WO2020001098A1 - 触控面板和触控显示装置 - Google Patents

触控面板和触控显示装置 Download PDF

Info

Publication number
WO2020001098A1
WO2020001098A1 PCT/CN2019/079585 CN2019079585W WO2020001098A1 WO 2020001098 A1 WO2020001098 A1 WO 2020001098A1 CN 2019079585 W CN2019079585 W CN 2019079585W WO 2020001098 A1 WO2020001098 A1 WO 2020001098A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
electrode
sub
touch electrode
electrodes
Prior art date
Application number
PCT/CN2019/079585
Other languages
English (en)
French (fr)
Inventor
刘纯建
刘天晴
许邹明
张雷
田�健
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/621,320 priority Critical patent/US11314360B2/en
Publication of WO2020001098A1 publication Critical patent/WO2020001098A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • G06F3/041662Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving using alternate mutual and self-capacitive scanning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04102Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate

Definitions

  • the present disclosure relates to, but is not limited to, the field of touch technology, and particularly to a touch panel and a touch display device.
  • the flexible touch screen includes a structure of a double-layer induction film and a single-layer induction film.
  • the structure of the double-layer induction film is, for example, glass + film + film (GFF), single layer
  • the structure of the sensing film includes, for example: Glass + film (G1F for short) (the electrode is on one side of the film and the electrodes are in different layers), glass + film (GF2 (Glass + 2film) (the electrodes are on both sides of the film and the electrode (Different layers) and GF (Glass + film) (electrode is located on the side of the film, the electrode is on the same layer and has a bridge structure), where the electrode layer of GF has a bridge structure, so it can be used to make small curvature products, and it can also be used to make touch sensors Technology, and the majority of touch panel (Touch panel, referred to as: TP) manufacturers have been included in the production.
  • a plurality of touch electrodes are disposed on the base substrate and insulated from each other;
  • At least part of the touch electrodes include a plurality of ring-shaped and spaced touch electrode portions
  • every two adjacent touch electrode portions are electrically connected through a plurality of connection portions.
  • the plurality of touch electrodes include: a plurality of first touch electrodes extending along a first direction and a plurality of second touch electrodes extending along a second direction.
  • each of the touch electrodes is disposed on the same layer;
  • the first touch electrode includes a plurality of first sub-touch electrodes, and the first sub-touch electrode and the first The two touch electrodes are arranged at intervals;
  • each of the first sub-touch electrodes includes a plurality of annular and spaced touch electrode portions;
  • the two first sub-touch electrodes of the same first touch electrode and located on both sides of the second touch electrode are electrically connected in a bridge manner through a first connection line.
  • a pattern of the touch electrode portion in each of the first sub-touch electrodes the same.
  • the second touch electrode includes a plurality of second sub touch electrodes and a second connection line, and the second sub touch electrode is spaced from the first touch electrode. Arranged; two second sub-touch electrodes of the same second touch electrode and located on both sides of the first touch electrode are electrically connected through the second connection line;
  • Each of the second sub-touch electrodes includes a plurality of annular and spaced-apart touch electrode portions.
  • a pattern of the touch electrode portion in each of the second sub-touch electrodes the same.
  • the first sub-touch electrode except for the first sub-touch electrode located at the end of the first touch electrode and for Each of the second sub-touch electrodes other than the second sub-touch electrode at the end of the control electrode has a pattern of the touch electrode portion in the first sub-touch electrode and the second sub-touch electrode.
  • the pattern of the touch electrode portion in the control electrode is the same.
  • the plurality of touch electrodes include self-capacitance electrodes arranged in an array.
  • the touch panel further includes: a virtual strip electrode disposed at a gap between two adjacent touch electrodes.
  • a gap width between the touch electrode and the adjacent virtual strip electrode is between 20 micrometers and 30 micrometers.
  • the virtual strip electrode is disposed on the same layer as the touch electrode.
  • a gap width between the adjacent touch electrode portions is between 20 micrometers and 30 micrometers.
  • connection portions between every two adjacent touch electrode portions are evenly distributed.
  • the pattern of the touch electrode portion includes at least one of a triangle, a diamond, and a rectangle.
  • the pattern of the touch electrode portion is diamond-shaped, and one side of the pattern formed by the touch electrode portion in the first sub-touch electrode and one of the second direction and the first direction
  • the included angle is between 30 and 60 degrees.
  • the edge of the touch electrode portion is at least one of a straight shape, a curved shape, and a polyline shape.
  • an embodiment of the present disclosure further provides a touch display device, including the touch panel described above.
  • FIG. 1 is one of the structural schematic diagrams of a touch panel according to an embodiment of the present disclosure
  • FIG. 2a is one of the structural schematic diagrams of the first sub-touch electrode provided by the embodiment of the present disclosure
  • FIG. 2b is one of the structural schematic diagrams of the second sub-touch electrode provided by the embodiment of the present disclosure.
  • 2c is one of the specific structural diagrams of the AA area in the touch panel shown in FIG. 1;
  • FIG. 3 is a second schematic structural diagram of a touch panel according to an embodiment of the present disclosure.
  • FIG. 4a is a second schematic structural diagram of a first sub-touch electrode according to an embodiment of the present disclosure
  • 4b is a second schematic structural diagram of a second sub-touch electrode according to an embodiment of the present disclosure.
  • 4c is a schematic diagram of a specific structure of the AA area in the touch panel shown in FIG. 3;
  • FIG. 5 is a schematic structural diagram of a first connection line according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a specific structure of a BB area in the touch panel shown in FIG. 1;
  • FIG. 7 is a second schematic diagram of the specific structure of the AA area in the touch panel shown in FIG. 1;
  • FIG. 8 is a third schematic diagram of the specific structure of the AA area in the touch panel shown in FIG. 1;
  • FIG. 9 is a schematic partial structure diagram of a touch electrode portion according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a splicing structure of a touch unit in a touch panel according to an embodiment of the present disclosure
  • FIG. 11 is a third structural schematic diagram of a touch panel according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a touch electrode shown in FIG. 11;
  • FIG. 13 is a first flowchart of a method for manufacturing a touch panel according to an embodiment of the present disclosure
  • FIG. 14 is a second flowchart of a method for manufacturing a touch panel according to an embodiment of the present disclosure
  • FIG. 15 is a schematic structural diagram of a touch panel manufactured by a method of manufacturing a touch panel according to an embodiment of the present disclosure
  • FIG. 16 is a schematic partial cross-sectional structure diagram provided by an embodiment of the present disclosure.
  • the electrode pattern of the touch unit in GF is a whole electrode, and the large electrode makes the electrode itself have a large internal stress. It is easy to break when bending.
  • the material of the bridge points is selected. Although the ductility of the metal bridge is good, the matting effect is poor, and the metal adhesion is poor. Indium tin oxide (Indium Tin Oxide (referred to as: ITO) bridge has a good matting effect, but ITO has high brittleness and is prone to fracture when bending.
  • ITO Indium tin oxide
  • the GF2 structure and GF bridge structure of single-layer film have broader application prospects.
  • the electrode layer of GF can be used to make small curvatures because of the bridge structure.
  • Products can also be used in the production process of touch sensors, which have been included in the production scope by the majority of TP manufacturers.
  • the resistance to bending of the electrodes is poor, mainly because the electrodes are usually designed as a whole surface, for example, the entire touch panel includes multiple rows of lateral electrodes and multiple columns of vertical electrodes, where each row The lateral electrode and each column of vertical electrodes are a full-surface pattern. In this way, because the size of the electrode pattern is too large, the electrode itself has a high internal stress, and the touch panel is easily broken when it is bent. In addition, the bridge structure of GF It is difficult to balance the matting effect and the resistance to bending.
  • the embodiments of the present disclosure provide a touch panel and a touch display device.
  • the effect of reducing the stress on the electrodes can be achieved, thereby improving the bending resistance of the touch electrodes. Prevents breakage of the touch panel when it is bent.
  • the touch panel provided in the embodiment of the present disclosure may include a base substrate 100 and a plurality of touch electrodes 200 insulated from each other and disposed on the base substrate 100.
  • the touch electrode 200 includes a plurality of touch electrode portions 300 arranged in a ring shape and spaced apart.
  • every two adjacent touch electrode portions 300 are electrically connected through a plurality of connection portions 400.
  • the connecting portion 400 may be provided as a small rectangular block.
  • a touch electrode includes a plurality of touch electrode portions arranged in a ring shape and spaced apart, and each adjacent two touch electrode portions in the same touch electrode pass through a plurality of connecting portions.
  • the electrical connection can make a gap between the touch electrode parts, so that there is a certain distance (that is, the size of the gap) between the annular touch electrode parts separated by the gap, which is conducive to releasing stress and improving the electrode's resistance to bending To prevent breakage during bending.
  • the plurality of touch electrodes may include: a plurality of first touch electrodes 210 extending along the first direction F1 and a plurality of second touch electrodes The second touch electrode 220 extending in the direction F2.
  • the first direction and the second direction may have an included angle of less than or equal to 90 °, for example.
  • the embodiments of the present disclosure are shown by taking an angle between the first direction and the second direction as 90 ° as an example, so that the first direction F1 is a row direction and the second direction F2 is a column direction.
  • the first direction F1 may be a column direction and the second direction F2 may be a row direction, which is not limited herein.
  • the first direction F1 is a row direction and the second direction F2 is a column direction.
  • the touch electrodes may be disposed on the same layer, so that the first touch electrode 210 and the second touch electrode 220 are disposed on the same film.
  • the patterns of the touch electrodes can be formed through a single patterning process, which can simplify the preparation process, save production costs, and improve production efficiency.
  • the embodiments of the present disclosure can also provide a design solution of a touch electrode pattern for implementing a touch function in response to the above problems of the GF structure.
  • the first touch electrode 210 may include a plurality of first sub-touch electrodes 211, and the first sub-touch electrode 211 and the second touch The control electrodes 220 are arranged at intervals.
  • the two first sub-touch electrodes 211 in the same first touch electrode 210 and located on both sides of the second touch electrode 220 are electrically connected in a bridge manner through a first connection line 212. As shown in FIG. 2a and FIG.
  • each first sub-touch electrode 211 includes a plurality of ring-shaped and spaced-apart touch electrode portions 300, and in the same first sub-touch electrode 211, every two adjacent touch electrodes
  • the section 300 is electrically connected through a plurality of connection sections 400.
  • a plurality of gaps can be provided in each of the first sub-touch electrodes 211, so that there is a certain distance (that is, the opening size) between the ring-shaped touch electrode portions 300 separated by the gap, which is conducive to releasing stress and improving the Resistance to bending, preventing breakage during bending.
  • the area between the dotted frame L1 and the dotted frame L2 shown in FIGS. 2 a and 4 a represents a touch electrode portion 300
  • the area surrounded by the dotted frame 400 represents a connecting portion 400.
  • the first sub-touch electrode is not an entire surface pattern, but is formed as a whole by a plurality of spaced-apart touch electrode portions.
  • the first sub-touch electrode may be arranged in an orderly manner by a plurality of spaced-apart touch electrode portions in a certain repeating combination manner, and these orderly arranged electrode patterns are applied to touch When the panel is used, it is beneficial to improve the matting effect of the entire touch panel.
  • the second touch electrode 220 may include a plurality of second sub-touch electrodes 221 and second connection lines 222.
  • the electrode 221 is spaced from the first touch electrode 210.
  • two second sub-touch electrodes 221 in the same second touch electrode 220 and located on both sides of the first touch electrode 210 are electrically connected through a second connection line 222.
  • each second sub-touch electrode 221 includes a plurality of ring-shaped and spaced-apart touch electrode portions 300.
  • each of the second sub-touch electrodes 221 can be provided in each of the second sub-touch electrodes 221, so that there is a certain distance (that is, the opening size) between the ring-shaped touch electrode portions 300 separated by the gap, which is conducive to releasing stress and improving the electrode's Resistance to bending, preventing breakage during bending.
  • the area between the dotted frame L1 and the dotted frame L2 shown in FIGS. 2b and 4b represents a touch electrode portion 300
  • the area surrounded by the dotted frame 400 represents a connecting portion 400.
  • each second sub-touch electrode 221 is disposed on the same layer as each second connection line 222.
  • the second connection line 222 is located between the adjacent second sub-touch electrodes 221 and is the narrowest area of the second touch electrode 220. Since the adjacent first sub-touch electrodes 211 are actually To implement the function of one electrode, adjacent first sub-touch electrodes 211 can be electrically connected through one first connection line 212. Based on the relative positional relationship between the first touch electrode 210 and the second touch electrode 220, and considering the difficulty of the process of implementing the bridge method and the stability of the electrode structure, the first connection line 212 can be provided on the second touch electrode The narrowest area in 220 is disposed above the second connection line 222.
  • the second sub-touch electrode is not a whole surface pattern, but is formed as a whole by a plurality of spaced-apart touch electrode portions.
  • the second sub-touch electrode may be arranged in an orderly manner by a plurality of spaced-apart touch electrode portions in a certain repeating combination manner, and these orderly arranged electrode patterns are applied to touch When the panel is used, it is beneficial to improve the matting effect of the entire touch panel.
  • each connection portion and each touch electrode may be disposed on the same layer.
  • the patterns of each touch electrode and each connection portion can also be formed through a single patterning process, which can simplify the preparation process, save production costs, and increase production efficiency.
  • At least one first connection line electrically connected between two adjacent first sub-touch electrodes may be set.
  • one first connection line 212 electrically connected between two adjacent first sub-touch electrodes 211 may be provided.
  • two first connection lines 212 electrically connected between two adjacent first sub-touch electrodes 211 may be provided.
  • the first connection lines 212 electrically connected between two adjacent first sub-touch electrodes 211 can also be set to three, four, five, and the like.
  • the number of the first connection lines 212 electrically connected between two adjacent first sub-touch electrodes 211 can be designed and determined according to the actual application environment, which is not limited herein.
  • each first connection line 212 a and 212 b are provided between two adjacent first sub-touch electrodes in the same first touch electrode 210.
  • each first connection line includes a bridge 133 and two bridge points 131 and 132.
  • the bridge 133 of the first connection line 212a is electrically connected to the first sub-touch electrode 211a through the bridge point 131, and the first connection The bridge 133 of the line 212a is electrically connected to the first sub-touch electrode 211b through the bridge point 132, so that two adjacent first sub-touch electrodes can be electrically connected.
  • the electrode layer where the first touch electrode and the second touch electrode are located and where each first connection line is located The layers are not in the same layer, and an insulating layer can be provided between the electrode layer and the layer where the first connection line 212 is located.
  • the insulating layer has a structure for setting the above-mentioned bridge points (ie, the bridge points 131 and 132).
  • the hole, that is, the bridge point 131 is disposed in the via of the flat layer above the first sub-touch electrode 211a, and the bridge point 132 is disposed in the via of the insulating layer above the first sub-touch electrode 211b.
  • the above-mentioned first sub-touch electrode and at least two first connection lines for electrically connecting two adjacent first sub-touch electrodes become an overall structure constituting the first touch electrode.
  • the bridge point is usually set at a position where the first sub touch electrode is close to the second connection line 222, so that the length of the first connection line 212 can be as short as possible, the structure is more stable, and the process is easy to manufacture achieve.
  • the length of the first connecting line may be set to be slightly longer, which is not limited herein.
  • the insulating layer may be provided as a flat layer, so that the first connection line can be made flat.
  • the material of the first connection line may be indium tin oxide (ITO) material, indium zinc oxide (IZO) material, carbon nanotubes, graphene, or the like.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • the material of the first connection line may also be other transparent conductive materials, which is not limited herein.
  • the first connection line using ITO material has better bending resistance than the first connection line using ITO material in the conventional electrode pattern.
  • the material of the touch electrodes in the embodiments of the present disclosure may be indium tin oxide (ITO) material, indium zinc oxide (IZO) material, carbon nanotubes, or graphene.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • carbon nanotubes carbon nanotubes
  • graphene carbon nanotubes
  • the material of the touch electrodes may also be other transparent conductive materials, which is not limited herein.
  • the pattern of the touch electrode portion may include at least one of a triangle, a diamond, and a rectangle.
  • the pattern of the touch electrode portion 300 may be set in a diamond shape.
  • the shape of the touch electrode portion 300 may be set to a rectangle.
  • the shape of the touch electrode portion 300 may be set to a triangle.
  • the pattern of the touch electrode portion 300 may be set according to the requirements of the actual application environment, which is not limited herein.
  • the pattern of the touch electrode portion 300 is diamond-shaped, and one side of the pattern formed by the touch electrode portion 300 in the first sub touch electrode 221
  • the included angle with one of the second direction F2 and the first direction F1 is between 30 degrees and 60 degrees, which can effectively avoid the moire phenomenon on the display screen of the flexible display device.
  • the touch electrode portion 300 is diamond-shaped and has four sides, which are the left and right sides on the upper side and the left and right sides on the lower side.
  • the left and right sides of the lower side of the touch electrode part 300 form a “V-shaped” electrode; among the “V-shaped” electrodes, an angle C exists between the side on the left side and the second direction F2, and the angle of the angle C It is a fixed value between 30 degrees and 60 degrees.
  • the included angle C may be set to 30 degrees or 60 degrees so that the shape of the touch electrode portion is diamond.
  • an angle B between the side on the right side and the first direction F1 exists, and the angle of the angle B is a fixed value between 30 degrees and 60 degrees.
  • the included angle B may be set to 30 degrees or 60 degrees so that the shape of the touch electrode portion is diamond.
  • the figure of the touch electrode portion 300 is rectangular, and one side of the figure formed by the touch electrode portion 300 in the first sub-touch electrode 221 and the second An angle between one of the directions F2 and the first direction F1 is 90 degrees.
  • the touch electrode portion 300 is rectangular and has four sides, which are an upper side, a lower side, a left side, and a right side.
  • the left side and the lower side of the touch electrode part 300 form an "L-shaped" electrode; wherein, in the "L-shaped” electrode, an angle D exists between the left side and the first direction F1, and the included angle D The angle is 90 degrees.
  • an angle D exists between the side located on the lower side and the second direction F2, and the angle of the included angle D is 90 degrees.
  • both the included angle B and the included angle C as shown in FIG. 6 can be set to 45 degrees, so that the shape of the first sub-touch electrode 221 is rectangular.
  • the touch electrode portion 300 in each of the first sub touch electrodes 211 may be made except for the first sub touch electrode located at the end of the first touch electrode.
  • the graphics are the same.
  • the first sub-touch electrode 211 at the end of the first touch electrode may be set to a triangle, so that the first sub-touch electrode 211 at the end of the first touch electrode may be set.
  • the patterns of the touch electrode portions of one sub-touch electrode 211 are set to be triangles, and the patterns of the remaining first sub-touch electrodes 211 are set to be diamond-shaped, so that the patterns of the touch electrode portions 300 of the remaining first sub-touch electrodes 211 can be made. Set to diamond.
  • the patterns of the touch electrode portions in each of the first sub touch electrodes 211 can be made the same.
  • the pattern of each first sub-touch electrode 211 can be set to a rectangle, so that the pattern of the touch electrode portion 300 in each first sub-touch electrode 211 can be set. Set to rectangular.
  • the orthographic projection of each first sub-touch electrode 211 on the base substrate 100 can be made the same.
  • the touch electrode portion 300 in each of the second sub touch electrodes 221 except the second sub touch electrode located at the end of the second touch electrode may be made.
  • the graphics are the same.
  • the second sub-touch electrode 221 located at the end of the second touch electrode can be set to a triangle, so that the first sub-touch electrode 221 located at the end of the second touch electrode can be set.
  • the patterns of the touch electrode portions of the two sub-touch electrodes 221 are set to be triangles, and the patterns of the remaining second sub-touch electrodes 221 are set to be diamond-shaped, so that the patterns of the touch electrode portions 300 of the remaining second sub-touch electrodes 221 can be made. Set to diamond.
  • the patterns of the touch electrode portions in each of the second sub touch electrodes 221 can be made the same.
  • the pattern of each second sub-touch electrode 221 can be set to a rectangle, so that the pattern of the touch electrode portion 300 in each second sub-touch electrode 221 can be set. Set to rectangular.
  • the orthographic projection of each second sub-touch electrode 221 on the base substrate 100 can be made the same.
  • the pattern of the touch electrode portion 300 in the first sub-touch electrode 211 and the pattern of the touch electrode portion 300 in the second sub-touch electrode 221 are both set in a diamond shape.
  • the pattern of the touch electrode portion 300 in the first sub-touch electrode 211 and the pattern of the touch electrode portion 300 in the second sub-touch electrode 221 are both set to be rectangular.
  • each of the first sub-touch electrodes and each of the second sub-touch electrodes includes a plurality of touch electrode portions arranged in a ring shape, and there is a gap between adjacent touch electrode portions. These touch electrode portions communicate with each other through the connecting portion to form a whole. In this way, a certain distance (that is, the size of the opening) can be made between the touch electrode portions, which is conducive to releasing stress, improving the bending resistance of the electrode, and preventing breakage during bending.
  • the gap width between adjacent touch electrode portions may be set to between 20 micrometers and 30 micrometers. Specifically, the gap width between adjacent touch electrode portions can be set to 20 micrometers. Alternatively, the gap width between adjacent touch electrode portions may be set to 15 ⁇ m. Alternatively, the gap width between adjacent touch electrode portions may be set to 30 ⁇ m. Of course, the gap width between adjacent touch electrode portions can be designed and determined according to the actual application environment, which is not limited herein.
  • connection portions 400 between each two adjacent touch electrode portions 300 can be evenly distributed.
  • the connection portions 400 between each two adjacent touch electrode portions 300 in the first sub touch electrodes 211 can be uniformly distributed. In this way, the gaps in the first sub-touch electrodes 211 can be arranged in an orderly manner.
  • the connection portions 400 between each two adjacent touch electrode portions 300 in the second sub-touch electrode 221 can be uniformly distributed. In this way, the gaps in the second sub-touch electrodes 221 can be arranged in an orderly manner.
  • the connecting portions 400 between two adjacent touch electrode portions 300 may not be uniformly distributed, so that the gaps can be arranged in disorder, which is not limited herein.
  • FIG. 2c and FIG. 4c only illustrate possible implementation manners of the connection part 400 of the first sub-touch electrode and the second sub-touch electrode in the embodiment of the present disclosure, and are not shown in FIG. 2.
  • the mode restricts the mode in which the connection portion 400 is provided.
  • adjacent gaps may be sequentially arranged in the same direction, such as comb-toothed.
  • different directions, depths, and shapes and sizes of the connections may be different.
  • a gap may be provided between adjacent touch electrodes 200.
  • a gap is provided between the first touch electrode 210 and the second touch electrode 220 to insulate the first touch electrode 210 and the second touch electrode 220 from each other through the gap.
  • a gap width between adjacent touch electrodes 200 may be set according to a requirement of an actual application environment, which is not limited herein.
  • the touch panel may further include: a virtual bar electrode (ie, a dummy bar) disposed at a gap between two adjacent touch electrodes 200.
  • a virtual bar electrode ie, a dummy bar
  • Shaped electrode 230.
  • the dummy strip electrodes and the touch electrode 200 are insulated from each other. In this way, by setting Dummy strip electrodes in the gap, on the one hand, the bending resistance of the entire touch electrode can be improved, and on the other hand, when the electrode pattern is formed, the matting effect of the entire touch panel can be effectively improved.
  • a gap is provided between the touch electrode and an adjacent virtual strip electrode, so that the touch electrode is insulated from the adjacent virtual strip electrode 230.
  • a gap width between the touch electrode and an adjacent virtual strip electrode is between 20 ⁇ m and 30 ⁇ m.
  • the gap width between the touch electrode and the adjacent virtual strip electrode can be 20 micrometers.
  • the gap width between the first sub-touch electrode 211 of the first touch electrodes and the adjacent virtual strip electrode 230 is 20 ⁇ m.
  • the gap width between the second sub-touch electrode 221 of the second touch electrodes and the adjacent virtual strip electrode is 20 micrometers.
  • the gap width between the touch electrode and the adjacent virtual strip electrode may be 15 ⁇ m.
  • the gap width between the first sub-touch electrode 211 of the first touch electrodes and the adjacent virtual strip electrode 230 is 15 micrometers.
  • the gap width between the second sub-touch electrode 221 of the second touch electrodes and the adjacent virtual strip electrode 230 is 15 micrometers.
  • the width of the gap between the touch electrode and the adjacent virtual strip electrode may be 30 ⁇ m.
  • the gap width between the first sub-touch electrode 211 of the first touch electrodes and the adjacent virtual strip electrode is 30 micrometers.
  • the gap width between the second sub-touch electrode 221 of the second touch electrodes and the adjacent virtual strip electrode 230 is 30 micrometers.
  • the gap width between the touch electrode and the adjacent virtual strip electrode can be set according to the requirements of the actual application environment, which is not limited herein.
  • the virtual strip electrode at the gap between the adjacent first and second sub-touch electrodes 211 and 212 may be An overall structure.
  • the virtual strip electrode 230 at a gap between the adjacent first and second sub-touch electrodes 211 and 212 may include a plurality of sub-virtual strip electrodes 231, In this way, a plurality of sub-virtual strip electrodes 231 can be combined to form a virtual strip electrode 230.
  • each virtual strip electrode 230 may include a plurality of sub-virtual strip electrodes 231 disposed at intervals and not connected to each other, and the sub-virtual strip electrodes 231 disposed at intervals may extend along the gap. Further, in specific implementation, two adjacent sub-virtual strip electrodes 231 may be communicated through a connection portion.
  • the specific implementation manner of the virtual strip electrode 230 may be designed and determined according to an actual application environment, which is not limited herein.
  • the extension direction of the virtual strip electrode 230 may be the same as the extension direction of the adjacent touch electrode portion 300 to further improve the matting effect of the touch panel 10.
  • the virtual strip electrodes in the embodiments of the present disclosure are disposed on the same layer as the touch electrodes.
  • the above-mentioned electrodes disposed in the same layer can be fabricated by one patterning process, which simplifies the process steps, reduces the process cost, and is beneficial to reducing the overall thickness of the touch panel.
  • the edge of the touch electrode portion may be at least one of a straight shape, a curved shape, and a polyline shape. This can further improve the bending resistance of the electrode to prevent breakage during bending.
  • the touch electrode portions shown in FIG. 1 to FIG. 8 of the present disclosure are illustrated by taking each touch electrode portion having a straight edge as an example.
  • the edges of the touch electrode portion 300 may be provided in a polygonal shape.
  • the edges of the touch electrode portion 300 may be set in a curved shape.
  • the graphics of the edges of the touch electrode portion 300 can be designed and determined according to the requirements of the actual application environment, which is not limited herein.
  • the edge of the touch electrode portion in each first sub-touch electrode may be a type of edge.
  • the edge of the touch electrode portion in each first sub-touch electrode may be a straight edge, a polygonal edge, or a curved edge having the above-mentioned view.
  • it is also possible to make the touch electrode portion having multiple types of edges in the first sub-touch electrode for example, the edges of some of the touch electrode portions in the first sub-touch electrode are linear, and some of the touch electrode portions The edges are polygonal, and the edges of the remaining touch electrode portions are curved.
  • the edge of the touch electrode portion in each second sub-touch electrode may be a type of edge.
  • the edge of the touch electrode portion in each second sub-touch electrode may be a straight edge, a polygonal edge, or a curved edge having the above-mentioned view.
  • it is also possible to make the touch electrode portion having multiple types of edges in the second sub-touch electrode for example, part of the edge of the touch electrode portion in the second sub-touch electrode is linear, and The edges are polygonal, and the edges of the remaining touch electrode portions are curved.
  • the first sub-touch electrode and the second sub-touch electrode may also be formed by splicing.
  • the control unit AA is the smallest splicing unit.
  • a plurality of touch units AA arranged in an array and having the same structure can be provided on the base substrate 100 to form each touch electrode.
  • the first sub-touch electrodes in the first touch electrodes have a plurality of ring-shaped and spaced-apart touch electrode portions by splicing.
  • the second sub-touch electrode in the second touch electrode has a plurality of ring-shaped and spaced touch electrode portions by splicing.
  • the touch unit AA may be generally designed as a rectangle (for example, a rectangle or a square).
  • the touch area of the touch panel provided by the embodiments of the present disclosure can be formed by the touch units AA in the foregoing embodiments of the present disclosure in an array arrangement, and the touch unit AA is used as a basic unit to form the entire touch panel.
  • the embodiments of the present disclosure do not limit the specific shapes of the first sub-touch electrode and the second sub-touch electrode in the touch unit AA.
  • the requirements of the application environment are used to design and determine.
  • the first sub-touch electrode and the second sub-touch electrode in the touch unit AA may be set to be a triangle, a trapezoid, or a combination of a triangle and a trapezoid, which is not limited herein.
  • the touch unit AA in the embodiment of the present disclosure is to form an electrode pattern in the entire touch panel in an array arrangement
  • the touch unit AA is required to be in the array arrangement
  • the first sub-touch electrode 211 of the adjacent touch unit AA in the first direction can be accurately spliced
  • the second electronic touch electrode 221 of the adjacent touch unit AA in the second direction can be accurately spliced. Therefore, the electrode pattern can be stitched.
  • the first sub-touch electrode 211 is provided as a symmetrical structure with the center line of the first sub-touch electrode 211 in the first direction as a symmetry axis
  • the second sub-touch electrode 221 is provided as a second sub-touch electrode
  • the center line of 221 in the second direction is a symmetrical structure of the axis of symmetry.
  • the width-to-length ratio of the side length of the touch unit AA may be proportionally scaled, and the side length of the touch unit AA ranges from 2 mm to 10 millimeters (mm).
  • the size of the touch unit AA can be set to 2 * 2mm.
  • the touch unit can be set to The size of the touch unit AA is set to 10 * 10mm; when designing the electrode pattern in the touch unit AA, the electrode pattern of the touch unit AA of the above two sizes does not need to be redesigned.
  • the unit is enlarged by a factor of 5 to obtain a touch unit with a size of 10 * 10mm.
  • the first connecting line 212 is used to make the left side
  • the first sub-touch electrode 211 is electrically connected to the first sub-touch electrode 211 on the right side
  • the second connection line 222 is used to make the second sub-touch electrode 221 on the upper side and the second sub-touch electrode on the lower side 221 Electrical connection.
  • these triangular sub-electrodes can usually be designed as isosceles triangles.
  • each first sub-touch electrode 211 and each second sub-touch electrode 221 are electrically connected through other regions or structures.
  • the first sub-touch electrodes 211 and each second sub-touch electrode 221 are not standard triangles, but they can be regarded as triangles in the overall structure, that is, these sub-electrodes are called triangular sub-electrodes.
  • each triangular sub-electrode may have a symmetrical structure with each other, that is, a diagonal line of the square is used as a symmetry axis, or a neutral line is used as a symmetry axis.
  • the electrode patterns (that is, each triangular sub-electrode) in the touch unit AA are symmetrical structures.
  • the touch unit AA shown in FIG. 2c is illustrated by taking an electrode pattern in which the overall structure is a square and any two sub-electrodes are symmetrical structures as an example.
  • each sub-electrode since each sub-electrode includes a plurality of spaced-apart openings, the spaced-apart openings within each sub-electrode separate the sub-electrode into a plurality of spaced-apart bar electrodes, as shown in FIGS. 2 and 3 As shown, inside a certain sub-electrode, an opening separates the sub-electrode into a plurality of spaced-apart and orderly arranged strip electrodes. It can be seen that the strip-shaped electrode in each sub-electrode is not a full-surface pattern, but in each sub-electrode The strip-shaped electrodes communicate so that the electrode pattern forms a whole.
  • the electrode pattern in each triangular sub-electrode may be set to include a plurality of “V-shaped” electrodes spaced apart, each “V The "V-shaped” electrode includes two strip electrodes connected at the "V-shaped” sharp corners, and the two strip electrodes are respectively parallel to the adjacent sides of the triangular sub-electrode to which the "V-shaped” electrode belongs and other triangular sub-electrodes, And the adjacent “V-shaped” electrodes are connected through at least one spaced connection portion, so that the strip-shaped electrodes in each triangular sub-electrode are connected as a whole structure.
  • the “V-shaped” electrode in the first sub-touch electrode electrode 211 is a symmetrical structure with the center line of the touch unit AA in the first direction F1 as a symmetry axis
  • the second sub-touch The “V-shaped” electrode in the electrode electrode 221 is a symmetrical structure with the center line of the touch unit AA in the second direction F2 as a symmetry axis.
  • the strip electrodes inside the first sub-touch electrode can be set as “V-shaped” strip electrodes, and these “V-shaped” electrodes are half-wrapped. The forms are arranged overlapping.
  • the electrodes of the “V” -shaped electrode include two left and right strip electrodes forming a “V” shape, and the two electrodes forming the “V” -shaped electrode in the first sub-touch electrode 211 in FIG. 2c
  • the left electrode is parallel to the side adjacent to the first sub-touch electrode 211 and the second sub-touch electrode 221, and the right electrode is parallel to the triangular electrode.
  • the first sub-touch electrode 211 and the second sub-touch electrode 221 Adjacent edges; and, adjacent "V-shaped" electrodes may be connected through a plurality of spaced connection portions.
  • the included angle between the strip electrode and the first direction (or the second direction) is between 30 degrees and 60 degrees, as shown in FIG. 2c and FIG. 6, the "V-shaped" electrode In the middle, the left and right strip electrodes have an included angle with the first direction (or the second direction), and the included angle is a fixed value between 30 degrees and 60 degrees.
  • the shape of the touch unit AA is fixed, (For example, a square) and the shape of the triangular sub-electrode is fixed (for example, an equilateral triangle)
  • the included angle B the included angle between the strip electrode and the first direction F1
  • the included angle C as shown in FIG. 6)
  • the angle between the strip electrode and the second direction F2 is 45 degrees.
  • the electrode pattern in the touch panel provided by the embodiment of the present disclosure is formed by the touch units AA arranged in an array, the range of the included angle is limited.
  • a diamond-shaped electrode pattern can be formed in the touch panel.
  • FIG. 10 an array form of 6 touch units AA is specifically illustrated.
  • the electrodes By setting the electrodes as "V" -shaped electrodes, a plurality of "V" -shaped electrodes are formed. Form a triangular sub-electrode and define the included angle between the left and right electrodes in the "V-shaped" electrode and the first direction (or the second direction) Wai, can effectively prevent the display screen of the flexible display device is a moire phenomenon occurs.
  • the angle between the strip electrode and the first direction (or the second direction) is 45 degrees. If the touch unit AA is rectangular, the side length ratio of the rectangle is shown. Fixed, when the shape of the triangular sub-electrode is determined, the angle between the strip electrode and the first direction (or the second direction) is a fixed value between 30 and 60 °, for example, the angle between the strip electrode and the first direction It is 30 °, and the angle with the second direction is 60 °.
  • the patterning process may include only a photolithography process, or may include a photolithography process and an etching step, and may also include printing, inkjet, and other processes for forming a predetermined pattern.
  • the photolithography process refers to a process of forming a pattern using a photoresist, a mask, an exposure machine, and the like, including processes such as film formation, exposure, and development.
  • a corresponding patterning process may be selected according to the structure formed in the present disclosure.
  • the touch panel provided in the embodiment of the present disclosure is used by a user to implement a touch operation on a flexible display screen, and the touch panel can be attached to the flexible display screen using a bonding technology, for example.
  • the current screen structure usually includes protective glass, touch screen, and display screen from top to bottom, and the bonding technology includes different types, such as One-Glass Touch Panel (OGS), GFF, G1F , G2F and GF, etc., the number of film layers in different bonding technologies, the number of electrode layers of the lateral electrode and the vertical electrode, and the relative position of the horizontal electrode and the vertical electrode and the film are different.
  • OGS One-Glass Touch Panel
  • GFF Glass Touch Panel
  • G1F G1F
  • G2F G2F
  • GF GF
  • the base substrate 100 has a touch area 10 a and a non-touch area 10 b.
  • a touch electrode is provided in the touch area 10a.
  • the non-touch area 10b may be provided with some traces.
  • a touch area of the touch panel may correspond to a display area of a display screen. For example, the orthographic projection of the touch area on the display screen overlaps the display area.
  • the touch panel provided by the embodiments of the present disclosure can support a variety of touch operations such as an active pen and a passive pen, and the touch electrode pattern is no longer an existing touch panel full-surface electrode pattern, but rather A plurality of circularly arranged touch electrode portions are sequentially arranged.
  • Each of the first sub-touch electrode and the second sub-touch electrode can be electrically connected through a connection portion (ie, a conductive block) disposed at intervals.
  • the gap width between adjacent touch connection portions in the same first sub-touch electrode and the second sub-touch electrode is between 20 micrometers and 30 micrometers.
  • the touch electrode portions in the first sub-touch electrode and the second sub-touch electrode are sequentially arranged and connected in a rhombic electrode pattern and are evenly distributed, which can further improve the matting effect of the entire touch panel.
  • the embodiments of the present disclosure provide the structure of some touch panels, as shown in FIG. 11, which is modified from the implementation of the above embodiments. Only the differences between this embodiment and the above embodiment will be described below, and the similarities will not be repeated here.
  • the plurality of touch electrodes 200 may include self-capacitance electrodes arranged in an array.
  • Each touch electrode 2000 includes a plurality of ring-shaped and spaced touch electrode portions 300.
  • every two adjacent touch electrode portions 300 are electrically connected through a plurality of connection portions 400. This enables the touch panel to implement the touch function using the self-capacitance principle.
  • the area between the dotted frame L1 and the dotted frame L2 shown in FIG. 12 represents one touch electrode portion 300, and the area surrounded by the dotted frame 400 represents one connection portion 400.
  • the respective capacitor electrodes are disposed on the same layer.
  • the patterns of the respective capacitor electrodes can be formed through one patterning process, which can simplify the preparation process, save production costs, and improve production efficiency.
  • an embodiment of the present disclosure further provides a touch display device.
  • the touch display device may include the touch panel provided in any of the foregoing embodiments.
  • the principle of the touch display device to solve the problem is similar to that of the aforementioned touch panel. Therefore, the implementation of the touch display device can refer to the implementation of the aforementioned touch panel, and duplicated details will not be repeated here.
  • the touch display device provided by the embodiments of the present disclosure may be any product or component having display and touch functions such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • Other essential components of the touch display device are understood by those of ordinary skill in the art, and are not repeated here, and should not be used as a limitation on the present disclosure.
  • the embodiment of the present disclosure further provides a method for manufacturing a touch panel, and the method for manufacturing the touch panel is used to manufacture the touch panel provided by any one of the above embodiments of the present disclosure.
  • the manufacturing method of the touch panel provided by the embodiment of the present disclosure may include the following steps: forming a pattern of each touch electrode on a touch area of the base substrate.
  • the pattern of the touch electrode is a pattern of the touch electrode provided in any of the corresponding embodiments in FIG. 1 to FIG. 12.
  • the method for manufacturing a touch panel may specifically include the following steps:
  • S220 Graphically process the first conductive film layer to form each touch electrode pattern.
  • the pattern of the touch electrode is a pattern of the touch electrode provided in any of the corresponding embodiments in FIG. 1 to FIG. 12.
  • a first flat layer is formed on the electrode pattern, and a via hole is formed on the first flat layer by a patterning process; wherein a via hole for bridging is arranged on the first touch electrode and divided by the second touch electrode.
  • a via hole for bridging is arranged on the first touch electrode and divided by the second touch electrode.
  • the touch panel prepared by using the touch units AA arranged in an array is an electrode pattern formed by using the touch unit in any one of the above embodiments of the present disclosure as a basic unit and arraying the touch units.
  • the touch panel to be manufactured has a single-layer thin film structure, and each touch electrode is in the same electrode layer.
  • the first touch electrode and the second touch electrode are in the same electrode layer, that is, formed by one photolithography and etching process.
  • the first conductive film layer is, for example, an ITO film layer, and the ITO film layer may be formed.
  • the implementation method of patterning the ITO film layer may be: coating, exposing, and developing the ITO film layer. Alignment mark is produced, wherein, for example, photoresist (PR adhesive) is used for coating, and the developed pattern is the electrode pattern in the touch panel provided in the above embodiment of the present disclosure. Etching, stripping the remaining photoresist.
  • the electrode pattern formed through the above steps has the same touch electrode pattern as the touch panel provided in the foregoing embodiment. Therefore, the touch electrode pattern manufactured by using the manufacturing method provided in the embodiment of the present disclosure has the same performance as the touch electrode pattern in the above embodiment, that is, has a high resistance to bending, and can effectively prevent the touch panel from being bent. Fracture occurs.
  • the first sub-reference electrode in the first touch electrode is still an independent electrode pattern, and the first touch electrode on the overall structure has not yet been formed. Therefore, In a subsequent process, a bridge structure for forming a first connection line for connecting the first sub-touch electrode may be manufactured to form a first touch electrode that is structurally and functionally complete.
  • a first flat layer is formed on the formed electrode pattern (that is, the first sub-touch electrode and the second touch electrode).
  • the first flat layer is, for example, an organic insulating layer and is referred to as an OC1 layer.
  • the vias are used to form the bridge points of the bridge structure of the first connection line.
  • the vias are arranged at the first A touch electrode is on two first sub-touch electrodes separated by a second touch electrode, and at the narrowest position where the two first sub-touch electrodes are close to the second touch electrode, as shown in FIG. 1 above. To the structure shown in FIG. 8.
  • a second conductive film layer is formed on the OC1.
  • the second conductive film layer can also be an ITO film layer.
  • an ITO film layer can be formed by a spray process.
  • the ITO film layer is used for The bridge structure of the first connection line is formed, and the ITO film layer is subjected to a graphic process, which also includes processes such as applying PR adhesive, exposure, development, etching, and peeling to make a bridge structure of ITO material.
  • the touch panel manufactured by the embodiment of the present disclosure through the above process has the same structure and performance as the touch panel provided in the above embodiment, that is, the first touch electrode and the second reference electrode (the first A touch electrode includes only the first sub-touch electrode), and the first sub-touch electrode is connected with the bridge structure of the first connection line to form a first touch electrode with complete structure and function, and the electrode and the first touch electrode A connection line is made of ITO material, and therefore, it has the same beneficial effects as the touch panel provided by the above embodiments of the present disclosure, and therefore will not be described again here.
  • FIG. 14 is a flowchart of another method for manufacturing a touch panel provided by an embodiment of the present disclosure. Based on the process shown in FIG. 13, the method provided by the embodiment of the present disclosure before S230 may further include:
  • a metal connection can be made in a non-touch area of the touch panel, and the metal connection includes a first touch electrode and a second touch electrode.
  • FPC Flexible Printed Circuit
  • the OC1 layer when the OC1 layer is patterned in S230, not only a via hole is formed on the OC1 layer, but also a hollowed-out pattern of a bonding region is formed in a non-touch area of the touch panel so
  • spraying the ITO film layer in S240 spray the ITO film layer at the hollow pattern position of the bonding area, and cover the metal connection line of the bonding area with the ITO film layer to protect the metal connection from corrosion.
  • the method may further include:
  • FIG. 15 it is a schematic structural diagram of a touch panel manufactured by the method for manufacturing a touch panel according to an embodiment of the present disclosure.
  • FIG. 16 is a cross-sectional view of a touch panel at a bridge structure.
  • the first sub-touch electrode 211 of the first touch electrode and the second sub-touch electrode 221 of the second touch electrode are fabricated on the flexible substrate 150.
  • the first connection line 212 electrically connects two adjacent ones.
  • the first sub-touch electrode 211 and the second connection line 222 below the first connection line 212 are illustrated in FIG. 16.
  • forming a pattern of each touch electrode in the touch area of the base substrate may specifically include: forming a pattern of each capacitor electrode in the touch area of the base substrate.
  • the touch panel and the touch display device provided by the embodiments of the present disclosure include that the touch electrodes include a plurality of ring-shaped touch electrode portions arranged at intervals, and each adjacent two touch electrode portions in the same touch electrode.
  • a gap can be set between the touch electrode parts, so that there is a certain distance (that is, the gap size) between the ring-shaped touch electrode parts separated by the gap, which is conducive to releasing stress and improving the electrode. Resistance to bending, to prevent breakage during bending.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Input By Displaying (AREA)

Abstract

本公开实施例公开了触控面板和触控显示装置。触控面板包括:包括:衬底基板;多个触控电极,相互绝缘设置于衬底基板上;至少部分触控电极包括多个环形且间隔设置的触控电极部;同一触控电极中,每相邻两个触控电极部通过多个连接部电连接,可以提高电极的耐弯折能力,防止触控面板弯折时出现断裂的现象。

Description

触控面板和触控显示装置
本公开要求在2018年06月29日提交中国专利局、公开号为201810701060.4、公开名称为“一种触控面板和触控显示装置”的中国专利公开的优先权,其全部内容以引入的方式并入本公开中。
技术领域
本公开涉及但不限于触控技术领域,尤指触控面板和触控显示装置。
背景技术
随着显示技术领域的发展,触控技术已广泛应用于各类显示装置中,例如具有触控功能的智能手机、平板电脑等,其中,触控电极的优劣是决定触控面板使用性能的重要因素。目前,柔性触控屏中,包括双层感应薄膜和单层感应薄膜的结构,双层感应薄膜的结构例如为:玻璃+薄膜+薄膜(Glass+film+film,简称为:GFF),单层感应薄膜的结构例如包括:玻璃+薄膜(Glass+film,简称为:G1F)(电极位于film一侧且电极不同层),玻璃+薄膜(GF2(Glass+2film)(电极位于film两侧且电极不同层)和GF(Glass+film)(电极位于film一侧、电极同层且具有桥架结构),其中GF的电极层由于具有桥架结构因此可用于制作小曲率产品,也可用于触控传感器制作工艺,而被广大触控面板(Touch Panel,简称为:TP)生产商纷纷纳入生产范围。
发明内容
本公开实施例提供的触控面板,包括:
衬底基板;
多个触控电极,相互绝缘设置于所述衬底基板上;
至少部分所述触控电极包括多个环形且间隔设置的触控电极部;
同一所述触控电极中,每相邻两个所述触控电极部通过多个连接部电连接。
可选地,在本公开实施例中,所述多个触控电极包括:多条沿第一方向延伸的第一触控电极以及多条沿第二方向延伸的第二触控电极。
可选地,在本公开实施例中,各所述触控电极同层设置;所述第一触控电极包括多个第一子触控电极,所述第一子触控电极与所述第二触控电极间隔排列;各所述第一子触控电极包括多个环形且间隔设置的触控电极部;
同一所述第一触控电极且位于所述第二触控电极两侧的两个第一子触控电极通过第一连接线采用桥接方式电连接。
可选地,在本公开实施例中,电连接于相邻两个所述第一子触控电极之间的第一连接线为至少一条。
可选地,在本公开实施例中,除位于所述第一触控电极的端部处的第一子触控电极之外,其余各第一子触控电极中的触控电极部的图形相同。
可选地,在本公开实施例中,所述第二触控电极包括多个第二子触控电极以及第二连接线,所述第二子触控电极与所述第一触控电极间隔排列;同一所述第二触控电极且位于所述第一触控电极两侧的两个第二子触控电极通过所述第二连接线电连接;
各所述第二子触控电极包括多个环形且间隔设置的触控电极部。
可选地,在本公开实施例中,除位于所述第二触控电极的端部处的第二子触控电极之外,其余各第二子触控电极中的触控电极部的图形相同。
可选地,在本公开实施例中,针对除位于所述第一触控电极的端部处的第一子触控电极之外的其余第一子触控电极以及除位于所述第二触控电极的端部处的第二子触控电极之外的其余各所述第二子触控电极,所述第一子触控电极中的触控电极部的图形与所述第二子触控电极中的触控电极部的图形相同。
可选地,在本公开实施例中,所述多个触控电极包括呈阵列排布的自电容电极。
可选地,在本公开实施例中,所述触控面板还包括:设置于相邻的两个所述触控电极之间的间隙处的虚拟条形电极。
可选地,在本公开实施例中,所述触控电极与相邻的所述虚拟条形电极之间的间隙宽度为20微米到30微米之间。
可选地,在本公开实施例中,所述虚拟条形电极与所述触控电极同层设置。
可选地,在本公开实施例中,相邻的所述触控电极部之间的间隙宽度为20微米到30微米之间。
可选地,在本公开实施例中,每相邻两个所述触控电极部之间的连接部均匀分布。
可选地,在本公开实施例中,所述触控电极部的图形包括三角形、菱形、矩形中的至少一种。
可选地,在本公开实施例中,所述触控电极部的图形为菱形,第一子触控电极中触控电极部形成的图形的一条边与第二方向和第一方向中的一个方向的夹角在30度到60度之间。
可选地,在本公开实施例中,所述触控电极部的边缘为直线形、曲线形以及折线形中的至少一种。
相应地,本公开实施例还提供了触控显示装置,包括:上述触控面板。
附图说明
附图用来提供对本公开技术方案的进一步理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。
图1为本公开实施例提供的触控面板的结构示意图之一;
图2a为本公开实施例提供的第一子触控电极的结构示意图之一;
图2b为本公开实施例提供的第二子触控电极的结构示意图之一;
图2c为图1所示的触控面板中AA区域的具体结构示意图之一;
图3为本公开实施例提供的触控面板的结构示意图之二;
图4a为本公开实施例提供的第一子触控电极的结构示意图之二;
图4b为本公开实施例提供的第二子触控电极的结构示意图之二;
图4c为图3所示的触控面板中AA区域的具体结构示意图;
图5为本公开实施例提供的第一连接线的结构示意图;
图6为图1所示的触控面板中BB区域的具体结构示意图;
图7为图1所示的触控面板中AA区域的具体结构示意图之二;
图8为图1所示的触控面板中AA区域的具体结构示意图之三;
图9为本公开实施例提供的触控电极部的局部结构示意图;
图10为本公开实施例提供的触控面板中的触控单元的拼接结构示意图;
图11为本公开实施例提供的触控面板的结构示意图之三;
图12为图11所示的触控电极的结构示意图;
图13为本公开实施例提供的触控面板的制作方法的流程图之一;
图14为本公开实施例提供的触控面板的制作方法的流程图之二;
图15为通过本公开实施例提供的触控面板的制作方法制作成的触控面板的结构示意图;
图16为本公开实施例提供的局部剖视结构示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,下文中将结合附图对本公开的实施例进行详细说明。需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。应当理解,下面所描述的优选实施例仅用于说明和解释本公开,并不用于限定本公开。需要注意的是,附图中各图形的尺寸和形状不反映真实比例,目的只是示意说明本公开内容。并且自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机***中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
本公开提供的以下实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
目前GF的制作工艺中存在诸多亟需解决的问题,主要包括以下两点:第一,GF中触控单元的电极图形(Pattern)为整块电极,宽大电极使得电极本身具有很大的内应力,弯折时容易发生断裂;第二,桥点的材质选取,采用金属(Metal)桥的延展性虽好,但是消影效果较差,且金属的附着力效果差,采用氧化铟锡(Indium Tin Oxide,简称为:ITO)桥的消影效果较好,但是ITO的脆性较高,弯折时容易出现断裂。
随着高端全屏手机的量产,中小尺寸柔性触摸屏迅速发展。在柔性触控屏生产工艺中,相比GFF的两层film,单层film的GF2结构和GF桥架结构具有更广阔的应用前景,其中,GF的电极层由于具有桥架结构因此可用于制作小曲率产品,也可用于触控传感器制作工艺,而被广大TP生产商纷纷纳入生产范围。上述现有触控面板中,电极的耐弯折能力较差,主要由于电极通常设计为整面式形状,例如,整个触控面板中包括多行横向电极和多列纵向电极,其中,每行横向电极和每列纵向电极都为一个整面图形,这样,由于电极图形的尺寸过大,使得电极本身具有较高的内应力,触控面板被弯折时容易折断;另外,GF的桥架结构难以兼顾消影效果和耐弯折能力。
为了解决上述技术问题,本公开实施例提供了触控面板和触控显示装置,通过合理的配置触控电极的图形,能够实现降低电极应力的效果,从而提高触控电极的耐弯折能力,防止触控面板弯折时出现断裂的现象。
本公开实施例提供的触控面板,如图1至图4所示,可以包括:衬底基板100,相互绝缘设置于衬底基100上的多个触控电极200。其中,至少部分触控电极200包括多个环形且间隔设置的触控电极部300。并且,同一触控电极200中,每相邻两个触控电极部300通过多个连接部400电连接。其中,可以使连接部400设置为小矩形块。
本公开实施例提供的触控面板,通过使触控电极包括多个环形且间隔设置的触控电极部,以及使同一触控电极中的每相邻两个触控电极部通过多个 连接部电连接,可以使触控电极部之间设置有间隙,这样以间隙分隔开的环形触控电极部之间具有一定间距(即间隙大小),有利于释放应力,提高电极的耐弯折能力,防止在弯折时出现断裂。
下面结合具体实施例,对本公开进行详细说明。需要说明的是,本实施例是为了更好的解释本公开,但不限制本公开。
在具体实施时,在本公开实施例中,如图1与图3所示,多个触控电极可以包括:多条沿第一方向F1延伸的第一触控电极210以及多条沿第二方向F2延伸的第二触控电极220。这样可以使触控面板采用互电容原理实现触控功能。其中,第一方向和第二方向例如可以具有一个小于或等于90°的夹角。本公开各实施例以第一方向和第二方向的夹角为90°为例予以示出,这样可以使第一方向F1是行方向,第二方向F2是列方向。或者,也可以使第一方向F1是列方向,第二方向F2是行方向,在此不作限定。下面均以第一方向F1是行方向,第二方向F2是列方向为例进行说明。
在具体实施时,在本公开实施例中,如图1与图3所示,可以使各触控电极同层设置,以使第一触控电极210和第二触控电极220设置于同一薄膜上,以进一步降低触控面板的厚度。并且,这样还可以通过一次构图工艺即可形成各触控电极的图形,能够简化制备工艺,节省生产成本,提高生产效率。以及这样还可以使本公开实施例针对GF结构的上述问题,提供一种用于实现触控功能的触控电极图形的设计方案。
在具体实施时,在本公开实施例中,如图1与图3所示,第一触控电极210可以包括多个第一子触控电极211,第一子触控电极211与第二触控电极220间隔排列。并且,同一第一触控电极210内的且位于第二触控电极220两侧的两个第一子触控电极211通过第一连接线212采用桥接方式电连接。如图2a与图4a所示,各第一子触控电极211包括多个环形且间隔设置的触控电极部300,且同一第一子触控电极211中,每相邻两个触控电极部300通过多个连接部400电连接。这样可以使各第一子触控电极211中设置有多个间隙,从而以间隙分隔开的环形触控电极部300之间具有一定间距(即开口大小), 有利于释放应力,提高电极的耐弯折能力,防止在弯折时出现断裂。需要说明的是,图2a与图4a所示中虚线框L1和虚线框L2之间的区域代表一个触控电极部300,虚线框400所围成的区域代表一个连接部400。
在具体实施时,第一子触控电极不是整面图形,而是通过多个间隔设置的触控电极部形成一个整体。可选地,第一子触控电极可以由多个间隔设置的触控电极部以一定的重复组合方式有序排列形成有序排列的电极图形,将这些有序排列的电极图形应用于触控面板时,有利于提高整个触控面板的消影效果。
在具体实施时,在本公开实施例中,如图1与图3所示,第二触控电极220可以包括多个第二子触控电极221以及第二连接线222,第二子触控电极221与第一触控电极210间隔排列。并且,同一第二触控电极220内的且位于第一触控电极210两侧的两个第二子触控电极221通过第二连接线222电连接。以及各第二子触控电极221包括多个环形且间隔设置的触控电极部300。这样可以使各第二子触控电极221中设置有多个间隙,从而以间隙分隔开的环形触控电极部300之间具有一定间距(即开口大小),有利于释放应力,提高电极的耐弯折能力,防止在弯折时出现断裂。需要说明的是,图2b与图4b所示中虚线框L1和虚线框L2之间的区域代表一个触控电极部300,虚线框400所围成的区域代表一个连接部400。进一步地,各第二子触控电极221与各第二连接线222同层设置。
需要说明的是,第二连接线222位于相邻的第二子触控电极221之间,且为第二触控电极220最窄的区域,由于相邻的第一子触控电极211实际上要实现一个电极的功能,因此,可以将相邻的第一子触控电极211通过一个第一连接线212电连接。基于第一触控电极210与第二触控电极220的相对位置关系,考虑到桥接方式实现工艺的难易程度和电极结构的稳定性,可以将第一连接线212设置于第二触控电极220中最窄的区域,即设置于第二连接线222的上方。
在具体实施时,第二子触控电极不是整面图形,而是通过多个间隔设置 的触控电极部形成一个整体。可选地,第二子触控电极可以由多个间隔设置的触控电极部以一定的重复组合方式有序排列形成有序排列的电极图形,将这些有序排列的电极图形应用于触控面板时,有利于提高整个触控面板的消影效果。
进一步地,在具体实施时,在本公开实施例中,可以使各连接部和各触控电极同层设置。这样还可以通过一次构图工艺即可形成各触控电极以及各连接部的图形,能够简化制备工艺,节省生产成本,提高生产效率。
在具体实施时,在本公开实施例中,可以使电连接于相邻两个第一子触控电极之间的第一连接线设置为至少一条。具体地,如图1与图3所示,可以使电连接于相邻两个第一子触控电极211之间的第一连接线212设置为一条。进一步地,如图5所示,可以使电连接于相邻两个第一子触控电极211之间的第一连接线212设置为两条。这样如果一处第一连接线212断裂时,另一处第一连接线212仍然可以实现导通相邻两个第一子触控电极211的功能,保证电极的有效性。进一步地,还可以使电连接于相邻两个第一子触控电极211之间的第一连接线212设置为三条、四条、五条等。当然,在实际应用中,电连接于相邻两个第一子触控电极211之间的第一连接线212的数量可以根据实际应用环境来设计确定,在此不作限定。
在具体实施时,如图5所示,同一第一触控电极210内的相邻两个第一子触控电极之间设置了两条第一连接线212a和212b。其中,每个第一连接线包括桥架133以及两个桥点131和132。以相邻两个第一子触控电极211a和211b,以及第一连接线212a为例,第一连接线212a的桥架133通过桥点131与第一子触控电极211a电连接,第一连接线212a的桥架133通过桥点132与第一子触控电极211b电连接,这样可以使相邻的两个第一子触控电极实现电连接。并且,可以理解的,根据触控面板结构,为了避免第一连接线与第二触控电极220电连接,第一触控电极和第二触控电极所在的电极层与各第一连接线所在层非同层设置,且可以使电极层与第一连接线212所在层之间设置一层绝缘层,该绝缘层中具有用于设置上述桥点(即桥点131和桥点132) 的过孔,即桥点131设置于第一子触控电极211a上方的平坦层的过孔中,桥点132设置于第一子触控电极211b上方的绝缘层的过孔中。上述第一子触控电极以及用于电连接相邻两条第一子触控电极的至少两个第一连接线,成为构成第一触控电极的整体结构。基于触控电极图形可知,桥点通常设置在第一子触控电极接近第二连接线222的位置,这样可以使得第一连接线212的长度尽可以短,结构更加稳固,且制作时工艺易于实现。当然,也可以使第一连接线的长度设置的稍微长一些,在此不做限定。
进一步地,在具体实施时,该绝缘层可以设置为平坦层,这样可以使第一连接线平整。
可选地,在本公开实施例中,第一连接线的材料可以选用氧化铟锡(ITO)材料、氧化铟锌(IZO)材料、碳纳米管或石墨烯等。当然,在实际应用中,第一连接线的材料还可以为其他透明导电材料,在此不作限定。并且,基于本公开实施例中触控电极图形的形状,采用ITO材料的第一连接线具有比传统电极图形中ITO材料的第一连接线更好的耐弯折能力。
在具体实施时,本公开实施例中的触控电极的材料可以采用氧化铟锡(ITO)材料、氧化铟锌(IZO)材料、碳纳米管或石墨烯等。当然,在实际应用中,触控电极的材料还可以为其他透明导电材料,在此不作限定。
在具体实施时,在本公开实施例中,可以使触控电极部的图形包括三角形、菱形、矩形中的至少一种。例如图1至图2b所示,可以使触控电极部300的图形设置为菱形。例如图2至图4b所示,可以使触控电极部300的图形设置为矩形。或者,还可以使触控电极部300的图形设置为三角形。当然,在实际应用中,可以根据实际应用环境的需求设置触控电极部300的图形,在此不作限定。
在具体实施时,在本公开实施例中,如图2a和图6所示,触控电极部300的图形为菱形,第一子触控电极221中触控电极部300形成的图形的一条边与第二方向F2和第一方向F1中的一个方向的夹角在30度到60度之间,可以有效避免柔性显示装置的显示屏出现摩尔纹现象。例如,结合图2a和图6 所示,触控电极部300为菱形,其具有四条边,分别为上侧的左右两条边和下侧的左右两条边。触控电极部300下侧的左右两条边形成“V形”电极;其中,该“V形”电极中,位于左侧的边与第二方向F2存在夹角C,该夹角C的角度为30度到60度之间的一个定值。例如该夹角C可以设置为30度,或者设置为60度以使触控电极部的形状为菱形。并且,该“V形”电极中,位于右侧的边与第一方向F1存在夹角B,该夹角B的角度为30度到60度之间的一个定值。例如该夹角B可以设置为30度,或者设置为60度以使触控电极部的形状为菱形。
在具体实施时,在本公开实施例中,如图4a所示,触控电极部300的图形为矩形,第一子触控电极221中触控电极部300形成的图形的一条边与第二方向F2和第一方向F1中的一个方向的夹角为90度。例如,触控电极部300为矩形,其具有四条边,分别为上侧的边、下侧的边,左侧的边和右侧的边。触控电极部300左侧的边和下侧的边形成“L形”电极;其中,该“L形”电极中,位于左侧的边与第一方向F1存在夹角D,该夹角D的角度为90度。并且,该“L形”电极中,位于下侧的边与第二方向F2存在夹角D,该夹角D的角度90度。这样可以使如图6中所示的夹角B和夹角C均设置为45度,以使第一子触控电极221的形状为矩形。
为了降低工艺制备难度,在具体实施时,可以使除位于第一触控电极的端部处的第一子触控电极之外,其余各第一子触控电极211中的触控电极部300的图形相同。例如,结合图1与图2a所示,可以使位于第一触控电极的端部处的第一子触控电极211设置为三角形,这样可以使位于第一触控电极的端部处的第一子触控电极211的触控电极部的图形设置为三角形,其余第一子触控电极211的图形设置为菱形,这样可以使其余第一子触控电极211的触控电极部300的图形设置为菱形。
进一步地,可以使每个第一子触控电极211中的触控电极部的图形相同。例如,结合图3与图4a所示,可以使每个第一子触控电极211的图形均设置为矩形,这样可以使每个第一子触控电极211中的触控电极部300的图形设 置为矩形。进一步地,可以使每个第一子触控电极211在衬底基板100的正投影相同。
为了降低工艺制备难度,在具体实施时,可以使除位于第二触控电极的端部处的第二子触控电极之外,其余各第二子触控电极221中的触控电极部300的图形相同。例如,结合图1与图2b所示,可以使位于第二触控电极的端部处的第二子触控电极221设置为三角形,这样可以使位于第二触控电极的端部处的第二子触控电极221的触控电极部的图形设置为三角形,其余第二子触控电极221的图形设置为菱形,这样可以使其余第二子触控电极221的触控电极部300的图形设置为菱形。
进一步地,可以使每个第二子触控电极221中的触控电极部的图形相同。例如,结合图3与图4b所示,可以使每个第二子触控电极221的图形均设置为矩形,这样可以使每个第二子触控电极221中的触控电极部300的图形设置为矩形。进一步地,可以使每个第二子触控电极221在衬底基板100的正投影相同。
在具体实施时,在本公开实施例中,针对除位于第一触控电极的端部处的第一子触控电极之外的其余第一子触控电极以及除位于第二触控电极的端部处的第二子触控电极之外的其余各第二子触控电极,第一子触控电极中的触控电极部的图形与第二子触控电极中的触控电极部的图形相同,可以有效避免柔性显示装置的显示屏出现摩尔纹现象。例如,如图2a如图2b所示,第一子触控电极211中的触控电极部300的图形与第二子触控电极221中的触控电极部300的图形均设置为菱形。如图3a如图3b所示,第一子触控电极211中的触控电极部300的图形与第二子触控电极221中的触控电极部300的图形均设置为矩形。
在本公开实施例中,各第一子触控电极和各第二子触控电极包括多个环形设置的触控电极部,相邻的触控电极部之间具有间隙。这些触控电极部通过连接部相互连通形成一个整体。这样,可以使触控电极部之间具有一定间距(即开口大小),有利于释放应力,提高电极的耐弯折能力,防止在弯折时 出现断裂。
在具体实施时,在本公开实施例中,可以使相邻的触控电极部之间的间隙宽度设置为20微米到30微米之间。具体地,可以使相邻的触控电极部之间的间隙宽度设置为20微米。或者,也可以使相邻的触控电极部之间的间隙宽度设置为15微米。或者,也可以使相邻的触控电极部之间的间隙宽度设置为30微米。当然,相邻的触控电极部之间的间隙宽度可以根据实际应用环境来设计确定,在此不作限定。
在具体实施时,在本公开实施例中,如图2c与图4c所示,可以使每相邻两个触控电极部300之间的连接部400均匀分布。具体地,如图2c与图4c所示,可以使第一子触控电极211中的每相邻两个触控电极部300之间的连接部400均匀分布。这样可以使第一子触控电极211中的间隙有序排列。如图2c与图4c所示,可以使第二子触控电极221中的每相邻两个触控电极部300之间的连接部400均匀分布。这样可以使第二子触控电极221中的间隙有序排列。将这些有序(或无序)排列的间隔设置的间隙应用于触控面板时,有利于提高整个触控面板的消影效果。当然,也可以使相邻两个触控电极部300之间的连接部400不进行均匀分布,以使间隙可以无序排列,在此不作限定。
需要说明的是,图2c与图4c仅示意出本公开实施例的第一子触控电极和第二子触控电极的连接部400设置的可能的实现方式,并不以图2所示的方式限制连接部400设置的方式。在实际应用中,当连接部400为有序排列时,相邻间隙可以为在同一方向依次排列的,比如梳齿状进行。再例如,当连接部400为无序排列时,不同进行的方向、进行深度,以及进行的形状和大小均可以不同。
在具体实施时,在本公开实施例中,相邻触控电极200之间还可以设置有间隙。例如图2c所示,第一触控电极210和第二触控电极220之间设置有间隙,以通过间隙将第一触控电极210和第二触控电极220相互绝缘。进一步地,在具体实施时,可以根据实际应用环境的需求设置相邻触控电极200 之间的间隙宽度,在此不作限定。
在具体实施时,在本公开实施例中,如图8所示,触控面板还可以包括:设置于相邻的两个触控电极200之间的间隙处的虚拟条形电极(即Dummy条形电极)230。并且,这些Dummy条形电极与触控电极200相互绝缘设置。这样通过在间隙中设置Dummy条形电极,一方面可以提高整个触控电极的耐弯折能力,另一方面形成电极图形时,可以有效提升整个触控面板的消影效果。
在具体实施时,在本公开实施例中,触控电极与相邻的虚拟条形电极之间设置有间隙,以使触控电极与相邻的虚拟条形电极230绝缘设置。具体地,在具体实施时,触控电极与相邻的虚拟条形电极之间的间隙宽度为20微米到30微米之间。可以使触控电极与相邻的虚拟条形电极之间的间隙宽度为20微米。例如,如图7所示,第一触控电极中的第一子触控电极211与相邻的虚拟条形电极230之间的间隙宽度为20微米。第二触控电极中的第二子触控电极221与相邻的虚拟条形电极之间的间隙宽度为20微米。或者,也可以使触控电极与相邻的虚拟条形电极之间的间隙宽度为15微米。例如,第一触控电极中的第一子触控电极211与相邻的虚拟条形电极230之间的间隙宽度为15微米。第二触控电极中的第二子触控电极221与相邻的虚拟条形电极230之间的间隙宽度为15微米。或者,也可以使触控电极与相邻的虚拟条形电极之间的间隙宽度为30微米。例如,第一触控电极中的第一子触控电极211与相邻的虚拟条形电极之间的间隙宽度为30微米。第二触控电极中的第二子触控电极221与相邻的虚拟条形电极230之间的间隙宽度为30微米。当然,在实际应用中,可以根据实际应用环境的需求设置触控电极与相邻的虚拟条形电极之间的间隙宽度,在此不作限定。
在具体实施时,在本公开实施例中,如图7所示,可以使处于相邻的第一子触控电极211和第二子触控电极212之间的间隙处的虚拟条形电极为一整体结构。或者,如图8所示,也可以使处于相邻的第一子触控电极211和第二子触控电极212之间的间隙处的虚拟条形电极230包括多个子虚拟条形 电极231,这样可以采用多个子虚拟条形电极231组合而成一个虚拟条形电极230。具体地,可以使每个虚拟条形电极230包括多个间隔设置且相互不连通的子虚拟条形电极231,且这些间隔设置的子虚拟条形电极231沿间隙延伸设置。进一步地,在具体实施时,可以使相邻的两个子虚拟条形电极231通过连接部进行连通。当然,虚拟条形电极230的具体实施方式可以根据实际应用环境来设计确定,在此不作限定。
进一步地,如图7与图8所示,可以使虚拟条形电极230的延伸方向与相邻的触控电极部300的延伸方向相同,以进一步提升触控面板10的消影效果。
在具体实施时,本公开实施例中的虚拟条形电极与触控电极同层设置。这样同层设置的上述各电极可以采用一次构图工艺来制作,简化了工艺步骤、降低工艺成本,并且有利于减小触控面板的整体厚度。
在具体实施时,在本公开实施例中,可以使触控电极部的边缘为直线形、曲线形以及折线形中的至少一种。这样可以进一步提高电极的耐弯折能力,以防止弯折时出现断裂。具体地,本公开上述图1到图8所示触控电极部,均以每个触控电极部具有直线形边缘为例予以示出。例如图9所示,也可以使触控电极部300的边缘设置为折线形。当然,也可以使触控电极部300的边缘设置为曲线形。在实际应用中,触控电极部300的边缘的图形可以根据实际应用环境需求来设计确定,在此不作限定。
在具体实施时,每个第一子触控电极中的触控电极部的边缘可以为一种类型的边缘。例如,每个第一子触控电极中的触控电极部的边缘可以为具有上述视图中的直线形边缘,或折线形边缘,或曲线形边缘。当然,也可以使第一子触控电极中具有多种类型边缘的触控电极部,例如,第一子触控电极中的部分触控电极部的边缘为直线形,部分触控电极部的边缘为折线形,其余部分触控电极部的边缘为曲线形。
在具体实施时,每个第二子触控电极中的触控电极部的边缘可以为一种类型的边缘。例如,每个第二子触控电极中的触控电极部的边缘可以为具有 上述视图中的直线形边缘,或折线形边缘,或曲线形边缘。当然,也可以使第二子触控电极中具有多种类型边缘的触控电极部,例如,第二子触控电极中的部分触控电极部的边缘为直线形,部分触控电极部的边缘为折线形,其余部分触控电极部的边缘为曲线形。
在具体实施时,在本公开实施例中,也可以通过拼接的方式形成第一子触控电极和第二子触控电极,例如,结合图1、图2c以及图10所示,可以将触控单元AA作为最小的拼接单元,可以在衬底基板100上设置多个阵列排布的且结构相同的触控单元AA,以形成各触控电极。例如,通过拼接使第一触控电极中的第一子触控电极具有多个环形且间隔设置的触控电极部。以及通过拼接使第二触控电极中的第二子触控电极具有多个环形且间隔设置的触控电极部。在具体实施时,触控单元AA通常可以设计为矩形(例如为长方形或正方形)。这样可以使本公开实施例提供的触控面板的触控区域由本公开上述各实施例中的触控单元AA通过阵列排布的方式形成,以触控单元AA为基本单元形成整个触控面板的电极图形,
另外,为了便于将上述触控单元AA应用于触控面板10中,本公开实施例不限制触控单元AA中第一子触控电极和第二子触控电极的具体形状,其可以根据实际应用环境的需求来设计确定,例如触控单元AA中的第一子触控电极和第二子触控电极可以设置为三角形、梯形,或三角形和梯形的组合,在此不作限定。并且,由于本公开实施例中的触控单元AA要以阵列排布的形式形成整个触控面板中的电极图形,在本公开实施例的实现方式中,要求触控单元AA在阵列排布时,第一方向上相邻触控单元AA的第一子触控电极211可以准确拼接,第二方向上相邻触控单元AA的第二电子触控极221可以准确拼接,因此可以将电极图形设计为:第一子触控电极211设置为以第一子触控电极211在第一方向上的中线为对称轴的对称结构,第二子触控电极221设置为以第二子触控电极221在第二方向上的中线为对称轴的对称结构。
可选地,在本公开实施例中,触控单元AA的边长的宽长比可以等比例缩放,且触控单元AA边长大小范围在2毫米~10毫米(mm)之间。例如, 当触控面板对触控灵敏度要求较高时,可以将触控单元AA的大小设置为2*2mm,当触控面板的尺寸较大且对触控灵敏度的要求较低时,可以将触控单元AA的大小设置为10*10mm;在设计触控单元AA中的电极图形时,上述两种尺寸规格的触控单元AA的电极图形无需重新设计,将尺寸为2*2mm的触控单元等比例放大5倍即可得到尺寸为10*10mm的触控单元。
在本公开实施例中,基于触控单元AA为矩形的整体结构,以及第一子触控电极211和第二子触控电极221为三角形的结构可知,第一连接线212用于使左侧的第一子触控电极211和右侧的第一子触控电极211电连接,第二连接线222用于使上侧的第二子触控电极221和下侧的第二子触控电极221电连接。另外,这些三角形子电极通常可以设计为等腰三角形。
需要说明的是,图2c所示触控单元AA中,由于每个第一子触控电极211和每个第二子触控电极221电连接的位置通过其它区域或结构电连接,因此,每个第一子触控电极211和每个第二子触控电极221并不是标准的三角形,而其在整体结构上可以视为三角形,即称这些子电极为三角形子电极。
在本公开实施例的一种应用场景中,当触控单元AA为正方形时,每个三角形子电极可以为相互对称的结构,即以正方形的对角线为对称轴,或以中线为对称轴,触控单元AA中的电极图形(即每个三角形子电极)均为对称结构。图2c所示触控单元AA以整体结构为正方形,且任意两个子电极均为对称结构的电极图形为例予以示出。
在本公开实施例中,由于每个子电极中包括多个间隔设置的开口,每个子电极内部间隔设置的开口将该子电极的分隔成多个间隔设置的条形电极,如图2和图3所示,在某个子电极内部,开口将子电极分隔成多个间隔设置且有序排列的条形电极,可以看出,每个子电极中的条形电极不是整面图形,但是每个子电极中的条形电极连通使电极图案形成一个整体。
可选地,在本公开实施例中,如图3c所示触控单元AA,每个三角形子电极中的电极图形可以设置为:包括多个间隔设置的“V形”电极,每个“V形”电极包括在“V形”尖角处相连接的两个条形电极,这两个条形电极分别平行于 本“V形”电极所属三角形子电极与其它三角形子电极相邻的边,且相邻的“V形”电极通过至少一个间隔设置的连接部连接,使得每个三角形子电极中的条形电极连接为整体结构。另外,在触控单元AA内部,第一子触控电极电极211中的“V形”电极为以触控单元AA在第一方向F1上的中线为对称轴的对称结构,第二子触控电极电极221中的“V形”电极为以触控单元AA在第二方向F2上的中线为对称轴的对称结构。
在本公开实施例中,基于三角形的子电极结构,可以将第一子触控电极内部的条形电极设置为形状呈“V形”的条形电极,且这些“V形”电极以半包裹的形式重叠排列。如图2c所示,“V”形电极的电极包括构成“V”形的左右两个条形电极,以图2c中的第一子触控电极211中构成“V”形电极的两个电极中,左侧电极平行于第一子触控电极211与第二子触控电极221相邻的边,右侧电极平行于三角形电极第一子触控电极211与第二子触控电极221相邻的边;并且,相邻的“V形”电极可以通过多个间隔设置的连接部连接。
可选地,在本公开实施例中,条形电极与第一方向(或第二方向)的夹角在30度到60度之间,如图2c和图6所示,“V形”电极中,左右两个条形电极均与第一方向(或第二方向)存在一夹角,该夹角的角度为30度到60度之间的一个定值,当触控单元AA的形状固定(例如为正方形),且三角形子电极的形状固定(例如为等边三角形)时,如图6中所示的夹角B(条形电极与第一方向F1的夹角)和夹角C(条形电极与第二方向F2的夹角),均为45度,由于本公开实施例提供的触控面板中的电极图形由阵列排布的触控单元AA形成,基于上述夹角的范围限制,触控面板中可以形成菱形的电极图形,如图10所示,具体示意出6个触控单元AA的阵列形式,通过将电极设置为“V”形电极,由多个“V”形电极构成三角形子电极,并且限定“V形”电极中左右两个电极与第一方向(或第二方向)的夹角范围,可以有效避免柔性显示装置的显示屏出现摩尔纹现象。
需要说明的是,上述图6所示实施例以条形电极与第一方向(或第二方向)的夹角为45度予以示出,若触控单元AA为长方形,该长方形的边长比 固定,三角形子电极的形状确定时,条形电极与第一方向(或第二方向)的夹角为30~60°之间的一个定值,例如,条形电极与第一方向的夹角为30°,与第二方向的夹角为60°。
需要说明的是,在本公开实施例中,构图工艺可只包括光刻工艺,或,可以包括光刻工艺以及刻蚀步骤,同时还可以包括打印、喷墨等其他用于形成预定图形的工艺。光刻工艺是指包括成膜、曝光、显影等工艺过程的利用光刻胶、掩模板、曝光机等形成图形的工艺。在具体实施时,可根据本公开中所形成的结构选择相应的构图工艺。
需要说明的是,在具体实施时,本公开实施例提供的触控面板用于用户实现对柔性显示屏的触控操作,且该触控面板例如可以通过贴合技术贴合于柔性显示屏上。目前的屏幕结构通常为,从上到下依次包括保护玻璃、触摸屏和显示屏,贴合技术包括不同的类型,例如单片式触控面板(One Glass Solution,简称为:OGS)、GFF、G1F、G2F和GF等,不同贴合技术中film层数的多少、横向电极和纵向电极的电极层数,以及横向电极和纵向电极与film的相对层次位置均不同。
在具体实施时,如图15所示,衬底基板100具有触控区域10a和非触控区域10b。触控区域10a中设置有触控电极。非触控区域10b可以设置一些走线。进一步地,触控面板的触控区域可以与显示屏的显示区对应。例如,触控区域在显示屏的正投影与显示区重叠。
在具体实施时,本公开实施例提供的触控面板可以支持主动笔、被动笔等多种触控操作,并且触控电极图形不再是现有触控面板整面式的电极图形,而是由多个环形设置的触控电极部有序排列而成。每个第一子触控电极和第二子触控电极可以通过间隔设置的连接部(即导电小块)电连接而成。同一第一子触控电极与第二子触控电极中的相邻触控连接部之间的间隙宽度20微米~30微米之间。并且,第一子触控电极与第二子触控电极中的触控电极部有序排列连接成菱形的电极图形,且均匀分布,可以进一步提升整个触控面板的消影效果。
本公开实施例提供了有一些触控面板的结构,如图11所示,其针对上述实施例的实施方式进行了变形。下面仅说明本实施例与上述实施例的区别之处,其相同之处在此不作赘述。
在具体实施时,在本公开实施例中,如图11与图12所示,可以使多个触控电极200包括呈阵列排布的自电容电极。每个触控电极2000包括多个环形且间隔设置的触控电极部300。并且,同一触控电极200中,每相邻两个触控电极部300通过多个连接部400电连接。这样可以使触控面板采用自电容原理实现触控功能。图12所示中虚线框L1和虚线框L2之间的区域代表一个触控电极部300,虚线框400所围成的区域代表一个连接部400。
进一步地,在具体实施时,在本公开实施例中,各自电容电极同层设置。这样可以通过一次构图工艺即可形成各自电容电极的图形,能够简化制备工艺,节省生产成本,提高生产效率。
基于同一公开构思,本公开实施例还提供了触控显示装置,该触控显示装置可以包括上述任意实施例中提供的触控面板。该触控显示装置解决问题的原理与前述触控面板相似,因此该触控显示装置的实施可以参见前述触控面板的实施,重复之处在此不再赘述。
在具体实施时,本公开实施例提供的触控显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示和触控功能的产品或部件。对于该触控显示装置的其它必不可少的组成部分均为本领域的普通技术人员应该理解具有的,在此不做赘述,也不应作为对本公开的限制。并且,该触控显示装置的实施和有益效果可以参见本公开上述实施例提供的触控面板,故在此不再赘述。
基于同一公开构思,本公开实施例还提供了触控面板的制作方法,该触控面板的制作方法用于制作本公开上述任一实施例提供的触控面板。
本公开实施例提供的触控面板的制作方法,可以包括如下步骤:在衬底基板的触控区域形成各触控电极的图形。其中,该触控电极的图形为图1至图12任意对应实施例提供的触控电极的图形。
在具体实施时,本公开实施例提供的触控面板的制作方法,如图13所示,具体可以包括如下步骤:
S210,在衬底基板100的触控区域10a形成第一导电膜层;
S220,对第一导电膜层进行图形化处理,形成各触控电极图形;其中,该触控电极的图形为图1至图12任意对应实施例提供的触控电极的图形。
S230,在电极图形上形成第一平坦层,通过图形化工艺在该第一平坦层上形成过孔;其中,用于进行桥接的过孔布设于第一触控电极被第二触控电极分隔开的两个第一子触控电极上;
S240,在第一平坦层上形成第二导电膜层,并通过图形化工艺形成第一连接线的图形。
其中,采用阵列排列的触控单元AA制备的触控面板,即为以本公开上述任一实施例中的触控单元为基本单元,且对该触控单元进行阵列排布形成的电极图形。
在本公开实施例中,待制作的触控面板为单层薄膜的结构,且各触控电极在同一电极层中。例如,第一触控电极和第二触控电极在同一电极层中,即为通过一次光刻和刻蚀工艺形成的,该第一导电膜层例如为ITO膜层,该ITO膜层可以形成于环烯烃聚合物薄膜(Cyclo Olefin Polymer film,简称为:COP film)的感应薄膜上,对该ITO膜层进行图形化处理的实现方式可以为:在该ITO膜层进行涂胶、曝光、显影,制作对位Mark(标记),其中,涂胶例如采用光刻胶(Photoresist,简称为:PR胶),显影的图形即为本公开上述实施例提供的触控面板中的电极图形,最后进行刻蚀,剥离残留光刻胶。
通过上述步骤形成的电极图形,与上述实施例提供的触控面板具有相同的触控电极图形。因此,采用本公开实施例提制作方法制作成的触控电极图形,具有与上述实施例中触控电极图形相同的性能,即具有较高的耐弯折能力,可以有效防止触控面板弯折时出现断裂。
需要说明的是,本公开实施例在完成S220的制作后,第一触控电极中的第一子参考电极仍为独立的电极图形,还未形成整体结构上的第一触控电极, 因此,可以在后续工艺中通过制作用于连接第一子触控电极的第一连接线的桥架结构,以形成结构和功能上完整的第一触控电极。
在本公开实施例中,在已形成的电极图形(即第一子触控电极和第二触控电极)上形成第一平坦层,该第一平坦层例如为有机绝缘层,记为OC1层,通过图形化工艺,同样可以涂胶、曝光、显影和刻蚀,在OC1层上制作出过孔,该过孔用于形成第一连接线的桥架结构的桥点,该过孔布设于第一触控电极被第二触控电极分隔开的两个第一子触控电极上,且在这两个第一子触控电极接近第二触控电极最窄的位置,如上述图1到图8所示的结构。
在完成过孔的制作后,在OC1上形成第二导电膜层,该第二导电膜层同样可以为ITO膜层,例如可以通过喷涂(sputter)工艺形成ITO膜层,该ITO膜层用于形成第一连接线的桥架结构,对该ITO膜层进行图形化工艺处理,同样包括涂PR胶、曝光、显影、刻蚀和剥离等工艺制作ITO材料的桥架结构。
本公开实施例通过上述工艺制作成的触控面板,与上述实施例提供的触控面板具有相同的结构和性能,即同一层形成第一触控电极和第二参考电极(此时形成的第一触控电极仅包括位于第一子触控电极),并采用第一连接线的桥架结构连接第一子触控电极,以形成结构和功能上完整的第一触控电极,且电极和第一连接线均采用ITO材料,因此,与本公开上述实施例提供的触控面板具有相同的有益效果,故在此不再赘述。
可选地,图14为本公开实施例提供的另一写触控面板的制作方法的流程图。在图13所示流程的基础上,本公开实施例提供的方法,在S230之前还可以包括:
S221,在衬底基板的非触控区域形成金属膜层;
S222,对金属膜层进行图形化处理,形成触控面板的金属连线。
本公开实施例提供的触控面板的制作方法,在制作OC1层之前,可以现在触控面板的非触控区域制作金属连线,该金属连线包括第一触控电极和第二触控电极连接到柔性电路板(Flexible Printed Circuit,简称为:FPC)的连线和用于绑定FPC以实现信号导通的绑定(Bonding)区的连线。
另外,在本公开实施例中,在S230中对OC1层进行图形化工艺处理时,不仅在该OC1层上形成过孔,还在触控面板的非触控区形成Bonding区的镂空图形,以便在S240喷涂ITO膜层时,在该Bonding区的镂空图形位置喷涂ITO膜层,用ITO膜层覆盖在Bonding区的金属连线上方,以保护金属连线不受腐蚀。
可选地,在本公开实施例中,S240之后还可以包括:
S250,在衬底基板的触控区域和非触控区域形成第二平坦层。
在本公开实施例的触控区域,即是在桥架结构和OC1的上方形成第二平坦层,该第二平坦层例如同样为有机绝缘层,记为OC2,该OC2用于保护整个触控面板。如图15所示,为通过本公开实施例提供的触控面板的制作方法制作成的触控面板的结构示意图,图16示意出触控面板在桥架结构处的截面图,触控电极(包括第一触控电极中的第一子触控电极211和第二触控电极中的第二子触控电极221),制作于柔性基板150上,第一连接线212电连接相邻的两个第一子触控电极211,图16中示意出第一连接线212下方的第二连接线222。
可选地,在具体实施时,在衬底基板的触控区域形成各触控电极的图形,具体可以包括:在衬底基板的触控区域形成各自电容电极的图形。
本公开实施例提供的触控面板及触控显示装置,通过使触控电极包括多个环形且间隔设置的触控电极部,以及使同一触控电极中的每相邻两个触控电极部通过多个连接部电连接,可以使触控电极部之间设置有间隙,这样以间隙分隔开的环形触控电极部之间具有一定间距(即间隙大小),有利于释放应力,提高电极的耐弯折能力,防止在弯折时出现断裂。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开实施例的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (18)

  1. 一种触控面板,其中,包括:
    衬底基板;
    多个触控电极,相互绝缘设置于所述衬底基板上;
    至少部分所述触控电极包括多个环形且间隔设置的触控电极部;
    同一所述触控电极中,每相邻两个所述触控电极部通过多个连接部电连接。
  2. 如权利要求1所述的触控面板,其中,所述多个触控电极包括:多条沿第一方向延伸的第一触控电极以及多条沿第二方向延伸的第二触控电极。
  3. 如权利要求2所述的触控面板,其中,各所述触控电极同层设置;所述第一触控电极包括多个第一子触控电极,所述第一子触控电极与所述第二触控电极间隔排列;各所述第一子触控电极包括多个环形且间隔设置的触控电极部;
    同一所述第一触控电极且位于所述第二触控电极两侧的两个第一子触控电极通过第一连接线采用桥接方式电连接。
  4. 如权利要求3所述的触控面板,其中,电连接于相邻两个所述第一子触控电极之间的第一连接线为至少一条。
  5. 如权利要求3所述的触控面板,其中,除位于所述第一触控电极的端部处的第一子触控电极之外,其余各第一子触控电极中的触控电极部的图形相同。
  6. 如权利要求3-5任一项所述的触控面板,其中,所述第二触控电极包括多个第二子触控电极以及第二连接线,所述第二子触控电极与所述第一触控电极间隔排列;同一所述第二触控电极且位于所述第一触控电极两侧的两个第二子触控电极通过所述第二连接线电连接;
    各所述第二子触控电极包括多个环形且间隔设置的触控电极部。
  7. 如权利要求6所述的触控面板,其中,除位于所述第二触控电极的端 部处的第二子触控电极之外,其余各第二子触控电极中的触控电极部的图形相同。
  8. 如权利要求6所述的触控面板,其中,针对除位于所述第一触控电极的端部处的第一子触控电极之外的其余第一子触控电极以及除位于所述第二触控电极的端部处的第二子触控电极之外的其余各所述第二子触控电极,所述第一子触控电极中的触控电极部的图形与所述第二子触控电极中的触控电极部的图形相同。
  9. 如权利要求1所述的触控面板,其中,所述多个触控电极包括呈阵列排布的自电容电极。
  10. 如权利要求1-9所述的触控面板,其中,所述触控面板还包括:设置于相邻的两个所述触控电极之间的间隙处的虚拟条形电极。
  11. 如权利要求10所述的触控面板,其中,所述触控电极与相邻的所述虚拟条形电极之间的间隙宽度为20微米到30微米之间。
  12. 如权利要求10所述的触控面板,其中,所述虚拟条形电极与所述触控电极同层设置。
  13. 如权利要求1-9任一项所述的触控面板,其中,相邻的所述触控电极部之间的间隙宽度为20微米到30微米之间。
  14. 如权利要求1-9任一项所述的触控面板,其中,每相邻两个所述触控电极部之间的连接部均匀分布。
  15. 如权利要求1-9任一项所述的触控面板,其中,所述触控电极部的图形包括三角形、菱形、矩形中的至少一种。
  16. 如权利要求15所述的触控面板,其中,所述触控电极部的图形为菱形,第一子触控电极中触控电极部形成的图形的一条边与第二方向和第一方向中的一个方向的夹角在30度到60度之间。
  17. 如权利要求1-16任一项所述的触控面板,其中,所述触控电极部的边缘为直线形、曲线形以及折线形中的至少一种。
  18. 一种触控显示装置,其中,包括:如权利要求1-17任一项所述的触 控面板。
PCT/CN2019/079585 2018-06-29 2019-03-25 触控面板和触控显示装置 WO2020001098A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/621,320 US11314360B2 (en) 2018-06-29 2019-03-25 Touch panel and touch display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810701060.4 2018-06-29
CN201810701060.4A CN109002205B (zh) 2018-06-29 2018-06-29 一种触控面板和触控显示装置

Publications (1)

Publication Number Publication Date
WO2020001098A1 true WO2020001098A1 (zh) 2020-01-02

Family

ID=64602163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079585 WO2020001098A1 (zh) 2018-06-29 2019-03-25 触控面板和触控显示装置

Country Status (3)

Country Link
US (1) US11314360B2 (zh)
CN (1) CN109002205B (zh)
WO (1) WO2020001098A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11574960B2 (en) 2018-02-09 2023-02-07 Boe Technology Group Co., Ltd. Pixel arrangement structure, display substrate, display device and mask plate group
CN109002205B (zh) 2018-06-29 2021-05-14 京东方科技集团股份有限公司 一种触控面板和触控显示装置
CN109992152A (zh) * 2019-03-05 2019-07-09 武汉华星光电半导体显示技术有限公司 触控屏
CN112313610B (zh) * 2019-05-15 2024-04-02 京东方科技集团股份有限公司 触控单元及其制造方法、触控结构和显示装置
CN112462962B (zh) 2019-09-06 2023-01-06 华为技术有限公司 触控传感器、触控显示屏及电子设备
CN114356129B (zh) * 2020-10-12 2024-04-09 京东方科技集团股份有限公司 触控电极结构和显示装置
US11327620B1 (en) * 2020-11-06 2022-05-10 Tpk Advanced Solutions Inc. Touch sensing layer and touch panel
CN115421618B (zh) * 2022-11-04 2023-03-10 惠科股份有限公司 触控膜层和触控显示面板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102411461A (zh) * 2010-09-14 2012-04-11 安森美半导体贸易公司 触摸传感器
JP2015194856A (ja) * 2014-03-31 2015-11-05 日本電産リード株式会社 タッチパネル検査装置及び検査方法
CN107025853A (zh) * 2017-05-03 2017-08-08 京东方科技集团股份有限公司 一种柔性显示基板、显示面板及显示装置
CN109002205A (zh) * 2018-06-29 2018-12-14 京东方科技集团股份有限公司 一种触控面板和触控显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4052880B2 (ja) * 2002-05-29 2008-02-27 富士通株式会社 タッチパネル装置
JP4720857B2 (ja) * 2008-06-18 2011-07-13 ソニー株式会社 静電容量型入力装置および入力機能付き表示装置
US10007366B2 (en) * 2013-10-01 2018-06-26 Lg Innotek Co., Ltd. Touch window and display including the same
CN111309194B (zh) * 2013-10-22 2023-09-15 富士胶片株式会社 触摸面板用电极、触摸面板以及显示装置
KR102283921B1 (ko) * 2015-01-09 2021-07-30 삼성디스플레이 주식회사 플렉서블 터치 패널
CN104615323B (zh) * 2015-02-06 2017-02-08 京东方科技集团股份有限公司 一种3d模组、3d显示装置和3d模组的驱动方法
CN106855767A (zh) 2017-01-09 2017-06-16 京东方科技集团股份有限公司 一种触摸基板及触控显示装置
CN107957813B (zh) * 2017-11-22 2019-09-13 武汉华星光电半导体显示技术有限公司 一种柔性触控显示屏及其制作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102411461A (zh) * 2010-09-14 2012-04-11 安森美半导体贸易公司 触摸传感器
JP2015194856A (ja) * 2014-03-31 2015-11-05 日本電産リード株式会社 タッチパネル検査装置及び検査方法
CN107025853A (zh) * 2017-05-03 2017-08-08 京东方科技集团股份有限公司 一种柔性显示基板、显示面板及显示装置
CN109002205A (zh) * 2018-06-29 2018-12-14 京东方科技集团股份有限公司 一种触控面板和触控显示装置

Also Published As

Publication number Publication date
CN109002205B (zh) 2021-05-14
US11314360B2 (en) 2022-04-26
US20210325999A1 (en) 2021-10-21
CN109002205A (zh) 2018-12-14

Similar Documents

Publication Publication Date Title
WO2020001098A1 (zh) 触控面板和触控显示装置
US9811221B2 (en) Input device, method of manufacturing the same, and electronic information equipment
WO2018099174A1 (zh) 触摸屏及其制作方法、触控显示装置
KR102222652B1 (ko) 터치 패널 및 그것의 제조 방법, 및 터치 디스플레이 디바이스
US20140347319A1 (en) Touch panel
JP5420709B2 (ja) タッチパネルの電極構造、その方法およびタッチパネル
WO2018024133A1 (zh) 一种触控屏及其制作方法、外挂式触摸显示装置
US9148141B2 (en) Layout structure of capacitive touch panel and manufacturing method thereof
US11907456B2 (en) Touch substrate, display panel, and touch display device
JP5827972B2 (ja) タッチセンサ一体型表示装置
US10496232B2 (en) Capacitive touch panel
KR102054734B1 (ko) 터치 기판, 이를 제조하기 위한 마스크 판, 및 이의 제조 방법
TW201423534A (zh) 觸控面板
JP2020531932A (ja) タッチパネル、その製造方法及びタッチ表示装置
US20210333942A1 (en) Touch substrate, touch control display apparatus, method of fabricating touch substrate
US9753572B2 (en) Touch panel, method of fabricating the same and touch display device
CN109508117B (zh) 触控面板
CN106681559B (zh) 触控面板及其制造方法、触控显示装置
US10768764B2 (en) Touch structure and manufacturing method thereof, and touch device
TWI727245B (zh) 觸控面板
WO2020001422A1 (zh) 触控面板及其制作方法、显示装置
WO2014015618A1 (zh) 触控面板及其制造方法、触控设备
KR101481567B1 (ko) 터치 스크린 패널 및 터치 스크린 패널 제조 방법
CN106227381B (zh) 触摸基板、用于制造触摸基板的掩模板和方法
JP2019527860A (ja) タッチ基板、タッチパネル及びタッチパネルを有するタッチ装置、並びにタッチパネルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19827298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19827298

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19.05.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19827298

Country of ref document: EP

Kind code of ref document: A1