium hydroxide solution under ice cooling. Water and ethyl acetate were added to the reaction mixture and extracted. The organic layer was washed with saturated brine, and the solvent was distilled off under reduced pressure.
  • Example 25 6-Bromo-1,3-dihydrofuro [3,4-c] pyridine
  • a mixture of copper (II) bromide (92 mg, 0.44 mmol), tert-butyl nitrite (85 mg, 0.82 mmol) and tetrahydrofuran (1 mL) was stirred at 50 ° C.
  • a suspension of 1,3-dihydrofuro [3,4-c] pyridin-6-amine (28 mg, 0.21 mmol) in tetrahydrofuran (0.5 mL) described in Example 24 was added dropwise to the mixture for 1 hour. Stir for 30 minutes. After cooling to room temperature, the reaction mixture was concentrated under reduced pressure.
  • Example 27 2-Chloro-5,7-dihydrofuro [3,4-d] pyrimidine A suspension of 5,7-dihydrofuro [3,4-d] pyrimidin-2-amine (25 mg, 0.18 mmol) in tetrahydrofuran (0.8 mL) described in Example 26 was added to copper (II) chloride (50 mg, 0.37 mmol), t-butyl nitrite (38 mg, 0.37 mmol) and tetrahydrofuran (0.5 mL) were added dropwise at 65 ° C. and stirred for 2 hours 30 minutes.
  • copper (II) chloride 50 mg, 0.37 mmol
  • t-butyl nitrite 38 mg, 0.37 mmol
  • tetrahydrofuran 0.5 mL
  • Example 28 2- (Tributylstannyl) -5,7-dihydrofuro [3,4-d] pyrimidine 2-chloro-5,7-dihydrofuro [3,4-d] pyrimidine (12 mg, 0.077 mmol), tetrakis (triphenylphosphine) palladium (0) (20 mg, 0.017 mmol), hexa, as described in Example 27 A mixture of (n-butyl) ditine (200 ⁇ L, 0.40 mmol) and xylene (0.4 mL) was stirred at 135 ° C. for 4 hours.
  • Example 29 2-Chloro-5,7-dihydrofuro [3,4-b] pyrazine 5,7-Dihydrofuro [3,4-b] pyrazin-2-amine (38 mg, 0.28 mmol) described in Example 6 was added to copper (II) chloride (150 mg, 1.12 mmol), tert-butyl nitrite. (60 mg, 0.58 mmol) and tetrahydrofuran (3 mL) were added in portions at 65 ° C. and stirred for 2 hours. After cooling to room temperature, the reaction mixture was poured onto silica gel. The mixture was concentrated and dried under reduced pressure.
  • Example 30 2- (Tributylstannyl) -5,7-dihydrofuro [3,4-b] pyrazine 2-chloro-5,7-dihydrofuro [3,4-b] pyrazine (12 mg, 0.077 mmol), tetrakis (triphenylphosphine) palladium (0) (20 mg, 0.017 mmol), hexa, as described in Example 29 A mixture of (n-butyl) ditine (200 ⁇ L, 0.40 mmol) and xylene (0.4 mL) was stirred at 135 ° C. for 3 hours 30 minutes.
  • Example 34 2- (Tributylstannyl) -5,7-dihydrofuro [3,4-b] pyridine 2-Bromo-5,7-dihydrofuro [3,4-b] pyridine (9.8 mg, 0.049 mmol), tetrakis (triphenylphosphine) palladium (0) (11 mg, 9.8 ⁇ mol) described in Example 33 And a solution of hexa (n-butyl) ditine (120 ⁇ L, 0.25 mmol) in xylene (350 ⁇ L) was heated to 135 ° C. and stirred for 4 hours.
  • Example 35 1-chloro-5,7-dihydrofuro [3,4-d] pyridazine 1,2,5,7-Tetrahydrofuro [3,4-d] pyridazin-1-one (100 mg, 0.72 mmol) and thionyl chloride (1.0 mL) described in Example 1 were mixed and the mixture was mixed with 90 Heated to 0 ° C. and stirred for 4 hours. After cooling the reaction solution to room temperature, ice water was carefully added in an ice bath. After the reaction was completed, the mixture was neutralized with 1N aqueous sodium hydroxide solution and extracted three times with dichloromethane.
  • Example 36 4-Chloro-5,7-dihydrofuro [3,4-d] pyrimidine A solution of copper (II) chloride (82 mg, 0.61 mmol) and tert-butyl nitrite (73 ⁇ L, 0.61 mmol) in tetrahydrofuran (2.0 mL) was heated to 65 ° C. to give 4-amino- A solution of 5,7-dihydrofuro [3,4-d] pyrimidine (42 mg, 0.31 mmol) in tetrahydrofuran (1.0 mL) was added dropwise to the above solution over 5 minutes. The reaction solution was stirred at 65 ° C. for 1 hour.
  • Example 39 1,3-dihydrofuro [3,4-c] pyridine-4-carboxylic acid To a solution of methyl 1,3-dihydrofuro [3,4-c] pyridine-4-carboxylate (180 mg, 1.0 mmol) described in Example 38 in methanol (4 mL), 2N aqueous sodium hydroxide solution (2 mL, 4 mmol) And stirred at room temperature for 40 minutes. 2N Hydrochloric acid (2 mL) was added to the reaction mixture, and the solvent was evaporated under reduced pressure. The residue was subjected to reverse phase silica gel column chromatography (acetonitrile-water-0.1% acetic acid), and the obtained fraction was concentrated to give a white solid.
  • Example 40 tert-Butyl (1,3-dihydrofuro [3,4-c] pyridin-4-yl) carbamate
  • 1,3-dihydrofuro [3,4-c] pyridine-4-carboxylic acid (30 mg, 0.18 mmol) described in Example 39 in tert-butanol (2 mL) was added diphenylphosphoryl azide (0.040 mL, 0 .19 mmol) and triethylamine (0.030 mL, 0.22 mmol) were sequentially added, and the mixture was stirred for 10 hours and 30 minutes under heating and reflux. After cooling to room temperature, the solvent was distilled off under reduced pressure.
  • N-bromosuccinimide (0.13 g, 0.73 mmol) was added to the reaction solution, and the mixture was stirred at room temperature for 20 hours. The reaction solution was filtered, and the resulting solid was washed with a small amount of ethyl acetate and then dried under reduced pressure to obtain the title compound (600 mg, 50% yield).
  • a mobile phase shown in Table 3 was added to the sample to prepare a sample solution having a concentration of 0.1 mM.
  • the standard solution and the sample solution were subjected to HPLC analysis under the following conditions, and the retention time (t r ) of the standard substance and the sample was measured.
  • the regression coefficient (rion) and the constant term (b) of Formula II are obtained from the partition coefficient (logP) of the standard substance and the retention coefficient (k std ) obtained from Formula I, and the retention coefficient (
  • the distribution coefficient ( log D ) at pH 6.8 was calculated from k smpl ), and finally the distribution ratio (D) of 1-octanol and water (pH 6.8) was obtained.
  • test compound was added to an enzyme solution (containing pooled human liver microsome (0.2 mg / mL), 100 mM Kpi, 0.1 mM EDTA) and incubated at 37 ° C. for a certain time in the presence of a coenzyme.
  • the final concentration of the test compound was 0.3 ⁇ M.
  • the coenzyme is a NADPH production system (3.6 mM ⁇ -NADP + , 90 mM glucose 6-phosphate, 1 Unit / mL glucose 6-phosphate dehydrogenase containing 60 mM MgCl 2 solution incubated at 37 ° C. for 5 minutes. Used to produce NADPH).
  • Table 5 and Table 6 show the remaining rate (%) of the unchanged product after 15 minutes, 30 minutes and 60 minutes of the test compound, and the liver specific clearance value of the test compound. As shown in Tables 5 and 6, in the clearance of human liver microsomes, Reference Example 1, Reference Example 2 and Reference Example 3 were improved compared to Comparative Example 1, Comparative Example 2 and Comparative Example 3, respectively. .
  • the bacterial solution prepared in (1) is inoculated into a flat bottom 96-well plate containing 1 ⁇ L / well of the test compound dilution prepared in (2) and inoculated at 99 ⁇ L / well at 35 ° C. Static culture was performed under aerobic conditions for ⁇ 48 hours.
  • MIC minimum growth inhibitory concentration
  • Comparative Example 1 As shown in Table 7, it was confirmed that Comparative Example 1, Reference Example 1, Comparative Example 2, Reference Example 2, Comparative Example 3, and Reference Example 3 all have strong anti-Candida activity equivalent to amphotericin B.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Vascular Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 一般式(I)で表される化合物またはその塩。[式中、環Zは、ヘテロ原子を環中に1~2個有する5~6員へテロ芳香環を意味し、Xは、水素原子、水酸基、ヒドロキシC1-6アルキル基、-B(OH)、ボロン酸エステル基、環状ボロン酸エステル基、ボラニル基、環状ボラニル基、-BFn1、-Sn(R12)(R13)(R14)、脱離基、カルボキシ基、ホルミル基、-NR1617を意味し、Xは、水素原子または-CO18を意味する。]

Description

ヘテロ縮合環化合物
 本発明は、ヘテロ縮合環化合物に関する。
 オルト-ジメチルヘテロ芳香環を有する化合物は、脳卒中治療薬tetramethylpyrazine(特許文献1)、潰瘍治療薬revaprazanなど創薬研究で活用されている(特許文献1、2)。
 しかしながら、オルト-ジメチルヘテロ芳香環を有する化合物を創薬研究で活用する場合に、懸念されることがふたつ考えられる。ひとつは、環を構成する2つの隣接した原子にメチル基(オルト-ジメチル基)を導入することによる化合物の水溶性の低下に関する懸念である。一般的にメチル基を化合物に導入することにより脂溶性が増加することが知られている(非特許文献1)。水溶性は経口剤の吸収に関連することが一般的に知られていることから、脂溶性の増加あるいは水溶性の低下は、薬剤の吸収を阻害する可能性がある(非特許文献2)。もうひとつは、代謝安定性の低下に関する懸念である。非特許文献3および非特許文献4に示されているように、芳香環あるいはヘテロ芳香環がオルト-ジメチル基で置換されている場合、主な代謝反応がオルト-ジメチル基の部分で起こる場合があり、脳卒中治療薬tetramethylpyrazineに関しては、ヒトにおいて、オルト-ジメチル基の部分の代謝が速く半減期が短いことが示されている(非特許文献5)。
 そのため、オルト-ジメチル基を有するヘテロ芳香環化合物の新たな生物学的等価体、すなわち、同様の薬理効果を発揮しながら、水溶性低下の懸念や代謝安定性低下の懸念が軽減された化合物が求められており、さらには、その合成中間体としての利用に供される化合物が求められている。
 一方、本願発明にかかる化合物に類似した化合物として、特許文献3,4および非特許文献6~9に記載された化合物が知られているが、合成可能なヘテロ環や置換基が限定され、かつ、多段階に渡る合成法しか開示されておらず、広範な置換基を有する化合物の合成に制約があった。
国際公開第2006/124324号 国際公開第1996/005177号 国際公開第2008/128942号 特開2010-155827号公報
Bioorganic & Medicinal Chemistry vol.13, pp.6678-6684; 2005. Pharmaceutical Science & Technology Today vol.1, pp. 387-393; 1998. Journal of Chromatography B vol.813, 263-268; 2004. European journal of drug metabolism and pharmacokinetics vol.17,pp.13-20;1992. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. vol.18, pp.288-91;1996. Bioorganic & Medicinal Chemistry Letters vol.17, 4914-4919; 2007. Tetrahedron Letters vo1.27, pp.3045-3048; 1986. Journal of the Chemical Society B: Physical Organic pp.289-296; 1971. Comptes Rendus des Seances de l’Academie des Sciences, Serie C:  Sciences Chimiques vol.263, pp.429-31; 1966.
 本発明が解決しようとする課題は、オルト-ジメチルヘテロ芳香環を有する化合物の新たな生物学的等価体およびその合成中間体の提供である。
 本発明者らは、鋭意努力の結果、本発明を完成した。すなわち、本発明は、以下の[1]~[13]に関する。
[1]一般式(I)で表される化合物またはその塩。
Figure JPOXMLDOC01-appb-C000009
[式中、環Zは、ヘテロ原子を環中に1個もしくは2個有する、5または6員へテロ芳香環であり、
は、水素原子、水酸基、ヒドロキシC1-6アルキル基、-B(OH)、ボロン酸エステル基、環状ボロン酸エステル基、ボラニル基、環状ボラニル基、-BFn1(n1は0または1を意味し、Mはアルカリ金属を意味する。)、-Sn(R12)(R13)(R14)(R12、R13およびR14は同一または相異なって、C1-6アルキル基を意味する。)、-L(Lは脱離基を意味する。)、カルボキシ基、ホルミル基、-NR1617(R16およびR17は同一または相異なって、水素原子、C1-6アルキル基、またはアミノ基の保護基を意味するか、またはR16およびR17が結合している窒素原子と一緒になってアミノ基の保護基を意味する。)を意味し、
は、水素原子または-CO18(R18は、水素原子、C1-6アルキル基、またはカルボキシ基の保護基を意味する。)を意味する。]
 ただし、XおよびXが同時に水素原子である場合、および以下の化合物を除く:
5,7-dihydro-furo[3,4-b]pyridin-3-amine、
5,7-dihydro-furo[3,4-b]pyridin-2(1H)-one、
3-bromo-5,7-dihydro-furo[3,4-b]pyridine、
5,7-dihydro-furo[3,4-b]pyridine-2-carboxylic acid、
5,7-dihydro-furo[3,4-b]pyridine-3-carboxylic acid、
1,3-dihydro-furo[3,4-c]pyridine-6-carboxaldehyde、
1,3-dihydro-furo[3,4-c]pyridin-6-ylmethanol、
3,4-dihydro-furo[3,4-b]pyrazin-2(1H)-one、
4-chloro-5,7-dihydro-furo[3,4-d]pyrimidine、
2-chloro-5,7-dihydro-furo[3,4-d]pyrimidine、
5,7-dihydro-furo[3,4-d]pyridazin-1(2H)-one、
2-bromo-4,6-dihydro-thieno[2,3-c]furan、
3-bromo-4,6-dihydro-thieno[2,3-c]furan、
4,6-dihydro-furo[3,4-b]furan-3-carboxylic acid、
4,6-dihydro-1H-furo[3,4-c]pyrazole-3-carboxylic acid、
3-bromo-4,6-dihydro-furo[3,4-d]isoxazole、および
4,6-dihydro-furo[3,4-d]isoxazole-3-carboxylic acid。
[2]一般式(II)で表される化合物またはその塩。
Figure JPOXMLDOC01-appb-C000010
[式中、環Z1は、ヘテロ原子を環中に1個または2個有する5員へテロ芳香環であり、
およびXは、[1]に記載の定義と同義である。]
ただし、XおよびXが同時に水素原子である場合、および以下の化合物を除く:
2-bromo-4,6-dihydro-thieno[2,3-c]furan、
3-bromo-4,6-dihydro-thieno[2,3-c]furan、
4,6-dihydro-furo[3,4-b]furan-3-carboxylic acid、
4,6-dihydro-1H-furo[3,4-c]pyrazole-3-carboxylic acid、
3-bromo-4,6-dihydro-furo[3,4-d]isoxazole、および
4,6-dihydro-furo[3,4-d]isoxazole-3-carboxylic acid。
[3]一般式(II)で表される化合物またはその塩において、環Z1が、チオフェン環、フラン環、ピロリジン環、チアゾール環、オキサゾール環、イミダゾール環、イソチアゾール環、イソオキサゾール環またはピラゾール環である、[2]に記載の化合物またはその塩。
[4]一般式(II)で表される化合物またはその塩において、環Z1および隣接する環からなる縮合環が、チエノ[2,3-c]フラン環、フロ[2,3-c]フラン環、フロ[3,4-b]ピロール環、フロ[3,4-d]チアゾール環、フロ[3,4-d]オキサゾール環、フロ[3,4-d]イミダゾール環、フロ[3,4-d]イソチアゾール環、フロ[3,4-d]イソオキサゾール環、フロ[3,4-c]ピラゾール環である、[2]に記載の化合物またはその塩。
[5]一般式(III)で表される化合物またはその塩。
Figure JPOXMLDOC01-appb-C000011
[式中、環Z2は、ヘテロ原子を環中に1個または2個有する6員へテロ芳香環であり、XおよびXは、[1]に記載の定義と同義である。]
 ただし、XおよびXが同時に水素原子である場合、および以下の化合物を除く:
5,7-dihydro-furo[3,4-b]pyridin-3-amine、
5,7-dihydro-furo[3,4-b]pyridin-2(1H)-one、
3-bromo-5,7-dihydro-furo[3,4-b]pyridine、
5,7-dihydro-furo[3,4-b]pyridine-2-carboxylic acid、
5,7-dihydro-furo[3,4-b]pyridine-3-carboxylic acid、
1,3-dihydro-furo[3,4-c]pyridine-6-carboxaldehyde、
1,3-dihydro-furo[3,4-c]pyridin-6-ylmethanol、
3,4-dihydro-furo[3,4-b]pyrazin-2(1H)-one、
4-chloro-5,7-dihydro-furo[3,4-d]pyrimidine、
2-chloro-5,7-dihydro-furo[3,4-d]pyrimidine、および
5,7-dihydro-furo[3,4-d]pyridazin-1(2H)-one。
[6]一般式(III)で表される化合物またはその塩において、環Z2が、ピリジン環、ピラジン環、ピリミジン環またはピリダジン環である、[5]に記載の化合物またはその塩。
[7]一般式(III)で表される化合物またはその塩において、環Z2および隣接する環からなる縮合環が、フロ[3,4-b]ピリジン環、フロ[3,4-c]ピリジン環、フロ[3,4-b]ピラジン環、フロ[3,4-d]ピリミジン環、フロ[3,4-c]ピリダジン環、フロ[3,4-d]ピリダジン環である、[5]に記載の化合物またはその塩。
[8]Xが、-B(OH)、ボロン酸エステル基、環状ボロン酸エステル基、-BFn1(n1は0または1を意味し、Mはアルカリ金属を意味する。)、-Sn(R12)(R13)(R14)(R12、R13およびR14は同一または相異なって、C1-6アルキル基を意味する。)または-L(Lは脱離基を意味する。)である、[1]~[7]のいずれかに記載の化合物またはその塩。
[9]脱離基が、ハロゲン原子、メタンスルホニルオキシ基、p-トルエンスルホニルオキシ基またはトリフルオロメタンスルホニルオキシ基である、[8]に記載の化合物またはその塩。
[10]ボロン酸エステル基が、一般式(Y-1)で表される置換基、
環状ボロン酸エステル基が、一般式(Y-2)~(Y-13)で表される置換基、
ボラニル基が、一般式(Y-14)で表される置換基、および
環状ボラニル基が、一般式(Y-15)で表される置換基であることを特徴とする、
[1]~[8]のいずれかに記載の化合物またはその塩。
Figure JPOXMLDOC01-appb-C000012
[式中、R~R10は、同一または相異なって、C1-6アルキル基を意味する。)
[11]以下に示す化合物。
1,2,5,7-テトラヒドロ-フロ[3,4-d]ピリダジン-1-オン
メチル 4,6-ジヒドロフロ[3,4-b]フラン-2-カルボキシレート
4,6-ジヒドロフロ[3,4-b]フラン-2-カルボキシリック アシッド
4,6-ジヒドロチエノ[2,3-c]フラン-2-カルボアルデヒド
(4,6-ジヒドロチエノ[2,3-c]フラン-2-イル)メタノール
2-アミノ-5,7-ジヒドロフロ[3,4-b]ピラジン
2-アミノ-5,7-ジヒドロフロ[3,4-b]ピリジン
メチル 4,6-ジヒドロ-1H-フロ[3,4-b]ピロール-2-カルボキシレート
tert-ブチル N-[(tert-ブトキシ)カルボニル]-N-{1,3-ジヒドロフロ[3,4―c]ピリジン-6-イル}カルバメート
メチル 4,6-ジヒドロフロ[3,4-d]イソチアゾール-3-カルボキシレート
メチル 3-アミノ-5,7-ジヒドロフロ[3,4-b]ピラジン-2-カルボキシレート
メチル 3-ヒドロキシ-4,6-ジヒドロチエノ[2,3-c]フラン-2-カルボキシレート
2-クロロ-4,6-ジヒドロチエノ[2,3-c]フラン
4-アミノ-5,7-ジヒドロフロ[3,4-d]ピリミジン
1-ブロモ-5,7-ジヒドロフロ[3,4-d]ピリダジン
リチウム 3-アミノ-5,7-ジヒドロフロ[3,4-b]ピラジン-2-カルボキシレート
3-クロロ-5,7-ジヒドロフロ[3,4-b]ピリジン
3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-5,7-ジヒドロフロ[3,4-b]ピリジン
3-(トリブチルスタニル)-5,7-ジヒドロフロ[3,4-b]ピリジン
メチル 5,7-ジヒドロフロ[3,4-b]ピリジン-3-カルボキシレート
1,3-ジヒドロフロ[3,4-c]ピリジン-6-アミン
6-ブロモ-1,3-ジヒドロフロ[3,4-c]ピリジン
5,7-ジヒドロフロ[3,4-d]ピリミジン-2-アミン
2-クロロ-5,7-ジヒドロフロ[3,4-d]ピリミジン
2-(トリブチルスタニル)-5,7-ジヒドロフロ[3,4-d]ピリミジン
2-クロロ-5,7-ジヒドロフロ[3,4-b]ピラジン
2-(トリブチルスタニル)-5,7-ジヒドロフロ[3,4-b]ピラジン
ポタシウム (5,7-ジヒドロフロ[3,4-b]ピリジン-3-イル)トリフルオロボレート
2-クロロ-5,7-ジヒドロフロ[3,4-b]ピリジン
2-ブロモ-5,7-ジヒドロフロ[3,4-b]ピリジン
2-(トリブチルスタニル)-5,7-ジヒドロフロ[3,4-b]ピリジン
1-クロロ-5,7-ジヒドロフロ[3,4-d]ピリダジン
4-クロロ-5,7-ジヒドロフロ[3,4-d]ピリミジン
エチル 4,6-ジヒドロチエノ[2,3-c]フラン-2-カルボキシレート
メチル 1,3-ジヒドロフロ[3,4-c]ピリジン-4-カルボキシレート
1,3-ジヒドロフロ[3,4-c]ピリジン-4-カルボン酸
tert-ブチル (1,3-ジヒドロフロ[3,4-c]ピリジン-4-イル)カルバメート
1,3-ジヒドロフロ[3,4-c]ピリジン-4-アミン
[12]一般式(IV)で表される化合物。
Figure JPOXMLDOC01-appb-C000013
[式中、Ra1~Ra6は、同一または相異なって、C1-6アルキル基を意味する。]
[13]一般式(I)で表される化合物の製造方法であって、
Figure JPOXMLDOC01-appb-C000014
[式中、環Z、XおよびXは、[1]に記載の定義と同義である。]
 一般式(IV)で表される化合物
Figure JPOXMLDOC01-appb-C000015
[式中、Ra1~Ra6は、[12]に記載の定義と同義である。]と、
 一般式(V)で表される化合物
Figure JPOXMLDOC01-appb-C000016
[式中、環Z、XおよびXは、[1]に記載の定義と同義であり、QおよびQは、脱離基を意味する。]と、
 を反応させることを特徴とする、製造方法。
 一般式(I)で表される化合物(以下、「化合物(I)」等ともいう。)またはその塩によれば、オルト-ジメチルヘテロ芳香環を有する化合物の新たな生物学的等価体およびその合成中間体となり得る。また、該合成中間体の製造方法を提供することができる。
 以下に、本願明細書において記載する記号、用語等の意義を説明し、本発明を詳細に説明する。
 本明細書中においては、化合物の構造式が便宜上一定の異性体を表すことがあるが、本発明には化合物の構造上生ずる総ての幾何異性体、不斉炭素に基づく光学異性体、立体異性体、互変異性体等の異性体及び異性体混合物を含み、便宜上の式の記載に限定されるものではなく、いずれか一方の異性体でも混合物でもよい。従って、本発明の化合物には、分子内に不斉炭素原子を有し光学活性体及びラセミ体が存在することがありうるが、本発明においては限定されず、いずれもが含まれる。また、結晶多形が存在することもあるが同様に限定されず、いずれかの結晶形が単一であっても結晶形混合物であってもよく、そして、本発明にかかる化合物には無水物、水和物、溶媒和物が包含される。
 本発明にかかる化合物は、フリー体のみならず、塩も含まれる。本明細書における「塩」とは、一般式(I)で表される化合物等と塩を形成するものであれば特に限定されず、例えば、塩酸塩、臭化水素酸塩、リン酸塩等の無機酸塩;酢酸塩、炭酸塩、p-トルエンスルホン酸等の有機酸塩;リチウム塩、ナトリウム塩、カルシウム塩等の無機塩基塩;ピリジニウム塩、テトラブチルアンモニウム塩等の有機塩基塩;グルタミン酸等の酸性アミノ酸塩;アルギニン等の塩基性アミノ酸塩が挙げられる。
 以下に、本明細書において記載する用語、記号等の意義を説明し、本発明を詳細に説明する。
 本明細書における「C1-6アルキル基」とは、炭素数1~6個を有する直鎖状または分枝鎖状のアルキル基を意味し、具体例としては、例えばメチル基、エチル基、1-プロピル基、2-プロピル基、2-メチル-1-プロピル基、2-メチル-2-プロピル基、1-ブチル基、2-ブチル基、1-ペンチル基、2-ペンチル基、3-ペンチル基、1-へキシル基、2-へキシル基、3-へキシル基等が挙られる。
 本明細書における「ヒドロキシC1-6アルキル基」とは、水酸基を有するC1-6アルキル基を意味し、例えば、ヒドロキシメチル基が挙げられる。
 本明細書における「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子またはヨウ素原子を意味する。
 本明細書における「ボロン酸エステル基」とは、例えば下記一般式(Y-1)
Figure JPOXMLDOC01-appb-C000017
[式中、RおよびRは、同一または相異なって、C1-6アルキル基を意味する。]
で表される置換基が挙げられる。
 本明細書における「環状ボロン酸エステル基」とは、例えば下記一般式(Y-2)~(Y-13)
Figure JPOXMLDOC01-appb-C000018
[式中、R~RおよびRは、同一または相異なって、C1-6アルキル基を意味する。]で表される置換基が挙げられる。
 本明細書における「ボラニル基」とは、例えば、下記一般式(Y-14)
Figure JPOXMLDOC01-appb-C000019
[式中、R10およびR11は、同一または相異なって、C1-6アルキル基を意味する。]で表される置換基が挙げられる。
 本明細書における「環状ボラニル基」とは、例えば、下記式(Y-15)
Figure JPOXMLDOC01-appb-C000020
で表される置換基が挙げられる。
 本明細書中における「ヘテロ原子を環中に1個もしくは2個有する、5または6員へテロ芳香環」とは、環を構成する原子の数が5個または6個であり、環を構成する原子中に酸素原子、硫黄原子及び窒素原子から選ばれるヘテロ原子を1個または2個有する芳香族性の単環の環式基を意味する。このような5または6員ヘテロ芳香環としては、例えばフリル基、チエニル基、ピロリル基、イミダゾリル基、ピラゾリル基、オキサゾリル基、イソオキサゾリル基、チアゾリル基、イソチアゾリル基、ピリジル基、ピラジニル基、ピリダジニル基、ピリミジニル基等が挙げられる。
 本明細書中における「脱離基」とは、一般式(I)または(V)で表される化合物を出発原料として、その後の反応に供される際に、容易に脱離して、新たな結合を生成するものであれば何でもよいが、例えば、ハロゲン原子、メタンスルホニルオキシ基、p-トルエンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基などが挙げられる。好ましい脱離基の例としては、ハロゲン原子が挙げられ、より好ましくは塩素原子が挙げられる。
 本明細書中における「カルボキシ基の保護基」とは、当業者に一般的に知られたカルボン酸の保護基を挙げることができる。保護されたカルボキシ基としては、例えば、トリアルキルシリルエステル、tert-ブチルエステル、ベンジルエステル、オキサゾリンが挙げられる。
 本明細書における「アミノ基の保護基」とは、当業者に一般的に知られたアミノ基の保護基を挙げることができるが、例えば、ホルミル基、アセチル基、ベンゾイル基、ニコチノイル基、トリクロロアセチル基もしくはトリフルオロアセチル基などのアミド系保護基;フタロイル基もしくは2,3-ジフェニルマレオイル基などの環状イミド系保護基;p-トルエンスルホニル基などのスルホンアミド系保護基またはtert-ブチルオキシカルボニル基、メチルオキシカルボニル基、エチルオキシカルボニル基、ベンジルオキシカルボニル基、アリルオキシカルボニル基、p-メトキシベンジルカルボニル基、p-ニトロベンジルオキシカルボニル基もしくは9-フルオレニルメチルオキシカルボニル基などのカルバメート系の保護基などが挙げられるが、好ましくは、ホルミル基、tert-ブチルオキシカルボニル基またはフタロイル基である。
 一般式(I)で表される化合物等における環Zは、ヘテロ原子を環中に1~2個有する、5~6員へテロ芳香環を意味するが、一般式(II)で表される化合物等における環Z1が5員環である場合、好ましくは、チオフェン環、フラン環、ピロール環、チアゾール環、オキサゾール環、イミダゾール環、イソチアゾール環、イソオキサゾール環またはピラゾール環であり、より好ましくは、環Z1および隣接する環からなる縮合環が、チエノ[2,3-c]フラン環、フロ[2,3-c]フラン環、フロ[3,4-b]ピロール環、フロ[3,4-d]チアゾール環、フロ[3,4-d]オキサゾール環、フロ[3,4-d]イミダゾール環、フロ[3,4-d]イソチアゾール環、フロ[3,4-d]イソオキサゾール環またはフロ[3,4-c]ピラゾール環であり、一般式(III)で表される化合物等における環Z2が6員環である場合、好ましくは、ピリジン環、ピラジン環、ピリミジン環またはピリダジン環であり、より好ましくは、環Z2および隣接する環からなる縮合環が、フロ[3,4-b]ピリジン環、フロ[3,4-c]ピリジン環、フロ[3,4-b]ピラジン環、フロ[3,4-d]ピリミジン環、フロ[3,4-c]ピリダジン環またはフロ[3,4-d]ピリダジン環である。
 一般式(I)で表される化合物等におけるXは、水素原子、水酸基、ヒドロキシC1-6アルキル基、-B(OH)、ボロン酸エステル基、環状ボロン酸エステル基、ボラニル基、環状ボラニル基、-BFn1(n1は0または1を意味し、Mはアルカリ金属を意味する。)、-Sn(R12)(R13)(R14)(R12、R13およびR14は同一または相異なって、C1-6アルキル基を意味する。)、-L(Lは脱離基を意味する。)、カルボキシ基、ホルミル基、-NR1617(R16およびR17は同一または相異なって、水素原子、C1-6アルキル基、またはアミノ基の保護基を意味するか、またはR16およびR17が結合している窒素原子と一緒になってアミノ基の保護基を意味する。)であるが、好ましくは、-B(OH)、ボロン酸エステル基、環状ボロン酸エステル基、-BFn1(n1は0または1を意味し、Mはアルカリ金属を意味する。)、-Sn(R12)(R13)(R14)(R12、R13およびR14は同一または相異なって、C1-6アルキル基を意味する。)または-L(Lは脱離基を意味する。)である。
 一般式(I)で表される化合物等におけるXは、水素原子または-CO18(R18は、水素原子またはC1-6アルキル基を意味する。)であり、好ましくは、水素原子またはメトキシカルボニル基であり、より好ましくは、水素原子である。
 一般式(I)で表される化合物において、XおよびXがともに水素原子である場合は除かれる。
 一般式(I)で表される化合物等におけるXが水酸基である場合、プロトン互変異性の関係にある化合物も、一般式(I)で表される化合物に包含される。このような化合物としては、例えば、2-ピリドン、2-ピリダジノンが挙げられる。
 一般式(IV)で表される化合物における、Ra1~Ra6は、同一または相異なって、C1-6アルキル基であり、好ましくは、Ra1~Ra6が全てn-ブチル基である。
 一般式(I)で表される化合物は、以下に記載する方法により製造することができ、また以下に記載の方法を当業者が通常の知識に基づき改良することによっても製造することができる。但し、一般式(I)で表される化合物の製造方法は、これらに限定されるものではない。
工程A
 本工程は、化合物(IV)を得る工程である。工程Aとしては、例えば、化合物(1a)から化合物(IV)を得る工程(工程A-1)と、化合物(1a)から化合物(3a)を得た後に(工程A-2)、化合物(3a)と化合物(2a)とを反応させて化合物(IV)を得る工程(工程A-3)が挙げられる。
Figure JPOXMLDOC01-appb-C000021
[式中、Ra1~Ra6は、前記定義と同義である。]
〔工程A-1〕
 本工程A-1は、リチウム ジイソプロピルアミドと化合物(1a)との反応により生成するアニオンとヨード(ヨードメトキシ)メタンとを反応させ、化合物(IV)を製造する工程である。本工程A-1を実施する場合は、後述する製造例1-3および製造例1-4に記載した反応条件、反応後の操作、精製方法等を参考にして行うことができ、当業者であれば容易に最適な反応条件等を決定しうる。
 工程A-1は、窒素、アルゴン等の不活性気体の気流下または雰囲気下でも行うことができる。
 工程A-1に用いる溶剤としては、出発原料をある程度溶解でき、かつ、工程A-1で行う反応を阻害しないものであれば、特に制限はない。工程A-1に用いる溶剤としては、例えば、テトラヒドロフラン、1,2-ジメトキシエタン、メチル-tert-ブチルエーテル、シクロペンチルメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、およびジシクロペンチルエーテル等のエーテル系溶剤、ベンゼンおよびトルエン等の芳香族炭化水素系溶剤、ヘプタンおよびヘキサン等の脂肪族炭化水素系溶剤またはこれらの混合溶剤等からなる群から選択される任意の溶剤を用いることができる。特に好ましい溶剤は、テトラヒドロフランである。
 工程A-1の反応時間は、通常、用いた出発原料の種類、溶剤の種類、反応温度などによって異なり、当業者であれば好ましい反応時間を容易に選択することができる。例えば、化合物(1a)とリチウム ジイソプロピルアミドとを0℃(反応容器の外温)にて反応させて調製したアニオンと、ヨード(ヨードメトキシ)メタンとの混合物を室温で1時間撹拌する。
 化合物(1a)をアニオン化して調製した化合物とヨード(ヨードメトキシ)メタンとの反応の好ましい反応温度は、上述のとおり用いる出発原料の種類などに左右されるが、本反応は0℃~室温(反応容器の外温)、より好適には、室温で撹拌しながら行うことが好ましい。
 ヨード(ヨードメトキシ)メタン1モル当り、2~3モルの化合物(1a)を用いることが好ましく、2~2.5モルの化合物(1a)を用いることがさらに好ましい。
 ヨード(ヨードメトキシ)メタン1モル当り、2~3モルのリチウム ジイソプロピルアミドを用いることが好ましく、2~2.5モルのリチウム ジイソプロピルアミドを用いることがさらに好ましい。
〔工程A-2〕
 本工程A-2は、リチウム ジイソプロピルアミドと化合物(1a)との反応により生成するアニオンとパラホルムアルデヒドとを反応させ、化合物(3a)を製造する工程である。本工程A-2を実施する場合は、後述する製造例1-1に記載した反応条件、反応後の操作、精製方法等を参考にして行うことができ、当業者であれば容易に最適な反応条件等を決定しうる。
 工程A-2は、窒素、アルゴン等の不活性気体の気流下または雰囲気下でも行うことができる。
 工程A-2に用いる溶剤としては、出発原料をある程度溶解でき、かつ、工程A-2で行う反応を阻害しないものであれば、特に制限はない。工程A-2に用いる溶剤としては、例えば、テトラヒドロフラン、1,2-ジメトキシエタン、メチル-tert-ブチルエーテル、シクロペンチルメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、およびジシクロペンチルエーテル等のエーテル系溶剤、ベンゼンおよびトルエン等の芳香族炭化水素系溶剤、ヘプタンおよびヘキサン等の脂肪族炭化水素系溶剤またはこれらの混合溶剤等からなる群から選択される任意の溶剤を用いることができる。特に好ましい溶剤は、テトラヒドロフランである。
 工程A-2の反応時間は、通常、用いた出発原料の種類、溶剤の種類、反応温度などによって異なり、当業者であれば好ましい反応時間を容易に選択することができる。例えば、化合物(1a)とリチウム ジイソプロピルアミドから0℃(反応容器の外温)にて調製したアニオンと、パラホルムアルデヒドとの混合物を室温で30分間撹拌する。
 化合物(1a)をアニオン化して調製した化合物とパラホルムアルデヒドとの反応の好ましい反応温度は、上述のとおり用いる出発原料の種類などに左右されるが、本反応は0℃~室温(反応容器の外温)、より好適には、室温で撹拌しながら行うことが好ましい。
 化合物(1a)1モル当り、1~1.5モルのリチウム ジイソプロピルアミドを用いることが好ましく、1~1.1モルのリチウム ジイソプロピルアミドを用いることがさらに好ましい。
 化合物(1a)1モル当り、1~1.5モルのパラホルムアルデヒドを用いることが好ましく、1~1.2モルのパラホルムアルデヒドを用いることがさらに好ましい。
〔工程A-3〕
 本工程A-3は、化合物(3a)、パラホルムアルデヒドおよびクロロトリメチルシランからトリブチル((クロロメトキシ)メチル)スタナンを調製し、該化合物に、リチウム ジイソプロピルアミドと化合物(2a)との反応により生成するアニオンを加えることにより、化合物(IV)を製造する工程である。本工程A-3を実施する場合は、後述する製造例1-2に記載した反応条件、反応後の操作、精製方法等を参考にして行うことができ、当業者であれば容易に最適な反応条件等を決定しうる。
 工程A-3は、窒素、アルゴン等の不活性気体の気流下または雰囲気下でも行うことができる。
 工程A-3に用いる溶剤としては、出発原料をある程度溶解でき、かつ、工程A-3で行う反応を阻害しないものであれば、特に制限はない。工程A-3に用いる溶剤としては、例えば、テトラヒドロフラン、1,2-ジメトキシエタン、メチル-t-ブチルエーテル、シクロペンチルメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、およびジシクロペンチルエーテル等のエーテル系溶剤、ベンゼンおよびトルエン等の芳香族炭化水素系溶剤、ヘプタンおよびヘキサン等の脂肪族炭化水素系溶剤またはこれらの混合溶剤等からなる群から選択される任意の溶剤を用いることができる。特に好ましい溶剤は、テトラヒドロフランである。
 工程A-3の反応時間は、通常、用いた出発原料の種類、溶剤の種類、反応温度などによって異なり、当業者であれば好ましい反応時間を容易に選択することができる。例えば、化合物(3a)、パラホルムアルデヒド、およびクロロトリメチルシランからトリブチル((クロロメトキシ)メチル)スタナンを調製する反応時間は、室温で2~3時間である。また、化合物(1a)とリチウム ジイソプロピルアミドから0℃(反応容器の外温)にて調製したアニオン化した化合物と、トリブチル((クロロメトキシ)メチル)スタナンとの反応時間は、室温で1時間である。
 化合物(3a)、パラホルムアルデヒドおよびクロロトリメチルシランからトリブチル((クロロメトキシ)メチル)スタナンを調製する反応温度は、上述のとおり用いる出発原料の種類などに左右されるが、好適には室温である。化合物(1a)をアニオン化して調製した化合物とトリブチル((クロロメトキシ)メチル)スタナンとの反応の好ましい反応温度は、上述のとおり用いる出発原料の種類などに左右されるが、好適には室温である。
 パラホルムアルデヒド1モル当り、化合物(3a)は1モル、クロロトリメチルシランは溶媒量、化合物(1a)は2モル、リチウム ジイソプロピルアミドは2モルを用いることが好ましい。
工程B
 本工程は、化合物(I)を得る工程である。
〔工程B-1〕
 工程B-1は、適切な溶剤中、化合物(V)と化合物(IV)とのカップリング反応により化合物(I)を製造する工程である。
Figure JPOXMLDOC01-appb-C000022
[式中、環Z、X、X、Ra1~Ra6、QおよびQは前記定義と同義である。]
 本反応は、窒素、アルゴン等の不活性気体の気流下または雰囲気下でも行うことができる。
 化合物(V)としては、市販されている化合物および公知の化合物、またはこれらの化合物から公知の方法を用いて製造することができる化合物から選択される任意の化合物を用いることができる。
 工程B-1は、この反応の触媒として有効な金属触媒の存在下で行う。金属触媒としては、特にパラジウム触媒が好ましい。パラジウム触媒の具体例としては、酢酸パラジウム(II)、トリス(ジベンジリデンアセトン)ジパラジウム(0)、ビス(ジベンジリデンアセトン)パラジウム(0)、パラジウム オン カーボン、ビス(トリフェニルホスフィン)パラジウム(II)クロリド、テトラキス(トリフェニルホスフィン)パラジウム(0)等が挙げられ、酢酸パラジウム(II)、トリス(ジベンジリデンアセトン)ジパラジウム(0)、およびビス(ジベンジリデンアセトン)パラジウム(0)が特に好ましい。
 上記金属触媒は、化合物(V)1モルに対して、0.001~0.5モルを用いることが好ましく、0.05~0.2モルを用いることがさらに好ましい。
 工程B-1は、上記金属触媒とともに、ホスフィン化合物の存在下で行うことが特に好ましい。また、良好な結果を得るために、リチウムクロリドなどのハロゲン化合物や、tert-ブチルジメチルクロロシランなどケイ素化合物を加えることもできる。
 上記ホスフィン化合物としては、例えば、トリフェニルホスフィン、2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル、2-ジシクロヘキシルホスフィノ-2’,6’-ジイソプロポキシビフェニル、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル、2-[ビス[3,5-ビス(トリフルオロメチル)フェニル]ホスフィノ]-3,6-ジメトキシ-2’,4’,6’-トリイソプロピル-1,1’-ビフェニル等が挙げられるが、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニルが特に好ましい。
 ホスフィン化合物の使用量は、化合物(V)1モルに対して、0.001~2モルであることが好ましく、0.05~0.8モルであることがさらに好ましい。
 上記ハロゲン化合物としては、リチウムクロリド、テトラブチルアンモニウムクロリド、ポタシウムヨージドが特に好ましい。また、ハロゲン化合物の使用量は、化合物(V)1モルに対して、1~3モルであることが好ましい。
 上記ケイ素化合物としては、tert-ブチルジメチルクロロシランが特に好ましい。また、ケイ素化合物の使用量は、化合物(V)1モルに対して、1~2モルであることが好ましい。
 工程B-1においては、化合物(V)1モルに対して、化合物(IV)を1~1.5モルを用いることが好ましく、1~1.2モル当量を用いることがさらに好ましい。
 工程B-1で用いる溶剤としては、出発原料をある程度溶解可能であり、かつ、反応を阻害しないものであれば、特に制限はない。溶媒の例としては、テトラヒドロフラン、1,2-ジメトキシエタン、メチル-tert-ブチルエーテル、シクロペンチルメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテルおよびジシクロペンチルエーテル等のエーテル系溶剤、ベンゼンおよびトルエン等の芳香族炭化水素系溶剤、ヘプタンおよびヘキサン等の脂肪炭化水素系溶剤、N,N-ジメチルホルムアミドおよびN-メチルピロリジノン等のアミド系溶剤、ならびにこれらの混合溶剤等を挙げることができ、特に好ましい溶剤は1,4-ジオキサンである。
 工程B-1の具体的な反応条件、反応の後処理、および精製方法は、後述する実施例1、実施例2、実施例4、実施例6~14に記載した条件を参考にすることにより、実施例に示した以外の出発物質を用いる場合でも、当業者であれば容易にその反応実施のために最適な条件を決定することができる。
 工程B-1の反応温度および反応時間は、用いる出発原料の種類、用いる溶剤の種類、反応温度に左右されるが、当業者は容易に最適な反応温度および反応時間を決定できる。反応温度は、通常、50℃~150℃(反応容器の外温)であることが好ましく、80℃~140℃(反応容器の外温)であることがさらに好ましい。通常、全ての原料を混合した後、撹拌下で1~72時間反応を行うことが好ましく、1~20時間反応を行うことがさらに好ましい。
〔工程B-2~工程B-8〕
 化合物(I)中のXが、水酸基、-B(OH)、ボロン酸エステル基、環状ボロン酸エステル基、ボラニル基、環状ボラニル基、-BFn1、-Sn(R12)(R13)(R14)または脱離基である、化合物(I-1)~(I-5)については、下記工程B-2~工程B-8によっても製造することができる。
Figure JPOXMLDOC01-appb-C000023
[式中、環Z、X、Ra1~Ra6、R12~R14、Lおよびn1は、前記定義と同義である。Uは、-B(OH)、ボロン酸エステル基、環状ボロン酸エステル基、置換ボラニル基または環状ボラニル基を意味する。]
〔工程B-2〕
 工程B-2は、化合物(V)におけるXが水酸基である化合物(V-1)と化合物(IV)とのカップリング反応により化合物(I-1)を製造する工程である。化合物(V-1)としては、市販されている化合物および公知の化合物、またはこれらの化合物から公知の方法を用いて製造することができる化合物から選択される任意の化合物を用いることができる。本工程は、上記工程B-1と同様の条件により行うことができる。
 本工程に前後して、必要に応じて、化合物(V-1)の水酸基を適切な保護基を用いて保護、または脱保護を施してもよい。
 水酸基を保護する工程および水酸基の保護基を脱保護する工程は、例えば、Protective Groups in Organic Synthesis, third edition, pp. 246-287,1999,JOHN WILEY & SONS, INC等、当業者に一般的に用いられている方法により行うことができる。保護基の種類は、例えば、tert-ブチルジメチルシリルエーテルや、メトキシメチルエーテルなどエーテル系の保護基や、ピバロエートなどエステル系の保護基を用いることができる。
〔工程B-3〕
 工程B-3は、化合物(I-1)の水酸基を、トリフルオロメタンスルホニルオキシ基などの脱離基に変換し、化合物(I-2)を製造する工程である。本工程は、例えば、Synthesis, Vol.44, pp.1631-1636; 2012、 Tetrahedron Letters, Vol.53, pp.377-379; 2012、Tetrahedron Letters, Vol.52, pp.6346-6348; 2011、Journal of Medicinal Chemistry, Vol.55, pp.10610-10629; 2012、 Journal of Medicinal Chemistry, Vol.55, pp.10475-10489; 2012、 Journal of Medicinal Chemistry, Vol.54, pp.8174-8187; 2011、 Journal of Heterocyclic Chemistry, Vol.22, pp.1621-1630; 1985、等、当業者に一般的に用いられている方法により行うことができる。また、本工程は、より具体的には、後述の実施例14に記載された反応条件、反応後操作、精製方法等を参考にして行うことができる。
〔工程B-4〕
 工程B-4は、化合物(I-2)の脱離基を、置換スタニル基に変換し、化合物(I-3)を製造する工程である。本工程は、例えば、Synthesis, Vol.44, pp.3496-3504; 2012、 Organic Letters, Vol.14, pp.4630-4633; 2012、 Synthesis, Vol.44, pp.2959-2963; 2012、 Tetrahedron, Vol.69, pp.902-909; 2013、 Journal of the American Chemical Society, Vol.133, pp.17777-17785; 2011、 Chemistry - A European Journal, Vol.18, pp.5565-5573; 2012等の、当業者に一般的に用いられている方法により行うことができる。
〔工程B-5〕
 工程B-5は、化合物(I-2)の脱離基を、ボロン酸エステル基などの含ホウ素置換基に変換し、化合物(I-4)を製造する工程である。本工程は、例えば、Chemical & Pharmaceutical Bulletin, Vol.31, pp.4573; 1982、Journal of Medicinal Chemistry, Vol.51, pp.6280-6292; 2008、 Journal of Organometallic Chemistry, Vol.292, pp.119-132; 1985、 Tetrahedron Letters, Vol.53, pp.4873-4876; 2012、 Journal of Medicinal Chemistry, Vol.51, pp.6280-6292; 2008、European Journal of Organic Chemistry, No.7, pp.1678-1684; 2006等の、当業者に一般的に用いられている方法により行うことができる。
〔工程B-6〕
 工程B-6は、化合物(I-4)の含ホウ素置換基を、トリフルオロホウ素置換基に変換し、化合物(I-5)を製造する工程である。本工程は、例えば、Journal of Medicinal Chemistry, Vol.54, pp.6761-6770; 2011、 Organic Letters, Vol.14, pp.5058-5061; 2012、 Tetrahedron, Vol.69, pp.1546-1552; 2013等の、当業者に一般的に用いられている方法により行うことができる。
〔工程B-7〕
 工程B-7は、化合物(I-2)の脱離基を、トリフルオロホウ素置換基に変換し、化合物(I-5)を製造する工程である。本工程は、例えば、Organic Letters, Vol.14, pp.4814-4817; 2012、 Journal of the American Chemical Society, Vol.134, pp.11667-11673; 2012、 Journal of the American Chemical Society, Vol.132, pp.17701-17703; 2010、 Tetrahedron, Vol.68, pp.1351-1358; 2012、 Organic Letters, Vol.14, pp.5058-5061; 2012、Journal of Medicinal Chemistry, Vol.54, pp.5174-5184; 2011等の、当業者に一般的に用いられている方法により行うことができる。
〔工程B-8〕
 工程B-8は、化合物(V)のXが脱離基である化合物(V-2)と、化合物(IV)とを反応させることにより化合物(I-2)を製造する工程である。化合物(V-2)としては、市販されている化合物および公知の化合物、またはこれらの化合物から公知の方法を用いて製造することができる化合物から選択される任意の化合物を用いることができる。本工程は、上記工程B-1と同様の条件により行うことができる。
〔工程B-9~B-11〕
 化合物(I)中のXが、カルボキシ基である化合物(I-6)については、下記工程B-9~工程B-11によっても製造することができる。
Figure JPOXMLDOC01-appb-C000024
[式中、環Z、X、Q、Q、Ra1~Ra6は、前記定義と同義である。R000はカルボン酸の保護基を意味する。]
〔工程B-9〕
 工程B-9は、化合物(V-3)のカルボン酸を保護することにより化合物(V-4)を製造する工程である。化合物(V-3)としては、市販されている化合物および公知の化合物、またはこれらの化合物から公知の方法を用いて製造することができる。本工程は、例えば、Protective Groups in Organic Synthesis, third edition, pp. 369-451,1999,JOHN WILEY & SONS, INC等、一般的に用いられている方法により行うことができる。保護基の種類は、例えば、メチルエステルなどエステル系の保護基を用いることができ、工程B-10および工程B-11に適しているものであれば、任意のものを用いることができる。また、本工程は、より具体的には、後述の実施例2または実施例10に記載された反応条件、反応後操作、精製方法等を参考にして行うことができる。
〔工程B-10〕
 工程B-10は、化合物(V-4)と化合物(IV)とのカップリング反応により化合物(I-a)を製造する工程である。本工程は、上記工程B-1と同様の条件により行うことができる。また、本工程は、より具体的には、後述の実施例2、実施例8、実施例10、実施例11、実施例12に記載された反応条件、反応後操作、精製方法等を参考にして行うことができる。
〔工程B-11〕
 工程B-11は、化合物(I-a)のカルボン酸の保護基を脱保護することにより、化合物(I-6)を製造する工程である。本工程は、例えば、Protective Groups in Organic Synthesis, third edition, pp. 246-287,1999,JOHN WILEY & SONS, INC等、当業者に一般的に用いられている方法により行うことができる。また、本工程は、より具体的には、後述の実施例3に記載された反応条件、反応後操作、精製方法等を参考にして行うことができる。
〔工程B-12〕
 化合物(I)のXが、NR1617である、化合物(I-7)については、下記工程B-12により製造することができる。
Figure JPOXMLDOC01-appb-C000025
[式中、環Z、X、Q、Q、Ra1~Ra6、R16およびR17は、前記定義と同義である。]
 化合物(V-5)としては、市販されている化合物および公知の化合物、またはこれらの化合物から公知の方法を用いて製造することができる。R16およびR17の少なくとも一方がアミンの保護基の場合、化合物(I-7)は、対応する一級あるいは二級アミンから公知の方法、例えば、Protective Groups in Organic Synthesis, third edition, pp. 494-592,1999,JOHN WILEY & SONS, INCに記載の方法により、合成することができる。保護基の種類は、工程B-12およびそれに続く脱保護の工程に適しているものであれば、任意のものを用いることができ、例えば、tert-ブトキシカルボニル基などカルバメート系の保護基や、N-フタルイミドなど環状イミド系の保護基を用いることができる。また、アミンの保護および脱保護に関して、より具体的には、後述の実施例9に記載された反応条件、反応後操作、精製方法等を参考にして行うことができる。
〔工程B-12〕
 工程B-12は、化合物(V-5)と化合物(IV)とのカップリング反応により化合物(I-7)を製造する工程である。本工程は、上記工程B-1と同様の条件により行うことができる。また、本工程は、より具体的には、後述の実施例6、実施例7、実施例9、実施例11、実施例14に記載された反応条件、反応後操作、精製方法等を参考にして行うことができる。
Figure JPOXMLDOC01-appb-C000026
[式中、環ZおよびXは、前記定義と同義である。Halはハロゲン原子を意味する。]
[工程B-13]
 工程B-13は、化合物(I-6)のカルボキシ基を、tert-ブトキシカルボニル基で保護されたアミンに変換し、化合物(I-8)を製造する工程である。化合物(I-6)としては、市販されている化合物および公知の化合物、またはこれらの化合物から公知の方法を用いて製造することができる。本工程は、例えば、Journal of Medicinal Chemistry, Vol.48, pp.1886-1900; 2005等、一般的に用いられている方法により行うことができる。また、本工程は、より具体的には、後述の実施例40に記載された反応条件、反応後操作、精製方法等を参考にして行うことができる。
[工程B-14]
 工程B-14は、化合物(I-8)のアミンの保護基を脱保護することにより、化合物(I-9)を製造する工程である。化合物(I-8)としては、市販されている化合物および公知の化合物、またはこれらの化合物から公知の方法を用いて製造することができる。本工程は、例えば、Protective Groups in Organic Synthesis, third edition, pp.520-525, 1999,JOHN WILEY & SONS, INC等、一般的に用いられている方法により行うことができる。本工程は、より具体的には、後述の実施例41に記載された反応条件、反応後操作、精製方法等を参考にして行うことができる。
[工程B-15]
 工程B-15は、化合物(I-9)のアミノ基をハロゲンに変換して、化合物(I-10)を製造する工程である。化合物(I-9)としては、市販されている化合物および公知の化合物、またはこれらの化合物から公知の方法を用いて製造することができる。本工程は、例えば、Bioorganic and Medicinal Chemistry, Vol.7, pp.1845-1855; 1999等、一般的に用いられている方法により行うことができる。また、本工程は、より具体的には、後述の実施例32および実施例33に記載された反応条件、反応後操作、精製方法等を参考にして行うことができる。
 以下、実施例に基づいて、本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 プロトン核磁気共鳴スペクトル(H-NMR)の化学シフトは、テトラメチルシランに対するδ単位(ppm)で記録され、カップリング定数はヘルツ(Hz)で記録されている。なお、***パターンの略号は以下の通りである。
s:シングレット、d:ダブレット、t:トリプレット、q:カルテット、m:マルチプレット、br s:ブロードシングレット。
 実施例中で使用する略語は、以下のとおり理解される。
X-Phos:2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル
LCMS:液体クロマトグラフィー質量分析法
DMSO:ジメチルスルホキシド
MS:質量スペクトル
[実施例1]
1,2,5,7-テトラヒドロ-フロ[3,4-d]ピリダジン-1-オン
Figure JPOXMLDOC01-appb-C000027
 4,5-ジクロロ-2,3-ジヒドロ-ピリダジン-3-オン(160mg、1.00mmol)と製造例1-2に記載のトリブチル{[(トリブチルスタニル)メトキシ]]メチル}スタナン(620mg、1.0mmol)の1,4-ジオキサン(10mL)溶液にtert-ブチルジメチルクロロシラン(180mg、1.2mmol)を室温で加え、同温で30分攪拌した。反応混合物にX-Phos(190mg、0.40mmol)とトリス(ジベンジリデンアセトン)ジパラジウム(92mg、0.10mmol)を室温で加えた後、100℃にて14時間攪拌した。反応混合物を減圧下濃縮した後、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=2:1)で精製し、標記化合物(110mg、78%収率)を得た。
H-NMR Spectrum(400MHz,CDCl)δ(ppm):5.09-5.14(m,4H),7.86(s,1H),11.45(br s,1H).
 出発物質であるトリブチル{[(トリブチルスタニル)メトキシ]メチル}スタナンは以下の2種類の合成法で製造した。
[製造例1-1]
(トリブチルスタニル)メタノール
Figure JPOXMLDOC01-appb-C000028
 ジイソプロピルアミン(5.3mL、38mmol)とテトラヒドロフラン(120mL)の混合物に、-78℃でn-ブチルリチウム(1.6M ヘキサン溶液、22mL、36mmol)を滴下し、同温で30分間撹拌した。反応混合物に同温でトリブチルチン ハイドライド(9.2mL、34mmol)を滴下した。反応混合物を0℃で30分間撹拌した。反応混合物を-78℃に冷却し、パラホルムアルデヒド(1.2g、41mmol)を加え、室温まで徐々に昇温した。室温でさらに30分間撹拌した後、反応混合物に水を加え、ジエチルエーテルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。溶液をろ過し、減圧下濃縮した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘプタン=1:10)にて精製し、標記化合物(4.7g、43%収率)を得た。
H-NMR Spectrum(400MHz,CDCl)δ(ppm):0.87-0.95(m,15H),1.24-1.37(m,6H),1.47-1.58(m,6H),3.99-4.05(m,2H).
[製造例1-2]
トリブチル{[(トリブチルスタニル)メトキシ]メチル}スタナン
Figure JPOXMLDOC01-appb-C000029
 パラホルムアルデヒド(0.10mg、3.1mmol)とクロロトリメチルシラン(5.0mL、3.1mmol)の混合物を室温で1時間撹拌した。反応混合物に、製造例1-1に記載の(トリブチルスタニル)メタノール(1.0g、3.1mmol)を室温で加え、同温で2時間撹拌した。溶媒を減圧下濃縮し、粗体のトリブチル((クロロメトキシ)メチル)スタナンを得た。ジイソプロピルアミン(0.87mL、6.2mmol)とテトラヒドロフラン(10mL)の混合物に、-78℃でn-ブチルリチウム(1.6M ヘキサン溶液、3.8mL、6.2mmol)を滴下し、同温で30分間撹拌した。反応混合物に同温でトリブチルチン ハイドライド(1.7mL、6.2mmol)を滴下した後、0℃で30分間撹拌した。反応混合物を-78℃に冷却し、同温で、上記粗体のトリブチル((クロロメトキシ)メチル)スタナンとテトラヒドロフラン(5mL)の混合物を滴下した。反応混合物を徐々に室温まで昇温し、同温でさらに1時間撹拌した。反応混合物に水を加え、ジエチルエーテルで抽出した。有機層を飽和食塩水で洗浄し、有機層を無水硫酸マグネシウムで乾燥させた。減圧下濃縮し、残渣を中性シリカゲルカラムクロマトグラフィー(酢酸エチル:ヘプタン=1:10)にて精製し、標記化合物(450mg、23%収率)を得た。
H-NMR Spectrum(400MHz,CDCl)δ(ppm):0.85-0.92(m,30H),1.30(dq,J=14.9,7.2Hz,12H),1.45-1.54(m,12H),3.63-3.69(m,4H).
 トリブチル{[(トリブチルスタニル)メトキシ]メチル}スタナンの合成の別法
[製造例1-3]
ヨード(ヨードメトキシ)メタン
Figure JPOXMLDOC01-appb-C000030
 ヨードトリメチルシラン(25g、0.13mol)、1,3,5-トリオキサン(4.0g、44mmol)の反応混合物を40℃で15時間撹拌した。反応混合物を室温に冷却後、減圧下で溶媒を濃縮した。残渣を減圧下で蒸留(7mmHg、約80℃)することにより、標記化合物(13g、98%収率)を得た。
H-NMR Spectrum(400MHz,CDCl)δ(ppm):5.71(s,4H).
[製造例1-4]
トリブチル{[(トリブチルスタニル)メトキシ]メチル}スタナン
Figure JPOXMLDOC01-appb-C000031
 ジイソプロピルアミン(0.57mL、4.0mmol)とテトラヒドロフラン(10mL)の混合物に、-78℃でn-ブチルリチウム(1.6M ヘキサン溶液、2.5mL、4.0mmol)を滴下し、同温で30分間撹拌した。反応混合物に同温でトリブチルチン ハイドライド(1.1mL、4.0mmol)を滴下した。反応混合物を0℃で30分間撹拌した。反応混合物を-78℃とし、同温で、製造例1-3に記載のヨード(ヨードメトキシ)メタン(500mg、1.7mmol)を加えた。反応混合物を徐々に室温とし、同温で1時間撹拌した。反応混合物に水を加え、ジエチルエーテルで抽出した。有機層を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥させた。減圧下溶媒を濃縮し、残渣を中性シリカゲルカラムクロマトグラフィー(酢酸エチル:ヘプタン=1:10)にて精製し、標記化合物(0.18g、17%収率)を得た。
H-NMR Spectrum(400MHz,CDCl)δ(ppm):0.85-0.92(m,30H),1.30(dq,J=14.9,7.2Hz,12H),1.45-1.54(m,12H),3.63-3.69(m,4H).
[実施例2]
メチル 4,6-ジヒドロフロ[3,4-b]フラン-2-カルボキシレート
Figure JPOXMLDOC01-appb-C000032
 製造例2-1に記載のメチル 4,5-ジブロモフラン-2-カルボキシレート(50mg、0.18mmol)、製造例1-2に記載のトリブチル{[(トリブチルスタニル)メトキシ]メチル}スタナン(110μL、0.18mmol)、および1,4-ジオキサン(2.0mL)の混合物に、窒素雰囲気下、室温でビス(ジベンジリデンアセトン)パラジウム(10mg、18μmol)とX-Phos(17mg、35μmol)を加えた。反応混合物を100℃で10時間攪拌した。反応混合物を室温に冷却し、セライトを用いてろ過した。ろ液に水を加え、酢酸エチルで二回抽出した。有機層を合わせ、水および飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥させた。溶媒を減圧下留去し、残渣を精製用薄層クロマトグラフィー(酢酸エチル:ヘプタン=1:8の混合溶媒で3回溶媒を展開させた)で精製し、標記化合物(13mg、43%収率)を得た。
H-NMR Spectrum(400MHz,CDCl)δ(ppm):3.90(s,3H),4.83-4.87(m,4H),7.09(s,1H).
MS(ESI)m/z 168.9(MH)
[製造例2-1]
メチル 4,5-ジブロモフラン-2-カルボキシレート
Figure JPOXMLDOC01-appb-C000033
 4,5-ジブロモフラン-2-カルボキシリック アシッド(500mg、1.9mmol)、ジクロロメタン(5.0mL)、およびN,N-ジメチルホルムアミド(触媒量)の混合物に、0℃でオキザリルクロライド(210μL、2.4mmol)を滴下した。反応混合物を室温にて1時間攪拌した。溶媒を減圧下留去した後、トリエチルアミン(340μL、2.4mmol)、メタノール(4.0mL)を加え、室温で1時間攪拌した。溶媒を減圧下留去した後、飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出した。有機層を水および飽和食塩水で順次洗浄し、硫酸ナトリウムで乾燥させた。溶媒を減圧下留去し、標記化合物(460mg、88%収率)を得た。
H-NMR Spectrum(400MHz,CDCl)δ(ppm):3.90(s,3H),7.18(s,1H).
[実施例3]
4,6-ジヒドロフロ[3,4-b]フラン-2-カルボキシリック アシッド
Figure JPOXMLDOC01-appb-C000034
 実施例2に記載のメチル 4,6-ジヒドロフロ[3,4-b]フラン-2-カルボキシレート(13mg、75μmol)とエタノール(2.0mL)の混合物に、室温で5M水酸化ナトリウム水溶液(30μL)を加え、70℃で1時間攪拌した。反応混合物を室温とし、溶媒を減圧下留去した後、水を加えた。水層をエーテルで洗浄した後、2M塩酸(200μL)を加えて中和し、酢酸エチルで二回抽出した。有機層を合わせ、硫酸ナトリウムで乾燥させた。溶媒を減圧下留去し、標記化合物(8.5mg、74%収率)を得た。
H-NMR Spectrum(400MHz,CDCl)δ(ppm):4.86-4.90(m,4H),7.20(s,1H).
[実施例4]
4,6-ジヒドロチエノ[2,3-c]フラン-2-カルボアルデヒド
Figure JPOXMLDOC01-appb-C000035
 4,5-ジブロモチオフェン-2-カルボアルデヒド(270mg、1.0mmol)と製造例1-2に記載のトリブチル{[(トリブチルスタニル)メトキシ]メチル}スタナン(620mg、1.0mmol)、N-メチルピロリドン(10mL)、およびキシレン(1mL)の混合物に、X-Phos(95mg、0.20mmol)とトリス(ジベンジリデンアセトン)ジパラジウム(92mg、0.10mmol)を室温で加え、80℃にて14時間攪拌した。反応混合物を減圧下濃縮した後、シリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:5)で精製し、標記化合物(80mg、52%収率)を得た。
H-NMR Spectrum(400MHz,CDCl)δ(ppm):4.99(t,J=4.0Hz,2H),5.12(t,J=4.0Hz,2H),7.49(s,1H),9.83(s,1H).
[実施例5]
(4,6-ジヒドロチエノ[2,3-c]フラン-2-イル)メタノール
Figure JPOXMLDOC01-appb-C000036
 実施例4に記載の4,6-ジヒドロチエノ[2,3-c]フラン-2-カルボアルデヒド(5.0mg、0.032mmol)のテトラヒドロフラン(0.5mL)とエタノール(0.3mL)の溶液に水素化ホウ素ナトリウム(1.2mg、0.032mmol)を室温で加え、同温で30分攪拌した。反応混合物に1M塩酸を加え、酢酸エチルで抽出した。有機層を減圧下濃縮し、標記化合物(2.0mg、39%収率)を得た。
H-NMR Spectrum(400MHz,CDCl)δ(ppm):4.77(s,2H),4.93(t,J=4.0Hz,2H),5.06(t,J=4.0Hz,2H),6.76(s,1H).
[実施例6]
2-アミノ-5,7-ジヒドロフロ[3,4-b]ピラジン
Figure JPOXMLDOC01-appb-C000037
 2-アミノ-5-ブロモ-6-クロロ-ピラジン(21mg、0.10mmol)、製造例1-2に記載のトリブチル{[(トリブチルスタニル)メトキシ]メチル}スタナン(62mg、0.10mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(9.2mg、0.010mmol)、X-Phos(19mg、0.040mmol)および1,4-ジオキサン(1.0mL)の混合物を加熱還流下、20時間撹拌した。室温に冷却後、セライトを用いてろ過し、減圧下濃縮した。残渣を精製用薄層クロマトグラフィー(酢酸エチル:ヘプタン=5:1)にて分離精製し、標記化合物(3.6mg、26%収率)を得た。
H-NMR Spectrum(400MHz,CDCl)δ(ppm):4.55(br s,2H),4.87-5.13(m,4H),7.83(s,1H).
[実施例7]
2-アミノ-5,7-ジヒドロフロ[3,4-b]ピリジン
Figure JPOXMLDOC01-appb-C000038
 6-アミノ-2,3-ジブロモピリジン(25mg、0.10mmol)、製造例1-2に記載のトリブチル{[(トリブチルスタニル)メトキシ]メチル}スタナン(62mg、0.10mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(9.2mg、0.010mmol)、X-Phos(19mg、0.040mmol)および1,4-ジオキサン(1.0mL)を加熱還流下、20時間撹拌した。室温に冷却後、セライトを用いてろ過し、減圧下濃縮した。残渣を精製用薄層クロマトグラフィー(酢酸エチル:ヘプタン=5:1)にて分離精製し、標記化合物(3.4mg、25%収率)を得た。
H-NMR Spectrum(400MHz,CDCl)δ(ppm):4.44(br s,2H),4.80-5.18(m,4H),6.38(d,J=8.1Hz,1H),7.31(d,J=8.4Hz,1H).
[実施例8]
メチル 4,6-ジヒドロ-1H-フロ[3,4-b]ピロール-2-カルボキシレート
Figure JPOXMLDOC01-appb-C000039
 メチル 4,5-ジブロモ-1H-ピロール-2-カルボキシレート(27mg、0.10mmol)、製造例1-2に記載のトリブチル{[(トリブチルスタニル)メトキシ]メチル}スタナン(62mg、0.10mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(9.2mg、0.010mmol)、X-Phos(19mg、0.040mmol)および1,4-ジオキサン(1.0mL)を加熱還流下、17時間撹拌した。室温に冷却後、セライトを用いてろ過し、減圧下濃縮した。残渣を精製用薄層クロマトグラフィー(酢酸エチル:ヘプタン=3:1)にて分離精製し、標記化合物(2.6mg、17%収率)を得た。
H-NMR Spectrum(400MHz,CDCl)δ(ppm):3.85(s,3H),4.89(s,4H),6.69(d,J=1.5Hz,1H),8.98(br s,1H).
[実施例9]
tert-ブチル N-[(tert-ブトキシ)カルボニル]-N-{1,3-ジヒドロフロ[3,4―c]ピリジン-6-イル}カルバメート
Figure JPOXMLDOC01-appb-C000040
 製造例9-1に記載のtert-ブチル N-[(tert-ブトキシ)カルボニル]-N-(4,5-ジクロロピリジン-2-イル)カルバメート(36mg、0.10mmol)、製造例1-2に記載のトリブチル{[(トリブチルスタニル)メトキシ]メチル}スタナン(62mg、0.10mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(9.2mg、0.010mmol)、X-Phos(19mg、0.040mmol)、および1,4-ジオキサン(1.0mL)の混合物を加熱還流下、14時間撹拌した。反応混合物を室温に冷却した後、セライトを用いてろ過し、減圧下濃縮した。残渣を精製用薄層クロマトグラフィー(酢酸エチル:ヘプタン=1:2)にて分離精製し、標記化合物(11mg、32%収率)を得た。
H-NMR Spectrum(400MHz,CDCl)δ(ppm):1.47(s,18H),5.10(s,2H),5.15(s,2H),7.16(d,J=0.73Hz,1H),8.38(d,J=0.73Hz,1H).
[製造例9-1]
tert-ブチル N-[(tert-ブトキシ)カルボニル]-N-(4,5-ジクロロピリジン-2-イル)カルバメート
Figure JPOXMLDOC01-appb-C000041
 2-アミノ-4,5-ジクロロピリジン(0.10g、0.61mmol)、ジイソプロピルエチルアミン(0.26mL、1.5mmol)のジクロロメタン(10mL)溶液に、ジ-tert-ブチル ジカルボネート(0.32g、1.5mmol)を加え、室温にて終夜撹拌した。反応混合物に水を加え、酢酸エチルを用いて抽出した。有機層を飽和塩化ナトリウム水溶液で洗浄し、無水硫酸マグネシウムで乾燥させた。溶媒を減圧下濃縮した後に、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘプタン=1:5)にて分離精製し、標記化合物(0.18g、80%収率)を得た。
H-NMR Spectrum(400MHz,CDCl)δ(ppm):1.48(s,18H),7.46(s,1H),8.46(s,1H).
[実施例10]
メチル 4,6-ジヒドロフロ[3,4-d]イソチアゾール-3-カルボキシレート
Figure JPOXMLDOC01-appb-C000042
 製造例10-1に記載のメチル 4,5-ジクロロ-イソチアゾール-3-カルボキシレート(21mg、0.10mmol)、製造例1-2に記載のトリブチル{[(トリブチルスタニル)メトキシ]メチル}スタナン(62mg、0.10mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(9.2mg、0.010mmol)、X-Phos(19mg、0.040mmol)および1,4-ジオキサン(1.0mL)の混合物を加熱還流下、14時間撹拌した。室温に冷却後、セライトを用いてろ過し、ろ液を減圧下濃縮した。残渣を精製用薄層クロマトグラフィー(酢酸エチル:ヘプタン=3:1)にて分離精製し、標記化合物(1.6mg、8.6%収率)を得た。
H-NMR Spectrum(400MHz,CDCl)δ(ppm):3.97(s,3H),5.18(dd,J=2.9,9.5Hz,4H).
[製造例10-1]
メチル 4,5-ジクロロ-イソチアゾール-3-カルボキシレート
Figure JPOXMLDOC01-appb-C000043
 4,5-ジクロロイソチアゾール-3-カルボキシリック アシッド(0.20g、1.0mmol)の、テトラヒドロフラン(5.0mL)およびメタノール(0.50mL)の混合溶液に、0℃でトリメチルシリルジアゾメタン(0.76mL、1.5mmol、2.0M テトラヒドロフラン溶液)を滴下した。その後室温で10分間撹拌した後に、0℃で、酢酸と水の混合物(1:1)を0.18mL滴下し、反応混合物を30分間撹拌した。反応混合物に水を加え、酢酸エチルで抽出した。有機層を飽和塩化ナトリウム水溶液で洗浄し、無水硫酸マグネシウムで乾燥させた。溶媒を減圧下濃縮した後に、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘプタン=1:10)にて分離精製し、標記化合物(0.18g、85%収率)を得た。
H-NMR Spectrum(400MHz,CDCl)δ(ppm):4.01(s,3H).
[実施例11]
メチル 3-アミノ-5,7-ジヒドロフロ[3,4-b]ピラジン-2-カルボキシレート
Figure JPOXMLDOC01-appb-C000044
 メチル 3-アミノ-5,6-ジクロロピラジン-2-カルボキシレート(20mg、0.090mmol)、製造例1-2に記載のトリブチル{[(トリブチルスタニル)メトキシ]メチル}スタナン(56mg、0.090mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(8.2mg、0.0090mmol)、X-Phos(26mg、0.054mmol)および1,4-ジオキサン(0.90mL)の混合物を加熱還流下、14時間撹拌した。室温に冷却後、セライトを用いてろ過し、減圧下濃縮した。残渣を精製用薄層クロマトグラフィー(酢酸エチル:ヘプタン=5:1)にて分離精製し、標記化合物(8.9mg、51%収率)を得た。
H-NMR Spectrum(400MHz,CDCl)δ(ppm):4.00(s,3H),4.92-5.09(m,4H).
[実施例12]
メチル 3-ヒドロキシ-4,6-ジヒドロチエノ[2,3-c]フラン-2-カルボキシレート
Figure JPOXMLDOC01-appb-C000045
 メチル 4,5-ジブロモ-3-ヒドロキシチオフェン-2-カルボキシレート(38mg、0.12mmol)、製造例1-2に記載のトリブチル{[(トリブチルスタニル)メトキシ]メチル}スタナン(75mg、0.12mmol)、酢酸パラジウム(2.7mg、0.012mmol)、X-Phos(12mg、0.025mmol)および1,4-ジオキサン(1.2mL)の混合物を、加熱還流下、14時間撹拌した。室温に冷却後、セライトを用いてろ過し、減圧下濃縮した。残渣を精製用薄層クロマトグラフィー(酢酸エチル:ヘプタン=1:5)にて分離精製し、標記化合物(11mg、44%収率)を得た。
H-NMR Spectrum(400MHz,CDCl)δ(ppm):3.89(s,3H),4.87-5.11(m,4H).
[実施例13]
2-クロロ-4,6-ジヒドロチエノ[2,3-c]フラン
Figure JPOXMLDOC01-appb-C000046
 3-ブロモ-2,5-ジクロロチオフェン(23mg、0.10mmol)、製造例1-2に記載のトリブチル{[(トリブチルスタニル)メトキシ]メチル}スタナン(62mg、0.10mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(9.2mg、0.010mmol)、X-Phos(19mg、0.040mmol)の反応混合物に1,4-ジオキサン(1mL)を加え、加熱還流下、15時間撹拌した。室温に冷却後、ジクロロメタン(1mL)と飽和フッ化カリウム水溶液(0.1mL)を加え、室温で1時間撹拌した。反応混合物をセライトを用いてろ過し、ろ液に水を加え、ジエチルエーテルで抽出した。有機層を飽和食塩水で洗浄し、溶媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィー(ジエチルエーテル:ヘキサン=1:15)で精製し、標記化合物(2.1mg、13%収率)を得た。GC-MSにて生成物を確認した。
MS(EI)m/z 159.97(M+・)
[実施例14]
4-アミノ-5,7-ジヒドロフロ[3,4-d]ピリミジン
Figure JPOXMLDOC01-appb-C000047
 5-ブロモ-6-クロロピリミジン-4-アミン(15mg、0.070mmol)、製造例1-1に記載のトリブチル{[(トリブチルスタニル)メトキシ]メチル}スタナン(53mg、0.084mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(6.4mg、0.0070mmol)、X-Phos(13mg、0.028mmol)の混合物に1,4-ジオキサン(0.7mL)を加え、マイクロウェーブ照射下、135℃で2時間撹拌した。室温に冷却後、減圧下濃縮した。残渣を精製用薄層クロマトグラフィー(酢酸エチル:メタノール=20:1)にて精製し、標記化合物(2.4mg、25%収率)を得た。
MS(ESI)m/z 138(MH)
[実施例15]
1-ブロモ-5,7-ジヒドロフロ[3,4-d]ピリダジン
Figure JPOXMLDOC01-appb-C000048
 実施例1に記載の2,3,4,6-テトラヒドロ-2H-フロ[3,4-d]ピリダジン-3-オン(10mg、0.072mmol)とホスホラス トリブロミド(0.3mL)の混合物を130℃で30分間撹拌した。反応混合物を氷に注ぎ、反応混合物に氷冷下で5N水酸化ナトリウム水溶液を滴下することにより中和した。反応混合物に水と酢酸エチルを加え、抽出した。有機層を飽和食塩水で洗浄し、溶媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘプタン=3:2)で精製し、標記化合物(1.3mg、9%収率)を、副生成物である3-ブロモ-4,5-ジメチルピリダジンとの混合物として得た。
H-NMR Spectrum(400MHz,CDCl)δ(ppm):5.12-5.16(m,2H),5.26-5.30(m,2H),9.16(s,1H).
MS(ESI)m/z 201(MH) and 203(MH)
[参考例1]
2,6-ジアミノ-N-[(4-{1,3-ジヒドロチエノ[2,3-c]フラン-2-イルメチル}フェニル)メチル]ピリジン-3-カルボキサミド
Figure JPOXMLDOC01-appb-C000049
 製造例16-2に記載の(4-{1,3-ジヒドロチエノ[2,3-c]フラン-2-イルメチル}フェニル)メチルアミン(5.1mg、0.0082mmol)とジメチルスルホキシド(1mL)の混合物に、室温でトリエチルアミン(3.4μL、0.025mmol)、2,6-ジアミノニコチニック アシッド(1.3mg、0.0082mmol)、1-ヒドロキシベンゾトリアゾール(1.7mg、0.012mmol)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド 塩酸塩(2.4mg、0.012mmol)を順次加え、室温で3日間撹拌した。反応混合物に水を加え、ジクロロメタンで抽出した。有機層を飽和食塩水で洗浄し、溶媒を減圧下留去した。残渣を精製用薄層クロマトグラフィー(酢酸エチル:メタノール=50:1)にて精製し、標記化合物(0.80mg、26%収率)を得た。
H-NMR Spectrum(400MHz,CDCl)δ(ppm):4.10(s,2H),4.54(d,J=5.5Hz,4H),4.88-4.92(m,2H),5.00-5.03(m,2H),5.77(d,J=8.4Hz,1H),6.02(br s,1H),6.47(br s,2H),6.54(s,1H),7.22-7.26(m,2H),7.27-7.31(m,2H),7.38(d,J=8.4Hz,1H).
[製造例16-1]
(1,3-ジヒドロチエノ[2,3-c]フラン-5-イル)(4-シアノフェニル)メタノール
Figure JPOXMLDOC01-appb-C000050
 4-ヨードベンゾニトリル(130mg、0.55mmol)とテトラヒドロフラン(1.5mL)の混合物に、氷冷下でイソプロピルマグネシウム クロリド(2.0M テトラヒドロフラン溶液、0.24mL,0.48mmol)を滴下し、同温で30分間撹拌した。反応混合物に、氷冷下で実施例4に記載の4,6-ジヒドロチエノ[2,3-c]フラン-2-カルボアルデヒド(67mg、0.44mmol)を加え、同温で30分間撹拌した。同温で、反応混合物に塩化アンモニウム水溶液を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、溶媒を減圧下留去した。残渣をNH-シリカゲルカラムクロマトグラフィー(酢酸エチル:ヘプタン=1:2)にて精製し、標記化合物(9.0mg、8.0%収率)を得た。
H-NMR Spectrum(400MHz,CDCl)δ(ppm):2.64(d,J=3.7Hz,1H),4.88-4.91(m,2H),5.02-5.05(m,2H),6.05(d,J=3.7Hz,1H),6.66(s,1H),7.57-7.61(m,2H),7.64-7.69(m,2H).
[製造例16-2]
(4-{1,3-ジヒドロチエノ[2,3-c]フラン-2-イルメチル}フェニル)メチルアミン
Figure JPOXMLDOC01-appb-C000051
 リチウム アルミニウム ハイドライド(8.0mg、0.21mmol)とテトラヒドロフラン(0.66mL)の混合物に、氷冷下でアルミニウム クロリド(37mg、0.28mmol)を加え、室温で1時間撹拌した。反応混合物に、氷冷下で、製造例16-1に記載の(1,3-ジヒドロチエノ[2,3-c]フラン-5-イル)(4-シアノフェニル)メタノール(9.0mg、0.035mmol)のテトラヒドロフラン(0.33mL)の混合物を滴下し、室温で2時間撹拌した。反応混合物に、氷冷下、アンモニア水溶液を加え、室温で30分間撹拌後、セライトを用いてろ過した。ろ液の溶媒を減圧下留去し、残渣をNH-シリカゲルを用いてろ過した(酢酸エチル:メタノール=10:1)。粗体として、標記化合物を得た。得られた化合物は、さらに精製することなく次の反応に用いた。
[参考例2]
5-アミノ-N-({4-[(ピリジン-2-イルオキシ)メチル]フェニル}メチル)-1,3-ジヒドロフロ[3,4-b]ピラジン-6-カルボキサミド
Figure JPOXMLDOC01-appb-C000052
 実施例16に記載のリチウム 3-アミノ-5,7-ジヒドロフロ[3,4-b]ピラジン-2-カルボキシレート(6.0mg、0.032mmol)とN,N-ジメチルホルムアミド(1mL)の混合物に、室温でWO2005/033079に記載の4-(ピリジン-2-イルオキシメチル)-ベンジルアミン(6.9mg、0.032mmol)、HATU(O-(7-アザベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム ヘキサフルオロホスフェート)(18mg、0.048mmol)およびN,N-ジイソプロピルエチルアミン(8.2μL、0.048mmol)を順次加え、室温で3日間撹拌した。反応混合物に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、溶媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘプタン=1:1)にて精製し、標記化合物(7.0mg、58%収率)を得た。
H-NMR Spectrum(400MHz,DMSO-d)δ(ppm):4.43(d,J=6.2Hz,2H),4.88(s,2H),4.90(s,2H),5.30(s,2H),6.84(d,J=8.1Hz,1H),6.96-7.00(m,1H),7.29-7.33(m,2H),7.36-7.40(m,2H),7.48-7.79(m,3H),8.15-8.18(m,1H),9.24(t,J=6.2Hz,1H).
[実施例16]
リチウム 3-アミノ-5,7-ジヒドロフロ[3,4-b]ピラジン-2-カルボキシレート
Figure JPOXMLDOC01-appb-C000053
 実施例11に記載のメチル 3-アミノ-5,7-ジヒドロフロ[3,4-b]ピラジン-2-カルボキシレート(24mg、0.12mmol)、テトラヒドロフラン(1mL)、メタノール(0.25mL)および水(0.25mL)の混合物に、室温でリチウム ヒドロキシド モノハイドレート(5.2mg、0.12mmol)を加え、室温で終夜撹拌した。反応混合物を減圧下溶媒留去し、標記化合物(23mg)を得た。
H-NMR Spectrum(400MHz,DMSO-d)δ(ppm):4.81(s,4H).
[比較例1]
2,6-ジアミノ-N-({4-[(4,5-ジメチルチオフェン-2-イル)メチル]フェニル}メチル)-ピリジン-3-カルボキサミド
Figure JPOXMLDOC01-appb-C000054
 製造例17-2に記載の{4-[(4,5-ジメチルチオフェン-2-イル)メチル]フェニル}メチルアミン(42mg、0.18mmol)とジメチルスルホキシド(1.5mL)の混合物に、室温でトリエチルアミン(76μL、0.55mmol)、2,6-ジアミノニコチニック アシッド(28mg、0.18mmol)、1-ヒドロキシベンゾトリアゾール(37mg、0.27mmol)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド 塩酸塩(52mg、0.27mmol)を順次加え、室温で終夜撹拌した。反応混合物に水を加え、ジクロロメタンで抽出した。有機層を飽和食塩水で洗浄し、溶媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:メタノール=50:1)にて精製し、標記化合物(27mg、40%収率)を得た。
H-NMR Spectrum(400MHz,DMSO-d)δ(ppm):1.99(s,3H),2.19(s,3H),3.94(s,2H),4.33(d,J=5.9Hz,2H),5.67(d,J=8.4Hz,1H),6.07(br s,2H),6.52(s,1H),6.94(br s,2H),7.17(q,J=8.4Hz,4H),7.66(d,J=8.4Hz,1H),8.31(t,J=5.9Hz,1H).
[製造例17-1]
(4,5-ジメチルチオフェン-2-イル)(4-シアノフェニル)メタノール
Figure JPOXMLDOC01-appb-C000055
 4-ヨードベンゾニトリル(100mg、0.44mmol)とテトラヒドロフラン(1.5mL)の混合物に、氷冷下でイソプロピルマグネシウム クロリド(2.0M テトラヒドロフラン溶液、0.24mL,0.48mmol)を滴下し、室温で30分間撹拌した。反応混合物に、氷冷下で4,5-ジメチルチオフェン-2-カルボアルデヒド(61mg、0.44mmol)を加え、同温で30分間撹拌した。同温で、反応混合物に塩化アンモニウム水溶液を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、溶媒を減圧下留去した。残渣をNH-シリカゲルカラムクロマトグラフィー(酢酸エチル:ヘプタン=1:2)にて精製し、標記化合物(44mg、41%収率)を得た。
H-NMR Spectrum(400MHz,DMSO-d)δ(ppm):2.06(s,3H),2.29(s,3H),2.34(d,J=3.7Hz,1H),5.98(d,J=3.7Hz,1H),6.61(s,1H),7.55-7.58(m,2H),7.63-7.67(m,2H).
[製造例17-2]
{4-[(4,5-ジメチルチオフェン-2-イル)メチル]フェニル}メチルアミン
Figure JPOXMLDOC01-appb-C000056
 リチウム アルミニウム ハイドライド(26mg、0.69mmol)とテトラヒドロフラン(2mL)の混合物に、氷冷下でアルミニウム クロリド(120mg、0.92mmol)を加え、室温で1時間撹拌した。反応混合物に、氷冷下で、製造例17-1に記載の(4,5-ジメチルチオフェン-2-イル)(4-シアノフェニル)メタノール(28mg、0.12mmol)とテトラヒドロフラン(1mL)の混合物を滴下し、室温で1時間撹拌した。反応混合物に、氷冷下、アンモニア水溶液を加え、室温で30分間撹拌後、セライトを用いてろ過した。ろ液の溶媒を減圧下留去し、残渣をNH-シリカゲルを用いてろ過した(酢酸エチル:メタノール=10:1)。粗体として、標記化合物を得た。得られた化合物は、さらに精製することなく次の反応に用いた。
[比較例2]
3-アミノ-5,6-ジメチル-N-({4-[(ピリジン-2-イルオキシ)メチル]フェニル}メチル)ピラジン-2-カルボキサミド
Figure JPOXMLDOC01-appb-C000057
 製造例18-2に記載のリチウム 3-アミノ-5,6-ジメチルピラジン-2-カルボキシレート(6.5mg、0.038mmol)とN,N-ジメチルホルムアミド(1mL)の混合物に、室温で、WO2005/033079に記載の4-(ピリジン-2-イルオキシメチル)-ベンジルアミン(8.1mg、0.038mmol)、HATU(O-(7-アザベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム ヘキサフルオロホスフェート)(21mg、0.056mmol)、N,N-ジイソプロピルエチルアミン(9.6μL、0.056mmol)を順次加え、室温で3日間撹拌した。反応混合物に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、溶媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘプタン=1:1)にて精製し、標記化合物(3.0mg、22%収率)を得た。
H-NMR Spectrum(400MHz,DMSO-d)δ(ppm):2.34(s,6H),4.45(d,J=6.2Hz,2H),5.31(s,2H),6.85(d,J=8.4Hz,1H),6.96-7.00(m,1H),7.19(br s,2H),7.28-7.33(m,2H),7.36-7.41(m,2H),7.71(ddd,J=8.6,7.0,2.0Hz,1H),8.16(dd,J=5.1,1.8Hz,1H),9.00(t,J=6.4Hz,1H).
[製造例18-1]
メチル 3-アミノ-5,6-ジメチルピラジン-2-カルボキシレート
Figure JPOXMLDOC01-appb-C000058
 メチル 3-アミノ-5,6-ジクロロ-2-ピラジンカルボキシレート(200mg、0.90mmol)、X-Phos(170mg、0.36mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(82mg、0.090mmol)、テトラメチルチン(0.31mL、2.3mmol)とN-メチルピロリジノン(2mL)の混合物を、130℃で2時間、マイクロウェーブ照射下で撹拌した。反応混合物を室温とし、同温で水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、溶媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘプタン=3:2)にて精製し、標記化合物(80mg、49%収率)を得た。
H-NMR Spectrum(400MHz,CDCl)δ(ppm):2.44(s,3H),2.46(s,3H),3.97(s,3H),6.22(br s,2H).
[製造例18-2]
リチウム 3-アミノ-5,6-ジメチルピラジン-2-カルボキシレート
 製造例18-1に記載のメチル 3-アミノ-5,6-ジメチルピラジン-2-カルボキシレート(71mg、0.39mmol)、テトラヒドロフラン(1mL)、メタノール(0.25mL)および水(0.25mL)の混合物に、室温でリチウム ヒドロキシド モノハイドレート(17mg、0.41mmol)を加え、室温で終夜撹拌した。反応混合物に、室温でテトラヒドロフラン(2mL)を加え、固体をろ取し、標記化合物(63mg、93%収率)を得た。
H-NMR Spectrum(400MHz,DMSO-d)δ(ppm):2.21(s,3H),2.28(s,3H).
[実施例19]
3-クロロ-5,7-ジヒドロフロ[3,4-b]ピリジン
Figure JPOXMLDOC01-appb-C000060
 2,3,5-トリクロロピリジン(200mg、1.1mmol)、製造例1-2に記載のトリブチル({[(トリブチルスタニル)メトキシ]メチル})スタナン(680mg、1.1mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(100mg、0.11mmol)、X-Phos(120mg、0.24mmol)および1,4-ジオキサン(11mL)の混合物を加熱還流下、18時間撹拌した。室温に冷却後、セライトを用いて反応混合物をろ過し、得られたろ液を減圧下濃縮した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘプタン=0:100-15:85、グラジエント)にて粗く精製した後、得られた粗精製物をNH-シリカゲルカラムクロマトグラフィー(酢酸エチル:ヘプタン=0:100-12:88、グラジエント)にて分離精製し、標記化合物(30mg、18%収率)を得た。
H-NMR Spectrum(400MHz,CDCl)δ(ppm):5.02-5.05(m,2H),5.13-5.17(m,2H),7.54(d,J=1.2Hz,1H),8.42-8.46(m,1H).
[実施例20]
3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-5,7-ジヒドロフロ[3,4-b]ピリジン
Figure JPOXMLDOC01-appb-C000061
 トリス(ジベンジリデンアセトン)ジパラジウム(5.9mg、0.0064mmol)、トリシクロヘキシルホスフィン(4.0mg、0.014mmol)および1,4-ジオキサン(1mL)の混合物を室温で15分撹拌した。混合物に実施例19に記載の3-クロロ-5,7-ジヒドロフロ[3,4-b]ピリジン(10mg、0.064mmol)、ビスピナコラートジボロン(20mg、0.077mmol)、酢酸カリウム(19mg、0.19mmol)を加え、加熱還流下、18時間撹拌した。室温に冷却後、セライトを用いて反応混合物をろ過し、得られたろ液を減圧下濃縮した。残渣を分取LCMS(移動相:アセトニトリル/水、0.1%酢酸)にて分離精製し、標記化合物(9mg、57%収率)を得た。
H-NMR Spectrum(400MHz,CDCl)δ(ppm):1.36(s,12H),5.09(t,J=2.0Hz,2H),5.16(br s,2H),7.94(s,1H),8.83(s,1H).
[実施例21]
3-(トリブチルスタニル)-5,7-ジヒドロフロ[3,4-b]ピリジン
Figure JPOXMLDOC01-appb-C000062
 実施例19に記載の3-クロロ-5,7-ジヒドロフロ[3,4-b]ピリジン(50mg、0.32mmol)、ヘキサ-(n-ブチル)ジチン(620mg、0.96mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)(37mg、0.032mmol)、塩化リチウム(68mg、1.6mmol)および1,4-ジオキサン(3mL)を混合し、得られた混合物をマイクロウェーブ照射下160℃で、1時間撹拌した。室温に冷却後、セライトを用いて反応混合物をろ過し、減圧下濃縮した。残渣を分取LCMS(移動相:アセトニトリル/水、0.1%酢酸)にて精製した後、得られた粗精製物をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘプタン=0:100-29:71、グラジエント)にて分離精製し、標記化合物(10mg、7.6%収率)を得た。
H-NMR Spectrum(400MHz,CDCl)δ(ppm):0.84-0.95(m,9H),1.02-1.20(m,6H),1.27-1.40(m,6H),1.43-1.63(m,6H),5.05-5.10(m,2H),5.17(d,J=0.78Hz,2H),7.63(d,J=0.78Hz,1H),8.45(s,1H).
[実施例22]
メチル 5,7-ジヒドロフロ[3,4-b]ピリジン-3-カルボキシレート
Figure JPOXMLDOC01-appb-C000063
 メチル 5,6-ジクロロピリジン-3-カルボキシレート(300mg、1.5mmol)、製造例1-2に記載のトリブチル({[(トリブチルスタニル)メトキシ]メチル})スタナン(910mg、1.5mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(130mg、0.15mmol)、X-Phos(150mg、0.32mmol)および1,4-ジオキサン(15mL)を混合し、混合物を加熱還流下、22時間撹拌した。反応混合物を室温に冷却後、フッ化カリウム水溶液を加え撹拌した。セライトを用いて反応混合物をろ過し、ろ液を減圧下濃縮した。残渣をNH-シリカゲルカラムクロマトグラフィー(酢酸エチル:ヘプタン=1:99-24:76、グラジエント)にて精製した後、得られた粗精製物をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘプタン=15:85-52:48、グラジエント)にて分離精製し、標記化合物(120mg、48%収率)を得た。
H-NMR Spectrum(400MHz,CDCl)δ(ppm):3.96(s,3H),5.12(t,J=1.8Hz,2H),5.19-5.22(m,2H),8.16(d,J=1.2Hz,1H),9.12(d,J=1.2Hz,1H).
[実施例23]
tert-ブチル N-[(tert-ブトキシ)カルボニル]-N-{1,3-ジヒドロフロ[3,4―c]ピリジン-6-イル}カルバメート
Figure JPOXMLDOC01-appb-C000064
 製造例23-1に記載のtert-ブチル N-(5-ブロモ-4-クロロピリジン-2-イル)-N-[(tert-ブトキシ)カルボニル]カルバメート(1.0g、2.5mmol)、製造例1-2に記載のトリブチル({[(トリブチルスタニル)メトキシ]メチル})スタナン(1.5g、2.5mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(230mg、0.25mmol)、X-Phos(260mg、0.54mmol)および1,4-ジオキサン(24mL)を混合し、混合物を加熱還流下、22時間撹拌した。室温に冷却後、セライトを用いて反応混合物をろ過し、減圧下濃縮した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘプタン=0:100-23:77、グラジエント)にて精製した後、得られた粗精製物をNH-シリカゲルカラムクロマトグラフィー(酢酸エチル:ヘプタン=1:99-18:82、グラジエント)にて再度精製した。得られた粗精製物をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘプタン=0:100-30:70、グラジエント)にて分離精製し、標記化合物(360mg、44%収率)を得た。
H-NMR Spectrum(400MHz,CDCl)δ(ppm):1.48(s,18H),5.12(s,2H),5.16(s,2H),7.17(s,1H),8.40(s,1H).
[製造例23-1]
tert-ブチル N-(5-ブロモ-4-クロロピリジン-2-イル)-N-[(tert-ブトキシ)カルボニル]カルバメート
Figure JPOXMLDOC01-appb-C000065
 5-ブロモ-4-クロロピリジン-2-アミン(3.0g、14mmol)、ジ-tert-ブチル ジカーボネート(9.5g、43mmol)およびトリエチルアミン(6.1mL、43mmol)のテトラヒドロフラン(100mL)溶液に、4-ジメチルアミノピリジン(0.18g、1.5mmol)を加え、室温にて終夜撹拌した。反応混合物を減圧下濃縮した後に、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘプタン)にて分離精製し、標記化合物(3.2g、55%収率)を得た。
H-NMR Spectrum(400MHz,CDCl)δ(ppm):1.48(s,18H),7.47(s,1H),8.58(s,1H).
[実施例24]
1,3-ジヒドロフロ[3,4-c]ピリジン-6-アミン
Figure JPOXMLDOC01-appb-C000066
 実施例23に記載のtert-ブチル N-[(tert-ブトキシ)カルボニル]-N-{1,3-ジヒドロフロ[3,4―c]ピリジ-6-イル}カルバメート(360mg、1.1mmol)のジクロロメタン(6mL)溶液に、トリフルオロ酢酸(2mL、26mmol)を加え、室温にて終夜撹拌した。反応液にトルエンを加え、減圧下濃縮した。残渣をNH-シリカゲルカラムクロマトグラフィー(酢酸エチル:ヘプタン=50:50-100:0、グラジエント)にて分離精製し、標記化合物(130mg、89%収率)を得た。
H-NMR Spectrum(400MHz,CDCl)δ(ppm):4.43(br s,2H),4.95-4.99(m,2H),5.01-5.05(m,2H),6.41(d,J=1.2Hz,1H),7.98(d,J=1.2Hz,1H).
[実施例25]
6-ブロモ-1,3-ジヒドロフロ[3,4-c]ピリジン
Figure JPOXMLDOC01-appb-C000067
 臭化銅(II)(92mg、0.44mmol)、亜硝酸tert-ブチル(85mg、0.82mmol)およびテトラヒドロフラン(1mL)の混合物を50℃で撹拌した。混合物に実施例24に記載の1,3-ジヒドロフロ[3,4-c]ピリジン-6-アミン(28mg、0.21mmol)のテトラヒドロフラン(0.5mL)懸濁液を滴下して加え、1時間30分撹拌した。室温に冷却後、反応混合物を減圧下濃縮した。残渣を少量のNH-シリカゲルシリカゲル(酢酸エチル:ヘプタン=2:1)に通してろ過して精製した後、得られた粗精製物を精製用薄層NH-シリカゲルカラムクロマトグラフィー(酢酸エチル:ヘプタン=1:3)にて分離精製し、標記化合物(12mg、30%収率)を得た。
H-NMR Spectrum(400MHz,CDCl)δ(ppm):5.07(s,2H),5.10(s,2H),7.41(s,1H),8.29(s,1H).
[実施例26]
5,7-ジヒドロフロ[3,4-d]ピリミジン-2-アミン
Figure JPOXMLDOC01-appb-C000068
 製造例1-2に記載のトリブチル({[(トリブチルスタニル)メトキシ]メチル})スタナン(600mg、0.96mmol)、1,4-ジオキサン(10mL)、5-ブロモ-4-クロロピリミジン-2-アミン(200mg、0.96mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(88mg、0.096mmol)およびX-Phos(100mg、0.21mmol)の混合物を、マイクロウェーブ照射下130℃で8時間撹拌した。混合物を室温に冷却後、不溶物をろ去した。ろ液を酢酸エチルで洗浄後ろ液を濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘプタン:酢酸エチル:メタノール=1:1:0-0:9:1,グラジエント)にて分離精製し、標記化合物(30mg、23%収率)を得た。
H-NMR Spectrum(500MHz,CDCl)δ(ppm):4.85(s,2H),5.01-5.12(m,2H),5.05(s,2H),8.18(s,1H).
[実施例27]
2-クロロ-5,7-ジヒドロフロ[3,4-d]ピリミジン
Figure JPOXMLDOC01-appb-C000069
 実施例26に記載の5,7-ジヒドロフロ[3,4-d]ピリミジン-2-アミン(25mg、0.18mmol)のテトラヒドロフラン(0.8mL)懸濁液を、塩化銅(II)(50mg、0.37mmol)、亜硝酸t-ブチル(38mg、0.37mmol)およびテトラヒドロフラン(0.5mL)の混合物に65℃で滴下し、2時間30分撹拌した。不溶物をろ去し、酢酸エチルで洗浄後、ろ液を窒素吹き付け装置で濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘプタン:酢酸エチル=1:0-2:3,グラジエント)にて分離精製し、標記化合物(13mg、46%収率)を得た。
H-NMR Spectrum(500MHz,CDCl)δ(ppm):5.02(s,2H),5.18(s,2H),8.50(s,1H).
[実施例28]
2-(トリブチルスタニル)-5,7-ジヒドロフロ[3,4-d]ピリミジン
Figure JPOXMLDOC01-appb-C000070
 実施例27に記載の2-クロロ-5,7-ジヒドロフロ[3,4-d]ピリミジン(12mg、0.077mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)(20mg、0.017mmol)、ヘキサ(n-ブチル)ジチン(200μL、0.40mmol)およびキシレン(0.4mL)の混合物を135℃で4時間撹拌した。室温に冷却後、反応混合物に1Nフッ化カリウム水溶液1mLを加えて1時間撹拌した。不溶物をろ去し、酢酸エチルで洗浄した。ろ液中の有機層を分離し、飽和食塩水で洗浄、無水硫酸ナトリウムで乾燥後、濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘプタン:酢酸エチル=1:0-4:1,グラジエント)にて分離精製し、標記化合物(10mg、32%収率)を得た。
H-NMR Spectrum(500MHz,CDCl)δ(ppm):0.88(t,J=7.3Hz,9H),1.11-1.25(m,6H),1.25-1.40(m,6H),1.53-1.64(m,6H),5.02(s,2H),5.16(s,2H),8.60(s,1H).
[実施例29]
2-クロロ-5,7-ジヒドロフロ[3,4-b]ピラジン
Figure JPOXMLDOC01-appb-C000071
 実施例6に記載の5,7-ジヒドロフロ[3,4-b]ピラジン-2-アミン(38mg、0.28mmol)を、塩化銅(II)(150mg、1.12mmol)、亜硝酸tert-ブチル(60mg、0.58mmol)およびテトラヒドロフラン(3mL)の混合物に65℃で少しずつ加え、2時間撹拌した。室温に冷却後、反応混合物をシリカゲルに注いだ。混合物を濃縮後、減圧下で乾燥した。得られた固体をシリカゲルカラムクロマトグラフィー(ヘプタン:酢酸エチル=1:0-1:1,グラジエント)にて分離精製し、標記化合物(16mg、37%収率)を得た。
H-NMR Spectrum(400MHz,CDCl)δ(ppm):5.11(s,2H),5.12(s,2H),8.45(s,1H).
[実施例30]
2-(トリブチルスタニル)-5,7-ジヒドロフロ[3,4-b]ピラジン
Figure JPOXMLDOC01-appb-C000072
 実施例29に記載の2-クロロ-5,7-ジヒドロフロ[3,4-b]ピラジン(12mg、0.077mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)(20mg、0.017mmol)、ヘキサ(n-ブチル)ジチン(200μL、0.40mmol)およびキシレン(0.4mL)の混合物を135℃で3時間30分撹拌した。室温に冷却後、反応混合物に1Nフッ化カリウム水溶液1mLを加えて1時間撹拌した。不溶物をろ去し、酢酸エチルで洗浄した。ろ液中の有機層を他の試験管に移し、窒素吹き付け装置で濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘプタン:酢酸エチル=1:0-4:1,グラジエント)にて2回分離精製し、標記化合物(5mg、16%収率)を得た。
H-NMR Spectrum(400MHz,CDCl)δ(ppm):0.86(t,J=7.2Hz,9H),1.10-1.18(m,6H),1.22-1.36(m,6H),1.50-1.60(m,6H),5.07(s,2H),5.12(s,2H),8.34(s,1H).
[実施例31]
ポタシウム (5,7-ジヒドロフロ[3,4-b]ピリジン-3-イル)トリフルオロボレート
Figure JPOXMLDOC01-appb-C000073
 実施例20に記載の3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-5,7-ジヒドロフロ[3,4-b]ピリジン(9mg、0.036mmol)、フッ化水素カリウム(9mg、0.12mmol)およびメタノール(0.9mL)の混合物に、水(0.45mL、25mmol)を滴下し、室温で2時間15分撹拌した。得られた混合物にフッ化水素カリウム(9mg、0.12mmol)を追加し、室温で30分間撹拌した。反応混合物を濃縮し、得られた残渣にトルエンを加えて再度濃縮した。固体残渣にエーテルを加え、液相をデカンテーションにより除いた。この操作を3回繰り返した後、残った固体を減圧下乾燥した。得られた固体に10%メタノール-アセトニトリル混合液を加え、不溶物をろ去し、10%メタノール-アセトニトリル混合液で洗浄した。ろ液を濃縮後、減圧下乾燥することにより、標記化合物(8mg、97%収率)を得た。
H-NMR Spectrum(400MHz,CDCl)δ(ppm):4.95(s,2H),5.10(s,2H),7.78(s,1H),8.43(s,1H).
[実施例32]
2-クロロ-5,7-ジヒドロフロ[3,4-b]ピリジン
Figure JPOXMLDOC01-appb-C000074
 塩化銅(II)(99mg、0.73mmol)および亜硝酸tert-ブチル(88μL、0.73mmol)のテトラヒドロフラン(2.0mL)溶液を50℃に加熱し、実施例7に記載の5,7-ジヒドロフロ[3,4-b]ピリジン-2-アミン(50mg、0.37mmol)のテトラヒドロフラン(1.0mL)溶液を上記溶液に5分以上かけて滴下した。反応溶液を50℃で1時間撹拌し、薄層クロマトグラフィーにて原料の消失を確認後、反応溶液を室温に冷却した。反応溶液に酢酸エチルを加え、セライトでろ過した後、ろ液を減圧下濃縮した。残渣をシリカゲルカラムクロマトグラフィーにて分離精製し、標記化合物(13mg、22%収率)を得た。
H-NMR Spectrum(400MHz,CDCl)δ(ppm):5.04(t,J=1.8Hz,2H),5.15(dd,J=2.0Hz,2H),7.23(d,J=8.1Hz,1H),7.52(d,J=8.1Hz,1H).
[実施例33]
2-ブロモ-5,7-ジヒドロフロ[3,4-b]ピリジン
Figure JPOXMLDOC01-appb-C000075
 臭化銅(II)(260mg、1.2mmol)および亜硝酸tert-ブチル(140μL、1.2mmol)のテトラヒドロフラン(1.5mL)溶液を50℃に加熱し、実施例7に記載の5,7-ジヒドロフロ[3,4-b]ピリジン-2-アミン(81mg、0.59mmol)のテトラヒドロフラン(1.0mL)溶液を上記溶液に5分以上かけて滴下した。反応溶液を50℃で1時間撹拌し、薄層クロマトグラフィーにて原料の消失を確認後、反応溶液を室温に冷却した。反応溶液に酢酸エチルを加え、セライトを用いてろ過した後、ろ液を減圧下濃縮した。残渣をシリカゲルカラムクロマトグラフィーにて分離精製し、標記化合物(17mg、14%収率)を得た。
H-NMR Spectrum(400MHz,CDCl)δ(ppm):5.04(d,J=1.6Hz,2H),5.12(d,J=1.2Hz,2H),7.35-7.49(m,2H).
[実施例34]
2-(トリブチルスタニル)-5,7-ジヒドロフロ[3,4-b]ピリジン
Figure JPOXMLDOC01-appb-C000076
 実施例33に記載の2-ブロモ-5,7-ジヒドロフロ[3,4-b]ピリジン(9.8mg、0.049mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)(11mg、9.8μmol)およびヘキサ(n-ブチル)ジチン(120μL、0.25mmol)のキシレン(350μL)溶液を135℃に加熱し、4時間撹拌した。反応溶液を室温に冷却し、反応溶液に酢酸エチルを加え、セライトを用いてろ過した後、ろ液を減圧下濃縮した。残渣をシリカゲルカラムクロマトグラフィーにて分離精製し、標記化合物(5.8mg、29%収率)を得た。
H-NMR Spectrum(500MHz,CDCl)δ(ppm):0.80-1.03(m,9H),1.06-1.23(m,6H),1.26-1.52(m,6H),1.52-1.63(m,6H),5.09(s,2H),5.14(br s,2H),7.23-7.30(m,1H),7.37(d,J=7.3Hz,1H).
[実施例35]
1-クロロ-5,7-ジヒドロフロ[3,4-d]ピリダジン
Figure JPOXMLDOC01-appb-C000077
 実施例1に記載の1,2,5,7-テトラヒドロフロ[3,4-d]ピリダジン-1-オン(100mg、0.72mmol)および塩化チオニル(1.0mL)を混合し、混合物を90℃に加熱し、4時間撹拌した。反応溶液を室温に冷却した後、氷浴下で注意深く氷水を加えた。反応が収まった後、1N水酸化ナトリウム水溶液で中和し、ジクロロメタンで3回抽出操作を行った。有機層を合わせ、無水硫酸マグネシウムで乾燥後、セライトを用いてろ過を行った。ろ液を減圧下濃縮し、残渣をシリカゲルカラムクロマトグラフィーにて分離精製し、標記化合物(20mg、18%収率)を得た。
H-NMR Spectrum(400MHz,CDCl)δ(ppm):5.20(br s,2H),5.28(br s,2H),9.17(br s,1H).
[実施例36]
4-クロロ-5,7-ジヒドロフロ[3,4-d]ピリミジン
Figure JPOXMLDOC01-appb-C000078
 塩化銅(II)(82mg、0.61mmol)および亜硝酸tert-ブチル(73μL、0.61mmol)のテトラヒドロフラン(2.0mL)溶液を65℃に加熱し、実施例14に記載の4-アミノ-5,7-ジヒドロフロ[3,4-d]ピリミジン(42mg、0.31mmol)のテトラヒドロフラン(1.0mL)溶液を上記溶液に5分以上かけて滴下した。反応溶液を65℃で1時間撹拌し、薄層クロマトグラフィーにて原料の消失を確認後、反応溶液を室温に冷却した。反応溶液に酢酸エチルを加え、セライトを用いてろ過した後、ろ液を減圧下濃縮した。残渣をシリカゲルカラムクロマトグラフィーにて分離精製し、標記化合物(1.4mg、2.9%収率)を得た。
H-NMR Spectrum(400MHz,CDCl)δ(ppm):5.15(s,2H),5.23(s,2H),8.94(s,1H).
[実施例37]
エチル 4,6-ジヒドロチエノ[2,3-c]フラン-2-カルボキシレート
Figure JPOXMLDOC01-appb-C000079
 エチル 4,5-ジブロモチオフェン-2-カルボキシレート(100mg、0.32mmol)、トリブチル{[(トリブチルスタニル)メトキシ]メチル}スタナン(200mg、0.32mmol)および1,4-ジオキサン(3.0mL)の混合物に、窒素雰囲気下室温でトリス(ジベンジリデンアセトン)ジパラジウム(29mg、0.032mmol)およびX-Phos(33mg、0.22mmol)を加えた。反応混合物をマイクロウェーブ照射下、130℃で8時間攪拌した。反応混合物を室温に戻し、セライトでろ過した後、減圧下濃縮した。残渣をカラムクロマトグラフィー(酢酸エチル/ヘプタン=7~15~25%)で精製し、標記化合物(28mg、44%収率)を得た。
H-NMR Spectrum(400MHz,CDCl)δ(ppm):1.38(t,J=7.2Hz,3H),4.35(q,J=7.2Hz,2H),4.96-4.97(m,2H),5.09-5.11(m,2H),7.53(s,1H).
[実施例38]
メチル 1,3-ジヒドロフロ[3,4-c]ピリジン-4-カルボキシレート
Figure JPOXMLDOC01-appb-C000080
 3,4-ジクロロピコリン酸(1.0g、5.2mmol)およびN,N-ジメチルホルムアミド(0.10mL、1.3mmol)のジクロロメタン(15mL)溶液に、塩化オキサリル(0.90mL、10mmol)を室温にて5分間滴下した。混合液を室温にて1時間撹拌後、メタノール(2.5mL)を滴下した。混合液を1.5時間撹拌後、溶媒を減圧下留去した。残渣にジクロロメタンを加え2度共沸し、3,4-ジクロロピコリン酸 メチルエステルの粗精製物(1.6g)を得た。
 得られた粗精製物(100mg)に、製造例1-1に記載のトリブチル({[(トリブチルスタニル)メトキシ]メチル})スタナン(300mg、0.49mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(44mg、0.049mmol)、X-Phos(51mg、0.11mmol)および1,4-ジオキサン(3mL)を加え、加熱還流下、11時間撹拌した。混合物を室温に冷却後、飽和フッ化カリウム水溶液(0.2mL)を加え、室温にて1時間撹拌した。混合物をセライトろ過し、減圧下濃縮した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘプタン=1:1)にて分離精製し、標記化合物(16mg、28%収率)を得た。
H-NMR Spectrum(500MHz,CDCl)δ(ppm):4.02(s,3H),5.15-5.17(m,2H),5.43-5.46(m,2H),7.41(d,J=4.9Hz,1H),8.67(d,J=4.9Hz,1H).
[実施例39]
1,3-ジヒドロフロ[3,4-c]ピリジン-4-カルボン酸
Figure JPOXMLDOC01-appb-C000081
 実施例38に記載のメチル 1,3-ジヒドロフロ[3,4-c]ピリジン-4-カルボキシレート(180mg、1.0mmol)のメタノール(4mL)溶液に、2N水酸化ナトリウム水溶液(2mL、4mmol)を加え、室温にて40分間撹拌した。反応混合物に2N塩酸(2mL)を加えた後、減圧下、溶媒を留去した。残渣を逆相シリカゲルカラムクロマトグラフィー(アセトニトリル-水-0.1%酢酸)に付し、得られた画分を濃縮し、白色固体を得た。得られた固体をアセトニトリル:メタノール=9:1に懸濁させ、超音波にて粉砕し、固体を濾別した。母液を濃縮し、標記化合物(62mg、37%収率)を得た。
H-NMR Spectrum(400MHz,DMSO-d)δ(ppm):5.05-5.08(m,2H),5.23-5.26(m,2H),7.63(d,J=4.7Hz,1H),8.60(d,J=4.7Hz,1H).
[実施例40]
tert-ブチル (1,3-ジヒドロフロ[3,4-c]ピリジン-4-イル)カルバメート
Figure JPOXMLDOC01-appb-C000082
 実施例39に記載の1,3-ジヒドロフロ[3,4-c]ピリジン-4-カルボン酸(30mg、0.18mmol)のtert-ブタノール(2mL)溶液に、ジフェニルホスホリルアジド(0.040mL、0.19mmol)およびトリエチルアミン(0.030mL、0.22mmol)を順次加え、加熱還流下、10時間30分撹拌した。室温に冷却後、減圧下、溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘプタン=3:2)にて分離精製し、標記化合物(22mg、52%収率)を得た。
H-NMR Spectrum(400MHz,CDCl)δ(ppm):1.51(s,9H),5.06-5.09(m,2H),5.17-5.21(m,2H),6.99(d,J=4.7Hz,1H),7.75(br s,1H),8.21(d,J=4.7Hz,1H).
[実施例41]
1,3-ジヒドロフロ[3,4-c]ピリジン-4-アミン
Figure JPOXMLDOC01-appb-C000083
 実施例40に記載のtert-ブチル (1,3-ジヒドロフロ[3,4-c]ピリジン-4-イル)カルバメート(22mg、0.094mmol)のジクロロメタン(1mL)溶液にトリフルオロ酢酸(0.5mL)を加え、室温にて30分間撹拌した。トルエンを用いて希釈し、反応混合物を減圧下濃縮した。残渣をNHシリカゲルカラムクロマトグラフィー(酢酸エチル:メタノール=4:1)にて分離精製し、標記化合物(6.2mg、48%収率)を得た。
H-NMR Spectrum(500MHz,CDOD)δ(ppm):4.92-4.95(m,2H),4.99-5.03(m,2H),6.61(d,J=5.4Hz,1H),7.82(d,J=5.4Hz,1H).
[比較例3]
2-アミノ-N-(4-(ベンジルオキシ)ベンジル)-5,6-ジメチルニコチンアミド
Figure JPOXMLDOC01-appb-C000084
 製造例42-2に記載の2-アミノ-N-(4-(ベンジルオキシ)ベンジル)-5-ブロモ-6-クロロニコチンアミド(50mg、0.11mmol)、テトラメチルスズ(60mg、0.34mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(10mg、0.011mmol)、X-Phos(21mg、0.045mmol)およびN-メチルピロリドン(1.5mL)を混合し、混合物をマイクロウェーブ照射下130℃で、4時間撹拌した。室温に冷却後、フッ化カリウム水溶液を加え、室温で終夜撹拌した。セライトを用いて反応液をろ過し、ろ液に酢酸エチルおよび水を加え分液した。得られた水層を酢酸エチルで抽出した。得られた有機層を合わせて、水および飽和食塩水で順次洗浄後、無水硫酸ナトリウムで乾燥した。乾燥剤をろ過して、得られたろ液を減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘプタン=35:65-65:35、グラジエント)にて粗く精製した後、得られた粗精製物をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘプタン=46:54-67:33、グラジエント)にて再度粗く精製した。得られた粗精製物をNH-シリカゲルカラムクロマトグラフィー(酢酸エチル:ヘプタン=25:75-60:40、グラジエント)にて精製し、標記化合物(21mg、53%収率)を得た。
H-NMR Spectrum(400MHz,CDCl)δ(ppm):2.14(br s,3H),2.35(br s,3H),4.53(br s,2H),5.08(br s,2H),6.18(br s,3H),6.93-7.02(m,2H),7.24-7.50(m,8H).
[参考例3]
2-アミノ-N-(4-(ベンジルオキシ)ベンジル-5,7-ジヒドロフロ[3,4-b]ピリジン-3-カルボキサミド
Figure JPOXMLDOC01-appb-C000085
 製造例42-1に記載の2-アミノ-N-(4-(ベンジルオキシ)ベンジル)-5-ブロモ-6-クロロニコチンアミド(50mg、0.11mmol)、製造例1-2に記載のトリブチル({[(トリブチルスタニル)メトキシ]メチル})スタナン(70mg、0.11mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(10mg、0.011mmol)、X-Phos(21mg、0.045mmol)およびN-メチルピロリドン(3mL)をマイクロウェーブ照射下130℃で、4時間撹拌した。室温に冷却後、フッ化カリウム水溶液を加え、室温で終夜撹拌した。セライトを用いて反応液をろ過し、ろ液に酢酸エチルと水を加え分液した。得られた水層を酢酸エチルで抽出した。得られた有機層を合わせて、水および飽和食塩水で順次洗浄後、無水硫酸ナトリウムで乾燥した。乾燥剤をろ過して、得られたろ液を減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘプタン=40:60-75:25、グラジエント)にて粗く精製した後、得られた粗精製物をNH-シリカゲルカラムクロマトグラフィー(酢酸エチル:ヘプタン=30:70-60:40、グラジエント)にて再度粗く精製した。得られた粗精製物を分取LCMS(移動相:アセトニトリル/水、0.1%酢酸)にて分離精製し、標記化合物(1.5mg、3.5%収率)を得た。
H-NMR Spectrum(400MHz,CDCl)δ(ppm):4.47-4.58(m,2H),4.86-4.93(m,2H),5.02(br s,2H),5.05-5.11(m,2H),6.16(br s,1H),6.43(br s,2H),6.92-7.02(m,2H),7.23-7.50(m,8H).
[製造例42-1]
2-アミノ-N-(4-(ベンジルオキシ)ベンジル)-6-クロロニコチンアミド
Figure JPOXMLDOC01-appb-C000086
 2-アミノ-6-クロロニコチン酸(1.5g、8.7mmol)、(4-フェニルメトキシフェニル)メタンアミン塩酸塩(CAS No.133100-92-2)(3.3g、13mmol)、ベンゾトリアゾリル-N-ヒドロキシトリスジメチルアミノホスホニウム ヘキサフルオロリン酸塩(BOP試薬)(5.8g、13mmol)のN,N-ジメチルホルムアミド(100mL)溶液に、0℃でトリエチルアミン(6.1mL、43mmol)を加え、室温にて19時間撹拌した。反応液を減圧下濃縮した後、残渣に酢酸エチルと水を加え分液した。得られた水層を酢酸エチルで抽出した。得られた有機層を合わせて、水および飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。乾燥剤をろ過して、得られたろ液を減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘプタン=10:90-65:35、グラジエント)にて粗く精製した。得られた粗精製物を酢酸エチルに懸濁した後、超音波にて処理して濾過した。得られた固体を少量の酢酸エチルで洗浄した後、減圧乾燥して標記化合物(2.3g、72%収率)を得た。
H-NMR Spectrum(400MHz,CDCl)δ(ppm):4.51(d,J=5.5Hz,2H),5.07(s,2H),6.13(br s,1H),6.50-6.65(m,3H),6.96(d,J=9.0Hz,2H),7.23-7.45(m,7H),7.50(d,J=8.2Hz,1H).
[製造例42-2]
2-アミノ-N-(4-(ベンジルオキシ)ベンジル)-5-ブロモ-6-クロロニコチンアミド
Figure JPOXMLDOC01-appb-C000087
 製造例42-1に記載の2-アミノ-N-(4-(ベンジルオキシ)ベンジル)-6-クロロニコチンアミド(1.0g、2.7mmol)のN,N-ジメチルホルムアミド(10mL)およびアセトニトリル(40mL)の溶液に、0℃でN-ブロモスクシンイミド(NBS)(0.63g、3.5mmol)を加え、室温にて24時間撹拌した。この反応液に、N-ブロモスクシンイミド(NBS)(0.13g、0.73mmol)を加え、室温にて20時間撹拌した。反応液をろ過して、得られた固体を少量の酢酸エチルで洗浄した後、減圧乾燥して標記化合物(600mg、50%収率)を得た。
H-NMR Spectrum(400MHz,DMSO-d)δ(ppm):4.31-4.38(m,2H),5.10(br s,2H),6.93-7.02(m,2H),7.20-7.28(m,2H),7.29-7.48(m,5H),7.66(br s,2H),8.28-8.33(m,1H),9.06(br s,1H).
[溶解性の評価]
 下記の試験液0.25mLに試料濃度10mMのジメチルスルホキシド溶液を2.5μL添加し、室温にて約15分間振とう攪拌した。次いで、吸引ろ過操作により上清を分取した。試料濃度100μMのジメチルスルホキシド溶液を標準溶液として用い、HPLC-UV法で定量した上清中の試料濃度を溶解度とした。
試験液:pH 7 GIBCOTM (Dulbecco’s phosphate-buffered saline, Invitrogen Corporation)
 表1に示すように、リン酸緩衝液(pH7 GIBCOTM)への溶解性に関して、参考例1および参考例2は、それぞれ比較例1および比較例2と比べて優れた溶解性を有していることが確認された。
Figure JPOXMLDOC01-appb-T000088
[脂溶性の評価]
(1)方法
 ODS(オクタデシルシリル基で表面が修飾されたシリカゲル)カラムを用いて、下記の方法により、脂溶性のパラメータである、1-オクタノールと水(pH6.8)の分配比(D)を算出した。
 硝酸ナトリウム(tマーカー)および表2に示す6種類の分配係数既知の標準物質に、表2に示す移動相を加えて、それぞれ5μg/mLの硝酸ナトリウムおよび10μg/mLまたは10μL/mLの標準物質を含む混合溶液を調製し、標準溶液とした。試料に、表3に示す移動相を加えて、0.1mMの濃度に調製し、試料溶液とした。下記条件にて、標準溶液および試料溶液のHPLC分析を行い、標準物質および試料の保持時間(t)を測定した。標準物質の分配係数(logP)と式Iから求められる保持係数(kstd)より、式IIの回帰係数(а)および定数項(b)を求め、式IIIを用いて、試料の保持係数(ksmpl)から、pH6.8での分配係数(logD)を算出し、最終的に1-オクタノールと水(pH6.8)の分配比(D)を得た。
Figure JPOXMLDOC01-appb-T000089
出典:Exploring QSAR-Hydrophobic,and Steric Constants,Corwin Hansch,Albert Leo,and David Hoekman,ACS Professional Reference Book
式I   k=(t-t)/t
式II   logP=a×logkstd+b
式III   logD=a×logksmp;+b
(2)測定条件
 下記の表3に示すカラムおよび移動相を使用して、測定を行った。
Figure JPOXMLDOC01-appb-T000090
(3)結果
 表4に示すように、脂溶性のパラメータである分配比(D)に関して、比較例1、比較例2、および比較例3は、それぞれ参考例1、参考例2、および参考例3と比べて3.5-13.2倍低い値であることが確認された。
Figure JPOXMLDOC01-appb-T000091
[ヒト肝ミクロゾームにおける代謝安定性の評価]
 実施例を用いて製造した参考例1および2、比較例1および2のヒト肝ミクロゾームにおける代謝安定性の評価は、以下のとおり行った。
 酵素液(プールドヒト肝ミクロゾーム(0.2mg/mL)、100mM Kpi、0.1mM EDTAを含む)に被験化合物を添加し、補酵素の存在下において一定時間37℃でインキュベーションした。被験化合物の最終濃度は、0.3μMとした。また、補酵素はNADPH生成系(3.6mM β-NADP、90mM グルコース 6-リン酸、1Unit/mL グルコース 6-リン酸脱水素酵素を含む60mM MgCl溶液を37℃で5分間インキュベーションすることによりNADPHを生成させた溶液)を用いた。プレインキュベーション後、反応液を一部採取し、アセトニトリルとメタノールの混合溶液(7:3,内部標準物質として1.0μM Propranololを含む)を2倍量添加することにより反応を終了させ、反応液中の未変化体濃度をLC-MS/MSで測定した。得られた未変化体のピーク面積に基づいて、インキュベーション時間0分を100%として未変化体の残存率(%)を算出した。すなわち、一定反応時間の経過後における未変化体の残存率を自然対数変換して得られた値を縦軸とし、反応時間を横軸としてプロットしてときに得られた直線の傾きを消失速度定数(ke)とした。得られたkeを基に、下記式を用いて被検化合物の肝固有クリアランスを算出した。
 肝固有クリアランス(mL/分/mg protein)=ke/(プールドヒト肝ミクロゾーム濃度:mg protein/mL)
 被験化合物の15分、30分および60分後の未変化体の残存率(%)、ならびに被験化合物の肝固有クリアランス値を、表5および表6に示した。表5および表6に示すように、ヒト肝ミクロゾームのクリアランスにおいて、参考例1、参考例2および参考例3は、それぞれ比較例1、比較例2および比較例3と比べて改善が認められた。
Figure JPOXMLDOC01-appb-T000092
Figure JPOXMLDOC01-appb-T000093
[薬理試験]
 実施例を用いて製造した参考例1、2および3、比較例1、2および3、ならびにアンホテリシンBの抗カンジダ活性を以下のとおり測定した。
(1)菌液の調製
 C. albicans CAF2-1株は、サブローデキストロース液体培地(SDB)に30℃、48時間静置培養した菌液をRPMI1640培地で希釈し、1.2x10 cells/mLの菌液を調製した。
(2)薬剤希釈プレートの作製
 U底96wellプレートを用い、8被験化合物/プレート(A~H)の被験化合物希釈溶液を作製した。各プレートの2~12列目にジメチルスルホキシド溶液を10μL分注した。秤量した被験化合物をジメチルスルホキシドに溶解し、2.5mg/mLの溶液を作製後、この溶液を準備したプレートの1列目に20μL添加し、プレート上で12段階2倍階段希釈(溶液10μL+ジメチルスルホキシド溶液10μL)した。この被験化合物希釈溶液を1μLずつMIC測定用の平底96wellプレートに分注し、被験化合物希釈プレートを作製した。
(3)菌液の接種および培養
 (1)で調製した菌液を、(2)で作製した被験化合物希釈液1μL/wellが入った平底96ウェルプレートに99μL/well接種し、35℃で42~48時間、好気条件にて静置培養した。
(4)MIC測定
 目視により、コントロールと比較して菌の増殖を明らかに抑制した最小濃度を最小発育阻止濃度(MIC)とした。
 表7に示すように、比較例1、参考例1、比較例2、参考例2、比較例3および参考例3はすべてアムホテリシンBと同等の強い抗カンジダ活性を有することが確認された。
Figure JPOXMLDOC01-appb-T000094

Claims (13)

  1.  一般式(I)で表される化合物またはその塩。
    Figure JPOXMLDOC01-appb-C000001
    [式中、環Zは、ヘテロ原子を環中に1個もしくは2個有する、5または6員へテロ芳香環であり、
    は、水素原子、水酸基、ヒドロキシC1-6アルキル基、-B(OH)、ボロン酸エステル基、環状ボロン酸エステル基、ボラニル基、環状ボラニル基、-BFn1(n1は0または1を意味し、Mはアルカリ金属を意味する。)、-Sn(R12)(R13)(R14)(R12、R13およびR14は同一または相異なって、C1-6アルキル基を意味する。)、-L(Lは脱離基を意味する。)、カルボキシ基、ホルミル基、-NR1617(R16およびR17は同一または相異なって、水素原子、C1-6アルキル基、またはアミノ基の保護基を意味するか、またはR16およびR17が結合している窒素原子と一緒になってアミノ基の保護基を意味する。)を意味し、
    は、水素原子または-CO18(R18は、水素原子、C1-6アルキル基、またはカルボキシ基の保護基を意味する。)を意味する。]
     ただし、XおよびXが同時に水素原子である場合、および以下の化合物を除く:
    5,7-dihydro-furo[3,4-b]pyridin-3-amine、
    5,7-dihydro-furo[3,4-b]pyridin-2(1H)-one、
    3-bromo-5,7-dihydro-furo[3,4-b]pyridine、
    5,7-dihydro-furo[3,4-b]pyridine-2-carboxylic acid、
    5,7-dihydro-furo[3,4-b]pyridine-3-carboxylic acid、
    1,3-dihydro-furo[3,4-c]pyridine-6-carboxaldehyde、
    1,3-dihydro-furo[3,4-c]pyridin-6-ylmethanol、
    3,4-dihydro-furo[3,4-b]pyrazin-2(1H)-one、
    4-chloro-5,7-dihydro-furo[3,4-d]pyrimidine、
    2-chloro-5,7-dihydro-furo[3,4-d]pyrimidine、
    5,7-dihydro-furo[3,4-d]pyridazin-1(2H)-one、
    2-bromo-4,6-dihydro-thieno[2,3-c]furan、
    3-bromo-4,6-dihydro-thieno[2,3-c]furan、
    4,6-dihydro-furo[3,4-b]furan-3-carboxylic acid、
    4,6-dihydro-1H-furo[3,4-c]pyrazole-3-carboxylic acid、
    3-bromo-4,6-dihydro-furo[3,4-d]isoxazole、および
    4,6-dihydro-furo[3,4-d]isoxazole-3-carboxylic acid。
  2.  一般式(II)で表される化合物またはその塩。
    Figure JPOXMLDOC01-appb-C000002
    [式中、環Z1は、ヘテロ原子を環中に1個または2個有する5員へテロ芳香環であり、
    およびXは、請求項1に記載の定義と同義である。]
     ただし、XおよびXが同時に水素原子である場合、および以下の化合物を除く:
    2-bromo-4,6-dihydro-thieno[2,3-c]furan、
    3-bromo-4,6-dihydro-thieno[2,3-c]furan、
    4,6-dihydro-furo[3,4-b]furan-3-carboxylic acid、
    4,6-dihydro-1H-furo[3,4-c]pyrazole-3-carboxylic acid、
    3-bromo-4,6-dihydro-furo[3,4-d]isoxazole、および
    4,6-dihydro-furo[3,4-d]isoxazole-3-carboxylic acid。
  3.  前記一般式(II)で表される化合物またはその塩において、環Z1が、チオフェン環、フラン環、ピロリジン環、チアゾール環、オキサゾール環、イミダゾール環、イソチアゾール環、イソオキサゾール環またはピラゾール環である、請求項2に記載の化合物またはその塩。
  4.  前記一般式(II)で表される化合物またはその塩において、環Z1および隣接する環からなる縮合環が、チエノ[2,3-c]フラン環、フロ[2,3-c]フラン環、フロ[3,4-b]ピロール環、フロ[3,4-d]チアゾール環、フロ[3,4-d]オキサゾール環、フロ[3,4-d]イミダゾール環、フロ[3,4-d]イソチアゾール環、フロ[3,4-d]イソオキサゾール環、フロ[3,4-c]ピラゾール環である、請求項2に記載の化合物またはその塩。
  5.  一般式(III)で表される化合物またはその塩。
    Figure JPOXMLDOC01-appb-C000003
    [式中、環Z2は、ヘテロ原子を環中に1個または2個有する6員へテロ芳香環であり、XおよびXは、請求項1に記載の定義と同義である。]
     ただし、XおよびXが同時に水素原子である場合、および以下の化合物を除く:
    5,7-dihydro-furo[3,4-b]pyridin-3-amine、
    5,7-dihydro-furo[3,4-b]pyridin-2(1H)-one、
    3-bromo-5,7-dihydro-furo[3,4-b]pyridine、
    5,7-dihydro-furo[3,4-b]pyridine-2-carboxylic acid、
    5,7-dihydro-furo[3,4-b]pyridine-3-carboxylic acid、
    1,3-dihydro-furo[3,4-c]pyridine-6-carboxaldehyde、
    1,3-dihydro-furo[3,4-c]pyridin-6-ylmethanol、
    3,4-dihydro-furo[3,4-b]pyrazin-2(1H)-one、
    4-chloro-5,7-dihydro-furo[3,4-d]pyrimidine、
    2-chloro-5,7-dihydro-furo[3,4-d]pyrimidine、および
    5,7-dihydro-furo[3,4-d]pyridazin-1(2H)-one。
  6.  前記一般式(III)で表される化合物またはその塩において、環Z2が、ピリジン環、ピラジン環、ピリミジン環またはピリダジン環である、請求項5に記載の化合物またはその塩。
  7.  前記一般式(III)で表される化合物またはその塩において、環Z2および隣接する環からなる縮合環が、フロ[3,4-b]ピリジン環、フロ[3,4-c]ピリジン環、フロ[3,4-b]ピラジン環、フロ[3,4-d]ピリミジン環、フロ[3,4-c]ピリダジン環、フロ[3,4-d]ピリダジン環である、請求項5に記載の化合物またはその塩。
  8.  前記Xが、-B(OH)、ボロン酸エステル基、環状ボロン酸エステル基、-BFn1(n1は0または1を意味し、Mはアルカリ金属を意味する。)、-Sn(R12)(R13)(R14)(R12、R13およびR14は同一または相異なって、C1-6アルキル基を意味する。)または-L(Lは脱離基を意味する。)である、請求項1~7のいずれか一項に記載の化合物またはその塩。
  9.  前記脱離基が、ハロゲン原子、メタンスルホニルオキシ基、p-トルエンスルホニルオキシ基またはトリフルオロメタンスルホニルオキシ基である、請求項8に記載の化合物またはその塩。
  10.  前記ボロン酸エステル基が、一般式(Y-1)で表される置換基、
     前記環状ボロン酸エステル基が、一般式(Y-2)~(Y-13)で表される置換基、
     前記ボラニル基が、一般式(Y-14)で表される置換基、および
     前記環状ボラニル基が、一般式(Y-15)で表される置換基であることを特徴とする、
     請求項1~8のいずれか一項に記載の化合物またはその塩。
    Figure JPOXMLDOC01-appb-C000004
    [式中、R~R10は、同一または相異なって、C1-6アルキル基を意味する。]
  11.  以下に示す化合物。
    1,2,5,7-テトラヒドロ-フロ[3,4-d]ピリダジン-1-オン
    メチル 4,6-ジヒドロフロ[3,4-b]フラン-2-カルボキシレート
    4,6-ジヒドロフロ[3,4-b]フラン-2-カルボキシリック アシッド
    4,6-ジヒドロチエノ[2,3-c]フラン-2-カルボアルデヒド
    (4,6-ジヒドロチエノ[2,3-c]フラン-2-イル)メタノール
    2-アミノ-5,7-ジヒドロフロ[3,4-b]ピラジン
    2-アミノ-5,7-ジヒドロフロ[3,4-b]ピリジン
    メチル 4,6-ジヒドロ-1H-フロ[3,4-b]ピロール-2-カルボキシレート
    tert-ブチル N-[(tert-ブトキシ)カルボニル]-N-{1,3-ジヒドロフロ[3,4―c]ピリジン-6-イル}カルバメート
    メチル 4,6-ジヒドロフロ[3,4-d]イソチアゾール-3-カルボキシレート
    メチル 3-アミノ-5,7-ジヒドロフロ[3,4-b]ピラジン-2-カルボキシレート
    メチル 3-ヒドロキシ-4,6-ジヒドロチエノ[2,3-c]フラン-2-カルボキシレート
    2-クロロ-4,6-ジヒドロチエノ[2,3-c]フラン
    4-アミノ-5,7-ジヒドロフロ[3,4-d]ピリミジン
    1-ブロモ-5,7-ジヒドロフロ[3,4-d]ピリダジン
    リチウム 3-アミノ-5,7-ジヒドロフロ[3,4-b]ピラジン-2-カルボキシレート
    3-クロロ-5,7-ジヒドロフロ[3,4-b]ピリジン
    3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-5,7-ジヒドロフロ[3,4-b]ピリジン
    3-(トリブチルスタニル)-5,7-ジヒドロフロ[3,4-b]ピリジン
    メチル 5,7-ジヒドロフロ[3,4-b]ピリジン-3-カルボキシレート
    1,3-ジヒドロフロ[3,4-c]ピリジン-6-アミン
    6-ブロモ-1,3-ジヒドロフロ[3,4-c]ピリジン
    5,7-ジヒドロフロ[3,4-d]ピリミジン-2-アミン
    2-クロロ-5,7-ジヒドロフロ[3,4-d]ピリミジン
    2-(トリブチルスタニル)-5,7-ジヒドロフロ[3,4-d]ピリミジン
    2-クロロ-5,7-ジヒドロフロ[3,4-b]ピラジン
    2-(トリブチルスタニル)-5,7-ジヒドロフロ[3,4-b]ピラジン
    ポタシウム (5,7-ジヒドロフロ[3,4-b]ピリジン-3-イル)トリフルオロボレート
    2-クロロ-5,7-ジヒドロフロ[3,4-b]ピリジン
    2-ブロモ-5,7-ジヒドロフロ[3,4-b]ピリジン
    2-(トリブチルスタニル)-5,7-ジヒドロフロ[3,4-b]ピリジン
    1-クロロ-5,7-ジヒドロフロ[3,4-d]ピリダジン
    4-クロロ-5,7-ジヒドロフロ[3,4-d]ピリミジン
    エチル 4,6-ジヒドロチエノ[2,3-c]フラン-2-カルボキシレート
    メチル 1,3-ジヒドロフロ[3,4-c]ピリジン-4-カルボキシレート
    1,3-ジヒドロフロ[3,4-c]ピリジン-4-カルボン酸
    tert-ブチル (1,3-ジヒドロフロ[3,4-c]ピリジン-4-イル)カルバメート
    1,3-ジヒドロフロ[3,4-c]ピリジン-4-アミン
  12.  一般式(IV)で表される化合物。
    Figure JPOXMLDOC01-appb-C000005
    [式中、Ra1~Ra6は、同一または相異なって、C1-6アルキル基を意味する。]
  13.  一般式(I)で表される化合物の製造方法であって、
    Figure JPOXMLDOC01-appb-C000006
    [式中、環Z、XおよびXは、請求項1に記載の定義と同義である。]
     一般式(IV)で表される化合物
    Figure JPOXMLDOC01-appb-C000007
    [式中、Ra1~Ra6は、請求項12に記載の定義と同義である。]と、
     一般式(V)で表される化合物
    Figure JPOXMLDOC01-appb-C000008
    [式中、環Z、XおよびXは、請求項1に記載の定義と同義であり、QおよびQは、脱離基を意味する。]と、
     を反応させることを特徴とする、製造方法。
PCT/JP2014/069153 2013-07-23 2014-07-18 ヘテロ縮合環化合物 WO2015012210A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14829168.5A EP3026054B1 (en) 2013-07-23 2014-07-18 Hetero-condensed ring compound
US14/904,860 US9975910B2 (en) 2013-07-23 2014-07-18 Hetero-fused cyclic compound
JP2015528264A JP6453216B2 (ja) 2013-07-23 2014-07-18 ヘテロ縮合環化合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013152677 2013-07-23
JP2013-152677 2013-07-23

Publications (1)

Publication Number Publication Date
WO2015012210A1 true WO2015012210A1 (ja) 2015-01-29

Family

ID=52393251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069153 WO2015012210A1 (ja) 2013-07-23 2014-07-18 ヘテロ縮合環化合物

Country Status (4)

Country Link
US (1) US9975910B2 (ja)
EP (1) EP3026054B1 (ja)
JP (1) JP6453216B2 (ja)
WO (1) WO2015012210A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5252538A (en) * 1984-05-21 1993-10-12 American Cyanamid Company (2-imidazolin-2-yl) fused heteropyridine compounds, intermediates for the preparation of and use of said compounds as herbicidal agents
WO1996005177A1 (en) 1994-08-13 1996-02-22 Yuhan Corporation Novel pyrimidine derivatives and processes for the preparation thereof
WO2005033079A1 (ja) 2003-09-30 2005-04-14 Eisai Co., Ltd. ヘテロ環化合物を含有する新規な抗真菌剤
WO2006124324A1 (en) 2005-05-12 2006-11-23 The Texas A & M University System Therapeutic compositions and methods
JP2007509181A (ja) * 2003-10-31 2007-04-12 アリーナ ファーマシューティカルズ, インコーポレイテッド トリアゾール誘導体およびその代謝関連障害の処置方法
WO2008032702A1 (fr) * 2006-09-11 2008-03-20 Eisai R & D Management Co., Ltd. Composé de fluorobore ayant un noyau aromatique ou sel de celui-ci, et procédé de fabrication du composé ayant un noyau aromatique fusionné à un éther cyclique à l'aide de celui-ci
WO2008128942A1 (en) 2007-04-20 2008-10-30 Glaxo Group Limited Tricyclic nitrogen containing compounds as antibacterial agents
JP2009538933A (ja) * 2006-05-31 2009-11-12 アボット・ラボラトリーズ カンナビノイド受容体リガンドとしての化合物およびその使用
JP2010155827A (ja) 2008-12-04 2010-07-15 Takeda Chem Ind Ltd スピロ環化合物
WO2013006738A1 (en) * 2011-07-06 2013-01-10 Gilead Sciences, Inc. Compounds for the treatment of hiv

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1101758A4 (en) * 1998-07-28 2002-04-03 Nihon Nohyaku Co Ltd DICARBOXYLIC DIAMIDE DERIVATIVES WITH CONDENSED HETEROCYCLE OR SALTS THEREOF, HERBICIDES AND THEIR USE

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5252538A (en) * 1984-05-21 1993-10-12 American Cyanamid Company (2-imidazolin-2-yl) fused heteropyridine compounds, intermediates for the preparation of and use of said compounds as herbicidal agents
WO1996005177A1 (en) 1994-08-13 1996-02-22 Yuhan Corporation Novel pyrimidine derivatives and processes for the preparation thereof
WO2005033079A1 (ja) 2003-09-30 2005-04-14 Eisai Co., Ltd. ヘテロ環化合物を含有する新規な抗真菌剤
JP2007509181A (ja) * 2003-10-31 2007-04-12 アリーナ ファーマシューティカルズ, インコーポレイテッド トリアゾール誘導体およびその代謝関連障害の処置方法
WO2006124324A1 (en) 2005-05-12 2006-11-23 The Texas A & M University System Therapeutic compositions and methods
JP2009538933A (ja) * 2006-05-31 2009-11-12 アボット・ラボラトリーズ カンナビノイド受容体リガンドとしての化合物およびその使用
WO2008032702A1 (fr) * 2006-09-11 2008-03-20 Eisai R & D Management Co., Ltd. Composé de fluorobore ayant un noyau aromatique ou sel de celui-ci, et procédé de fabrication du composé ayant un noyau aromatique fusionné à un éther cyclique à l'aide de celui-ci
WO2008128942A1 (en) 2007-04-20 2008-10-30 Glaxo Group Limited Tricyclic nitrogen containing compounds as antibacterial agents
JP2010524884A (ja) * 2007-04-20 2010-07-22 グラクソ グループ リミテッド 抗菌剤としての三環式含窒素化合物
JP2010155827A (ja) 2008-12-04 2010-07-15 Takeda Chem Ind Ltd スピロ環化合物
WO2013006738A1 (en) * 2011-07-06 2013-01-10 Gilead Sciences, Inc. Compounds for the treatment of hiv

Non-Patent Citations (45)

* Cited by examiner, † Cited by third party
Title
"Protective Groups in Organic Synthesis", 1999, JOHN WILEY & SONS, INC, pages: 246 - 287
"Protective Groups in Organic Synthesis", 1999, JOHN WILEY & SONS, INC, pages: 369 - 451
"Protective Groups in Organic Synthesis", 1999, JOHN WILEY & SONS, INC, pages: 494 - 592
"Protective Groups in Organic Synthesis", 1999, JOHN WILEY & SONS, INC, pages: 520 - 525
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 17, 2007, pages 4914 - 4919
BIOORGANIC & MEDICINAL CHEMISTRY, vol. 13, 2005, pages 6678 - 6684
BIOORGANIC AND MEDICINAL CHEMISTRY, vol. 7, 1999, pages 1845 - 1855
CHEMICAL & PHARMACEUTICAL BULLETIN, vol. 31, 1982, pages 4573
CHEMISTRY - A EUROPEAN JOURNAL, vol. 18, 2012, pages 5565 - 5573
COMPTES RENDUS DES SEANCES DE L'ACADEMIE DES SCIENCES, SERIE C: SCIENCES CHIMIQUES, vol. 263, 1966, pages 429 - 31
DATABASE REGISRTY [online] CAS; 25 October 2013 (2013-10-25), "FURO[3,4-B]PYRIDINE, 2-CHLORO-5,7-DIHYDRO- (CA INDEX NAME)", XP055311247, retrieved from STN Database accession no. 1464091-43-7 *
EUROPEAN JOURNAL OF DRUG METABOLISM AND PHARMACOKINETICS, vol. 17, 1992, pages 13 - 20
EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, 2006, pages 1678 - 1684
JOHNSTONE, K.D. ET AL.: "Porphyrin building blocks: Using a modified Barton-Zard approach to construct annulated pyrroles", JOURNAL OF PORPHYRINS AND PHTHALOCYANINES, vol. 6, no. 11 & 1, 2002, pages 661 - 672, XP027707332 *
JOURNAL OF CHROMATOGRAPHY B, vol. 813, 2004, pages 263 - 268
JOURNAL OF HETEROCYCLIC CHEMISTRY, vol. 22, 1985, pages 1621 - 1630
JOURNAL OF MEDICINAL CHEMISTRY, vol. 48, 2005, pages 1886 - 1900
JOURNAL OF MEDICINAL CHEMISTRY, vol. 51, 2008, pages 6280 - 6292
JOURNAL OF MEDICINAL CHEMISTRY, vol. 54, 2011, pages 5174 - 5184
JOURNAL OF MEDICINAL CHEMISTRY, vol. 54, 2011, pages 6761 - 6770
JOURNAL OF MEDICINAL CHEMISTRY, vol. 54, 2011, pages 8174 - 8187
JOURNAL OF MEDICINAL CHEMISTRY, vol. 55, 2012, pages 10475 - 10489
JOURNAL OF MEDICINAL CHEMISTRY, vol. 55, 2012, pages 10610 - 10629
JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 292, 1985, pages 119 - 132
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 132, 2010, pages 17701 - 17703
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 133, 2011, pages 17777 - 17785
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 134, 2012, pages 11667 - 11673
JOURNAL OF THE CHEMICAL SOCIETY B: PHYSICAL ORGANIC, 1971, pages 289 - 296
ORGANIC LETTERS, vol. 14, 2012, pages 4630 - 4633
ORGANIC LETTERS, vol. 14, 2012, pages 4814 - 4817
ORGANIC LETTERS, vol. 14, 2012, pages 5058 - 5061
PARNELL, C.A. ET AL.: "The cobalt way to vitamin B6. Regioselective construction of the tetrasubstituted pyridine nucleus by cobalt- catalyzed alkyne-nitrile cooligomerizations", TETRAHEDRON, vol. 41, no. 24, 1985, pages 5791 - 5796, XP002230595 *
PHARMACEUTICAL SCIENCE & TECHNOLOGY TODAY, vol. 1, 1998, pages 387 - 393
See also references of EP3026054A4
SYNTHESIS, vol. 44, 2012, pages 1631 - 1636
SYNTHESIS, vol. 44, 2012, pages 2959 - 2963
SYNTHESIS, vol. 44, 2012, pages 3496 - 3504
TETRAHEDRON LETTERS, vol. 27, 1986, pages 3045 - 3048
TETRAHEDRON LETTERS, vol. 52, 2011, pages 6346 - 6348
TETRAHEDRON LETTERS, vol. 53, 2012, pages 377 - 379
TETRAHEDRON LETTERS, vol. 53, 2012, pages 4873 - 4876
TETRAHEDRON, vol. 68, 2012, pages 1351 - 1358
TETRAHEDRON, vol. 69, 2013, pages 1546 - 1552
TETRAHEDRON, vol. 69, 2013, pages 902 - 909
ZHONGGUO YI XUE KE XUE YUAN XUE BAO, vol. 18, 1996, pages 288 - 91

Also Published As

Publication number Publication date
JP6453216B2 (ja) 2019-01-16
JPWO2015012210A1 (ja) 2017-03-02
EP3026054A1 (en) 2016-06-01
EP3026054A4 (en) 2017-01-04
US9975910B2 (en) 2018-05-22
US20160168176A1 (en) 2016-06-16
EP3026054B1 (en) 2019-03-06

Similar Documents

Publication Publication Date Title
JP6926329B2 (ja) 6−(2−ヒドロキシ−2−メチルプロポキシ)−4−(6−(6−((6−メトキシピリジン−3−イル)メチル)−3,6−ジアザビシクロ[3.1.1]ヘプタン−3−イル)ピリジン−3−イル)ピラゾロ[1,5−a]ピリジン−3−カルボニトリルの調製のためのプロセス
JP5529876B2 (ja) Mmp−13阻害剤として有用なヘテロアリール置換インドール化合物
JP2022543767A (ja) 四環式化合物、その調製と使用の方法
TW202304911A (zh) 吡啶醯胺類化合物
JP2021500330A (ja) Pad阻害剤としてのイミダゾ−ピリジン化合物
TWI627174B (zh) P2x7調控劑
AU2013216721A1 (en) Modulators of methyl modifying enzymes, compositions and uses thereof
JP2018052878A (ja) ピリジン化合物
JP2008525363A (ja) プロスタグランジン媒介疾患治療のためのピリジン化合物
TW202041498A (zh) 抑制pge2/ep4信號傳導的化合物、其製備方法及其在醫藥上的應用
KR20190080951A (ko) 피리미도[5,4-b]인돌리진 또는 피리미도[5,4-b]피롤리진 화합물, 그의 제조방법 및 용도
US20090143420A1 (en) 2-benzoylimidazopyridine derivatives, preparation and therapeutic use thereof
JP7035301B2 (ja) 縮合複素環誘導体、その調製方法、及びその医学的使用
CN114008025A (zh) Acss2抑制剂和其使用方法
WO2015049629A1 (en) Imidazoquinoline compounds as bromodomain inhibitors
JP7233715B2 (ja) Sgk活性を調節するための化合物及び医薬組成物、並びにその方法
CN112625036A (zh) 一类具有brd4抑制活性的化合物、其制备方法及用途
TW202304865A (zh) Nlrp3發炎體之抑制劑
JP6605624B2 (ja) 新規なヘテロ環化合物、その製造方法およびこれを含む薬学的組成物
JP2022517723A (ja) Cdk阻害剤としての大環状化合物、その製造方法及びその医薬品における応用
JP6453216B2 (ja) ヘテロ縮合環化合物
CN115197221B (zh) 二氢吡唑并嘧啶酮类大环衍生物及其用途
FR2953837A1 (fr) Derives 9h-pyridino[3,4-b]indole disubstitues, leur preparation et leur utilisation therapeutique
JP6592521B2 (ja) ピラゾール誘導体の製造方法
FR2953838A1 (fr) Derives de 9h-beta-carboline (ou 9h-pyridino[3,4-b]indole) trisubstitues, leur preparation et leur utilisation therapeutique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14829168

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015528264

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014829168

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14904860

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE