WO2014205958A1 - 电容式触摸屏及其制备方法 - Google Patents

电容式触摸屏及其制备方法 Download PDF

Info

Publication number
WO2014205958A1
WO2014205958A1 PCT/CN2013/085140 CN2013085140W WO2014205958A1 WO 2014205958 A1 WO2014205958 A1 WO 2014205958A1 CN 2013085140 W CN2013085140 W CN 2013085140W WO 2014205958 A1 WO2014205958 A1 WO 2014205958A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrodes
conductive portion
conductive part
adjacent
Prior art date
Application number
PCT/CN2013/085140
Other languages
English (en)
French (fr)
Inventor
王静
鲁友强
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/235,938 priority Critical patent/US20150015803A1/en
Publication of WO2014205958A1 publication Critical patent/WO2014205958A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49105Switch making

Definitions

  • the invention belongs to the technical field of display, and relates to a capacitive touch screen and a preparation method thereof. Background technique
  • the touch screen is the latest information input device. It can realize human-computer interaction in a single, convenient and natural way, providing people with a new multimedia human-computer interaction method. Because of its sensitive touch response and multi-touch support, Greatly satisfy people's enjoyment of sight and touch.
  • the touch screen can be divided into resistive type, capacitive type, surface acoustic wave type and infrared type.
  • the capacitive touch screen is widely used due to its high accuracy and strong anti-interference ability.
  • the "In-cell” method is a method of embedding a touch panel function into a pixel area
  • the "Only 11” method is a method of embedding a touch panel function between a color filter substrate and a polarizing plate.
  • the "On-cell” method has matured the process of forming a single sensor electrode pattern between the color filter substrate and the polarizing plate, and does not cause a problem of reducing the effective display area in the pixel region, and it is easy to secure the finished product. Rate and display performance are therefore widely adopted.
  • the liquid crystal display can be divided into two types: horizontal electric field type and vertical electric field type.
  • the vertical electric field type mainly includes vertical Alignment (VA) and Twisted Nematic (TN).
  • VA vertical Alignment
  • TN Twisted Nematic
  • 1 is a schematic structural view of a vertical electric field type liquid crystal display including a color filter substrate 1 (CF), an array substrate 2 (TFT), and color
  • the liquid crystal 3 between the film substrate 1 and the array substrate 2 is provided with a common electrode 11 (COMIT0) on the side of the color filter substrate 1 near the liquid crystal 3, and the pixel electrode 21 (PXL IT0) is disposed in the array substrate 2, and the common electrode 11 is provided.
  • a vertical electric field is formed with the pixel electrode 21 to drive the liquid crystal 3 for image display.
  • a capacitive touch screen for a vertical electric field type liquid crystal display a transparent sensor (Sensor) electrode is also disposed on the color filter substrate, and the sensor electrode is used for touch sensing, as shown in FIGS.
  • the sensor electrode 4 includes a plurality of rows of parallel, spaced-apart first electrode groups 41, a plurality of columns of parallel, spaced-apart second electrode groups 42, the first electrode group 41, and the second electrode group 42 including diamond-shaped electrodes electrically connected in series in series. Wherein each of the diamond electrodes in the first electrode group 41 is in a lateral orientation (ie, a left-right direction or a horizontal direction in FIG.
  • each of the diamond-shaped electrodes in the second electrode group 42 is in a longitudinal orientation (ie, in FIG. 2)
  • the electrical connection portions between the first electrodes of the first electrode group 41 and the second electrodes of the second electrode group 42 are insulated and insulated by the insulating layer 6 and partially overlapped in the forward projection direction.
  • the overlap region forms a node capacitance.
  • the preparation process two layers of metal are successively deposited on the color filter substrate 1, wherein one layer of metal forms the sensor electrode 4 and is used for The bridging portion of the electrical connection between the row/column sensor electrodes and the other layer of metal form a bridging portion for electrical connection between the column/row sensor electrodes.
  • the electrodes in the second electrode group 42 are electrically connected to the second conductive portion 425 through a plurality of smaller vias 426 formed in the insulating layer 6 to realize electricity through the second conductive portion 425. connection.
  • the technical problem to be solved by the present invention is to provide a capacitive touch screen and a method for fabricating the same according to the above-mentioned deficiencies in the prior art.
  • the coupling between the sensor electrode and the common electrode of the capacitive touch screen is small, and the RC load is reduced. , the sensor electrode is charged faster, and the touch sensing sensitivity of the capacitive touch screen is ensured.
  • the technical solution adopted to solve the technical problem of the present invention is a capacitive touch screen comprising a substrate and a sensor electrode disposed on the substrate, the sensor electrode comprising a plurality of rows of first electrode groups arranged in parallel, and a plurality of columns arranged in parallel a second electrode group, the first electrode group includes a plurality of first electrodes electrically connected in sequence, and the second electrode group includes a plurality of second electrodes electrically connected in sequence, wherein the first electrode and At least one of the second electrodes includes a peripheral electrode distributed at a periphery and a center electrode electrically isolated from the peripheral electrode, and peripheral electrodes of adjacent ones of the electrode groups in which the at least one electrode is located are electrically connected to each other .
  • the at least one electrode is provided with a closed isolation trench, the inner side of the isolation trench is a center electrode, the outer side of the isolation trench is a peripheral electrode, and between the peripheral electrode and the center electrode Electrically isolated by the isolation trench.
  • the shape of the isolation trench is substantially the same as the contour of the at least one electrode, the depth of the isolation trench being equal to the thickness of the at least one electrode.
  • the first electrode and the second electrode are diamonds of the same size
  • the isolation trench is a diamond shape
  • the isolation trench has a width of 5 ⁇ m to 30 ⁇ m.
  • the area of the center electrode is from 30% to 70% of the area of the at least one electrode.
  • a first conductive portion is disposed between the adjacent rhombic angles of the first electrode along the direction in which the first electrode group is arranged, and the adjacent first electrode passes through the first conductive portion. Electrically connecting; a second conductive portion is disposed between the adjacent rhombic angles of the second electrode along the direction in which the second electrode group is arranged, and the adjacent second electrode passes through the second conductive portion Electrically connected, the first conductive portion and the second conductive portion are disposed in different layers, and the two portions are partially orthogonally overlapped in a right projection direction.
  • an insulating layer is disposed between the first conductive portion and the second conductive portion, and one of the first conductive portion and the second conductive portion is First An electrode and the second electrode are formed in the same layer, and another conductive portion of the first conductive portion and the second conductive portion is disposed under the one conductive portion, the insulation A via hole is disposed in the layer, and the other conductive portion is electrically connected to the corresponding electrode through the via hole.
  • the first conductive portion has a strip shape, and a width of the first conductive portion is smaller than a distance between adjacent second electrodes in a direction in which the second electrode group is arranged, the first conductive
  • the length of the portion is greater than or equal to the spacing of the adjacent first electrodes along the direction in which the first electrode groups are arranged;
  • the second conductive portion is strip-shaped, and the width of the second conductive portion is smaller than adjacent a length of the first electrode along the direction in which the first electrode group is arranged, and a length of the second conductive portion is greater than or equal to a distance between adjacent second electrodes in a direction in which the second electrode group is arranged.
  • the first electrode, the second electrode, and the one conductive portion disposed in the same layer as the first electrode and the second electrode are formed of indium tin oxide; and the first electrode
  • the other conductive portion of the second electrode disposed in different layers is formed of at least one of molybdenum, molybdenum-niobium alloy, aluminum, aluminum-niobium alloy, titanium, and copper.
  • the substrate is further provided with a color film layer on the other surface opposite to the first electrode group and the second electrode group.
  • the present invention also provides a method for fabricating a capacitive touch panel, comprising the steps of forming a sensor electrode on a substrate, the sensor electrode comprising a plurality of rows of first electrode groups arranged in parallel, and a plurality of columns of second electrode groups arranged in parallel,
  • the first electrode group includes a plurality of first electrodes electrically connected in sequence
  • the second electrode group includes a plurality of second electrodes electrically connected in sequence, wherein the first electrode and the second electrode are
  • the at least one electrode is formed to include a peripheral electrode distributed at the periphery and a center electrode electrically isolated from the peripheral electrode, and to electrically connect peripheral electrodes of adjacent ones of the electrode groups in which the at least one electrode is located.
  • the step of forming a sensor electrode on the substrate specifically includes the following steps: Step S11: forming a pattern including one of the first conductive portion and the second conductive portion on the substrate; Step S12: forming an insulating layer on the substrate on which step S11 is completed, the insulating layer being at an end portion corresponding to the one conductive portion a via hole is formed in the region; Step S13: forming, on the substrate completing step S12, the first electrode, the second electrode, the first conductive portion, and the second conductive portion a pattern of another conductive portion, wherein the at least one electrode is further formed with a pattern including a closed isolation trench, and the center electrode and the peripheral electrode are electrically isolated by the isolation trench; And step S14: forming a deuterated layer on the substrate on which step S13 is completed, wherein when the one conductive portion is the first conductive portion, the adjacent first electrode passes through the via hole Electrically connecting with the first conductive portion to be electrically connected through the first conductive portion, the adjacent second electrode
  • step S13 a patterning process including the first electrode, the second electrode, and the other conductive portion is formed by using a patterning process, and the other conductive portion is formed.
  • the one of the conductive portions formed in step S11 is partially orthogonally overlapped in the forward projection direction.
  • the shape of the isolation trench is substantially the same as the contour of the at least one electrode, the depth of the isolation trench being equal to the thickness of the at least one electrode.
  • the first electrode and the second electrode are both diamonds of the same size
  • the isolation trench is a diamond shape
  • the isolation trench has a width of 5 ⁇ - 30 ⁇ .
  • the area of the center electrode is from 30% to 70% of the area of the at least one electrode.
  • the first conductive portion is in a strip shape, and the first conductive portion is formed between the adjacent diamond-shaped corners of the first electrode along the direction in which the first electrode group is arranged, the first a width of the conductive portion is smaller than a spacing of the second electrode along the second electrode group.
  • the length of the first conductive portion is greater than or equal to the direction of the first electrode along the first electrode group.
  • the second conductive portion is formed in a strip shape, and the second conductive portion is formed between the adjacent rhombic angles of the second electrode along the direction in which the second electrode group is arranged,
  • the width of the second conductive portion is smaller than the first electrode
  • the length of the second conductive portion is greater than or equal to the pitch of the second electrode along the direction in which the second electrode group is arranged along the pitch in the direction in which the first electrode group is arranged.
  • the first electrode, the second electrode, and the other conductive portion disposed in the same layer as the first electrode and the second electrode are formed of indium tin oxide;
  • the one electrode of the electrode and the second electrode disposed in different layers is formed of at least one of molybdenum, molybdenum-niobium alloy, aluminum, aluminum-niobium alloy, titanium, and copper.
  • the method further includes: Step S21: flipping the substrate in a vertical direction; Step S22: phase-reversing the substrate with the first electrode group and the second electrode group On the other side of the back, a color film layer is formed.
  • the beneficial effects of the present invention are: In the "On- ll" capacitive touch screen of the vertical electric field type liquid crystal display of the present invention, the coupling between the sensor electrode and the common electrode is adopted due to the use of a floating center electrode in the sensor electrode. It becomes smaller, reduces the RC load, makes the sensor electrode charge faster, has stronger anti-interference ability, and has higher touch sensitivity, so that the display device has a higher display quality and a good touch effect.
  • FIG. 1 is a schematic structural view of a vertical electric field type liquid crystal display in the prior art
  • FIG. 2 is a plan view of a sensor electrode of a capacitive touch screen used in the vertical electric field type liquid crystal display of FIG. 1 in the prior art
  • FIG. 3 is a partially enlarged plan view of the sensor electrode of the capacitive touch screen of FIG. 2;
  • FIG. 4 is a partially enlarged plan view of the bridge of the capacitive touch screen of FIG. 2;
  • FIG. 5 is a schematic structural view of a vertical electric field type liquid crystal display according to Embodiment 1 of the present invention; ;
  • FIG. 6 is a top plan view of the sensor electrode of the capacitive touch screen of FIG. 5;
  • FIG. 7 is a partial enlarged plan view of the sensor electrode of the capacitive touch screen of FIG.
  • Figure 8 is a partially enlarged plan view of the bridge in the capacitive touch screen of Figure 6;
  • Figure 9 is a cross-sectional view taken along line A-A of Figure 8;
  • Figure 10 is a cross-sectional view taken along line B-B of Figure 8.
  • 11A-11F are cross-sectional views of the capacitive touch screen of FIG. 5 in each preparation process
  • a capacitive touch screen includes a substrate and a sensor electrode disposed on the substrate, the sensor electrode includes a plurality of rows of first electrode groups arranged in parallel, and a plurality of columns of second electrode groups arranged in parallel, the first electrode group A plurality of first electrodes electrically connected in sequence, the second electrode group includes a plurality of second electrodes electrically connected in sequence, wherein at least one of the first electrode and the second electrode comprises a peripheral electrode distributed around the periphery and a center electrode electrically isolated from the peripheral electrode, wherein peripheral electrodes of adjacent ones of the electrode groups in which the at least one electrode is located are electrically connected to each other.
  • a method for manufacturing a capacitive touch panel comprising the steps of forming a sensor electrode on a substrate, the sensor electrode comprising a plurality of rows of first electrode groups arranged in parallel, and a plurality of columns of second electrode groups arranged in parallel, the first electrode group And comprising a plurality of first electrodes electrically connected in sequence, wherein the second electrode group comprises a plurality of second electrodes electrically connected in sequence, wherein at least one of the first electrode and the second electrode is a center electrode, and electrically connecting peripheral electrodes of adjacent ones of the electrode groups in which the at least one electrode is located.
  • Example 1 Example 1:
  • the capacitive touch screen includes a substrate and a sensor electrode 4 disposed on the substrate.
  • the sensor electrode 4 includes a plurality of rows of first electrode groups 41 arranged in parallel, and a plurality of second electrode groups 42 arranged in parallel.
  • the first electrode group 41 includes a plurality of first electrodes 411 electrically connected in sequence
  • the second electrode group 42 includes a plurality of second electrodes 421 electrically connected in sequence.
  • the first electrode 411 and the second electrode 421 each include a peripheral electrode distributed around the periphery and a center electrode electrically isolated from the peripheral electrode, and adjacent peripheral electrodes in the same row and column are electrically connected to each other.
  • a first first isolation trench 412 is defined in the first electrode 411 .
  • the inner side of the first isolation trench 412 is a first central electrode 413
  • the outer side of the first isolation trench 412 is a first peripheral electrode 414 .
  • the first center electrode 413 and the first peripheral electrode 414 are electrically separated by the first isolation trench 412, and the adjacent first peripheral electrodes 414 are electrically connected to each other.
  • the second electrode 421 is provided with a closed second isolation trench.
  • the inner side of the second isolation trench 422 is a second central electrode 423
  • the outer side of the second isolation trench 422 is a second peripheral electrode 424
  • the second central electrode 423 and the second peripheral electrode 424 are electrically connected through the second isolation trench 422.
  • Sexual isolation, adjacent second peripheral electrodes 424 are electrically connected to each other.
  • the shape of the first isolation trench 412 is substantially the same as the contour shape of the first electrode 411, and the depth of the first isolation trench 412 is equal to the first electrode.
  • the thickness of the second isolation trench 422 is substantially the same as the contour shape of the second electrode 421, and the depth of the second isolation trench 422 is equal to the thickness of the second electrode 421.
  • the first electrode 411 and the second electrode 421 are diamonds of the same size
  • the first isolation trench 412 has a diamond shape
  • the first isolation trench 412 has a width of 5 ⁇ m -30 ⁇ m
  • the second isolation trench 422 is The width of the second isolation trench 422 is 5 ⁇ - 30 ⁇ .
  • the isolation trenches in the width range can effectively electrically isolate the center electrode and the peripheral electrodes without affecting the visual effect of the touch screen.
  • the area of the first center electrode 413 is 30°/»-70°/» of the area of the first electrode 411, and if it is less than 30°/», the coupling between the sensor electrode and the liquid crystal display becomes large, which will affect Charging efficiency; if it is greater than 70%, the effective touch area becomes small, which may affect the change of the touch signal amount; for example: when the outer peripheral length of the first peripheral electrode 414 is 5 mm, the diamond side length of the first center electrode 413 is 2. 7 mm - 4. 2 mm; The area of the second center electrode 423 is 30 ° / of the area of the second electrode 421.
  • the coupling between the sensor electrode and the liquid crystal display becomes large, which will affect the charging efficiency; if it is greater than 70%, the effective touch area becomes smaller, which will affect the change of the touch signal amount; Within the above area ratio range, the coupling between the sensor electrode 4 and the common electrode can be effectively reduced to effectively reduce the RC load without affecting the sensitivity of the touch screen.
  • the electrical connection between the second electrodes 421 of the second electrode 421 is disposed between the diamond-shaped corners of the adjacent second peripheral electrodes 424 along the direction in which the second electrode groups 42 are arranged, and the second conductive portion 425 is adjacent to the adjacent second periphery.
  • the electrodes 424 are electrically connected by the second conductive portion 425, and the first conductive portion 415 and the second conductive portion 425 are disposed at different layers, and the two portions are partially orthogonally overlapped in the orthogonal projection direction.
  • an insulating layer 6 is disposed between the first conductive portion 415 and the second conductive portion 425.
  • the first conductive portion 415 is formed in the same layer as the first electrode 411 and the second electrode 421, and the second conductive portion 425 is disposed under the first conductive portion 415, and the insulating layer 6 is disposed.
  • the hole 426 , the second conductive portion 425 and the second electrode 421 are electrically connected through the via 426 .
  • the insulating layer 6 is formed of at least one of silicon oxide, silicon nitride, tantalum oxide, silicon oxynitride, and aluminum oxide.
  • first conductive portion 415, the first peripheral electrode 414 in FIG. 8 and the positional relationship between the first conductive portion 415 and the second conductive portion 425 in this embodiment can be more prominently illustrated.
  • the second peripheral electrode 424 is disposed to have a certain transparency;
  • the via hole 426 is also disposed to have a certain transparency; meanwhile, it should be understood that, due to the insulating layer 6 Formed by a transparent material (silicon oxide, silicon nitride, tantalum oxide, silicon oxynitride, aluminum oxide), the observation of the plan view is not hindered, so the illustration of the insulating layer 6 is omitted in the top view of FIG. In order to better show the relative positional relationship between the second conductive portion 425 and the second electrode 421.
  • the first conductive portion 415 has a strip shape, and the width of the first conductive portion 415 is smaller than the interval between the adjacent second electrodes 421 along the second electrode group 42.
  • the length of the first conductive portion 415 is greater than or equal to the phase.
  • the pitch of the second conductive portion 425 is greater than or equal to the pitch of the adjacent second electrodes 421 along the direction in which the second electrode groups 42 are arranged.
  • the first electrode 411, the second electrode 421, and the first conductive portion 415 disposed in the same layer as the first electrode 411 and the second electrode 412 are made of indium tin oxide (Indium T in Ox ide).
  • the tube is called IT0) formed. Since indium tin oxide is a transparent material, the formed sensor electrode 4 does not hinder the display function of the touch screen while ensuring the touch function.
  • the present invention is not limited to the use of indium tin oxide to form the sensor electrode. As long as it is a transparent material that is electrically conductive and can be processed by the semiconductor fabrication process, it can be used as a material for preparing the sensor electrode, which is not limited herein.
  • the second conductive portion 425 disposed in a different layer from the first electrode 411 and the second electrode 412 is formed of at least one of molybdenum, molybdenum-niobium alloy, aluminum, aluminum-niobium alloy, titanium, and copper.
  • the above materials are all electrically conductive materials and have a smaller electrical resistance with respect to the indium tin oxide material, which ensures good electrical connection performance between the second electrodes 421.
  • the capacitive touch screen of the embodiment the other side of the substrate opposite to the first electrode group 41 and the second electrode group 42 is further disposed.
  • a color film layer 12 that is, the capacitive touch screen includes the color film substrate 1 and the array substrate 2 in FIG.
  • Color film substrate 1 and array substrate The structure of 2 is the same as that of the prior art, and will not be described again here.
  • the embodiment further provides a method for preparing a capacitive touch screen, comprising the steps of forming a sensor electrode on a substrate, the sensor electrode comprising a plurality of rows of first electrode groups arranged in parallel, and a plurality of columns of second electrode groups arranged in parallel
  • the first electrode group includes a plurality of first electrodes electrically connected in sequence
  • the second electrode group includes a plurality of second electrodes electrically connected in sequence, wherein the first electrode and the second electrode are formed to include peripheral electrodes distributed at the periphery And a center electrode electrically isolated from the peripheral electrode, and electrically connecting adjacent peripheral electrodes in the same row and column.
  • the patterning process may include only a photolithography process, or may include a photolithography process and an etching step, and may also include printing, inkjet, etc.
  • a photolithography process refers to a process of forming a pattern using a photoresist, a mask, an exposure machine, or the like including a process of film formation, exposure, development, and the like.
  • the corresponding patterning process can be selected in accordance with the structure formed in the present invention.
  • the step of forming a sensor electrode on the substrate includes the following steps.
  • a metal thin film layer is first formed on the substrate 5, and a metal thin film layer can be formed by various methods such as deposition, sputtering, or thermal evaporation.
  • the metal thin film layer may be formed of at least one of molybdenum, molybdenum-niobium alloy, aluminum, aluminum-niobium alloy, titanium, and copper.
  • the metal thin film layer is formed into a pattern including the second conductive portion 425 by a patterning process such as exposure, development, etching, or the like.
  • Step S12 On the substrate on which the step S11 is completed, an insulating layer is formed, and the insulating layer is provided with a via hole in a region corresponding to the end portion of the second conductive portion.
  • an insulating layer film is formed by plasma enhanced chemical vapor deposition, and then the insulating layer 6 is formed by a photolithography process through a normal mask.
  • the insulating layer 6 is made of at least one of silicon oxide, silicon nitride, tantalum oxide, silicon oxynitride, and aluminum oxide.
  • Step S13 forming a first electrode on the substrate on which step S12 is completed, a pattern of the second electrode and the first conductive portion, wherein the first electrode is further formed with a pattern including the closed first isolation trench; and the second electrode is also formed with a pattern including the closed second isolation trench.
  • the adjacent first electrodes are electrically connected by the first conductive portion, and the adjacent second electrodes are electrically connected to the second conductive portion through the via holes to be electrically connected through the second conductive portion.
  • a metal thin film layer is formed on the substrate on which step S12 is completed, and the metal thin film layer can be formed by various methods such as deposition, sputtering or thermal evaporation.
  • An indium tin oxide material can be used to form the metal thin film layer.
  • a patterning process such as exposure, development, etching, or the like is performed on the metal thin film layer to form a pattern including the first electrode, the second electrode, and the first conductive portion.
  • a pattern including the first electrode 411, the second electrode 421, and the first conductive portion 415 in the same layer is formed by using one patterning process ( The specific positional relationship of the first electrode 411, the second electrode 421, and the first conductive portion 415 is referred to FIG. 6 and FIG. 7), and the first conductive portion 415 is orthographically projected with the second conductive portion 425 formed in step S11. The portions in the direction are orthogonally overlapped.
  • the shape of the first isolation trench 412 is substantially the same as the contour shape of the first electrode 411, the depth of the first isolation trench 412 is equal to the thickness of the first electrode 411; the shape and the shape of the second isolation trench 422
  • the outline shape of the two electrodes 421 is substantially the same, and the depth of the second isolation trench 422 is equal to the thickness of the second electrode 421.
  • the first electrode 411 and the second electrode 421 are all diamonds of the same size
  • the first isolation trench 412 has a diamond shape
  • the first isolation trench 412 has a width of 5 ⁇ -30 ⁇
  • the second isolation trench 422 has a diamond shape.
  • the width of the second isolation trench 422 is 5 ⁇ - 30 ⁇ .
  • the area of the first center electrode 41 3 is 30 ° / of the area of the first electrode 411. - 70%, the area of the second center electrode 423 is 30% - 70% of the area of the second electrode 421.
  • the mask used in the exposure process has a pattern corresponding to the formation of the first electrode 411 and the second electrode 421, and also has a correspondence with the formation of the first isolation trench 412 and the second isolation trench 422. pattern.
  • the pattern corresponding to the formation of the first isolation trench 412 and the second isolation trench 422 is completely removed by the photoresist. Accordingly, after the exposure process and the development process are finished, a corresponding portion of the metal thin film in the metal thin film layer is completely removed in the etching process, thereby forming the first isolation trench 412 and the second isolation trench 422.
  • the first center electrode 413 and the first peripheral electrode 414 are completely electrically isolated (ie, there is no signal transmission between the two, the first center electrode is equivalent to being in a floating state),
  • the two center electrodes 423 and the second peripheral electrode 424 are completely electrically isolated (ie, there is no signal transmission between the two, and the second center electrode is equivalent to being in a floating state), compared with the sensor electrodes in the prior art capacitive touch screen.
  • a center electrode 413 and a second center electrode 423 are insulating islands, so that the first center electrode 413 and the second center electrode 423 do not couple with the common electrode when the sensor electrode 4 is charged, thereby avoiding Further generate RC load.
  • the pattern of the sensor electrode 4 in the present invention is not limited to the rhombic pattern illustrated in the embodiment, and the essence thereof is that the sensor electrode is designed by the design of the center electrode of the floating type (floating) The coupling with the common electrode is reduced, and the change in its external shape or related structure does not depart from the scope of protection of the present invention.
  • the first conductive portion 415 is strip-shaped, and the first conductive portion 415 is formed between the adjacent first peripheral electrodes 414 along the direction of the arrangement of the first electrode group 41, and the first conductive portion
  • the width of the second electrode 421 is smaller than the spacing of the second electrode 421 in the direction in which the second electrode group 42 is arranged.
  • the length of the first conductive portion 415 is greater than or equal to the spacing of the first electrode 411 along the direction in which the first electrode group 41 is arranged.
  • the portion 425 is strip-shaped, and the second conductive portion 425 is formed between the adjacent second peripheral electrodes 424 along the direction of the arrangement of the second electrode group 42.
  • the width of the second conductive portion 425 is smaller than that of the first electrode 411.
  • the pitch of the electrode groups 41 in the direction in which the electrodes are arranged, the length of the second conductive portions 425 is greater than or equal to the pitch of the second electrodes 421 in the direction in which the second electrode groups 42 are arranged.
  • the metal thin film layer in step S11 forms a bridge and an edge trace between the second electrodes 421, wherein: the bridge is the second conductive portion 425, and the edge trace is the sensor electrode and the capacitive touch screen.
  • the mutual sensing is still used for the touch sensing between the first electrode group 41 and the second electrode group 42 without affecting Tx (Transmi t: transmission) and Rx (in the coupled electric field). Sensitivity between Rece ive: Receive), sensitivity is improved.
  • FIG. 9 shows that the second electrode 421 of the second electrode group 42 in the column direction is electrically connected through the second conductive portion 425 (metal bridge), that is, using molybdenum, molybdenum-niobium alloy, aluminum, aluminum-bismuth alloy, At least one of titanium and copper forms a second conductive portion 425, and adjacent second electrodes 421 of the second electrode group 42 are electrically connected by a second conductive portion 425; FIG.
  • the group 41 is electrically connected through the first conductive portion 415 (the sensor electrode bridge, in FIG. 10, the sensor electrode portion corresponding to the region corresponding to the second conductive portion 425 is the first conductive portion 415), that is, indium tin oxide is used.
  • the material forms the first conductive portion 415 , and the adjacent first electrodes 411 of the first electrode group 41 are electrically connected by the first conductive portion 415 .
  • the overlapping area of the first conductive portion 415 and the second conductive portion 425 forms a node capacitance, and the first conductive portion 415 and the second conductive portion 425 are insulated and insulated by the insulating layer 6.
  • Step S14 On the substrate on which step S13 is completed, a deuterated layer is formed.
  • a layer of vaporization layer 7 is formed by plasma enhanced chemical vapor deposition on the substrate on which step S13 is completed.
  • the formation of the deuterated layer 7 employs at least one of silicon oxide, silicon nitride, antimony oxide, silicon oxynitride, and aluminum oxide.
  • a via hole is formed in the deuterated layer 7, and the edge between the sensor electrode 4 and the peripheral circuit of the capacitive touch screen is formed.
  • the traces are electrically connected through the vias described above.
  • the forming of the first electrode and the second electrode includes forming a peripheral electrode distributed at the periphery and a center electrode electrically isolated from the peripheral electrode, and causing adjacent peripheral electrodes in the same row and column After the step of electrically connecting to each other, the following steps are further included.
  • Step S21 Flip the substrate in the vertical direction (i.e., flip 180°) as shown in Fig. 11E.
  • Step S22 forming a color film layer on the other side of the inverted substrate opposite to the first electrode group and the second electrode group, as shown in Fig. 11F.
  • the functional portion of the touch panel is prepared, and then the substrate is inverted (the side of the pattern of the sensor electrode 4 faces downward), and then a photo film substrate is formed by photolithography on the side without the pattern.
  • the preparation of the color filter substrate in this embodiment is the same as the preparation of the color film substrate in the prior art, and will not be described herein.
  • the array substrate is disposed opposite to the color filter substrate.
  • the preparation of the array substrate in this embodiment is the same as the preparation of the array substrate in the prior art, and details are not described herein again.
  • Example 2
  • the difference between the embodiment and the embodiment 1 is that, in the capacitive touch screen structure of the embodiment, the second conductive portion is formed in the same layer as the first electrode and the second electrode, and the first conductive portion is disposed on the second conductive portion. Below the portion, a via hole is disposed in the insulating layer, and the first conductive portion is electrically connected to the first electrode through the via hole.
  • the first electrode, the second electrode, and the second conductive portion are formed of indium tin oxide; the first conductive portion is at least one of molybdenum, molybdenum-niobium alloy, aluminum, aluminum-niobium alloy, titanium, and copper. Material formation.
  • the method for preparing the capacitive touch screen of the present implementation specifically includes the following steps:
  • Step S11 forming a pattern including the first conductive portion on the substrate.
  • Step S12 On the substrate on which the step S11 is completed, an insulating layer is formed, and the insulating layer is provided with a via hole in a region corresponding to the end portion of the first conductive portion.
  • Step S13 forming a pattern including a first electrode, a second electrode, and a second conductive portion on the substrate on which the step S12 is completed, wherein the first electrode is simultaneously formed with a pattern including the closed first isolation trench; A pattern including a closed second isolation trench is also formed in the electrode, and the adjacent second electrodes are electrically connected through the second conductive portion, and the adjacent first electrodes are electrically connected to the first conductive portion through the via holes. To electrically connect through the first conductive portion.
  • Step S14 On the substrate on which step S13 is completed, a deuterated layer is formed.
  • the mask used in the exposure process has a pattern corresponding to the formation of the first electrode 411 and the second electrode 421 and also corresponds to forming the first isolation trench 412 (corresponding to the first a case where a closed isolation trench is opened in the electrode; or, at the same time, corresponding to forming a second isolation trench
  • the pattern corresponding to the formation of the first isolation trench 412 or the second isolation trench 422 is a photoresist complete removal region, and correspondingly, after the exposure process and the development process are finished, the first electrode 411 or the second electrode 421 is formed. The corresponding portion of the metal film in the metal thin film layer is completely removed in the etching process, thereby forming the first isolation trench 412 or the second isolation trench 422.
  • the column direction is defined as the first electrode
  • the column arrangement direction is defined as the second electrode, which is merely for convenience of description.
  • the direction of the first electrode and the second electrode in the sensor electrode is not limited, that is, the row arrangement direction can also be defined.
  • the arrangement direction of the second electrode and the column is defined as the first electrode, which is not limited herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Nonlinear Science (AREA)
  • Position Input By Displaying (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)

Abstract

本发明提供了一种电容式触摸屏及其制备方法。该电容式触摸屏包括基板以及设置于所述基板上的传感器电极,所述传感器电极包括多行平行排列的第一电极组、多列平行排列的第二电极组,所述第一电极组包括多个依次电连接的第一电极,所述第二电极组包括多个依次电连接的第二电极,其中,所述第一电极和所述第二电极中的至少一种电极包括分布在周边的周边电极和与所述周边电极电性隔离的中心电极,所述至少一种电极所在电极组中相邻电极的周边电极互相电连接。

Description

电容式触摸屏及其制备方法 技术领域
本发明属于显示技术领域,涉及电容式触摸屏及其制备方法。 背景技术
触摸屏是目前最新的信息输入设备, 它能筒单、 方便、 自然 地实现人机交互, 为人们提供一种全新的多媒体人机交互方法, 由于其具有触摸反应灵敏、 支持多点触摸等优点, 极大地满足了 人们的视觉和触觉的享受。
按照工作原理和传输介质的不同, 触摸屏可分为电阻式、 电 容式、 表面声波式和红外式, 其中电容式触摸屏由于准确度高、 抗干扰能力强而被广泛采用。
同时, 为了实现触摸屏的薄型化和轻量化, 出现了将触摸面 板功能与液晶面板一体化的方法, 具体包括 "In- cell" 方法和
"On- cell" 方法。 "In- cell" 方法是将触摸面板功能嵌入到像 素区域内的方法, " On- ce 11" 方法是将触摸面板功能嵌入到彩 膜基板和偏光板之间的方法。 鉴于目前半导体制造工艺的限制, 很难实现 "In- cell" 方法中在阵列基板上的像素区域内嵌入触 摸传感器的制程, 也难以解决像素区域内嵌入触摸传感器后造成 的有效显示面积减小的问题, 难以确保成品率和显示性能, 因此 尚未实用化。 而 "On- cell" 方法由于在彩膜基板和偏光板之间 形成筒单的传感器电极图案的制程已经较成熟, 而且也不会造成 像素区域内的有效显示面积减小的问题, 容易确保成品率和显示 性能, 因此得到了广泛采用。
根据驱动电场的不同, 液晶显示器(TFT- LCD)可分为水平电 场型和垂直电场型两大类。 其中, 垂直电场型主要包括垂直向列 型 (Vertical Alignment, 筒称 VA ) 和扭曲向列型 (Twisted Nematic, 筒称 TN)两类。 图 1示出了垂直电场型液晶显示器的结 构示意图, 其包括彩膜基板 1 (CF) 、 阵列基板 2 (TFT) 以及彩 膜基板 1与阵列基板 2之间的液晶 3, 在彩膜基板 1靠近液晶 3 侧设置有公共电极 11 ( COM IT0 ) , 在阵列基板 2中设置有像素电 极 21 ( PXL IT0 ) , 公共电极 11与像素电极 21形成垂直电场以驱 动液晶 3进行图像显示。
在用于垂直电场型液晶显示器的" On- eel Γ,电容式触摸屏中, 在彩膜基板上还设置有透明的传感器 (Sensor ) 电极, 由传感器 电极实现触摸感应。如图 2、 3所示,传感器电极 4包括多行平行、 间隔排列的第一电极组 41 ,多列平行、间隔排列的第二电极组 42 , 第一电极组 41、 第二电极组 42包括依次串联电连接的菱形电极。 其中, 第一电极组 41中的每个菱形电极为横向取向(即图 2中的 左右方向或水平方向), 第二电极组 42中的每个菱形电极为纵向 取向 (即图 2中的上下方向或垂直方向) , 第一电极组 41中各第 一电极和第二电极组 42中各第二电极之间的电连接部分通过绝缘 层 6 绝缘隔离、 且在正投影方向上部分重叠, 重叠区域形成节点 电容。
对于基于上述的垂直电场型液晶显示器的 "On- cel l" 电容式 触摸屏结构, 在制备过程中, 先在彩膜基板 1 上先后沉积两层金 属, 其中一层金属形成传感器电极 4以及用于行 /列传感器电极之 间电连接的桥接部分, 另一层金属形成用于列 /行传感器电极之间 电连接的桥接部分。 如图 3、 4所示, 第二电极组 42 中的电极通 过开设在绝缘层 6中的多个较小过孔 426与第二导通部 425电连 接来通过第二导通部 425实现电连接。
经测试证明, 在垂直电场型液晶显示器中直接制作常规的触 摸传感面板(Touch Sensor Panel , 筒称 TSP ) , 将导致传感器电 极和液晶显示器中的公共电极之间的耦合非常大, 即, 单个传感 器电极的整个有效面积均为电容的一个极板面积, 导致 RC 负载 ( loading )过重, 进一步导致传感器电极在采样时可能出现充电 不足的不良, 影响触摸屏的触摸感应灵敏度。 发明内容 本发明所要解决的技术问题是针对现有技术中存在的上述不 足, 提供一种电容式触摸屏及其制备方法, 该电容式触摸屏的传 感器电极与公共电极之间的耦合较小, 降低了 RC负载, 使得传感 器电极充电更快, 保证了电容式触摸屏的触摸感应灵敏度。
解决本发明技术问题所采用的技术方案是一种电容式触摸 屏, 其包括基板以及设置于所述基板上的传感器电极, 所述传感 器电极包括多行平行排列的第一电极组、 多列平行排列的第二电 极组, 所述第一电极组包括多个依次电连接的第一电极, 所述第 二电极组包括多个依次电连接的第二电极, 其特征在于, 所述第 一电极和所述第二电极中的至少一种电极包括分布在周边的周边 电极和与所述周边电极电性隔离的中心电极, 所述至少一种电极 所在电极组中相邻电极的周边电极互相电连接。
优选地, 所述至少一种电极中开设有闭合的隔离沟槽, 所述 隔离沟槽的内侧为中心电极, 所述隔离沟槽外侧为周边电极, 所 述周边电极与所述中心电极之间通过所述隔离沟槽电性隔离。
优选地, 所述隔离沟槽的形状与所述至少一种电极的轮廓形 状实质上相同, 所述隔离沟槽的深度等于所述至少一种电极的厚 度。
优选地, 所述第一电极与所述第二电极为大小相同的菱形, 所述隔离沟槽为菱形, 所述隔离沟槽的宽度为 5μιη-30μιη。
优选地, 所述中心电极的面积为所述至少一种电极的面积的 30%- 70%。
优选地, 相邻的所述第一电极的沿所述第一电极组排列方向 的菱形角之间设置有第一导通部, 相邻的所述第一电极通过所述 第一导通部电连接; 相邻的所述第二电极的沿所述第二电极组排 列方向的菱形角之间设置有第二导通部, 相邻的所述第二电极通 过所述第二导通部电连接, 所述第一导通部与所述第二导通部设 置在不同层, 且二者在正投影方向上部分正交重叠。
优选地, 所述第一导通部与所述第二导通部之间设置有绝缘 层, 所述第一导通部和所述第二导通部中的一种导通部与所述第 一电极、 所述第二电极同层形成, 所述第一导通部和所述第二导 通部中的另一种导通部设置于所述一种导通部的下方, 所述绝缘 层中设置有过孔, 所述另一种导通部与其所对应的电极通过所述 过孔电连接。
优选地, 所述第一导通部为条状, 所述第一导通部的宽度小 于相邻所述第二电极沿所述第二电极组排列方向上的间距, 所述 第一导通部的长度大于等于相邻所述第一电极沿所述第一电极组 排列方向上的间距; 所述第二导通部为条状, 所述第二导通部的 宽度小于相邻所述第一电极沿所述第一电极组排列方向上的间 距, 所述第二导通部的长度大于等于相邻所述第二电极沿所述第 二电极组排列方向上的间距。
优选地, 所述第一电极、 所述第二电极以及与所述第一电极、 所述第二电极同层设置的所述一种导通部采用氧化铟锡形成; 与 所述第一电极、 所述第二电极设置在不同层的所述另一种导通部 采用钼、 钼铌合金、 铝、 铝钕合金、 钛和铜中的至少一种材料形 成。
优选地, 所述基板在与所述第一电极组、 所述第二电极组相 背的另一面上还设置有彩膜层。
本发明还提供一种电容式触摸屏的制备方法, 包括在基板上 形成传感器电极的步骤, 所述传感器电极包括多行平行排列的第 一电极组、 多列平行排列的第二电极组, 所述第一电极组包括多 个依次电连接的第一电极, 所述第二电极组包括多个依次电连接 的第二电极, 其特征在于, 将所述第一电极和所述第二电极中的 至少一种电极形成为包括分布在周边的周边电极和与所述周边电 极电性隔离的中心电极, 且使得所述至少一种电极所在电极组中 相邻电极的周边电极互相电连接。
优选地,所述在基板上形成传感器电极的步骤具体包括如下 步骤: 步骤 S11 : 在所述基板上, 形成包括第一导通部和第二导通 部中的一种导通部的图形; 步骤 S12 : 在完成步骤 S11的所述基板 上, 形成绝缘层, 所述绝缘层在对应于所述一种导通部的端部的 区域开设有过孔; 步骤 S13: 在完成步骤 S12的所述基板上, 形成 包括所述第一电极、 所述第二电极、 所述第一导通部和所述第二 导通部中的另一种导通部的图形, 所述至少一种电极中同时还形 成有包括闭合的隔离沟槽的图形, 所述中心电极与所述周边电极 之间通过所述隔离沟槽电性隔离; 以及步骤 S14 : 在完成步骤 S13 的所述基板上, 形成飩化层, 其中, 在所述一种导通部为第一导 通部时, 相邻的所述第一电极通过所述过孔与所述第一导通部电 连接, 以通过所述第一导通部电连接, 相邻的所述第二电极通过 所述第二导通部电连接, 以及在所述一种导通部为第二导通部时, 相邻的所述第一电极通过所述第一导通部电连接, 相邻的所述第 二电极通过所述过孔与所述第二导通部电连接, 以通过所述第二 导通部电连接。
优选地, 在步骤 S13 中, 采用一次构图工艺, 形成同层设置 的包括所述第一电极、 所述第二电极、 所述另一种导通部的图形, 所述另一种导通部与在步骤 S11 中形成的所述一种导通部在正投 影方向上部分正交重叠。
优选地, 所述隔离沟槽的形状与所述至少一种电极的轮廓形 状实质上相同, 所述隔离沟槽的深度等于所述至少一种电极的厚 度。
优选地,所述第一电极与所述第二电极均为大小相同的菱形, 所述隔离沟槽为菱形, 所述隔离沟槽的宽度为 5μπι - 30μπι。
优选地, 所述中心电极的面积为所述至少一种电极的面积的 30%- 70%。
优选地, 所述第一导通部为条状, 所述第一导通部形成于相 邻的所述第一电极的沿所述第一电极组排列方向的菱形角之间, 所述第一导通部的宽度小于所述第二电极沿所述第二电极组排列 方向上的间距, 所述第一导通部的长度大于等于所述第一电极沿 所述第一电极组排列方向上的间距; 所述第二导通部为条状, 所 述第二导通部形成于相邻的所述第二电极的沿所述第二电极组排 列方向的菱形角之间, 所述第二导通部的宽度小于所述第一电极 沿所述第一电极组排列方向上的间距, 所述第二导通部的长度大 于等于所述第二电极沿所述第二电极组排列方向上的间距。
优选地, 所述第一电极、 所述第二电极以及与所述第一电极、 所述第二电极同层设置的所述另一种导通部采用氧化铟锡形成; 与所述第一电极、 所述第二电极设置在不同层的所述一种导通部 采用钼、 钼铌合金、 铝、 铝钕合金、 钛和铜中的至少一种材料形 成。
优选地, 在完成将所述至少一种电极形成为包括分布在周边 的周边电极和与所述周边电极电性隔离的中心电极且使得所述至 少一种电极所在电极组中相邻电极的周边电极互相电连接的步骤 之后, 还进一步包括: 步骤 S21 : 将所述基板在垂直方向翻转; 步 骤 S22 : 在翻转后的所述基板的与所述第一电极组、所述第二电极 组相背的另一面上, 形成彩膜层。
本发明的有益效果是: 本发明的垂直电场型液晶显示器的 "On- ce l l " 电容式触摸屏中, 由于在传感器电极中采用了悬浮式 的中心电极, 使得传感器电极与公共电极之间的耦合变小, 降低 了 RC负载, 使得传感器电极充电更快, 抗干扰能力更强, 触摸灵 敏度更高, 使得显示装置在具备较高显示品质的同时, 还具备了 良好的触摸效果。 附图说明
图 1为现有技术中垂直电场型液晶显示器的结构示意图; 图 2为现有技术中用于图 1中的垂直电场型液晶显示器的电 容式触摸屏的传感器电极的俯视图;
图 3为图 2中电容式触摸屏的传感器电极的局部放大俯视图; 图 4为示意图 2中电容式触摸屏中搭桥的局部放大俯视图; 图 5为本发明实施例 1中垂直电场型液晶显示器的结构示意 图;
图 6为图 5中电容式触摸屏的传感器电极的俯视图; 图 7为图 6中电容式触摸屏的传感器电极的局部放大俯视图; 图 8为示意图 6中电容式触摸屏中搭桥的局部放大俯视图; 图 9为图 8中 A- A切面剖视图;
图 10为图 8中 B- B切面剖视图;
图 11A-图 11F为图 5中电容式触摸屏在各制备过程中的剖视 图;
图中: 1 -彩膜基板; 11-公共电极; 12-彩膜层; 2 -阵列基 板; 21-像素电极; 3-液晶; 4 -传感器电极; 41 -第一电极组; 411-第一电极; 412-第一隔离沟槽; 413-第一中心电极; 414-第 一周边电极; 415-第一导通部; 42-第二电极组; 421-第二电极; 422-第二隔离沟槽; 423-第二中心电极; 424-第二周边电极; 425- 第二导通部; 426-过孔; 5-基板; 6-绝缘层; 7-飩化层。 具体实施方式
为使本领域技术人员更好地理解本发明的技术方案, 下面结 合附图和具体实施方式对本发明的电容式触摸屏及其制备方法作 进一步详细描述。
一种电容式触摸屏, 包括基板以及设置于所述基板上的传感 器电极, 所述传感器电极包括多行平行排列的第一电极组、 多列 平行排列的第二电极组, 所述第一电极组包括多个依次电连接的 第一电极, 所述第二电极组包括多个依次电连接的第二电极, 其 特征在于, 所述第一电极和所述第二电极中的至少一种电极包括 分布在周边的周边电极和与所述周边电极电性隔离的中心电极, 所述至少一种电极所在电极组中相邻电极的周边电极互相电连 接。
一种电容式触摸屏的制备方法, 包括在基板上形成传感器电 极的步骤, 所述传感器电极包括多行平行排列的第一电极组、 多 列平行排列的第二电极组, 所述第一电极组包括多个依次电连接 的第一电极, 所述第二电极组包括多个依次电连接的第二电极, 其特征在于, 将所述第一电极和所述第二电极中的至少一种电极 中心电极, 且使得所述至少一种电极所在电极组中相邻电极的周 边电极互相电连接。 实施例 1 :
如图 5-图 7所示, 电容式触摸屏包括基板以及设置于基板上 的传感器电极 4 , 传感器电极 4 包括多行平行排列的第一电极组 41、多列平行排列的第二电极组 42 , 第一电极组 41包括多个依次 电连接的第一电极 411 , 第二电极组 42包括多个依次电连接的第 二电极 421。在本实施例中, 第一电极 411和第二电极 421均包括 分布在周边的周边电极和与周边电极电性隔离的中心电极, 同一 行和列中相邻的周边电极互相电连接。
如图 7所示,第一电极 411中开设有闭合的第一隔离沟槽 412 , 第一隔离沟槽 412的内侧为第一中心电极 413 , 第一隔离沟槽 412 外侧为第一周边电极 414 , 第一中心电极 413与第一周边电极 414 通过第一隔离沟槽 412 电性隔离, 相邻的第一周边电极 414互相 电连接; 同时, 第二电极 421中开设有闭合的第二隔离沟槽 422 , 第二隔离沟槽 422 内侧为第二中心电极 423 , 第二隔离沟槽 422 外侧为第二周边电极 424 , 第二中心电极 423与第二周边电极 424 通过第二隔离沟槽 422 电性隔离, 相邻的第二周边电极 424互相 电连接。
为了达到周边电极与中心电极完全电性隔离的目的, 优选的 是, 第一隔离沟槽 412的形状与第一电极 411的轮廓形状实质上 相同, 第一隔离沟槽 412的深度等于第一电极 411的厚度; 第二 隔离沟槽 422的形状与第二电极 421的轮廓形状实质上相同, 第 二隔离沟槽 422的深度等于第二电极 421的厚度。
在本实施例中, 第一电极 411与第二电极 421为大小相同的 菱形,第一隔离沟槽 412为菱形,第一隔离沟槽 412的宽度为 5μιη -30μηι; 第二隔离沟槽 422为菱形, 第二隔离沟槽 422 的宽度为 5μπι- 30μπι。 该宽度范围内的隔离沟槽, 既能有效电隔离中心电极 和周边电极, 又不至于对触摸屏的视觉效果造成影响。 优选的是, 第一中心电极 413的面积为第一电极 411的面积 的 30°/»- 70°/», 如果小于 30°/», 传感器电极与液晶显示器之间的耦合 变大, 将影响充电效率; 如果大于 70%, 有效的触摸区域变小, 会 影响触控信号量的变化; 例如: 当第一周边电极 414 的菱形外边 长为 5mm时, 第一中心电极 413的菱形边长为 2. 7mm- 4. 2mm; 第二 中心电极 423的面积为第二电极 421的面积的 30°/。- 70%,如果小于 30%, 传感器电极与液晶显示器之间的耦合变大, 将影响充电效 率; 如果大于 70%, 有效的触摸区域变小,会影响触控信号量的变 化; 。 在上述面积比范围内, 既能有效减小传感器电极 4 与公共 电极之间的耦合从而有效地减小 RC负载, 又不至于影响触摸屏的 灵敏度。
如图 7、图 8所示,为了保证第一电极组 41中各第一电极 411 之间的电连接, 相邻的第一周边电极 414的沿第一电极组 41排列 方向的菱形角之间设置有第一导通部 415 , 相邻的第一周边电极 414 通过第一导通部 415 电连接; 相应地, 为了保证第二电极组
42中各第二电极 421之间的电连接, 相邻的第二周边电极 424的 沿第二电极组 42排列方向的菱形角之间设置有第二导通部 425 , 相邻的第二周边电极 424通过第二导通部 425电连接, 第一导通 部 415与第二导通部 425设置在不同层, 且二者在正投影方向上 部分正交重叠。
如图 5所示, 并同时参考图 7 , 第一导通部 415与第二导通 部 425之间设置有绝缘层 6。在本实施例中, 第一导通部 415与第 一电极 411、第二电极 421同层形成, 第二导通部 425设置于第一 导通部 415的下方, 绝缘层 6中设置有过孔 426 , 第二导通部 425 与第二电极 421通过过孔 426电连接。
优选地, 绝缘层 6采用硅氧化物、 硅氮化物、 铪氧化物、 硅 氮氧化物、 铝氧化物中的至少一种材料形成。
这里应该理解的是, 为能更突出地示意本实施例中第一导通 部 415与第二导通部 425的位置关系, 图 8中的第一导通部 415、 第一周边电极 414和第二周边电极 424设置为具有一定透明度; 为能更突出地示意本实施例中第二导通部 425与第二电极 421的 电连接结构, 过孔 426也设置为具有一定的透明度; 同时, 应该 理解的是, 由于绝缘层 6—般采用透明材料(硅氧化物、 硅氮化 物、 铪氧化物、 硅氮氧化物、 铝氧化物) 形成, 对平面图的观察 不会造成阻碍, 因此在图 7的俯视图中略去绝缘层 6的示意, 以 便能更好地示出第二导通部 425与第二电极 421的相对位置关系。
其中, 第一导通部 415为条状, 第一导通部 415的宽度小于 相邻第二电极 421沿第二电极组 42排列方向上的间距, 第一导通 部 415的长度大于等于相邻第一电极 411沿第一电极组 41排列方 向上的间距; 第二导通部 425为条状, 第二导通部 425的宽度小 于相邻第一电极 411沿第一电极组 41排列方向上的间距, 第二导 通部 425的长度大于等于相邻第二电极 421沿第二电极组 42排列 方向上的间距。
在本实施例中, 优选地, 第一电极 411、 第二电极 421 以及 与第一电极 411、第二电极 412同层设置的第一导通部 415采用氧 化铟锡 ( Ind ium T in Ox ide , 筒称 IT0 )形成。 由于氧化铟锡为透 明材料, 因此形成的传感器电极 4在保证触摸功能的同时, 不会 阻碍触摸屏的显示功能。 当然, 本发明并不限定必须采用氧化铟 锡形成传感器电极, 只要满足导电、 且能通过半导体制备工艺制 程条件的透明材料, 均可用作传感器电极的制备材料, 这里不做 限定。
优选地, 与第一电极 411、 第二电极 412设置在不同层的第 二导通部 425 采用钼、 钼铌合金、 铝、 铝钕合金、 钛和铜中的至 少一种材料形成。 上述材料均为导电材料, 且相对氧化铟锡材料 而言, 具有更小的电阻, 能保证第二电极 421之间良好的电连接 性能。
当然, 作为垂直电场型液晶显示器的 "On- ce l l " 电容式触摸 屏, 本实施例的电容式触摸屏中, 基板的与第一电极组 41、 第二 电极组 42相背的另一面上还设置有彩膜层 12 ,也即该电容式触摸 屏包括图 5中的彩膜基板 1和阵列基板 2。彩膜基板 1和阵列基板 2的结构与现有技术相同, 这里不再赘述。
相应地, 本实施例还提供一种电容式触摸屏的制备方法, 其 包括在基板上形成传感器电极的步骤, 传感器电极包括多行平行 排列的第一电极组、 多列平行排列的第二电极组, 第一电极组包 括多个依次电连接的第一电极, 第二电极组包括多个依次电连接 的第二电极, 其中, 将第一电极和第二电极形成为包括分布在周 边的周边电极和与周边电极电性隔离的中心电极, 且使得同一行 和列中相邻的周边电极互相电连接。
在具体阐述本实施的电容式触摸屏的制备方法之前, 首先定 义: 在本发明中, 构图工艺可只包括光刻工艺, 或包括光刻工艺 以及刻蚀步骤, 同时还可以包括打印、 喷墨等其他用于形成预定 图形的工艺; 光刻工艺是指包括成膜、 曝光、 显影等工艺过程的 利用光刻胶、 掩模板、 曝光机等形成图形的工艺。 可根据本发明 中所形成的结构选择相应的构图工艺。
具体地, 在基板上形成传感器电极的步骤包括如下步骤。 步骤 S11 : 在基板上, 形成包括第二导通部的图形。
如图 11A所示, 在该步骤中, 先在基板 5上形成一层金属薄 膜层, 形成金属薄膜层可采用沉积、 溅射或热蒸发等多种方法。 形成金属薄膜层可采用钼、 钼铌合金、 铝、 铝钕合金、 钛和铜中 的至少一种材料。
然后, 通过曝光、 显影、 刻蚀等构图工艺, 使金属薄膜层形 成包括第二导通部 425的图形。
步骤 S12 : 在完成步骤 S11的基板上, 形成绝缘层, 绝缘层 在对应于第二导通部的端部的区域开设有过孔。
如图 11B所示, 在该步骤中, 在完成步骤 S11的基板上, 先 采用等离子体增强化学气相沉积法形成一层绝缘层膜, 然后通过 普通掩模板通过一次光刻工艺形成绝缘层 6。绝缘层 6采用硅氧化 物、 硅氮化物、 铪氧化物、 硅氮氧化物、 铝氧化物中的至少一种 材料。
步骤 S13: 在完成步骤 S12的基板上, 形成包括第一电极、 第二电极、 第一导通部的图形, 第一电极中同时还形成有包括闭 合的第一隔离沟槽的图形; 第二电极中还同时形成有包括闭合的 第二隔离沟槽的图形, 相邻的第一电极通过第一导通部电连接, 相邻的第二电极通过过孔与第二导通部电连接, 以通过第二导通 部电连接。
在该步骤中,在完成步骤 S12的基板上形成一层金属薄膜层, 形成金属薄膜层可采用沉积、 溅射或热蒸发等多种方法。 形成金 属薄膜层可采用氧化铟锡材料。
然后, 对金属薄膜层执行曝光、 显影、 刻蚀等构图工艺, 以 形成包括第一电极、 第二电极、 第一导通部的图形。 如图 11C所 示, 并同时参考图 6、 图 7 , 在该步骤中, 采用一次构图工艺, 形 成同层设置的包括第一电极 411、 第二电极 421、 第一导通部 415 的图形 (第一电极 411、 第二电极 421、 第一导通部 415的具*** 置关系参考图 6、 图 7 ) , 第一导通部 415与在步骤 S11中形成的 第二导通部 425在正投影方向上部分正交重叠。
参考图 7 , 第一隔离沟槽 412的形状与第一电极 411的轮廓 形状实质上相同, 第一隔离沟槽 412的深度等于第一电极 411的 厚度; 第二隔离沟槽 422的形状与第二电极 421的轮廓形状实质 上相同, 第二隔离沟槽 422的深度等于第二电极 421的厚度。
优选的是,第一电极 411与第二电极 421均为大小相同的菱 形, 第一隔离沟槽 412 为菱形, 第一隔离沟槽 412 的宽度为 5μηι-30μιη; 第二隔离沟槽 422为菱形, 第二隔离沟槽 422的宽度 为 5μπι- 30μπι。
优选的是, 第一中心电极 41 3的面积为第一电极 411的面积 的 30°/。- 70%, 第二中心电极 423的面积为第二电极 421 的面积的 30%- 70%。
在本步骤中, 曝光工艺中所采用的掩模板除了具有对应于形 成第一电极 411、第二电极 421的图案,还同时具有对应于形成第 一隔离沟槽 412和第二隔离沟槽 422的图案。 其中, 对应于形成 第一隔离沟槽 412和第二隔离沟槽 422的图案为光刻胶完全去除 区, 相应地, 在曝光工艺、 显影工艺结束后, 金属薄膜层中的对 应部分金属薄膜在刻蚀工艺中被完全去除, 从而形成第一隔离沟 槽 412和第二隔离沟槽 422。
在本实施例中, 如图 7所示, 第一中心电极 413和第一周边 电极 414 完全电性隔离 (即二者之间无任何信号传输, 第一中心 电极相当于处于悬浮状态) 、 第二中心电极 423和第二周边电极 424完全电性隔离(即二者之间无任何信号传输, 第二中心电极相 当于处于悬浮状态) , 与现有技术电容式触摸屏中传感器电极相 比,第一中心电极 413和第二中心电极 423是绝缘孤岛( f loa t ing IT0 ) , 因此第一中心电极 413和第二中心电极 423在传感器电极 4 充电的时候不会与公共电极产生耦合, 从而避免了进一步产生 RC负载。
这里应该理解的是,本发明中传感器电极 4的图形并不局限 于本实施例中所示例的菱形图形, 其本质在于, 通过悬浮式 ( f loa t ing ) 的中心电极的设计, 使得传感器电极与公共电极之 间的耦合减小, 而其外在形状或相关结构的改变, 并不脱离本发 明保护的范畴。
在本实施例中, 第一导通部 415为条状, 第一导通部 415形 成于相邻的第一周边电极 414沿第一电极组 41排列方向的菱角之 间, 第一导通部 415的宽度小于第二电极 421沿第二电极组 42排 列方向上的间距, 第一导通部 415 的长度大于等于第一电极 411 沿第一电极组 41排列方向上的间距; 第二导通部 425为条状, 第 二导通部 425形成于相邻的第二周边电极 424沿第二电极组 42排 列方向的菱角之间, 第二导通部 425的宽度小于第一电极 411沿 第一电极组 41排列方向上的间距, 第二导通部 425的长度大于等 于第二电极 421沿第二电极组 42排列方向上的间距。
在本实施例中, 步骤 S11 中的金属薄膜层形成第二电极 421 之间的搭桥和边沿走线, 其中: 搭桥即第二导通部 425 , 边沿走线 即传感器电极与该电容式触摸屏的周边电路之间的电连接线; 步 骤 S13中的金属薄膜层形成第一电极 411之间的搭桥, 即第一导 如图 7、 图 8 所示, 与现有技术中传感器电极之间的电连接 方式相比, 本实施例中只需在绝缘层 6 中形成一个较大过孔 426 即可, 使得工艺设计更筒单, 减小了工艺误差; 同时, 采用一个 较大的过孔形成设置在不同层的第二电极与第二导通部的电连 接, 相比现有技术中采用多个较小的过孔形成不在同一层的电极 与导通部的电连接(如图 3、 图 4所示), 更容易获得稳定的电连 接效果, 使得显示画面更干净, 消影效果更好。 与现有技术相同 的是, 本实施例中第一电极组 41和第二电极组 42之间仍采用互 感方式进行触摸感应, 并不会影响耦合电场中 Tx ( Transmi t : 传 送)和 Rx ( Rece ive: 接收)之间的耦合, 灵敏度得到提升。
如图 9、 图 10所示, 为本实施例中电容式触摸屏在沿纸面水 平方向 (A-A )和垂直方向 (B-B ) 的剖视图。 其中, 图 9 示出了 列方向的第二电极组 42中的第二电极 421通过第二导通部 425(金 属桥)做电连接, 即采用钼、 钼铌合金、 铝、 铝钕合金、 钛和铜 中的至少一种材料形成第二导通部 425 , 第二电极组 42中相邻第 二电极 421通过第二导通部 425电连接; 图 10示出了行方向的第 一电极组 41通过第一导通部 415 (传感器电极桥, 图 10中, 与第 二导通部 425 区域对应区域的传感器电极部分即为第一导通部 415 )做电连接, 即采用氧化铟锡材料形成第一导通部 415 , 第一 电极组 41中相邻第一电极 411通过第一导通部 415电连接。 第一 导通部 415与第二导通部 425的重叠区域形成节点电容, 第一导 通部 415与第二导通部 425之间通过绝缘层 6绝缘隔离。
步骤 S14 : 在完成步骤 S13的基板上, 形成飩化层。
如图 11D所示, 在该步骤中, 在完成步骤 S13的基板上, 采 用等离子体增强化学气相沉积法形成一层飩化层 7。 形成飩化层 7 采用硅氧化物、 硅氮化物、 铪氧化物、 硅氮氧化物、 铝氧化物中 的至少一种材料。
然后, 通过曝光、 显影、 刻蚀等构图工艺, 在飩化层 7 中形 成过孔, 传感器电极 4 与该电容式触摸屏的周边电路之间的边沿 走线通过上述过孔电连接。
至此, 就形成了电容式触摸屏的触摸面板功能部分。
在本实施例的制备方法中, 在完成将第一电极和第二电极形 成包括分布在周边的周边电极和与周边电极电性隔离的中心电 极, 且使得同一行和列中相邻的周边电极互相电连接的步骤之后, 还进一步包括如下步骤。
步骤 S21 : 将基板在垂直方向翻转 (即翻转 180° ) , 如图 11E所示。
步骤 S22 : 在翻转后的基板的与第一电极组、 第二电极组相 背的另一面上, 形成彩膜层, 如图 11F所示。
即, 在本实施例中, 先制备完成触摸面板功能部分, 然后将 基板倒置 (有传感器电极 4 的图形的一面朝下) , 然后在没有图 形的一面, 采用光刻工艺制备形成彩膜基板 1中的彩膜层 12以及 其他相应的膜层。 本实施例中彩膜基板的制备与现有技术中彩膜 基板的制备相同, 这里不再赘述。
在本实施例中, 还包括与彩膜基板相对设置的阵列基板, 本 实施例中阵列基板的制备与现有技术中阵列基板的制备相同, 这 里不再赘述。 实施例 2 :
本实施例与实施例 1 的区别在于, 在本实施例的电容性触摸 屏结构中, 第二导通部与第一电极、 第二电极同层形成, 第一导 通部设置于第二导通部的下方, 绝缘层中设置有过孔, 第一导通 部与第一电极通过过孔电连接。
在本实施例中, 第一电极、 第二电极以及第二导通部采用氧 化铟锡形成; 第一导通部采用钼、 钼铌合金、 铝、 铝钕合金、 钛 和铜中的至少一种材料形成。
相应地,本实施的电容性触摸屏的制备方法具体包括如下步 骤:
步骤 S11 : 在基板上, 形成包括第一导通部的图形。 步骤 S12 : 在完成步骤 Sl l的基板上, 形成绝缘层, 绝缘层 在对应于第一导通部的端部的区域开设有过孔。
步骤 S13: 在完成步骤 S12的基板上, 形成包括第一电极、 第二电极、 第二导通部的图形, 第一电极中还同时形成有包括闭 合的第一隔离沟槽的图形; 第二电极中还同时形成有包括闭合的 第二隔离沟槽的图形, 相邻的第二电极通过第二导通部电连接, 相邻的第一电极通过过孔与第一导通部电连接, 以通过第一导通 部电连接。
步骤 S14 : 在完成步骤 S13的基板上, 形成飩化层。
本实施例中电容式触摸屏的其他部分及其制备方法中的其他 步骤与实施例 1中的类似, 这里不再详述。 实施例 3:
本实施例与实施例 1、 2的区别在于, 在本实施例中, 仅第 一电极组中的第一电极, 或者仅第二电极组中的第二电极中开设 有闭合的隔离沟槽。
相应地, 在形成传感器电极时, 曝光工艺中所采用的掩模板 除了具有对应于形成第一电极 411、第二电极 421的图案还同时具 有对应于形成第一隔离沟槽 412(对应于第一电极中开设有闭合的 隔离沟槽的情况) ; 或者, 还同时具有对应于形成第二隔离沟槽
422 (对应于第二电极中开设有闭合的隔离沟槽的情况) 的图案。 其中, 对应于形成第一隔离沟槽 412或第二隔离沟槽 422的图案 为光刻胶完全去除区, 相应地, 在曝光工艺、 显影工艺结束后, 形成第一电极 411或第二电极 421的金属薄膜层中的对应部分的 金属薄膜在刻蚀工艺中被完全去除, 从而形成第一隔离沟槽 412 或第二隔离沟槽 422。
本实施例中电容式触摸屏的其他部分及其制备方法中的其他 步骤与实施例 1、 2中的类似, 这里不再详述。 应该理解的是, 本发明实施例 1-3的传感器电极中, 将行排 列方向定义为第一电极、 列排列方向定义为第二电极, 仅是为了 叙述方便, 事实上, 并不限定传感器电极中第一电极、 第二电极 方向, 即, 也可以将行排列方向定义为第二电极、 列排列方向定 义为第一电极, 这里不做限定。 综上, 本发明的垂直电场型液晶显示器的 "On- ce l l" 电容式 触摸屏中, 由于在传感器电极中采用了悬浮式的中心电极, 使得 传感器电极与公共电极之间的耦合变小, 降低了 RC负载, 使得传 感器电极充电更快, 抗干扰能力更强, 触摸灵敏度更高, 使得显 示装置在具备较高显示品质的同时, 还具备了良好的触摸效果。 可以理解的是, 以上实施方式仅仅是为了说明本发明的原理 而采用的示例性实施方式, 然而本发明并不局限于此。 对于本领 域内的普通技术人员而言, 在不脱离本发明的精神和实质的情况 下, 可以做出各种变型和改进, 这些变型和改进也视为本发明的 保护范围。

Claims

权利要求书
1. 一种电容式触摸屏, 包括基板以及设置于所述基板上的传 感器电极, 所述传感器电极包括多行平行排列的第一电极组、 多 列平行排列的第二电极组, 所述第一电极组包括多个依次电连接 的第一电极, 所述第二电极组包括多个依次电连接的第二电极, 其特征在于, 所述第一电极和所述第二电极中的至少一种电极包 括分布在周边的周边电极和与所述周边电极电性隔离的中心电 极, 所述至少一种电极所在电极组中相邻电极的周边电极互相电 连接。
2. 根据权利要求 1所述的电容式触摸屏, 其特征在于, 所述 至少一种电极中开设有闭合的隔离沟槽, 所述隔离沟槽内侧为中 心电极, 所述隔离沟槽外侧为周边电极, 所述周边电极与所述中 心电极之间通过所述隔离沟槽电性隔离。
3. 根据权利要求 2所述的电容式触摸屏, 其特征在于, 所述 隔离沟槽的形状与所述至少一种电极的轮廓形状实质上相同, 所 述隔离沟槽的深度等于所述至少一种电极的厚度。
4. 根据权利要求 2或 3所述的电容式触摸屏, 其特征在于, 所述第一电极与所述第二电极为大小相同的菱形, 所述隔离沟槽 为菱形, 所述隔离沟槽的宽度为 5μιη-30μιη。
5. 根据权利要求 1-4中任一项所述的电容式触摸屏,其特征 在于, 所述中心电极的面积为所述至少一种电极的面积的
30%— 70%。
6. 根据权利要求 4所述的电容式触摸屏, 其特征在于, 相邻 的所述第一电极的沿所述第一电极组排列方向的菱形角之间设置 有第一导通部, 相邻的所述第一电极通过所述第一导通部电连接; 相邻的所述第二电极的沿所述第二电极组排列方向的菱形角之间 设置有第二导通部, 相邻的所述第二电极通过所述第二导通部电 连接, 所述第一导通部与所述第二导通部设置在不同层, 且二者 在正投影方向上部分正交重叠。
7. 根据权利要求 6所述的电容式触摸屏, 其特征在于, 所述 第一导通部与所述第二导通部之间设置有绝缘层, 所述第一导通 部和所述第二导通部中的一种导通部与所述第一电极、 所述第二 电极同层形成, 所述第一导通部和所述第二导通部中的另一种导 通部设置于所述一种导通部的下方, 所述绝缘层中设置有过孔, 所述另一种导通部与其所对应的电极通过所述过孔电连接。
8. 根据权利要求 6或 7所述的电容式触摸屏, 其特征在于, 所述第一导通部为条状, 所述第一导通部的宽度小于相邻所述第 二电极沿所述第二电极组排列方向上的间距, 所述第一导通部的 长度大于等于相邻所述第一电极沿所述第一电极组排列方向上的 间距;
所述第二导通部为条状, 所述第二导通部的宽度小于相邻所 述第一电极沿所述第一电极组排列方向上的间距, 所述第二导通 部的长度大于等于相邻所述第二电极沿所述第二电极组排列方向 上的间距。
9. 根据权利要求 7或 8所述的电容式触摸屏, 其特征在于, 所述第一电极、 所述第二电极以及与所述第一电极、 所述第二电 极同层设置的所述一种导通部采用氧化铟锡形成;
与所述第一电极、 所述第二电极设置在不同层的所述另一种 导通部采用钼、 钼铌合金、 铝、 铝钕合金、 钛和铜中的至少一种 材料形成。
10. 根据权利要求 1-9 中任一项所述的电容式触摸屏, 其特 征在于, 所述基板在与所述第一电极组、 所述第二电极组相背的 另一面上还设置有彩膜层。
11. 一种电容式触摸屏的制备方法, 包括在基板上形成传感 器电极的步骤, 所述传感器电极包括多行平行排列的第一电极组、 多列平行排列的第二电极组, 所述第一电极组包括多个依次电连 接的第一电极, 所述第二电极组包括多个依次电连接的第二电极, 其特征在于, 将所述第一电极和所述第二电极中的至少一种电极 中心电极, 且使得所述至少一种电极所在电极组中相邻电极的周 边电极互相电连接。
12. 根据权利要求 11所述的制备方法, 其特征在于, 所述 在基板上形成传感器电极的步骤具体包括如下步骤:
步骤 S11 : 在所述基板上, 形成包括第一导通部和第二导通 部中的一种导通部的图形;
步骤 S12 : 在完成步骤 S11的所述基板上, 形成绝缘层, 所 述绝缘层在对应于所述一种导通部的端部的区域开设有过孔; 步骤 S13: 在完成步骤 S12的所述基板上, 形成包括所述第 一电极、 所述第二电极、 所述第一导通部和所述第二导通部中的 另一种导通部的图形, 所述至少一种电极中同时还形成有包括闭 合的隔离沟槽的图形, 所述中心电极与所述周边电极之间通过所 述隔离沟槽电性隔离; 以及
步骤 S14 : 在完成步骤 S13的所述基板上, 形成飩化层, 其中,
在所述一种导通部为第一导通部时,相邻的所述第一电极通 过所述过孔与所述第一导通部电连接, 以通过所述第一导通部电 连接, 相邻的所述第二电极通过所述第二导通部电连接, 以及 在所述一种导通部为第二导通部时,相邻的所述第一电极通 过所述第一导通部电连接, 相邻的所述第二电极通过所述过孔与 所述第二导通部电连接, 以通过所述第二导通部电连接。
13. 根据权利要求 12所述的制备方法, 其特征在于, 在步骤 S13中, 采用一次构图工艺, 形成同层设置的包括所述第一电极、 所述第二电极、 所述另一种导通部的图形, 所述另一种导通部与 在步骤 S11 中形成的所述一种导通部在正投影方向上部分正交重
14. 根据权利要求 12或 13所述的制备方法, 其特征在于, 所述隔离沟槽的形状与所述至少一种电极的轮廓形状实质上相 同, 所述隔离沟槽的深度等于所述至少一种电极的厚度。
15. 根据权利要求 12-14 中任一项所述的制备方法, 其特征 在于, 所述第一电极与所述第二电极均为大小相同的菱形, 所述 隔离沟槽为菱形, 所述隔离沟槽的宽度为 5μπι - 30μπι。
16. 根据权利要求 11-15 中任一项所述的制备方法, 其特征 在于, 所述中心电极的面积为所述至少一种电极的面积的 30%- 70%。
17. 根据权利要求 15所述的制备方法, 其特征在于, 所述第 一导通部为条状, 所述第一导通部形成于相邻的所述第一电极的 沿所述第一电极组排列方向的菱形角之间, 所述第一导通部的宽 度小于所述第二电极沿所述第二电极组排列方向上的间距, 所述 第一导通部的长度大于等于所述第一电极沿所述第一电极组排列 方向上的间距;
所述第二导通部为条状, 所述第二导通部形成于相邻的所述 第二电极的沿所述第二电极组排列方向的菱形角之间, 所述第二 导通部的宽度小于所述第一电极沿所述第一电极组排列方向上的 间距, 所述第二导通部的长度大于等于所述第二电极沿所述第二 电极组排列方向上的间距。
18. 根据权利要求 12-17 中任一项所述的制备方法, 其特征 在于, 所述第一电极、 所述第二电极以及与所述第一电极、 所述 第二电极同层设置的所述另一种导通部采用氧化铟锡形成;
与所述第一电极、 所述第二电极设置在不同层的所述一种导 通部采用钼、 钼铌合金、 铝、 铝钕合金、 钛和铜中的至少一种材 料形成。
19. 根据权利要求 11-18任一所述的制备方法,其特征在于, 在完成将所述至少一种电极形成为包括分布在周边的周边电极和 与所述周边电极电性隔离的中心电极且使得所述至少一种电极所 在电极组中相邻电极的周边电极互相电连接的步骤之后, 还进一 步包括:
步骤 S21 : 将所述基板在垂直方向翻转;
步骤 S22 : 在翻转后的所述基板的与所述第一电极组、 所述 第二电极组相背的另一面上, 形成彩膜层。
PCT/CN2013/085140 2013-06-25 2013-10-12 电容式触摸屏及其制备方法 WO2014205958A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/235,938 US20150015803A1 (en) 2013-06-25 2013-10-12 Capacitive Touch Screen and Method for Fabricating the Same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310257554.5A CN103365518B (zh) 2013-06-25 2013-06-25 一种电容式触摸屏以及制备方法
CN201310257554.5 2013-06-25

Publications (1)

Publication Number Publication Date
WO2014205958A1 true WO2014205958A1 (zh) 2014-12-31

Family

ID=49367013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/085140 WO2014205958A1 (zh) 2013-06-25 2013-10-12 电容式触摸屏及其制备方法

Country Status (3)

Country Link
US (1) US20150015803A1 (zh)
CN (1) CN103365518B (zh)
WO (1) WO2014205958A1 (zh)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9557866B2 (en) * 2013-03-15 2017-01-31 Beijing Boe Optoelectronics Technology Co., Ltd. Capacitive touch panel and touch display apparatus
CN104866146B (zh) * 2014-02-25 2018-10-26 宸鸿科技(厦门)有限公司 电容式触控面板
CN104571756B (zh) * 2014-12-04 2017-11-10 上海天马微电子有限公司 一种触摸显示面板及其驱动方法、触摸装置
CN104460139B (zh) * 2014-12-31 2017-06-23 深圳市华星光电技术有限公司 触控显示装置及电子设备
CN104898912B (zh) * 2015-06-25 2018-01-16 京东方科技集团股份有限公司 一种电容式触控屏及其制备方法、显示装置
CN105065881A (zh) * 2015-07-28 2015-11-18 安徽机电职业技术学院 一种三角架装置
CN104964778A (zh) * 2015-07-28 2015-10-07 芜湖科创生产力促进中心有限责任公司 一种接触式平行板三维力压力传感器
CN105005775A (zh) * 2015-07-28 2015-10-28 安徽工程大学 手写多维力信息采集装置
CN104978504A (zh) * 2015-07-28 2015-10-14 安徽机电职业技术学院 一种电子签名多维力信息采集***
CN104990663B (zh) * 2015-07-28 2021-02-23 安徽工程大学 一种接触式平行板差动三维力压力传感器
CN104958889A (zh) * 2015-07-28 2015-10-07 安徽工程大学 自行车测试车辅助训练装置
CN104978073A (zh) * 2015-07-28 2015-10-14 安徽机电职业技术学院 感应式触摸屏及其控制方法
CN104984531A (zh) * 2015-07-28 2015-10-21 安徽机电职业技术学院 自行车骑行运动辅助训练装置
CN104997569B (zh) * 2015-07-28 2017-01-18 安徽机电职业技术学院 一种基于可拆卸牙套的牙齿综合测量仪
CN105012039B (zh) * 2015-07-28 2017-01-04 安徽工程大学 一种牙齿综合测量仪
CN104971482A (zh) * 2015-07-28 2015-10-14 安徽机电职业技术学院 短跑辅助训练装置
CN105056504A (zh) * 2015-07-28 2015-11-18 安徽工程大学 短跑中足底与起跑器间作用力测量装置
CN104984530A (zh) * 2015-07-28 2015-10-21 安徽工程大学 一种拳击运动辅助训练装置
CN104964140A (zh) * 2015-07-28 2015-10-07 芜湖科创生产力促进中心有限责任公司 一种基于三维压力检测的三角架装置
CN104971483A (zh) * 2015-07-28 2015-10-14 安徽机电职业技术学院 基于压力分析的拳击运动辅助训练装置
CN105105713A (zh) * 2015-07-28 2015-12-02 安徽工程大学 人体皮肤摩擦性能测试仪
CN104978095A (zh) * 2015-07-28 2015-10-14 安徽机电职业技术学院 一种三维多点式触摸屏及其控制方法
CN105054953A (zh) * 2015-07-28 2015-11-18 安徽机电职业技术学院 基于足底压力分布测量的临床治疗效果评价***
CN104984537A (zh) * 2015-07-28 2015-10-21 安徽工程大学 一种运动员跨栏过程姿态检测装置
CN104960393A (zh) * 2015-07-28 2015-10-07 安徽机电职业技术学院 胎压检测装置
CN104997515A (zh) * 2015-07-28 2015-10-28 安徽工程大学 一种足底压力分布测量装置
CN105089318A (zh) * 2015-07-28 2015-11-25 安徽机电职业技术学院 感应式立体车库安全监控***
CN104990867A (zh) * 2015-07-28 2015-10-21 安徽机电职业技术学院 微机械***构件的微小摩擦力测试装置
CN105019704A (zh) * 2015-07-28 2015-11-04 安徽工程大学 基于三维压力检测的立体车库安全监控***
KR20170020725A (ko) * 2015-07-29 2017-02-24 주식회사 하이딥 압력 전극이 형성된 디스플레이 모듈을 포함하는 터치 입력 장치 및 압력 전극 형성 방법
CN105138184B (zh) * 2015-09-25 2018-06-22 深圳市华星光电技术有限公司 一种内嵌触摸液晶面板及其阵列基板
US10106142B2 (en) 2016-02-11 2018-10-23 GM Global Technology Operations LLC Method and apparatus to monitor a temperature sensor
JP6779762B2 (ja) * 2016-11-29 2020-11-04 株式会社ジャパンディスプレイ 表示装置
KR102403812B1 (ko) * 2017-06-01 2022-05-30 엘지디스플레이 주식회사 터치전극을 포함하는 센싱부 및 그를 이용한 표시장치
CN107368229B (zh) * 2017-08-01 2020-05-19 京东方科技集团股份有限公司 触摸屏及其制备方法
CN107908319B (zh) * 2018-01-03 2021-08-06 京东方科技集团股份有限公司 触控基板和显示装置
CN108229409B (zh) * 2018-01-12 2021-01-08 京东方科技集团股份有限公司 超声波指纹检测组件、方法及显示装置
CN108984032A (zh) * 2018-07-12 2018-12-11 京东方科技集团股份有限公司 触控基板及其制作方法、显示装置
CN109213391B (zh) * 2018-09-25 2020-11-17 京东方科技集团股份有限公司 一种触控显示面板及其制作方法、显示装置
TWI827374B (zh) * 2022-11-21 2023-12-21 友達光電股份有限公司 裝飾面板及顯示裝置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102339175A (zh) * 2010-07-15 2012-02-01 汉王科技股份有限公司 一种触摸感应定位装置及方法
CN102819334A (zh) * 2011-06-09 2012-12-12 天津富纳源创科技有限公司 触摸屏

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4945483B2 (ja) * 2008-02-27 2012-06-06 株式会社 日立ディスプレイズ 表示パネル
TWI380089B (en) * 2008-12-03 2012-12-21 Au Optronics Corp Method of forming a color filter touch sensing substrate
TW201040818A (en) * 2009-05-08 2010-11-16 Sintek Photronic Corp Capacitive touch panel structure with high optical uniformity
CN101943978B (zh) * 2009-07-06 2012-12-26 弗莱克斯电子有限责任公司 电容触摸屏面板及其制造方法、电容触摸传感器
KR101755601B1 (ko) * 2010-11-04 2017-07-10 삼성디스플레이 주식회사 터치 스크린 패널 일체형 액정표시장치
TWI576746B (zh) * 2010-12-31 2017-04-01 劉鴻達 雙模式觸控感應的顯示器
US9634660B2 (en) * 2011-12-20 2017-04-25 Atmel Corporation Touch sensor with reduced anti-touch effects
CN203338332U (zh) * 2013-06-25 2013-12-11 京东方科技集团股份有限公司 一种电容式触摸屏

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102339175A (zh) * 2010-07-15 2012-02-01 汉王科技股份有限公司 一种触摸感应定位装置及方法
CN102819334A (zh) * 2011-06-09 2012-12-12 天津富纳源创科技有限公司 触摸屏

Also Published As

Publication number Publication date
US20150015803A1 (en) 2015-01-15
CN103365518B (zh) 2016-04-13
CN103365518A (zh) 2013-10-23

Similar Documents

Publication Publication Date Title
WO2014205958A1 (zh) 电容式触摸屏及其制备方法
WO2015035716A1 (zh) 触摸屏及其制作方法、显示装置
WO2017004986A1 (zh) 触控显示面板及其制作方法、触控显示装置
CN102096497B (zh) 触摸面板及包括该触摸面板的液晶显示装置
CN103049149B (zh) 触摸面板以及具备该触摸面板的显示装置
KR101475106B1 (ko) 정전용량 방식 터치 스크린 패널 및 그 제조방법
KR101719368B1 (ko) 정전용량 방식 터치 스크린 패널 및 그 제조방법
WO2017185410A1 (zh) 内嵌触摸屏及其制备方法、液晶显示器
WO2018000849A1 (zh) 触控基板及其制作方法、触摸屏
CN106873212A (zh) 包括盒内式触摸板的背板基板、液晶显示装置及制造方法
CN106200064A (zh) In-cell触摸液晶显示装置及其制造方法
WO2016192121A1 (zh) 自电容式内嵌触摸屏及其制备方法、液晶显示器
CN108228014B (zh) 触控模组及其制备方法、触控屏
CN105404418A (zh) 触控屏及其制备方法、显示面板和显示装置
WO2014044049A1 (zh) 触控式液晶显示装置
WO2017008472A1 (zh) Ads阵列基板及其制作方法、显示器件
WO2017004975A1 (zh) 电容触摸屏及其制备方法、触控装置
WO2016029548A1 (zh) 触摸屏、其制作方法及触摸显示装置
TW201224886A (en) Touch screen panel and fabricating method thereof
TW201411241A (zh) 集成單層電容式感測器的液晶顯示觸控面板及其應用設備
JP5827972B2 (ja) タッチセンサ一体型表示装置
CN102478737A (zh) 液晶显示装置及其制造方法
WO2020001098A1 (zh) 触控面板和触控显示装置
WO2016045252A1 (zh) 触摸屏及其制造方法、触摸显示装置
WO2015067040A1 (zh) 触摸屏及其制造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14235938

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888091

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC , EPO FORM 1205A DATED 14-06-16

122 Ep: pct application non-entry in european phase

Ref document number: 13888091

Country of ref document: EP

Kind code of ref document: A1