WO2014200035A1 - Electromagnetic wave shielding film, and electronic component mounting substrate - Google Patents

Electromagnetic wave shielding film, and electronic component mounting substrate Download PDF

Info

Publication number
WO2014200035A1
WO2014200035A1 PCT/JP2014/065511 JP2014065511W WO2014200035A1 WO 2014200035 A1 WO2014200035 A1 WO 2014200035A1 JP 2014065511 W JP2014065511 W JP 2014065511W WO 2014200035 A1 WO2014200035 A1 WO 2014200035A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
layer
wave shielding
shielding film
film
Prior art date
Application number
PCT/JP2014/065511
Other languages
French (fr)
Japanese (ja)
Inventor
白石 史広
太一 八束
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to JP2015522842A priority Critical patent/JP6481612B2/en
Publication of WO2014200035A1 publication Critical patent/WO2014200035A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0088Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a plurality of shielding layers; combining different shielding material structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/07Electric details
    • H05K2201/0707Shielding
    • H05K2201/0715Shielding provided by an outer layer of PCB
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/13Moulding and encapsulation; Deposition techniques; Protective layers
    • H05K2203/1305Moulding and encapsulation
    • H05K2203/1311Foil encapsulation, e.g. of mounted components

Definitions

  • the present invention relates to an electromagnetic wave shielding film and an electronic component mounting substrate.
  • an electromagnetic wave shielding film for example, a film having a base material layer made of an insulating material and a metal layer laminated on one or both surfaces of the base material layer has been developed (for example, Patent Documents). 1).
  • Patent Document 1 when the electromagnetic wave shielding film has a metal layer, there has been a problem that it has not been possible to cope with the reduction in weight and thickness that has been increasingly demanded in recent years.
  • the electronic devices to which the electromagnetic wave shielding film is attached are diversified, and accordingly, the frequency of electromagnetic waves, which are noises to be blocked, is diversified, and the electromagnetic wave shielding film is in the order of GHz. There is a demand for effective blocking of electromagnetic waves in a high frequency band.
  • An object of the present invention is to reduce the weight and thickness, and to effectively shield electromagnetic waves in a high frequency band as in the GHz order, and a substrate using such an electromagnetic wave shielding film. It is an object of the present invention to provide an electronic component mounting substrate in which an electronic component mounted thereon is covered with an electromagnetic wave shielding layer.
  • An electromagnetic wave shielding film comprising a base material layer and an electromagnetic wave shielding layer laminated on the base material layer,
  • the electromagnetic wave shielding layer is made of a material containing at least one of a conductive material and a magnetic absorption material, and has a surface resistance value of 1 ⁇ 10 ⁇ 3 ⁇ / ⁇ or more and 1 ⁇ 10 6 ⁇ / ⁇ or less.
  • the electromagnetic wave shielding film has an optical transmittance of 0.01% or more and 30% or less at a wavelength of 300 nm or more and 800 nm or less.
  • the complex dielectric constant ( ⁇ ) of the electromagnetic wave shielding layer is the electromagnetic wave shielding film according to the above (5) or (6), which is measured using a cavity resonator method.
  • the electromagnetic wave shielding layer according to (1) wherein the electromagnetic wave shielding layer is a laminate in which a plurality of layers are laminated, and each adjacent layer is made of the different material.
  • the conductive polymer includes at least one of polyaniline, polypyrrole, polythiophene, polyethylenedioxythiophene (PEDOT) and polyethylenedioxythiophene / polystyrenesulfonate (PEDOT / PSS). Electromagnetic shielding film.
  • the electromagnetic wave shielding layer is formed by alternately laminating a first layer made of a first material and a second layer made of a second material in this order from the base material layer side.
  • the electromagnetic wave shielding film according to any one of (12) to (14), which is a laminated body.
  • the film for electromagnetic wave shielding according to (15) or (16), wherein the thickness of the first layer is 1 ⁇ m or more and 30 ⁇ m or less.
  • the electromagnetic wave shielding film includes a base material layer and an electromagnetic wave shielding layer made of a material containing at least one of a conductive material and a magnetic absorption material, and the surface resistance of the electromagnetic wave shielding layer.
  • the value is 1 ⁇ 10 ⁇ 3 ⁇ / ⁇ or more and 1 ⁇ 10 6 ⁇ / ⁇ or less.
  • the electromagnetic wave shielding layer can be reduced in weight and thickness, and electromagnetic waves in a high frequency band can be effectively blocked as in the GHz order.
  • the electromagnetic wave shielding film of the present invention has a light transmittance of 0.01% or more and 30% or less at a wavelength of 300 nm or more and 800 nm or less.
  • the electromagnetic shielding film absorbs and blocks light to cover the inside, that is, the electronic component covered with the electromagnetic wave shielding layer. Can be made invisible. Thereby, the secrecy of the electronic component at the time of distribution of the electronic component mounting substrate covered with the electromagnetic wave shielding layer can be ensured, for example.
  • FIG. 1 is a longitudinal sectional view showing a first embodiment of an electromagnetic wave shielding film of the present invention.
  • FIG. 2 is a longitudinal sectional view for explaining a method of coating an electronic component using the electromagnetic wave shielding film shown in FIG.
  • FIG. 3 is a longitudinal sectional view showing a fourth embodiment of the electromagnetic wave shielding film of the present invention.
  • FIG. 4 is a longitudinal sectional view showing a fifth embodiment of the electromagnetic wave shielding film of the present invention.
  • FIG. 5 is a longitudinal sectional view showing a sixth embodiment of the electromagnetic wave shielding film of the present invention.
  • FIG. 6 is a longitudinal sectional view showing a seventh embodiment of the electromagnetic wave shielding film of the present invention.
  • FIG. 7 is a longitudinal sectional view showing an eighth embodiment of the electromagnetic wave shielding film of the present invention.
  • FIG. 8 is a longitudinal sectional view showing a ninth embodiment of the electromagnetic wave shielding film of the present invention.
  • FIG. 9 is a longitudinal sectional view showing a tenth embodiment of the electromagnetic wave shielding film of the present invention.
  • FIG. 10 is a longitudinal sectional view showing an eleventh embodiment of the electromagnetic wave shielding film of the present invention.
  • FIG. 11 is a longitudinal sectional view showing a twelfth embodiment of the electromagnetic wave shielding film of the present invention.
  • FIG. 12 is a longitudinal sectional view showing a thirteenth embodiment of the electromagnetic wave shielding film of the present invention.
  • FIG. 13 is a longitudinal cross-sectional view which shows 14th Embodiment of the film for electromagnetic wave shields of this invention.
  • the electromagnetic wave shielding film of the present invention includes a base material layer and an electromagnetic wave shielding layer laminated on the base material layer, and the electromagnetic wave shielding layer is a material containing at least one of a conductive material and a magnetic absorption material.
  • the surface resistance value is 1 ⁇ 10 ⁇ 3 ⁇ / ⁇ or more and 1 ⁇ 10 6 ⁇ / ⁇ or less.
  • the electromagnetic wave shielding layer can be reduced in weight and thickness, and can effectively block electromagnetic waves in a high frequency band as in the GHz order.
  • the electromagnetic wave shielding film of the present invention has a light transmittance of 0.01% or more and 30% or less at a wavelength of 300 nm or more and 800 nm or less.
  • the electromagnetic shielding film absorbs and blocks light to cover the inside, that is, the electronic component covered with the electromagnetic wave shielding layer. Can be made invisible. Thereby, the secrecy of the electronic component at the time of distribution of the electronic component mounting substrate covered with the electromagnetic wave shielding layer can be ensured, for example.
  • FIG. 1 is a longitudinal sectional view showing a first embodiment of an electromagnetic wave shielding film of the present invention.
  • the upper side in FIG. 1 is referred to as “upper” and the lower side is referred to as “lower”.
  • the electromagnetic wave shielding film 100 is composed of a base material layer 1, an insulating layer 2, and an electromagnetic wave shielding layer 3.
  • the insulating layer 2 and the electromagnetic wave shielding layer 3 are laminated in this order with the insulating layer 2 coming into contact with the base material layer 1 from the lower surface (one surface) side of the base material layer 1. ing.
  • the base material layer 1 includes a first layer 11, a second layer 13, and a third layer 12, which are arranged in this order from the upper surface (the other surface) side of the base material layer 1. Are stacked.
  • the unevenness 6 includes a convex portion 61 and a concave portion 62 that are formed on the substrate 5 by mounting the electronic component 4.
  • Examples of the electronic component 4 mounted on the substrate 5 include an LCD driver IC mounted on a flexible circuit board (FPC), an IC + capacitor around the touch panel, or an electronic circuit board (motherboard).
  • the insulating layer 2 and the electromagnetic wave shielding layer 3 are pressed (embedded) into the unevenness 6.
  • it functions as a base material for improving the shape followability of the insulating layer 2 and the electromagnetic wave shielding layer 3 with respect to the irregularities 6.
  • the insulating layer 2 and the electromagnetic wave shielding layer 3 are pressed into the concavo-convex 6 and peeled from these.
  • the storage elastic modulus at 150 ° C. of the base material layer 1 is preferably 2.0E + 05 to 2.0E + 08 Pa, more preferably 1.0E + 06 to 1.0E + 08 Pa, and 3.0E + 06 to 6.0E + 07 Pa. More preferably.
  • the base material layer 1 functions as a base material for improving the shape followability of the insulating layer 2 and the electromagnetic wave shielding layer 3 with respect to the unevenness 6.
  • the insulating layer 2 and the electromagnetic wave shielding are covered when the unevenness 6 on the substrate 5 is covered with the electromagnetic wave shielding film 100.
  • the layer 3 can be reliably pushed in a state corresponding to the shape of the irregularities 6.
  • the electromagnetic wave shielding (blocking) property to the substrate 5 provided with the unevenness 6 by the electromagnetic wave shielding layer 3 is provided. Will be improved.
  • the step of the concavo-convex 6 provided on the substrate 5 is 500 ⁇ m or more, particularly 1.0 to 3.0 mm.
  • the insulating layer 2 and the electromagnetic wave can be used even when the distance is large or when the distance (pitch) between the adjacent convex portions 61 in the unevenness 6 is 200 ⁇ m or less, and particularly when the distance is small so as to be 100 ⁇ m to 150 ⁇ m.
  • the blocking layer 3 can be reliably pushed in a state corresponding to the shape of the irregularities 6.
  • the base material layer 1 preferably has a storage elastic modulus at 25 ° C. of 1.0E + 07 to 1.0E + 10 Pa, and more preferably 5.0E + 08 to 5.0E + 09 Pa.
  • room temperature room temperature
  • the base material layer 1 is made solid rather than liquid
  • the base material layer 1 can be made semi-solid (gel). Therefore, when the base material layer 1 (electromagnetic wave shielding film 100) is attached to the substrate 5, the base material layer 1 can be attached to the substrate 5 without causing wrinkles or the like.
  • regulation size improves. Furthermore, when the substrate 5 is pushed into the unevenness 6, the insulating layer 2 and the electromagnetic wave blocking layer 3 can be reliably pushed into the recess 62 of the unevenness 6 with the base material layer 1.
  • the base material layer 1 having such storage elastic modulus characteristics is such that at least the first layer 11 and the third layer 12 are made of a thermoplastic resin, and even after the heating of the electromagnetic wave shielding film 100 in the attaching step, The storage elastic modulus at 25 ° C. is preferably maintained within the above range. Thereby, the base material layer 1 can be easily peeled from the insulating layer 2 in the peeling step.
  • the storage elastic modulus at 120 ° C. of the base material layer 1 is A [Pa] and the storage elastic modulus at 150 ° C. of the base material layer 1 is B [Pa], 0.02 ⁇ A / B ⁇ 1. It is preferable to satisfy the relationship of 00, and it is more preferable to satisfy the relationship of 0.02 ⁇ A / B ⁇ 0.50. It can be said that the base material layer 1 satisfying such a relationship has a small range of change in the storage elastic modulus of the base material layer 1 due to the temperature change during the heating. Therefore, even if the temperature condition at the time of heating is changed, the range of change in the storage elastic modulus of the base material layer 1 due to this temperature change can be kept to the minimum necessary.
  • the base material layer 1 can reliably push the layer 3 into the concave portion 62 of the concave-convex portion 6.
  • the storage elastic modulus in 25 degreeC, 120 degreeC, and 150 degreeC of each layer is the storage elastic modulus of each layer which should be measured, for example using a dynamic viscoelasticity measuring apparatus (the Seiko Instruments company make, "DMS6100"). Is measured at a heating rate of 5 ° C./min and a frequency of 1 Hz in a tensile mode with a constant load of 49 mN from 25 to 200 ° C., and the storage elastic modulus at 25 ° C., 120 ° C. and 150 ° C. is obtained by reading each. be able to.
  • a dynamic viscoelasticity measuring apparatus the Seiko Instruments company make, "DMS6100"
  • the base material layer 1 includes a first layer 11, a second layer 13, and a third layer 12, which are from the upper surface (the other surface) side of the base material layer 1. These are stacked in this order. As described above, the types, thicknesses, and the like of these layers 11 to 13 are appropriately combined so that the insulating layer 2 and the electromagnetic wave shielding layer 3 can be pushed in corresponding to the shape of the unevenness 6.
  • the first layer 11 is a pressing force possessed by a vacuum pressure laminator or the like when the insulating layer 2 and the electromagnetic wave shielding layer 3 are pushed into the unevenness 6 on the substrate 5 using, for example, a vacuum pressure laminator or the like in the pasting step. It has a function of imparting releasability to the part. Further, the pressing force from the pressing portion is propagated to the second layer 13 side.
  • the constituent material of the first layer (first release layer) 11 is not particularly limited.
  • a resin such as syndiotactic polystyrene, polymethylpentene, polybutylene terephthalate, polypropylene, cyclic olefin polymer, and silicone. Materials. Among these, it is preferable to use syndiotactic polystyrene.
  • syndiotactic polystyrene by using syndiotactic polystyrene having a syndiotactic structure as polystyrene, since polystyrene has crystallinity, due to this, releasability from the device of the first layer 11, Can improve heat resistance and shape followability.
  • the content thereof is not particularly limited, but is preferably 60% by weight or more, more preferably 70% by weight or more and 95% by weight or less. 80% by weight or more and 90% by weight or less is more preferable.
  • content of syndiotactic polystyrene is less than the said lower limit, there exists a possibility that the releasability of the 1st layer 11 may fall.
  • content of syndiotactic polystyrene exceeds the said upper limit, there exists a possibility that the shape followability of the 1st layer 11 may become insufficient.
  • the first layer 11 may be composed of only syndiotactic polystyrene.
  • the first layer 11 may further contain a styrene elastomer, polyethylene, polypropylene, or the like in addition to the syndiotactic polystyrene.
  • the thickness T (A) of the first layer 11 is not particularly limited, but is preferably 5 ⁇ m or more and 100 ⁇ m or less, more preferably 10 ⁇ m or more and 70 ⁇ m or less, and 20 ⁇ m or more and 50 ⁇ m or less. Further preferred. When the thickness of the 1st layer 11 is less than the said lower limit, the 1st layer 11 may fracture
  • the average linear expansion coefficient of the first layer 11 at 25 to 150 ° C. is preferably 50 to 1000 [ppm / ° C.], more preferably 100 to 700 [ppm / ° C.].
  • the first layer 11 has excellent stretchability when the electromagnetic wave shielding film 100 is heated.
  • the shape followability with respect to the unevenness 6 of the insulating layer 2 can be improved more reliably.
  • the average coefficient of linear expansion of each layer is, for example, a storage elastic modulus of 49 mN up to 25 to 200 ° C. using a thermomechanical analyzer (manufactured by Seiko Instruments Inc., “TMASS6100”).
  • the average linear expansion coefficient at 25 ° C. to 150 ° C. can be obtained by measuring at a heating rate of 5 ° C./min in a constant load tension mode.
  • the surface tension of the first layer 11 is preferably 20 to 40 [mN / m], and more preferably 25 to 35 [mN / m].
  • the first layer 11 having a surface tension within such a range can be said to have excellent releasability, and the first layer 11 is peeled from the pressing portion after being pressed using a vacuum pressure laminator or the like. be able to.
  • the third layer 12 is formed by pressing the insulating layer 2 and the electromagnetic wave shielding layer 3 against the unevenness 6 on the substrate 5 using a vacuum pressure laminator or the like in the attaching step, and then in the peeling step.
  • the third layer 12 has a follow-up function according to the concavo-convex shape on the substrate 5 and also has a function of propagating the pressing force from the pressing portion on the insulating layer 2 side.
  • the constituent material of the third layer (second release layer) 12 is not particularly limited.
  • syndiotactic polystyrene polymethylpentene, polybutylene terephthalate, polypropylene, cyclic olefin polymer, resin such as silicone Materials.
  • syndiotactic polystyrene having a syndiotactic structure as polystyrene
  • polystyrene has crystallinity, and as a result, releasability of the third layer 12 from the insulating layer 2 is eliminated. Furthermore, heat resistance and shape followability can be improved.
  • the content of the syndiotactic polystyrene in the third layer 12 is not particularly limited and may be composed only of syndiotactic polystyrene, but is preferably 60% by weight or more, and 70% by weight or more. 95% by weight or less, more preferably 80% by weight or more and 90% by weight or less.
  • content of syndiotactic polystyrene is less than the said lower limit, there exists a possibility that the mold release property of the 3rd layer 12 may fall.
  • content of a syndiotactic polystyrene exceeds the said upper limit, there exists a possibility that the shape followability of the 3rd layer 12 may become insufficient.
  • the third layer 12 may further contain a styrenic elastomer, polyethylene, polypropylene, or the like in addition to the syndiotactic polystyrene. Further, the resin constituting the third layer 12 and the first layer 11 may be the same or different.
  • the thickness T (B) of the third layer 12 is not particularly limited, but is preferably 5 ⁇ m or more and 100 ⁇ m or less, more preferably 10 ⁇ m or more and 70 ⁇ m or less, and 20 ⁇ m or more and 50 ⁇ m or less. Further preferred. When the thickness of the third layer 12 is less than the lower limit, the heat resistance is insufficient, the heat resistance of the base material layer is insufficient in the thermocompression bonding process, deformation occurs, and the electromagnetic wave shielding layer and the insulating layer are deformed. There is a fear.
  • the thickness of the 3rd layer 12 exceeds the said upper limit, the total thickness of the whole film for electromagnetic wave shielding becomes thick, there exists a possibility that workability
  • the thicknesses of the third layer 12 and the first layer 11 may be the same or different.
  • the average linear expansion coefficient of the third layer 12 at 25 to 150 ° C. is preferably 50 to 1000 [ppm / ° C.], and more preferably 100 to 700 [ppm / ° C.].
  • the third layer 12 has excellent stretchability when the electromagnetic wave shielding film 100 is heated. Furthermore, the shape followability of the electromagnetic wave shielding layer 3 and the insulating layer 2 with respect to the irregularities 6 can be improved more reliably.
  • the surface tension of the third layer 12 is preferably 20 to 40 [mN / m], and more preferably 25 to 35 [mN / m].
  • the third layer 12 having a surface tension within such a range can be said to have excellent releasability, and the base material layer 1 is peeled off from the insulating layer 2 after being pushed in using a vacuum pressure laminator or the like. At this time, the base material layer 1 can be reliably peeled off at the interface between the third layer 12 and the insulating layer 2.
  • the second layer 13 is a third layer when the insulating layer 2 and the electromagnetic wave shielding layer 3 are pressed into the unevenness 6 on the substrate 5 using the base material layer 1 as a pressing base material in the attaching step.
  • 12 has a cushioning function for pushing (embedding) 12 into the irregularities 6.
  • the second layer 13 has a function of causing the pushing force to uniformly act on the third layer 12 and further on the insulating layer 2 and the electromagnetic wave shielding layer 3 via the third layer 12.
  • the insulating layer 2 and the electromagnetic wave shielding layer 3 can be pushed into the irregularities 6 with excellent sealing properties without generating voids between the electromagnetic wave shielding layer 3 and the irregularities 6.
  • an ⁇ -olefin polymer such as polyethylene or polypropylene, ethylene, propylene, butene, pentene, hexene, methylpentene, or the like is included as a copolymer component.
  • Engineering plastics resins such as ⁇ -olefin copolymer, polyethersulfone, polyphenylene sulfide and the like may be used, and these may be used alone or in combination. Among these, it is preferable to use an ⁇ -olefin copolymer.
  • a copolymer of ⁇ -olefin such as ethylene and (meth) acrylic acid ester, a copolymer of ethylene and vinyl acetate, a copolymer of ethylene and (meth) acrylic acid (EMMA), And a partial ion cross-linked product thereof. Since the ⁇ -olefin copolymer is excellent in shape followability and further excellent in flexibility as compared with the constituent material of the third layer 12, the second layer 13 made of the constituent material has the The cushion function for pushing (embedding) the third layer 12 into the unevenness 6 can be surely provided.
  • the thickness T (C) of the second layer 13 is not particularly limited, but is preferably 10 ⁇ m or more and 100 ⁇ m or less, more preferably 20 ⁇ m or more and 80 ⁇ m or less, and more preferably 30 ⁇ m or more and 60 ⁇ m or less. Further preferred. When the thickness of the second layer 13 is less than the lower limit value, the shape followability of the second layer 13 is insufficient, and the followability to the unevenness 6 may be insufficient in the thermocompression bonding step. Further, when the thickness of the second layer 13 exceeds the upper limit value, the resin from the second layer 13 is increased in the thermocompression bonding process, and adheres to the hot platen of the crimping apparatus, thereby reducing workability. There is a risk.
  • the average linear expansion coefficient at 25 to 150 ° C. of the second layer 13 is preferably 500 or more [ppm / ° C.], more preferably 1000 or more [ppm / ° C.].
  • the second layer 13 can be expanded and contracted more excellently than the third layer 12 when the electromagnetic wave shielding film 100 is heated. Can be easily made into a layer having a property. Therefore, the shape followability of the second layer 13 and the electromagnetic wave shielding layer 3 and the insulating layer 2 with respect to the irregularities 6 can be improved more reliably.
  • the storage modulus at 150 ° C. of the base material layer 1 can be easily within the range of 2.0E + 05 to 2.0E + 08 Pa by appropriately setting the average linear expansion coefficient of each layer 11 to 13 within the above-mentioned range. Can be set to
  • T (A) + T (B)) is not particularly limited, but for example, it is preferable that the following condition is satisfied. That is, the value of T (C) / (T (A) + T (B)) is preferably larger than 0.05 and smaller than 10, more preferably larger than 0.14 and smaller than 4. Preferably, it is larger than 0.3 and smaller than 1.5.
  • T (C) / (T (A) + T (B)) is within the above range, the shape followability is further improved.
  • the total thickness T (F) of the base material layer 1 is not particularly limited, but is preferably 20 ⁇ m or more and 300 ⁇ m or less, more preferably 40 ⁇ m or more and 220 ⁇ m or less, and 70 ⁇ m or more and 160 ⁇ m or less. Is more preferable.
  • the 1st layer 11 may fracture
  • the whole thickness of the base material layer 1 exceeds the said upper limit, there exists a possibility that the shape followability of the base material layer 1 may fall and the shape followability of the electromagnetic wave shielding layer 3 and the insulating layer 2 may fall.
  • the insulating layer 2 is provided in contact with the base material layer 1 (third layer 12), and the insulating layer 2 and the electromagnetic wave shielding layer 3 are laminated in this order from the base material layer 1 side.
  • the electromagnetic wave shielding layer 3 comes into contact with the substrate 5 and the electronic component 4 by covering the unevenness 6 on the substrate 5 with the electromagnetic wave shielding film 100 including the insulating layer 2 and the electromagnetic wave shielding layer 3 laminated in this manner.
  • the electromagnetic wave shielding layer 3 and the insulating layer 2 are coated in this order from the substrate 5 side.
  • the insulating layer 2 covers the substrate 5 and the electronic component 4 via the electromagnetic wave shielding layer 3, whereby the substrate 5, the electronic component 4 and the electromagnetic wave shielding layer 3 are covered with the insulating layer. 2 to insulate from other members (such as electronic components) located on the opposite side of the substrate 5.
  • the insulating layer 2 examples include a thermosetting insulating resin or a thermoplastic insulating resin (insulating film). Among these, it is preferable to use an insulating resin having thermoplasticity. Since the insulating resin having thermoplasticity is a film having excellent flexibility, the insulating layer 2 and the electromagnetic waves are formed on the unevenness 6 on the substrate 5 by using the base material layer 1 as a pressing base material in the attaching step. When the blocking layer 3 is pushed in, the insulating layer 2 can be made to reliably follow the shape of the irregularities 6. In addition, an insulating resin having thermoplasticity is particularly useful when repairing a substrate because it can be re-peeled from the substrate to be bonded when heated to its softening point temperature.
  • thermoplastic polyester examples include thermoplastic polyester, ⁇ -olefin, vinyl acetate, polyvinyl acetal, ethylene vinyl acetate, vinyl chloride, acrylic, polyamide, and cellulose.
  • thermoplastic polyesters and ⁇ -olefins because they have excellent adhesion to the substrate, flexibility and chemical resistance.
  • the insulating resin having thermoplasticity is a phenolic resin, a silicone resin, a urea resin, an acrylic resin, a polyester resin, a polyamide resin, as long as the performance such as heat resistance and flex resistance is not impaired.
  • a polyimide resin or the like can be contained.
  • a silane coupling agent, an antioxidant, a pigment, a dye as long as the adhesiveness and solder reflow resistance are not deteriorated. You may add tackifying resin, a plasticizer, a ultraviolet absorber, an antifoamer, a leveling regulator, a filler, a flame retardant, etc.
  • the thickness T (D) of the insulating layer 2 is not particularly limited, but is preferably 3 ⁇ m or more and 50 ⁇ m or less, more preferably 4 ⁇ m or more and 30 ⁇ m or less, and further preferably 5 ⁇ m or more and 20 ⁇ m or less. .
  • the thickness of the insulating layer 2 is less than the lower limit value, the resistance to goby folds is insufficient, cracks are generated at the bent portions after thermocompression bonding to the projections and depressions 6, the film strength decreases, and the conductive adhesive layer It is difficult to play a role as an insulating support. If the upper limit is exceeded, shape followability may be insufficient.
  • the flexibility of the insulating layer 2 is further improved.
  • the insulating layer 2 is It can be made to follow more reliably corresponding to a shape.
  • the average linear expansion coefficient at 25 to 150 ° C. of the insulating layer 2 is preferably 50 to 1000 [ppm / ° C.], more preferably 100 to 700 [ppm / ° C.].
  • this insulating layer 2 may be comprised by 1 layer, as shown in FIG. 1, 2, and the laminated body of two or more layers which laminated
  • Electromagnetic wave blocking layer 3 Next, the electromagnetic wave blocking layer (blocking layer) 3 will be described.
  • the electromagnetic wave shielding layer 3 includes an electronic component 4 provided on the substrate 5, and other electronic components located on the opposite side of the substrate 5 (electronic component 4) via the electromagnetic wave shielding layer 3. It has a function of shielding (shielding) electromagnetic waves generated from one side.
  • an electromagnetic wave blocking layer that functions to block electromagnetic waves includes a reflection layer that blocks (shields) electromagnetic waves incident on the electromagnetic wave blocking layer, and electromagnetic waves incident on the electromagnetic wave blocking layer. Absorbing layers that are blocked (shielded) by absorption are known.
  • the reflective layer reflects incident electromagnetic waves, and the reflected electromagnetic waves adversely affect other members that are not covered with the electromagnetic wave shielding layer.
  • the electromagnetic wave incident on the absorption layer is absorbed and blocked by converting it into thermal energy, and the electromagnetic wave is extinguished by this absorption. Therefore, when the reflective layer and the absorbing layer have substantially the same electromagnetic wave shielding properties, the electromagnetic wave blocking layer is an absorbing layer from the viewpoint that the above-described adverse effects in the reflective layer can be surely prevented. It is preferable to configure.
  • the present inventor paid attention to an electromagnetic wave shielding layer containing a conductive material or a magnetic absorbing material known as an electromagnetic wave shielding layer that shields electromagnetic waves, and as a result of earnest studies on such an electromagnetic wave shielding layer, the conductive material or magnetic material was obtained. It has been found that the surface resistance value of the electromagnetic wave shielding layer containing the absorbing material is a parameter related to the mechanism by which the electromagnetic wave shielding layer blocks electromagnetic waves.
  • the surface resistance value of the electromagnetic wave blocking layer exhibits the function as a reflective layer that blocks by reflecting the electromagnetic wave, or the function as an absorbing layer that blocks by absorbing the electromagnetic wave. It has been found that this is a parameter that determines whether the electromagnetic wave blocking layer exerts superiority.
  • the present inventor has found that the surface resistance value of the electromagnetic wave shielding layer is too low (for example, less than 1 ⁇ 10 ⁇ 3 ⁇ / ⁇ ), It has been found that the blocking layer exhibits its function as a reflective layer.
  • the surface resistance value of the electromagnetic wave shielding layer is set to 1 ⁇ 10 ⁇ 3 ⁇ / ⁇ or more and 1 ⁇ 10 6 ⁇ / ⁇ or less. It has been found that the function as the reflection layer can be attenuated and the function as the absorption layer can be exhibited accurately. Furthermore, in this case, it has been found that electromagnetic waves can be effectively blocked by absorption of electromagnetic waves up to electromagnetic waves in a high frequency band as in the GHz order.
  • the surface resistance value of the electromagnetic wave shielding layer 3 may be 1 ⁇ 10 ⁇ 3 ⁇ / ⁇ or more and 1 ⁇ 10 6 ⁇ / ⁇ or less, but is 10 ⁇ / ⁇ or more and 5 ⁇ 10 5 ⁇ / ⁇ or less. It is preferably 150 ⁇ / ⁇ or more and more preferably 1 ⁇ 10 4 ⁇ / ⁇ or less. Thereby, even an electromagnetic wave in a higher frequency band can be blocked more effectively.
  • the conductive material and the magnetic absorption material constituting the electromagnetic wave shielding layer 3 are not particularly limited, but examples of the conductive material include conductive polymers, carbon allotropes, metal materials such as silver, and the like. , Soft magnetic metal, ferrite and the like.
  • the conductive polymer is not particularly limited, and examples thereof include polyacetylene, polypyrrole, PEDOT (poly-ethylenedithiophene), PEDOT / PSS (poly-ethylenedithiophene), polythiophene, polyaniline, polyaniline, polyaniline , Polyfluorene, polycarbazole, polysilane, or derivatives thereof, and the like, and one or more of them can be used in combination.
  • PEDOT / PSS or polyaniline is preferable. According to these, when the surface resistance value is set within the above range, even if the electromagnetic wave blocking layer 3 is reduced in weight and thickness, it is more reliably blocked to electromagnetic waves in the high frequency band as in the GHz order. can do.
  • the average value of the particle diameter is preferably 10 nm or more and 100 nm or less, and more preferably 30 nm or more and 80 nm or less.
  • the average value (average particle diameter) of the particle diameter is preferably 0.5 ⁇ m or more and 10 ⁇ m or less, and is 1.0 ⁇ m or more and 5.0 ⁇ m or less. Is more preferable.
  • the electromagnetic wave shielding layer 3 containing a conductive polymer as a main material may be a single layer composed of a conductive polymer, but a mixed layer containing other materials in addition to the conductive polymer. It may be.
  • Other materials are not particularly limited, and examples thereof include sensitizers, m-cresol, ethylene glycol and the like.
  • the content of the conductive polymer in the electromagnetic wave shielding layer 3 is preferably 50 wt% or more and 100 wt% or less, and is 80 wt% or more and 100 wt% or less. Is more preferable.
  • carbon allotropes include carbon nanotubes such as single-walled carbon nanotubes and multi-walled carbon nanotubes, carbon nanofibers, CN nanotubes, CN nanofibers, BCN nanotubes, BCN nanofibers, graphene, carbon microcoils, and carbon nanofibers.
  • carbon nanotubes such as single-walled carbon nanotubes and multi-walled carbon nanotubes
  • carbon nanofibers such as single-walled carbon nanotubes and multi-walled carbon nanotubes
  • carbon nanofibers such as single-walled carbon nanotubes and multi-walled carbon nanotubes
  • carbon nanofibers such as single-walled carbon nanotubes and multi-walled carbon nanotubes
  • carbon nanofibers such as single-walled carbon nanotubes and multi-walled carbon nanotubes
  • carbon nanofibers such as single-walled carbon nanotubes and multi-walled carbon nanotubes
  • carbon nanofibers such as single-walled carbon nanotubes and multi-walled carbon nanotubes
  • the electromagnetic wave shielding layer 3 may be a single layer composed of a carbon allotrope, or a mixed layer composed of a carbon allotrope and a resin material. Is preferred. Thereby, the shape stability of the electromagnetic wave shielding layer 3 can be improved.
  • the content of the carbon allotrope in the electromagnetic wave shielding layer 3 is preferably 5 wt% or more and 30 wt% or less, and is preferably 10 wt% or more and 20 wt% or less. More preferred.
  • examples of the magnetic absorption material include iron, silicon steel, magnetic stainless steel (Fe—Cr—Al—Si alloy), sendust (Fe—Si—Al alloy), permalloy (Fe—Ni alloy), silicon copper (Fe -Cu-Si alloy), Fe-Si alloy, soft magnetic metal such as Fe-Si-B (-Cu-Nb) alloy, ferrite and the like.
  • the thickness T of the electromagnetic wave shielding layer 3 is not particularly limited, but is preferably 1 ⁇ m or more and 100 ⁇ m or less, more preferably 2 ⁇ m or more and 80 ⁇ m or less, and further preferably 3 ⁇ m or more and 50 ⁇ m or less.
  • the thickness of the electromagnetic wave shielding layer 3 is less than the lower limit value, depending on the constituent material of the electromagnetic wave shielding layer 3, there is a possibility of breaking at the end portion of the board mounted component.
  • the thickness of the electromagnetic wave shielding layer 3 exceeds the upper limit, the shape following property may be insufficient depending on the constituent material of the electromagnetic wave shielding layer 3 or the like.
  • the electromagnetic wave blocking layer 3 can be made thin with the thickness T. As a result, the weight reduction of the electronic component mounting substrate in which the electronic component 4 covered with the insulating layer 2 and the electromagnetic wave shielding layer 3 is mounted on the substrate 5 can be realized.
  • the electromagnetic wave shielding layer 3 as described above has an electromagnetic wave shielding property (absorbability) of 3 dB or more for shielding (shielding) an electromagnetic wave at a frequency of 0.2 to 1 GHz measured using a microstrip line method (MSL method).
  • MSL method microstrip line method
  • the electromagnetic wave shielding property at a frequency of 2 to 3 GHz is preferably 5 dB or more, more preferably 10 dB or more, and further preferably 20 dB or more.
  • the electromagnetic wave shielding property for blocking electromagnetic waves is measured as a value representing the absorbability (absorbing ability) blocking mainly by absorbing electromagnetic waves from the characteristics of the measurement method described below.
  • the electromagnetic wave shielding layer 3 having the electromagnetic wave shielding property (absorbing property) within the above range exhibits excellent electromagnetic wave shielding property by shielding (shielding) by absorbing the electromagnetic wave incident on the electromagnetic wave shielding layer 3. It can be said that the electromagnetic wave blocking layer (absorbing layer) 3 is capable of blocking even high frequency electromagnetic waves as in the GHz order.
  • the measurement using the MSL method is, for example, measuring the reflection component S 11 and the transmission component S 21 using a microstrip line having an impedance of 50 ⁇ and a network analyzer in accordance with IEC standard 62333-2.
  • the electromagnetic wave shielding property (absorbability) can be obtained by using the following formula (1) and the following formula (2).
  • Loss rate (P (loss) / P (in)) 1 ⁇ (S 11 2 + S 21 2 ) / 1 (1)
  • Electromagnetic shielding (transmission attenuation factor) -10 ⁇ log [10 ⁇ (S 21/10) / ⁇ 1-10 ⁇ (S 11/10) ⁇ ] (2)
  • the electromagnetic wave shielding layer 3 has an electromagnetic wave shielding property (absorbency + reflectivity) for shielding (shielding) electromagnetic waves at a frequency of 0.2 to 1 GHz measured using the KEC method developed at the Kansai Electronics Industry Promotion Center. It is preferably 10 dB or more, more preferably 15 dB or more, and even more preferably 20 dB or more.
  • the electromagnetic wave shielding property for blocking electromagnetic waves is based on the characteristics of the measuring method described below, and absorbs (absorbs) the light by absorbing the electromagnetic wave and reflects by blocking the electromagnetic wave. It is measured as a value obtained by adding the property (reflectivity).
  • the electromagnetic wave shielding property (absorbing property) measured using the MSL method is within the above range
  • the electromagnetic wave shielding property (absorbing property + reflecting property) measured using the KEC method is within the above range.
  • the electromagnetic wave shielding layer 3 exhibits excellent electromagnetic shielding properties by absorbing and reflecting the electromagnetic wave incident on the electromagnetic wave shielding layer 3 and blocking (shielding) it. Even electromagnetic waves can be reliably blocked.
  • the KEC method is a method for evaluating the shielding effect of electromagnetic waves generated in the near field separately for electric and magnetic fields.
  • the electromagnetic wave transmitted from the transmission antenna (transmission jig) is transmitted to the reception antenna (reception jig) via the electromagnetic wave blocking layer 3 (measurement sample) in the form of a sheet.
  • an electromagnetic wave that has passed (transmitted) through the electromagnetic wave blocking layer 3 is measured at the receiving antenna. That is, how much the transmitted electromagnetic wave (signal) is attenuated on the receiving antenna side by the electromagnetic wave shielding layer 3 is measured. Therefore, the electromagnetic wave shielding property for shielding (shielding) the electromagnetic wave is a reflection property for reflecting the electromagnetic wave. It is obtained in a state where both the absorption of electromagnetic waves and the absorption are combined.
  • the electromagnetic wave shielding layer 3 preferably has a storage elastic modulus at 150 ° C. of 1.0E + 05 to 1.0E + 09 Pa, and more preferably 5.0E + 05 to 5.0E + 08 Pa.
  • the storage elastic modulus within such a range, in the pasting step, after heating the electromagnetic wave shielding film 100, the insulating layer 2 and the electromagnetic wave are formed on the unevenness 6 on the substrate 5 by pressing force from the base material layer 1.
  • the electromagnetic wave blocking layer 3 can be deformed corresponding to the shape of the unevenness 6 according to the pressing force from the base material layer 1 when covering the unevenness 6. That is, the shape followability of the electromagnetic wave shielding layer 3 with respect to the unevenness 6 can be improved.
  • the electromagnetic wave shielding film 100 of the present invention has a light transmittance of 0.01% or more and 30% or less at a wavelength of 300 nm or more and 800 nm or less.
  • the electromagnetic wave shielding film 100 is covered with the electromagnetic wave shielding layer 3 by absorbing and blocking light.
  • the inside, that is, the electronic component 4 can be made invisible. Thereby, the secrecy of the electronic component 4 at the time of the distribution
  • the light transmittance of the electromagnetic wave shielding film 100 at a wavelength of 300 nm or more and 800 nm or less is 0.01% or more and 30% or less, more preferably 0.01% or more and 10% or less.
  • covered with the electromagnetic wave shielding layer 3 can be ensured more reliably.
  • the said light transmittance can be calculated
  • the electromagnetic wave shielding film 100 follows the shape when thermocompression bonding is performed on the unevenness 6 formed by mounting the electronic component 4 on the substrate 5 at a temperature of 150 ° C., a pressure of 2 MPa, and a time of 5 minutes.
  • the property is preferably 500 ⁇ m or more, more preferably 800 ⁇ m or more, and further preferably 1000 ⁇ m or more. That is, it is preferable that the unevenness 6 having a height of 500 ⁇ m or more, which is the difference in height between the upper surface of the protrusion 61 and the upper surface of the recess 62, can be covered with the electromagnetic wave shielding film 100.
  • the electromagnetic wave shielding film 100 that can be covered even with the unevenness 6 having a high height (a large level difference) has excellent shape followability, and by the insulating layer 2 and the electromagnetic wave shielding layer 3, The unevenness 6 can be coated with an excellent filling rate.
  • the shape following property can be obtained as follows. That is, first, a printed wiring board (motherboard) having a length of 100 mm, a width of 100 mm, and a height (thickness) of 2 mm is formed in a grid pattern having a width of 0.2 mm and each necessary step at intervals of 0.2 mm. Get a printed wiring board. Then, the film for electromagnetic wave shielding is pressure-bonded to the printed wiring board under a condition of 150 ° C. ⁇ 2 MPa ⁇ 5 minutes using a vacuum pressurizing laminator, and attached to the printed wiring board.
  • the base material layer is peeled off from the electromagnetic wave shielding film, and it is determined whether or not there is a gap between the blocking layer and insulating layer stuck on the printed wiring board and the groove on the printed wiring board. In addition, it is evaluated by observing with a microscope or a microscope whether there exists a space
  • the electronic component coating method includes an attaching step of attaching the electromagnetic wave shielding film to the unevenness on the substrate so that the electromagnetic wave shielding layer or the insulating layer and the electronic component adhere to each other, and the attaching step And a peeling step of peeling the base material layer.
  • FIG. 2 is a longitudinal sectional view for explaining a method of coating an electronic component using the electromagnetic wave shielding film shown in FIG.
  • the affixing step is a step of affixing the electromagnetic wave shielding film 100 to the unevenness 6 provided on the substrate 5, for example, as shown in FIG.
  • the method for attaching is not particularly limited, and examples thereof include vacuum / pressure forming.
  • the vacuum / pressure forming is a method in which the unevenness 6 on the substrate 5 is covered with the electromagnetic wave shielding film 100 using, for example, a vacuum pressurizing laminator.
  • a vacuum pressurizing laminator In such a method, first, in a closed space obtained as a vacuum atmosphere, the surface on the side where the unevenness 6 of the substrate 5 is formed and the surface on the insulating layer 2 side of the electromagnetic wave shielding film 100 are opposed to each other. The substrate 5 and the electromagnetic wave shielding film 100 are set in an overlapped state. Thereafter, under heating, the closed space is placed in a vacuum atmosphere and then pressurized so that the electromagnetic wave shielding film 100 and the substrate 5 approach each other uniformly from the electromagnetic wave shielding film 100 side. .
  • the base material layer 1 since the base material layer 1 has the above-described configuration, the base material layer 1 exhibits excellent shape followability with respect to the unevenness 6 when heated in vacuum / pressure forming.
  • the base layer 1 is deformed in accordance with the shape of the irregularities 6 by uniformly pressing from the electromagnetic wave shielding film 100 side while making the closed space under a vacuum atmosphere.
  • the insulating layer 2 and the electromagnetic wave shielding layer 3 located closer to the substrate 5 than the base material layer 1 are deformed corresponding to the shape of the irregularities 6.
  • the unevenness 6 is covered with the insulating layer 2 and the electromagnetic wave shielding layer 3 in a state where the insulating layer 2 and the electromagnetic wave shielding layer 3 are pushed into the substrate 5 side corresponding to the shape of the unevenness 6.
  • the temperature for pasting is not particularly limited, but is preferably 100 ° C. or higher and 200 ° C. or lower, and more preferably 120 ° C. or higher and 180 ° C. or lower.
  • the pressure to be applied is not particularly limited, but is preferably 0.5 MPa or more and 5.0 MPa or less, and more preferably 1.0 MPa or more and 3.0 MPa or less.
  • the sticking time is not particularly limited, but is preferably 1 minute or more and 30 minutes or less, and more preferably 5 minutes or more and 15 minutes or less.
  • the insulating layer 2 and the electromagnetic wave shielding layer 3 are pushed into the concave and convex portions 6 on the substrate 5, and the concave and convex portions 6 are formed by the insulating layer 2 and the electromagnetic wave shielding layer 3. It can be reliably coated.
  • the said peeling process is a process of peeling the base material layer 1 from the film 100 for electromagnetic wave shields after the said sticking process, for example, as shown in FIG.2 (b).
  • the peeling process causes peeling at the interface between the base material layer 1 and the insulating layer 2 in the electromagnetic wave shielding film 100, and as a result, the base material layer 1 is peeled from the insulating layer 2. Thereby, the unevenness 6 is covered with the insulating layer 2 and the electromagnetic wave shielding layer 3 in a state where the base material layer 1 is peeled from the insulating layer 2.
  • the shape of the electromagnetic wave shielding film 100 to be applied corresponds,
  • the unevenness 6 can be covered with the insulating layer 2 and the electromagnetic wave shielding layer 3. Therefore, the unevenness 6 to be covered can be selectively covered with the insulating layer 2 and the electromagnetic wave shielding layer 3 by appropriately setting the shape of the electromagnetic wave shielding film 100 corresponding to the shape of the unevenness 6 to be covered. . That is, the electromagnetic wave can be selectively shielded from the unevenness 6 by the insulating layer 2 and the electromagnetic wave shielding layer 3.
  • the method for peeling the base material layer 1 is not particularly limited. However, when the electromagnetic wave shielding film 100 after the vacuum pressure forming (the pasting step) is in a high temperature state, the base material layer 1 is stretched and resin Since the remainder etc. generate
  • the base material layer 1 is gripped, the base material layer 1 is peeled off from the insulating layer 2 from the gripped end portion, and then the central portion is cut from the end portion. Further, the base material layer 1 is peeled from the insulating layer 2 by sequentially peeling the base material layer 1 to the other end.
  • the peeling temperature is preferably 180 ° C. or lower, more preferably 150 ° C. or lower, and further preferably 100 ° C. or lower.
  • the base material layer 1 first layer 11, second layer 13, third layer 12
  • insulating layer 2 electromagnetic wave shielding layer from the upper surface side.
  • the layer structure of the electromagnetic wave shielding film 100 may be, for example, the electromagnetic wave shielding film 100 having a layer structure as described in the fourth to seventh embodiments as described later.
  • the electromagnetic wave shielding film 100 of the present embodiment is the electromagnetic wave of the first embodiment described above, except that the imaginary part ( ⁇ ′′) of the complex dielectric constant ( ⁇ ) at a frequency of 1 GHz of the electromagnetic wave shielding layer 3 is 30 or more. This is the same as the shielding film 100.
  • the imaginary part ( ⁇ ′′) of the complex dielectric constant ( ⁇ ) in the electromagnetic wave shielding layer is a parameter showing a correlation with the absorption of the electromagnetic wave incident on the absorption layer.
  • the present inventor has found that the imaginary part ( ⁇ ′′) of the complex dielectric constant ( ⁇ ) at a frequency of 1 GHz of the electromagnetic wave blocking layer 3. It was found that by setting the value to 30 or more, electromagnetic waves can be more effectively blocked by absorption of electromagnetic waves up to electromagnetic waves in the high frequency band as in the GHz order.
  • the imaginary part ( ⁇ ′′) may be 30 or more, but is preferably 100 or more and 50000 or less, more preferably 200 or more and 40000 or less. Even electromagnetic waves in a high frequency band can be blocked more effectively.
  • the complex dielectric constant ( ⁇ ) of the electromagnetic wave shielding layer 3 has a dielectric loss tangent (tan ⁇ ) of preferably 2 or more and 100 or less, and more preferably 5 or more and 30 or less. Thereby, even an electromagnetic wave in a high frequency band can be blocked more effectively.
  • the electromagnetic wave shielding layer 3 in which the value of tan ⁇ is within the above range is an absorption layer that more reliably absorbs electromagnetic waves in a high frequency band.
  • the complex dielectric constant ( ⁇ ) of the electromagnetic wave shielding layer can be obtained using a cavity resonator method in accordance with, for example, JIS C2526. According to the cavity resonator method, the complex dielectric constant ( ⁇ ) of the electromagnetic wave shielding layer can be measured with excellent accuracy and in a short time.
  • the constituent material of the electromagnetic wave shielding layer 3 is the imaginary part ( ⁇ ′′) of the complex dielectric constant ( ⁇ ) at a frequency of 1 GHz among the materials mentioned as the constituent material of the electromagnetic wave shielding layer 3 of the first embodiment. ) May be any material as long as it is equal to or greater than 30.
  • the constituent material of the electromagnetic wave shielding layer 3 is preferably at least one of a conductive polymer and a carbon allotrope. Even if the film thickness (thickness) is set to be relatively thin, the electromagnetic wave blocking layer 3 is made of a constituent material, so that particularly excellent absorbability is exhibited.
  • the value of the imaginary part ( ⁇ ′′) of the rate ( ⁇ ) can be set within the range. Further, since the particle diameter of the material contained in the layer can be reduced and the amount added can be reduced, the film thickness can be set relatively easily and the weight can be reduced.
  • the conductive polymer As the conductive polymer, the conductive polymer in the first embodiment described above can be used, but polyaniline or PEDOT / PSS is preferable. According to these, the value of the imaginary part ( ⁇ ′′) of the complex dielectric constant ( ⁇ ) at a frequency of 1 GHz of the electromagnetic wave shielding layer 3 can be easily set within the above range.
  • the surface resistance value of the electromagnetic wave shielding layer 3 is preferably 1 ⁇ 10 4 ⁇ / ⁇ or more and 1 ⁇ 10 6 ⁇ / ⁇ or less, preferably 5 ⁇ 10. More preferably, it is 4 ⁇ / ⁇ or more and 5 ⁇ 10 5 ⁇ / ⁇ or less. Thereby, the value of the imaginary part ( ⁇ ′′) can be more easily set within the range.
  • the surface resistance value of the electromagnetic wave shielding layer 3 containing PEDOT / PSS can be adjusted by appropriately setting the weight average molecular weight of PEDOT and PSS, the blending ratio of PEDOT and PSS, and the like.
  • polyaniline when polyaniline is used as the conductive polymer, it is preferable to select polyaniline having a large molecular weight as the polyaniline contained in the electromagnetic wave shielding layer 3. Thereby, the value of the imaginary part ( ⁇ ′′) can be more easily set within the range.
  • the carbon allotrope in the first embodiment described above can be used, but carbon nanotubes (particularly multi-walled carbon nanotubes) are preferable. According to these, the value of the imaginary part ( ⁇ ′′) of the complex dielectric constant ( ⁇ ) at a frequency of 1 GHz of the electromagnetic wave shielding layer 3 can be easily set within the above range.
  • a specific surface area of the multi-walled carbon nanotubes preferably at 20 m 2 / g or more, 200 meters 2 / g or more, more preferably 300 meters 2 / g or less.
  • the electromagnetic wave shielding layer 3 may be a single layer composed of a carbon allotrope, or a mixed layer composed of a carbon allotrope and a resin material. Is preferred. Thereby, the shape stability of the electromagnetic wave shielding layer 3 can be improved.
  • the carbon allotrope content in the mixed layer is preferably 5 wt% or more and 30 wt% or less, more preferably 10 wt% or more and 20 wt% or less. .
  • the magnetic absorbing material in the first embodiment described above can be used.
  • the electromagnetic wave shielding film 100 of this embodiment having such a configuration can also be used in the same manner as the electromagnetic wave shielding film 100 of the first embodiment, and is similar to the electromagnetic wave shielding film 100 of the first embodiment. The effect is obtained.
  • the electromagnetic wave shielding film 100 of the present embodiment includes the carbon nanotubes having an aspect ratio of 10 or more and 4000 or less as a constituent material of the electromagnetic wave shielding layer 3, except that the first and second embodiments described above are included. This is the same as the electromagnetic wave shielding film 100.
  • the inventor of the present invention pays attention to an electromagnetic wave blocking layer containing carbon nanotubes (CNT) among the electromagnetic wave blocking layers exhibiting a function as an absorbing layer, and intensively studied the electromagnetic wave blocking layer.
  • the aspect ratio (length / particle size) of the carbon nanotube as the main material is a parameter showing a correlation with the absorption of electromagnetic waves incident on the absorption layer.
  • the present inventor absorbed electromagnetic waves up to electromagnetic waves in a high frequency band as in the GHz order by setting the aspect ratio to 10 or more and 4000 or less. It was found that electromagnetic waves can be blocked more effectively.
  • the carbon nanotube has an aspect ratio of 10 or more and 4000 or less, preferably 50 or more and 1000 or less, and more preferably 100 or more and 500 or less. Thereby, even an electromagnetic wave in a higher frequency band can be blocked more effectively.
  • the average particle size (average particle size) of such carbon nanotubes is preferably 1 nm or more and 100 nm or less, and more preferably 5 nm or more and 70 nm or less.
  • the average length (average length) of the carbon nanotubes is preferably 0.1 ⁇ m or more and 100 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 50 ⁇ m or less.
  • the aspect ratio of the carbon nanotube can be easily set within the above range.
  • the average value (specific surface area) of the specific surface area of the carbon nanotubes is preferably 20 m 2 / g or more, and more preferably 200 m 2 / g or more and 300 m 2 / g or less.
  • the electromagnetic wave blocking layer 3 containing carbon nanotubes having a specific surface area within the above range is an absorption layer that more reliably absorbs electromagnetic waves in a high frequency band.
  • Such carbon nanotubes may be either single-walled carbon nanotubes or multi-walled carbon nanotubes, but are preferably multi-walled carbon nanotubes.
  • the electromagnetic wave shielding layer 3 is mainly composed of multi-walled carbon nanotubes, even if the electromagnetic wave shielding layer 3 is reduced in weight and thickness when the aspect ratio of the multi-walled carbon nanotubes is set within the above range, the GHz As in the order, even high-frequency electromagnetic waves can be blocked more reliably.
  • the electromagnetic wave shielding layer 3 containing carbon nanotubes may be a single layer composed of carbon nanotubes, but is preferably a mixed layer composed of carbon nanotubes and a resin material. By configuring the electromagnetic wave shielding layer 3 with such a mixed layer, the shape stability of the electromagnetic wave shielding layer 3 can be improved.
  • Examples of such a resin material include a polyurethane resin and a polyester resin, among which a polyurethane resin is preferable.
  • the content of carbon nanotubes in the mixed layer is preferably 5 wt% or more and 30 wt% or less, more preferably 10 wt% or more and 20 wt% or less. .
  • the shape stability of the electromagnetic wave shielding layer 3 can be improved while the function as the electromagnetic wave shielding layer 3 is reliably exhibited.
  • the electromagnetic wave shielding film 100 of this embodiment having such a configuration can also be used in the same manner as the electromagnetic wave shielding film 100 of the first and second embodiments, and the electromagnetic waves of the first and second embodiments. The same effect as the shielding film 100 can be obtained.
  • FIG. 3 is a longitudinal sectional view showing a fourth embodiment of the electromagnetic wave shielding film of the present invention.
  • the upper side in FIG. 3 is referred to as “upper” and the lower side is referred to as “lower”.
  • the electromagnetic wave shielding film 100 shown in FIG. 3 is the same as the electromagnetic wave shielding film 100 of the first to third embodiments described above, except that the formation of the first layer 11 included in the base material layer 1 is omitted. It is.
  • the electromagnetic wave shielding film 100 includes the base material layer 1 including the second layer 13 and the third layer 12, the insulating layer 2, and the electromagnetic wave shielding layer 3 laminated in this order.
  • the laminated body is made.
  • the pressing portion of the vacuum pressurizing laminator or the like used when the insulating layer 2 and the electromagnetic wave shielding layer 3 are pressed into the unevenness 6 on the substrate 5 in the attaching step is the second layer. 13 with releasability. Thereby, the formation of the first layer 11 is omitted.
  • the degree of releasability of the contact surface in contact with the second layer 13 of the pressing portion can be expressed by the surface tension of the contact surface.
  • the surface tension of the contact surface is preferably 20 to 40 mN / m, and more preferably 25 to 35 mN / m.
  • the pressing portion can be reliably peeled off from the second layer 13 after pressing using a vacuum pressurizing laminator or the like.
  • the electromagnetic wave shielding film 100 of this embodiment having such a configuration can be used in the same manner as the electromagnetic wave shielding film 100 of the first to third embodiments, and the electromagnetic wave shielding film of the first embodiment. The same effect as 100 can be obtained.
  • FIG. 4 is a longitudinal sectional view showing a fifth embodiment of the electromagnetic wave shielding film of the present invention.
  • the upper side in FIG. 4 is referred to as “upper” and the lower side is referred to as “lower”.
  • the electromagnetic wave shielding film 100 shown in FIG. 4 will be described. However, the difference from the electromagnetic wave shielding film 100 of the first embodiment shown in FIG. 1 will be mainly described, and description of similar matters will be omitted. To do.
  • the electromagnetic wave shielding film 100 shown in FIG. 4 is the same as the electromagnetic wave shielding film 100 of the first to third embodiments described above, except that the formation of the third layer 12 included in the base material layer 1 is omitted. It is.
  • the electromagnetic wave shielding film 100 includes the base material layer 1 including the first layer 11 and the second layer 13, the insulating layer 2, and the electromagnetic wave shielding layer 3 laminated in this order.
  • the laminated body is made.
  • the base material layer 1 when the base material layer 1 is peeled from the insulating layer 2 in the peeling step, the base material layer 1 is separated from the insulating layer 2 at the interface between the second layer 13 and the insulating layer 2. It is peeled off. In such peeling, the insulating layer 2 has releasability from the second layer 13. Thereby, the formation of the third layer 12 is omitted.
  • the degree of releasability of the contact surface in contact with the second layer 13 of the insulating layer 2 can be expressed by the surface tension of the contact surface.
  • the surface tension of the contact surface is preferably 20 to 40 mN / m, and more preferably 25 to 35 mN / m.
  • the contact surface has a surface tension within such a range, the second layer 13 can be reliably peeled off from the insulating layer 2 after being pressed using a vacuum pressure laminator or the like.
  • Examples of such an insulating layer 2 having a surface tension include thermoplastic polyester and ⁇ -olefin.
  • the electromagnetic wave shielding film 100 of this embodiment having such a configuration can be used in the same manner as the electromagnetic wave shielding film 100 of the first to fourth embodiments, and the electromagnetic wave of the first to fourth embodiments. The same effect as the shielding film 100 can be obtained.
  • FIG. 5 is a longitudinal sectional view showing a sixth embodiment of the electromagnetic wave shielding film of the present invention.
  • the upper side in FIG. 5 is referred to as “upper” and the lower side is referred to as “lower”.
  • the electromagnetic wave shielding film 100 shown in FIG. 5 will be described. However, the difference from the electromagnetic wave shielding film 100 of the first embodiment shown in FIG. 1 will be mainly described, and description of similar matters will be omitted. To do.
  • the formation of the third layer 12 included in the base material layer 1 is omitted, and the stacking order of the insulating layer 2 and the electromagnetic wave shielding layer 3 is reversed, This is the same as the electromagnetic wave shielding film 100 of the first to third embodiments described above.
  • the electromagnetic wave shielding film 100 includes the base material layer 1 including the first layer 11 and the second layer 13, the electromagnetic wave shielding layer 3, and the insulating layer 2 laminated in this order.
  • the laminated body is made.
  • the electromagnetic wave shielding film 100 having such a configuration, when the base material layer 1 is peeled from the electromagnetic wave shielding layer 3 in the peeling step, the base material layer 1 is shielded from electromagnetic waves at the interface between the second layer 13 and the electromagnetic wave shielding layer 3. Peel from layer 3. In such peeling, the electromagnetic wave shielding layer 3 has releasability from the second layer 13, thereby omitting the formation of the third layer 12.
  • the degree of releasability of the contact surface in contact with the second layer 13 of the electromagnetic wave shielding layer 3 can be expressed by the surface tension of the contact surface.
  • the surface tension of the contact surface is preferably 20 to 40 mN / m, and more preferably 25 to 35 mN / m.
  • the contact surface has a surface tension within such a range, the second layer 13 can be reliably peeled from the electromagnetic wave shielding layer 3 after being pressed using a vacuum pressurizing laminator or the like.
  • Examples of such an electromagnetic wave shielding layer 3 having surface tension include a mixed material in which a carbon allotrope or a conductive polymer is dispersed in a thermosetting resin such as polyurethane.
  • the electromagnetic wave shielding film 100 of this embodiment having such a configuration can be used in the same manner as the electromagnetic wave shielding film 100 of the first to fifth embodiments, and the electromagnetic wave of the first to fifth embodiments. The same effect as the shielding film 100 can be obtained.
  • FIG. 6 is a longitudinal sectional view showing a seventh embodiment of the electromagnetic wave shielding film of the present invention.
  • the upper side in FIG. 6 is referred to as “upper” and the lower side is referred to as “lower”.
  • the electromagnetic wave shielding film 100 shown in FIG. 6 will be described, but the description will focus on the differences from the electromagnetic wave shielding film 100 of the first embodiment shown in FIG. 1, and the description of the same matters will be omitted. To do.
  • the electromagnetic wave shielding film 100 shown in FIG. 6 is the same as the electromagnetic wave shielding film 100 of the first to third embodiments described above except that the stacking order of the insulating layer 2 and the electromagnetic wave shielding layer 3 is reversed. .
  • the electromagnetic wave shielding film 100 includes the base material layer 1 including the first layer 11, the second layer 13, and the third layer 12, the electromagnetic wave shielding layer 3, and the insulating layer 2.
  • the laminated body is laminated in this order.
  • the insulating layer 2 comes into contact with the substrate 5 and the electronic component 4,
  • the insulating layer 2 and the electromagnetic wave shielding layer 3 are coated in this order from the substrate 5 side.
  • the insulating layer 2 covers the substrate 5 and the electronic component 4 in contact with them, whereby the substrate 5 and the electronic component 4 are covered via the insulating layer 2. It insulates from the electromagnetic wave shielding layer 3 and other members (electronic parts etc.) located on the opposite side.
  • the adjacent electronic components 4 can be reliably insulated by the insulating layer 2.
  • the electromagnetic wave shielding film 100 of this embodiment having such a configuration can also be used in the same manner as the electromagnetic wave shielding film 100 of the first to sixth embodiments, and the electromagnetic waves of the first to sixth embodiments. The same effect as the shielding film 100 can be obtained.
  • FIG. 7 is a longitudinal sectional view showing an eighth embodiment of the electromagnetic wave shielding film of the present invention.
  • the upper side in FIG. 7 is referred to as “upper” and the lower side is referred to as “lower”.
  • the electromagnetic wave shielding film 100 illustrated in FIG. 7 will be described, but the description will focus on differences from the electromagnetic wave shielding film 100 of the first embodiment illustrated in FIG. 1, and description of similar matters will be omitted. To do.
  • the electromagnetic wave shielding film 100 of the present embodiment is the first embodiment described above, except that the electromagnetic wave shielding layer 3 is composed of a laminate in which a plurality of layers are laminated, and each adjacent layer is composed of different materials. This is the same as the electromagnetic wave shielding film 100.
  • the electromagnetic wave blocking layer has a function as a reflective layer by making the material (conductive material or magnetic absorption material) constituting the electromagnetic wave blocking layer not two kinds but two or more kinds. It has been found that the electromagnetic wave shielding layer exerts its function as an absorbing layer without exhibiting superiority. And as a result of further examination of the electromagnetic wave shielding layer containing a plurality of types of the above materials, the present inventor made this electromagnetic wave shielding layer a laminate composed of a plurality of layers, and among the plurality of layers, It has been found that by making the adjacent layers contain the different materials, the function as the reflection layer can be attenuated and the function as the absorption layer can be exhibited accurately. Furthermore, in this case, it has been found that electromagnetic waves can be more effectively blocked by absorption of electromagnetic waves up to electromagnetic waves in a high frequency band as in the GHz order.
  • the fact that the material included in each adjacent layer is different corresponds to the case where the number of types of materials included in each layer is different.
  • the number of types of materials included in each layer is the same, a case in which even one type of different materials are included among the plurality of materials included in each layer is applicable.
  • the electromagnetic wave shielding layer having such a configuration is composed of a laminate of two or more layers, and adjacent layers among the layers constituting the laminate need only contain different materials.
  • the electromagnetic wave shielding layer 3 is composed of a laminated body including three layers of a first layer 31, a second layer 32, and a first layer 33, and these are the upper surfaces of the base material layer 1.
  • stacked in this order from the (other surface) side is demonstrated to an example.
  • various materials constituting the electromagnetic wave shielding layer 3 of the first embodiment described above are used. At least two or more of these can be used, and by using them alone or in combination, the adjacent layers 31 to 33 can contain different materials.
  • the combination of the first layer 31 and the first layer 33 is made of the same material, and the combination of the first layer 31, 33 and the second layer 32 is made of a different material. Yes. As a result, the materials included in the adjacent layers 31 to 33 are different.
  • the first layers 31 and 33 include the first material
  • the second layer 32 includes the second material, and thus included in the adjacent layers 31 to 33.
  • the material is different.
  • the first layer 31 or 33 containing the first material and the second layer 32 containing the second material are stacked to form three layers.
  • the first layer 31 or 33 containing the first material is a laminated body configured to hold the second layer 32 containing the second material.
  • the electromagnetic wave blocking layer 3 can more accurately exhibit the function as the absorbing layer.
  • electromagnetic waves in a high frequency band of 2.0 to 3.0 GHz can be blocked more effectively by absorbing electromagnetic waves.
  • the first material contained in the first layers 31 and 33 is one of polyaniline and PEDOT / PSS, and is contained in the second layer 32.
  • the second material is preferably the other of polyaniline and PEDOT / PSS.
  • the surface resistance values of the first layers 31 and 33 and the second layer 32 are preferably 1 ⁇ 10 ⁇ 3 ⁇ / ⁇ or more and 1 ⁇ 10 6 ⁇ / ⁇ or less, respectively, and 10 ⁇ / ⁇ . It is more preferably 5 ⁇ 10 5 ⁇ / ⁇ or less, more preferably 150 ⁇ / ⁇ or more and 1 ⁇ 10 4 ⁇ / ⁇ or less.
  • the electromagnetic wave blocking layer 3 can attenuate the function as a reflective layer and exhibit the function as an absorbing layer more accurately, and effectively effectively shield even an electromagnetic wave in a higher frequency band. can do.
  • the first layers 31 and 33 and the second layer 32 are, in other words, the layers 31 to 33 constituting the electromagnetic wave shielding layer 3, respectively, as described above (various conductive materials or various magnetic absorption materials).
  • a mixed layer containing other materials may be used. Examples of other materials include, but are not limited to, sensitizers, m-cresol, ethylene glycol, and the like.
  • the content of the conductive material or the magnetic absorption material in the first layers 31 and 33 and the second layer 32 is preferably 50 wt% or more and 100 wt% or less, and is 80 wt% or more and 100 wt% or less. Is more preferable.
  • the thickness T1 of the first layers 31 and 33 is not particularly limited, but is preferably 1 ⁇ m or more and 30 ⁇ m or less, more preferably 3 ⁇ m or more and 25 ⁇ m or less, and 5 ⁇ m or more and 15 ⁇ m or less. Is more preferable.
  • the thickness T2 of the second layer 32 is not particularly limited, but is preferably 1 ⁇ m or more and 30 ⁇ m or less, more preferably 3 ⁇ m or more and 25 ⁇ m or less, and further preferably 5 ⁇ m or more and 15 ⁇ m or less. preferable.
  • the thickness T1 of the first layers 31 and 33 and the thickness T2 of the second layer 32 are each less than the lower limit value, depending on the constituent material of each of the layers 31 to 33, there is a risk of breakage at the end of the board mounted component There is. Further, when the thickness T1 of the first layers 31 and 33 and the thickness T2 of the second layer 32 exceed the upper limit values, the shape followability may be insufficient depending on the constituent materials of the layers 31 to 33. In addition, even when the thicknesses T1 and T2 are within such ranges, excellent electromagnetic wave shielding properties can be exhibited, so that the thickness T1 of the first layers 31 and 33 and the thickness T2 of the second layer 32 are reduced.
  • the weight reduction of the electronic component mounting substrate on which the electronic component 4 covered with the insulating layer 2 and the electromagnetic wave shielding layer 3 is mounted on the substrate 5 can be realized.
  • the electromagnetic wave shielding layer 3 can further attenuate the function as a reflection layer and more accurately exhibit the function as an absorption layer.
  • the electromagnetic wave shielding film 100 of this embodiment having such a configuration can be used in the same manner as the electromagnetic wave shielding film 100 of the first to seventh embodiments, and the electromagnetic waves of the first to seventh embodiments. The same effect as the shielding film 100 can be obtained.
  • FIG. 8 is a longitudinal sectional view showing a ninth embodiment of the electromagnetic wave shielding film of the present invention.
  • the upper side in FIG. 8 is referred to as “upper” and the lower side is referred to as “lower”.
  • the electromagnetic wave shielding film 100 shown in FIG. 8 will be described. However, the difference from the electromagnetic wave shielding film 100 of the eighth embodiment shown in FIG. 7 will be mainly described, and description of similar matters will be omitted. To do.
  • the electromagnetic wave shielding film 100 includes the base material layer 1, the insulating layer 2, and the electromagnetic wave shielding layer 3 including the first layer 31 and the second layer 32, which are laminated in this order.
  • the laminated body is made.
  • the electromagnetic wave shielding layer 3 is constituted by a laminate composed of two layers of the first layer 31 and the second layer 32 containing different materials, thereby preventing the electromagnetic wave shielding.
  • the layer 3 can be made to exhibit the function as an absorption layer more accurately. In particular, even an electromagnetic wave in a high frequency band of 2.0 to 3.0 GHz can be blocked more effectively by absorbing the electromagnetic wave.
  • the electromagnetic wave shielding film 100 of this embodiment having such a configuration can be used in the same manner as the electromagnetic wave shielding film 100 of the first to eighth embodiments, and the electromagnetic wave of the first to eighth embodiments. The same effect as the shielding film 100 can be obtained.
  • FIG. 9 is a longitudinal sectional view showing a tenth embodiment of the electromagnetic wave shielding film of the present invention.
  • the upper side in FIG. 9 is referred to as “upper” and the lower side is referred to as “lower”.
  • the electromagnetic wave shielding layer 3 includes a second layer 34 on the surface opposite to the base material layer 1 of the electromagnetic wave shielding layer 3 in addition to the layers 31 to 33. Except for this, it is the same as the electromagnetic wave shielding film 100 of the eighth embodiment described above.
  • the electromagnetic wave shielding film 100 includes the base material layer 1; the insulating layer 2; the first layer 31, the second layer 32, the first layer 33, and the second layer 34.
  • the electromagnetic wave shielding layer 3 forms a laminated body laminated in this order.
  • the first layers 31 and 33 composed of the first conductive polymer and the second layers 32 and 34 composed of the second conductive polymer are included. It is composed of a laminated body having four layers that are alternately laminated. In other words, a laminate comprising four layers in which the first layer 31, the second layer 32, the first layer 33, and the second layer 34 are laminated in this order from the base material layer 1 side. It consists of Thus, the electromagnetic wave shielding layer 3 has the same number of layers as the first layers 31 and 33 and the second layers 32 and 34, and the first layer 31 composed of the first conductive polymer.
  • the electromagnetic wave shielding layer 3 composed of the first layers 31 and 33 and the second layers 32 and 34 is a laminate of four or more layers, thereby functioning as an absorption layer. While maintaining the above, the function as the reflective layer can be remarkably exhibited. Therefore, a laminate of four or more layers is preferably applied as the electromagnetic wave shielding layer 3 when the electromagnetic wave shielding layer 3 exhibits the functions of both the absorbing layer and the reflective layer.
  • the electromagnetic wave shielding film 100 of this embodiment having such a configuration can be used in the same manner as the electromagnetic wave shielding film 100 of the first to ninth embodiments, and the electromagnetic wave of the first to ninth embodiments. The same effect as the shielding film 100 can be obtained.
  • FIG. 10 is a longitudinal sectional view showing an eleventh embodiment of the electromagnetic wave shielding film of the present invention.
  • the upper side in FIG. 10 is referred to as “upper” and the lower side is referred to as “lower”.
  • the electromagnetic wave shielding film 100 of the eighth embodiment described above is the same as the electromagnetic wave shielding film 100 of the eighth embodiment described above except that the formation of the first layer 11 included in the base material layer 1 is omitted.
  • the electromagnetic wave shielding film 100 includes the base material layer 1 including the second layer 13 and the third layer 12, the insulating layer 2, and the electromagnetic wave shielding layer 3 laminated in this order.
  • the laminated body is made.
  • the pressing portion of the vacuum pressurizing laminator or the like used when the insulating layer 2 and the electromagnetic wave shielding layer 3 are pressed into the unevenness 6 on the substrate 5 in the attaching step is the second layer. 13 with releasability. Thereby, the formation of the first layer 11 is omitted.
  • the degree of releasability of the contact surface in contact with the second layer 13 of the pressing portion can be expressed by the surface tension of the contact surface.
  • the surface tension of the contact surface is preferably 20 to 40 mN / m, and more preferably 25 to 35 mN / m.
  • the pressing portion can be reliably peeled off from the second layer 13 after pressing using a vacuum pressurizing laminator or the like.
  • the electromagnetic wave shielding film 100 of this embodiment having such a configuration can be used in the same manner as the electromagnetic wave shielding film 100 of the first to tenth embodiments, and the electromagnetic waves of the first to tenth embodiments. The same effect as the shielding film 100 can be obtained.
  • FIG. 11 is a longitudinal sectional view showing a twelfth embodiment of the electromagnetic wave shielding film of the present invention.
  • the upper side in FIG. 11 is referred to as “upper” and the lower side is referred to as “lower”.
  • the electromagnetic wave shielding film 100 shown in FIG. 11 will be described, but the description will focus on the differences from the electromagnetic wave shielding film 100 of the eighth embodiment shown in FIG. 7, and the description of the same matters will be omitted. To do.
  • the electromagnetic wave shielding film 100 includes the base material layer 1 including the first layer 11 and the second layer 13, the insulating layer 2, and the electromagnetic wave shielding layer 3 laminated in this order.
  • the laminated body is made.
  • the base material layer 1 when the base material layer 1 is peeled from the insulating layer 2 in the peeling step, the base material layer 1 is separated from the insulating layer 2 at the interface between the second layer 13 and the insulating layer 2. It is peeled off. In such peeling, the insulating layer 2 has releasability from the second layer 13. Thereby, the formation of the third layer 12 is omitted.
  • the degree of releasability of the contact surface in contact with the second layer 13 of the insulating layer 2 can be expressed by the surface tension of the contact surface.
  • the surface tension of the contact surface is preferably 20 to 40 mN / m, and more preferably 25 to 35 mN / m.
  • the contact surface has a surface tension within such a range, the second layer 13 can be reliably peeled off from the insulating layer 2 after being pressed using a vacuum pressure laminator or the like.
  • Examples of such an insulating layer 2 having a surface tension include thermoplastic polyester and ⁇ -olefin.
  • the electromagnetic wave shielding film 100 of this embodiment having such a configuration can also be used in the same manner as the electromagnetic wave shielding film 100 of the first to eleventh embodiments, and the electromagnetic wave of the first to eleventh embodiments. The same effect as the shielding film 100 can be obtained.
  • FIG. 12 is a longitudinal sectional view showing a thirteenth embodiment of the electromagnetic wave shielding film of the present invention.
  • the upper side in FIG. 12 is referred to as “upper” and the lower side is referred to as “lower”.
  • the electromagnetic wave shielding film 100 shown in FIG. 12 will be described, but mainly the differences from the electromagnetic wave shielding film 100 of the eighth embodiment shown in FIG. 7 will be described, and description of similar matters will be omitted. To do.
  • the formation of the third layer 12 included in the base material layer 1 is omitted, and the stacking order of the insulating layer 2 and the electromagnetic wave shielding layer 3 is reversed. This is the same as the electromagnetic wave shielding film 100 of the eighth embodiment described above.
  • the electromagnetic wave shielding film 100 includes the base material layer 1 including the first layer 11 and the second layer 13, the electromagnetic wave shielding layer 3, and the insulating layer 2 laminated in this order.
  • the laminated body is made.
  • the electromagnetic wave shielding film 100 having such a configuration, when the base material layer 1 is peeled from the electromagnetic wave shielding layer 3 in the peeling step, the base material layer 1 is shielded from electromagnetic waves at the interface between the second layer 13 and the electromagnetic wave shielding layer 3. Peel from layer 3. In such peeling, the electromagnetic wave shielding layer 3 has releasability from the second layer 13, thereby omitting the formation of the third layer 12.
  • the degree of releasability of the contact surface in contact with the second layer 13 of the electromagnetic wave shielding layer 3 can be expressed by the surface tension of the contact surface.
  • the surface tension of the contact surface is preferably 20 to 40 mN / m, and more preferably 25 to 35 mN / m.
  • the contact surface has a surface tension within such a range, the second layer 13 can be reliably peeled from the electromagnetic wave shielding layer 3 after being pressed using a vacuum pressurizing laminator or the like.
  • Examples of such an electromagnetic wave shielding layer 3 having surface tension include a mixed material in which a carbon allotrope or a conductive polymer is dispersed in a thermosetting resin such as polyurethane.
  • the electromagnetic wave shielding film 100 of this embodiment having such a configuration can be used in the same manner as the electromagnetic wave shielding film 100 of the first to twelfth embodiments, and the electromagnetic waves of the first to twelfth embodiments. The same effect as the shielding film 100 can be obtained.
  • FIG. 13 is a longitudinal sectional view showing a fourteenth embodiment of the electromagnetic wave shielding film of the present invention.
  • the upper side in FIG. 8 is referred to as “upper” and the lower side is referred to as “lower”.
  • the electromagnetic wave shielding film 100 of the eighth embodiment described above is the same as the electromagnetic wave shielding film 100 of the eighth embodiment described above except that the stacking order of the insulating layer 2 and the electromagnetic wave shielding layer 3 is reversed.
  • the electromagnetic wave shielding film 100 includes the base material layer 1 including the first layer 11, the second layer 13, and the third layer 12, the electromagnetic wave shielding layer 3, and the insulating layer 2.
  • the laminated body is laminated in this order.
  • the insulating layer 2 comes into contact with the substrate 5 and the electronic component 4,
  • the insulating layer 2 and the electromagnetic wave shielding layer 3 are coated in this order from the substrate 5 side.
  • the insulating layer 2 covers the substrate 5 and the electronic component 4 in contact with them, whereby the substrate 5 and the electronic component 4 are covered via the insulating layer 2. It insulates from the electromagnetic wave shielding layer 3 and other members (electronic parts etc.) located on the opposite side.
  • the adjacent electronic components 4 can be reliably insulated by the insulating layer 2.
  • the electromagnetic wave shielding film 100 of this embodiment having such a configuration can be used in the same manner as the electromagnetic wave shielding film 100 of the first to thirteenth embodiments, and the electromagnetic waves of the first to thirteenth embodiments. The same effect as the shielding film 100 can be obtained.
  • the insulating layer 2 has been described with respect to the case where one layer is laminated on either the upper surface or the lower surface of the electromagnetic wave shielding layer 3, but the present invention is not limited to such a case.
  • one layer may be laminated as a separate layer on both the upper surface and the lower surface of the electromagnetic wave shielding layer 3, or the formation thereof may be omitted.
  • unevenness is formed on the substrate by mounting the electronic component on the substrate, and the case where the unevenness is covered with the electromagnetic shielding film has been described. It is not limited to the coating
  • the electromagnetic shielding film and the electronic component mounting substrate of the present invention have been described above, but the present invention is not limited to these.
  • any configuration of the first to fourteenth embodiments can be combined.
  • an arbitrary layer capable of exhibiting the same function may be added to the electromagnetic wave shielding film of the present invention and the electronic component mounting substrate of the present invention.
  • Example 1A Manufacture of electromagnetic shielding film>
  • syndiotactic polystyrene manufactured by Idemitsu Kosan Co., Ltd., trade name: Zalec S107
  • Zalec S107 Syndiotactic polystyrene (manufactured by Idemitsu Kosan Co., Ltd., trade name: Zarek S107) was prepared as a resin constituting the third layer (second release layer).
  • an ethylene-methyl acrylate copolymer (manufactured by Sumitomo Chemical Co., Ltd., trade name: ACRIFT WD106) was prepared.
  • PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd.) was prepared as a resin constituting the electromagnetic wave shielding layer.
  • the syndiotactic polystyrene as a first layer, the syndiotactic polystyrene as a third layer, and the ethylene-methyl acrylate copolymer as a second layer are co-polymerized using a feed block and a multi-manifold die.
  • a film was formed by extrusion.
  • An electromagnetic wave shielding film was prepared by coating PEDOT / PSS on the base material layer film as an electromagnetic wave shielding layer.
  • the overall thickness of the electromagnetic wave shielding film of Example 1A was 140 ⁇ m.
  • the thickness of the first layer was 30 ⁇ m
  • the thickness of the third layer was 30 ⁇ m
  • the thickness of the second layer was 60 ⁇ m
  • the thickness of the electromagnetic wave shielding layer was 20 ⁇ m.
  • PEDOT / PSS manufactured by Chukyo Yushi Co., Ltd., S-801
  • S-801 was prepared as a resin constituting the electromagnetic wave shielding layer.
  • a film for evaluating electromagnetic shielding properties was produced by coating PEDOT / PSS as an electromagnetic wave shielding layer on a polyethylene terephthalate sheet.
  • the surface resistance value of the electromagnetic wave shielding layer composed of PEDOT / PSS provided in the electromagnetic wave shielding film and the electromagnetic wave shielding evaluation film was 100 ⁇ / ⁇ .
  • the surface resistance value of the electromagnetic wave shielding layer is measured using a resistivity meter (Mitsubishi Chemical Analytech Co., Ltd., “Lorestar GP / MCP-T610”) in accordance with JIS-K7194. This was carried out by the method (constant current application method).
  • Example 2A Example except that PEDOT / PSS (manufactured by Chukyo Oil Co., Ltd., S-985) was used instead of PEDOT / PSS (manufactured by Chukyo Oil Co., Ltd., S-801) as the resin constituting the electromagnetic wave shielding layer. It carried out like 1A and obtained the film for electromagnetic wave shielding of Example 2A, and the film for electromagnetic wave shielding evaluation.
  • PEDOT / PSS manufactured by Chukyo Oil Co., Ltd., S-985
  • PEDOT / PSS manufactured by Chukyo Oil Co., Ltd., S-801
  • the surface resistance value of the electromagnetic wave shielding layer composed of PEDOT / PSS provided in the electromagnetic wave shielding film and the electromagnetic wave shielding evaluation film was 300 ⁇ / ⁇ .
  • Example 3A Example except that PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd., S-942) was used instead of PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd., S-801) as the resin constituting the electromagnetic wave shielding layer.
  • PEDOT / PSS manufactured by Chukyo Yushi Co., Ltd., S-942
  • PEDOT / PSS manufactured by Chukyo Yushi Co., Ltd., S-801
  • the surface resistance value of the electromagnetic wave shielding layer composed of PEDOT / PSS provided in the electromagnetic wave shielding film and the electromagnetic wave shielding property evaluation film was 1000 ⁇ / ⁇ .
  • Example 4A Example except that PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd., S-941) was used instead of PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd., S-801) as the resin constituting the electromagnetic wave shielding layer.
  • PEDOT / PSS manufactured by Chukyo Yushi Co., Ltd., S-941
  • PEDOT / PSS manufactured by Chukyo Yushi Co., Ltd., S-801
  • the surface resistance value of the electromagnetic wave shielding layer composed of PEDOT / PSS provided in the electromagnetic wave shielding film and the electromagnetic wave shielding evaluation film was 4500 ⁇ / ⁇ .
  • Example 5A Example except that PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd., S-986) was used in place of PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd., S-801) as the resin constituting the electromagnetic wave shielding layer. It carried out similarly to 1A and obtained the film for electromagnetic wave shielding of Example 5A, and the film for electromagnetic wave shielding evaluation.
  • the surface resistance value of the electromagnetic wave shielding layer composed of PEDOT / PSS provided in the electromagnetic wave shielding film and the electromagnetic wave shielding evaluation film was 8000 ⁇ / ⁇ .
  • Example 6A Example 1A except that polyaniline (trade name: PANT, manufactured by Regulus Co., Ltd.) was used in place of PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd., S-801) as the resin constituting the electromagnetic wave shielding layer. In the same manner as described above, an electromagnetic wave shielding film and an electromagnetic wave shielding evaluation film of Example 6A were obtained.
  • polyaniline trade name: PANT, manufactured by Regulus Co., Ltd.
  • PEDOT / PSS manufactured by Chukyo Yushi Co., Ltd., S-801
  • the surface resistance value of the electromagnetic wave shielding layer composed of PEDOT / PSS provided in the electromagnetic wave shielding film and the electromagnetic wave shielding evaluation film was 500 ⁇ / ⁇ .
  • Example 7A Example except that PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd., S-987) was used instead of PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd., S-801) as the resin constituting the electromagnetic wave shielding layer. It carried out similarly to 1A and obtained the film for electromagnetic wave shielding of Example 7A, and the film for electromagnetic wave shielding property evaluation.
  • the surface resistance value of the electromagnetic wave shielding layer composed of PEDOT / PSS included in the electromagnetic wave shielding film and the electromagnetic wave shielding evaluation film was 200000 ⁇ / ⁇ .
  • the electromagnetic wave shielding films produced in Examples 1A to 7A are each pressed onto a printed wiring board at 150 ° C. ⁇ 1 MPa ⁇ 10 minutes using a vacuum / pressure forming apparatus, and are attached to the printed wiring board. After sticking, the base material layer is peeled off, and it is determined whether or not there is a gap between the electromagnetic wave shielding layer attached to the printed wiring board and the groove on the printed wiring board. In addition, it observed and evaluated with the microscope and the microscope whether there was a space
  • Step of 2000 ⁇ m or more B: Step of 1000 ⁇ m or more and less than 2000 ⁇ m
  • Electromagnetic wave shielding properties For the films for evaluating electromagnetic wave shielding properties produced in Examples 1A to 7A, the electromagnetic wave shielding properties for blocking electromagnetic waves at frequencies of 1 GHz and 3 GHz were measured using the above-described microstrip line method. Furthermore, the electromagnetic shielding property which interrupts
  • ⁇ light transmittance >> About the electromagnetic wave shielding property evaluation films prepared in Examples 1A to 7A, using a UV-visible spectrophotometer (manufactured by JASCO Corporation, “V-650”), the light transmittance at wavelengths of 300 nm, 500 nm and 800 nm, and The maximum value of light transmittance at 300 to 800 nm was measured. Table 1 shows the results of the evaluation tests of the above examples.
  • the surface resistance value of the electromagnetic wave shielding layer is 1 ⁇ 10 ⁇ 3 ⁇ / ⁇ or more and 1 ⁇ 10 6 ⁇ / ⁇ or less.
  • the electromagnetic wave shielding film obtained in each Example has a sufficiently low light transmittance. That is, it was found that the electromagnetic wave shielding films obtained in these examples had excellent light absorption (light shielding properties).
  • the electromagnetic wave shielding properties of the electromagnetic wave shielding films of Examples 1A to 6A in which the surface resistance value of the electromagnetic wave shielding layer was 10,000 ⁇ / ⁇ or less were the same as Example 7A in which the surface resistance value of the electromagnetic wave shielding layer was 200000 ⁇ / ⁇ . It was superior to the electromagnetic shielding film.
  • the electromagnetic wave shielding film including the electromagnetic wave shielding layer containing PEDOT / PSS has particularly excellent light absorption (light shielding property).
  • Example 1B Manufacture of electromagnetic shielding film>
  • syndiotactic polystyrene manufactured by Idemitsu Kosan Co., Ltd., trade name: Zalec S107
  • Zalec S107 Syndiotactic polystyrene (manufactured by Idemitsu Kosan Co., Ltd., trade name: Zarek S107) was prepared as a resin constituting the third layer (second release layer).
  • an ethylene-methyl acrylate copolymer (manufactured by Sumitomo Chemical Co., Ltd., trade name: ACRIFT WD106) was prepared.
  • PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd.) was prepared as a resin constituting the electromagnetic wave shielding layer.
  • the syndiotactic polystyrene as a first layer, the syndiotactic polystyrene as a third layer, and the ethylene-methyl acrylate copolymer as a second layer are co-polymerized using a feed block and a multi-manifold die.
  • a film was formed by extrusion.
  • An electromagnetic wave shielding film was prepared by coating PEDOT / PSS on the base material layer film as an electromagnetic wave shielding layer.
  • the total thickness of the electromagnetic wave shielding film of Example 1B was 140 ⁇ m.
  • the thickness of the first layer was 30 ⁇ m
  • the thickness of the third layer was 30 ⁇ m
  • the thickness of the second layer was 60 ⁇ m
  • the thickness of the electromagnetic wave shielding layer was 20 ⁇ m.
  • PEDOT / PSS manufactured by Chukyo Yushi Co., Ltd.
  • a film for evaluating electromagnetic shielding properties was produced by coating PEDOT / PSS as an electromagnetic wave shielding layer on a polyethylene terephthalate sheet.
  • Example 2B Example 1B except that PEDOT / PSS (Arakawa Chemical Industries, Ltd., trade name: Alacoat AS625) was used instead of PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd.) as the resin constituting the electromagnetic wave shielding layer. Similarly, an electromagnetic wave shielding film and an electromagnetic wave shielding evaluation film of Example 2B were obtained.
  • PEDOT / PSS Alacoat AS625
  • Example 3B Except for using PEDOT / PSS (product name: Verazol ED-0139-M) instead of PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd.) as the resin constituting the electromagnetic wave shielding layer.
  • PEDOT / PSS product name: Verazol ED-0139-M
  • PEDOT / PSS manufactured by Chukyo Yushi Co., Ltd.
  • Example 4B As resin constituting the electromagnetic wave shielding layer, in place of PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd.), polyaniline (manufactured by Regulus Co., Ltd., trade name: PANT) was used in the same manner as in Example 1B. The film for electromagnetic wave shielding of Example 4B and the film for electromagnetic wave shielding evaluation were obtained.
  • Example 5B Instead of PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd.) as a resin constituting the electromagnetic wave shielding layer, a water-CNT urethane resin dispersion (manufactured by Hodogaya Chemical Co., Ltd., trade name: 5 wt% NT-7K-containing water dispersion) Except for using (Liquid), an electromagnetic wave shielding film and an electromagnetic wave shielding evaluation film of Example 5B were obtained in the same manner as in Example 1B.
  • PEDOT / PSS manufactured by Chukyo Yushi Co., Ltd.
  • a water-CNT urethane resin dispersion manufactured by Hodogaya Chemical Co., Ltd., trade name: 5 wt% NT-7K-containing water dispersion
  • the formed electromagnetic wave shielding layer was a mixed layer of CNT and polyurethane resin, and the CNT content in the layer was 12 wt% and the polyurethane resin content was 88 wt%.
  • Example 6B Instead of PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd.), a water-carbon nanotube dispersion (manufactured by Ube Industries, trade name: AWC water dispersion UW-250) was used as the resin constituting the electromagnetic wave shielding layer. Except for this, in the same manner as Example 1B, an electromagnetic wave shielding film and an electromagnetic wave shielding evaluation film of Example 6B were obtained.
  • the formed electromagnetic wave shielding layer was a mixed layer of CNT and polyurethane resin, and the CNT content in the layer was 12 wt% and the polyurethane resin content was 88 wt%.
  • Example 7B Except for using PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd.) as a resin constituting the electromagnetic wave shielding layer, carbon nanofiber / water dispersion (manufactured by MD Nanotech Co., Ltd., trade name: MDCNF-D) was used. In the same manner as in Example 1B, an electromagnetic wave shielding film and an electromagnetic shielding property evaluation film of Example 7B were obtained.
  • PEDOT / PSS manufactured by Chukyo Yushi Co., Ltd.
  • MDCNF-D carbon nanofiber / water dispersion
  • the formed electromagnetic wave shielding layer was a mixed layer of CNT and polyurethane resin, and the CNT content in the layer was 12 wt% and the polyurethane resin content was 88 wt%.
  • Comparative Example 1B instead of PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd.), a highly aligned CNT dispersion (manufactured by Taiyo Nissan Co., Ltd., trade name: highly aligned carbon nanotube ethanol dispersion) was used as the resin constituting the electromagnetic wave shielding layer. Except for the above, in the same manner as Example 1B, an electromagnetic shielding film and an electromagnetic shielding evaluation film of Comparative Example 1B were obtained.
  • the formed electromagnetic wave shielding layer was a mixed layer of CNT and polyurethane resin, and the CNT content in the layer was 12 wt% and the polyurethane resin content was 88 wt%.
  • Comparative Example 2B As resin which comprises an electromagnetic wave shielding layer, it replaced with PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd.) and used polyaniline (manufactured by Regulus Co., Ltd., trade name: PANW)) in the same manner as in Example 1B. Thus, an electromagnetic wave shielding film and an electromagnetic wave shielding property evaluation film of Comparative Example 2B were obtained.
  • the electromagnetic wave shielding films prepared in Examples 1B to 7B and Comparative Examples 1B and 2B were respectively pressure-bonded to a printed wiring board at 150 ° C. ⁇ 1 MPa ⁇ 10 minutes using a vacuum / pressure forming apparatus, and printed wiring Affix to the board. After sticking, the base material layer is peeled off, and it is determined whether or not there is a gap between the electromagnetic wave shielding layer attached to the printed wiring board and the groove on the printed wiring board. In addition, it observed and evaluated with the microscope and the microscope whether there was a space
  • Step of 2000 ⁇ m or more B: Step of 1000 ⁇ m or more and less than 2000 ⁇ m
  • Electromagnetic wave shielding properties >> About the electromagnetic wave shielding property evaluation films produced in Examples 1B to 7B and Comparative Examples 1B and 2B, using the cavity resonator method described above, the real part ( ⁇ ′) of the complex dielectric constant ( ⁇ ) at a frequency of 1 GHz, An imaginary part ( ⁇ ′′) and a dielectric loss tangent (tan ⁇ ) were measured. Further, using the above-described microstrip line method, an electromagnetic shielding property for blocking electromagnetic waves at a frequency of 1 GHz and a frequency of 3 GHz was measured.
  • the surface resistance value of the electromagnetic wave shielding layer is 1 ⁇ 10 ⁇ 3 ⁇ / ⁇ or more and 1 ⁇ 10 6 ⁇ / ⁇ or less.
  • the electromagnetic wave shielding films obtained in Examples 1B to 7B since the imaginary part ( ⁇ ′′) of the complex dielectric constant ( ⁇ ) at a frequency of 1 GHz is 30 or more, electromagnetic waves in a high frequency band such as 1 GHz are used. Even if there was, it was able to block more effectively.
  • the electromagnetic wave shielding film obtained in each Example has a sufficiently low light transmittance. That is, it was found that the electromagnetic wave shielding films obtained in these examples had excellent light absorption (light shielding properties).
  • the electromagnetic wave shielding film including the electromagnetic wave shielding layer containing PEDOT / PSS was superior to the electromagnetic wave shielding films of other examples and Comparative Examples 1B and 2B. It was found to have light absorption (light shielding).
  • Example 1C Manufacture of electromagnetic shielding film>
  • syndiotactic polystyrene manufactured by Idemitsu Kosan Co., Ltd., trade name: Zalec S107
  • Zalec S107 Syndiotactic polystyrene (manufactured by Idemitsu Kosan Co., Ltd., trade name: Zarek S107) was prepared as a resin constituting the third layer (second release layer).
  • an ethylene-methyl acrylate copolymer (manufactured by Sumitomo Chemical Co., Ltd., trade name: ACRIFT WD106) was prepared.
  • a resin constituting the electromagnetic wave shielding layer a water-CNT urethane resin dispersion (manufactured by Hodogaya Chemical Co., Ltd., trade name: 5 wt% NT-7K-containing aqueous dispersion) was prepared.
  • the syndiotactic polystyrene as a first layer, the syndiotactic polystyrene as a third layer, and the ethylene-methyl acrylate copolymer as a second layer are co-polymerized using a feed block and a multi-manifold die.
  • a film was formed by extrusion.
  • the electromagnetic wave shielding layer a mixed layer of carbon nanotubes and polyurethane resin was coated on the base layer film to produce an electromagnetic wave shielding film.
  • the overall thickness of the electromagnetic wave shielding film of Example 1C was 140 ⁇ m.
  • the thickness of the first layer was 30 ⁇ m
  • the thickness of the third layer was 30 ⁇ m
  • the thickness of the second layer was 60 ⁇ m
  • the thickness of the electromagnetic wave shielding layer was 20 ⁇ m.
  • a water-CNT urethane resin dispersion (manufactured by Hodogaya Chemical Co., Ltd., trade name: 5 wt% NT-7K-containing aqueous dispersion) was prepared.
  • a film for evaluating electromagnetic shielding properties was produced by coating a mixed layer of carbon nanotubes and polyurethane resin as an electromagnetic wave shielding layer on a polyethylene terephthalate sheet.
  • the electromagnetic wave shielding layer formed in the electromagnetic wave shielding film and the electromagnetic wave shielding property evaluation film is a mixed layer of CNT and polyurethane resin, and the content of CNT in the layer is 12 wt%. The content was 88 wt%.
  • the particle diameter, length, aspect ratio and specific surface area of the CNT contained in the electromagnetic wave shielding layer were 65 nm, 6.5 ⁇ m, 100 and 28 m 2 / g, respectively.
  • Example 2C Instead of water-CNT urethane resin dispersion (made by Hodogaya Chemical Co., Ltd., trade name: 5WT% NT-7K-containing water dispersion) as a material (resin) constituting the electromagnetic wave shielding layer, water-carbon nanotube dispersion Except for using the liquid (trade name: AWC aqueous dispersion UW-250, manufactured by Ube Industries, Ltd.), the electromagnetic wave shielding film and the electromagnetic wave shielding evaluation film of Example 2C were obtained in the same manner as in Example 1C. Obtained.
  • AWC aqueous dispersion UW-250 manufactured by Ube Industries, Ltd.
  • the formed electromagnetic wave shielding layer was a mixed layer of CNT and polyurethane resin, and the CNT content in the layer was 12 wt% and the polyurethane resin content was 88 wt%.
  • the particle diameter, length, aspect ratio and specific surface area of the CNT contained in the electromagnetic wave shielding layer were 5 to 15 nm, 0.6 to 0.8 ⁇ m, 100 and 230 m 2 / g, respectively.
  • Example 3C As a resin constituting the electromagnetic wave shielding layer, instead of water-CNT urethane resin dispersion (manufactured by Hodogaya Chemical Co., Ltd., trade name: 5WT% NT-7K-containing water dispersion), carbon nanofiber / water dispersion (A electromagnetic wave shielding film and an electromagnetic wave shielding evaluation film of Example 3C were obtained in the same manner as in Example 1C, except that MD Nanotech Co., Ltd., trade name: MDCNF-D) was used.
  • water-CNT urethane resin dispersion manufactured by Hodogaya Chemical Co., Ltd., trade name: 5WT% NT-7K-containing water dispersion
  • carbon nanofiber / water dispersion An electromagnetic wave shielding film and an electromagnetic wave shielding evaluation film of Example 3C were obtained in the same manner as in Example 1C, except that MD Nanotech Co., Ltd., trade name: MDCNF-D) was used.
  • the formed electromagnetic wave shielding layer was a mixed layer of CNT and polyurethane resin, and the CNT content in the layer was 12 wt% and the polyurethane resin content was 88 wt%.
  • the particle size, length, aspect ratio and specific surface area of the CNT contained in the electromagnetic wave shielding layer were 10 to 20 nm, 0.1 to 10 ⁇ m, 500 and 240 m 2 / g, respectively.
  • Comparative Example 1C instead of water-CNT urethane resin dispersion (made by Hodogaya Chemical Co., Ltd., trade name: 5WT% NT-7K-containing water dispersion) as a resin constituting the electromagnetic wave shielding layer, highly oriented CNT dispersion (TAIYO NISSAN A film for electromagnetic wave shielding and a film for evaluating electromagnetic wave shielding properties of Comparative Example 1C were obtained in the same manner as in Example 1C except that a product name of this company (trade name: highly oriented carbon nanotube ethanol dispersion) was used.
  • the formed electromagnetic wave shielding layer was a mixed layer of CNT and polyurethane resin, and the CNT content in the layer was 12 wt% and the polyurethane resin content was 88 wt%.
  • the particle diameter, length, aspect ratio and specific surface area of the CNT contained in the electromagnetic wave shielding layer were 5 to 20 nm, 50 to 150 ⁇ m, 5000 and 400 m 2 / g, respectively.
  • Electromagnetic wave shielding properties >> The films for evaluating electromagnetic shielding properties produced in Examples 1C to 3C and Comparative Example 1C were measured for electromagnetic shielding properties that block electromagnetic waves at frequencies of 1 GHz and 3 GHz using the microstrip line method described above. Furthermore, the electromagnetic shielding property which interrupts
  • ⁇ light transmittance >> The films for evaluating electromagnetic wave shielding properties produced in Examples 1C to 3C and Comparative Example 1C were used at wavelengths of 300 nm, 500 nm and 800 nm using an ultraviolet-visible spectrophotometer (manufactured by JASCO Corporation, “V-650”). The light transmittance and the maximum value of the light transmittance at 300 to 800 nm were measured. Table 3 shows the results of the evaluation tests of the above examples and comparative examples.
  • the surface resistance value of the electromagnetic wave shielding layer is 1 ⁇ 10 ⁇ 3 ⁇ / ⁇ or more and 1 ⁇ 10 6 ⁇ / ⁇ or less.
  • the aspect ratio of the carbon nanotubes contained in the electromagnetic wave shielding layer is 10 or more and 4000 or less, so that it is an electromagnetic wave in a high frequency band such as 1 GHz.
  • the electromagnetic wave shielding film obtained in each Example has a sufficiently low light transmittance. That is, it was found that the electromagnetic wave shielding films obtained in these examples had excellent light absorption (light shielding properties).
  • Comparative Example 1C compared to Examples 1C to 3C, it could not be said that electromagnetic waves in the high frequency band were effectively blocked.
  • the aspect ratio of the carbon nanotube is 100 or more and 500 or less, and the specific surface area of the carbon nanotube is 200 m 2 / g or more and 300 m 2 / g or less. The result that electromagnetic waves were blocked more effectively was obtained.
  • an ethylene-methyl acrylate copolymer (manufactured by Sumitomo Chemical Co., Ltd., trade name: ACRIFT WD106) was prepared. Further, PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd.) and polyaniline (manufactured by Regulus Co., Ltd., trade name: PANT) were prepared as resins constituting the electromagnetic wave shielding layer.
  • the overall thickness of the electromagnetic wave shielding film of Example 1D was 150 ⁇ m.
  • the thickness of the 1st layer with which a base material layer is provided was 30 micrometers
  • the thickness of the 3rd layer was 30 micrometers
  • the thickness of the 2nd layer was 60 micrometers.
  • the thickness of the electromagnetic wave shielding layer composed of the three-layer laminate was 30 ⁇ m (each layer had a thickness of 10 ⁇ m).
  • the storage elastic modulus at 150 ° C. of the base material layer was measured and found to be 1.8E + 07 Pa, respectively.
  • the thickness of the electromagnetic wave shielding layer composed of the three-layer laminate was 30 ⁇ m (each layer had a thickness of 10 ⁇ m).
  • Example 2D In the step ⁇ 3> for producing the electromagnetic shielding film and the step ⁇ 2> for producing the electromagnetic shielding evaluation film, after coating polyaniline, PEDOT / PSS and polyaniline are further added in this order. Coated with.
  • an electromagnetic wave shielding film and an electromagnetic wave shielding evaluation film of Example 2D were obtained in the same manner as in Example 1D, except that an electromagnetic wave shielding layer composed of a laminate having a three-layer structure was formed.
  • Example 3D After coating PEDOT / PSS in the step ⁇ 3> for producing the electromagnetic shielding film and the step ⁇ 2> for producing the electromagnetic shielding evaluation film, polyaniline, PEDOT / PSS, and polyaniline are further coated. , PEDOT / PSS and polyaniline were coated in this order. Thus, an electromagnetic wave shielding film and an electromagnetic wave shielding evaluation film of Example 3D were obtained in the same manner as in Example 1D, except that an electromagnetic wave shielding layer composed of a laminate having a 6-layer structure was formed.
  • the thickness of the electromagnetic wave shielding layer composed of the six-layer laminate was 30 ⁇ m (each layer had a thickness of 5 ⁇ m).
  • Example 4D In the step ⁇ 3> for producing the electromagnetic shielding film and the step ⁇ 2> for producing the electromagnetic shielding evaluation film, after coating polyaniline, PEDOT / PSS, polyaniline and PEDOT / PSS are further coated. And polyaniline and PEDOT / PSS were coated in this order. In this manner, an electromagnetic wave shielding film and an electromagnetic wave shielding evaluation film of Example 4D were obtained in the same manner as in Example 1D, except that an electromagnetic wave shielding layer composed of a laminate having a 6-layer structure was formed.
  • the thickness of the electromagnetic wave shielding layer composed of the six-layered laminate was 30 ⁇ m (each layer had a thickness of 5 ⁇ m).
  • Example 5D In the step ⁇ 3> for producing the electromagnetic wave shielding film and the step ⁇ 2> for producing the electromagnetic wave shielding property evaluation film, after coating PEDOT / PSS, polyaniline was further coated. Thus, an electromagnetic wave shielding film and an electromagnetic wave shielding evaluation film of Example 5D were obtained in the same manner as in Example 1, except that an electromagnetic wave shielding layer composed of a laminate having a two-layer structure was formed.
  • the thickness of the electromagnetic wave shielding layer composed of the two-layered laminate was 30 ⁇ m (each layer had a thickness of 15 ⁇ m).
  • Example 6D After coating PEDOT / PSS in the step ⁇ 3> for producing the electromagnetic shielding film and the step ⁇ 2> for producing the electromagnetic shielding evaluation film, water-CNT urethane resin dispersion is further applied. (Hodogaya Chemical Co., Ltd., trade name: 5 wt% NT-7K-containing aqueous dispersion) was coated. Thus, an electromagnetic wave shielding film and an electromagnetic wave shielding evaluation film of Example 6D were obtained in the same manner as in Example 1 except that an electromagnetic wave shielding layer composed of a laminate having a two-layer structure was formed.
  • the layer formed from the water-CNT urethane resin dispersion was a mixed layer of CNT and polyurethane resin, and the CNT content in the layer was 12 wt% and the polyurethane resin content was 88 wt%. . Further, in the electromagnetic wave shielding film and the electromagnetic wave shielding evaluation film of Example 5D, the thickness of the electromagnetic wave shielding layer composed of the two-layer laminate was 30 ⁇ m (the thickness of each layer was 15 ⁇ m, respectively).
  • Example 7D In the step ⁇ 3> for producing the electromagnetic wave shielding film and the step ⁇ 2> for producing the electromagnetic wave shielding evaluation film, an electromagnetic wave shielding layer having a single layer structure by coating PEDOT / PSS. Except that was formed, an electromagnetic wave shielding film and an electromagnetic wave shielding evaluation film of Example 7D were obtained in the same manner as Example 1D.
  • the thickness of the electromagnetic wave shielding layer was 30 ⁇ m, and the surface resistance value of the electromagnetic wave shielding layer was 4400 ⁇ / ⁇ .
  • the surface resistance value of the electromagnetic wave shielding layer is measured using a resistivity meter (Mitsubishi Chemical Analytech Co., Ltd., “Lorestar GP / MCP-T610”) according to JIS-K7194. This was carried out by the method (constant current application method).
  • Example 8D In the step ⁇ 3> for producing the electromagnetic wave shielding film and the step ⁇ 2> for producing the electromagnetic wave shielding evaluation film, an electromagnetic wave shielding layer having a single layer structure is formed by coating polyaniline. Except having done, it carried out similarly to Example 1D and obtained the film for electromagnetic wave shielding of Example 8D, and the film for electromagnetic wave shielding property evaluation.
  • the thickness of the electromagnetic wave shielding layer was 19 ⁇ m, and the surface resistance value of the electromagnetic wave shielding layer was 500 ⁇ / ⁇ .
  • the electromagnetic wave shielding films produced in Examples 1D to 8D are each pressed onto a printed wiring board at 150 ° C. ⁇ 1 MPa ⁇ 10 minutes using a vacuum / pressure forming apparatus, and are attached to the printed wiring board. After sticking, the base material layer is peeled off, and it is determined whether or not there is a gap between the electromagnetic wave shielding layer attached to the printed wiring board and the groove on the printed wiring board. In addition, it observed and evaluated with the microscope and the microscope whether there was a space
  • Step of 2000 ⁇ m or more B: Step of 1000 ⁇ m or more and less than 2000 ⁇ m
  • Electromagnetic wave shielding properties For respect to the films for evaluating electromagnetic shielding properties produced in Examples 1D to 8D, the electromagnetic shielding properties for blocking electromagnetic waves at frequencies of 1 GHz, 2.4 GHz, and 3 GHz were measured using the above-described microstrip line method. Furthermore, the electromagnetic shielding property which interrupts
  • ⁇ light transmittance >> About the electromagnetic wave shielding property evaluation films prepared in Examples 1D to 8D, using a UV-visible spectrophotometer (manufactured by JASCO Corporation, “V-650”), the light transmittance at wavelengths of 300 nm, 500 nm and 800 nm, and The maximum value of light transmittance at 300 to 800 nm was measured. Table 4 shows the results of the evaluation tests of the above examples and comparative examples.
  • the layer made of PEDOT / PSS provided in the electromagnetic wave shielding layer is the first layer, and the layer made of polyaniline is the second layer.
  • the layer comprised by PEDOT / PSS with which an electromagnetic wave shielding layer is provided is made into a 1st layer, and the layer comprised from CNT is made into a 2nd layer.
  • the some 1st layer and 2nd layer with which the electromagnetic wave shielding layer in Table 4 is provided respectively show the lamination order from the base material layer side.
  • the surface resistance value of the electromagnetic wave shielding layer is 1 ⁇ 10 ⁇ 3 ⁇ / ⁇ or more and 1 ⁇ 10 6 ⁇ / ⁇ or less.
  • the electromagnetic wave shielding layer is composed of a laminate in which each adjacent layer contains a different conductive polymer, whereby an electromagnetic wave in a high frequency band such as 1 GHz is obtained. Even so, the electromagnetic wave could be blocked more effectively.
  • the electromagnetic wave shielding film obtained in each Example has a sufficiently low light transmittance. That is, it was found that the electromagnetic wave shielding films obtained in these examples had excellent light absorption (light shielding properties).
  • Examples 1D to 6D were able to more effectively block electromagnetic waves in a high frequency band (particularly 2.0 to 3.0 GHz) than Examples 7D and 8D.
  • the electromagnetic wave shielding film includes a base material layer and an electromagnetic wave shielding layer made of a material containing at least one of a conductive material and a magnetic absorption material, and the surface resistance of the electromagnetic wave shielding layer.
  • the value is 1 ⁇ 10 ⁇ 3 ⁇ / ⁇ or more and 1 ⁇ 10 6 ⁇ / ⁇ or less.
  • the electromagnetic wave shielding layer can be reduced in weight and thickness, and electromagnetic waves in a high frequency band can be effectively blocked as in the GHz order.
  • the electromagnetic wave shielding film of the present invention has a light transmittance of 0.01% or more and 30% or less at a wavelength of 300 nm or more and 800 nm or less.
  • the electromagnetic shielding film absorbs and blocks light to cover the inside, that is, the electronic component covered with the electromagnetic wave shielding layer. Can be made invisible. Thereby, the secrecy of the electronic component at the time of distribution of the electronic component mounting substrate covered with the electromagnetic wave shielding layer can be ensured, for example. Therefore, the present invention has industrial applicability.

Abstract

This electromagnetic wave shielding film (100) includes a base material layer (1) and an electromagnetic wave blocking layer (3) laminated to the base material layer (1). The electromagnetic wave blocking layer (3) is composed of at least one type of material selected from conductive materials and magnetic-absorbent materials, and has surface resistance of 1×10-3Ω to 1×10-6Ω, inclusive. With this electromagnetic wave shielding film (100), the electromagnetic wave blocking layer (3) can be lighter in weight and thinner, and electromagnetic waves in a high frequency band, such as one on the GHz order, can be effectively blocked. The light transmittance of the electromagnetic wave shielding film (100) at wavelengths of 300 nm to 800 nm, inclusive, is 0.01% to 30%, inclusive.

Description

電磁波シールド用フィルム、および電子部品搭載基板Electromagnetic wave shielding film and electronic component mounting board
 本発明は、電磁波シールド用フィルム、および電子部品搭載基板に関する。 The present invention relates to an electromagnetic wave shielding film and an electronic component mounting substrate.
 従来、携帯電話、医療機器のように電磁波の影響を受けやすい電子部品や、半導体素子等の発熱性電子部品、さらにはコンデンサー、コイル等の各種電子部品、またはこれらの電子部品を回路基板に実装された電子機器は、電磁波によるノイズの影響を軽減するため、その表面に電磁波シールド用フィルムが貼付されてきた。 Conventionally, electronic components that are easily affected by electromagnetic waves, such as mobile phones and medical devices, exothermic electronic components such as semiconductor elements, various electronic components such as capacitors and coils, or these electronic components are mounted on a circuit board. In order to reduce the influence of noise caused by electromagnetic waves, an electromagnetic shielding film has been attached to the surface of the electronic devices.
 このような電磁波シールド用フィルムとしては、例えば、絶縁性材料からなる基材層と、基材層の一方または双方の面に積層した金属層とを有するフィルムが開発されている(例えば、特許文献1参照。)。 As such an electromagnetic wave shielding film, for example, a film having a base material layer made of an insulating material and a metal layer laminated on one or both surfaces of the base material layer has been developed (for example, Patent Documents). 1).
 しかしながら、特許文献1に記載のように、電磁波シールド用フィルムを、金属層を有する構成とした場合、近年要望が高まりつつある軽量化・薄型化に対応できないという問題があった。 However, as described in Patent Document 1, when the electromagnetic wave shielding film has a metal layer, there has been a problem that it has not been possible to cope with the reduction in weight and thickness that has been increasingly demanded in recent years.
 さらに、上述の通り、電磁波シールド用フィルムを貼付する電子機器が多様化し、これに応じて、遮断すべきノイズである電磁波の周波数も多様化しており、電磁波シールド用フィルムは、GHzオーダーのように高周波帯域の電磁波まで効果的に遮断し得ることが求められている。 Furthermore, as described above, the electronic devices to which the electromagnetic wave shielding film is attached are diversified, and accordingly, the frequency of electromagnetic waves, which are noises to be blocked, is diversified, and the electromagnetic wave shielding film is in the order of GHz. There is a demand for effective blocking of electromagnetic waves in a high frequency band.
特開2006-156946公報JP 2006-156946 A
 本発明の目的は、軽量化・薄型化を図るとともに、GHzオーダーのように高周波帯域の電磁波まで効果的に遮断することができる電磁波シールド用フィルム、および、かかる電磁波シールド用フィルムを用いて、基板上に搭載された電子部品が電磁波遮断層で被覆された電子部品搭載基板を提供することにある。 An object of the present invention is to reduce the weight and thickness, and to effectively shield electromagnetic waves in a high frequency band as in the GHz order, and a substrate using such an electromagnetic wave shielding film. It is an object of the present invention to provide an electronic component mounting substrate in which an electronic component mounted thereon is covered with an electromagnetic wave shielding layer.
 このような目的は、下記(1)~(23)に記載の本発明により達成される。
 (1) 基材層と、該基材層に積層された電磁波遮断層とを含む電磁波シールド用フィルムであって、
 前記電磁波遮断層は、導電性材料および磁性吸収材料のうちの少なくとも1種を含む材料で構成され、その表面抵抗値が1×10-3Ω/□以上、1×10Ω/□以下であり、
 電磁波シールド用フィルムは、波長300nm以上、800nm以下における光線透過率が0.01%以上、30%以下であることを特徴する電磁波シールド用フィルム。
 (2) 前記導電性材料は、ポリエチレンジオキシチオフェン/ポリスチレンスルホネート(PEDOT/PSS)およびポリアニリンのうちの少なくとも1種の導電性高分子である上記(1)に記載の電磁波シールド用フィルム。
 (3) 前記電磁波遮断層は、周波数0.2~1GHzの電磁波における、マイクロストリップライン法を用いて測定した際の電磁波シールド効果が3dB以上である上記(1)または(2)に記載の電磁波シールド用フィルム。
 (4) 前記電磁波遮断層は、周波数0.2~1GHzの電磁波における、KEC法を用いて測定した際の電磁波シールド効果が10dB以上である上記(1)ないし(3)のいずれかに記載の電磁波シールド用フィルム。
 (5) 前記電磁波遮断層は、周波数1GHzにおける複素誘電率(ε)の虚数部(ε”)が30以上である上記(1)ないし(4)のいずれかに記載の電磁波シールド用フィルム。
 (6) 前記電磁波遮断層の誘電正接(tanδ)の値は、2以上、100以下である上記(5)に記載の電磁波シールド用フィルム。
 (7) 前記電磁波遮断層の複素誘電率(ε)は、空洞共振器法を用いて測定される上記(5)または(6)に記載の電磁波シールド用フィルム。
 (8) 前記導電性材料は、導電性高分子および炭素同素体のうちの少なくとも1種である上記(5)ないし(7)のいずれかに記載の電磁波シールド用フィルム。
 (9) 前記導電性材料は、アスペクト比が10以上、4000以下であるカーボンナノチューブを含有する上記(1)ないし(7)のいずれかに記載の電磁波シールド用フィルム。
 (10) 前記カーボンナノチューブは、その比表面積が20m/g以上である上記(9)に記載の電磁波シールド用フィルム。
 (11) 前記カーボンナノチューブは、多層カーボンナノチューブである上記(9)または(10)に記載の電磁波シールド用フィルム。
 (12) 前記電磁波遮断層は、複数の層が積層された積層体であり、隣接する各層が異なる前記材料で構成されている上記(1)に記載の電磁波シールド用フィルム。
 (13) 前記材料は、導電性高分子、炭素同素体、軟磁性金属、およびフェライトのうちの少なくとも1種を含む上記(12)に記載の電磁波シールド用フィルム。
 (14) 前記導電性高分子は、ポリアニリン、ポリピロール、ポリチオフェン、ポリエチレンジオキシチオフェン(PEDOT)およびポリエチレンジオキシチオフェン/ポリスチレンスルホネート(PEDOT/PSS)のうちの少なくとも1種を含む上記(13)に記載の電磁波シールド用フィルム。
 (15) 前記電磁波遮断層は、第1の材料で構成される第1の層と、第2の材料で構成される第2の層とがこの順で前記基材層側から交互に積層された積層体である上記(12)ないし(14)のいずれかに記載の電磁波シールド用フィルム。
 (16) 前記第1の材料は、ポリアニリンおよびPEDOT/PSSのうちの一方であり、前記第2の材料は、ポリアニリンおよびPEDOT/PSSのうちの他方である上記(15)に記載の電磁波シールド用フィルム。
 (17) 前記第1の層の厚みは、1μm以上、30μm以下である上記(15)または(16)に記載の電磁波シールド用フィルム。
 (18) 前記第2の層の厚みは、1μm以上、30μm以下である上記(15)ないし(17)のいずれかに記載の電磁波シールド用フィルム。
 (19) 前記電磁波遮断層は、2層または3層の積層体である上記(12)ないし(18)のいずれかに記載の電磁波シールド用フィルム。
 (20) 前記電磁波遮断層の厚みは、5μm以上、100μm以下である上記(1)ないし(19)のいずれかに記載の電磁波シールド用フィルム。
 (21) 前記電磁波遮断層の前記基材層側の面、または前記基材層と反対側の面に積層された絶縁層を備える上記(1)ないし(20)のいずれかに記載の電磁波シールド用フィルム。
 (22) 当該電磁波シールド用フィルムは、基板上の凹凸を被覆するために用いられる上記(1)ないし(20)のいずれかに記載の電磁波シールド用フィルム。
 (23) 基板と、
 該基板上に搭載された電子部品と、
 上記(1)ないし(22)のいずれかに記載の電磁波シールド用フィルムを用いて形成され、前記基板の前記電子部品が搭載されている面側から前記基板および電子部品を被覆する電磁波遮断層とを有することを特徴する電子部品搭載基板。
Such an object is achieved by the present invention described in the following (1) to (23).
(1) An electromagnetic wave shielding film comprising a base material layer and an electromagnetic wave shielding layer laminated on the base material layer,
The electromagnetic wave shielding layer is made of a material containing at least one of a conductive material and a magnetic absorption material, and has a surface resistance value of 1 × 10 −3 Ω / □ or more and 1 × 10 6 Ω / □ or less. Yes,
The electromagnetic wave shielding film has an optical transmittance of 0.01% or more and 30% or less at a wavelength of 300 nm or more and 800 nm or less.
(2) The electromagnetic shielding film according to (1), wherein the conductive material is at least one conductive polymer of polyethylene dioxythiophene / polystyrene sulfonate (PEDOT / PSS) and polyaniline.
(3) The electromagnetic wave shielding layer according to (1) or (2), wherein the electromagnetic wave shielding layer has an electromagnetic wave shielding effect of 3 dB or more when measured using a microstrip line method in an electromagnetic wave having a frequency of 0.2 to 1 GHz. Shield film.
(4) The electromagnetic wave shielding layer according to any one of (1) to (3), wherein the electromagnetic wave shielding layer has an electromagnetic wave shielding effect of 10 dB or more when measured using the KEC method in an electromagnetic wave having a frequency of 0.2 to 1 GHz. Film for electromagnetic wave shielding.
(5) The electromagnetic wave shielding film according to any one of (1) to (4), wherein the electromagnetic wave shielding layer has an imaginary part (ε ″) of a complex dielectric constant (ε) at a frequency of 1 GHz of 30 or more.
(6) The electromagnetic shielding film according to (5), wherein the electromagnetic wave shielding layer has a dielectric loss tangent (tan δ) value of 2 or more and 100 or less.
(7) The complex dielectric constant (ε) of the electromagnetic wave shielding layer is the electromagnetic wave shielding film according to the above (5) or (6), which is measured using a cavity resonator method.
(8) The electromagnetic shielding film according to any one of (5) to (7), wherein the conductive material is at least one of a conductive polymer and a carbon allotrope.
(9) The electromagnetic shielding film according to any one of (1) to (7), wherein the conductive material contains carbon nanotubes having an aspect ratio of 10 or more and 4000 or less.
(10) The film for electromagnetic wave shielding according to (9), wherein the carbon nanotube has a specific surface area of 20 m 2 / g or more.
(11) The film for electromagnetic wave shielding according to (9) or (10), wherein the carbon nanotube is a multi-walled carbon nanotube.
(12) The electromagnetic wave shielding layer according to (1), wherein the electromagnetic wave shielding layer is a laminate in which a plurality of layers are laminated, and each adjacent layer is made of the different material.
(13) The electromagnetic shielding film according to (12), wherein the material includes at least one of a conductive polymer, a carbon allotrope, a soft magnetic metal, and ferrite.
(14) The conductive polymer includes at least one of polyaniline, polypyrrole, polythiophene, polyethylenedioxythiophene (PEDOT) and polyethylenedioxythiophene / polystyrenesulfonate (PEDOT / PSS). Electromagnetic shielding film.
(15) The electromagnetic wave shielding layer is formed by alternately laminating a first layer made of a first material and a second layer made of a second material in this order from the base material layer side. The electromagnetic wave shielding film according to any one of (12) to (14), which is a laminated body.
(16) The electromagnetic shielding according to (15), wherein the first material is one of polyaniline and PEDOT / PSS, and the second material is the other of polyaniline and PEDOT / PSS. the film.
(17) The film for electromagnetic wave shielding according to (15) or (16), wherein the thickness of the first layer is 1 μm or more and 30 μm or less.
(18) The electromagnetic wave shielding film according to any one of (15) to (17), wherein the thickness of the second layer is 1 μm or more and 30 μm or less.
(19) The electromagnetic wave shielding film according to any one of (12) to (18), wherein the electromagnetic wave shielding layer is a laminate of two layers or three layers.
(20) The electromagnetic wave shielding film according to any one of (1) to (19), wherein the electromagnetic wave shielding layer has a thickness of 5 μm or more and 100 μm or less.
(21) The electromagnetic wave shield according to any one of (1) to (20), further including an insulating layer laminated on a surface of the electromagnetic wave shielding layer on the base material layer side or on a surface opposite to the base material layer. Film.
(22) The electromagnetic wave shielding film according to any one of (1) to (20), wherein the electromagnetic wave shielding film is used to coat unevenness on a substrate.
(23) a substrate;
Electronic components mounted on the substrate;
An electromagnetic wave shielding layer formed by using the electromagnetic wave shielding film according to any one of (1) to (22), and covering the substrate and the electronic component from the side of the substrate on which the electronic component is mounted; An electronic component mounting board characterized by comprising:
 本発明によれば、電磁波シールド用フィルムが、基材層と、導電性材料および磁性吸収材料のうちの少なくとも1種を含む材料で構成された電磁波遮断層とを含み、電磁波遮断層の表面抵抗値が1×10-3Ω/□以上、1×10Ω/□以下である。これにより、電磁波遮断層の軽量化・薄型化を図ることができるとともに、GHzオーダーのように高周波帯域の電磁波まで効果的に遮断することができる。
 さらに、本発明の電磁波シールド用フィルムは、波長300nm以上、800nm以下における光線透過率が0.01%以上、30%以下である。
 この電磁波シールド用フィルムを用いて、基板上に搭載された電子部品を被覆した際に、電磁波シールド用フィルムが、光を吸収、遮断することにより、電磁波遮断層で被覆している内部すなわち電子部品を見えなくすることができる。これにより、例えば、電磁波遮断層で被覆された電子部品搭載基板の流通時における電子部品の秘匿性を担保することができる。
According to the present invention, the electromagnetic wave shielding film includes a base material layer and an electromagnetic wave shielding layer made of a material containing at least one of a conductive material and a magnetic absorption material, and the surface resistance of the electromagnetic wave shielding layer. The value is 1 × 10 −3 Ω / □ or more and 1 × 10 6 Ω / □ or less. As a result, the electromagnetic wave shielding layer can be reduced in weight and thickness, and electromagnetic waves in a high frequency band can be effectively blocked as in the GHz order.
Furthermore, the electromagnetic wave shielding film of the present invention has a light transmittance of 0.01% or more and 30% or less at a wavelength of 300 nm or more and 800 nm or less.
When an electronic component mounted on a substrate is coated with this electromagnetic wave shielding film, the electromagnetic shielding film absorbs and blocks light to cover the inside, that is, the electronic component covered with the electromagnetic wave shielding layer. Can be made invisible. Thereby, the secrecy of the electronic component at the time of distribution of the electronic component mounting substrate covered with the electromagnetic wave shielding layer can be ensured, for example.
図1は、本発明の電磁波シールド用フィルムの第1実施形態を示す縦断面図である。FIG. 1 is a longitudinal sectional view showing a first embodiment of an electromagnetic wave shielding film of the present invention. 図2は、図1に示す電磁波シールド用フィルムを用いて電子部品の被覆方法を説明するための縦断面図である。FIG. 2 is a longitudinal sectional view for explaining a method of coating an electronic component using the electromagnetic wave shielding film shown in FIG. 図3は、本発明の電磁波シールド用フィルムの第4実施形態を示す縦断面図である。FIG. 3 is a longitudinal sectional view showing a fourth embodiment of the electromagnetic wave shielding film of the present invention. 図4は、本発明の電磁波シールド用フィルムの第5実施形態を示す縦断面図である。FIG. 4 is a longitudinal sectional view showing a fifth embodiment of the electromagnetic wave shielding film of the present invention. 図5は、本発明の電磁波シールド用フィルムの第6実施形態を示す縦断面図である。FIG. 5 is a longitudinal sectional view showing a sixth embodiment of the electromagnetic wave shielding film of the present invention. 図6は、本発明の電磁波シールド用フィルムの第7実施形態を示す縦断面図である。FIG. 6 is a longitudinal sectional view showing a seventh embodiment of the electromagnetic wave shielding film of the present invention. 図7は、本発明の電磁波シールド用フィルムの第8実施形態を示す縦断面図である。FIG. 7 is a longitudinal sectional view showing an eighth embodiment of the electromagnetic wave shielding film of the present invention. 図8は、本発明の電磁波シールド用フィルムの第9実施形態を示す縦断面図である。FIG. 8 is a longitudinal sectional view showing a ninth embodiment of the electromagnetic wave shielding film of the present invention. 図9は、本発明の電磁波シールド用フィルムの第10実施形態を示す縦断面図である。FIG. 9 is a longitudinal sectional view showing a tenth embodiment of the electromagnetic wave shielding film of the present invention. 図10は、本発明の電磁波シールド用フィルムの第11実施形態を示す縦断面図である。FIG. 10 is a longitudinal sectional view showing an eleventh embodiment of the electromagnetic wave shielding film of the present invention. 図11は、本発明の電磁波シールド用フィルムの第12実施形態を示す縦断面図である。FIG. 11 is a longitudinal sectional view showing a twelfth embodiment of the electromagnetic wave shielding film of the present invention. 図12は、本発明の電磁波シールド用フィルムの第13実施形態を示す縦断面図である。FIG. 12 is a longitudinal sectional view showing a thirteenth embodiment of the electromagnetic wave shielding film of the present invention. 図13は、本発明の電磁波シールド用フィルムの第14実施形態を示す縦断面図である。FIG. 13: is a longitudinal cross-sectional view which shows 14th Embodiment of the film for electromagnetic wave shields of this invention.
 以下、本発明の電磁波シールド用フィルム、および電子部品搭載基板を、添付図面に示す好適実施形態に基づいて、詳細に説明する。 Hereinafter, an electromagnetic wave shielding film and an electronic component mounting substrate of the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings.
 本発明の電磁波シールド用フィルムは、基材層と、該基材層に積層された電磁波遮断層とを含み、電磁波遮断層は、導電性材料および磁性吸収材料のうちの少なくとも1種を含む材料で構成され、その表面抵抗値が1×10-3Ω/□以上、1×10Ω/□以下である。 The electromagnetic wave shielding film of the present invention includes a base material layer and an electromagnetic wave shielding layer laminated on the base material layer, and the electromagnetic wave shielding layer is a material containing at least one of a conductive material and a magnetic absorption material. The surface resistance value is 1 × 10 −3 Ω / □ or more and 1 × 10 6 Ω / □ or less.
 このような電磁波シールド用フィルムによれば、電磁波遮断層の軽量化・薄型化を図ることができるとともに、GHzオーダーのように高周波帯域の電磁波まで効果的に遮断することができる。
 さらに、本発明の電磁波シールド用フィルムは、波長300nm以上、800nm以下における光線透過率が0.01%以上、30%以下である。
 この電磁波シールド用フィルムを用いて、基板上に搭載された電子部品を被覆した際に、電磁波シールド用フィルムが、光を吸収、遮断することにより、電磁波遮断層で被覆している内部すなわち電子部品を見えなくすることができる。これにより、例えば、電磁波遮断層で被覆された電子部品搭載基板の流通時における電子部品の秘匿性を担保することができる。
According to such an electromagnetic wave shielding film, the electromagnetic wave shielding layer can be reduced in weight and thickness, and can effectively block electromagnetic waves in a high frequency band as in the GHz order.
Furthermore, the electromagnetic wave shielding film of the present invention has a light transmittance of 0.01% or more and 30% or less at a wavelength of 300 nm or more and 800 nm or less.
When an electronic component mounted on a substrate is coated with this electromagnetic wave shielding film, the electromagnetic shielding film absorbs and blocks light to cover the inside, that is, the electronic component covered with the electromagnetic wave shielding layer. Can be made invisible. Thereby, the secrecy of the electronic component at the time of distribution of the electronic component mounting substrate covered with the electromagnetic wave shielding layer can be ensured, for example.
 <電磁波シールド用フィルム>
 <第1実施形態>
 図1は、本発明の電磁波シールド用フィルムの第1実施形態を示す縦断面図である。なお、以下の説明では、説明の便宜上、図1中の上側を「上」、下側を「下」と言う。
<Electromagnetic wave shielding film>
<First Embodiment>
FIG. 1 is a longitudinal sectional view showing a first embodiment of an electromagnetic wave shielding film of the present invention. In the following description, for convenience of description, the upper side in FIG. 1 is referred to as “upper” and the lower side is referred to as “lower”.
 なお、本実施形態では、本発明の電磁波シールド用フィルムを、基板5上の凹凸6を被覆するために用いる場合を、一例に説明する。 In this embodiment, the case where the electromagnetic wave shielding film of the present invention is used to cover the unevenness 6 on the substrate 5 will be described as an example.
 図1に示すように、本実施形態において、電磁波シールド用フィルム100は、基材層1と、絶縁層2と、電磁波遮断層3とで構成されている。かかる電磁波シールド用フィルム100は、絶縁層2および電磁波遮断層3が、基材層1の下面(一方の面)側から、絶縁層2が基材層1に接触して、この順で積層されている。 As shown in FIG. 1, in this embodiment, the electromagnetic wave shielding film 100 is composed of a base material layer 1, an insulating layer 2, and an electromagnetic wave shielding layer 3. In this electromagnetic wave shielding film 100, the insulating layer 2 and the electromagnetic wave shielding layer 3 are laminated in this order with the insulating layer 2 coming into contact with the base material layer 1 from the lower surface (one surface) side of the base material layer 1. ing.
 また、基材層1は、第1の層11と、第2の層13と、第3の層12とで構成され、これらが基材層1の上面(他方の面)側から、この順で積層されている。 The base material layer 1 includes a first layer 11, a second layer 13, and a third layer 12, which are arranged in this order from the upper surface (the other surface) side of the base material layer 1. Are stacked.
 なお、以下では、基板5上に電子部品4が搭載(載置)されることにより形成される凹凸6を電磁波シールド用フィルム100で被覆する場合について説明する。なお、この凹凸6は、電子部品4の搭載により基板5上に形成される凸部61と凹部62とからなる。なお、基板5上に搭載する電子部品4としては、例えば、フレキシブル回路基板(FPC)上に搭載されているLCDドライバーIC、タッチパネル周辺のIC+コンデンサーまたは電子回路基板(マザーボード)が挙げられる。 In addition, below, the case where the unevenness | corrugation 6 formed by mounting the electronic component 4 on the board | substrate 5 is coat | covered with the film 100 for electromagnetic wave shielding is demonstrated. The unevenness 6 includes a convex portion 61 and a concave portion 62 that are formed on the substrate 5 by mounting the electronic component 4. Examples of the electronic component 4 mounted on the substrate 5 include an LCD driver IC mounted on a flexible circuit board (FPC), an IC + capacitor around the touch panel, or an electronic circuit board (motherboard).
 <基材層1>
 まず、基材層1について説明する。
<Base material layer 1>
First, the base material layer 1 will be described.
 基材層1は、貼付工程において、電磁波シールド用フィルム100を用いて、基板5上の凹凸6を被覆する際、凹凸6に絶縁層2および電磁波遮断層3を押し込む(埋め込む)ことが行われるが、これら絶縁層2および電磁波遮断層3の凹凸6に対する形状追従性を向上させるための基材として機能する。また、剥離工程において、凹凸6に絶縁層2および電磁波遮断層3を押し込んだ状態で、これらから剥離する。 When the base material layer 1 covers the unevenness 6 on the substrate 5 by using the electromagnetic wave shielding film 100 in the attaching step, the insulating layer 2 and the electromagnetic wave shielding layer 3 are pressed (embedded) into the unevenness 6. However, it functions as a base material for improving the shape followability of the insulating layer 2 and the electromagnetic wave shielding layer 3 with respect to the irregularities 6. Further, in the peeling step, the insulating layer 2 and the electromagnetic wave shielding layer 3 are pressed into the concavo-convex 6 and peeled from these.
 また、この基材層1の150℃における貯蔵弾性率は、2.0E+05~2.0E+08Paであるのが好ましく、1.0E+06~1.0E+08Paであるのがより好ましく、3.0E+06~6.0E+07Paであるのがさらに好ましい。
 上述したように、基材層1は、絶縁層2および電磁波遮断層3の凹凸6に対する形状追従性を向上させるための基材として機能する。この基材層1の加熱時における貯蔵弾性率を、前記範囲内に設定することにより、電磁波シールド用フィルム100を用いて、基板5上の凹凸6を被覆する際に、絶縁層2および電磁波遮断層3を凹凸6の形状に対応した状態で確実に押し込むことができる。その結果、この凹凸6が設けられた基板5を、電磁波遮断層3をもって確実に被覆することができるため、この電磁波遮断層3による凹凸6が設けられた基板5に対する電磁波シールド(遮断)性が向上することとなる。
 さらに、前記貯蔵弾性率を前記範囲内とすることにより、基板5に設けられた凹凸6の段差(凸部の高さ)が500μm以上、特に、1.0~3.0mmとなるように段差が大きい場合や、前記凹凸6における隣接する凸部61同士の離間距離(ピッチ)が200μm以下、特に、100μm~150μmとなるように離間距離が小さい場合であったとしても、絶縁層2および電磁波遮断層3を凹凸6の形状に対応した状態で確実に押し込むことができる。
Further, the storage elastic modulus at 150 ° C. of the base material layer 1 is preferably 2.0E + 05 to 2.0E + 08 Pa, more preferably 1.0E + 06 to 1.0E + 08 Pa, and 3.0E + 06 to 6.0E + 07 Pa. More preferably.
As described above, the base material layer 1 functions as a base material for improving the shape followability of the insulating layer 2 and the electromagnetic wave shielding layer 3 with respect to the unevenness 6. By setting the storage elastic modulus at the time of heating of the base material layer 1 within the above range, the insulating layer 2 and the electromagnetic wave shielding are covered when the unevenness 6 on the substrate 5 is covered with the electromagnetic wave shielding film 100. The layer 3 can be reliably pushed in a state corresponding to the shape of the irregularities 6. As a result, since the substrate 5 provided with the unevenness 6 can be reliably covered with the electromagnetic wave shielding layer 3, the electromagnetic wave shielding (blocking) property to the substrate 5 provided with the unevenness 6 by the electromagnetic wave shielding layer 3 is provided. Will be improved.
Further, by setting the storage elastic modulus within the above range, the step of the concavo-convex 6 provided on the substrate 5 (height of the bulge) is 500 μm or more, particularly 1.0 to 3.0 mm. The insulating layer 2 and the electromagnetic wave can be used even when the distance is large or when the distance (pitch) between the adjacent convex portions 61 in the unevenness 6 is 200 μm or less, and particularly when the distance is small so as to be 100 μm to 150 μm. The blocking layer 3 can be reliably pushed in a state corresponding to the shape of the irregularities 6.
 また、基材層1は、25℃における貯蔵弾性率が1.0E+07~1.0E+10Paであるのが好ましく、5.0E+08~5.0E+09Paであるのがより好ましい。このように、常温(室温)時、すなわち25℃における貯蔵弾性率を前記範囲内に設定することにより、電磁波シールド用フィルム100の加熱前には、基材層1を液状ではなく固形状とし、電磁波シールド用フィルム100の加熱時には、基材層1を半固形状(ゲル状)とすることができる。そのため、基材層1(電磁波シールド用フィルム100)の基板5への貼付時には、基材層1を基板5に対してシワ等を生じさせることなく貼付することができる。また、規定のサイズにカットする際の作業性が向上する。さらに、基板5に設けられた凹凸6への押し込み時には、絶縁層2および電磁波遮断層3を凹凸6が有する凹部62内に、この基材層1をもって確実に押し込むことができる。なお、かかる貯蔵弾性率の特性を有する基材層1は、少なくとも第1の層11および第3の層12が熱可塑性樹脂で構成され、貼付工程における電磁波シールド用フィルム100の加熱後においても、その25℃における貯蔵弾性率が前記範囲内を維持しているのが好ましい。これにより、剥離工程において、絶縁層2から基材層1を容易に剥離させることができる。 The base material layer 1 preferably has a storage elastic modulus at 25 ° C. of 1.0E + 07 to 1.0E + 10 Pa, and more preferably 5.0E + 08 to 5.0E + 09 Pa. In this way, by setting the storage elastic modulus at room temperature (room temperature), that is, at 25 ° C., within the above range, before heating the electromagnetic shielding film 100, the base material layer 1 is made solid rather than liquid, At the time of heating the electromagnetic wave shielding film 100, the base material layer 1 can be made semi-solid (gel). Therefore, when the base material layer 1 (electromagnetic wave shielding film 100) is attached to the substrate 5, the base material layer 1 can be attached to the substrate 5 without causing wrinkles or the like. Moreover, the workability | operativity at the time of cutting to a prescription | regulation size improves. Furthermore, when the substrate 5 is pushed into the unevenness 6, the insulating layer 2 and the electromagnetic wave blocking layer 3 can be reliably pushed into the recess 62 of the unevenness 6 with the base material layer 1. In addition, the base material layer 1 having such storage elastic modulus characteristics is such that at least the first layer 11 and the third layer 12 are made of a thermoplastic resin, and even after the heating of the electromagnetic wave shielding film 100 in the attaching step, The storage elastic modulus at 25 ° C. is preferably maintained within the above range. Thereby, the base material layer 1 can be easily peeled from the insulating layer 2 in the peeling step.
 さらに、基材層1の120℃における貯蔵弾性率をA[Pa]とし、基材層1の150℃における貯蔵弾性率をB[Pa]としたとき、0.02≦A/B≦1.00なる関係を満足するのが好ましく、0.02≦A/B≦0.50なる関係を満足するのがより好ましい。かかる関係を満足する基材層1は、その加熱時において、加熱時の温度変化に起因する基材層1の貯蔵弾性率の変化の幅が小さいと言うことができる。したがって、加熱時の温度条件をたとえ変化させたとしても、この温度変化に起因する基材層1の貯蔵弾性率の変化の幅を必要最小限にとどめることができるため、絶縁層2および電磁波遮断層3を凹凸6が有する凹部62内に、この基材層1により確実に押し込むことができる。 Furthermore, when the storage elastic modulus at 120 ° C. of the base material layer 1 is A [Pa] and the storage elastic modulus at 150 ° C. of the base material layer 1 is B [Pa], 0.02 ≦ A / B ≦ 1. It is preferable to satisfy the relationship of 00, and it is more preferable to satisfy the relationship of 0.02 ≦ A / B ≦ 0.50. It can be said that the base material layer 1 satisfying such a relationship has a small range of change in the storage elastic modulus of the base material layer 1 due to the temperature change during the heating. Therefore, even if the temperature condition at the time of heating is changed, the range of change in the storage elastic modulus of the base material layer 1 due to this temperature change can be kept to the minimum necessary. The base material layer 1 can reliably push the layer 3 into the concave portion 62 of the concave-convex portion 6.
 なお、各層の25℃、120℃および150℃における貯蔵弾性率は、例えば、動的粘弾性測定装置(セイコーインスツルメント社製、「DMS6100」)を用いて、測定すべき各層の貯蔵弾性率を、25~200℃まで、49mNの一定荷重の引張モードで昇温速度5℃/分、周波数1Hzで測定し、25℃、120℃および150℃での貯蔵弾性率を、それぞれ読み取ることにより求めることができる。 In addition, the storage elastic modulus in 25 degreeC, 120 degreeC, and 150 degreeC of each layer is the storage elastic modulus of each layer which should be measured, for example using a dynamic viscoelasticity measuring apparatus (the Seiko Instruments company make, "DMS6100"). Is measured at a heating rate of 5 ° C./min and a frequency of 1 Hz in a tensile mode with a constant load of 49 mN from 25 to 200 ° C., and the storage elastic modulus at 25 ° C., 120 ° C. and 150 ° C. is obtained by reading each. be able to.
 本実施形態では、基材層1は、第1の層11と、第2の層13と、第3の層12とで構成され、これらが基材層1の上面(他方の面)側から、この順で積層されている。上述したように、絶縁層2および電磁波遮断層3を凹凸6の形状に対応して押し込むことができるように、これら各層11~13の種類、および厚み等が適宜組み合わされる。 In the present embodiment, the base material layer 1 includes a first layer 11, a second layer 13, and a third layer 12, which are from the upper surface (the other surface) side of the base material layer 1. These are stacked in this order. As described above, the types, thicknesses, and the like of these layers 11 to 13 are appropriately combined so that the insulating layer 2 and the electromagnetic wave shielding layer 3 can be pushed in corresponding to the shape of the unevenness 6.
 以下、これら各層11~13について、それぞれ、説明する。
 第1の層11は、貼付工程において、基板5上の凹凸6に絶縁層2および電磁波遮断層3を、例えば、真空加圧式ラミネーター等を用いて押し込む際に、真空加圧式ラミネーター等が有する押圧部との離型性を付与する機能を有する。また、第2の層13側に押圧部からの押圧力を伝播する。
Hereinafter, each of these layers 11 to 13 will be described.
The first layer 11 is a pressing force possessed by a vacuum pressure laminator or the like when the insulating layer 2 and the electromagnetic wave shielding layer 3 are pushed into the unevenness 6 on the substrate 5 using, for example, a vacuum pressure laminator or the like in the pasting step. It has a function of imparting releasability to the part. Further, the pressing force from the pressing portion is propagated to the second layer 13 side.
 この第1の層(第1離型層)11の構成材料としては、特に限定されず、例えば、シンジオタクチックポリスチレン、ポリメチルペンテン、ポリブチレンテレフタレート、ポリプロピレン、環状オレフィンポリマー、シリコーンのような樹脂材料が挙げられる。これらの中でも、シンジオタクチックポリスチレンを用いることが好ましい。このように、ポリスチレンとしてシンジオタクチック構造を有するシンジオタクチックポリスチレンを用いることにより、ポリスチレンは、結晶性を備えるため、これに起因して、第1の層11の装置との離型性、さらには耐熱性および形状追従性を向上させることができる。 The constituent material of the first layer (first release layer) 11 is not particularly limited. For example, a resin such as syndiotactic polystyrene, polymethylpentene, polybutylene terephthalate, polypropylene, cyclic olefin polymer, and silicone. Materials. Among these, it is preferable to use syndiotactic polystyrene. Thus, by using syndiotactic polystyrene having a syndiotactic structure as polystyrene, since polystyrene has crystallinity, due to this, releasability from the device of the first layer 11, Can improve heat resistance and shape followability.
 第1の層11に前記シンジオタクチックポリスチレンを用いる場合、その含有量は、特に制限されないが、60重量%以上であることが好ましく、70重量%以上、95重量%以下であることがより好ましく、80重量%以上、90重量%以下であることがさらに好ましい。シンジオタクチックポリスチレンの含有量が前記下限値未満である場合、第1の層11の離型性が低下するおそれがある。また、シンジオタクチックポリスチレンの含有量が前記上限値を超える場合、第1の層11の形状追従性が不足するおそれがある。 When the syndiotactic polystyrene is used for the first layer 11, the content thereof is not particularly limited, but is preferably 60% by weight or more, more preferably 70% by weight or more and 95% by weight or less. 80% by weight or more and 90% by weight or less is more preferable. When content of syndiotactic polystyrene is less than the said lower limit, there exists a possibility that the releasability of the 1st layer 11 may fall. Moreover, when content of syndiotactic polystyrene exceeds the said upper limit, there exists a possibility that the shape followability of the 1st layer 11 may become insufficient.
 なお、第1の層11は、シンジオタクチックポリスチレンのみで構成されていても構わない。また、第1の層11は、前記シンジオタクチックポリスチレンの他に、さらにスチレン系エラストマー、ポリエチレンまたはポリプロピレン等を含有していてもよい。 Note that the first layer 11 may be composed of only syndiotactic polystyrene. The first layer 11 may further contain a styrene elastomer, polyethylene, polypropylene, or the like in addition to the syndiotactic polystyrene.
 第1の層11の厚みT(A)は、特に限定されないが、5μm以上、100μm以下であることが好ましく、10μm以上、70μm以下であることがより好ましく、20μm以上、50μm以下であることがさらに好ましい。第1の層11の厚みが前記下限値未満である場合、第1の層11が破断し、その離型性が低下するおそれがある。また、第1の層11の厚みが前記上限値を超える場合、基材層1の形状追従性が低下し、電磁波遮断層3および絶縁層2の形状追従性が低下するおそれがある。 The thickness T (A) of the first layer 11 is not particularly limited, but is preferably 5 μm or more and 100 μm or less, more preferably 10 μm or more and 70 μm or less, and 20 μm or more and 50 μm or less. Further preferred. When the thickness of the 1st layer 11 is less than the said lower limit, the 1st layer 11 may fracture | rupture and there exists a possibility that the release property may fall. Moreover, when the thickness of the 1st layer 11 exceeds the said upper limit, the shape followability of the base material layer 1 may fall, and there exists a possibility that the shape followability of the electromagnetic wave shielding layer 3 and the insulating layer 2 may fall.
 また、第1の層11の25~150℃における平均線膨張係数は、50~1000[ppm/℃]であるのが好ましく、100~700[ppm/℃]であるのがより好ましい。第1の層11の平均線膨張係数をかかる範囲内に設定することにより、電磁波シールド用フィルム100の加熱時において、第1の層11は、優れた伸縮性を有するため、電磁波遮断層3および絶縁層2の凹凸6に対する形状追従性をより確実に向上させることができる。 The average linear expansion coefficient of the first layer 11 at 25 to 150 ° C. is preferably 50 to 1000 [ppm / ° C.], more preferably 100 to 700 [ppm / ° C.]. By setting the average linear expansion coefficient of the first layer 11 within such a range, the first layer 11 has excellent stretchability when the electromagnetic wave shielding film 100 is heated. The shape followability with respect to the unevenness 6 of the insulating layer 2 can be improved more reliably.
 なお、各層の平均線膨張係数は、例えば、熱機械分析装置(セイコーインスツルメント社製、「TMASS6100」)を用いて、測定すべき各層の貯蔵弾性率を、25~200℃まで、49mNの一定荷重の引張モードで昇温速度5℃/分で測定し、25℃~150℃での平均線膨張係数を、それぞれ読み取ることにより求めることができる。 The average coefficient of linear expansion of each layer is, for example, a storage elastic modulus of 49 mN up to 25 to 200 ° C. using a thermomechanical analyzer (manufactured by Seiko Instruments Inc., “TMASS6100”). The average linear expansion coefficient at 25 ° C. to 150 ° C. can be obtained by measuring at a heating rate of 5 ° C./min in a constant load tension mode.
 さらに、第1の層11の表面張力は、20~40[mN/m]であるのが好ましく、25~35[mN/m]であるのがより好ましい。かかる範囲内の表面張力を有する第1の層11は優れた離型性を備えると言うことができ、真空加圧式ラミネーター等を用いた押し込みの後に、押圧部から第1の層11を剥離させることができる。 Furthermore, the surface tension of the first layer 11 is preferably 20 to 40 [mN / m], and more preferably 25 to 35 [mN / m]. The first layer 11 having a surface tension within such a range can be said to have excellent releasability, and the first layer 11 is peeled from the pressing portion after being pressed using a vacuum pressure laminator or the like. be able to.
 第3の層12は、貼付工程において、基板5上の凹凸6に対する絶縁層2および電磁波遮断層3の押し込みを、真空加圧式ラミネーター等を用いて実施した後に、剥離工程において、基材層1を絶縁層2から剥離する際に、基材層1に剥離性を付与する機能を有する。また、基板5上の凹凸形状に応じて、第3の層12が追従する追従性の機能を有し、かつ、絶縁層2側に、押圧部からの押圧力を伝播する機能を併せ持つ。 The third layer 12 is formed by pressing the insulating layer 2 and the electromagnetic wave shielding layer 3 against the unevenness 6 on the substrate 5 using a vacuum pressure laminator or the like in the attaching step, and then in the peeling step. Has a function of imparting releasability to the base material layer 1 when it is peeled from the insulating layer 2. In addition, the third layer 12 has a follow-up function according to the concavo-convex shape on the substrate 5 and also has a function of propagating the pressing force from the pressing portion on the insulating layer 2 side.
 この第3の層(第2離型層)12の構成材料としては、特に限定されず、例えば、シンジオタクチックポリスチレン、ポリメチルペンテン、ポリブチレンテレフタレート、ポリプロピレン、環状オレフィンポリマー、シリコーンのような樹脂材料が挙げられる。これらの中でも、シンジオタクチックポリスチレンを用いることが好ましい。このように、ポリスチレンとしてシンジオタクチック構造を有するシンジオタクチックポリスチレンを用いることにより、ポリスチレンは、結晶性を備えるため、これに起因して、第3の層12の絶縁層2との離型性、さらには耐熱性および形状追従性を向上させることができる。 The constituent material of the third layer (second release layer) 12 is not particularly limited. For example, syndiotactic polystyrene, polymethylpentene, polybutylene terephthalate, polypropylene, cyclic olefin polymer, resin such as silicone Materials. Among these, it is preferable to use syndiotactic polystyrene. Thus, by using syndiotactic polystyrene having a syndiotactic structure as polystyrene, polystyrene has crystallinity, and as a result, releasability of the third layer 12 from the insulating layer 2 is eliminated. Furthermore, heat resistance and shape followability can be improved.
 第3の層12における前記シンジオタクチックポリスチレンの含有量は、特に制限されず、シンジオタクチックポリスチレンのみで構成されていても構わないが、60重量%以上であることが好ましく、70重量%以上、95重量%以下であることがより好ましく、80重量%以上、90重量%以下であることがさらに好ましい。シンジオタクチックポリスチレンの含有量が前記下限値未満である場合、第3の層12の離型性が低下するおそれがある。また、シンジオタクチックポリスチレンの含有量が前記上限値を超える場合、第3の層12の形状追従性が不足するおそれがある。 The content of the syndiotactic polystyrene in the third layer 12 is not particularly limited and may be composed only of syndiotactic polystyrene, but is preferably 60% by weight or more, and 70% by weight or more. 95% by weight or less, more preferably 80% by weight or more and 90% by weight or less. When content of syndiotactic polystyrene is less than the said lower limit, there exists a possibility that the mold release property of the 3rd layer 12 may fall. Moreover, when content of a syndiotactic polystyrene exceeds the said upper limit, there exists a possibility that the shape followability of the 3rd layer 12 may become insufficient.
 なお、第3の層12は、前記シンジオタクチックポリスチレンの他に、さらにスチレン系エラストマー、ポリエチレンまたはポリプロピレン等を含有していてもよい。また、第3の層12と、前記第1の層11とを構成する樹脂は、同じであっても異なっていても構わない。 The third layer 12 may further contain a styrenic elastomer, polyethylene, polypropylene, or the like in addition to the syndiotactic polystyrene. Further, the resin constituting the third layer 12 and the first layer 11 may be the same or different.
 第3の層12の厚みT(B)は、特に限定されないが、5μm以上、100μm以下であることが好ましく、10μm以上、70μm以下であることがより好ましく、20μm以上、50μm以下であることがさらに好ましい。第3の層12の厚みが前記下限値未満である場合、耐熱性が不足し、熱圧着工程で基材層の耐熱性が不足し、変形が発生し、電磁波遮断層および絶縁層が変形するおそれがある。また、第3の層12の厚みが前記上限値を超える場合、電磁波シールド用フィルム全体の総厚みが厚くなり、カット等の作業性が低下するおそれがあり、また、コスト面でも経済的ではない。 The thickness T (B) of the third layer 12 is not particularly limited, but is preferably 5 μm or more and 100 μm or less, more preferably 10 μm or more and 70 μm or less, and 20 μm or more and 50 μm or less. Further preferred. When the thickness of the third layer 12 is less than the lower limit, the heat resistance is insufficient, the heat resistance of the base material layer is insufficient in the thermocompression bonding process, deformation occurs, and the electromagnetic wave shielding layer and the insulating layer are deformed. There is a fear. Moreover, when the thickness of the 3rd layer 12 exceeds the said upper limit, the total thickness of the whole film for electromagnetic wave shielding becomes thick, there exists a possibility that workability | operativity, such as a cut, may fall, and it is not economical also in terms of cost. .
 なお、第3の層12と、第1の層11の厚みは、同じであっても異なっていても構わない。 Note that the thicknesses of the third layer 12 and the first layer 11 may be the same or different.
 また、第3の層12の25~150℃における平均線膨張係数は、50~1000[ppm/℃]であるのが好ましく、100~700[ppm/℃]であるのがより好ましい。第3の層12の平均線膨張係数をかかる範囲内に設定することにより、電磁波シールド用フィルム100の加熱時において、第3の層12は、優れた伸縮性を有するため、第3の層12、さらには電磁波遮断層3および絶縁層2の凹凸6に対する形状追従性をより確実に向上させることができる。 The average linear expansion coefficient of the third layer 12 at 25 to 150 ° C. is preferably 50 to 1000 [ppm / ° C.], and more preferably 100 to 700 [ppm / ° C.]. By setting the average linear expansion coefficient of the third layer 12 within such a range, the third layer 12 has excellent stretchability when the electromagnetic wave shielding film 100 is heated. Furthermore, the shape followability of the electromagnetic wave shielding layer 3 and the insulating layer 2 with respect to the irregularities 6 can be improved more reliably.
 さらに、第3の層12の表面張力は、20~40[mN/m]であるのが好ましく、25~35[mN/m]であるのがより好ましい。かかる範囲内の表面張力を有する第3の層12は優れた離型性を備えると言うことができ、真空加圧式ラミネーター等を用いた押し込みの後に、基材層1を絶縁層2から剥離する際に、第3の層12と絶縁層2との界面において、基材層1を確実に剥離させることができる。 Furthermore, the surface tension of the third layer 12 is preferably 20 to 40 [mN / m], and more preferably 25 to 35 [mN / m]. The third layer 12 having a surface tension within such a range can be said to have excellent releasability, and the base material layer 1 is peeled off from the insulating layer 2 after being pushed in using a vacuum pressure laminator or the like. At this time, the base material layer 1 can be reliably peeled off at the interface between the third layer 12 and the insulating layer 2.
 第2の層13は、貼付工程において、基材層1を押し込み用の基材として用いて基板5上の凹凸6に対して絶縁層2および電磁波遮断層3を押し込む際に、第3の層12を、凹凸6に対して押し込む(埋め込む)ためのクッション機能を有する。また、第2の層13は、この押し込む力を、第3の層12、さらには、この第3の層12を介して絶縁層2および電磁波遮断層3に、均一に作用させる機能を有しており、これにより、電磁波遮断層3と凹凸6との間にボイドを発生させることなく、絶縁層2および電磁波遮断層3を凹凸6に対して優れた密閉性をもって押し込むことができる。 The second layer 13 is a third layer when the insulating layer 2 and the electromagnetic wave shielding layer 3 are pressed into the unevenness 6 on the substrate 5 using the base material layer 1 as a pressing base material in the attaching step. 12 has a cushioning function for pushing (embedding) 12 into the irregularities 6. Further, the second layer 13 has a function of causing the pushing force to uniformly act on the third layer 12 and further on the insulating layer 2 and the electromagnetic wave shielding layer 3 via the third layer 12. Thus, the insulating layer 2 and the electromagnetic wave shielding layer 3 can be pushed into the irregularities 6 with excellent sealing properties without generating voids between the electromagnetic wave shielding layer 3 and the irregularities 6.
 この第2の層(クッション層)13の構成材料としては、例えば、ポリエチレン、ポリプロプレン等のαオレフィン系重合体、エチレン、プロピレン、ブテン、ペンテン、ヘキセン、メチルペンテン等を共重合体成分として有するαオレフィン系共重合体、ポリエーテルスルホン、ポリフェニレンスルフィド等のエンジニアリングプラスチックス系樹脂が挙げられ、これらを単独あるいは複数併用してもよい。これらの中でも、αオレフィン系共重合体を用いることが好ましい。具体的には、エチレン等のαオレフィンと、(メタ)アクリル酸エステルとの共重合体、エチレンと酢酸ビニルとの共重合体、エチレンと(メタ)アクリル酸との共重合体(EMMA)、およびそれらの部分イオン架橋物等が挙げられる。αオレフィン系共重合体は、形状追従性に優れ、さらに、第3の層12の構成材料と比較して柔軟性に優れることから、かかる構成材料で構成される第2の層13に、第3の層12を凹凸6に対して押し込む(埋め込む)ためのクッション機能を確実に付与することができる。 As a constituent material of the second layer (cushion layer) 13, for example, an α-olefin polymer such as polyethylene or polypropylene, ethylene, propylene, butene, pentene, hexene, methylpentene, or the like is included as a copolymer component. Engineering plastics resins such as α-olefin copolymer, polyethersulfone, polyphenylene sulfide and the like may be used, and these may be used alone or in combination. Among these, it is preferable to use an α-olefin copolymer. Specifically, a copolymer of α-olefin such as ethylene and (meth) acrylic acid ester, a copolymer of ethylene and vinyl acetate, a copolymer of ethylene and (meth) acrylic acid (EMMA), And a partial ion cross-linked product thereof. Since the α-olefin copolymer is excellent in shape followability and further excellent in flexibility as compared with the constituent material of the third layer 12, the second layer 13 made of the constituent material has the The cushion function for pushing (embedding) the third layer 12 into the unevenness 6 can be surely provided.
 第2の層13の厚みT(C)は、特に限定されないが、10μm以上、100μm以下であることが好ましく、20μm以上、80μm以下であることがより好ましく、30μm以上、60μm以下であることがさらに好ましい。第2の層13の厚みが前記下限値未満である場合、第2の層13の形状追従性が不足し、熱圧着工程で凹凸6への追従性が不足するおそれがある。また、第2の層13の厚みが前記上限値を超える場合、熱圧着工程において、第2の層13からの樹脂のシミ出しが多くなり、圧着装置の熱盤に付着し、作業性が低下するおそれがある。 The thickness T (C) of the second layer 13 is not particularly limited, but is preferably 10 μm or more and 100 μm or less, more preferably 20 μm or more and 80 μm or less, and more preferably 30 μm or more and 60 μm or less. Further preferred. When the thickness of the second layer 13 is less than the lower limit value, the shape followability of the second layer 13 is insufficient, and the followability to the unevenness 6 may be insufficient in the thermocompression bonding step. Further, when the thickness of the second layer 13 exceeds the upper limit value, the resin from the second layer 13 is increased in the thermocompression bonding process, and adheres to the hot platen of the crimping apparatus, thereby reducing workability. There is a risk.
 また、第2の層13の25~150℃における平均線膨張係数は、500以上[ppm/℃]であるのが好ましく、1000以上[ppm/℃]であるのがより好ましい。第2の層13の平均線膨張係数をかかる範囲内に設定することにより、電磁波シールド用フィルム100の加熱時において、第2の層13を、第3の層12と比較してより優れた伸縮性を有する層に容易にすることができる。そのため、第2の層13、さらには電磁波遮断層3および絶縁層2の凹凸6に対する形状追従性をより確実に向上させることができる。 The average linear expansion coefficient at 25 to 150 ° C. of the second layer 13 is preferably 500 or more [ppm / ° C.], more preferably 1000 or more [ppm / ° C.]. By setting the average linear expansion coefficient of the second layer 13 within such a range, the second layer 13 can be expanded and contracted more excellently than the third layer 12 when the electromagnetic wave shielding film 100 is heated. Can be easily made into a layer having a property. Therefore, the shape followability of the second layer 13 and the electromagnetic wave shielding layer 3 and the insulating layer 2 with respect to the irregularities 6 can be improved more reliably.
 なお、各層11~13の平均線膨張係数を、それぞれ、前述した範囲内において適宜設定することで、基材層1の150℃における貯蔵弾性率を2.0E+05~2.0E+08Paの範囲内に容易に設定することができる。 It should be noted that the storage modulus at 150 ° C. of the base material layer 1 can be easily within the range of 2.0E + 05 to 2.0E + 08 Pa by appropriately setting the average linear expansion coefficient of each layer 11 to 13 within the above-mentioned range. Can be set to
 また、第1の層11の厚みT(A)と、第3の層12の厚みT(B)と、第2の層13の厚みT(C)としたとき、T(C)/(T(A)+T(B))の値は、特に限定されないが、例えば、次の条件を満たすことが好ましい。すなわち、T(C)/(T(A)+T(B))の値は、0.05よりも大きく、10よりも小さいのが好ましく、0.14よりも大きく、4よりも小さいのがより好ましく、0.3よりも大きく、1.5よりも小さいのがさらに好ましい。 Further, when the thickness T (A) of the first layer 11, the thickness T (B) of the third layer 12, and the thickness T (C) of the second layer 13, T (C) / (T The value of (A) + T (B)) is not particularly limited, but for example, it is preferable that the following condition is satisfied. That is, the value of T (C) / (T (A) + T (B)) is preferably larger than 0.05 and smaller than 10, more preferably larger than 0.14 and smaller than 4. Preferably, it is larger than 0.3 and smaller than 1.5.
 T(C)/(T(A)+T(B))の値が、上記範囲内であれば、形状追従性がより向上する。 If the value of T (C) / (T (A) + T (B)) is within the above range, the shape followability is further improved.
 基材層1の全体の厚みT(F)は、特に限定されないが、20μm以上、300μm以下であることが好ましく、40μm以上、220μm以下であることがより好ましく、70μm以上、160μm以下であることがさらに好ましい。基材層1の全体の厚みが前記下限値未満である場合、第1の層11が破断し、基材層1の離型性が低下するというおそれがある。また、基材層1の全体の厚みが前記上限値を超える場合、基材層1の形状追従性が低下し、電磁波遮断層3および絶縁層2の形状追従性が低下するというおそれがある。 The total thickness T (F) of the base material layer 1 is not particularly limited, but is preferably 20 μm or more and 300 μm or less, more preferably 40 μm or more and 220 μm or less, and 70 μm or more and 160 μm or less. Is more preferable. When the whole thickness of the base material layer 1 is less than the said lower limit, the 1st layer 11 may fracture | rupture and there exists a possibility that the releasability of the base material layer 1 may fall. Moreover, when the whole thickness of the base material layer 1 exceeds the said upper limit, there exists a possibility that the shape followability of the base material layer 1 may fall and the shape followability of the electromagnetic wave shielding layer 3 and the insulating layer 2 may fall.
<絶縁層2>
 次に、絶縁層2について説明する。
<Insulating layer 2>
Next, the insulating layer 2 will be described.
 絶縁層2は、本実施形態では、基材層1(第3の層12)に接触して設けられ、基材層1側から絶縁層2、電磁波遮断層3の順で積層されている。このように積層された絶縁層2および電磁波遮断層3を備える電磁波シールド用フィルム100を用いて基板5上の凹凸6を被覆することで、基板5および電子部品4に電磁波遮断層3が接触し、基板5側から電磁波遮断層3、絶縁層2の順で被覆することとなる。 In this embodiment, the insulating layer 2 is provided in contact with the base material layer 1 (third layer 12), and the insulating layer 2 and the electromagnetic wave shielding layer 3 are laminated in this order from the base material layer 1 side. The electromagnetic wave shielding layer 3 comes into contact with the substrate 5 and the electronic component 4 by covering the unevenness 6 on the substrate 5 with the electromagnetic wave shielding film 100 including the insulating layer 2 and the electromagnetic wave shielding layer 3 laminated in this manner. The electromagnetic wave shielding layer 3 and the insulating layer 2 are coated in this order from the substrate 5 side.
 このように、本実施形態では、絶縁層2は、基板5および電子部品4を、電磁波遮断層3を介して被覆し、これにより、基板5、電子部品4および電磁波遮断層3を、絶縁層2を介して基板5と反対側に位置する他の部材(電子部品等)から絶縁する。 Thus, in the present embodiment, the insulating layer 2 covers the substrate 5 and the electronic component 4 via the electromagnetic wave shielding layer 3, whereby the substrate 5, the electronic component 4 and the electromagnetic wave shielding layer 3 are covered with the insulating layer. 2 to insulate from other members (such as electronic components) located on the opposite side of the substrate 5.
 この絶縁層2としては、例えば、熱硬化性を有する絶縁樹脂または熱可塑性を有する絶縁樹脂(絶縁フィルム)が挙げられる。これらの中でも、熱可塑性を有する絶縁樹脂を用いることが好ましい。熱可塑性を有する絶縁樹脂は、屈曲性に優れたフィルムであることから、貼付工程において、基材層1を押し込み用の基材として用いて基板5上の凹凸6に対して絶縁層2および電磁波遮断層3を押し込む際に、絶縁層2を、凹凸6の形状に対応して確実に追従させることができる。また、熱可塑性を有する絶縁樹脂は、その軟化点温度に加熱すると、接着対象の基板から再剥離することができるので、基板の修理の際には、特に有用である。 Examples of the insulating layer 2 include a thermosetting insulating resin or a thermoplastic insulating resin (insulating film). Among these, it is preferable to use an insulating resin having thermoplasticity. Since the insulating resin having thermoplasticity is a film having excellent flexibility, the insulating layer 2 and the electromagnetic waves are formed on the unevenness 6 on the substrate 5 by using the base material layer 1 as a pressing base material in the attaching step. When the blocking layer 3 is pushed in, the insulating layer 2 can be made to reliably follow the shape of the irregularities 6. In addition, an insulating resin having thermoplasticity is particularly useful when repairing a substrate because it can be re-peeled from the substrate to be bonded when heated to its softening point temperature.
 熱可塑性を有する絶縁樹脂としては、例えば、熱可塑性ポリエステル、α-オレフィン、酢酸ビニル、ポリビニルアセタール、エチレン酢酸ビニル、塩化ビニル、アクリル、ポリアミド、セルロースが挙げられる。これらの中でも基板との密着性、屈曲性、耐薬品性に優れるという理由から熱可塑性ポリエステル、α-オレフィンを用いることが好ましい。 Examples of the insulating resin having thermoplasticity include thermoplastic polyester, α-olefin, vinyl acetate, polyvinyl acetal, ethylene vinyl acetate, vinyl chloride, acrylic, polyamide, and cellulose. Among these, it is preferable to use thermoplastic polyesters and α-olefins because they have excellent adhesion to the substrate, flexibility and chemical resistance.
 さらに、熱可塑性を有する絶縁樹脂には、耐熱性や耐屈曲性等の性能を損なわない範囲で、フェノール系樹脂、シリコーン系樹脂、ユリア系樹脂、アクリル系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂等を含有させることができる。また、熱可塑性を有する絶縁樹脂には、後述する導電性接着剤層の場合と同様に、接着性、耐ハンダリフロー性を劣化させない範囲で、シランカップリング剤、酸化防止剤、顔料、染料、粘着付与樹脂、可塑剤、紫外線吸収剤、消泡剤、レベリング調整剤、充填剤、難燃剤等を添加してもよい。 Furthermore, the insulating resin having thermoplasticity is a phenolic resin, a silicone resin, a urea resin, an acrylic resin, a polyester resin, a polyamide resin, as long as the performance such as heat resistance and flex resistance is not impaired. A polyimide resin or the like can be contained. In addition, in the insulating resin having thermoplasticity, as in the case of the conductive adhesive layer described later, a silane coupling agent, an antioxidant, a pigment, a dye, as long as the adhesiveness and solder reflow resistance are not deteriorated. You may add tackifying resin, a plasticizer, a ultraviolet absorber, an antifoamer, a leveling regulator, a filler, a flame retardant, etc.
 絶縁層2の厚みT(D)は、特に限定されないが、3μm以上、50μm以下であることが好ましく、4μm以上、30μm以下であることがより好ましく、5μm以上、20μm以下であることがさらに好ましい。絶縁層2の厚みが前記下限値未満である場合、耐ハゼ折り性が不足し、凹凸6への熱圧着後に折り曲げ部にてクラックが発生したり、フィルム強度が低下し、導電性接着剤層の絶縁性支持体としての役割を担うことが難しい。前記上限値を超える場合、形状追従性が不足するおそれがある。すなわち、絶縁層2の厚みT(D)を前記範囲内に設定することにより、絶縁層2の屈曲性がより向上する。これにより、貼付工程において、基材層1を押し込み用の基材として用いて基板5上の凹凸6に対して絶縁層2および電磁波遮断層3を押し込む際に、絶縁層2を、凹凸6の形状に対応してより確実に追従させることができる。 The thickness T (D) of the insulating layer 2 is not particularly limited, but is preferably 3 μm or more and 50 μm or less, more preferably 4 μm or more and 30 μm or less, and further preferably 5 μm or more and 20 μm or less. . When the thickness of the insulating layer 2 is less than the lower limit value, the resistance to goby folds is insufficient, cracks are generated at the bent portions after thermocompression bonding to the projections and depressions 6, the film strength decreases, and the conductive adhesive layer It is difficult to play a role as an insulating support. If the upper limit is exceeded, shape followability may be insufficient. That is, by setting the thickness T (D) of the insulating layer 2 within the above range, the flexibility of the insulating layer 2 is further improved. Thereby, in the sticking process, when the insulating layer 2 and the electromagnetic wave shielding layer 3 are pressed into the unevenness 6 on the substrate 5 using the base material layer 1 as a pressing base material, the insulating layer 2 is It can be made to follow more reliably corresponding to a shape.
 また、絶縁層2の25~150℃における平均線膨張係数は、50~1000[ppm/℃]であるのが好ましく、100~700[ppm/℃]であるのがより好ましい。絶縁層2の平均線膨張係数をかかる範囲内に設定することにより、電磁波シールド用フィルム100の加熱時において、絶縁層2の伸縮性をより向上させることができる。これにより、絶縁層2、さらには電磁波遮断層3の凹凸6に対する形状追従性をより確実に向上させることができる。 The average linear expansion coefficient at 25 to 150 ° C. of the insulating layer 2 is preferably 50 to 1000 [ppm / ° C.], more preferably 100 to 700 [ppm / ° C.]. By setting the average linear expansion coefficient of the insulating layer 2 within such a range, the stretchability of the insulating layer 2 can be further improved when the electromagnetic wave shielding film 100 is heated. Thereby, the shape followability with respect to the unevenness | corrugation 6 of the insulating layer 2 and also the electromagnetic wave shielding layer 3 can be improved more reliably.
 なお、この絶縁層2は、図1、2で示したように、1層で構成されていてもよいし、上述した絶縁フィルムのうち異なる種類のフィルム同士を積層させた2層以上の積層体であってもよい。 In addition, this insulating layer 2 may be comprised by 1 layer, as shown in FIG. 1, 2, and the laminated body of two or more layers which laminated | stacked different types of films among the insulating films mentioned above. It may be.
<電磁波遮断層3>
 次に、電磁波遮断層(遮断層)3について説明する。
<Electromagnetic wave blocking layer 3>
Next, the electromagnetic wave blocking layer (blocking layer) 3 will be described.
 電磁波遮断層3は、基板5上に設けられた電子部品4と、この電磁波遮断層3を介して、基板5(電子部品4)と反対側に位置する他の電子部品等とを、これら少なくとも一方から生じる電磁波を遮断(シールド)する機能を有する。 The electromagnetic wave shielding layer 3 includes an electronic component 4 provided on the substrate 5, and other electronic components located on the opposite side of the substrate 5 (electronic component 4) via the electromagnetic wave shielding layer 3. It has a function of shielding (shielding) electromagnetic waves generated from one side.
 ここで、一般的に、電磁波を遮断する機能を発揮する電磁波遮断層としては、電磁波遮断層に入射した電磁波を反射することにより遮断(遮蔽)する反射層と、電磁波遮断層に入射した電磁波を吸収することにより遮断(遮蔽)する吸収層とが知られている。 Here, in general, an electromagnetic wave blocking layer that functions to block electromagnetic waves includes a reflection layer that blocks (shields) electromagnetic waves incident on the electromagnetic wave blocking layer, and electromagnetic waves incident on the electromagnetic wave blocking layer. Absorbing layers that are blocked (shielded) by absorption are known.
 反射層では、入射した電磁波を反射するため、反射された電磁波が電磁波遮断層で被覆されていない他の部材等に対して誤作動等の悪影響をおよぼす。これに対して、吸収層では、吸収層に入射した電磁波を吸収し、熱エネルギーに変換することで遮断して、この吸収により電磁波を消滅させる。そのため、反射層と吸収層とが、ほぼ同一の電磁波シールド性を有している場合には、反射層における上述した悪影響を確実に防止することができるという観点から、電磁波遮断層を吸収層で構成するのが好ましい。 The reflective layer reflects incident electromagnetic waves, and the reflected electromagnetic waves adversely affect other members that are not covered with the electromagnetic wave shielding layer. On the other hand, in the absorption layer, the electromagnetic wave incident on the absorption layer is absorbed and blocked by converting it into thermal energy, and the electromagnetic wave is extinguished by this absorption. Therefore, when the reflective layer and the absorbing layer have substantially the same electromagnetic wave shielding properties, the electromagnetic wave blocking layer is an absorbing layer from the viewpoint that the above-described adverse effects in the reflective layer can be surely prevented. It is preferable to configure.
 そこで、本発明者は、電磁波を遮断する電磁波遮断層として知られる導電性材料または磁性吸収材料を含有する電磁波遮断層に着目し、かかる電磁波遮断層について、鋭意検討した結果、導電性材料または磁性吸収材料を含有する電磁波遮断層の表面抵抗値が、電磁波遮断層が電磁波を遮断するメカニズムに関与するパラメーターであることが判ってきた。 In view of this, the present inventor paid attention to an electromagnetic wave shielding layer containing a conductive material or a magnetic absorbing material known as an electromagnetic wave shielding layer that shields electromagnetic waves, and as a result of earnest studies on such an electromagnetic wave shielding layer, the conductive material or magnetic material was obtained. It has been found that the surface resistance value of the electromagnetic wave shielding layer containing the absorbing material is a parameter related to the mechanism by which the electromagnetic wave shielding layer blocks electromagnetic waves.
 すなわち、電磁波遮断層の表面抵抗値が、電磁波を反射することにより遮断する反射層としての機能を電磁波遮断層が優位に発揮するか、または、電磁波を吸収することにより遮断する吸収層としての機能を電磁波遮断層が優位に発揮するかを左右するパラメーターであることが判ってきた。そして、本発明者は、この電磁波遮断層の表面抵抗値についてさらに検討を行った結果、電磁波遮断層の表面抵抗値を低くし過ぎる(例えば、1×10-3Ω/□未満)と、電磁波遮断層が反射層としての機能を際立てて発揮することを見出した。これに対して、かかる表面抵抗値を適切な範囲、具体的には電磁波遮断層の表面抵抗値を1×10-3Ω/□以上、1×10Ω/□以下に設定することにより、反射層としての機能を減衰させて、吸収層としての機能を的確に発揮させることができることを見出した。さらに、この場合、GHzオーダーのように高周波帯域の電磁波まで、電磁波の吸収により電磁波を効果的に遮断し得ることを見出した。 In other words, the surface resistance value of the electromagnetic wave blocking layer exhibits the function as a reflective layer that blocks by reflecting the electromagnetic wave, or the function as an absorbing layer that blocks by absorbing the electromagnetic wave. It has been found that this is a parameter that determines whether the electromagnetic wave blocking layer exerts superiority. As a result of further investigation on the surface resistance value of the electromagnetic wave shielding layer, the present inventor has found that the surface resistance value of the electromagnetic wave shielding layer is too low (for example, less than 1 × 10 −3 Ω / □), It has been found that the blocking layer exhibits its function as a reflective layer. On the other hand, by setting the surface resistance value to an appropriate range, specifically, the surface resistance value of the electromagnetic wave shielding layer is set to 1 × 10 −3 Ω / □ or more and 1 × 10 6 Ω / □ or less, It has been found that the function as the reflection layer can be attenuated and the function as the absorption layer can be exhibited accurately. Furthermore, in this case, it has been found that electromagnetic waves can be effectively blocked by absorption of electromagnetic waves up to electromagnetic waves in a high frequency band as in the GHz order.
 なお、電磁波遮断層3の表面抵抗値は、1×10-3Ω/□以上、1×10Ω/□以下であればよいが、10Ω/□以上、5×10Ω/□以下であるのが好ましく、150Ω/□以上、1×10Ω/□以下であるのがより好ましい。これにより、より高周波帯域の電磁波であってもより効果的に遮断することができる。 The surface resistance value of the electromagnetic wave shielding layer 3 may be 1 × 10 −3 Ω / □ or more and 1 × 10 6 Ω / □ or less, but is 10Ω / □ or more and 5 × 10 5 Ω / □ or less. It is preferably 150Ω / □ or more and more preferably 1 × 10 4 Ω / □ or less. Thereby, even an electromagnetic wave in a higher frequency band can be blocked more effectively.
 電磁波遮断層3を構成する導電性材料および磁性吸収材料は、特に限定されないが、導電性材料としては、導電性高分子、炭素同素体、銀等の金属材料等が挙げられ、磁性吸収材料としては、軟磁性金属、フェライト等が挙げられる。
 なお、導電性高分子としては、特に限定されず、例えば、ポリアセチレン、ポリピロール、PEDOT(poly-ethylenedioxythiophene)、PEDOT/PSS(poly-ethylenedioxythiophene/poly-styrenesulfonate)、ポリチオフェン、ポリアニリン、ポリ(p-フェニレン)、ポリフルオレン、ポリカルバゾール、ポリシランまたはこれらの誘導体等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。これらの中でも、PEDOT/PSSまたはポリアニリンであるのが好ましい。これらによれば、その表面抵抗値を前記範囲内に設定した際に、たとえ電磁波遮断層3の軽量化・薄型化を図ったとしても、GHzオーダーのように高周波帯域の電磁波までより確実に遮断することができる。
The conductive material and the magnetic absorption material constituting the electromagnetic wave shielding layer 3 are not particularly limited, but examples of the conductive material include conductive polymers, carbon allotropes, metal materials such as silver, and the like. , Soft magnetic metal, ferrite and the like.
The conductive polymer is not particularly limited, and examples thereof include polyacetylene, polypyrrole, PEDOT (poly-ethylenedithiophene), PEDOT / PSS (poly-ethylenedithiophene), polythiophene, polyaniline, polyaniline, polyaniline , Polyfluorene, polycarbazole, polysilane, or derivatives thereof, and the like, and one or more of them can be used in combination. Among these, PEDOT / PSS or polyaniline is preferable. According to these, when the surface resistance value is set within the above range, even if the electromagnetic wave blocking layer 3 is reduced in weight and thickness, it is more reliably blocked to electromagnetic waves in the high frequency band as in the GHz order. can do.
 なお、導電性高分子として、PEDOT/PSSを用いる場合、その粒子径の平均値(平均粒径)は、10nm以上、100nm以下であるのが好ましく、30nm以上、80nm以下であるのがより好ましい。 In addition, when using PEDOT / PSS as a conductive polymer, the average value of the particle diameter (average particle diameter) is preferably 10 nm or more and 100 nm or less, and more preferably 30 nm or more and 80 nm or less. .
 また、導電性高分子として、ポリアニリンを用いる場合、その粒子径の平均値(平均粒径)は、0.5μm以上、10μm以下であるのが好ましく、1.0μm以上、5.0μm以下であるのがより好ましい。 When polyaniline is used as the conductive polymer, the average value (average particle diameter) of the particle diameter is preferably 0.5 μm or more and 10 μm or less, and is 1.0 μm or more and 5.0 μm or less. Is more preferable.
 PEDOT/PSSおよびポリアニリンの粒子径を、それぞれ、前記範囲内に設定することにより、GHzオーダーのように高周波帯域の電磁波まで確実に遮断することができるとともに、形成される電磁波遮断層3をより均一な膜厚を持たせることができる。 By setting the particle diameters of PEDOT / PSS and polyaniline within the above ranges, it is possible to reliably block electromagnetic waves in the high frequency band as in the GHz order, and the formed electromagnetic wave blocking layer 3 is more uniform. Thickness can be given.
 なお、導電性高分子を主材料として含有する電磁波遮断層3は、導電性高分子で構成される単独層であってもよいが、導電性高分子の他にその他の材料を含有する混合層であってもよい。また、その他の材料としては、特に限定されないが、例えば、増感剤、m-クレゾール、エチレングリコール等が挙げられる。 The electromagnetic wave shielding layer 3 containing a conductive polymer as a main material may be a single layer composed of a conductive polymer, but a mixed layer containing other materials in addition to the conductive polymer. It may be. Other materials are not particularly limited, and examples thereof include sensitizers, m-cresol, ethylene glycol and the like.
 また、電磁波遮断層3を混合層とした際に、電磁波遮断層3における導電性高分子の含有量は、50wt%以上、100wt%以下であるのが好ましく、80wt%以上、100wt%以下であるのがより好ましい。 When the electromagnetic wave shielding layer 3 is a mixed layer, the content of the conductive polymer in the electromagnetic wave shielding layer 3 is preferably 50 wt% or more and 100 wt% or less, and is 80 wt% or more and 100 wt% or less. Is more preferable.
 また、炭素同素体としては、例えば、単層カーボンナノチューブ、多層カーボンナノチューブのようなカーボンナノチューブ、カーボンナノファイバー、CNナノチューブ、CNナノファイバー、BCNナノチューブ、BCNナノファイバー、グラフェンや、カーボンマイクロコイル、カーボンナノコイル、カーボンナノホーン、カーボンナノウォールのような炭素等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。これらの中でも、カーボンナノチューブ(特に、多層カーボンナノチューブ)であるのが好ましい。 Examples of carbon allotropes include carbon nanotubes such as single-walled carbon nanotubes and multi-walled carbon nanotubes, carbon nanofibers, CN nanotubes, CN nanofibers, BCN nanotubes, BCN nanofibers, graphene, carbon microcoils, and carbon nanofibers. Examples thereof include carbon such as a coil, carbon nanohorn, and carbon nanowall, and one or more of these can be used in combination. Among these, carbon nanotubes (particularly multi-walled carbon nanotubes) are preferable.
 なお、電磁波遮断層3の構成材料として、炭素同素体を用いる場合、電磁波遮断層3は、炭素同素体で構成される単独層であってもよいが、炭素同素体と樹脂材料とで構成される混合層であるのが好ましい。これにより、電磁波遮断層3の形状安定性を向上させることができる。 In addition, when using a carbon allotrope as a constituent material of the electromagnetic wave shielding layer 3, the electromagnetic wave shielding layer 3 may be a single layer composed of a carbon allotrope, or a mixed layer composed of a carbon allotrope and a resin material. Is preferred. Thereby, the shape stability of the electromagnetic wave shielding layer 3 can be improved.
 このような樹脂材料としては、例えば、ポリウレタン樹脂等が挙げられる。さらに、電磁波遮断層3を混合層とした際に、電磁波遮断層3における炭素同素体の含有量は、5wt%以上、30wt%以下であるのが好ましく、10wt%以上、20wt%以下であるのがより好ましい。 Examples of such resin materials include polyurethane resins. Furthermore, when the electromagnetic wave shielding layer 3 is a mixed layer, the content of the carbon allotrope in the electromagnetic wave shielding layer 3 is preferably 5 wt% or more and 30 wt% or less, and is preferably 10 wt% or more and 20 wt% or less. More preferred.
 さらに、磁性吸収材料としては、例えば、鉄、ケイ素鋼、磁性ステンレス(Fe-Cr-Al-Si合金)、センダスト(Fe-Si-Al合金)、パーマロイ(Fe-Ni合金)、ケイ素銅(Fe-Cu-Si合金)、Fe-Si合金、Fe-Si-B(-Cu-Nb)合金のような軟磁性金属、フェライト等が挙げられる。 Further, examples of the magnetic absorption material include iron, silicon steel, magnetic stainless steel (Fe—Cr—Al—Si alloy), sendust (Fe—Si—Al alloy), permalloy (Fe—Ni alloy), silicon copper (Fe -Cu-Si alloy), Fe-Si alloy, soft magnetic metal such as Fe-Si-B (-Cu-Nb) alloy, ferrite and the like.
 電磁波遮断層3の厚みTは、特に限定されないが、1μm以上、100μm以下であることが好ましく、2μm以上、80μm以下であることがより好ましく、3μm以上、50μm以下であることがさらに好ましい。電磁波遮断層3の厚みが前記下限値未満である場合、電磁波遮断層3の構成材料等によっては、基板搭載部品の端部で破断するおそれがある。また、電磁波遮断層3の厚みが前記上限値を超える場合、電磁波遮断層3の構成材料等によっては形状追従性が不足するおそれがある。また、かかる範囲内の厚みTとしても、優れた電磁波シールド性を発揮させることができるため、電磁波遮断層3の厚みTの薄膜化を実現することができる。結果として、基板5上に絶縁層2および電磁波遮断層3で被覆された電子部品4が搭載された電子部品搭載基板の軽量化を実現することができる。 The thickness T of the electromagnetic wave shielding layer 3 is not particularly limited, but is preferably 1 μm or more and 100 μm or less, more preferably 2 μm or more and 80 μm or less, and further preferably 3 μm or more and 50 μm or less. When the thickness of the electromagnetic wave shielding layer 3 is less than the lower limit value, depending on the constituent material of the electromagnetic wave shielding layer 3, there is a possibility of breaking at the end portion of the board mounted component. Moreover, when the thickness of the electromagnetic wave shielding layer 3 exceeds the upper limit, the shape following property may be insufficient depending on the constituent material of the electromagnetic wave shielding layer 3 or the like. Moreover, since the excellent electromagnetic wave shielding property can be exhibited even with the thickness T within such a range, the electromagnetic wave blocking layer 3 can be made thin with the thickness T. As a result, the weight reduction of the electronic component mounting substrate in which the electronic component 4 covered with the insulating layer 2 and the electromagnetic wave shielding layer 3 is mounted on the substrate 5 can be realized.
 以上のような電磁波遮断層3は、マイクロストリップライン法(MSL法)を用いて測定した、周波数0.2~1GHzにおける、電磁波を遮断(シールド)する電磁波シールド性(吸収性)が3dB以上であるのが好ましく、5dB以上であるのがより好ましく、7dB以上であるのがさらに好ましい。さらに、周波数2~3GHzにおける、電磁波シールド性が5dB以上であるのが好ましく、10dB以上であるのがより好ましく、20dB以上であるのがさらに好ましい。ここで、MSL法では、電磁波を遮断する電磁波シールド性は、以下で説明する測定方法の特性から、主として電磁波を吸収することにより遮断する吸収性(吸収能)を表す値として測定される。したがって、前記範囲内の電磁波シールド性(吸収性)を有する電磁波遮断層3であれば、電磁波遮断層3に入射した電磁波を吸収することにより遮断(遮蔽)することで優れた電磁波シールド性を発揮する電磁波遮断層(吸収層)3と言うことができ、GHzオーダーのように高周波帯域の電磁波まで確実に遮断することができる。 The electromagnetic wave shielding layer 3 as described above has an electromagnetic wave shielding property (absorbability) of 3 dB or more for shielding (shielding) an electromagnetic wave at a frequency of 0.2 to 1 GHz measured using a microstrip line method (MSL method). Preferably, it is 5 dB or more, more preferably 7 dB or more. Further, the electromagnetic wave shielding property at a frequency of 2 to 3 GHz is preferably 5 dB or more, more preferably 10 dB or more, and further preferably 20 dB or more. Here, in the MSL method, the electromagnetic wave shielding property for blocking electromagnetic waves is measured as a value representing the absorbability (absorbing ability) blocking mainly by absorbing electromagnetic waves from the characteristics of the measurement method described below. Therefore, the electromagnetic wave shielding layer 3 having the electromagnetic wave shielding property (absorbing property) within the above range exhibits excellent electromagnetic wave shielding property by shielding (shielding) by absorbing the electromagnetic wave incident on the electromagnetic wave shielding layer 3. It can be said that the electromagnetic wave blocking layer (absorbing layer) 3 is capable of blocking even high frequency electromagnetic waves as in the GHz order.
 なお、MSL法を用いた測定は、例えば、IEC規格62333-2に準拠して、50Ωのインピーダンスを有するマイクロストリップラインと、ネットワークアナライザーとを用いて、反射成分S11と透過成分S21を測定することにより行われ、電磁波シールド性(吸収性)は、下記式(1)および下記式(2)を用いることにより求めることができる。 The measurement using the MSL method is, for example, measuring the reflection component S 11 and the transmission component S 21 using a microstrip line having an impedance of 50Ω and a network analyzer in accordance with IEC standard 62333-2. The electromagnetic wave shielding property (absorbability) can be obtained by using the following formula (1) and the following formula (2).
 ロス率(P(loss)/P(in))=1-(S11 +S21 )/1  (1)
 電磁波シールド性(伝送減衰率)  =  
 -10・log[10^(S21/10)/{1-10^(S11/10)}](2)
Loss rate (P (loss) / P (in)) = 1− (S 11 2 + S 21 2 ) / 1 (1)
Electromagnetic shielding (transmission attenuation factor) =
-10 · log [10 ^ (S 21/10) / {1-10 ^ (S 11/10)}] (2)
 さらに、電磁波遮断層3は、関西電子工業振興センターで開発されたKEC法を用いて測定した周波数0.2~1GHzにおける、電磁波を遮断(シールド)する電磁波シールド性(吸収性+反射性)が10dB以上であるのが好ましく、15dB以上であるのがより好ましく、20dB以上であるのがさらに好ましい。ここで、KEC法では、電磁波を遮断する電磁波シールド性は、以下で説明する測定方法の特性から、電磁波を吸収することにより遮断する吸収性(吸収能)と電磁波を反射することにより遮断する反射性(反射能)とが加算された値として測定される。したがって、MSL法を用いて測定された電磁波シールド性(吸収性)が前記範囲内であり、かつ、KEC法を用いて測定された電磁波シールド性(吸収性+反射性)が前記範囲内であれば、電磁波遮断層3に入射した電磁波を吸収および反射することにより遮断(遮蔽)することで優れた電磁波シールド性を発揮する電磁波遮断層3と言うことができ、GHzオーダーのように高周波帯域の電磁波まで確実に遮断することができる。 Furthermore, the electromagnetic wave shielding layer 3 has an electromagnetic wave shielding property (absorbency + reflectivity) for shielding (shielding) electromagnetic waves at a frequency of 0.2 to 1 GHz measured using the KEC method developed at the Kansai Electronics Industry Promotion Center. It is preferably 10 dB or more, more preferably 15 dB or more, and even more preferably 20 dB or more. Here, in the KEC method, the electromagnetic wave shielding property for blocking electromagnetic waves is based on the characteristics of the measuring method described below, and absorbs (absorbs) the light by absorbing the electromagnetic wave and reflects by blocking the electromagnetic wave. It is measured as a value obtained by adding the property (reflectivity). Therefore, the electromagnetic wave shielding property (absorbing property) measured using the MSL method is within the above range, and the electromagnetic wave shielding property (absorbing property + reflecting property) measured using the KEC method is within the above range. For example, it can be said that the electromagnetic wave shielding layer 3 exhibits excellent electromagnetic shielding properties by absorbing and reflecting the electromagnetic wave incident on the electromagnetic wave shielding layer 3 and blocking (shielding) it. Even electromagnetic waves can be reliably blocked.
 なお、KEC法は、近傍界で発生する電磁波のシールド効果を電界と磁界とに分けて評価する方法である。この方法を用いた測定は、送信アンテナ(送信用の治具)から送信された電磁波を、シート状をなす電磁波遮断層3(測定試料)を介して、受信アンテナ(受信用の治具)で受信することで実施することができ、かかるKEC法では、受信アンテナにおいて、電磁波遮断層3を通過(透過)した電磁波が測定される。すなわち、送信された電磁波(信号)が電磁波遮断層3により受信アンテナ側でどれだけ減衰したかが測定されることから、電磁波を遮断(シールド)する電磁波シールド性は、電磁波を反射する反射性と電磁波を吸収する吸収性との双方を合算した状態で求められる。 The KEC method is a method for evaluating the shielding effect of electromagnetic waves generated in the near field separately for electric and magnetic fields. In this method, the electromagnetic wave transmitted from the transmission antenna (transmission jig) is transmitted to the reception antenna (reception jig) via the electromagnetic wave blocking layer 3 (measurement sample) in the form of a sheet. In the KEC method, an electromagnetic wave that has passed (transmitted) through the electromagnetic wave blocking layer 3 is measured at the receiving antenna. That is, how much the transmitted electromagnetic wave (signal) is attenuated on the receiving antenna side by the electromagnetic wave shielding layer 3 is measured. Therefore, the electromagnetic wave shielding property for shielding (shielding) the electromagnetic wave is a reflection property for reflecting the electromagnetic wave. It is obtained in a state where both the absorption of electromagnetic waves and the absorption are combined.
 また、電磁波遮断層3は、その150℃における貯蔵弾性率が1.0E+05~1.0E+09Paであるのが好ましく、5.0E+05~5.0E+08Paであるのがより好ましい。前記貯蔵弾性率をかかる範囲内に設定することにより、貼付工程において、電磁波シールド用フィルム100の加熱の後、基材層1からの押圧力により、基板5上の凹凸6に絶縁層2および電磁波遮断層3を押し込むことで、この凹凸6を被覆する際に、前記基材層1からの押圧力に応じて、電磁波遮断層3を凹凸6の形状に対応して変形させることができる。すなわち、電磁波遮断層3の凹凸6に対する形状追従性を向上させることができる。 The electromagnetic wave shielding layer 3 preferably has a storage elastic modulus at 150 ° C. of 1.0E + 05 to 1.0E + 09 Pa, and more preferably 5.0E + 05 to 5.0E + 08 Pa. By setting the storage elastic modulus within such a range, in the pasting step, after heating the electromagnetic wave shielding film 100, the insulating layer 2 and the electromagnetic wave are formed on the unevenness 6 on the substrate 5 by pressing force from the base material layer 1. By pressing the blocking layer 3, the electromagnetic wave blocking layer 3 can be deformed corresponding to the shape of the unevenness 6 according to the pressing force from the base material layer 1 when covering the unevenness 6. That is, the shape followability of the electromagnetic wave shielding layer 3 with respect to the unevenness 6 can be improved.
 また、本発明の電磁波シールド用フィルム100は、波長300nm以上、800nm以下における光線透過率が0.01%以上、30%以下である。
 この電磁波シールド用フィルム100を用いて、基板5上に搭載された電子部品4を被覆した際に、電磁波シールド用フィルム100が、光を吸収、遮断することにより、電磁波遮断層3で被覆している内部すなわち電子部品4を見えなくすることができる。これにより、例えば、電磁波遮断層3で被覆された電子部品搭載基板の流通時における電子部品4の秘匿性を担保することができる。
 なお、電磁波シールド用フィルム100の波長300nm以上、800nm以下における光線透過率は、0.01%以上、30%以下であるが、0.01%以上、10%以下であることがより好ましい。これにより、電磁波遮断層3で被覆された電子部品搭載基板の流通時における電子部品4の秘匿性をより確実に担保することができる。
 なお、前記光線透過率は、例えば、紫外可視分光光度計により求めることができる。
Moreover, the electromagnetic wave shielding film 100 of the present invention has a light transmittance of 0.01% or more and 30% or less at a wavelength of 300 nm or more and 800 nm or less.
When the electronic component 4 mounted on the substrate 5 is covered with the electromagnetic wave shielding film 100, the electromagnetic wave shielding film 100 is covered with the electromagnetic wave shielding layer 3 by absorbing and blocking light. The inside, that is, the electronic component 4 can be made invisible. Thereby, the secrecy of the electronic component 4 at the time of the distribution | circulation of the electronic component mounting substrate coat | covered with the electromagnetic wave shielding layer 3 can be ensured, for example.
The light transmittance of the electromagnetic wave shielding film 100 at a wavelength of 300 nm or more and 800 nm or less is 0.01% or more and 30% or less, more preferably 0.01% or more and 10% or less. Thereby, the secrecy of the electronic component 4 at the time of distribution | circulation of the electronic component mounting substrate coat | covered with the electromagnetic wave shielding layer 3 can be ensured more reliably.
In addition, the said light transmittance can be calculated | required with an ultraviolet visible spectrophotometer, for example.
 さらに、電磁波シールド用フィルム100は、基板5上に電子部品4を搭載することで形成された凹凸6に対して、温度150℃、圧力2MPa、時間5分の条件で熱圧着した際の形状追従性が、500μm以上であることが好ましく、800μm以上であることがより好ましく、1000μm以上であることがさらに好ましい。すなわち、凸部61の上面と凹部62の上面との高さの差である凹凸6の高さが500μm以上の凹凸6を電磁波シールド用フィルム100で被覆できるのが好ましく、800μm以上の凹凸6を被覆できるのがより好ましく、1000μm以上の凹凸6を被覆できるのがさらに好ましい。このように高さが高い(段差が大きい)凹凸6であっても被覆できる電磁波シールド用フィルム100を、優れた形状追従性を有すると言うことができ、絶縁層2および電磁波遮断層3により、凹凸6に対して優れた埋め込み率をもって被覆することができる。 Further, the electromagnetic wave shielding film 100 follows the shape when thermocompression bonding is performed on the unevenness 6 formed by mounting the electronic component 4 on the substrate 5 at a temperature of 150 ° C., a pressure of 2 MPa, and a time of 5 minutes. The property is preferably 500 μm or more, more preferably 800 μm or more, and further preferably 1000 μm or more. That is, it is preferable that the unevenness 6 having a height of 500 μm or more, which is the difference in height between the upper surface of the protrusion 61 and the upper surface of the recess 62, can be covered with the electromagnetic wave shielding film 100. It is more preferable to be able to coat, and it is even more preferable to be able to coat the unevenness 6 of 1000 μm or more. Thus, it can be said that the electromagnetic wave shielding film 100 that can be covered even with the unevenness 6 having a high height (a large level difference) has excellent shape followability, and by the insulating layer 2 and the electromagnetic wave shielding layer 3, The unevenness 6 can be coated with an excellent filling rate.
 なお、前記形状追従性は、以下のようにして求めることができる。
 すなわち、まず、縦100mm×横100mm×高さ(厚み)2mmのプリント配線板(マザーボード)に、幅0.2mm、各必要段差の溝を、0.2mm間隔で碁盤目状に形成することにより、プリント配線基板を得る。その後、電磁波シールド用フィルムを、真空加圧式ラミネーターを用いて、150℃×2MPa×5分間の条件で、プリント配線板に圧着させ、プリント配線板に貼り付ける。貼付後、電磁波シールド用フィルムから基材層を剥離し、プリント配線板に貼り付けた遮断層および絶縁層とプリント配線板上の溝との間に空隙があるかどうかを判断する。なお、空隙があるかどうかは、マイクロスコープや顕微鏡で観察することにより評価される。
The shape following property can be obtained as follows.
That is, first, a printed wiring board (motherboard) having a length of 100 mm, a width of 100 mm, and a height (thickness) of 2 mm is formed in a grid pattern having a width of 0.2 mm and each necessary step at intervals of 0.2 mm. Get a printed wiring board. Then, the film for electromagnetic wave shielding is pressure-bonded to the printed wiring board under a condition of 150 ° C. × 2 MPa × 5 minutes using a vacuum pressurizing laminator, and attached to the printed wiring board. After pasting, the base material layer is peeled off from the electromagnetic wave shielding film, and it is determined whether or not there is a gap between the blocking layer and insulating layer stuck on the printed wiring board and the groove on the printed wiring board. In addition, it is evaluated by observing with a microscope or a microscope whether there exists a space | gap.
 <電子部品の被覆方法>
 次に、電子部品の被覆方法について説明する。
<Method of coating electronic parts>
Next, a method for coating an electronic component will be described.
 本実施形態の電子部品の被覆方法は、前記基板上の凹凸に、前記電磁波シールド用フィルムを前記電磁波遮断層または前記絶縁層と電子部品とが接着するように貼付する貼付工程と、前記貼付工程の後、前記基材層を剥離する剥離工程とを有する。 The electronic component coating method according to the present embodiment includes an attaching step of attaching the electromagnetic wave shielding film to the unevenness on the substrate so that the electromagnetic wave shielding layer or the insulating layer and the electronic component adhere to each other, and the attaching step And a peeling step of peeling the base material layer.
 図2は、図1に示す電磁波シールド用フィルムを用いて電子部品の被覆方法を説明するための縦断面図である。 FIG. 2 is a longitudinal sectional view for explaining a method of coating an electronic component using the electromagnetic wave shielding film shown in FIG.
 以下、電子部品の被覆方法の各工程について、順次説明する。
(貼付工程)
 前記貼付工程とは、例えば、図2(a)に示すように、基板5上に設けられた凹凸6に、電磁波シールド用フィルム100を貼付する工程である。
 貼付する方法としては、特に限定されないが、例えば、真空圧空成形が挙げられる。
Hereafter, each process of the coating method of an electronic component is demonstrated sequentially.
(Attaching process)
The affixing step is a step of affixing the electromagnetic wave shielding film 100 to the unevenness 6 provided on the substrate 5, for example, as shown in FIG.
The method for attaching is not particularly limited, and examples thereof include vacuum / pressure forming.
 真空圧空成形とは、例えば、真空加圧式ラミネーターを用いて、電磁波シールド用フィルム100で基板5上の凹凸6を被覆する方法である。かかる方法では、まず、真空雰囲気下として得る閉空間内に、基板5の凹凸6が形成されている側の面と、電磁波シールド用フィルム100の絶縁層2側の面とが対向するように、基板5と電磁波シールド用フィルム100とを重ね合わせた状態でセットする。その後、これらを加熱下において、電磁波シールド用フィルム100側から均一に電磁波シールド用フィルム100と基板5とが互いに接近するように、前記閉空間を真空雰囲気下にし、その後加圧することにより実施される。 The vacuum / pressure forming is a method in which the unevenness 6 on the substrate 5 is covered with the electromagnetic wave shielding film 100 using, for example, a vacuum pressurizing laminator. In such a method, first, in a closed space obtained as a vacuum atmosphere, the surface on the side where the unevenness 6 of the substrate 5 is formed and the surface on the insulating layer 2 side of the electromagnetic wave shielding film 100 are opposed to each other. The substrate 5 and the electromagnetic wave shielding film 100 are set in an overlapped state. Thereafter, under heating, the closed space is placed in a vacuum atmosphere and then pressurized so that the electromagnetic wave shielding film 100 and the substrate 5 approach each other uniformly from the electromagnetic wave shielding film 100 side. .
 この際、基材層1が上述したような構成であることから、基材層1は、真空圧空成形の加熱時に、凹凸6に対して優れた形状追従性を発揮する。 At this time, since the base material layer 1 has the above-described configuration, the base material layer 1 exhibits excellent shape followability with respect to the unevenness 6 when heated in vacuum / pressure forming.
 したがって、この状態で、電磁波シールド用フィルム100側から均一に加圧しつつ、前記閉空間を真空雰囲気下とすることで、基材層1が凹凸6の形状に対応して変形し、さらに、この変形に併せて、基材層1よりも基板5側に位置する、絶縁層2および電磁波遮断層3が凹凸6の形状に対応して変形する。これにより、凹凸6の形状に対応して絶縁層2および電磁波遮断層3が基板5側に押し込まれた状態で、絶縁層2および電磁波遮断層3により凹凸6が被覆される。 Therefore, in this state, the base layer 1 is deformed in accordance with the shape of the irregularities 6 by uniformly pressing from the electromagnetic wave shielding film 100 side while making the closed space under a vacuum atmosphere. Along with the deformation, the insulating layer 2 and the electromagnetic wave shielding layer 3 located closer to the substrate 5 than the base material layer 1 are deformed corresponding to the shape of the irregularities 6. Thereby, the unevenness 6 is covered with the insulating layer 2 and the electromagnetic wave shielding layer 3 in a state where the insulating layer 2 and the electromagnetic wave shielding layer 3 are pushed into the substrate 5 side corresponding to the shape of the unevenness 6.
 このような貼付工程において、貼付する温度は、特に限定されないが、100℃以上、200℃以下であることが好ましく、120℃以上、180℃以下であることがより好ましい。 In such a pasting step, the temperature for pasting is not particularly limited, but is preferably 100 ° C. or higher and 200 ° C. or lower, and more preferably 120 ° C. or higher and 180 ° C. or lower.
 また、貼付する圧力は、特に限定されないが、0.5MPa以上、5.0MPa以下であることが好ましく、1.0MPa以上、3.0MPa以下であることがより好ましい。 Further, the pressure to be applied is not particularly limited, but is preferably 0.5 MPa or more and 5.0 MPa or less, and more preferably 1.0 MPa or more and 3.0 MPa or less.
 さらに、貼付する時間は、特に限定されないが、1分以上、30分以下であることが好ましく、5分以上、15分以下であることがより好ましい。 Furthermore, the sticking time is not particularly limited, but is preferably 1 minute or more and 30 minutes or less, and more preferably 5 minutes or more and 15 minutes or less.
 貼付工程における条件を上記範囲内に設定することにより、基板5上の凹凸6に対して絶縁層2および電磁波遮断層3を押し込んだ状態で、これら絶縁層2および電磁波遮断層3により凹凸6を確実に被覆することができる。 By setting the conditions in the pasting step within the above range, the insulating layer 2 and the electromagnetic wave shielding layer 3 are pushed into the concave and convex portions 6 on the substrate 5, and the concave and convex portions 6 are formed by the insulating layer 2 and the electromagnetic wave shielding layer 3. It can be reliably coated.
(剥離工程)
 前記剥離工程とは、例えば、図2(b)に示すように、前記貼付工程の後、基材層1を電磁波シールド用フィルム100から剥離する工程である。
(Peeling process)
The said peeling process is a process of peeling the base material layer 1 from the film 100 for electromagnetic wave shields after the said sticking process, for example, as shown in FIG.2 (b).
 この剥離工程により、本実施形態では、電磁波シールド用フィルム100における基材層1と絶縁層2との界面において、剥離が生じ、その結果、絶縁層2から基材層1が剥離される。これにより、絶縁層2から基材層1を剥離した状態で、絶縁層2および電磁波遮断層3により凹凸6が被覆される。 In this embodiment, the peeling process causes peeling at the interface between the base material layer 1 and the insulating layer 2 in the electromagnetic wave shielding film 100, and as a result, the base material layer 1 is peeled from the insulating layer 2. Thereby, the unevenness 6 is covered with the insulating layer 2 and the electromagnetic wave shielding layer 3 in a state where the base material layer 1 is peeled from the insulating layer 2.
 なお、このような電磁波シールド用フィルム100を用いた絶縁層2および電磁波遮断層3による凹凸6の被覆では、図2に示したように、貼付する電磁波シールド用フィルム100の形状が対応して、凹凸6を絶縁層2および電磁波遮断層3で被覆することができる。そのため、被覆すべき凹凸6の形状に対応して電磁波シールド用フィルム100の形状を適宜設定することにより、被覆すべき凹凸6を選択的に絶縁層2および電磁波遮断層3で被覆することができる。すなわち、絶縁層2および電磁波遮断層3による凹凸6の選択的な電磁波シールドが可能となる。 In addition, in the covering of the unevenness 6 with the insulating layer 2 and the electromagnetic wave shielding layer 3 using such an electromagnetic wave shielding film 100, as shown in FIG. 2, the shape of the electromagnetic wave shielding film 100 to be applied corresponds, The unevenness 6 can be covered with the insulating layer 2 and the electromagnetic wave shielding layer 3. Therefore, the unevenness 6 to be covered can be selectively covered with the insulating layer 2 and the electromagnetic wave shielding layer 3 by appropriately setting the shape of the electromagnetic wave shielding film 100 corresponding to the shape of the unevenness 6 to be covered. . That is, the electromagnetic wave can be selectively shielded from the unevenness 6 by the insulating layer 2 and the electromagnetic wave shielding layer 3.
 また、基材層1を剥離する方法としては、特に限定されないが、真空圧空成形(上記の貼付工程)後の電磁波シールド用フィルム100が高温の状態では、基材層1が伸びてしまい、樹脂残り等が発生し、剥離作業性が低下する可能性があるので、手作業による剥離が挙げられる。 Further, the method for peeling the base material layer 1 is not particularly limited. However, when the electromagnetic wave shielding film 100 after the vacuum pressure forming (the pasting step) is in a high temperature state, the base material layer 1 is stretched and resin Since the remainder etc. generate | occur | produce and peeling workability | operativity may fall, the peeling by manual work is mentioned.
 この手作業による剥離では、例えば、まず、基材層1の一方の端部を把持し、この把持した端部から基材層1を絶縁層2から引き剥がし、次いで、この端部から中央部へ、さらには他方の端部へと順次基材層1を引き剥がすことにより、絶縁層2から基材層1が剥離される。 In this manual peeling, for example, first, one end portion of the base material layer 1 is gripped, the base material layer 1 is peeled off from the insulating layer 2 from the gripped end portion, and then the central portion is cut from the end portion. Further, the base material layer 1 is peeled from the insulating layer 2 by sequentially peeling the base material layer 1 to the other end.
 剥離する温度は、180℃以下であることが好ましく、150℃以下であることがより好ましく、100℃以下であることがさらに好ましい。 The peeling temperature is preferably 180 ° C. or lower, more preferably 150 ° C. or lower, and further preferably 100 ° C. or lower.
 以上のような工程を経ることにより、絶縁層2から基材層1を剥離した状態で、絶縁層2および電磁波遮断層3により凹凸6を被覆することができる。 By passing through the above processes, the unevenness | corrugation 6 can be coat | covered with the insulating layer 2 and the electromagnetic wave shielding layer 3 in the state which peeled the base material layer 1 from the insulating layer 2. FIG.
 なお、本実施形態では、図1に示したように、上面側から、基材層1(第1の層11、第2の層13、第3の層12)、絶縁層2、電磁波遮断層3がこの順で積層された電磁波シールド用フィルム100を用いて、絶縁層2および電磁波遮断層3で、基板5上の凹凸6を被覆する場合について説明したが、本発明はこれに限定されない。電磁波シールド用フィルム100の層構成としては、例えば、後述するような第4~第7実施形態のような層構成をなしている電磁波シールド用フィルム100であってもよい。 In the present embodiment, as shown in FIG. 1, the base material layer 1 (first layer 11, second layer 13, third layer 12), insulating layer 2, electromagnetic wave shielding layer from the upper surface side. The case where the unevenness 6 on the substrate 5 is covered with the insulating layer 2 and the electromagnetic wave shielding layer 3 using the electromagnetic wave shielding film 100 in which the layers 3 are laminated in this order has been described, but the present invention is not limited thereto. The layer structure of the electromagnetic wave shielding film 100 may be, for example, the electromagnetic wave shielding film 100 having a layer structure as described in the fourth to seventh embodiments as described later.
 <第2実施形態>
 以下、本発明の電磁波シールド用フィルムの第2実施形態について説明する。
 なお、本実施形態では、図1に示す第1実施形態の電磁波シールド用フィルム100との相違点を中心に説明し、同様の事項については、その説明を省略する。
Second Embodiment
Hereinafter, 2nd Embodiment of the film for electromagnetic wave shielding of this invention is described.
In addition, in this embodiment, it demonstrates centering on difference with the electromagnetic wave shielding film 100 of 1st Embodiment shown in FIG. 1, and the description is abbreviate | omitted about the same matter.
 本実施形態の電磁波シールド用フィルム100は、電磁波遮断層3の周波数1GHzにおける複素誘電率(ε)の虚数部(ε”)が、30以上であること以外は、前述した第1実施形態の電磁波シールド用フィルム100と同様である。 The electromagnetic wave shielding film 100 of the present embodiment is the electromagnetic wave of the first embodiment described above, except that the imaginary part (ε ″) of the complex dielectric constant (ε) at a frequency of 1 GHz of the electromagnetic wave shielding layer 3 is 30 or more. This is the same as the shielding film 100.
 本発明者の検討により、電磁波遮断層における複素誘電率(ε)の虚数部(ε”)が、吸収層に入射した電磁波の吸収に対して相関性を示すパラメーターであることが判ってきた。そして、本発明者は、この複素誘電率(ε)の虚数部(ε”)についてさらに検討を行った結果、電磁波遮断層3の周波数1GHzにおける複素誘電率(ε)の虚数部(ε”)を30以上に設定することにより、GHzオーダーのように高周波帯域の電磁波まで、電磁波の吸収により電磁波をより効果的に遮断し得ることを見出した。 As a result of studies by the present inventors, it has been found that the imaginary part (ε ″) of the complex dielectric constant (ε) in the electromagnetic wave shielding layer is a parameter showing a correlation with the absorption of the electromagnetic wave incident on the absorption layer. As a result of further examination of the imaginary part (ε ″) of the complex dielectric constant (ε), the present inventor has found that the imaginary part (ε ″) of the complex dielectric constant (ε) at a frequency of 1 GHz of the electromagnetic wave blocking layer 3. It was found that by setting the value to 30 or more, electromagnetic waves can be more effectively blocked by absorption of electromagnetic waves up to electromagnetic waves in the high frequency band as in the GHz order.
 なお、本実施形態において、虚数部(ε”)は、30以上であればよいが、100以上、50000以下であるのが好ましく、200以上、40000以下であるのがより好ましい。これにより、より高周波帯域の電磁波であっても、より効果的に遮断することができる。 In the present embodiment, the imaginary part (ε ″) may be 30 or more, but is preferably 100 or more and 50000 or less, more preferably 200 or more and 40000 or less. Even electromagnetic waves in a high frequency band can be blocked more effectively.
 また、電磁波遮断層3の複素誘電率(ε)は、その誘電正接(tanδ)が2以上、100以下であるのが好ましく、5以上、30以下であるのがより好ましい。これにより、高周波帯域の電磁波であってもより効果的に遮断することができる。換言すれば、tanδの値が前記範囲内となっている電磁波遮断層3は、高周波帯域の電磁波であってもより確実に吸収する吸収層であると言うことができる。 Further, the complex dielectric constant (ε) of the electromagnetic wave shielding layer 3 has a dielectric loss tangent (tan δ) of preferably 2 or more and 100 or less, and more preferably 5 or more and 30 or less. Thereby, even an electromagnetic wave in a high frequency band can be blocked more effectively. In other words, it can be said that the electromagnetic wave shielding layer 3 in which the value of tan δ is within the above range is an absorption layer that more reliably absorbs electromagnetic waves in a high frequency band.
 なお、電磁波遮断層の複素誘電率(ε)は、例えば、JIS C2526に準拠して、空洞共振器法を用いて求めることができる。空洞共振器法によれば、優れた精度でかつ短時間に電磁波遮断層の複素誘電率(ε)を測定することができる。 In addition, the complex dielectric constant (ε) of the electromagnetic wave shielding layer can be obtained using a cavity resonator method in accordance with, for example, JIS C2526. According to the cavity resonator method, the complex dielectric constant (ε) of the electromagnetic wave shielding layer can be measured with excellent accuracy and in a short time.
 本実施形態では、電磁波遮断層3の構成材料が、前述した第1実施形態の電磁波遮断層3の構成材料として挙げた材料のうち、周波数1GHzにおける複素誘電率(ε)の虚数部(ε”)が30以上となる材料であれば、如何なる材料であってもよい。特に、電磁波遮断層3の構成材料は、導電性高分子および炭素同素体のうちの少なくとも1種であるのが好ましい。かかる構成材料で電磁波遮断層3を構成することにより、その膜厚(厚み)を比較的薄く設定したとしても、特に優れた吸収性を発揮する。これにより、電磁波遮断層3の周波数1GHzにおける複素誘電率(ε)の虚数部(ε”)の値を前記範囲内に設定することができる。また、その層中に含まれる材料の粒子径を小さくしたり、その添加量も少なくできることから、その膜厚を比較的容易に薄く設定することができ、また軽量化も可能である。 In this embodiment, the constituent material of the electromagnetic wave shielding layer 3 is the imaginary part (ε ″) of the complex dielectric constant (ε) at a frequency of 1 GHz among the materials mentioned as the constituent material of the electromagnetic wave shielding layer 3 of the first embodiment. ) May be any material as long as it is equal to or greater than 30. In particular, the constituent material of the electromagnetic wave shielding layer 3 is preferably at least one of a conductive polymer and a carbon allotrope. Even if the film thickness (thickness) is set to be relatively thin, the electromagnetic wave blocking layer 3 is made of a constituent material, so that particularly excellent absorbability is exhibited. The value of the imaginary part (ε ″) of the rate (ε) can be set within the range. Further, since the particle diameter of the material contained in the layer can be reduced and the amount added can be reduced, the film thickness can be set relatively easily and the weight can be reduced.
 なお、導電性高分子としては、前述した第1実施形態における導電性高分子を用いることができるが、ポリアニリンまたはPEDOT/PSSであるのが好ましい。これらによれば、電磁波遮断層3の周波数1GHzにおける複素誘電率(ε)の虚数部(ε”)の値を前記範囲内により容易に設定することができる。 As the conductive polymer, the conductive polymer in the first embodiment described above can be used, but polyaniline or PEDOT / PSS is preferable. According to these, the value of the imaginary part (ε ″) of the complex dielectric constant (ε) at a frequency of 1 GHz of the electromagnetic wave shielding layer 3 can be easily set within the above range.
 また、導電性高分子としてPEDOT/PSSを用いる場合、電磁波遮断層3の表面抵抗値は、1×10Ω/□以上、1×10Ω/□以下であるのが好ましく、5×10Ω/□以上、5×10Ω/□以下であるのがより好ましい。これにより、前記虚数部(ε”)の値を前記範囲内にさらに容易に設定することができる。 When PEDOT / PSS is used as the conductive polymer, the surface resistance value of the electromagnetic wave shielding layer 3 is preferably 1 × 10 4 Ω / □ or more and 1 × 10 6 Ω / □ or less, preferably 5 × 10. More preferably, it is 4 Ω / □ or more and 5 × 10 5 Ω / □ or less. Thereby, the value of the imaginary part (ε ″) can be more easily set within the range.
 なお、PEDOT/PSSを含有する電磁波遮断層3の表面抵抗値は、PEDOTおよびPSSの重量平均分子量、ならびにPEDOTとPSSとの配合比率等を適宜設定することにより調整することができる。 The surface resistance value of the electromagnetic wave shielding layer 3 containing PEDOT / PSS can be adjusted by appropriately setting the weight average molecular weight of PEDOT and PSS, the blending ratio of PEDOT and PSS, and the like.
 さらに、導電性高分子としてポリアニリンを用いる場合、電磁波遮断層3中に含まれるポリアニリンとして、分子量が大きいポリアニリンを選択するのが好ましい。これにより、前記虚数部(ε”)の値を前記範囲内にさらに容易に設定することができる。 Furthermore, when polyaniline is used as the conductive polymer, it is preferable to select polyaniline having a large molecular weight as the polyaniline contained in the electromagnetic wave shielding layer 3. Thereby, the value of the imaginary part (ε ″) can be more easily set within the range.
 また、炭素同素体としては、前述した第1実施形態における炭素同素体を用いることができるが、カーボンナノチューブ(特に、多層カーボンナノチューブ)であるのが好ましい。これらによれば、電磁波遮断層3の周波数1GHzにおける複素誘電率(ε)の虚数部(ε”)の値を前記範囲内により容易に設定することができる。 Further, as the carbon allotrope, the carbon allotrope in the first embodiment described above can be used, but carbon nanotubes (particularly multi-walled carbon nanotubes) are preferable. According to these, the value of the imaginary part (ε ″) of the complex dielectric constant (ε) at a frequency of 1 GHz of the electromagnetic wave shielding layer 3 can be easily set within the above range.
 また、炭素同素体として多層カーボンナノチューブを用いる場合、多層カーボンナノチューブの比表面積は、20m/g以上であるのが好ましく、200m/g以上、300m/g以下であるのがより好ましい。これにより、前記虚数部(ε”)の値を前記範囲内にさらに容易に設定することができる。 In the case of using a multi-walled carbon nanotube as a carbon allotrope, a specific surface area of the multi-walled carbon nanotubes, preferably at 20 m 2 / g or more, 200 meters 2 / g or more, more preferably 300 meters 2 / g or less. Thereby, the value of the imaginary part (ε ″) can be more easily set within the range.
 なお、電磁波遮断層3の構成材料として、炭素同素体を用いる場合、電磁波遮断層3は、炭素同素体で構成される単独層であってもよいが、炭素同素体と樹脂材料とで構成される混合層であるのが好ましい。これにより、電磁波遮断層3の形状安定性を向上させることができる。 In addition, when using a carbon allotrope as a constituent material of the electromagnetic wave shielding layer 3, the electromagnetic wave shielding layer 3 may be a single layer composed of a carbon allotrope, or a mixed layer composed of a carbon allotrope and a resin material. Is preferred. Thereby, the shape stability of the electromagnetic wave shielding layer 3 can be improved.
 このような樹脂材料としては、例えば、ポリウレタン樹脂等が挙げられる。さらに、電磁波遮断層3を混合層とした際に、混合層における炭素同素体の含有量は、5wt%以上、30wt%以下であるのが好ましく、10wt%以上、20wt%以下であるのがより好ましい。 Examples of such resin materials include polyurethane resins. Furthermore, when the electromagnetic wave shielding layer 3 is a mixed layer, the carbon allotrope content in the mixed layer is preferably 5 wt% or more and 30 wt% or less, more preferably 10 wt% or more and 20 wt% or less. .
 さらに、磁性吸収材料としては、前述した第1実施形態における磁性吸収材料を用いることができる。 Furthermore, as the magnetic absorbing material, the magnetic absorbing material in the first embodiment described above can be used.
 このような構成の本実施形態の電磁波シールド用フィルム100も、前記第1実施形態の電磁波シールド用フィルム100と同様にして使用することができ、前記第1実施形態の電磁波シールド用フィルム100と同様の効果が得られる。 The electromagnetic wave shielding film 100 of this embodiment having such a configuration can also be used in the same manner as the electromagnetic wave shielding film 100 of the first embodiment, and is similar to the electromagnetic wave shielding film 100 of the first embodiment. The effect is obtained.
 <第3実施形態>
 以下、本発明の電磁波シールド用フィルムの第3実施形態について説明する。
 なお、本実施形態では、図1に示す第1実施形態の電磁波シールド用フィルム100との相違点を中心に説明し、同様の事項については、その説明を省略する。
<Third Embodiment>
Hereinafter, 3rd Embodiment of the film for electromagnetic wave shielding of this invention is described.
In addition, in this embodiment, it demonstrates centering on difference with the electromagnetic wave shielding film 100 of 1st Embodiment shown in FIG. 1, and the description is abbreviate | omitted about the same matter.
 本実施形態の電磁波シールド用フィルム100は、電磁波遮断層3の構成材料として、アスペクト比が10以上、4000以下であるカーボンナノチューブを含有している以外は、前述した第1および第2実施形態の電磁波シールド用フィルム100と同様である。 The electromagnetic wave shielding film 100 of the present embodiment includes the carbon nanotubes having an aspect ratio of 10 or more and 4000 or less as a constituent material of the electromagnetic wave shielding layer 3, except that the first and second embodiments described above are included. This is the same as the electromagnetic wave shielding film 100.
 本発明者は、吸収層としての機能を発揮する電磁波遮断層のうち、カーボンナノチューブ(CNT)を含有する電磁波遮断層に着目し、かかる電磁波遮断層について、鋭意検討した。その結果、主材料であるカーボンナノチューブのアスペクト比(長さ/粒径)が、吸収層に入射した電磁波の吸収に対して相関性を示すパラメーターであることが判ってきた。そして、本発明者は、このカーボンナノチューブのアスペクト比についてさらに検討を行った結果、このアスペクト比を10以上、4000以下に設定することにより、GHzオーダーのように高周波帯域の電磁波まで、電磁波の吸収により電磁波をより効果的に遮断し得ることを見出した。 The inventor of the present invention pays attention to an electromagnetic wave blocking layer containing carbon nanotubes (CNT) among the electromagnetic wave blocking layers exhibiting a function as an absorbing layer, and intensively studied the electromagnetic wave blocking layer. As a result, it has been found that the aspect ratio (length / particle size) of the carbon nanotube as the main material is a parameter showing a correlation with the absorption of electromagnetic waves incident on the absorption layer. Then, as a result of further examination of the aspect ratio of the carbon nanotube, the present inventor absorbed electromagnetic waves up to electromagnetic waves in a high frequency band as in the GHz order by setting the aspect ratio to 10 or more and 4000 or less. It was found that electromagnetic waves can be blocked more effectively.
 なお、本実施形態において、カーボンナノチューブのアスペクト比は、10以上、4000以下であればよいが、50以上、1000以下であるのが好ましく、100以上、500以下であるのがより好ましい。これにより、より高周波帯域の電磁波であってもより効果的に遮断することができる。 In this embodiment, the carbon nanotube has an aspect ratio of 10 or more and 4000 or less, preferably 50 or more and 1000 or less, and more preferably 100 or more and 500 or less. Thereby, even an electromagnetic wave in a higher frequency band can be blocked more effectively.
 このようなカーボンナノチューブの粒径は、その平均値(平均粒径)が1nm以上、100nm以下であるのが好ましく、5nm以上、70nm以下であるのがより好ましい。 The average particle size (average particle size) of such carbon nanotubes is preferably 1 nm or more and 100 nm or less, and more preferably 5 nm or more and 70 nm or less.
 また、カーボンナノチューブの長さは、その平均値(平均長さ)が0.1μm以上、100μm以下であるのが好ましく、0.1μm以上、50μm以下であるのがより好ましい。 Further, the average length (average length) of the carbon nanotubes is preferably 0.1 μm or more and 100 μm or less, and more preferably 0.1 μm or more and 50 μm or less.
 カーボンナノチューブの粒径および長さを前記範囲内に設定することにより、カーボンナノチューブのアスペクト比を容易に前記範囲内に設定することができる。 By setting the particle diameter and length of the carbon nanotube within the above range, the aspect ratio of the carbon nanotube can be easily set within the above range.
 カーボンナノチューブの比表面積は、その平均値(比表面積)が20m/g以上であるのが好ましく、200m/g以上、300m/g以下であるのがより好ましい。これにより、高周波帯域の電磁波であってもより効果的に遮断することができる。換言すれば、比表面積の値が前記範囲内となっているカーボンナノチューブを含有する電磁波遮断層3は、高周波帯域の電磁波であってもより確実に吸収する吸収層であると言うことができる。 The average value (specific surface area) of the specific surface area of the carbon nanotubes is preferably 20 m 2 / g or more, and more preferably 200 m 2 / g or more and 300 m 2 / g or less. Thereby, even an electromagnetic wave in a high frequency band can be blocked more effectively. In other words, it can be said that the electromagnetic wave blocking layer 3 containing carbon nanotubes having a specific surface area within the above range is an absorption layer that more reliably absorbs electromagnetic waves in a high frequency band.
 このようなカーボンナノチューブは、単層カーボンナノチューブおよび多層カーボンナノチューブのうちのいずれであってもよいが、多層カーボンナノチューブであるのが好ましい。電磁波遮断層3が、主として多層カーボンナノチューブで構成される場合、多層カーボンナノチューブのアスペクト比を前記範囲内に設定した際に、たとえ電磁波遮断層3の軽量化・薄型化を図ったとしても、GHzオーダーのように高周波帯域の電磁波までより確実に遮断することができる。 Such carbon nanotubes may be either single-walled carbon nanotubes or multi-walled carbon nanotubes, but are preferably multi-walled carbon nanotubes. When the electromagnetic wave shielding layer 3 is mainly composed of multi-walled carbon nanotubes, even if the electromagnetic wave shielding layer 3 is reduced in weight and thickness when the aspect ratio of the multi-walled carbon nanotubes is set within the above range, the GHz As in the order, even high-frequency electromagnetic waves can be blocked more reliably.
 また、カーボンナノチューブを含有する電磁波遮断層3は、カーボンナノチューブで構成される単独層であってもよいが、カーボンナノチューブと樹脂材料とで構成される混合層であるのが好ましい。このような混合層で電磁波遮断層3を構成することにより、電磁波遮断層3の形状安定性を向上させることができる。 The electromagnetic wave shielding layer 3 containing carbon nanotubes may be a single layer composed of carbon nanotubes, but is preferably a mixed layer composed of carbon nanotubes and a resin material. By configuring the electromagnetic wave shielding layer 3 with such a mixed layer, the shape stability of the electromagnetic wave shielding layer 3 can be improved.
 このような樹脂材料としては、例えば、ポリウレタン樹脂、ポリエステル樹脂等が挙げられるが、中でも、ポリウレタン樹脂であるのが好ましい。これにより、電磁波遮断層3の形状安定性を向上させつつ、電磁波遮断層3中にカーボンナノチューブを均一に分散させて、層中における電磁波遮断層3としての機能の均質化(均一化)を図ることができる。 Examples of such a resin material include a polyurethane resin and a polyester resin, among which a polyurethane resin is preferable. Thereby, while improving the shape stability of the electromagnetic wave shielding layer 3, the carbon nanotubes are uniformly dispersed in the electromagnetic wave shielding layer 3, and the function as the electromagnetic wave shielding layer 3 in the layer is homogenized (homogenized). be able to.
 また、電磁波遮断層3を混合層とした際に、混合層におけるカーボンナノチューブの含有量は、5wt%以上、30wt%以下であるのが好ましく、10wt%以上、20wt%以下であるのがより好ましい。これにより、電磁波遮断層3としての機能を確実に発揮させつつ、電磁波遮断層3の形状安定性を向上させることができる。 When the electromagnetic wave shielding layer 3 is a mixed layer, the content of carbon nanotubes in the mixed layer is preferably 5 wt% or more and 30 wt% or less, more preferably 10 wt% or more and 20 wt% or less. . Thereby, the shape stability of the electromagnetic wave shielding layer 3 can be improved while the function as the electromagnetic wave shielding layer 3 is reliably exhibited.
 このような構成の本実施形態の電磁波シールド用フィルム100も、前記第1および第2実施形態の電磁波シールド用フィルム100と同様にして使用することができ、前記第1および第2実施形態の電磁波シールド用フィルム100と同様の効果が得られる。 The electromagnetic wave shielding film 100 of this embodiment having such a configuration can also be used in the same manner as the electromagnetic wave shielding film 100 of the first and second embodiments, and the electromagnetic waves of the first and second embodiments. The same effect as the shielding film 100 can be obtained.
 <第4実施形態>
 以下、本発明の電磁波シールド用フィルムの第4実施形態について説明する。
<Fourth embodiment>
Hereinafter, 4th Embodiment of the film for electromagnetic wave shielding of this invention is described.
 図3は、本発明の電磁波シールド用フィルムの第4実施形態を示す縦断面図である。なお、以下の説明では、説明の便宜上、図3中の上側を「上」、下側を「下」と言う。 FIG. 3 is a longitudinal sectional view showing a fourth embodiment of the electromagnetic wave shielding film of the present invention. In the following description, for convenience of explanation, the upper side in FIG. 3 is referred to as “upper” and the lower side is referred to as “lower”.
 以下、図3に示す電磁波シールド用フィルム100について説明するが、図1に示す第1実施形態の電磁波シールド用フィルム100との相違点を中心に説明し、同様の事項については、その説明を省略する。 Hereinafter, although the electromagnetic wave shielding film 100 shown in FIG. 3 will be described, the description will focus on the differences from the electromagnetic wave shielding film 100 of the first embodiment shown in FIG. 1, and description of similar matters will be omitted. To do.
 図3に示す電磁波シールド用フィルム100では、基材層1が備える第1の層11の形成が省略されていること以外は、前述した第1~第3実施形態の電磁波シールド用フィルム100と同様である。 The electromagnetic wave shielding film 100 shown in FIG. 3 is the same as the electromagnetic wave shielding film 100 of the first to third embodiments described above, except that the formation of the first layer 11 included in the base material layer 1 is omitted. It is.
 すなわち、本実施形態では、電磁波シールド用フィルム100は、第2の層13、第3の層12からなる基材層1と、絶縁層2と、電磁波遮断層3とが、この順で積層された積層体をなしている。 That is, in the present embodiment, the electromagnetic wave shielding film 100 includes the base material layer 1 including the second layer 13 and the third layer 12, the insulating layer 2, and the electromagnetic wave shielding layer 3 laminated in this order. The laminated body is made.
 かかる構成の電磁波シールド用フィルム100では、貼付工程において、基板5上の凹凸6に絶縁層2および電磁波遮断層3を押し込む際に用いられる真空加圧式ラミネーター等が有する押圧部が、第2の層13との離型性を備えている。これにより、第1の層11の形成が省略される。 In the electromagnetic wave shielding film 100 having such a configuration, the pressing portion of the vacuum pressurizing laminator or the like used when the insulating layer 2 and the electromagnetic wave shielding layer 3 are pressed into the unevenness 6 on the substrate 5 in the attaching step is the second layer. 13 with releasability. Thereby, the formation of the first layer 11 is omitted.
 この場合、前記押圧部の第2の層13と接触する接触面の離型性の程度は、前記接触面の表面張力で表すことができる。かかる前記接触面の表面張力は、20~40mN/mであるのが好ましく、25~35mN/mであるのがより好ましい。かかる範囲内の表面張力を前記接触面が有することにより、真空加圧式ラミネーター等を用いた押し込みの後に、第2の層13から押圧部を確実に剥離させることができる。 In this case, the degree of releasability of the contact surface in contact with the second layer 13 of the pressing portion can be expressed by the surface tension of the contact surface. The surface tension of the contact surface is preferably 20 to 40 mN / m, and more preferably 25 to 35 mN / m. When the contact surface has a surface tension within such a range, the pressing portion can be reliably peeled off from the second layer 13 after pressing using a vacuum pressurizing laminator or the like.
 このような構成の本実施形態の電磁波シールド用フィルム100も、前記第1~第3実施形態の電磁波シールド用フィルム100と同様にして使用することができ、前記第1実施形態の電磁波シールド用フィルム100と同様の効果が得られる。 The electromagnetic wave shielding film 100 of this embodiment having such a configuration can be used in the same manner as the electromagnetic wave shielding film 100 of the first to third embodiments, and the electromagnetic wave shielding film of the first embodiment. The same effect as 100 can be obtained.
 <第5実施形態>
 次に、本発明の電磁波シールド用フィルムの第5実施形態について説明する。
<Fifth Embodiment>
Next, a fifth embodiment of the electromagnetic wave shielding film of the present invention will be described.
 図4は、本発明の電磁波シールド用フィルムの第5実施形態を示す縦断面図である。なお、以下の説明では、説明の便宜上、図4中の上側を「上」、下側を「下」と言う。 FIG. 4 is a longitudinal sectional view showing a fifth embodiment of the electromagnetic wave shielding film of the present invention. In the following description, for convenience of explanation, the upper side in FIG. 4 is referred to as “upper” and the lower side is referred to as “lower”.
 以下、図4に示す電磁波シールド用フィルム100について説明するが、図1に示す第1実施形態の電磁波シールド用フィルム100との相違点を中心に説明し、同様の事項については、その説明を省略する。 Hereinafter, the electromagnetic wave shielding film 100 shown in FIG. 4 will be described. However, the difference from the electromagnetic wave shielding film 100 of the first embodiment shown in FIG. 1 will be mainly described, and description of similar matters will be omitted. To do.
 図4に示す電磁波シールド用フィルム100では、基材層1が備える第3の層12の形成が省略されていること以外は、前述した第1~第3実施形態の電磁波シールド用フィルム100と同様である。 The electromagnetic wave shielding film 100 shown in FIG. 4 is the same as the electromagnetic wave shielding film 100 of the first to third embodiments described above, except that the formation of the third layer 12 included in the base material layer 1 is omitted. It is.
 すなわち、本実施形態では、電磁波シールド用フィルム100は、第1の層11、第2の層13からなる基材層1と、絶縁層2と、電磁波遮断層3とが、この順で積層された積層体をなしている。 That is, in this embodiment, the electromagnetic wave shielding film 100 includes the base material layer 1 including the first layer 11 and the second layer 13, the insulating layer 2, and the electromagnetic wave shielding layer 3 laminated in this order. The laminated body is made.
 かかる構成の電磁波シールド用フィルム100では、剥離工程において、基材層1を絶縁層2から剥離する際に、第2の層13と絶縁層2との界面において基材層1が絶縁層2から剥離される。このような剥離では、絶縁層2が第2の層13との離型性を備えている。これにより、第3の層12の形成が省略される。 In the electromagnetic wave shielding film 100 having such a configuration, when the base material layer 1 is peeled from the insulating layer 2 in the peeling step, the base material layer 1 is separated from the insulating layer 2 at the interface between the second layer 13 and the insulating layer 2. It is peeled off. In such peeling, the insulating layer 2 has releasability from the second layer 13. Thereby, the formation of the third layer 12 is omitted.
 この場合、絶縁層2の第2の層13と接触する接触面の離型性の程度は、前記接触面の表面張力で表すことができる。かかる前記接触面の表面張力は、20~40mN/mであるのが好ましく、25~35mN/mであるのがより好ましい。かかる範囲内の表面張力を前記接触面が有することにより、真空加圧式ラミネーター等を用いた押し込みの後に、絶縁層2から第2の層13を確実に剥離させることができる。 In this case, the degree of releasability of the contact surface in contact with the second layer 13 of the insulating layer 2 can be expressed by the surface tension of the contact surface. The surface tension of the contact surface is preferably 20 to 40 mN / m, and more preferably 25 to 35 mN / m. When the contact surface has a surface tension within such a range, the second layer 13 can be reliably peeled off from the insulating layer 2 after being pressed using a vacuum pressure laminator or the like.
 このような、表面張力を有する絶縁層2としては、例えば、熱可塑性ポリエステルやαオレフィン等が挙げられる。 Examples of such an insulating layer 2 having a surface tension include thermoplastic polyester and α-olefin.
 このような構成の本実施形態の電磁波シールド用フィルム100も、前記第1~第4実施形態の電磁波シールド用フィルム100と同様にして使用することができ、前記第1~第4実施形態の電磁波シールド用フィルム100と同様の効果が得られる。 The electromagnetic wave shielding film 100 of this embodiment having such a configuration can be used in the same manner as the electromagnetic wave shielding film 100 of the first to fourth embodiments, and the electromagnetic wave of the first to fourth embodiments. The same effect as the shielding film 100 can be obtained.
 <第6実施形態>
 次に、本発明の電磁波シールド用フィルムの第6実施形態について説明する。
<Sixth Embodiment>
Next, a sixth embodiment of the electromagnetic wave shielding film of the present invention will be described.
 図5は、本発明の電磁波シールド用フィルムの第6実施形態を示す縦断面図である。なお、以下の説明では、説明の便宜上、図5中の上側を「上」、下側を「下」と言う。 FIG. 5 is a longitudinal sectional view showing a sixth embodiment of the electromagnetic wave shielding film of the present invention. In the following description, for convenience of explanation, the upper side in FIG. 5 is referred to as “upper” and the lower side is referred to as “lower”.
 以下、図5に示す電磁波シールド用フィルム100について説明するが、図1に示す第1実施形態の電磁波シールド用フィルム100との相違点を中心に説明し、同様の事項については、その説明を省略する。 Hereinafter, the electromagnetic wave shielding film 100 shown in FIG. 5 will be described. However, the difference from the electromagnetic wave shielding film 100 of the first embodiment shown in FIG. 1 will be mainly described, and description of similar matters will be omitted. To do.
 図5に示す電磁波シールド用フィルム100では、基材層1が備える第3の層12の形成が省略され、さらに、絶縁層2および電磁波遮断層3の積層順が逆転していること以外は、前述した第1~第3実施形態の電磁波シールド用フィルム100と同様である。 In the electromagnetic wave shielding film 100 shown in FIG. 5, the formation of the third layer 12 included in the base material layer 1 is omitted, and the stacking order of the insulating layer 2 and the electromagnetic wave shielding layer 3 is reversed, This is the same as the electromagnetic wave shielding film 100 of the first to third embodiments described above.
 すなわち、本実施形態では、電磁波シールド用フィルム100は、第1の層11、第2の層13からなる基材層1と、電磁波遮断層3と、絶縁層2とが、この順で積層された積層体をなしている。 That is, in this embodiment, the electromagnetic wave shielding film 100 includes the base material layer 1 including the first layer 11 and the second layer 13, the electromagnetic wave shielding layer 3, and the insulating layer 2 laminated in this order. The laminated body is made.
 かかる構成の電磁波シールド用フィルム100では、剥離工程において、基材層1を電磁波遮断層3から剥離する際に、第2の層13と電磁波遮断層3との界面において基材層1が電磁波遮断層3から剥離される。このような剥離では、電磁波遮断層3が第2の層13との離型性を備えており、これにより、第3の層12の形成が省略される。 In the electromagnetic wave shielding film 100 having such a configuration, when the base material layer 1 is peeled from the electromagnetic wave shielding layer 3 in the peeling step, the base material layer 1 is shielded from electromagnetic waves at the interface between the second layer 13 and the electromagnetic wave shielding layer 3. Peel from layer 3. In such peeling, the electromagnetic wave shielding layer 3 has releasability from the second layer 13, thereby omitting the formation of the third layer 12.
 この場合、電磁波遮断層3の第2の層13と接触する接触面の離型性の程度は、前記接触面の表面張力で表すことができる。かかる前記接触面の表面張力は、20~40mN/mであるのが好ましく、25~35mN/mであるのがより好ましい。かかる範囲内の表面張力を前記接触面が有することにより、真空加圧式ラミネーター等を用いた押し込みの後に、電磁波遮断層3から第2の層13を確実に剥離させることができる。 In this case, the degree of releasability of the contact surface in contact with the second layer 13 of the electromagnetic wave shielding layer 3 can be expressed by the surface tension of the contact surface. The surface tension of the contact surface is preferably 20 to 40 mN / m, and more preferably 25 to 35 mN / m. When the contact surface has a surface tension within such a range, the second layer 13 can be reliably peeled from the electromagnetic wave shielding layer 3 after being pressed using a vacuum pressurizing laminator or the like.
 このような、表面張力を有する電磁波遮断層3としては、例えば、炭素同素体や導電性高分子をポリウレタン等の熱硬化性樹脂中に分散させた混合材料等が挙げられる。 Examples of such an electromagnetic wave shielding layer 3 having surface tension include a mixed material in which a carbon allotrope or a conductive polymer is dispersed in a thermosetting resin such as polyurethane.
 このような構成の本実施形態の電磁波シールド用フィルム100も、前記第1~第5実施形態の電磁波シールド用フィルム100と同様にして使用することができ、前記第1~第5実施形態の電磁波シールド用フィルム100と同様の効果が得られる。 The electromagnetic wave shielding film 100 of this embodiment having such a configuration can be used in the same manner as the electromagnetic wave shielding film 100 of the first to fifth embodiments, and the electromagnetic wave of the first to fifth embodiments. The same effect as the shielding film 100 can be obtained.
 <第7実施形態>
 次に、本発明の電磁波シールド用フィルムの第7実施形態について説明する。
<Seventh embodiment>
Next, a seventh embodiment of the electromagnetic wave shielding film of the present invention will be described.
 図6は、本発明の電磁波シールド用フィルムの第7実施形態を示す縦断面図である。なお、以下の説明では、説明の便宜上、図6中の上側を「上」、下側を「下」と言う。 FIG. 6 is a longitudinal sectional view showing a seventh embodiment of the electromagnetic wave shielding film of the present invention. In the following description, for convenience of description, the upper side in FIG. 6 is referred to as “upper” and the lower side is referred to as “lower”.
 以下、図6に示す電磁波シールド用フィルム100について説明するが、図1に示す第1実施形態の電磁波シールド用フィルム100との相違点を中心に説明し、同様の事項については、その説明を省略する。 Hereinafter, the electromagnetic wave shielding film 100 shown in FIG. 6 will be described, but the description will focus on the differences from the electromagnetic wave shielding film 100 of the first embodiment shown in FIG. 1, and the description of the same matters will be omitted. To do.
 図6に示す電磁波シールド用フィルム100では、絶縁層2および電磁波遮断層3の積層順が逆転していること以外は、前述した第1~第3実施形態の電磁波シールド用フィルム100と同様である。 The electromagnetic wave shielding film 100 shown in FIG. 6 is the same as the electromagnetic wave shielding film 100 of the first to third embodiments described above except that the stacking order of the insulating layer 2 and the electromagnetic wave shielding layer 3 is reversed. .
 すなわち、本実施形態では、電磁波シールド用フィルム100は、第1の層11、第2の層13、第3の層12からなる基材層1と、電磁波遮断層3と、絶縁層2とが、この順で積層された積層体をなしている。このように積層された電磁波遮断層3および絶縁層2を備える電磁波シールド用フィルム100を用いて基板5上の凹凸6を被覆することで、基板5および電子部品4に絶縁層2が接触し、基板5側から絶縁層2、電磁波遮断層3の順で被覆することとなる。 That is, in this embodiment, the electromagnetic wave shielding film 100 includes the base material layer 1 including the first layer 11, the second layer 13, and the third layer 12, the electromagnetic wave shielding layer 3, and the insulating layer 2. The laminated body is laminated in this order. By covering the unevenness 6 on the substrate 5 using the electromagnetic wave shielding film 100 including the electromagnetic wave shielding layer 3 and the insulating layer 2 laminated in this manner, the insulating layer 2 comes into contact with the substrate 5 and the electronic component 4, The insulating layer 2 and the electromagnetic wave shielding layer 3 are coated in this order from the substrate 5 side.
 このように、本実施形態では、絶縁層2は、基板5および電子部品4を、これらに接触した状態で被覆し、これにより、基板5および電子部品4を、絶縁層2を介して基板5と反対側に位置する電磁波遮断層3および他の部材(電子部品等)から絶縁する。 As described above, in the present embodiment, the insulating layer 2 covers the substrate 5 and the electronic component 4 in contact with them, whereby the substrate 5 and the electronic component 4 are covered via the insulating layer 2. It insulates from the electromagnetic wave shielding layer 3 and other members (electronic parts etc.) located on the opposite side.
 そのため、かかる構成の電磁波シールド用フィルム100では、例えば、電磁波遮断層3が導電性材料を含む構成であったとしても、隣接する電子部品4同士を絶縁層2により確実に絶縁することができる。 Therefore, in the electromagnetic wave shielding film 100 having such a configuration, for example, even if the electromagnetic wave shielding layer 3 includes a conductive material, the adjacent electronic components 4 can be reliably insulated by the insulating layer 2.
 このような構成の本実施形態の電磁波シールド用フィルム100も、前記第1~第6実施形態の電磁波シールド用フィルム100と同様にして使用することができ、前記第1~第6実施形態の電磁波シールド用フィルム100と同様の効果が得られる。 The electromagnetic wave shielding film 100 of this embodiment having such a configuration can also be used in the same manner as the electromagnetic wave shielding film 100 of the first to sixth embodiments, and the electromagnetic waves of the first to sixth embodiments. The same effect as the shielding film 100 can be obtained.
 <第8実施形態>
 以下、本発明の電磁波シールド用フィルムの第8実施形態について説明する。
 図7は、本発明の電磁波シールド用フィルムの第8実施形態を示す縦断面図である。なお、以下の説明では、説明の便宜上、図7中の上側を「上」、下側を「下」と言う。
 以下、図7に示す電磁波シールド用フィルム100について説明するが、図1に示す第1実施形態の電磁波シールド用フィルム100との相違点を中心に説明し、同様の事項については、その説明を省略する。
<Eighth Embodiment>
Hereinafter, 8th Embodiment of the film for electromagnetic wave shielding of this invention is described.
FIG. 7 is a longitudinal sectional view showing an eighth embodiment of the electromagnetic wave shielding film of the present invention. In the following description, for convenience of explanation, the upper side in FIG. 7 is referred to as “upper” and the lower side is referred to as “lower”.
Hereinafter, the electromagnetic wave shielding film 100 illustrated in FIG. 7 will be described, but the description will focus on differences from the electromagnetic wave shielding film 100 of the first embodiment illustrated in FIG. 1, and description of similar matters will be omitted. To do.
 本実施形態の電磁波シールド用フィルム100は、電磁波遮断層3が、複数の層が積層された積層体で構成され、隣接する各層が異なる材料で構成されている以外は、前述した第1実施形態の電磁波シールド用フィルム100と同様である。 The electromagnetic wave shielding film 100 of the present embodiment is the first embodiment described above, except that the electromagnetic wave shielding layer 3 is composed of a laminate in which a plurality of layers are laminated, and each adjacent layer is composed of different materials. This is the same as the electromagnetic wave shielding film 100.
 本発明者の検討により、電磁波遮断層を構成する材料(導電性材料または磁性吸収材料)を1種ではなく、2種以上の複数種とすることで、反射層としての機能を電磁波遮断層が優位に発揮することなく、吸収層としての機能を電磁波遮断層が優位に発揮することが判ってきた。そして、本発明者は、複数種の前記材料を含有する電磁波遮断層についてさらに検討を行なった結果、この電磁波遮断層を、複数の層で構成される積層体とし、さらに、複数の層のうち隣接する各層が異なる前記材料を含有する構成とすることにより、反射層としての機能を減衰させて、吸収層としての機能を的確に発揮させることができることを見出した。さらに、この場合、GHzオーダーのように高周波帯域の電磁波まで、電磁波の吸収により電磁波をより効果的に遮断し得ることを見出した。 According to the study of the present inventor, the electromagnetic wave blocking layer has a function as a reflective layer by making the material (conductive material or magnetic absorption material) constituting the electromagnetic wave blocking layer not two kinds but two or more kinds. It has been found that the electromagnetic wave shielding layer exerts its function as an absorbing layer without exhibiting superiority. And as a result of further examination of the electromagnetic wave shielding layer containing a plurality of types of the above materials, the present inventor made this electromagnetic wave shielding layer a laminate composed of a plurality of layers, and among the plurality of layers, It has been found that by making the adjacent layers contain the different materials, the function as the reflection layer can be attenuated and the function as the absorption layer can be exhibited accurately. Furthermore, in this case, it has been found that electromagnetic waves can be more effectively blocked by absorption of electromagnetic waves up to electromagnetic waves in a high frequency band as in the GHz order.
 なお、本実施形態において、隣接する各層に含まれる材料が異なるとは、各層に含まれる材料の種類の数が異なる場合が、これに該当する。また、その他、各層に含まれる材料の種類の数が同一である際には、各層に含まれる複数の材料のうち1種でも異なる種類の材料が含まれている場合も該当する。 In the present embodiment, the fact that the material included in each adjacent layer is different corresponds to the case where the number of types of materials included in each layer is different. In addition, when the number of types of materials included in each layer is the same, a case in which even one type of different materials are included among the plurality of materials included in each layer is applicable.
 また、かかる構成の電磁波遮断層は、2層以上の積層体で構成され、積層体を構成する層のうち隣接する層同士が異なる材料を含有していればよい。本実施形態では、電磁波遮断層3が、第1の層31と、第2の層32と、第1の層33との3層をなす積層体で構成され、これらが基材層1の上面(他方の面)側から、この順で積層されている積層体を一例に説明する。 Moreover, the electromagnetic wave shielding layer having such a configuration is composed of a laminate of two or more layers, and adjacent layers among the layers constituting the laminate need only contain different materials. In the present embodiment, the electromagnetic wave shielding layer 3 is composed of a laminated body including three layers of a first layer 31, a second layer 32, and a first layer 33, and these are the upper surfaces of the base material layer 1. The laminated body laminated | stacked in this order from the (other surface) side is demonstrated to an example.
 このような電磁波遮断層3の各層31~33に含まれる材料としては、前述した第1実施形態の電磁波遮断層3を構成する各種材料(各種導電性材料または各種磁性吸収材料)を用いることができ、これらのうちの少なくとも2種以上が用いられ、これらを単独または組み合わせて用いることにより、隣接する各層31~33に異なる材料を含ませることができる。 As materials contained in the layers 31 to 33 of the electromagnetic wave shielding layer 3, various materials (various conductive materials or various magnetic absorption materials) constituting the electromagnetic wave shielding layer 3 of the first embodiment described above are used. At least two or more of these can be used, and by using them alone or in combination, the adjacent layers 31 to 33 can contain different materials.
 本実施形態では、第1の層31と第1の層33との組み合わせにおいて同一の材料で構成され、第1の層31、33と第2の層32との組み合わせにおいて異なる材料で構成されている。これにより、隣接する各層31~33に含まれる材料が異なるようになっている。 In the present embodiment, the combination of the first layer 31 and the first layer 33 is made of the same material, and the combination of the first layer 31, 33 and the second layer 32 is made of a different material. Yes. As a result, the materials included in the adjacent layers 31 to 33 are different.
 すなわち、第1の層31、33には、第1の材料が含まれ、第2の層32には、第2の材料が含まれており、これにより、隣接する各層31~33に含まれる材料が異なっている。 In other words, the first layers 31 and 33 include the first material, and the second layer 32 includes the second material, and thus included in the adjacent layers 31 to 33. The material is different.
 特に、本実施形態では、第1の材料を含有する第1の層31、33と、第2の材料を含有する第2の層32とが交互に積層された3層をなす積層体となっている。換言すれば、第1の材料を含有する第1の層31、33で、第2の材料を含有する第2の層32を挾持する構成の積層体となっている。かかる構成の積層体では、電磁波遮断層3に吸収層としての機能をより的確に発揮させることができる。特に、2.0~3.0GHzの高周波帯域の電磁波を、電磁波の吸収によって、より効果的に遮断することができる。 In particular, in the present embodiment, the first layer 31 or 33 containing the first material and the second layer 32 containing the second material are stacked to form three layers. ing. In other words, the first layer 31 or 33 containing the first material is a laminated body configured to hold the second layer 32 containing the second material. In the laminated body having such a configuration, the electromagnetic wave blocking layer 3 can more accurately exhibit the function as the absorbing layer. In particular, electromagnetic waves in a high frequency band of 2.0 to 3.0 GHz can be blocked more effectively by absorbing electromagnetic waves.
 また、かかる構成の電磁波遮断層(積層体)3において、第1の層31、33に含まれる第1の材料は、ポリアニリンおよびPEDOT/PSSのうちの一方であり、第2の層32に含まれる第2の材料は、ポリアニリンおよびPEDOT/PSSのうちの他方であることが好ましい。このような材料(導電性高分子)の組み合わせとすることにより、電磁波遮断層3に吸収層としての機能をより顕著に発揮させることができる。また、たとえ電磁波遮断層3の軽量化・薄型化を図ったとしても、GHzオーダーのように高周波帯域の電磁波までより確実に遮断することができるようになる。 In the electromagnetic wave shielding layer (laminate) 3 having such a configuration, the first material contained in the first layers 31 and 33 is one of polyaniline and PEDOT / PSS, and is contained in the second layer 32. The second material is preferably the other of polyaniline and PEDOT / PSS. By using a combination of such materials (conductive polymers), the electromagnetic wave shielding layer 3 can more remarkably function as an absorbing layer. Further, even if the electromagnetic wave blocking layer 3 is reduced in weight and thickness, it is possible to more reliably block electromagnetic waves in the high frequency band as in the GHz order.
 さらに、第1の層31、33および第2の層32の表面抵抗値は、それぞれ、1×10-3Ω/□以上、1×10Ω/□以下であるのが好ましく、10Ω/□以上、5×10Ω/□以下であるのがより好ましく、150Ω/□以上、1×10Ω/□以下であるのがさらに好ましい。これにより、電磁波遮断層3を、反射層としての機能をより減衰させて、吸収層としての機能をより的確に発揮させることができ、特に、より高周波帯域の電磁波であっても効果的に遮断することができる。 Furthermore, the surface resistance values of the first layers 31 and 33 and the second layer 32 are preferably 1 × 10 −3 Ω / □ or more and 1 × 10 6 Ω / □ or less, respectively, and 10Ω / □. It is more preferably 5 × 10 5 Ω / □ or less, more preferably 150Ω / □ or more and 1 × 10 4 Ω / □ or less. As a result, the electromagnetic wave blocking layer 3 can attenuate the function as a reflective layer and exhibit the function as an absorbing layer more accurately, and effectively effectively shield even an electromagnetic wave in a higher frequency band. can do.
 なお、第1の層31、33および第2の層32は、換言すれば、電磁波遮断層3を構成する各層31~33は、それぞれ、上述した材料(各種導電性材料または各種磁性吸収材料)で構成される単独層であってもよいが、かかる材料の他に、その他の材料を含有する混合層であってもよい。その他の材料としては、特に限定されないが、例えば、増感剤、m-クレゾール、エチレングリコール等が挙げられる。 In other words, the first layers 31 and 33 and the second layer 32 are, in other words, the layers 31 to 33 constituting the electromagnetic wave shielding layer 3, respectively, as described above (various conductive materials or various magnetic absorption materials). In addition to such a material, a mixed layer containing other materials may be used. Examples of other materials include, but are not limited to, sensitizers, m-cresol, ethylene glycol, and the like.
 また、第1の層31、33および第2の層32おける導電性材料または磁性吸収材料の含有量は、50wt%以上、100wt%以下であるのが好ましく、80wt%以上、100wt%以下であるのがより好ましい。 Further, the content of the conductive material or the magnetic absorption material in the first layers 31 and 33 and the second layer 32 is preferably 50 wt% or more and 100 wt% or less, and is 80 wt% or more and 100 wt% or less. Is more preferable.
 さらに、第1の層31、33の厚みT1は、特に限定されないが、1μm以上、30μm以下であることが好ましく、3μm以上、25μm以下であることがより好ましく、5μm以上、15μm以下であることがさらに好ましい。 Furthermore, the thickness T1 of the first layers 31 and 33 is not particularly limited, but is preferably 1 μm or more and 30 μm or less, more preferably 3 μm or more and 25 μm or less, and 5 μm or more and 15 μm or less. Is more preferable.
 また、第2の層32の厚みT2は、特に限定されないが、1μm以上、30μm以下であることが好ましく、3μm以上、25μm以下であることがより好ましく、5μm以上、15μm以下であることがさらに好ましい。 The thickness T2 of the second layer 32 is not particularly limited, but is preferably 1 μm or more and 30 μm or less, more preferably 3 μm or more and 25 μm or less, and further preferably 5 μm or more and 15 μm or less. preferable.
 第1の層31、33の厚みT1および第2の層32の厚みT2がそれぞれ前記下限値未満である場合、各層31~33の構成材料等によっては、基板搭載部品の端部で破断するおそれがある。また、第1の層31、33の厚みT1および第2の層32の厚みT2がそれぞれ前記上限値を超える場合、各層31~33の構成材料等によっては形状追従性が不足するおそれがある。また、かかる範囲内の厚みT1、T2としても、優れた電磁波シールド性を発揮させることができるため、第1の層31、33の厚みT1および第2の層32の厚みT2の薄膜化を実現すること、ひいては、基板5上において絶縁層2および電磁波遮断層3で被覆された電子部品4が搭載された電子部品搭載基板の軽量化を実現することができる。また、かかる範囲内の厚みT1、T2とすることにより、電磁波遮断層3を、反射層としての機能をより減衰させて、吸収層としての機能をより的確に発揮させることができる。 When the thickness T1 of the first layers 31 and 33 and the thickness T2 of the second layer 32 are each less than the lower limit value, depending on the constituent material of each of the layers 31 to 33, there is a risk of breakage at the end of the board mounted component There is. Further, when the thickness T1 of the first layers 31 and 33 and the thickness T2 of the second layer 32 exceed the upper limit values, the shape followability may be insufficient depending on the constituent materials of the layers 31 to 33. In addition, even when the thicknesses T1 and T2 are within such ranges, excellent electromagnetic wave shielding properties can be exhibited, so that the thickness T1 of the first layers 31 and 33 and the thickness T2 of the second layer 32 are reduced. As a result, the weight reduction of the electronic component mounting substrate on which the electronic component 4 covered with the insulating layer 2 and the electromagnetic wave shielding layer 3 is mounted on the substrate 5 can be realized. In addition, by setting the thicknesses T1 and T2 within such ranges, the electromagnetic wave shielding layer 3 can further attenuate the function as a reflection layer and more accurately exhibit the function as an absorption layer.
 このような構成の本実施形態の電磁波シールド用フィルム100も、前記第1~第7実施形態の電磁波シールド用フィルム100と同様にして使用することができ、前記第1~第7実施形態の電磁波シールド用フィルム100と同様の効果が得られる。 The electromagnetic wave shielding film 100 of this embodiment having such a configuration can be used in the same manner as the electromagnetic wave shielding film 100 of the first to seventh embodiments, and the electromagnetic waves of the first to seventh embodiments. The same effect as the shielding film 100 can be obtained.
 <第9実施形態>
 以下、本発明の電磁波シールド用フィルムの第9実施形態について説明する。
<Ninth Embodiment>
The ninth embodiment of the electromagnetic wave shielding film of the present invention will be described below.
 図8は、本発明の電磁波シールド用フィルムの第9実施形態を示す縦断面図である。なお、以下の説明では、説明の便宜上、図8中の上側を「上」、下側を「下」と言う。 FIG. 8 is a longitudinal sectional view showing a ninth embodiment of the electromagnetic wave shielding film of the present invention. In the following description, for convenience of explanation, the upper side in FIG. 8 is referred to as “upper” and the lower side is referred to as “lower”.
 以下、図8に示す電磁波シールド用フィルム100について説明するが、図7に示す第8実施形態の電磁波シールド用フィルム100との相違点を中心に説明し、同様の事項については、その説明を省略する。 Hereinafter, the electromagnetic wave shielding film 100 shown in FIG. 8 will be described. However, the difference from the electromagnetic wave shielding film 100 of the eighth embodiment shown in FIG. 7 will be mainly described, and description of similar matters will be omitted. To do.
 図8に示す電磁波シールド用フィルム100では、電磁波遮断層3が備える第1の層33の形成が省略されていること以外は、前述した第8実施形態の電磁波シールド用フィルム100と同様である。 8 is the same as the electromagnetic wave shielding film 100 of the eighth embodiment described above except that the formation of the first layer 33 included in the electromagnetic wave shielding layer 3 is omitted.
 すなわち、本実施形態では、電磁波シールド用フィルム100は、基材層1と、絶縁層2と、第1の層31および第2の層32からなる電磁波遮断層3とが、この順で積層された積層体をなしている。 That is, in this embodiment, the electromagnetic wave shielding film 100 includes the base material layer 1, the insulating layer 2, and the electromagnetic wave shielding layer 3 including the first layer 31 and the second layer 32, which are laminated in this order. The laminated body is made.
 かかる構成の電磁波シールド用フィルム100では、電磁波遮断層3が、異なる材料を含有する第1の層31と第2の層32との2層からなる積層体で構成されていることにより、電磁波遮断層3に吸収層としての機能をより的確に発揮させることができる。特に、2.0~3.0GHzの高周波帯域の電磁波であっても、電磁波の吸収によって、より効果的に遮断することができる。 In the electromagnetic wave shielding film 100 having such a configuration, the electromagnetic wave shielding layer 3 is constituted by a laminate composed of two layers of the first layer 31 and the second layer 32 containing different materials, thereby preventing the electromagnetic wave shielding. The layer 3 can be made to exhibit the function as an absorption layer more accurately. In particular, even an electromagnetic wave in a high frequency band of 2.0 to 3.0 GHz can be blocked more effectively by absorbing the electromagnetic wave.
 このような構成の本実施形態の電磁波シールド用フィルム100も、前記第1~第8実施形態の電磁波シールド用フィルム100と同様にして使用することができ、前記第1~第8実施形態の電磁波シールド用フィルム100と同様の効果が得られる。 The electromagnetic wave shielding film 100 of this embodiment having such a configuration can be used in the same manner as the electromagnetic wave shielding film 100 of the first to eighth embodiments, and the electromagnetic wave of the first to eighth embodiments. The same effect as the shielding film 100 can be obtained.
 <第10実施形態>
 以下、本発明の電磁波シールド用フィルムの第10実施形態について説明する。
<Tenth Embodiment>
Hereinafter, 10th Embodiment of the film for electromagnetic wave shielding of this invention is described.
 図9は、本発明の電磁波シールド用フィルムの第10実施形態を示す縦断面図である。なお、以下の説明では、説明の便宜上、図9中の上側を「上」、下側を「下」と言う。 FIG. 9 is a longitudinal sectional view showing a tenth embodiment of the electromagnetic wave shielding film of the present invention. In the following description, for convenience of explanation, the upper side in FIG. 9 is referred to as “upper” and the lower side is referred to as “lower”.
 以下、図9に示す電磁波シールド用フィルム100について説明するが、図7に示す第8実施形態の電磁波シールド用フィルム100との相違点を中心に説明し、同様の事項については、その説明を省略する。 Hereinafter, the electromagnetic wave shielding film 100 shown in FIG. 9 will be described, but the description will focus on differences from the electromagnetic wave shielding film 100 of the eighth embodiment shown in FIG. To do.
 図9に示す電磁波シールド用フィルム100では、電磁波遮断層3が、各層31~33の他に、さらに第2の層34を電磁波遮断層3の基材層1と反対側の面に備えていること以外は、前述した第8実施形態の電磁波シールド用フィルム100と同様である。 In the electromagnetic wave shielding film 100 shown in FIG. 9, the electromagnetic wave shielding layer 3 includes a second layer 34 on the surface opposite to the base material layer 1 of the electromagnetic wave shielding layer 3 in addition to the layers 31 to 33. Except for this, it is the same as the electromagnetic wave shielding film 100 of the eighth embodiment described above.
 すなわち、本実施形態では、電磁波シールド用フィルム100は、基材層1と;絶縁層2と;第1の層31、第2の層32、第1の層33および第2の層34からなる電磁波遮断層3とが、この順で積層された積層体をなしている。 That is, in this embodiment, the electromagnetic wave shielding film 100 includes the base material layer 1; the insulating layer 2; the first layer 31, the second layer 32, the first layer 33, and the second layer 34. The electromagnetic wave shielding layer 3 forms a laminated body laminated in this order.
 かかる構成の電磁波シールド用フィルム100では、第1の導電性高分子で構成される第1の層31、33と、第2の導電性高分子で構成される第2の層32、34とが交互に積層された4層をなす積層体で構成されている。換言すれば、第1の層31と、第2の層32と、第1の層33と、第2の層34とが基材層1側からこの順で積層された4層をなす積層体で構成されている。このように、電磁波遮断層3を、第1の層31、33と、第2の層32、34との層数を同一として、第1の導電性高分子で構成される第1の層31、33で、第2の導電性高分子で構成される第2の層32を挾持し、さらに、第2の導電性高分子で構成される第2の層32、34で、第1の導電性高分子で構成される第1の層33を挾持する構成の積層体とする。これにより、電磁波遮断層3に吸収層としての機能を発揮させることができる。なお、本実施形態のように、第1の層31、33と第2の層32、34とで構成される電磁波遮断層3を4層以上の積層体とすることで、吸収層としての機能を維持しつつ、反射層としての機能を顕著に発揮させることができる。そのため、4層以上の積層体は、吸収層および反射層の双方の機能を電磁波遮断層3に発揮させる場合に、電磁波遮断層3として好ましく適用される。 In the electromagnetic wave shielding film 100 having such a configuration, the first layers 31 and 33 composed of the first conductive polymer and the second layers 32 and 34 composed of the second conductive polymer are included. It is composed of a laminated body having four layers that are alternately laminated. In other words, a laminate comprising four layers in which the first layer 31, the second layer 32, the first layer 33, and the second layer 34 are laminated in this order from the base material layer 1 side. It consists of Thus, the electromagnetic wave shielding layer 3 has the same number of layers as the first layers 31 and 33 and the second layers 32 and 34, and the first layer 31 composed of the first conductive polymer. 33 hold the second layer 32 made of the second conductive polymer, and the second layers 32, 34 made of the second conductive polymer make the first conductive A laminated body having a structure in which the first layer 33 made of a conductive polymer is held. Thereby, the function as an absorption layer can be exhibited in the electromagnetic wave shielding layer 3. As in this embodiment, the electromagnetic wave shielding layer 3 composed of the first layers 31 and 33 and the second layers 32 and 34 is a laminate of four or more layers, thereby functioning as an absorption layer. While maintaining the above, the function as the reflective layer can be remarkably exhibited. Therefore, a laminate of four or more layers is preferably applied as the electromagnetic wave shielding layer 3 when the electromagnetic wave shielding layer 3 exhibits the functions of both the absorbing layer and the reflective layer.
 このような構成の本実施形態の電磁波シールド用フィルム100も、前記第1~第9実施形態の電磁波シールド用フィルム100と同様にして使用することができ、前記第1~第9実施形態の電磁波シールド用フィルム100と同様の効果が得られる。 The electromagnetic wave shielding film 100 of this embodiment having such a configuration can be used in the same manner as the electromagnetic wave shielding film 100 of the first to ninth embodiments, and the electromagnetic wave of the first to ninth embodiments. The same effect as the shielding film 100 can be obtained.
 <第11実施形態>
 以下、本発明の電磁波シールド用フィルムの第11実施形態について説明する。
<Eleventh embodiment>
Hereinafter, an eleventh embodiment of the electromagnetic wave shielding film of the present invention will be described.
 図10は、本発明の電磁波シールド用フィルムの第11実施形態を示す縦断面図である。なお、以下の説明では、説明の便宜上、図10中の上側を「上」、下側を「下」と言う。 FIG. 10 is a longitudinal sectional view showing an eleventh embodiment of the electromagnetic wave shielding film of the present invention. In the following description, for convenience of explanation, the upper side in FIG. 10 is referred to as “upper” and the lower side is referred to as “lower”.
 以下、図10に示す電磁波シールド用フィルム100について説明するが、図7に示す第8実施形態の電磁波シールド用フィルム100との相違点を中心に説明し、同様の事項については、その説明を省略する。 Hereinafter, although the electromagnetic wave shielding film 100 shown in FIG. 10 will be described, the description will focus on the differences from the electromagnetic wave shielding film 100 of the eighth embodiment shown in FIG. 7, and the description of the same matters will be omitted. To do.
 図10に示す電磁波シールド用フィルム100では、基材層1が備える第1の層11の形成が省略されていること以外は、前述した第8実施形態の電磁波シールド用フィルム100と同様である。 10 is the same as the electromagnetic wave shielding film 100 of the eighth embodiment described above except that the formation of the first layer 11 included in the base material layer 1 is omitted.
 すなわち、本実施形態では、電磁波シールド用フィルム100は、第2の層13、第3の層12からなる基材層1と、絶縁層2と、電磁波遮断層3とが、この順で積層された積層体をなしている。 That is, in the present embodiment, the electromagnetic wave shielding film 100 includes the base material layer 1 including the second layer 13 and the third layer 12, the insulating layer 2, and the electromagnetic wave shielding layer 3 laminated in this order. The laminated body is made.
 かかる構成の電磁波シールド用フィルム100では、貼付工程において、基板5上の凹凸6に絶縁層2および電磁波遮断層3を押し込む際に用いられる真空加圧式ラミネーター等が有する押圧部が、第2の層13との離型性を備えている。これにより、第1の層11の形成が省略される。 In the electromagnetic wave shielding film 100 having such a configuration, the pressing portion of the vacuum pressurizing laminator or the like used when the insulating layer 2 and the electromagnetic wave shielding layer 3 are pressed into the unevenness 6 on the substrate 5 in the attaching step is the second layer. 13 with releasability. Thereby, the formation of the first layer 11 is omitted.
 この場合、前記押圧部の第2の層13と接触する接触面の離型性の程度は、前記接触面の表面張力で表すことができる。かかる前記接触面の表面張力は、20~40mN/mであるのが好ましく、25~35mN/mであるのがより好ましい。かかる範囲内の表面張力を前記接触面が有することにより、真空加圧式ラミネーター等を用いた押し込みの後に、第2の層13から押圧部を確実に剥離させることができる。 In this case, the degree of releasability of the contact surface in contact with the second layer 13 of the pressing portion can be expressed by the surface tension of the contact surface. The surface tension of the contact surface is preferably 20 to 40 mN / m, and more preferably 25 to 35 mN / m. When the contact surface has a surface tension within such a range, the pressing portion can be reliably peeled off from the second layer 13 after pressing using a vacuum pressurizing laminator or the like.
 このような構成の本実施形態の電磁波シールド用フィルム100も、前記第1~第10実施形態の電磁波シールド用フィルム100と同様にして使用することができ、前記第1~第10実施形態の電磁波シールド用フィルム100と同様の効果が得られる。 The electromagnetic wave shielding film 100 of this embodiment having such a configuration can be used in the same manner as the electromagnetic wave shielding film 100 of the first to tenth embodiments, and the electromagnetic waves of the first to tenth embodiments. The same effect as the shielding film 100 can be obtained.
 <第12実施形態>
 次に、本発明の電磁波シールド用フィルムの第12実施形態について説明する。
<Twelfth embodiment>
Next, a twelfth embodiment of the electromagnetic wave shielding film of the present invention will be described.
 図11は、本発明の電磁波シールド用フィルムの第12実施形態を示す縦断面図である。なお、以下の説明では、説明の便宜上、図11中の上側を「上」、下側を「下」と言う。 FIG. 11 is a longitudinal sectional view showing a twelfth embodiment of the electromagnetic wave shielding film of the present invention. In the following description, for convenience of explanation, the upper side in FIG. 11 is referred to as “upper” and the lower side is referred to as “lower”.
 以下、図11に示す電磁波シールド用フィルム100について説明するが、図7に示す第8実施形態の電磁波シールド用フィルム100との相違点を中心に説明し、同様の事項については、その説明を省略する。 Hereinafter, the electromagnetic wave shielding film 100 shown in FIG. 11 will be described, but the description will focus on the differences from the electromagnetic wave shielding film 100 of the eighth embodiment shown in FIG. 7, and the description of the same matters will be omitted. To do.
 図11に示す電磁波シールド用フィルム100では、基材層1が備える第3の層12の形成が省略されていること以外は、前述した第8実施形態の電磁波シールド用フィルム100と同様である。 11 is the same as the electromagnetic wave shielding film 100 of the eighth embodiment described above except that the formation of the third layer 12 included in the base material layer 1 is omitted.
 すなわち、本実施形態では、電磁波シールド用フィルム100は、第1の層11、第2の層13からなる基材層1と、絶縁層2と、電磁波遮断層3とが、この順で積層された積層体をなしている。 That is, in this embodiment, the electromagnetic wave shielding film 100 includes the base material layer 1 including the first layer 11 and the second layer 13, the insulating layer 2, and the electromagnetic wave shielding layer 3 laminated in this order. The laminated body is made.
 かかる構成の電磁波シールド用フィルム100では、剥離工程において、基材層1を絶縁層2から剥離する際に、第2の層13と絶縁層2との界面において基材層1が絶縁層2から剥離される。このような剥離では、絶縁層2が第2の層13との離型性を備えている。これにより、第3の層12の形成が省略される。 In the electromagnetic wave shielding film 100 having such a configuration, when the base material layer 1 is peeled from the insulating layer 2 in the peeling step, the base material layer 1 is separated from the insulating layer 2 at the interface between the second layer 13 and the insulating layer 2. It is peeled off. In such peeling, the insulating layer 2 has releasability from the second layer 13. Thereby, the formation of the third layer 12 is omitted.
 この場合、絶縁層2の第2の層13と接触する接触面の離型性の程度は、前記接触面の表面張力で表すことができる。かかる前記接触面の表面張力は、20~40mN/mであるのが好ましく、25~35mN/mであるのがより好ましい。かかる範囲内の表面張力を前記接触面が有することにより、真空加圧式ラミネーター等を用いた押し込みの後に、絶縁層2から第2の層13を確実に剥離させることができる。 In this case, the degree of releasability of the contact surface in contact with the second layer 13 of the insulating layer 2 can be expressed by the surface tension of the contact surface. The surface tension of the contact surface is preferably 20 to 40 mN / m, and more preferably 25 to 35 mN / m. When the contact surface has a surface tension within such a range, the second layer 13 can be reliably peeled off from the insulating layer 2 after being pressed using a vacuum pressure laminator or the like.
 このような、表面張力を有する絶縁層2としては、例えば、熱可塑性ポリエステルやαオレフィン等が挙げられる。 Examples of such an insulating layer 2 having a surface tension include thermoplastic polyester and α-olefin.
 このような構成の本実施形態の電磁波シールド用フィルム100も、前記第1~第11実施形態の電磁波シールド用フィルム100と同様にして使用することができ、前記第1~第11実施形態の電磁波シールド用フィルム100と同様の効果が得られる。 The electromagnetic wave shielding film 100 of this embodiment having such a configuration can also be used in the same manner as the electromagnetic wave shielding film 100 of the first to eleventh embodiments, and the electromagnetic wave of the first to eleventh embodiments. The same effect as the shielding film 100 can be obtained.
 <第13実施形態>
 次に、本発明の電磁波シールド用フィルムの第13実施形態について説明する。
<13th Embodiment>
Next, a thirteenth embodiment of the electromagnetic wave shielding film of the present invention will be described.
 図12は、本発明の電磁波シールド用フィルムの第13実施形態を示す縦断面図である。なお、以下の説明では、説明の便宜上、図12中の上側を「上」、下側を「下」と言う。 FIG. 12 is a longitudinal sectional view showing a thirteenth embodiment of the electromagnetic wave shielding film of the present invention. In the following description, for convenience of explanation, the upper side in FIG. 12 is referred to as “upper” and the lower side is referred to as “lower”.
 以下、図12に示す電磁波シールド用フィルム100について説明するが、図7に示す第8実施形態の電磁波シールド用フィルム100との相違点を中心に説明し、同様の事項については、その説明を省略する。 Hereinafter, the electromagnetic wave shielding film 100 shown in FIG. 12 will be described, but mainly the differences from the electromagnetic wave shielding film 100 of the eighth embodiment shown in FIG. 7 will be described, and description of similar matters will be omitted. To do.
 図12に示す電磁波シールド用フィルム100では、基材層1が備える第3の層12の形成が省略され、さらに、絶縁層2および電磁波遮断層3の積層順が逆転していること以外は、前述した第8実施形態の電磁波シールド用フィルム100と同様である。 In the electromagnetic wave shielding film 100 shown in FIG. 12, the formation of the third layer 12 included in the base material layer 1 is omitted, and the stacking order of the insulating layer 2 and the electromagnetic wave shielding layer 3 is reversed. This is the same as the electromagnetic wave shielding film 100 of the eighth embodiment described above.
 すなわち、本実施形態では、電磁波シールド用フィルム100は、第1の層11、第2の層13からなる基材層1と、電磁波遮断層3と、絶縁層2とが、この順で積層された積層体をなしている。 That is, in this embodiment, the electromagnetic wave shielding film 100 includes the base material layer 1 including the first layer 11 and the second layer 13, the electromagnetic wave shielding layer 3, and the insulating layer 2 laminated in this order. The laminated body is made.
 かかる構成の電磁波シールド用フィルム100では、剥離工程において、基材層1を電磁波遮断層3から剥離する際に、第2の層13と電磁波遮断層3との界面において基材層1が電磁波遮断層3から剥離される。このような剥離では、電磁波遮断層3が第2の層13との離型性を備えており、これにより、第3の層12の形成が省略される。 In the electromagnetic wave shielding film 100 having such a configuration, when the base material layer 1 is peeled from the electromagnetic wave shielding layer 3 in the peeling step, the base material layer 1 is shielded from electromagnetic waves at the interface between the second layer 13 and the electromagnetic wave shielding layer 3. Peel from layer 3. In such peeling, the electromagnetic wave shielding layer 3 has releasability from the second layer 13, thereby omitting the formation of the third layer 12.
 この場合、電磁波遮断層3の第2の層13と接触する接触面の離型性の程度は、前記接触面の表面張力で表すことができる。かかる前記接触面の表面張力は、20~40mN/mであるのが好ましく、25~35mN/mであるのがより好ましい。かかる範囲内の表面張力を前記接触面が有することにより、真空加圧式ラミネーター等を用いた押し込みの後に、電磁波遮断層3から第2の層13を確実に剥離させることができる。 In this case, the degree of releasability of the contact surface in contact with the second layer 13 of the electromagnetic wave shielding layer 3 can be expressed by the surface tension of the contact surface. The surface tension of the contact surface is preferably 20 to 40 mN / m, and more preferably 25 to 35 mN / m. When the contact surface has a surface tension within such a range, the second layer 13 can be reliably peeled from the electromagnetic wave shielding layer 3 after being pressed using a vacuum pressurizing laminator or the like.
 このような、表面張力を有する電磁波遮断層3としては、例えば、炭素同素体や導電性高分子をポリウレタン等の熱硬化性樹脂中に分散させた混合材料等が挙げられる。 Examples of such an electromagnetic wave shielding layer 3 having surface tension include a mixed material in which a carbon allotrope or a conductive polymer is dispersed in a thermosetting resin such as polyurethane.
 このような構成の本実施形態の電磁波シールド用フィルム100も、前記第1~第12実施形態の電磁波シールド用フィルム100と同様にして使用することができ、前記第1~第12実施形態の電磁波シールド用フィルム100と同様の効果が得られる。 The electromagnetic wave shielding film 100 of this embodiment having such a configuration can be used in the same manner as the electromagnetic wave shielding film 100 of the first to twelfth embodiments, and the electromagnetic waves of the first to twelfth embodiments. The same effect as the shielding film 100 can be obtained.
 <第14実施形態>
 次に、本発明の電磁波シールド用フィルムの第14実施形態について説明する。
<Fourteenth embodiment>
Next, a fourteenth embodiment of the electromagnetic wave shielding film of the present invention will be described.
 図13は、本発明の電磁波シールド用フィルムの第14実施形態を示す縦断面図である。なお、以下の説明では、説明の便宜上、図8中の上側を「上」、下側を「下」と言う。 FIG. 13 is a longitudinal sectional view showing a fourteenth embodiment of the electromagnetic wave shielding film of the present invention. In the following description, for convenience of explanation, the upper side in FIG. 8 is referred to as “upper” and the lower side is referred to as “lower”.
 以下、図13に示す電磁波シールド用フィルム100について説明するが、図7に示す第8実施形態の電磁波シールド用フィルム100との相違点を中心に説明し、同様の事項については、その説明を省略する。 Hereinafter, the electromagnetic wave shielding film 100 shown in FIG. 13 will be described, but the description will focus on differences from the electromagnetic wave shielding film 100 of the eighth embodiment shown in FIG. 7, and descriptions of similar matters will be omitted. To do.
 図13に示す電磁波シールド用フィルム100では、絶縁層2および電磁波遮断層3の積層順が逆転していること以外は、前述した第8実施形態の電磁波シールド用フィルム100と同様である。 13 is the same as the electromagnetic wave shielding film 100 of the eighth embodiment described above except that the stacking order of the insulating layer 2 and the electromagnetic wave shielding layer 3 is reversed.
 すなわち、本実施形態では、電磁波シールド用フィルム100は、第1の層11、第2の層13、第3の層12からなる基材層1と、電磁波遮断層3と、絶縁層2とが、この順で積層された積層体をなしている。このように積層された電磁波遮断層3および絶縁層2を備える電磁波シールド用フィルム100を用いて基板5上の凹凸6を被覆することで、基板5および電子部品4に絶縁層2が接触し、基板5側から絶縁層2、電磁波遮断層3の順で被覆することとなる。 That is, in this embodiment, the electromagnetic wave shielding film 100 includes the base material layer 1 including the first layer 11, the second layer 13, and the third layer 12, the electromagnetic wave shielding layer 3, and the insulating layer 2. The laminated body is laminated in this order. By covering the unevenness 6 on the substrate 5 using the electromagnetic wave shielding film 100 including the electromagnetic wave shielding layer 3 and the insulating layer 2 laminated in this manner, the insulating layer 2 comes into contact with the substrate 5 and the electronic component 4, The insulating layer 2 and the electromagnetic wave shielding layer 3 are coated in this order from the substrate 5 side.
 このように、本実施形態では、絶縁層2は、基板5および電子部品4を、これらに接触した状態で被覆し、これにより、基板5および電子部品4を、絶縁層2を介して基板5と反対側に位置する電磁波遮断層3および他の部材(電子部品等)から絶縁する。 As described above, in the present embodiment, the insulating layer 2 covers the substrate 5 and the electronic component 4 in contact with them, whereby the substrate 5 and the electronic component 4 are covered via the insulating layer 2. It insulates from the electromagnetic wave shielding layer 3 and other members (electronic parts etc.) located on the opposite side.
 そのため、かかる構成の電磁波シールド用フィルム100では、例えば、電磁波遮断層3が導電性材料を含む構成であったとしても、隣接する電子部品4同士を絶縁層2により確実に絶縁することができる。 Therefore, in the electromagnetic wave shielding film 100 having such a configuration, for example, even if the electromagnetic wave shielding layer 3 includes a conductive material, the adjacent electronic components 4 can be reliably insulated by the insulating layer 2.
 このような構成の本実施形態の電磁波シールド用フィルム100も、前記第1~第13実施形態の電磁波シールド用フィルム100と同様にして使用することができ、前記第1~第13実施形態の電磁波シールド用フィルム100と同様の効果が得られる。 The electromagnetic wave shielding film 100 of this embodiment having such a configuration can be used in the same manner as the electromagnetic wave shielding film 100 of the first to thirteenth embodiments, and the electromagnetic waves of the first to thirteenth embodiments. The same effect as the shielding film 100 can be obtained.
 また、前記実施形態では、絶縁層2は、電磁波遮断層3の上面または下面の何れか一方に1つの層が積層される場合について説明したが、本発明は、かかる場合に限定されない。例えば、電磁波遮断層3の上面および下面の双方に1層ずつ別層として積層されていてもよいし、その形成を省略するようにしてもよい。 In the above-described embodiment, the insulating layer 2 has been described with respect to the case where one layer is laminated on either the upper surface or the lower surface of the electromagnetic wave shielding layer 3, but the present invention is not limited to such a case. For example, one layer may be laminated as a separate layer on both the upper surface and the lower surface of the electromagnetic wave shielding layer 3, or the formation thereof may be omitted.
 さらに、前記実施形態では、基板への電子部品の搭載により、基板上に凹凸が形成されており、この凹凸を電磁波シールド用フィルムで被覆する場合について説明したが、電磁波シールド用フィルムによる被覆は、このような凹凸に対する被覆に限定されない。例えば、筐体等が備える平坦(フラット)な領域に対して電磁波シールド用フィルムを被覆するようにしてもよい。 Furthermore, in the above-described embodiment, unevenness is formed on the substrate by mounting the electronic component on the substrate, and the case where the unevenness is covered with the electromagnetic shielding film has been described. It is not limited to the coating | cover with respect to such an unevenness | corrugation. For example, you may make it coat | cover the film for electromagnetic wave shielding with respect to the flat (flat) area | region with which a housing | casing etc. are equipped.
 以上、本発明の電磁波シールド用フィルム、および電子部品搭載基板について説明したが、本発明は、これらに限定されない。 The electromagnetic shielding film and the electronic component mounting substrate of the present invention have been described above, but the present invention is not limited to these.
 例えば、本発明の電磁波シールド用フィルムでは、前記第1~第14実施形態の任意の構成を組み合わせることもできる。 For example, in the electromagnetic wave shielding film of the present invention, any configuration of the first to fourteenth embodiments can be combined.
 また、本発明の電磁波シールド用フィルムおよび本発明の電子部品搭載基板には、同様の機能を発揮し得る、任意の層が追加されていてもよい。 Further, an arbitrary layer capable of exhibiting the same function may be added to the electromagnetic wave shielding film of the present invention and the electronic component mounting substrate of the present invention.
 以下、本発明を実施例に基づいて詳細に説明するが、本発明はこれに限定されない。 Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited thereto.
 (実施例1A)
<電磁波シールド用フィルムの製造>
 電磁波シールド用フィルムを得るために、第1の層(第1離型層)を構成する樹脂としてシンジオタクチックポリスチレン(出光興産(株)社製、商品名:ザレックS107)を準備した。第3の層(第2離型層)を構成する樹脂として、シンジオタクチックポリスチレン(出光興産(株)社製、商品名:ザレックS107)を準備した。第2の層(クッション層)を構成する樹脂として、エチレン-メチルアクリレート共重合体(住友化学(株)社製、商品名:アクリフトWD106)を準備した。電磁波遮断層を構成する樹脂として、PEDOT/PSS(中京油脂社製)を準備した。
Example 1A
<Manufacture of electromagnetic shielding film>
In order to obtain an electromagnetic wave shielding film, syndiotactic polystyrene (manufactured by Idemitsu Kosan Co., Ltd., trade name: Zalec S107) was prepared as a resin constituting the first layer (first release layer). Syndiotactic polystyrene (manufactured by Idemitsu Kosan Co., Ltd., trade name: Zarek S107) was prepared as a resin constituting the third layer (second release layer). As the resin constituting the second layer (cushion layer), an ethylene-methyl acrylate copolymer (manufactured by Sumitomo Chemical Co., Ltd., trade name: ACRIFT WD106) was prepared. PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd.) was prepared as a resin constituting the electromagnetic wave shielding layer.
 第1の層として前記シンジオタクチックポリスチレンと、第3の層として前記シンジオタクチックポリスチレンと、第2の層として前記エチレン-メチルアクリレート共重合体とを、フィードブロックおよびマルチマニホールドダイを用いて共押出により、フィルム化した。電磁波遮断層としてPEDOT/PSSを基材層フィルムにコーティングして電磁波シールド用フィルムを作製した。 The syndiotactic polystyrene as a first layer, the syndiotactic polystyrene as a third layer, and the ethylene-methyl acrylate copolymer as a second layer are co-polymerized using a feed block and a multi-manifold die. A film was formed by extrusion. An electromagnetic wave shielding film was prepared by coating PEDOT / PSS on the base material layer film as an electromagnetic wave shielding layer.
 実施例1Aの電磁波シールド用フィルムの全体の厚みは、140μmであった。なお、第1の層の厚みは30μm、第3の層の厚みは30μm、第2の層の厚みは60μm、電磁波遮断層の厚みは20μmであった。 The overall thickness of the electromagnetic wave shielding film of Example 1A was 140 μm. The thickness of the first layer was 30 μm, the thickness of the third layer was 30 μm, the thickness of the second layer was 60 μm, and the thickness of the electromagnetic wave shielding layer was 20 μm.
 また、実施例1Aの電磁波シールド用フィルムにおける、第1の層、第2の層および第3の層の線膨張係数を測定したところ、それぞれ、420、2400および420ppm/℃であった。 Further, when the linear expansion coefficients of the first layer, the second layer and the third layer in the electromagnetic wave shielding film of Example 1A were measured, they were 420, 2400 and 420 ppm / ° C., respectively.
 さらに、基材層および電磁波遮断層の150℃における貯蔵弾性率を測定したところ、それぞれ、1.8E+07Pa、2.88E+07Paであった。 Furthermore, when the storage elastic modulus at 150 ° C. of the base material layer and the electromagnetic wave shielding layer was measured, they were 1.8E + 07 Pa and 2.88E + 07 Pa, respectively.
<電磁波シールド性評価用フィルムの製造>
 次に、電磁波遮断層を構成する樹脂として、PEDOT/PSS(中京油脂社製、S-801)を準備した。
<Manufacture of film for evaluating electromagnetic shielding properties>
Next, PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd., S-801) was prepared as a resin constituting the electromagnetic wave shielding layer.
 次いで、ポリエチレンテレフタレートシート上に、電磁波遮断層としてPEDOT/PSSをコーティングすることにより、電磁波シールド性評価用フィルムを作製した。 Next, a film for evaluating electromagnetic shielding properties was produced by coating PEDOT / PSS as an electromagnetic wave shielding layer on a polyethylene terephthalate sheet.
 なお、電磁波シールド用フィルムおよび電磁波シールド性評価用フィルムが備える、PEDOT/PSSで構成される電磁波遮断層の表面抵抗値は、100Ω/□であった。 In addition, the surface resistance value of the electromagnetic wave shielding layer composed of PEDOT / PSS provided in the electromagnetic wave shielding film and the electromagnetic wave shielding evaluation film was 100Ω / □.
 また、電磁波遮断層の表面抵抗値の測定は、抵抗率計(三菱化学アナリテック社製、「ロレスターGP・MCP-T610」)を用いて、JIS-K7194に準拠して、4端子4探針法(定電流印加方式)により実施した。 The surface resistance value of the electromagnetic wave shielding layer is measured using a resistivity meter (Mitsubishi Chemical Analytech Co., Ltd., “Lorestar GP / MCP-T610”) in accordance with JIS-K7194. This was carried out by the method (constant current application method).
(実施例2A)
 電磁波遮断層を構成する樹脂として、PEDOT/PSS(中京油脂株式会社製、S-801)に代えて、PEDOT/PSS(中京油脂株式会社製、S-985)を用いたこと以外は、実施例1Aと同様に行って、実施例2Aの電磁波シールド用フィルムおよび電磁波シールド性評価用フィルムを得た。
(Example 2A)
Example except that PEDOT / PSS (manufactured by Chukyo Oil Co., Ltd., S-985) was used instead of PEDOT / PSS (manufactured by Chukyo Oil Co., Ltd., S-801) as the resin constituting the electromagnetic wave shielding layer. It carried out like 1A and obtained the film for electromagnetic wave shielding of Example 2A, and the film for electromagnetic wave shielding evaluation.
 なお、電磁波シールド用フィルムおよび電磁波シールド性評価用フィルムが備える、PEDOT/PSSで構成される電磁波遮断層の表面抵抗値は、300Ω/□であった。 In addition, the surface resistance value of the electromagnetic wave shielding layer composed of PEDOT / PSS provided in the electromagnetic wave shielding film and the electromagnetic wave shielding evaluation film was 300Ω / □.
(実施例3A)
 電磁波遮断層を構成する樹脂として、PEDOT/PSS(中京油脂株式会社製、S-801)に代えて、PEDOT/PSS(中京油脂株式会社製、S-942)を用いたこと以外は、実施例1Aと同様にして、実施例3Aの電磁波シールド用フィルムおよび電磁波シールド性評価用フィルムを得た。
(Example 3A)
Example except that PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd., S-942) was used instead of PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd., S-801) as the resin constituting the electromagnetic wave shielding layer. In the same manner as 1A, an electromagnetic wave shielding film and an electromagnetic wave shielding evaluation film of Example 3A were obtained.
 なお、電磁波シールド用フィルムおよび電磁波シールド性評価用フィルムが備える、PEDOT/PSSで構成される電磁波遮断層の表面抵抗値は、1000Ω/□であった。 In addition, the surface resistance value of the electromagnetic wave shielding layer composed of PEDOT / PSS provided in the electromagnetic wave shielding film and the electromagnetic wave shielding property evaluation film was 1000Ω / □.
(実施例4A)
 電磁波遮断層を構成する樹脂として、PEDOT/PSS(中京油脂株式会社製、S-801)に代えて、PEDOT/PSS(中京油脂株式会社製、S-941)を用いたこと以外は、実施例1Aと同様にして、実施例4Aの電磁波シールド用フィルムおよび電磁波シールド性評価用フィルムを得た。
(Example 4A)
Example except that PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd., S-941) was used instead of PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd., S-801) as the resin constituting the electromagnetic wave shielding layer. In the same manner as in 1A, an electromagnetic wave shielding film and an electromagnetic wave shielding evaluation film of Example 4A were obtained.
 なお、電磁波シールド用フィルムおよび電磁波シールド性評価用フィルムが備える、PEDOT/PSSで構成される電磁波遮断層の表面抵抗値は、4500Ω/□であった。 In addition, the surface resistance value of the electromagnetic wave shielding layer composed of PEDOT / PSS provided in the electromagnetic wave shielding film and the electromagnetic wave shielding evaluation film was 4500Ω / □.
(実施例5A)
 電磁波遮断層を構成する樹脂として、PEDOT/PSS(中京油脂株式会社製、S-801)に代えて、PEDOT/PSS(中京油脂株式会社製、S-986)を用いたこと以外は、実施例1Aと同様に行って、実施例5Aの電磁波シールド用フィルムおよび電磁波シールド性評価用フィルムを得た。
(Example 5A)
Example except that PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd., S-986) was used in place of PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd., S-801) as the resin constituting the electromagnetic wave shielding layer. It carried out similarly to 1A and obtained the film for electromagnetic wave shielding of Example 5A, and the film for electromagnetic wave shielding evaluation.
 なお、電磁波シールド用フィルムおよび電磁波シールド性評価用フィルムが備える、PEDOT/PSSで構成される電磁波遮断層の表面抵抗値は、8000Ω/□であった。 In addition, the surface resistance value of the electromagnetic wave shielding layer composed of PEDOT / PSS provided in the electromagnetic wave shielding film and the electromagnetic wave shielding evaluation film was 8000Ω / □.
(実施例6A)
 電磁波遮断層を構成する樹脂として、PEDOT/PSS(中京油脂株式会社製、S-801)に代えて、ポリアニリン(株式会社レグルス社製、商品名:PANT)を用いたこと以外は、実施例1Aと同様に行って、実施例6Aの電磁波シールド用フィルムおよび電磁波シールド性評価用フィルムを得た。
(Example 6A)
Example 1A except that polyaniline (trade name: PANT, manufactured by Regulus Co., Ltd.) was used in place of PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd., S-801) as the resin constituting the electromagnetic wave shielding layer. In the same manner as described above, an electromagnetic wave shielding film and an electromagnetic wave shielding evaluation film of Example 6A were obtained.
 なお、電磁波シールド用フィルムおよび電磁波シールド性評価用フィルムが備える、PEDOT/PSSで構成される電磁波遮断層の表面抵抗値は、500Ω/□であった。 In addition, the surface resistance value of the electromagnetic wave shielding layer composed of PEDOT / PSS provided in the electromagnetic wave shielding film and the electromagnetic wave shielding evaluation film was 500Ω / □.
(実施例7A)
 電磁波遮断層を構成する樹脂として、PEDOT/PSS(中京油脂株式会社製、S-801)に代えて、PEDOT/PSS(中京油脂株式会社製、S-987)を用いたこと以外は、実施例1Aと同様に行って、実施例7Aの電磁波シールド用フィルムおよび電磁波シールド性評価用フィルムを得た。
(Example 7A)
Example except that PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd., S-987) was used instead of PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd., S-801) as the resin constituting the electromagnetic wave shielding layer. It carried out similarly to 1A and obtained the film for electromagnetic wave shielding of Example 7A, and the film for electromagnetic wave shielding property evaluation.
 なお、電磁波シールド用フィルムおよび電磁波シールド性評価用フィルムが備える、PEDOT/PSSで構成される電磁波遮断層の表面抵抗値は、200000Ω/□であった。 In addition, the surface resistance value of the electromagnetic wave shielding layer composed of PEDOT / PSS included in the electromagnetic wave shielding film and the electromagnetic wave shielding evaluation film was 200000Ω / □.
<評価試験>
<<凹凸追従性>>
 まず、縦100mm×横100mm×高さ(厚み)3mmのプリント配線板(マザーボード)に、幅0.2mm、各必要段差の溝を、0.2mm間隔で碁盤目状に形成した。
<Evaluation test>
<< Unevenness following ability >>
First, on a printed wiring board (motherboard) having a length of 100 mm, a width of 100 mm, and a height (thickness) of 3 mm, grooves having a width of 0.2 mm and each necessary step were formed in a grid pattern at intervals of 0.2 mm.
 その後、実施例1A~7Aで作製した電磁波シールド用フィルムを、それぞれ、真空圧空成形装置を用いて、150℃×1MPa×10分間、プリント配線板に圧着させ、プリント配線板に貼付ける。貼付後、基材層を剥離し、プリント配線板に貼り付けた電磁波遮断層とプリント配線板上の溝との間に空隙があるかどうかを判断する。なお、空隙があるかどうかは、マイクロスコープや顕微鏡で観察し、評価した。 Thereafter, the electromagnetic wave shielding films produced in Examples 1A to 7A are each pressed onto a printed wiring board at 150 ° C. × 1 MPa × 10 minutes using a vacuum / pressure forming apparatus, and are attached to the printed wiring board. After sticking, the base material layer is peeled off, and it is determined whether or not there is a gap between the electromagnetic wave shielding layer attached to the printed wiring board and the groove on the printed wiring board. In addition, it observed and evaluated with the microscope and the microscope whether there was a space | gap.
 各符号は以下のとおりである。Dを不合格とし、それ以外を合格とした。
   A:段差2000μm以上
   B:段差1000μm以上、2000μm未満
   C:段差 500μm以上、1000μm未満
   D:段差 500μm未満
Each code | symbol is as follows. D was rejected and the others were acceptable.
A: Step of 2000 μm or more B: Step of 1000 μm or more and less than 2000 μm C: Step of 500 μm or more and less than 1000 μm D: Step of less than 500 μm
<<電磁波シールド性>>
 実施例1A~7Aで作製した電磁波シールド性評価用フィルムについて、前述したマイクロストリップライン法を用いて、周波数1GHzおよび周波数3GHzにおける電磁波を遮断する電磁波シールド性を測定した。さらに、前述したKEC法を用いて、周波数1GHzにおける電磁波を遮断する電磁波シールド性を測定した。
<< Electromagnetic wave shielding properties >>
For the films for evaluating electromagnetic wave shielding properties produced in Examples 1A to 7A, the electromagnetic wave shielding properties for blocking electromagnetic waves at frequencies of 1 GHz and 3 GHz were measured using the above-described microstrip line method. Furthermore, the electromagnetic shielding property which interrupts | blocks the electromagnetic wave in frequency 1GHz was measured using KEC method mentioned above.
<<光線透過率>>
 実施例1A~7Aで作製した電磁波シールド性評価用フィルムについて、紫外可視分光光度計(日本分光株式会社製、「V-650」)を用いて、波長300nm、500nmおよび800nmにおける光線透過率、ならびに300~800nmにおける光線透過率の最大値を測定した。
 以上の各実施例の評価試験の結果を表1に示す。
<< light transmittance >>
About the electromagnetic wave shielding property evaluation films prepared in Examples 1A to 7A, using a UV-visible spectrophotometer (manufactured by JASCO Corporation, “V-650”), the light transmittance at wavelengths of 300 nm, 500 nm and 800 nm, and The maximum value of light transmittance at 300 to 800 nm was measured.
Table 1 shows the results of the evaluation tests of the above examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、各実施例で得られた電磁波シールド用フィルムでは、電磁波遮断層の表面抵抗値が1×10-3Ω/□以上、1×10Ω/□以下であることにより、1GHzのように高周波帯域の電磁波であっても、電磁波を吸収することで効果的に遮断されている結果が得られた。
 また、各実施例で得られた電磁波シールド用フィルムは、いずれも、光線透過率が十分に低いことが分かった。すなわち、これらの実施例で得られた電磁波シールド用フィルムは、優れた光吸収性(光遮蔽性)を有していることが分かった。
As is clear from Table 1, in the electromagnetic wave shielding film obtained in each example, the surface resistance value of the electromagnetic wave shielding layer is 1 × 10 −3 Ω / □ or more and 1 × 10 6 Ω / □ or less. Thus, even when the electromagnetic wave is in a high frequency band such as 1 GHz, the result of being effectively blocked by absorbing the electromagnetic wave was obtained.
Moreover, it turned out that the electromagnetic wave shielding film obtained in each Example has a sufficiently low light transmittance. That is, it was found that the electromagnetic wave shielding films obtained in these examples had excellent light absorption (light shielding properties).
 また、電磁波遮断層の表面抵抗値が10000Ω/□以下であった実施例1A~6Aの電磁波シールド用フィルムの電磁波シールド性は、電磁波遮断層の表面抵抗値が200000Ω/□であった実施例7Aの電磁波シールド用フィルムに比べて、優れていた。 The electromagnetic wave shielding properties of the electromagnetic wave shielding films of Examples 1A to 6A in which the surface resistance value of the electromagnetic wave shielding layer was 10,000 Ω / □ or less were the same as Example 7A in which the surface resistance value of the electromagnetic wave shielding layer was 200000 Ω / □. It was superior to the electromagnetic shielding film.
 また、実施例1A~5Aのように、PEDOT/PSSを含む電磁波遮断層を備える電磁波シールド用フィルムでは、特に優れた光吸収性(光遮蔽性)を有していることが分かった。 Further, as in Examples 1A to 5A, it was found that the electromagnetic wave shielding film including the electromagnetic wave shielding layer containing PEDOT / PSS has particularly excellent light absorption (light shielding property).
 (実施例1B)
<電磁波シールド用フィルムの製造>
 電磁波シールド用フィルムを得るために、第1の層(第1離型層)を構成する樹脂としてシンジオタクチックポリスチレン(出光興産(株)社製、商品名:ザレックS107)を準備した。第3の層(第2離型層)を構成する樹脂として、シンジオタクチックポリスチレン(出光興産(株)社製、商品名:ザレックS107)を準備した。第2の層(クッション層)を構成する樹脂として、エチレン-メチルアクリレート共重合体(住友化学(株)社製、商品名:アクリフトWD106)を準備した。電磁波遮断層を構成する樹脂として、PEDOT/PSS(中京油脂社製)を準備した。
(Example 1B)
<Manufacture of electromagnetic shielding film>
In order to obtain an electromagnetic wave shielding film, syndiotactic polystyrene (manufactured by Idemitsu Kosan Co., Ltd., trade name: Zalec S107) was prepared as a resin constituting the first layer (first release layer). Syndiotactic polystyrene (manufactured by Idemitsu Kosan Co., Ltd., trade name: Zarek S107) was prepared as a resin constituting the third layer (second release layer). As the resin constituting the second layer (cushion layer), an ethylene-methyl acrylate copolymer (manufactured by Sumitomo Chemical Co., Ltd., trade name: ACRIFT WD106) was prepared. PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd.) was prepared as a resin constituting the electromagnetic wave shielding layer.
 第1の層として前記シンジオタクチックポリスチレンと、第3の層として前記シンジオタクチックポリスチレンと、第2の層として前記エチレン-メチルアクリレート共重合体とを、フィードブロックおよびマルチマニホールドダイを用いて共押出により、フィルム化した。電磁波遮断層としてPEDOT/PSSを基材層フィルムにコーティングして電磁波シールド用フィルムを作製した。 The syndiotactic polystyrene as a first layer, the syndiotactic polystyrene as a third layer, and the ethylene-methyl acrylate copolymer as a second layer are co-polymerized using a feed block and a multi-manifold die. A film was formed by extrusion. An electromagnetic wave shielding film was prepared by coating PEDOT / PSS on the base material layer film as an electromagnetic wave shielding layer.
 実施例1Bの電磁波シールド用フィルムの全体の厚みは、140μmであった。なお、第1の層の厚みは30μm、第3の層の厚みは30μm、第2の層の厚みは60μm、電磁波遮断層の厚みは20μmであった。 The total thickness of the electromagnetic wave shielding film of Example 1B was 140 μm. The thickness of the first layer was 30 μm, the thickness of the third layer was 30 μm, the thickness of the second layer was 60 μm, and the thickness of the electromagnetic wave shielding layer was 20 μm.
 また、実施例1Bの電磁波シールド用フィルムにおける、第1の層、第2の層および第3の層の線膨張係数を測定したところ、それぞれ、420、2400および420ppm/℃であった。
 さらに、基材層および電磁波遮断層の150℃における貯蔵弾性率を測定したところ、それぞれ、1.8E+07Pa、1.2E+07Paであった。
Moreover, when the linear expansion coefficient of the 1st layer, the 2nd layer, and the 3rd layer in the electromagnetic wave shielding film of Example 1B was measured, they were 420, 2400, and 420 ppm / ° C., respectively.
Furthermore, when the storage elastic modulus in 150 degreeC of the base material layer and the electromagnetic wave shielding layer was measured, they were 1.8E + 07 Pa and 1.2E + 07 Pa, respectively.
<電磁波シールド性評価用フィルムの製造>
 次に、電磁波遮断層を構成する樹脂として、PEDOT/PSS(中京油脂社製)を準備した。
<Manufacture of film for evaluating electromagnetic shielding properties>
Next, PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd.) was prepared as a resin constituting the electromagnetic wave shielding layer.
 次いで、ポリエチレンテレフタレートシート上に、電磁波遮断層としてPEDOT/PSSをコーティングすることにより、電磁波シールド性評価用フィルムを作製した。 Next, a film for evaluating electromagnetic shielding properties was produced by coating PEDOT / PSS as an electromagnetic wave shielding layer on a polyethylene terephthalate sheet.
 (実施例2B)
 電磁波遮断層を構成する樹脂として、PEDOT/PSS(中京油脂株式会社製)に代えて、PEDOT/PSS(荒川化学工業株式会社、商品名:アラコート AS625)を用いたこと以外は、実施例1Bと同様にして、実施例2Bの電磁波シールド用フィルムおよび電磁波シールド性評価用フィルムを得た。
(Example 2B)
Example 1B except that PEDOT / PSS (Arakawa Chemical Industries, Ltd., trade name: Alacoat AS625) was used instead of PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd.) as the resin constituting the electromagnetic wave shielding layer. Similarly, an electromagnetic wave shielding film and an electromagnetic wave shielding evaluation film of Example 2B were obtained.
 (実施例3B)
 電磁波遮断層を構成する樹脂として、PEDOT/PSS(中京油脂株式会社製)に代えて、PEDOT/PSS(綜件化学株式会社製、商品名:ベラゾールED-0139-M)を用いたこと以外は、実施例1Bと同様にして、実施例3Bの電磁波シールド用フィルムおよび電磁波シールド性評価用フィルムを得た。
(Example 3B)
Except for using PEDOT / PSS (product name: Verazol ED-0139-M) instead of PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd.) as the resin constituting the electromagnetic wave shielding layer. In the same manner as in Example 1B, an electromagnetic wave shielding film and an electromagnetic wave shielding evaluation film of Example 3B were obtained.
 (実施例4B)
 電磁波遮断層を構成する樹脂として、PEDOT/PSS(中京油脂株式会社製)に代えて、ポリアニリン(株式会社レグルス社製、商品名:PANT)を用いたこと以外は、実施例1Bと同様にして、実施例4Bの電磁波シールド用フィルムおよび電磁波シールド性評価用フィルムを得た。
(Example 4B)
As resin constituting the electromagnetic wave shielding layer, in place of PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd.), polyaniline (manufactured by Regulus Co., Ltd., trade name: PANT) was used in the same manner as in Example 1B. The film for electromagnetic wave shielding of Example 4B and the film for electromagnetic wave shielding evaluation were obtained.
 (実施例5B)
 電磁波遮断層を構成する樹脂として、PEDOT/PSS(中京油脂株式会社製)に代えて、水-CNTウレタン樹脂分散液(保土谷化学工業株式会社製、商品名:5wt%NT-7K含有水分散液)を用いたこと以外は、実施例1Bと同様にして、実施例5Bの電磁波シールド用フィルムおよび電磁波シールド性評価用フィルムを得た。
(Example 5B)
Instead of PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd.) as a resin constituting the electromagnetic wave shielding layer, a water-CNT urethane resin dispersion (manufactured by Hodogaya Chemical Co., Ltd., trade name: 5 wt% NT-7K-containing water dispersion) Except for using (Liquid), an electromagnetic wave shielding film and an electromagnetic wave shielding evaluation film of Example 5B were obtained in the same manner as in Example 1B.
 なお、形成された電磁波遮断層は、CNTとポリウレタン樹脂との混合層であり、層中における、CNTの含有量は12wt%、ポリウレタン樹脂の含有量は88wt%であった。 The formed electromagnetic wave shielding layer was a mixed layer of CNT and polyurethane resin, and the CNT content in the layer was 12 wt% and the polyurethane resin content was 88 wt%.
 (実施例6B)
 電磁波遮断層を構成する樹脂として、PEDOT/PSS(中京油脂株式会社製)に代えて、水-カーボンナノチューブ分散液(宇部興産株式会社製、商品名:AWC水分散液 UW-250)を用いたこと以外は、実施例1Bと同様にして、実施例6Bの電磁波シールド用フィルムおよび電磁波シールド性評価用フィルムを得た。
(Example 6B)
Instead of PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd.), a water-carbon nanotube dispersion (manufactured by Ube Industries, trade name: AWC water dispersion UW-250) was used as the resin constituting the electromagnetic wave shielding layer. Except for this, in the same manner as Example 1B, an electromagnetic wave shielding film and an electromagnetic wave shielding evaluation film of Example 6B were obtained.
 なお、形成された電磁波遮断層は、CNTとポリウレタン樹脂との混合層であり、層中における、CNTの含有量は12wt%、ポリウレタン樹脂の含有量は88wt%であった。 The formed electromagnetic wave shielding layer was a mixed layer of CNT and polyurethane resin, and the CNT content in the layer was 12 wt% and the polyurethane resin content was 88 wt%.
 (実施例7B)
 電磁波遮断層を構成する樹脂として、PEDOT/PSS(中京油脂株式会社製)に代えて、カーボンナノファイバー/水分散液(エムディーナノテック株式会社製、商品名:MDCNF-D)を用いたこと以外は、実施例1Bと同様にして、実施例7Bの電磁波シールド用フィルムおよび電磁波シールド性評価用フィルムを得た。
(Example 7B)
Except for using PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd.) as a resin constituting the electromagnetic wave shielding layer, carbon nanofiber / water dispersion (manufactured by MD Nanotech Co., Ltd., trade name: MDCNF-D) was used. In the same manner as in Example 1B, an electromagnetic wave shielding film and an electromagnetic shielding property evaluation film of Example 7B were obtained.
 なお、形成された電磁波遮断層は、CNTとポリウレタン樹脂との混合層であり、層中における、CNTの含有量は12wt%、ポリウレタン樹脂の含有量は88wt%であった。 The formed electromagnetic wave shielding layer was a mixed layer of CNT and polyurethane resin, and the CNT content in the layer was 12 wt% and the polyurethane resin content was 88 wt%.
(比較例1B)
 電磁波遮断層を構成する樹脂として、PEDOT/PSS(中京油脂株式会社製)に代えて、高配向CNT分散液(太陽日産株式会社製、商品名:高配向カーボンナノチューブエタノール分散液)を用いたこと以外は、実施例1Bと同様にして、比較例1Bの電磁波シールド用フィルムおよび電磁波シールド性評価用フィルムを得た。
(Comparative Example 1B)
Instead of PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd.), a highly aligned CNT dispersion (manufactured by Taiyo Nissan Co., Ltd., trade name: highly aligned carbon nanotube ethanol dispersion) was used as the resin constituting the electromagnetic wave shielding layer. Except for the above, in the same manner as Example 1B, an electromagnetic shielding film and an electromagnetic shielding evaluation film of Comparative Example 1B were obtained.
 なお、形成された電磁波遮断層は、CNTとポリウレタン樹脂との混合層であり、層中における、CNTの含有量は12wt%、ポリウレタン樹脂の含有量は88wt%であった。 The formed electromagnetic wave shielding layer was a mixed layer of CNT and polyurethane resin, and the CNT content in the layer was 12 wt% and the polyurethane resin content was 88 wt%.
 (比較例2B)
 電磁波遮断層を構成する樹脂として、PEDOT/PSS(中京油脂株式会社製)に代えてポリアニリン(株式会社レグルス社製、商品名:PANW))を用いたこと以外は、実施例1Bと同様にして、比較例2Bの電磁波シールド用フィルムおよび電磁波シールド性評価用フィルムを得た。
(Comparative Example 2B)
As resin which comprises an electromagnetic wave shielding layer, it replaced with PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd.) and used polyaniline (manufactured by Regulus Co., Ltd., trade name: PANW)) in the same manner as in Example 1B. Thus, an electromagnetic wave shielding film and an electromagnetic wave shielding property evaluation film of Comparative Example 2B were obtained.
<評価試験>
<<凹凸追従性>>
 まず、縦100mm×横100mm×高さ(厚み)3mmのプリント配線板(マザーボード)に、幅0.2mm、各必要段差の溝を、0.2mm間隔で碁盤目状に形成した。
<Evaluation test>
<< Unevenness following ability >>
First, on a printed wiring board (motherboard) having a length of 100 mm, a width of 100 mm, and a height (thickness) of 3 mm, grooves having a width of 0.2 mm and each necessary step were formed in a grid pattern at intervals of 0.2 mm.
 その後、実施例1B~7B、および比較例1B、2Bで作製した電磁波シールド用フィルムを、それぞれ、真空圧空成形装置を用いて、150℃×1MPa×10分間、プリント配線板に圧着させ、プリント配線板に貼付ける。貼付後、基材層を剥離し、プリント配線板に貼り付けた電磁波遮断層とプリント配線板上の溝との間に空隙があるかどうかを判断する。なお、空隙があるかどうかは、マイクロスコープや顕微鏡で観察し、評価した。 Thereafter, the electromagnetic wave shielding films prepared in Examples 1B to 7B and Comparative Examples 1B and 2B were respectively pressure-bonded to a printed wiring board at 150 ° C. × 1 MPa × 10 minutes using a vacuum / pressure forming apparatus, and printed wiring Affix to the board. After sticking, the base material layer is peeled off, and it is determined whether or not there is a gap between the electromagnetic wave shielding layer attached to the printed wiring board and the groove on the printed wiring board. In addition, it observed and evaluated with the microscope and the microscope whether there was a space | gap.
 各符号は以下のとおりである。Dを不合格とし、それ以外を合格とした。
   A:段差2000μm以上
   B:段差1000μm以上、2000μm未満
   C:段差 500μm以上、1000μm未満
   D:段差 500μm未満
Each code | symbol is as follows. D was rejected and the others were acceptable.
A: Step of 2000 μm or more B: Step of 1000 μm or more and less than 2000 μm C: Step of 500 μm or more and less than 1000 μm D: Step of less than 500 μm
<<電磁波シールド性>>
 実施例1B~7B、および比較例1B、2Bで作製した電磁波シールド性評価用フィルムについて、前述した空洞共振器法を用いて、周波数1GHzにおける複素誘電率(ε)の実数部(ε’)、虚数部(ε”)および誘電正接(tanδ)を測定した。さらに、前述したマイクロストリップライン法を用いて、周波数1GHzおよび周波数3GHzにおける電磁波を遮断する電磁波シールド性を測定した。
<< Electromagnetic wave shielding properties >>
About the electromagnetic wave shielding property evaluation films produced in Examples 1B to 7B and Comparative Examples 1B and 2B, using the cavity resonator method described above, the real part (ε ′) of the complex dielectric constant (ε) at a frequency of 1 GHz, An imaginary part (ε ″) and a dielectric loss tangent (tan δ) were measured. Further, using the above-described microstrip line method, an electromagnetic shielding property for blocking electromagnetic waves at a frequency of 1 GHz and a frequency of 3 GHz was measured.
<<光線透過率>>
 実施例1B~7B、および比較例1B、2Bで作製した電磁波シールド性評価用フィルムについて、紫外可視分光光度計(日本分光株式会社製、「V-650」)を用いて、波長300nm、500nmおよび800nmにおける光線透過率、ならびに300~800nmにおける光線透過率の最大値を測定した。
 以上の各実施例、比較例の評価試験の結果を表2に示す。
<< light transmittance >>
For the electromagnetic wave shielding evaluation films prepared in Examples 1B to 7B and Comparative Examples 1B and 2B, using an ultraviolet-visible spectrophotometer (manufactured by JASCO Corporation, “V-650”), wavelengths of 300 nm, 500 nm and The light transmittance at 800 nm and the maximum value of light transmittance at 300 to 800 nm were measured.
Table 2 shows the results of the evaluation tests of the above examples and comparative examples.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、各実施例で得られた電磁波シールド用フィルムでは、電磁波遮断層の表面抵抗値が1×10-3Ω/□以上、1×10Ω/□以下であることにより、1GHzのように高周波帯域の電磁波であっても、電磁波を吸収することで効果的に遮断されている結果が得られた。
 特に、実施例1B~7Bで得られた電磁波シールド用フィルムでは、周波数1GHzにおける複素誘電率(ε)の虚数部(ε”)が30以上であることにより、1GHzのように高周波帯域の電磁波であってもより効果的に遮断することができた。
 また、各実施例で得られた電磁波シールド用フィルムは、いずれも、光線透過率が十分に低いことが分かった。すなわち、これらの実施例で得られた電磁波シールド用フィルムは、優れた光吸収性(光遮蔽性)を有していることが分かった。
As is apparent from Table 2, in the electromagnetic wave shielding film obtained in each example, the surface resistance value of the electromagnetic wave shielding layer is 1 × 10 −3 Ω / □ or more and 1 × 10 6 Ω / □ or less. Thus, even when the electromagnetic wave is in a high frequency band such as 1 GHz, the result of being effectively blocked by absorbing the electromagnetic wave was obtained.
In particular, in the electromagnetic wave shielding films obtained in Examples 1B to 7B, since the imaginary part (ε ″) of the complex dielectric constant (ε) at a frequency of 1 GHz is 30 or more, electromagnetic waves in a high frequency band such as 1 GHz are used. Even if there was, it was able to block more effectively.
Moreover, it turned out that the electromagnetic wave shielding film obtained in each Example has a sufficiently low light transmittance. That is, it was found that the electromagnetic wave shielding films obtained in these examples had excellent light absorption (light shielding properties).
 これに対して、比較例1B、2Bは、各実施例と比較すると、高周波帯域の電磁波が効果的に遮断されているとはいえない結果であった。 On the other hand, in Comparative Examples 1B and 2B, it can be said that the electromagnetic waves in the high frequency band are not effectively blocked as compared with each Example.
 さらに、実施例1B~3Bのように、PEDOT/PSSを含む電磁波遮断層を備える電磁波シールド用フィルムでは、他の実施例および比較例1B、2Bの電磁波シールド用フィルムと比較して、より優れた光吸収性(光遮蔽性)を有していることが分かった。 Further, as in Examples 1B to 3B, the electromagnetic wave shielding film including the electromagnetic wave shielding layer containing PEDOT / PSS was superior to the electromagnetic wave shielding films of other examples and Comparative Examples 1B and 2B. It was found to have light absorption (light shielding).
 (実施例1C)
<電磁波シールド用フィルムの製造>
 電磁波シールド用フィルムを得るために、第1の層(第1離型層)を構成する樹脂としてシンジオタクチックポリスチレン(出光興産(株)社製、商品名:ザレックS107)を準備した。第3の層(第2離型層)を構成する樹脂として、シンジオタクチックポリスチレン(出光興産(株)社製、商品名:ザレックS107)を準備した。第2の層(クッション層)を構成する樹脂として、エチレン-メチルアクリレート共重合体(住友化学(株)社製、商品名:アクリフトWD106)を準備した。電磁波遮断層を構成する樹脂として、水-CNTウレタン樹脂分散液(保土谷化学工業株式会社製、商品名:5wt%NT-7K含有水分散液)を準備した。
(Example 1C)
<Manufacture of electromagnetic shielding film>
In order to obtain an electromagnetic wave shielding film, syndiotactic polystyrene (manufactured by Idemitsu Kosan Co., Ltd., trade name: Zalec S107) was prepared as a resin constituting the first layer (first release layer). Syndiotactic polystyrene (manufactured by Idemitsu Kosan Co., Ltd., trade name: Zarek S107) was prepared as a resin constituting the third layer (second release layer). As the resin constituting the second layer (cushion layer), an ethylene-methyl acrylate copolymer (manufactured by Sumitomo Chemical Co., Ltd., trade name: ACRIFT WD106) was prepared. As a resin constituting the electromagnetic wave shielding layer, a water-CNT urethane resin dispersion (manufactured by Hodogaya Chemical Co., Ltd., trade name: 5 wt% NT-7K-containing aqueous dispersion) was prepared.
 第1の層として前記シンジオタクチックポリスチレンと、第3の層として前記シンジオタクチックポリスチレンと、第2の層として前記エチレン-メチルアクリレート共重合体とを、フィードブロックおよびマルチマニホールドダイを用いて共押出により、フィルム化した。電磁波遮断層としてカーボンナノチューブとポリウレタン樹脂との混合層を基材層フィルムにコーティングして電磁波シールド用フィルムを作製した。 The syndiotactic polystyrene as a first layer, the syndiotactic polystyrene as a third layer, and the ethylene-methyl acrylate copolymer as a second layer are co-polymerized using a feed block and a multi-manifold die. A film was formed by extrusion. As the electromagnetic wave shielding layer, a mixed layer of carbon nanotubes and polyurethane resin was coated on the base layer film to produce an electromagnetic wave shielding film.
 実施例1Cの電磁波シールド用フィルムの全体の厚みは、140μmであった。なお、第1の層の厚みは30μm、第3の層の厚みは30μm、第2の層の厚みは60μm、電磁波遮断層の厚みは20μmであった。 The overall thickness of the electromagnetic wave shielding film of Example 1C was 140 μm. The thickness of the first layer was 30 μm, the thickness of the third layer was 30 μm, the thickness of the second layer was 60 μm, and the thickness of the electromagnetic wave shielding layer was 20 μm.
 また、実施例1Cの電磁波シールド用フィルムにおける、第1の層、第2の層および第3の層の線膨張係数を測定したところ、それぞれ、420、2400および420ppm/℃であった。 Further, when the linear expansion coefficients of the first layer, the second layer, and the third layer in the electromagnetic wave shielding film of Example 1C were measured, they were 420, 2400, and 420 ppm / ° C., respectively.
 さらに、基材層および電磁波遮断層の150℃における貯蔵弾性率を測定したところ、それぞれ、1.8E+07Pa、2.88E+07Paであった。 Furthermore, when the storage elastic modulus at 150 ° C. of the base material layer and the electromagnetic wave shielding layer was measured, they were 1.8E + 07 Pa and 2.88E + 07 Pa, respectively.
<電磁波シールド性評価用フィルムの製造>
 次に、電磁波遮断層を構成する樹脂として、水-CNTウレタン樹脂分散液(保土谷化学工業株式会社製、商品名:5wt%NT-7K含有水分散液)を準備した。
<Manufacture of film for evaluating electromagnetic shielding properties>
Next, as a resin constituting the electromagnetic wave shielding layer, a water-CNT urethane resin dispersion (manufactured by Hodogaya Chemical Co., Ltd., trade name: 5 wt% NT-7K-containing aqueous dispersion) was prepared.
 次いで、ポリエチレンテレフタレートシート上に、電磁波遮断層としてカーボンナノチューブとポリウレタン樹脂との混合層をコーティングすることにより、電磁波シールド性評価用フィルムを作製した。 Next, a film for evaluating electromagnetic shielding properties was produced by coating a mixed layer of carbon nanotubes and polyurethane resin as an electromagnetic wave shielding layer on a polyethylene terephthalate sheet.
 なお、電磁波シールド用フィルムおよび電磁波シールド性評価用フィルムにおいて形成された電磁波遮断層は、ともに、CNTとポリウレタン樹脂との混合層であり、層中における、CNTの含有量は12wt%、ポリウレタン樹脂の含有量は88wt%であった。 The electromagnetic wave shielding layer formed in the electromagnetic wave shielding film and the electromagnetic wave shielding property evaluation film is a mixed layer of CNT and polyurethane resin, and the content of CNT in the layer is 12 wt%. The content was 88 wt%.
 また、電磁波遮断層に含まれるCNTの粒径、長さ、アスペクト比および比表面積は、それぞれ、65nm、6.5μm、100および28m/gであった。 The particle diameter, length, aspect ratio and specific surface area of the CNT contained in the electromagnetic wave shielding layer were 65 nm, 6.5 μm, 100 and 28 m 2 / g, respectively.
(実施例2C)
 電磁波遮断層を構成する材料(樹脂)として、水-CNTウレタン樹脂分散液(保土谷化学工業株式会社製、商品名:5WT%NT-7K含有水分散液)に代えて、水-カーボンナノチューブ分散液(宇部興産株式会社製、商品名:AWC水分散液 UW-250)を用いたこと以外は、実施例1Cと同様にして、実施例2Cの電磁波シールド用フィルムおよび電磁波シールド性評価用フィルムを得た。
(Example 2C)
Instead of water-CNT urethane resin dispersion (made by Hodogaya Chemical Co., Ltd., trade name: 5WT% NT-7K-containing water dispersion) as a material (resin) constituting the electromagnetic wave shielding layer, water-carbon nanotube dispersion Except for using the liquid (trade name: AWC aqueous dispersion UW-250, manufactured by Ube Industries, Ltd.), the electromagnetic wave shielding film and the electromagnetic wave shielding evaluation film of Example 2C were obtained in the same manner as in Example 1C. Obtained.
 なお、形成された電磁波遮断層は、CNTとポリウレタン樹脂との混合層であり、層中における、CNTの含有量は12wt%、ポリウレタン樹脂の含有量は88wt%であった。 The formed electromagnetic wave shielding layer was a mixed layer of CNT and polyurethane resin, and the CNT content in the layer was 12 wt% and the polyurethane resin content was 88 wt%.
 また、電磁波遮断層に含まれるCNTの粒径、長さ、アスペクト比および比表面積は、それぞれ、5~15nm、0.6~0.8μm、100および230m/gであった。 The particle diameter, length, aspect ratio and specific surface area of the CNT contained in the electromagnetic wave shielding layer were 5 to 15 nm, 0.6 to 0.8 μm, 100 and 230 m 2 / g, respectively.
(実施例3C)
 電磁波遮断層を構成する樹脂として、水-CNTウレタン樹脂分散液(保土谷化学工業株式会社製、商品名:5WT%NT-7K含有水分散液)に代えて、カーボンナノファイバー/水分散液(エムディーナノテック株式会社製、商品名:MDCNF-D)を用いたこと以外は、実施例1Cと同様にして、実施例3Cの電磁波シールド用フィルムおよび電磁波シールド性評価用フィルムを得た。
(Example 3C)
As a resin constituting the electromagnetic wave shielding layer, instead of water-CNT urethane resin dispersion (manufactured by Hodogaya Chemical Co., Ltd., trade name: 5WT% NT-7K-containing water dispersion), carbon nanofiber / water dispersion ( An electromagnetic wave shielding film and an electromagnetic wave shielding evaluation film of Example 3C were obtained in the same manner as in Example 1C, except that MD Nanotech Co., Ltd., trade name: MDCNF-D) was used.
 なお、形成された電磁波遮断層は、CNTとポリウレタン樹脂との混合層であり、層中における、CNTの含有量は12wt%、ポリウレタン樹脂の含有量は88wt%であった。 The formed electromagnetic wave shielding layer was a mixed layer of CNT and polyurethane resin, and the CNT content in the layer was 12 wt% and the polyurethane resin content was 88 wt%.
 また、電磁波遮断層に含まれるCNTの粒径、長さ、アスペクト比および比表面積は、それぞれ、10~20nm、0.1~10μm、500および240m/gであった。 The particle size, length, aspect ratio and specific surface area of the CNT contained in the electromagnetic wave shielding layer were 10 to 20 nm, 0.1 to 10 μm, 500 and 240 m 2 / g, respectively.
(比較例1C)
 電磁波遮断層を構成する樹脂として、水-CNTウレタン樹脂分散液(保土谷化学工業株式会社製、商品名:5WT%NT-7K含有水分散液)に代えて、高配向CNT分散液(太陽日産株式会社製、商品名:高配向カーボンナノチューブエタノール分散液)を用いたこと以外は、実施例1Cと同様にして、比較例1Cの電磁波シールド用フィルムおよび電磁波シールド性評価用フィルムを得た。
(Comparative Example 1C)
Instead of water-CNT urethane resin dispersion (made by Hodogaya Chemical Co., Ltd., trade name: 5WT% NT-7K-containing water dispersion) as a resin constituting the electromagnetic wave shielding layer, highly oriented CNT dispersion (TAIYO NISSAN A film for electromagnetic wave shielding and a film for evaluating electromagnetic wave shielding properties of Comparative Example 1C were obtained in the same manner as in Example 1C except that a product name of this company (trade name: highly oriented carbon nanotube ethanol dispersion) was used.
 なお、形成された電磁波遮断層は、CNTとポリウレタン樹脂との混合層であり、層中における、CNTの含有量は12wt%、ポリウレタン樹脂の含有量は88wt%であった。 The formed electromagnetic wave shielding layer was a mixed layer of CNT and polyurethane resin, and the CNT content in the layer was 12 wt% and the polyurethane resin content was 88 wt%.
 また、電磁波遮断層に含まれるCNTの粒径、長さ、アスペクト比および比表面積は、それぞれ、5~20nm、50~150μm、5000および400m/gであった。 Further, the particle diameter, length, aspect ratio and specific surface area of the CNT contained in the electromagnetic wave shielding layer were 5 to 20 nm, 50 to 150 μm, 5000 and 400 m 2 / g, respectively.
<評価試験>
<<電磁波シールド性>>
 実施例1C~3C、および比較例1Cで作製した電磁波シールド性評価用フィルムについて、前述したマイクロストリップライン法を用いて、周波数1GHzおよび周波数3GHzにおける電磁波を遮断する電磁波シールド性を測定した。さらに、前述したKEC法を用いて、周波数1GHzにおける電磁波を遮断する電磁波シールド性を測定した。
<Evaluation test>
<< Electromagnetic wave shielding properties >>
The films for evaluating electromagnetic shielding properties produced in Examples 1C to 3C and Comparative Example 1C were measured for electromagnetic shielding properties that block electromagnetic waves at frequencies of 1 GHz and 3 GHz using the microstrip line method described above. Furthermore, the electromagnetic shielding property which interrupts | blocks the electromagnetic wave in frequency 1GHz was measured using KEC method mentioned above.
<<光線透過率>>
 実施例1C~3C、および比較例1Cで作製した電磁波シールド性評価用フィルムについて、紫外可視分光光度計(日本分光株式会社製、「V-650」)を用いて、波長300nm、500nmおよび800nmにおける光線透過率、ならびに300~800nmにおける光線透過率の最大値を測定した。
 以上の各実施例、比較例の評価試験の結果を表3に示す。
<< light transmittance >>
The films for evaluating electromagnetic wave shielding properties produced in Examples 1C to 3C and Comparative Example 1C were used at wavelengths of 300 nm, 500 nm and 800 nm using an ultraviolet-visible spectrophotometer (manufactured by JASCO Corporation, “V-650”). The light transmittance and the maximum value of the light transmittance at 300 to 800 nm were measured.
Table 3 shows the results of the evaluation tests of the above examples and comparative examples.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3から明らかなように、各実施例で得られた電磁波シールド用フィルムでは、電磁波遮断層の表面抵抗値が1×10-3Ω/□以上、1×10Ω/□以下であることにより、1GHzのように高周波帯域の電磁波であっても、電磁波を吸収することで効果的に遮断されている結果が得られた。
 特に、実施例1C~3Cで得られた電磁波シールド用フィルムでは、電磁波遮断層に含まれるカーボンナノチューブのアスペクト比が10以上、4000以下であることにより、1GHzのように高周波帯域の電磁波であってもより効果的に遮断することができた。
 また、各実施例で得られた電磁波シールド用フィルムは、いずれも、光線透過率が十分に低いことが分かった。すなわち、これらの実施例で得られた電磁波シールド用フィルムは、優れた光吸収性(光遮蔽性)を有していることが分かった。
As is apparent from Table 3, in the electromagnetic wave shielding film obtained in each example, the surface resistance value of the electromagnetic wave shielding layer is 1 × 10 −3 Ω / □ or more and 1 × 10 6 Ω / □ or less. Thus, even when the electromagnetic wave is in a high frequency band such as 1 GHz, the result of being effectively blocked by absorbing the electromagnetic wave was obtained.
In particular, in the electromagnetic wave shielding films obtained in Examples 1C to 3C, the aspect ratio of the carbon nanotubes contained in the electromagnetic wave shielding layer is 10 or more and 4000 or less, so that it is an electromagnetic wave in a high frequency band such as 1 GHz. Was able to block more effectively.
Moreover, it turned out that the electromagnetic wave shielding film obtained in each Example has a sufficiently low light transmittance. That is, it was found that the electromagnetic wave shielding films obtained in these examples had excellent light absorption (light shielding properties).
 これに対して、比較例1Cは、実施例1C~3Cと比較すると、高周波帯域の電磁波が効果的に遮断されているとはいえない結果であった。 On the other hand, in Comparative Example 1C, compared to Examples 1C to 3C, it could not be said that electromagnetic waves in the high frequency band were effectively blocked.
 また、実施例2C、3Cのように、カーボンナノチューブのアスペクト比が100以上、500以下であり、カーボンナノチューブの比表面積が200m/g以上、300m/g以下であることにより、高周波帯域の電磁波がより効果的に遮断されている結果が得られた。 Further, as in Examples 2C and 3C, the aspect ratio of the carbon nanotube is 100 or more and 500 or less, and the specific surface area of the carbon nanotube is 200 m 2 / g or more and 300 m 2 / g or less. The result that electromagnetic waves were blocked more effectively was obtained.
 (実施例1D)
<電磁波シールド用フィルムの製造>
 <1>まず、電磁波シールド用フィルムを得るために、基材層が備える第1の層(第1離型層)を構成する樹脂としてシンジオタクチックポリスチレン(出光興産(株)社製、商品名:ザレックS107)を準備した。基材層が備える第3の層(第2離型層)を構成する樹脂として、シンジオタクチックポリスチレン(出光興産(株)社製、商品名:ザレックS107)を準備した。基材層が備える第2の層(クッション層)を構成する樹脂として、エチレン-メチルアクリレート共重合体(住友化学(株)社製、商品名:アクリフトWD106)を準備した。また、電磁波遮断層を構成する樹脂として、PEDOT/PSS(S-941中京油脂社製)およびポリアニリン(株式会社レグルス社製、商品名:PANT)を準備した。
(Example 1D)
<Manufacture of electromagnetic shielding film>
<1> First, in order to obtain an electromagnetic wave shielding film, syndiotactic polystyrene (made by Idemitsu Kosan Co., Ltd., trade name) as a resin constituting the first layer (first release layer) provided in the base material layer. : Xalec S107) was prepared. Syndiotactic polystyrene (manufactured by Idemitsu Kosan Co., Ltd., trade name: Zalec S107) was prepared as a resin constituting the third layer (second release layer) provided in the base material layer. As a resin constituting the second layer (cushion layer) provided in the base material layer, an ethylene-methyl acrylate copolymer (manufactured by Sumitomo Chemical Co., Ltd., trade name: ACRIFT WD106) was prepared. Further, PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd.) and polyaniline (manufactured by Regulus Co., Ltd., trade name: PANT) were prepared as resins constituting the electromagnetic wave shielding layer.
 <2>次に、第1の層として前記シンジオタクチックポリスチレンと、第3の層として前記シンジオタクチックポリスチレンと、第2の層として前記エチレン-メチルアクリレート共重合体とを、フィードブロックおよびマルチマニホールドダイを用いて共押出により、フィルム化して基材層フィルムを得た。 <2> Next, the syndiotactic polystyrene as the first layer, the syndiotactic polystyrene as the third layer, and the ethylene-methyl acrylate copolymer as the second layer, A substrate layer film was obtained by forming into a film by coextrusion using a manifold die.
 <3>次に、基材層フィルムに、PEDOT/PSSをコーティングした後、さらに、ポリアニリンとPEDOT/PSSとをこの順でコーティングすることで、3層構成をなす積層体からなる電磁波遮断層を形成することで、電磁波シールド用フィルムを作製した。 <3> Next, after coating the substrate layer film with PEDOT / PSS, further coating the polyaniline and PEDOT / PSS in this order to form an electromagnetic wave shielding layer composed of a three-layer laminate. By forming, an electromagnetic wave shielding film was produced.
 なお、実施例1Dの電磁波シールド用フィルムの全体の厚みは、150μmであった。なお、基材層が備える第1の層の厚みは30μm、第3の層の厚みは30μm、第2の層の厚みは60μmであった。また、3層の積層体で構成される電磁波遮断層の厚みは30μm(各層の厚みはそれぞれ10μm)であった。 The overall thickness of the electromagnetic wave shielding film of Example 1D was 150 μm. In addition, the thickness of the 1st layer with which a base material layer is provided was 30 micrometers, the thickness of the 3rd layer was 30 micrometers, and the thickness of the 2nd layer was 60 micrometers. Moreover, the thickness of the electromagnetic wave shielding layer composed of the three-layer laminate was 30 μm (each layer had a thickness of 10 μm).
 また、実施例1Dの電磁波シールド用フィルムの基材層における、第1の層、第2の層および第3の層の線膨張係数を測定したところ、それぞれ、420、2400および420ppm/℃であった。 Further, when the linear expansion coefficients of the first layer, the second layer, and the third layer in the base material layer of the electromagnetic wave shielding film of Example 1D were measured, they were 420, 2400, and 420 ppm / ° C., respectively. It was.
 さらに、基材層の150℃における貯蔵弾性率を測定したところ、それぞれ、1.8E+07Paであった。 Furthermore, the storage elastic modulus at 150 ° C. of the base material layer was measured and found to be 1.8E + 07 Pa, respectively.
<電磁波シールド性評価用フィルムの製造>
 <1>まず、電磁波遮断層を構成する樹脂として、PEDOT/PSS(S-941中京油脂社製)およびポリアニリン(株式会社レグルス社製、商品名:PANT)を準備した。
<Manufacture of film for evaluating electromagnetic shielding properties>
<1> First, PEDOT / PSS (manufactured by Chukyo Yushi Co., Ltd.) and polyaniline (manufactured by Regulus Co., Ltd., trade name: PANT) were prepared as resins constituting the electromagnetic wave shielding layer.
 <2>次に、ポリエチレンテレフタレートシート上に、PEDOT/PSSをコーティングした後、さらに、ポリアニリンとPEDOT/PSSとをこの順でコーティングすることで、3層構成をなす積層体からなる電磁波遮断層を形成することで、電磁波シールド性評価用フィルムを作製した。 <2> Next, after coating PEDOT / PSS on a polyethylene terephthalate sheet, polyaniline and PEDOT / PSS are further coated in this order to form an electromagnetic wave blocking layer composed of a laminate having a three-layer structure. By forming the film, an electromagnetic shielding property evaluation film was produced.
 なお、実施例1Dの電磁波シールド性評価用フィルムにおいて、3層の積層体で構成される電磁波遮断層の厚みは30μm(各層の厚みはそれぞれ10μm)であった。 In addition, in the film for evaluating electromagnetic wave shielding properties of Example 1D, the thickness of the electromagnetic wave shielding layer composed of the three-layer laminate was 30 μm (each layer had a thickness of 10 μm).
(実施例2D)
 電磁波シールド用フィルムを製造する際の前記工程<3>および電磁波シールド性評価用フィルムを製造する際の前記工程<2>において、ポリアニリンをコーティングした後、さらに、PEDOT/PSSとポリアニリンとをこの順でコーティングした。このようにして3層構成をなす積層体からなる電磁波遮断層を形成したこと以外は、実施例1Dと同様にして、実施例2Dの電磁波シールド用フィルムおよび電磁波シールド性評価用フィルムを得た。
(Example 2D)
In the step <3> for producing the electromagnetic shielding film and the step <2> for producing the electromagnetic shielding evaluation film, after coating polyaniline, PEDOT / PSS and polyaniline are further added in this order. Coated with. Thus, an electromagnetic wave shielding film and an electromagnetic wave shielding evaluation film of Example 2D were obtained in the same manner as in Example 1D, except that an electromagnetic wave shielding layer composed of a laminate having a three-layer structure was formed.
(実施例3D)
 電磁波シールド用フィルムを製造する際の前記工程<3>および電磁波シールド性評価用フィルムを製造する際の前記工程<2>において、PEDOT/PSSをコーティングした後、さらに、ポリアニリンとPEDOT/PSSとポリアニリンとPEDOT/PSSとポリアニリンとをこの順でコーティングした。このようにして6層構成をなす積層体からなる電磁波遮断層を形成したこと以外は、実施例1Dと同様にして、実施例3Dの電磁波シールド用フィルムおよび電磁波シールド性評価用フィルムを得た。
Example 3D
After coating PEDOT / PSS in the step <3> for producing the electromagnetic shielding film and the step <2> for producing the electromagnetic shielding evaluation film, polyaniline, PEDOT / PSS, and polyaniline are further coated. , PEDOT / PSS and polyaniline were coated in this order. Thus, an electromagnetic wave shielding film and an electromagnetic wave shielding evaluation film of Example 3D were obtained in the same manner as in Example 1D, except that an electromagnetic wave shielding layer composed of a laminate having a 6-layer structure was formed.
 なお、実施例3Dの電磁波シールド用フィルムおよび電磁波シールド性評価用フィルムにおいて、6層の積層体で構成される電磁波遮断層の厚みは30μm(各層の厚みはそれぞれ5μm)であった。 In addition, in the electromagnetic wave shielding film and the electromagnetic wave shielding property evaluation film of Example 3D, the thickness of the electromagnetic wave shielding layer composed of the six-layer laminate was 30 μm (each layer had a thickness of 5 μm).
(実施例4D)
 電磁波シールド用フィルムを製造する際の前記工程<3>および電磁波シールド性評価用フィルムを製造する際の前記工程<2>において、ポリアニリンをコーティングした後、さらに、PEDOT/PSSとポリアニリンとPEDOT/PSSとポリアニリンとPEDOT/PSSとをこの順でコーティングした。このようにして6層構成をなす積層体からなる電磁波遮断層を形成したこと以外は、実施例1Dと同様にして、実施例4Dの電磁波シールド用フィルムおよび電磁波シールド性評価用フィルムを得た。
(Example 4D)
In the step <3> for producing the electromagnetic shielding film and the step <2> for producing the electromagnetic shielding evaluation film, after coating polyaniline, PEDOT / PSS, polyaniline and PEDOT / PSS are further coated. And polyaniline and PEDOT / PSS were coated in this order. In this manner, an electromagnetic wave shielding film and an electromagnetic wave shielding evaluation film of Example 4D were obtained in the same manner as in Example 1D, except that an electromagnetic wave shielding layer composed of a laminate having a 6-layer structure was formed.
 なお、実施例4Dの電磁波シールド用フィルムおよび電磁波シールド性評価用フィルムにおいて、6層の積層体で構成される電磁波遮断層の厚みは30μm(各層の厚みはそれぞれ5μm)であった。 In addition, in the electromagnetic wave shielding film and the electromagnetic wave shielding evaluation film of Example 4D, the thickness of the electromagnetic wave shielding layer composed of the six-layered laminate was 30 μm (each layer had a thickness of 5 μm).
(実施例5D)
 電磁波シールド用フィルムを製造する際の前記工程<3>および電磁波シールド性評価用フィルムを製造する際の前記工程<2>において、PEDOT/PSSをコーティングした後、さらに、ポリアニリンをコーティングした。このようにして2層構成をなす積層体からなる電磁波遮断層を形成したこと以外は、実施例1と同様にして、実施例5Dの電磁波シールド用フィルムおよび電磁波シールド性評価用フィルムを得た。
(Example 5D)
In the step <3> for producing the electromagnetic wave shielding film and the step <2> for producing the electromagnetic wave shielding property evaluation film, after coating PEDOT / PSS, polyaniline was further coated. Thus, an electromagnetic wave shielding film and an electromagnetic wave shielding evaluation film of Example 5D were obtained in the same manner as in Example 1, except that an electromagnetic wave shielding layer composed of a laminate having a two-layer structure was formed.
 なお、実施例5Dの電磁波シールド用フィルムおよび電磁波シールド性評価用フィルムにおいて、2層の積層体で構成される電磁波遮断層の厚みは30μm(各層の厚みはそれぞれ15μm)であった。 In addition, in the electromagnetic wave shielding film and the electromagnetic wave shielding evaluation film of Example 5D, the thickness of the electromagnetic wave shielding layer composed of the two-layered laminate was 30 μm (each layer had a thickness of 15 μm).
(実施例6D)
 電磁波シールド用フィルムを製造する際の前記工程<3>および電磁波シールド性評価用フィルムを製造する際の前記工程<2>において、PEDOT/PSSをコーティングした後、さらに、水-CNTウレタン樹脂分散液(保土谷化学工業株式会社製、商品名:5wt%NT-7K含有水分散液)をコーティングした。このようにして2層構成をなす積層体からなる電磁波遮断層を形成したこと以外は、実施例1と同様にして、実施例6Dの電磁波シールド用フィルムおよび電磁波シールド性評価用フィルムを得た。
(Example 6D)
After coating PEDOT / PSS in the step <3> for producing the electromagnetic shielding film and the step <2> for producing the electromagnetic shielding evaluation film, water-CNT urethane resin dispersion is further applied. (Hodogaya Chemical Co., Ltd., trade name: 5 wt% NT-7K-containing aqueous dispersion) was coated. Thus, an electromagnetic wave shielding film and an electromagnetic wave shielding evaluation film of Example 6D were obtained in the same manner as in Example 1 except that an electromagnetic wave shielding layer composed of a laminate having a two-layer structure was formed.
 なお、水-CNTウレタン樹脂分散液から形成された層は、CNTとポリウレタン樹脂との混合層であり、層中における、CNTの含有量は12wt%、ポリウレタン樹脂の含有量は88wt%であった。
 また、実施例5Dの電磁波シールド用フィルムおよび電磁波シールド性評価用フィルムにおいて、2層の積層体で構成される電磁波遮断層の厚みは30μm(各層の厚みはそれぞれ15μm)であった。
The layer formed from the water-CNT urethane resin dispersion was a mixed layer of CNT and polyurethane resin, and the CNT content in the layer was 12 wt% and the polyurethane resin content was 88 wt%. .
Further, in the electromagnetic wave shielding film and the electromagnetic wave shielding evaluation film of Example 5D, the thickness of the electromagnetic wave shielding layer composed of the two-layer laminate was 30 μm (the thickness of each layer was 15 μm, respectively).
(実施例7D)
 電磁波シールド用フィルムを製造する際の前記工程<3>および電磁波シールド性評価用フィルムを製造する際の前記工程<2>において、PEDOT/PSSをコーティングすることで、1層構成をなす電磁波遮断層を形成したこと以外は、実施例1Dと同様にして、実施例7Dの電磁波シールド用フィルムおよび電磁波シールド性評価用フィルムを得た。
(Example 7D)
In the step <3> for producing the electromagnetic wave shielding film and the step <2> for producing the electromagnetic wave shielding evaluation film, an electromagnetic wave shielding layer having a single layer structure by coating PEDOT / PSS. Except that was formed, an electromagnetic wave shielding film and an electromagnetic wave shielding evaluation film of Example 7D were obtained in the same manner as Example 1D.
 なお、実施例7Dの電磁波シールド用フィルムおよび電磁波シールド性評価用フィルムにおいて、電磁波遮断層の厚みは30μm、また、電磁波遮断層の表面抵抗値は4400Ω/□であった。 In addition, in the electromagnetic wave shielding film and the electromagnetic wave shielding property evaluation film of Example 7D, the thickness of the electromagnetic wave shielding layer was 30 μm, and the surface resistance value of the electromagnetic wave shielding layer was 4400Ω / □.
 なお、電磁波遮断層の表面抵抗値の測定は、抵抗率計(三菱化学アナリテック社製、「ロレスターGP・MCP-T610」)を用いて、JIS-K7194に準拠して、4端子4探針法(定電流印加方式)により実施した。 The surface resistance value of the electromagnetic wave shielding layer is measured using a resistivity meter (Mitsubishi Chemical Analytech Co., Ltd., “Lorestar GP / MCP-T610”) according to JIS-K7194. This was carried out by the method (constant current application method).
(実施例8D)
 電磁波シールド用フィルムを製造する際の前記工程<3>および電磁波シールド性評価用フィルムを製造する際の前記工程<2>において、ポリアニリンをコーティングすることで、1層構成をなす電磁波遮断層を形成したこと以外は、実施例1Dと同様に行って、実施例8Dの電磁波シールド用フィルムおよび電磁波シールド性評価用フィルムを得た。
(Example 8D)
In the step <3> for producing the electromagnetic wave shielding film and the step <2> for producing the electromagnetic wave shielding evaluation film, an electromagnetic wave shielding layer having a single layer structure is formed by coating polyaniline. Except having done, it carried out similarly to Example 1D and obtained the film for electromagnetic wave shielding of Example 8D, and the film for electromagnetic wave shielding property evaluation.
 なお、実施例8Dの電磁波シールド用フィルムおよび電磁波シールド性評価用フィルムにおいて、電磁波遮断層の厚みは19μm、また、電磁波遮断層の表面抵抗値は500Ω/□であった。 In addition, in the electromagnetic wave shielding film and the electromagnetic wave shielding property evaluation film of Example 8D, the thickness of the electromagnetic wave shielding layer was 19 μm, and the surface resistance value of the electromagnetic wave shielding layer was 500Ω / □.
<評価試験>
<<凹凸追従性>>
 まず、縦100mm×横100mm×高さ(厚み)3mmのプリント配線板(マザーボード)に、幅0.2mm、各必要段差の溝を、0.2mm間隔で碁盤目状に形成した。
<Evaluation test>
<< Unevenness following ability >>
First, on a printed wiring board (motherboard) having a length of 100 mm, a width of 100 mm, and a height (thickness) of 3 mm, grooves having a width of 0.2 mm and each necessary step were formed in a grid pattern at intervals of 0.2 mm.
 その後、実施例1D~8Dで作製した電磁波シールド用フィルムを、それぞれ、真空圧空成形装置を用いて、150℃×1MPa×10分間、プリント配線板に圧着させ、プリント配線板に貼付ける。貼付後、基材層を剥離し、プリント配線板に貼り付けた電磁波遮断層とプリント配線板上の溝との間に空隙があるかどうかを判断する。なお、空隙があるかどうかは、マイクロスコープや顕微鏡で観察し、評価した。 Thereafter, the electromagnetic wave shielding films produced in Examples 1D to 8D are each pressed onto a printed wiring board at 150 ° C. × 1 MPa × 10 minutes using a vacuum / pressure forming apparatus, and are attached to the printed wiring board. After sticking, the base material layer is peeled off, and it is determined whether or not there is a gap between the electromagnetic wave shielding layer attached to the printed wiring board and the groove on the printed wiring board. In addition, it observed and evaluated with the microscope and the microscope whether there was a space | gap.
 各符号は以下のとおりである。Dを不合格とし、それ以外を合格とした。
   A:段差2000μm以上
   B:段差1000μm以上、2000μm未満
   C:段差 500μm以上、1000μm未満
   D:段差 500μm未満
Each code | symbol is as follows. D was rejected and the others were acceptable.
A: Step of 2000 μm or more B: Step of 1000 μm or more and less than 2000 μm C: Step of 500 μm or more and less than 1000 μm D: Step of less than 500 μm
<<電磁波シールド性>>
 実施例1D~8Dで作製した電磁波シールド性評価用フィルムについて、前述したマイクロストリップライン法を用いて、周波数1GHz、周波数2.4GHzおよび周波数3GHzにおける電磁波を遮断する電磁波シールド性を測定した。さらに、前述したKEC法を用いて、周波数1GHzにおける電磁波を遮断する電磁波シールド性を測定した。
<< Electromagnetic wave shielding properties >>
With respect to the films for evaluating electromagnetic shielding properties produced in Examples 1D to 8D, the electromagnetic shielding properties for blocking electromagnetic waves at frequencies of 1 GHz, 2.4 GHz, and 3 GHz were measured using the above-described microstrip line method. Furthermore, the electromagnetic shielding property which interrupts | blocks the electromagnetic wave in frequency 1GHz was measured using KEC method mentioned above.
<<光線透過率>>
 実施例1D~8Dで作製した電磁波シールド性評価用フィルムについて、紫外可視分光光度計(日本分光株式会社製、「V-650」)を用いて、波長300nm、500nmおよび800nmにおける光線透過率、ならびに300~800nmにおける光線透過率の最大値を測定した。
 以上の各実施例、比較例の評価試験の結果を表4に示す。
<< light transmittance >>
About the electromagnetic wave shielding property evaluation films prepared in Examples 1D to 8D, using a UV-visible spectrophotometer (manufactured by JASCO Corporation, “V-650”), the light transmittance at wavelengths of 300 nm, 500 nm and 800 nm, and The maximum value of light transmittance at 300 to 800 nm was measured.
Table 4 shows the results of the evaluation tests of the above examples and comparative examples.
 なお、表4中において、実施例1D~5D、7Dおよび8Dでは、電磁波遮断層が備える、PEDOT/PSSで構成される層を第1の層とし、ポリアニリンで構成される層を第2の層とする。また、実施例6Dでは、電磁波遮断層が備える、PEDOT/PSSで構成される層を第1の層とし、CNTで構成される層を第2の層とする。
 また、表4中における電磁波遮断層が備える複数の第1の層および第2の層は、それぞれ、基材層側からの積層順を示している。
In Table 4, in Examples 1D to 5D, 7D, and 8D, the layer made of PEDOT / PSS provided in the electromagnetic wave shielding layer is the first layer, and the layer made of polyaniline is the second layer. And Moreover, in Example 6D, the layer comprised by PEDOT / PSS with which an electromagnetic wave shielding layer is provided is made into a 1st layer, and the layer comprised from CNT is made into a 2nd layer.
Moreover, the some 1st layer and 2nd layer with which the electromagnetic wave shielding layer in Table 4 is provided respectively show the lamination order from the base material layer side.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4から明らかなように、各実施例で得られた電磁波シールド用フィルムでは、電磁波遮断層の表面抵抗値が1×10-3Ω/□以上、1×10Ω/□以下であることにより、1GHzのように高周波帯域の電磁波であっても、電磁波を吸収することで効果的に遮断されている結果が得られた。
 特に、実施例1D~5Dで得られた電磁波シールド用フィルムでは、電磁波遮断層を、隣接する各層が異なる導電性高分子を含有する積層体で構成することにより、1GHzのように高周波帯域の電磁波であっても、電磁波を吸収することでより効果的に遮断することができた。
 また、各実施例で得られた電磁波シールド用フィルムは、いずれも、光線透過率が十分に低いことが分かった。すなわち、これらの実施例で得られた電磁波シールド用フィルムは、優れた光吸収性(光遮蔽性)を有していることが分かった。
As is apparent from Table 4, in the electromagnetic wave shielding film obtained in each example, the surface resistance value of the electromagnetic wave shielding layer is 1 × 10 −3 Ω / □ or more and 1 × 10 6 Ω / □ or less. Thus, even when the electromagnetic wave is in a high frequency band such as 1 GHz, the result of being effectively blocked by absorbing the electromagnetic wave was obtained.
In particular, in the electromagnetic wave shielding films obtained in Examples 1D to 5D, the electromagnetic wave shielding layer is composed of a laminate in which each adjacent layer contains a different conductive polymer, whereby an electromagnetic wave in a high frequency band such as 1 GHz is obtained. Even so, the electromagnetic wave could be blocked more effectively.
Moreover, it turned out that the electromagnetic wave shielding film obtained in each Example has a sufficiently low light transmittance. That is, it was found that the electromagnetic wave shielding films obtained in these examples had excellent light absorption (light shielding properties).
 なお、高周波帯域(特に、2.0~3.0GHz)の電磁波に対しては、実施例7D、8Dよりも、実施例1D~6Dの方がより効果的に遮断することができた。 In addition, Examples 1D to 6D were able to more effectively block electromagnetic waves in a high frequency band (particularly 2.0 to 3.0 GHz) than Examples 7D and 8D.
 本発明によれば、電磁波シールド用フィルムが、基材層と、導電性材料および磁性吸収材料のうちの少なくとも1種を含む材料で構成された電磁波遮断層とを含み、電磁波遮断層の表面抵抗値が1×10-3Ω/□以上、1×10Ω/□以下である。これにより、電磁波遮断層の軽量化・薄型化を図ることができるとともに、GHzオーダーのように高周波帯域の電磁波まで効果的に遮断することができる。さらに、本発明の電磁波シールド用フィルムは、波長300nm以上、800nm以下における光線透過率が0.01%以上、30%以下である。この電磁波シールド用フィルムを用いて、基板上に搭載された電子部品を被覆した際に、電磁波シールド用フィルムが、光を吸収、遮断することにより、電磁波遮断層で被覆している内部すなわち電子部品を見えなくすることができる。これにより、例えば、電磁波遮断層で被覆された電子部品搭載基板の流通時における電子部品の秘匿性を担保することができる。したがって、本発明は、産業上の利用可能性を有する。 According to the present invention, the electromagnetic wave shielding film includes a base material layer and an electromagnetic wave shielding layer made of a material containing at least one of a conductive material and a magnetic absorption material, and the surface resistance of the electromagnetic wave shielding layer. The value is 1 × 10 −3 Ω / □ or more and 1 × 10 6 Ω / □ or less. As a result, the electromagnetic wave shielding layer can be reduced in weight and thickness, and electromagnetic waves in a high frequency band can be effectively blocked as in the GHz order. Furthermore, the electromagnetic wave shielding film of the present invention has a light transmittance of 0.01% or more and 30% or less at a wavelength of 300 nm or more and 800 nm or less. When an electronic component mounted on a substrate is coated with this electromagnetic wave shielding film, the electromagnetic shielding film absorbs and blocks light to cover the inside, that is, the electronic component covered with the electromagnetic wave shielding layer. Can be made invisible. Thereby, the secrecy of the electronic component at the time of distribution of the electronic component mounting substrate covered with the electromagnetic wave shielding layer can be ensured, for example. Therefore, the present invention has industrial applicability.

Claims (23)

  1.  基材層と、該基材層に積層された電磁波遮断層とを含む電磁波シールド用フィルムであって、
     前記電磁波遮断層は、導電性材料および磁性吸収材料のうちの少なくとも1種を含む材料で構成され、その表面抵抗値が1×10-3Ω/□以上、1×10Ω/□以下であり、
     電磁波シールド用フィルムは、波長300nm以上、800nm以下における光線透過率が0.01%以上、30%以下であることを特徴する電磁波シールド用フィルム。
    An electromagnetic wave shielding film comprising a base material layer and an electromagnetic wave shielding layer laminated on the base material layer,
    The electromagnetic wave shielding layer is made of a material containing at least one of a conductive material and a magnetic absorption material, and has a surface resistance value of 1 × 10 −3 Ω / □ or more and 1 × 10 6 Ω / □ or less. Yes,
    The electromagnetic wave shielding film has an optical transmittance of 0.01% or more and 30% or less at a wavelength of 300 nm or more and 800 nm or less.
  2.  前記導電性材料は、ポリエチレンジオキシチオフェン/ポリスチレンスルホネート(PEDOT/PSS)およびポリアニリンのうちの少なくとも1種の導電性高分子である請求項1に記載の電磁波シールド用フィルム。 2. The electromagnetic shielding film according to claim 1, wherein the conductive material is at least one conductive polymer of polyethylene dioxythiophene / polystyrene sulfonate (PEDOT / PSS) and polyaniline.
  3.  前記電磁波遮断層は、周波数0.2~1GHzの電磁波における、マイクロストリップライン法を用いて測定した際の電磁波シールド効果が3dB以上である請求項1または2に記載の電磁波シールド用フィルム。 The electromagnetic wave shielding film according to claim 1 or 2, wherein the electromagnetic wave shielding layer has an electromagnetic wave shielding effect of 3 dB or more when measured by using a microstrip line method in an electromagnetic wave having a frequency of 0.2 to 1 GHz.
  4.  前記電磁波遮断層は、周波数0.2~1GHzの電磁波における、KEC法を用いて測定した際の電磁波シールド効果が10dB以上である請求項1ないし3のいずれか1項に記載の電磁波シールド用フィルム。 The electromagnetic wave shielding film according to any one of claims 1 to 3, wherein the electromagnetic wave shielding layer has an electromagnetic wave shielding effect of 10 dB or more when measured using the KEC method in an electromagnetic wave having a frequency of 0.2 to 1 GHz. .
  5.  前記電磁波遮断層は、周波数1GHzにおける複素誘電率(ε)の虚数部(ε”)が30以上である請求項1ないし4のいずれか1項に記載の電磁波シールド用フィルム。 The electromagnetic wave shielding film according to any one of claims 1 to 4, wherein the electromagnetic wave shielding layer has an imaginary part (ε ") of a complex dielectric constant (ε) at a frequency of 1 GHz of 30 or more.
  6.  前記電磁波遮断層の誘電正接(tanδ)の値は、2以上、100以下である請求項5に記載の電磁波シールド用フィルム。 The electromagnetic shielding film according to claim 5, wherein the electromagnetic wave shielding layer has a dielectric loss tangent (tan δ) value of 2 or more and 100 or less.
  7.  前記電磁波遮断層の複素誘電率(ε)は、空洞共振器法を用いて測定される請求項5または6に記載の電磁波シールド用フィルム。 The film for electromagnetic wave shielding according to claim 5 or 6, wherein the complex dielectric constant (ε) of the electromagnetic wave shielding layer is measured using a cavity resonator method.
  8.  前記導電性材料は、導電性高分子および炭素同素体のうちの少なくとも1種である請求項5ないし7のいずれか1項に記載の電磁波シールド用フィルム。 The electromagnetic wave shielding film according to any one of claims 5 to 7, wherein the conductive material is at least one of a conductive polymer and a carbon allotrope.
  9.  前記導電性材料は、アスペクト比が10以上、4000以下であるカーボンナノチューブを含有する請求項1ないし7のいずれか1項に記載の電磁波シールド用フィルム。 The film for electromagnetic wave shielding according to any one of claims 1 to 7, wherein the conductive material contains carbon nanotubes having an aspect ratio of 10 or more and 4000 or less.
  10.  前記カーボンナノチューブは、その比表面積が20m/g以上である請求項9に記載の電磁波シールド用フィルム。 The film for electromagnetic wave shielding according to claim 9, wherein the carbon nanotube has a specific surface area of 20 m 2 / g or more.
  11.  前記カーボンナノチューブは、多層カーボンナノチューブである請求項9または10に記載の電磁波シールド用フィルム。 The film for electromagnetic wave shielding according to claim 9 or 10, wherein the carbon nanotube is a multi-walled carbon nanotube.
  12.  前記電磁波遮断層は、複数の層が積層された積層体であり、隣接する各層が異なる前記材料で構成されている請求項1に記載の電磁波シールド用フィルム。 The electromagnetic wave shielding film according to claim 1, wherein the electromagnetic wave shielding layer is a laminate in which a plurality of layers are laminated, and each adjacent layer is made of the different material.
  13.  前記材料は、導電性高分子、炭素同素体、軟磁性金属、およびフェライトのうちの少なくとも1種を含む請求項12に記載の電磁波シールド用フィルム。 The electromagnetic shielding film according to claim 12, wherein the material includes at least one of a conductive polymer, a carbon allotrope, a soft magnetic metal, and ferrite.
  14.  前記導電性高分子は、ポリアニリン、ポリピロール、ポリチオフェン、ポリエチレンジオキシチオフェン(PEDOT)およびポリエチレンジオキシチオフェン/ポリスチレンスルホネート(PEDOT/PSS)のうちの少なくとも1種を含む請求項13に記載の電磁波シールド用フィルム。 The electromagnetic conducting shield according to claim 13, wherein the conductive polymer includes at least one of polyaniline, polypyrrole, polythiophene, polyethylenedioxythiophene (PEDOT), and polyethylenedioxythiophene / polystyrenesulfonate (PEDOT / PSS). the film.
  15.  前記電磁波遮断層は、第1の材料で構成される第1の層と、第2の材料で構成される第2の層とがこの順で前記基材層側から交互に積層された積層体である請求項12ないし14のいずれか1項に記載の電磁波シールド用フィルム。 The electromagnetic wave shielding layer is a laminate in which a first layer made of a first material and a second layer made of a second material are alternately laminated in this order from the base material layer side. The electromagnetic wave shielding film according to claim 12, wherein the film is an electromagnetic shielding film.
  16.  前記第1の材料は、ポリアニリンおよびPEDOT/PSSのうちの一方であり、前記第2の材料は、ポリアニリンおよびPEDOT/PSSのうちの他方である請求項15に記載の電磁波シールド用フィルム。 The electromagnetic shielding film according to claim 15, wherein the first material is one of polyaniline and PEDOT / PSS, and the second material is the other of polyaniline and PEDOT / PSS.
  17.  前記第1の層の厚みは、1μm以上、30μm以下である請求項15または16に記載の電磁波シールド用フィルム。 The film for electromagnetic wave shielding according to claim 15 or 16, wherein the thickness of the first layer is 1 µm or more and 30 µm or less.
  18.  前記第2の層の厚みは、1μm以上、30μm以下である請求項15ないし17のいずれか1項に記載の電磁波シールド用フィルム。 The film for electromagnetic wave shielding according to any one of claims 15 to 17, wherein the thickness of the second layer is 1 µm or more and 30 µm or less.
  19.  前記電磁波遮断層は、2層または3層の積層体である請求項12ないし18のいずれか1項に記載の電磁波シールド用フィルム。 The electromagnetic wave shielding film according to any one of claims 12 to 18, wherein the electromagnetic wave shielding layer is a laminate of two layers or three layers.
  20.  前記電磁波遮断層の厚みは、5μm以上、100μm以下である請求項1ないし19のいずれか1項に記載の電磁波シールド用フィルム。 The film for electromagnetic wave shielding according to any one of claims 1 to 19, wherein the electromagnetic wave shielding layer has a thickness of 5 µm or more and 100 µm or less.
  21.  前記電磁波遮断層の前記基材層側の面、または前記基材層と反対側の面に積層された絶縁層を備える請求項1ないし20のいずれか1項に記載の電磁波シールド用フィルム。 21. The electromagnetic wave shielding film according to claim 1, further comprising an insulating layer laminated on a surface of the electromagnetic wave shielding layer on the base material layer side or on a surface opposite to the base material layer.
  22.  当該電磁波シールド用フィルムは、基板上の凹凸を被覆するために用いられる請求項1ないし20のいずれか1項に記載の電磁波シールド用フィルム。 21. The electromagnetic wave shielding film according to any one of claims 1 to 20, wherein the electromagnetic wave shielding film is used for covering irregularities on a substrate.
  23.  基板と、
     該基板上に搭載された電子部品と、
     請求項1ないし22のいずれか1項に記載の電磁波シールド用フィルムを用いて形成され、前記基板の前記電子部品が搭載されている面側から前記基板および電子部品を被覆する電磁波遮断層とを有することを特徴する電子部品搭載基板。
    A substrate,
    Electronic components mounted on the substrate;
    An electromagnetic wave shielding layer formed by using the electromagnetic wave shielding film according to any one of claims 1 to 22, and covering the substrate and the electronic component from a side of the substrate on which the electronic component is mounted. An electronic component mounting board comprising:
PCT/JP2014/065511 2013-06-13 2014-06-11 Electromagnetic wave shielding film, and electronic component mounting substrate WO2014200035A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015522842A JP6481612B2 (en) 2013-06-13 2014-06-11 Electromagnetic wave shielding film and electronic component mounting board

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2013124947 2013-06-13
JP2013-124947 2013-06-13
JP2013149954 2013-07-18
JP2013-149954 2013-07-18
JP2013-157010 2013-07-29
JP2013157010 2013-07-29
JP2013190641 2013-09-13
JP2013-190641 2013-09-13

Publications (1)

Publication Number Publication Date
WO2014200035A1 true WO2014200035A1 (en) 2014-12-18

Family

ID=52022325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065511 WO2014200035A1 (en) 2013-06-13 2014-06-11 Electromagnetic wave shielding film, and electronic component mounting substrate

Country Status (3)

Country Link
JP (2) JP6481612B2 (en)
TW (1) TW201512346A (en)
WO (1) WO2014200035A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105491866A (en) * 2015-11-30 2016-04-13 惠州市浩明科技股份有限公司 Electronic shield adhesive material
JP2016146401A (en) * 2015-02-06 2016-08-12 住友ベークライト株式会社 Electromagnetic wave shielding film, and electronic component mounting board
CN106061223A (en) * 2016-07-15 2016-10-26 胡银坤 Electromagnetic shielding film and preparation method thereof
JP2017022319A (en) * 2015-07-14 2017-01-26 住友ベークライト株式会社 Electromagnetic wave shielding film, and electronic component mounting board
KR20170053931A (en) * 2015-11-09 2017-05-17 주식회사 엘지화학 Carbon composite material having improved permittivity and method for controlling dielectric constant therof
JP2017092416A (en) * 2015-11-17 2017-05-25 信越ポリマー株式会社 Electromagnetic wave shield film and electromagnetic wave shield film-attached printed wiring board
CN108003543A (en) * 2017-12-17 2018-05-08 成都育芽科技有限公司 A kind of medical instrument absorbing material and preparation method thereof
WO2018105369A1 (en) * 2016-12-08 2018-06-14 デュポン帝人アドバンスドペーパー株式会社 Electromagnetic wave suppression sheet
JP2018174241A (en) * 2017-03-31 2018-11-08 ナガセケムテックス株式会社 Method for manufacturing mounting structure and laminated sheet used for the same
JP2018195854A (en) * 2013-06-13 2018-12-06 住友ベークライト株式会社 Electromagnetic wave-shielding film, and electronic component-mounted substrate
JP6451801B1 (en) * 2017-08-10 2019-01-16 東洋インキScホールディングス株式会社 Electromagnetic shielding film used for manufacturing method of electromagnetic shielding electronic device and manufacturing method of electromagnetic shielding electronic device
JP6468389B1 (en) * 2018-04-12 2019-02-13 東洋インキScホールディングス株式会社 Laminated body, component mounting board, and method for manufacturing component mounting board
CN112048239A (en) * 2020-07-30 2020-12-08 新昌县旭辉新材料科技有限公司 Barium ferrite-Al2O3Porous SiC-loaded polyaniline wave-absorbing coating and preparation method thereof
TWI726963B (en) * 2015-12-25 2021-05-11 日商日本瑞翁股份有限公司 Electromagnetic wave absorbing material and electromagnetic wave absorber
JP2021145002A (en) * 2020-03-10 2021-09-24 住友ベークライト株式会社 Functional layer pasting film set and insulating film
EP4044782A4 (en) * 2019-10-10 2023-11-01 Fujiko Co., Ltd. Laminate, coating member having same, and laminate manufacturing method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109121376A (en) * 2018-10-10 2019-01-01 深圳市友华通信技术有限公司 Electronic equipment anti-interference method and Anti-interference electronic equipment
JP2020107840A (en) * 2018-12-28 2020-07-09 出光興産株式会社 Molding or stretching film, molded body, and stretched film
US11690208B2 (en) 2019-01-15 2023-06-27 Hitachi High-Tech Corporation Electromagnetic field shielding plate, method for manufacturing same, electromagnetic field shielding structure, and semiconductor manufacturing environment
CN115298645B (en) 2020-08-25 2023-06-09 株式会社和冠 Cover film for pen sensor and pen sensor
JP2022087496A (en) * 2020-12-01 2022-06-13 日東電工株式会社 Radio wave absorber and laminated body for the same
CN116547869A (en) * 2020-12-01 2023-08-04 日东电工株式会社 Radio wave absorber and laminate for radio wave absorber
CN114650648A (en) * 2020-12-21 2022-06-21 3M创新有限公司 Circuit board to which 3D-shaped electromagnetic shielding film is attached, 3D-shaped electromagnetic shielding film and 3D-shaped electromagnetic shielding film

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04268789A (en) * 1991-02-23 1992-09-24 Taiyo Yuden Co Ltd Hybrid integrated circuit device and manufacture thereof
JPH10163580A (en) * 1996-12-03 1998-06-19 Kuwahara Seisakusho:Kk Printed circuit board
JP2000269632A (en) * 1999-03-17 2000-09-29 Tatsuta Electric Wire & Cable Co Ltd Shield flexible printed wiring board, manufacture thereof and reinforcing shield film therefor
JP2006156946A (en) * 2004-11-04 2006-06-15 Kitagawa Ind Co Ltd Electromagnetic wave shielding film
JP2011018873A (en) * 2009-05-22 2011-01-27 Sony Ericsson Mobilecommunications Japan Inc Electromagnetic shielding method and electromagnetic shielding film
JP2011124029A (en) * 2009-12-09 2011-06-23 Alps Electric Co Ltd Transparent conductive film and its manufacturing method
JP2011161747A (en) * 2010-02-09 2011-08-25 Sumitomo Bakelite Co Ltd Laminated film
JP2012186384A (en) * 2011-03-07 2012-09-27 Tdk Corp Electromagnetic noise suppression member
JP2012186222A (en) * 2011-03-03 2012-09-27 Nagase Chemtex Corp Molding electromagnetic wave shield sheet and electromagnetic wave shield molded body
JP2012204734A (en) * 2011-03-28 2012-10-22 Shachihata Inc Radio wave suppression sheet, and electronic apparatus and radio wave suppression component equipped with this sheet
JP2013035966A (en) * 2011-08-09 2013-02-21 Mitsubishi Gas Chemical Co Inc Electroconductive coating
JP2013082610A (en) * 2011-09-29 2013-05-09 Kj Specialty Paper Co Ltd Carbon nanotube aqueous dispersion and composite sheet obtained by using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100701832B1 (en) * 2005-06-15 2007-04-02 (주)창성 Thin multi-layered electro-magnetic absorption film by controlling surface resistance
JP5653289B2 (en) * 2011-04-27 2015-01-14 株式会社ニッセイ エコ Electromagnetic wave shield cover and manufacturing method thereof
WO2014200035A1 (en) * 2013-06-13 2014-12-18 住友ベークライト株式会社 Electromagnetic wave shielding film, and electronic component mounting substrate

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04268789A (en) * 1991-02-23 1992-09-24 Taiyo Yuden Co Ltd Hybrid integrated circuit device and manufacture thereof
JPH10163580A (en) * 1996-12-03 1998-06-19 Kuwahara Seisakusho:Kk Printed circuit board
JP2000269632A (en) * 1999-03-17 2000-09-29 Tatsuta Electric Wire & Cable Co Ltd Shield flexible printed wiring board, manufacture thereof and reinforcing shield film therefor
JP2006156946A (en) * 2004-11-04 2006-06-15 Kitagawa Ind Co Ltd Electromagnetic wave shielding film
JP2011018873A (en) * 2009-05-22 2011-01-27 Sony Ericsson Mobilecommunications Japan Inc Electromagnetic shielding method and electromagnetic shielding film
JP2011124029A (en) * 2009-12-09 2011-06-23 Alps Electric Co Ltd Transparent conductive film and its manufacturing method
JP2011161747A (en) * 2010-02-09 2011-08-25 Sumitomo Bakelite Co Ltd Laminated film
JP2012186222A (en) * 2011-03-03 2012-09-27 Nagase Chemtex Corp Molding electromagnetic wave shield sheet and electromagnetic wave shield molded body
JP2012186384A (en) * 2011-03-07 2012-09-27 Tdk Corp Electromagnetic noise suppression member
JP2012204734A (en) * 2011-03-28 2012-10-22 Shachihata Inc Radio wave suppression sheet, and electronic apparatus and radio wave suppression component equipped with this sheet
JP2013035966A (en) * 2011-08-09 2013-02-21 Mitsubishi Gas Chemical Co Inc Electroconductive coating
JP2013082610A (en) * 2011-09-29 2013-05-09 Kj Specialty Paper Co Ltd Carbon nanotube aqueous dispersion and composite sheet obtained by using the same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018195854A (en) * 2013-06-13 2018-12-06 住友ベークライト株式会社 Electromagnetic wave-shielding film, and electronic component-mounted substrate
JP2016146401A (en) * 2015-02-06 2016-08-12 住友ベークライト株式会社 Electromagnetic wave shielding film, and electronic component mounting board
JP2017022319A (en) * 2015-07-14 2017-01-26 住友ベークライト株式会社 Electromagnetic wave shielding film, and electronic component mounting board
KR102065651B1 (en) * 2015-11-09 2020-01-13 주식회사 엘지화학 Carbon composite material having improved permittivity and method for controlling dielectric constant therof
KR20170053931A (en) * 2015-11-09 2017-05-17 주식회사 엘지화학 Carbon composite material having improved permittivity and method for controlling dielectric constant therof
JP2017092416A (en) * 2015-11-17 2017-05-25 信越ポリマー株式会社 Electromagnetic wave shield film and electromagnetic wave shield film-attached printed wiring board
CN105491866A (en) * 2015-11-30 2016-04-13 惠州市浩明科技股份有限公司 Electronic shield adhesive material
TWI726963B (en) * 2015-12-25 2021-05-11 日商日本瑞翁股份有限公司 Electromagnetic wave absorbing material and electromagnetic wave absorber
CN106061223A (en) * 2016-07-15 2016-10-26 胡银坤 Electromagnetic shielding film and preparation method thereof
TWI763745B (en) * 2016-12-08 2022-05-11 日商杜邦帝人先進紙股份有限公司 Electromagnetic wave suppression sheet
WO2018105369A1 (en) * 2016-12-08 2018-06-14 デュポン帝人アドバンスドペーパー株式会社 Electromagnetic wave suppression sheet
JP2018174241A (en) * 2017-03-31 2018-11-08 ナガセケムテックス株式会社 Method for manufacturing mounting structure and laminated sheet used for the same
JP6451801B1 (en) * 2017-08-10 2019-01-16 東洋インキScホールディングス株式会社 Electromagnetic shielding film used for manufacturing method of electromagnetic shielding electronic device and manufacturing method of electromagnetic shielding electronic device
CN108003543A (en) * 2017-12-17 2018-05-08 成都育芽科技有限公司 A kind of medical instrument absorbing material and preparation method thereof
JP6468389B1 (en) * 2018-04-12 2019-02-13 東洋インキScホールディングス株式会社 Laminated body, component mounting board, and method for manufacturing component mounting board
EP4044782A4 (en) * 2019-10-10 2023-11-01 Fujiko Co., Ltd. Laminate, coating member having same, and laminate manufacturing method
JP2021145002A (en) * 2020-03-10 2021-09-24 住友ベークライト株式会社 Functional layer pasting film set and insulating film
CN112048239A (en) * 2020-07-30 2020-12-08 新昌县旭辉新材料科技有限公司 Barium ferrite-Al2O3Porous SiC-loaded polyaniline wave-absorbing coating and preparation method thereof
CN112048239B (en) * 2020-07-30 2021-11-19 深圳鑫景源科技股份有限公司 Barium ferrite-Al2O3Porous SiC-loaded polyaniline wave-absorbing coating and preparation method thereof

Also Published As

Publication number Publication date
JPWO2014200035A1 (en) 2017-02-23
TW201512346A (en) 2015-04-01
JP2018195854A (en) 2018-12-06
JP6481612B2 (en) 2019-03-13

Similar Documents

Publication Publication Date Title
JP6481612B2 (en) Electromagnetic wave shielding film and electronic component mounting board
JP6263846B2 (en) Electromagnetic wave shielding film and method for coating electronic component
JP6064903B2 (en) Conductive sheet
WO2013099172A1 (en) Cover lay film, flexible wiring board, and manufacturing method thereof
WO2015129546A1 (en) Electromagnetic shielding film, flexible printed substrate, substrate for mounting electronic component, and method for covering electronic component
KR101552976B1 (en) An emi shield film and method for fabricating the same
JP6872449B2 (en) Electromagnetic wave shield film and its manufacturing method, and printed wiring board with electromagnetic wave shield film and its manufacturing method
TWI602478B (en) Shape retaining film and shape retaining flexible wiring board containing the shape retaining film
TW201121405A (en) Electro-magnetic wave shielding film and wiring board
JP2019009396A (en) Electromagnetic wave shielding film and electronic component mounting substrate
JP6497009B2 (en) Electromagnetic wave shielding film
JP2015159214A (en) Electromagnetic wave shield film, and flexible printed board
TW201625125A (en) Electromagnetic wave shielding composite film
JP2016006808A (en) Film for electromagnetic wave shield, and electronic component packaging substrate
JP2016058565A (en) Film for electromagnetic shielding
JP5705460B2 (en) Electromagnetic wave absorber, method for producing electromagnetic wave absorber, and electronic device
JP2016146401A (en) Electromagnetic wave shielding film, and electronic component mounting board
TWI550650B (en) Conductive sheet and electonic parts
JP2016009809A (en) Film for electromagnetic wave shield and electronic component mounting board
WO2013081074A1 (en) Thin-film electroconductive film
JP2022130302A (en) Member for radio wave absorber
KR20180065563A (en) Impedance matching film for flexible flat cable

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14810333

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015522842

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14810333

Country of ref document: EP

Kind code of ref document: A1