JP2012186384A - Electromagnetic noise suppression member - Google Patents

Electromagnetic noise suppression member Download PDF

Info

Publication number
JP2012186384A
JP2012186384A JP2011049494A JP2011049494A JP2012186384A JP 2012186384 A JP2012186384 A JP 2012186384A JP 2011049494 A JP2011049494 A JP 2011049494A JP 2011049494 A JP2011049494 A JP 2011049494A JP 2012186384 A JP2012186384 A JP 2012186384A
Authority
JP
Japan
Prior art keywords
electromagnetic noise
noise suppression
powder
vol
suppression member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011049494A
Other languages
Japanese (ja)
Inventor
Eiji Suzuki
英治 鈴木
Katsuhiko Wakayama
勝彦 若山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2011049494A priority Critical patent/JP2012186384A/en
Publication of JP2012186384A publication Critical patent/JP2012186384A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an electromagnetic noise suppression member capable of exhibiting an excellent suppression effect against a high-frequency electromagnetic noise having a GHz frequency band, having an excellent heat conductivity, and enhancing heat radiation performance sufficiently.SOLUTION: An electromagnetic noise suppression member according to the present invention contains magnetic powder and carbon powder in a resin, for example, functioning as a binder (a binding agent). A total content ratio of the magnetic powder and the carbon powder in the electromagnetic noise suppression member is 40-80 vol.%. At the same time, a content ratio of the magnetic powder is adjusted to 20-60 vol.%, and a content ratio of the carbon powder is adjusted to 20-60 vol.%. Further, a value of an imaginary part ε" of a complex dielectric constant ε as the electromagnetic noise suppression member is 200-1500 at 1 GHz.

Description

本発明は、電磁ノイズ対策に用いられる電磁ノイズ抑制部材に関する。   The present invention relates to an electromagnetic noise suppression member used for electromagnetic noise countermeasures.

従来、電子機器において伝送される信号の電磁ノイズを抑制するために、回路の近傍や伝送線路の周囲等に、電磁ノイズ抑制シートや複合磁性シートといった電磁ノイズ抑制部材を配置する手法が広く用いられている。例えば、電磁ノイズ抑制シートを携帯電話の内部等に用いた場合、電磁場閉じ込め効果により、機器内の信号ラインや集積回路(IC)から発生する高周波磁界成分による対向ライン等への誘導結合が抑制される(デカップリング効果)。また、IC等から延出する信号線に電磁ノイズ抑制シートを適用することにより、信号線へのインピーダンス付加効果による高周波成分が抑制される(フィルタ効果)。さらに、高速回路を接続するフレキシブルケーブル等に電磁ノイズ抑制シートを用いることにより、ケーブルに重畳するコモンモード電流成分が抑制される。   Conventionally, in order to suppress electromagnetic noise of a signal transmitted in an electronic device, a method of arranging an electromagnetic noise suppression member such as an electromagnetic noise suppression sheet or a composite magnetic sheet in the vicinity of a circuit or around a transmission line has been widely used. ing. For example, when an electromagnetic noise suppression sheet is used in a mobile phone or the like, inductive coupling to an opposing line or the like due to a high frequency magnetic field component generated from a signal line in an apparatus or an integrated circuit (IC) is suppressed due to an electromagnetic field confinement effect. (Decoupling effect). Moreover, by applying an electromagnetic noise suppression sheet to a signal line extending from an IC or the like, a high-frequency component due to an effect of adding impedance to the signal line is suppressed (filter effect). Furthermore, by using an electromagnetic noise suppression sheet for a flexible cable or the like connecting a high-speed circuit, a common mode current component superimposed on the cable is suppressed.

ところで、デジタル電子機器等で使用される電気信号の高速化及び高周波化に対応するため、電子回路設計は、近年、ますます多様化してきており、電子部品や伝送信号の複合化に応じて抑制すべき電磁ノイズの周波数も多様化且つ広帯域(例えば、kHz〜GHzオーダーまで非常に幅広い周波数範囲)化している。   By the way, in order to cope with the higher speed and higher frequency of electrical signals used in digital electronic devices, etc., electronic circuit design has been diversified in recent years, and is suppressed according to the combination of electronic components and transmission signals. The frequency of electromagnetic noise to be diversified and widened (for example, a very wide frequency range from the kHz to the GHz order).

これに対応するべく、電磁ノイズ抑制シート等に用い得る電磁波吸収材料の一例として、特許文献1には、誘電体(但し黒鉛を除く)及び/又は磁性体と共に、誘電体調整剤として、固定炭素分97%以上、灰分が3%以下、及び、揮発分が3%以下である黒鉛を含有したものが記載されている。   In order to cope with this, as an example of an electromagnetic wave absorbing material that can be used for an electromagnetic noise suppression sheet or the like, Patent Document 1 discloses fixed carbon as a dielectric regulator together with a dielectric (except graphite) and / or a magnetic substance. A material containing graphite having a content of 97% or more, an ash content of 3% or less, and a volatile content of 3% or less is described.

特開2009−278137号公報JP 2009-278137 A

ここで、上記特許文献1に記載された電磁波吸収材料は、所望の周波数帯域で高い電磁波吸収性能を実現することを企図したものであり、特に、材料設計において無反射条件を達成するための調節パラメータとして、材料組成物中に含有する誘電体材料の複素誘電率(ε)に着目したもの、すなわち、電磁波吸収特性における誘電損失を重視したものと推察される。しかし、本発明者らが、この従来の電磁波吸収材料について、その電磁ノイズ抑制効果の周波数特性を評価したところ、特にGHz領域の高周波帯域を有する電磁ノイズに対する抑制効果(特に、ノイズ発生源から波長程度以内の近傍界用としての抑制効果)が未だ不十分であることが判明した。   Here, the electromagnetic wave absorbing material described in Patent Document 1 is intended to achieve high electromagnetic wave absorbing performance in a desired frequency band, and in particular, adjustment for achieving a non-reflective condition in the material design. It is presumed that the parameter focuses on the complex dielectric constant (ε) of the dielectric material contained in the material composition, that is, the dielectric loss in the electromagnetic wave absorption characteristics is emphasized. However, the present inventors have evaluated the frequency characteristics of the electromagnetic noise suppression effect of this conventional electromagnetic wave absorbing material, and in particular, the suppression effect against electromagnetic noise having a high frequency band in the GHz range (in particular, the wavelength from the noise source). It has been found that the suppression effect for near field within a range is still insufficient.

また、近時、例えば半導体プロセッサ等の電子部品は、微細化及び作動(クロック)周波数の高速化に伴って、高電流による発熱が顕著となっており、しかも、その高密度化及び高集積化がますます進んでいることから、かかる電子部品からの放熱を外部に効率よく排出すること(放熱効果の向上)、及び、そのような電子部品からの熱を遮ること(断熱効果の向上)は、電子機器の動作安定性や信頼性を確保する観点から、極めて重大な課題となっている。しかし、本発明者らの知見によれば、上記従来の電磁波吸収材料では、そのような要求を十分に満たすことも困難な傾向にある。   In recent years, electronic components such as semiconductor processors, for example, have noticeably generated heat due to high currents with miniaturization and speeding up of operation (clock) frequency, and higher density and higher integration. Because of the progress, the heat dissipation from such electronic components is efficiently discharged to the outside (improving the heat dissipation effect) and the heat from such electronic components is being improved (improving the heat insulation effect). From the viewpoint of ensuring the operational stability and reliability of electronic devices, this is an extremely important issue. However, according to the knowledge of the present inventors, it is difficult for the conventional electromagnetic wave absorbing material to sufficiently satisfy such requirements.

そこで、本発明はかかる事情に鑑みてなされたものであり、GHz帯域の周波数を有する高周波電磁ノイズに対して優れた抑制効果を発現することが可能であり、しかも、熱伝導率に優れ、放熱性能を十分に高めることが可能な、電磁ノイズ抑制部材を提供することを目的とする。   Therefore, the present invention has been made in view of such circumstances, and can exhibit an excellent suppression effect against high-frequency electromagnetic noise having a frequency in the GHz band, and has excellent thermal conductivity, heat dissipation. An object of the present invention is to provide an electromagnetic noise suppressing member capable of sufficiently enhancing performance.

上記課題を解決するために、本発明による電磁ノイズ抑制材料は、磁性粉及び炭素粉が樹脂中に含有されてなるものであって、磁性粉及び炭素粉の合計含有割合が40〜80vol%であり、磁性粉の含有割合が20〜60vol%であり、且つ、炭素粉の含有割合が20〜60vol% であり、さらに、複素誘電率εの虚数部ε"の値が、1GHzにおいて200〜1500である。   In order to solve the above-mentioned problems, the electromagnetic noise suppression material according to the present invention includes magnetic powder and carbon powder contained in a resin, and the total content of magnetic powder and carbon powder is 40 to 80 vol%. Yes, the content ratio of the magnetic powder is 20 to 60 vol%, the content ratio of the carbon powder is 20 to 60 vol%, and the value of the imaginary part ε ″ of the complex dielectric constant ε is 200 to 1500 at 1 GHz. It is.

ここで、本明細書における「炭素粉」とは、炭素を主原料とする(炭素質の)粉体又は粉末を意味し、特に、導電性を有するものが好適に用いられる。その具体例としては、グラファイトやグラフェン等が挙げられる。導電性炭素繊維(アクリル繊維(PAN系)又はピッチ(石油、石炭、コールタール等の副生成物:PITCH系)を高温で炭化(酸素を遮断した状態で加熱)することにより形成される炭素繊維、フラーレン及びカーボンナノチューブ等の微細な黒鉛結晶構造を有するものを粉砕して得られる粉体又は粉末を用いてもよい。   Here, the “carbon powder” in the present specification means a (carbonaceous) powder or powder containing carbon as a main raw material, and in particular, a conductive material is preferably used. Specific examples thereof include graphite and graphene. Carbon fibers formed by carbonizing conductive carbon fibers (acrylic fibers (PAN-based) or pitches (by-products such as petroleum, coal, coal tar, etc .: PITCH)) at a high temperature (heating in a state of blocking oxygen) Alternatively, powders or powders obtained by pulverizing those having a fine graphite crystal structure such as fullerenes and carbon nanotubes may be used.

また、本明細書における「vol%」とは、体積百分率であって、バインダ(結合剤)となる樹脂中に、磁性粉及び炭素粉が混合されて成形(例えば、プレス成形)された電磁ノイズ抑制部材のその成形後の実測体積Vと、同量の磁性粉及び/又は炭素粉の質量m及び理論密度ρとから、下記式(1);
vol%=m/ρ/V×100 … (1)、
を用いて算出される値を示す。なお、上記理論密度ρは、磁性粉及び炭素粉のいずれか単独物については、その真密度を示し、磁性粉及び炭素粉の混合物については、具体的には、[磁性粉の真密度]×[混合物の合計体積に対する磁性粉の体積]+[炭素粉の真密度]×[混合物の合計体積に対する炭素粉の体積]によって算出することができる。
Further, “vol%” in the present specification is a volume percentage, and electromagnetic noise formed by mixing (for example, press molding) magnetic powder and carbon powder in a resin serving as a binder. From the measured volume V of the suppressing member after its molding, the mass m and the theoretical density ρ of the same amount of magnetic powder and / or carbon powder, the following formula (1);
vol% = m / ρ / V × 100 (1),
The value calculated using is shown. The theoretical density ρ indicates the true density of any one of the magnetic powder and the carbon powder. Specifically, for the mixture of the magnetic powder and the carbon powder, specifically, [true density of the magnetic powder] × It can be calculated by [volume of magnetic powder with respect to the total volume of the mixture] + [true density of carbon powder] × [volume of the carbon powder with respect to the total volume of the mixture].

ところで、電磁ノイズ抑制部材の特性は、一般に、主として、その部材が設置される電磁波環境とその部材を構成する材料の磁気的及び電気的な物性に依存し得る。これらのうち、電磁場環境は、例えば、電界(電場)強度Eを磁界(磁場)強度Hで除した量である波動インピーダンスE/Hを一つの指標とすることができる。参考までに、ノイズ対策が必要な伝送線路等の周囲におけるE/Hの値は、例えばTEM(Transverse Electromagnetic Wave)波の120π(Ω)(約400Ω程度)を標準とすると、大きい場合にはその10倍程度又はそれ以上のオーダー、小さい場合には標準の1/10又はそれ以下のオーダーとなる。   By the way, the characteristics of the electromagnetic noise suppression member can generally depend mainly on the electromagnetic environment in which the member is installed and the magnetic and electrical properties of the material constituting the member. Among these, the electromagnetic field environment can use, for example, a wave impedance E / H that is an amount obtained by dividing the electric field (electric field) intensity E by the magnetic field (magnetic field) intensity H as one index. For reference, the value of E / H around a transmission line or the like that needs noise countermeasures is, for example, TEM (Transverse Electromagnetic Wave) wave 120π (Ω) (about 400Ω) as a standard. The order is about 10 times or more, and in the case of a small order, it becomes an order of 1/10 or less of the standard.

また、材料の磁気的及び電気的な物性としては、複素透磁率μの実数部μ'及び虚数部μ"、並びに、複素誘電率εの実数部 ε'及び虚数部ε"が、一般に用いられる。それらのうち、複素透磁率の実数部μ'は磁場の閉じ込め効果を表し、複素誘電率の実数部ε'は電場の閉じ込め効果を表す。なお、μ'又はε'の値が大きいほど閉じ込め効果が高い(すなわち、電磁ノイズ抑制効果が高い)傾向にある。一方、複素透磁率の虚数部μ"は磁気損失効果を表し、複素誘電率の虚数部ε"は誘電損失効果を表す。なお、μ"又はε"の値が大きいほどエネルギ損失が大きい(すなわち、電磁ノイズ抑制効果が 高い)傾向にある。さらに、本発明者らの知見によれば、GHz帯においては、因子μ'による電場閉じ込め効果や因子μ"による磁気エネルギ損失効果よりも、因子ε'による電場閉じ込め効果及び因子ε"による誘電エネルギ損失効果の方が、電磁ノイズ抑制により有効に寄与することが判明している。   As the magnetic and electrical properties of the material, the real part μ ′ and imaginary part μ ″ of the complex permeability μ and the real part ε ′ and imaginary part ε ″ of the complex permittivity ε are generally used. . Among them, the real part μ ′ of the complex permeability represents the magnetic field confinement effect, and the complex part of the real part ε ′ represents the electric field confinement effect. Note that the greater the value of μ ′ or ε ′, the higher the confinement effect (that is, the higher the electromagnetic noise suppression effect). On the other hand, the imaginary part μ ″ of the complex permeability represents the magnetic loss effect, and the imaginary part ε ″ of the complex permittivity represents the dielectric loss effect. Note that the larger the value of μ "or ε", the larger the energy loss (that is, the higher the electromagnetic noise suppression effect). Furthermore, according to the knowledge of the present inventors, in the GHz band, the electric field confinement effect due to the factor ε ′ and the dielectric energy due to the factor ε ″ are higher than the electric field confinement effect due to the factor μ ′ and the magnetic energy loss effect due to the factor μ ″. It has been found that the loss effect contributes more effectively by suppressing electromagnetic noise.

これに対し、上述した構成を有する電磁ノイズ抑制部材においては、磁性粉及び炭素粉の合計含有割合が40vol%以上であるので、GHz帯域の周波数を有する高周波電磁ノイズに対する抑制効果を十分に得ることが可能な程度(その用途が近傍界用であっても)に、複素誘電率εの虚数部ε"の値が高められる。また、磁性粉及び炭素粉の合計含有割合が80vol%以下であるので、電磁ノイズの抑制の観点から不都合な電磁反射が生起されない程度に、複素誘電率εの虚数部ε"の値が制限される。その際、電磁ノイズ抑制部材における磁性粉の含有割合が20vol%以上であるので、GHz帯域における挿入損失に対し、磁性粉による磁気損失効果が有意に寄与し得る。また、電磁ノイズ抑制部材における炭素粉の含有割合が20vol%以上であるので、GHz帯域における挿入損失に対し、炭素粉による誘電損失効果も有意に寄与し得る。   On the other hand, in the electromagnetic noise suppression member having the above-described configuration, the total content of the magnetic powder and the carbon powder is 40 vol% or more, so that a sufficient suppression effect on high frequency electromagnetic noise having a frequency in the GHz band can be obtained. Of the imaginary part ε "of the complex dielectric constant ε is increased to the extent possible (even if the application is for near-field use). The total content of magnetic powder and carbon powder is 80 vol% or less. Therefore, the value of the imaginary part ε ″ of the complex dielectric constant ε is limited to the extent that undesirable electromagnetic reflection is not generated from the viewpoint of suppressing electromagnetic noise. In that case, since the content rate of the magnetic powder in an electromagnetic noise suppression member is 20 vol% or more, the magnetic loss effect by magnetic powder can contribute significantly with respect to the insertion loss in a GHz band. Moreover, since the content rate of the carbon powder in an electromagnetic noise suppression member is 20 vol% or more, the dielectric loss effect by carbon powder can also contribute significantly with respect to the insertion loss in a GHz band.

また、上述した構成を有する電磁ノイズ抑制部材は、電磁ノイズ抑制部材の複素誘電率εの虚数部ε"の値が、1GHzにおいて200〜1500であるので、電磁ノイズに対して挿入損失(特に、誘電損失)を増大させ、且つ、不都合な電磁反射の発生を抑止することにより、GHz帯域において優れた電磁ノイズ抑制効果が高められる。特に、電磁ノイズ抑制部材の複素誘電率εの虚数部ε"の値を上述の範囲に調整することにより、ノイズ発生源から波長程度以内の近傍界用としての抑制効果が格段に高められる。   Further, the electromagnetic noise suppressing member having the above-described configuration has an insertion loss (particularly, with respect to electromagnetic noise) because the value of the imaginary part ε ″ of the complex dielectric constant ε ″ of the electromagnetic noise suppressing member is 200 to 1500 at 1 GHz. By increasing the dielectric loss) and suppressing the occurrence of inconvenient electromagnetic reflection, an excellent electromagnetic noise suppression effect in the GHz band can be enhanced. In particular, the imaginary part ε ”of the complex dielectric constant ε of the electromagnetic noise suppression member Is adjusted to the above-mentioned range, the suppression effect for the near field within the wavelength range from the noise generation source is remarkably enhanced.

さらに、上記の電磁ノイズ抑制部材は、その複素誘電率εの虚数部ε"の範囲に応じて、電磁ノイズ抑制部材の正弦正接(tanδ=複素誘電率εの虚数部ε"/複素誘電率εの実数部ε')の値が、1GHzにおいて0.35〜1.5であると好ましい。   Further, the electromagnetic noise suppressing member has a sine tangent of the electromagnetic noise suppressing member (tan δ = imaginary part ε ″ of complex dielectric constant ε / complex dielectric constant ε) according to the range of the imaginary part ε ″ of the complex dielectric constant ε. Is preferably 0.35 to 1.5 at 1 GHz.

また、上記の電磁ノイズ抑制部材は、熱伝導率が、5W/mK(評価法はレーザフラッシュ法による)以上のものであると好ましい。このように構成すると、上述した特許文献1に記載された電磁波吸収材料の熱伝導率(評価法は不明だが、最大1.2W/mK:特許文献1の実施例9参照)に比して、熱伝導特性が格段に高められたものとなるため、電磁ノイズの抑制効果だけではなく、優れた放熱効果を得ることも可能となる。   The electromagnetic noise suppressing member preferably has a thermal conductivity of 5 W / mK (evaluation method is a laser flash method) or more. If comprised in this way, compared with the heat conductivity of the electromagnetic wave absorption material described in patent document 1 mentioned above (the evaluation method is unknown, but maximum 1.2 W / mK: refer to Example 9 of patent document 1), Since the heat conduction characteristics are remarkably enhanced, it is possible to obtain not only an electromagnetic noise suppressing effect but also an excellent heat dissipation effect.

上記の電磁ノイズ抑制部材は、近傍界用であることが好ましく、具体的には、電子部品貼着用電磁ノイズ抑制部材或いはLSI貼着用電磁ノイズ抑制部材であることがより好ましい。さらに、上記の電磁ノイズ抑制部材は、ヒートシンク兼電磁ノイズ抑制部材であることが好ましい。   The electromagnetic noise suppressing member is preferably for the near field, and more specifically, an electromagnetic noise suppressing member for attaching an electronic component or an electromagnetic noise suppressing member for attaching an LSI is more preferable. Further, the electromagnetic noise suppressing member is preferably a heat sink / electromagnetic noise suppressing member.

本発明の電磁ノイズ抑制部材によれば、磁性粉及び炭素粉が40〜80vol%の合計含有割合で樹脂中に含有(磁性粉の含有割合が20〜60vol%、且つ、炭素粉の含有割合が20〜60vol%)されており、加えて、電磁ノイズ抑制部材の複素誘電率εの虚数部ε"の値が、1GHzにおいて200〜1500であるので、GHz帯域といった高周波電磁ノイズに対して優れた抑制効果を奏することができ、また、熱伝導率に優れるので、従来に比して優れた放熱効果及び遮熱効果を実現することが可能となる。   According to the electromagnetic noise suppressing member of the present invention, the magnetic powder and the carbon powder are contained in the resin at a total content of 40 to 80 vol% (the content ratio of the magnetic powder is 20 to 60 vol%, and the content ratio of the carbon powder is In addition, since the value of the imaginary part ε "of the complex dielectric constant ε" of the electromagnetic noise suppressing member is 200 to 1500 at 1 GHz, it is excellent against high frequency electromagnetic noise such as the GHz band. Since the suppression effect can be achieved and the thermal conductivity is excellent, it is possible to realize a heat dissipation effect and a heat shielding effect that are superior to those of the conventional art.

ΔHを算出するための磁場強度の測定を行なっている状態を概略的に示す斜視図である。It is a perspective view which shows roughly the state which is measuring the magnetic field intensity for calculating (DELTA) H. 表1に示す複素誘電率εの虚数部ε"と磁場抑制効果ΔHをプロットしたグラフである。3 is a graph in which an imaginary part ε ″ of a complex dielectric constant ε and a magnetic field suppression effect ΔH shown in Table 1 are plotted. 表1に示す正弦正接tanδと磁場抑制効果ΔHとをプロットしたグラフである。3 is a graph in which a sine tangent tan δ and a magnetic field suppression effect ΔH shown in Table 1 are plotted.

以下、本発明の実施の形態について詳細に説明する。なお、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。また、図面の寸法比率は、図示の比率に限定されるものではない。さらに、以下の実施の形態は、本発明を説明するための例示であり、本発明をその実施の形態のみに限定する趣旨ではない。またさらに、本発明は、その要旨を逸脱しない限り、さまざまな変形が可能である。   Hereinafter, embodiments of the present invention will be described in detail. The positional relationship such as up, down, left, and right is based on the positional relationship shown in the drawings unless otherwise specified. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios. Furthermore, the following embodiment is an illustration for explaining the present invention, and is not intended to limit the present invention only to the embodiment. Furthermore, the present invention can be variously modified without departing from the gist thereof.

本実施形態による電磁ノイズ抑制部材は、バインダ(結合剤)として機能する樹脂中に、所定量の磁性粉及び炭素粉を含む樹脂組成物を、適宜の所望の形状(例えば、シート状、フィルム状等)に成形することにより得られる。   The electromagnetic noise suppression member according to the present embodiment has a resin composition containing a predetermined amount of magnetic powder and carbon powder in a resin functioning as a binder (binder), in an appropriate desired shape (for example, a sheet shape or a film shape). Etc.).

磁性粉は、一般の電磁ノイズ抑制シート等に用いられるものであって、粉体又は粉末として得られるものを適宜選択して用いることができ、特に限定されない。その具体例としては、例えば、Fe,Fe−Si合金,Fe−Si−Al合金,Fe−Si−Al−Ni合金,Fe−Si−Cr合金,Fe−Si−Cr−Ni合金,及びFe−Ni合金などのFe基結晶粉末や、アモルファス粉末、並びに、Mn−Znフェライト,Cu−Znフェライト,Mg−Znフェライト等の各種フェライト等が挙げられる。これらのなかでも、高透磁率を確保する観点からFe−Si−Al合金が好ましく、所謂センダスト組成のものがより好ましい。センダスト組成のFe−Si−Al合金粉としては、例えば、特開2009−262960号公報に記載されているものが例示される。なお、磁性粉の寸法形状は、特に制限されないが、透磁率を高める観点から、扁平形状であることが好ましい。   The magnetic powder is used for a general electromagnetic noise suppression sheet or the like, and can be appropriately selected and used as a powder or a powder obtained, and is not particularly limited. Specific examples thereof include, for example, Fe, Fe-Si alloy, Fe-Si-Al alloy, Fe-Si-Al-Ni alloy, Fe-Si-Cr alloy, Fe-Si-Cr-Ni alloy, and Fe- Examples thereof include Fe-based crystal powders such as Ni alloys, amorphous powders, and various ferrites such as Mn—Zn ferrite, Cu—Zn ferrite, and Mg—Zn ferrite. Among these, an Fe—Si—Al alloy is preferable from the viewpoint of securing high magnetic permeability, and a so-called sendust composition is more preferable. As Fe-Si-Al alloy powder of a sendust composition, what is described in Unexamined-Japanese-Patent No. 2009-262960 is illustrated, for example. The dimensional shape of the magnetic powder is not particularly limited, but is preferably a flat shape from the viewpoint of increasing the magnetic permeability.

また、炭素粉は、前述したグラファイト(黒鉛)粉やその他の炭素質粉を適宜選択して用いることができ、特に限定されない。これらの中でも、材料コストを低減して経済を向上させることができる観点から、黒鉛粉が有用であり、さらに工業用途で用いられている導電性に優れる黒鉛粉が特に有用である。また、樹脂中での炭素粉の分散性を高める観点からは、その平均粒子径が1μm〜500μmのものが好適である。さらに、樹脂中での炭素粉の面方向における熱伝導率を高める観点からは、その形状が燐片状の形状のものが好適である。   The carbon powder is not particularly limited, and the above-described graphite (graphite) powder and other carbonaceous powder can be appropriately selected and used. Among these, from the viewpoint of reducing material costs and improving economy, graphite powder is useful, and graphite powder excellent in conductivity that is used in industrial applications is particularly useful. From the viewpoint of enhancing the dispersibility of the carbon powder in the resin, those having an average particle diameter of 1 μm to 500 μm are suitable. Furthermore, from the viewpoint of increasing the thermal conductivity in the surface direction of the carbon powder in the resin, a shape having a scaly shape is preferable.

さらに、バインダとして用いる樹脂(バインダ樹脂)は、一般の電磁ノイズ抑制シート等に用いられるもの、例えば、熱可塑性樹脂、熱硬化性樹脂、各種合成ゴム等を適宜選択して用いることが可能であり、特に限定されない。その具体例としては、例えば、(メタ)アクリル系樹脂,ポリエステル系樹脂,ポリエチレン系樹脂,ポリスチレン系樹脂,塩化ビニル系樹脂,塩素化ポリエチレン系樹脂,ポリ酢酸ビニル系樹脂,ポリアミド系樹脂,及びポリオレフィン系樹脂等の熱可塑性樹脂や、フェノール系樹脂,エポキシ系樹脂,シリコーン系樹脂,及びメラミン系樹脂等の熱硬化性樹脂等の各種樹脂、天然ゴム,クロロプレン系ゴム,ブタジエン系ゴム,スチレンブタジエン系ゴム,イソプレン系ゴム,シリコーン系ゴム,エチレンプロピレン系ゴム,クロルスルホン化ゴム,ニトリル系ゴム,アクリロニトリルブタジエンゴム,(メタ)アクリル系ゴム,及びポリウレタン系ゴム等を含む各種ゴム、オレフィン系エラストマー,スチレン系エラストマー,スチレンブタジエン系エラストマー,ポリアミド系エラストマー,及びポリエステル系エラストマー等の熱可塑性エラストマー等が挙げられる。   Furthermore, the resin (binder resin) used as the binder can be selected from those used for general electromagnetic noise suppression sheets, for example, thermoplastic resins, thermosetting resins, various synthetic rubbers, and the like. There is no particular limitation. Specific examples include, for example, (meth) acrylic resins, polyester resins, polyethylene resins, polystyrene resins, vinyl chloride resins, chlorinated polyethylene resins, polyvinyl acetate resins, polyamide resins, and polyolefins. Various resins such as thermoplastic resins such as epoxy resins, thermosetting resins such as phenol resins, epoxy resins, silicone resins, and melamine resins, natural rubber, chloroprene rubber, butadiene rubber, styrene butadiene series Rubber, isoprene rubber, silicone rubber, ethylene propylene rubber, chlorosulfonated rubber, nitrile rubber, acrylonitrile butadiene rubber, (meth) acrylic rubber, and various rubbers including polyurethane rubber, olefin elastomer, styrene Elastomer, styrene Butadiene-based elastomers, polyamide-based elastomers, and thermoplastic elastomers such as polyester elastomers.

また、電磁ノイズ抑制部材の成形方法は、当業界で公知の手法を適宜採用でき、特に限定されない。例えば、磁性粉、炭素粉、及びバインダ樹脂を混合および/または混練して得た樹脂組成物(混合物又は混練物)を、プレス成形・押出成形等することによってシート状に成形する方法や、磁性粉、炭素粉、及びバインダ樹脂を適宜の有機溶媒中に分散させて得た樹脂組成物(分散液)を、ドクターブレード法等の周知の方法によって所定の厚さに製膜した後、有機溶媒を揮散させて乾燥してから、例えばカレンダーロール法等の周知の方法を用いて圧延することによりシート状に成形する手法等が知られている。なお、電磁ノイズ抑制部材をこのようにシート状に成形する場合、そのシートの厚さは、特に制限されず、適宜設定可能である。電磁ノイズ抑制部材に要求される電磁ノイズの遮断性や適用する機器等における空間的な制約等に依存するものの、シートの厚さは、通常、数十μm〜数cmに設定される。   In addition, a method for forming the electromagnetic noise suppression member is not particularly limited, and any method known in the art can be appropriately employed. For example, a method of forming a resin composition (mixture or kneaded product) obtained by mixing and / or kneading magnetic powder, carbon powder, and a binder resin into a sheet shape by press molding or extrusion molding, A resin composition (dispersion) obtained by dispersing powder, carbon powder, and a binder resin in an appropriate organic solvent is formed into a predetermined thickness by a known method such as a doctor blade method, and then an organic solvent. A method of forming into a sheet by rolling using a well-known method such as a calendar roll method after evaporating and drying is known. In addition, when shape | molding an electromagnetic noise suppression member in a sheet form in this way, the thickness of the sheet | seat is not restrict | limited in particular, It can set suitably. The thickness of the sheet is usually set to several tens of μm to several centimeters, although depending on the electromagnetic noise blocking property required for the electromagnetic noise suppressing member and the spatial restrictions in the equipment to be applied.

本実施形態の電磁ノイズ抑制部材においては、磁性粉及び炭素粉の合計含有割合が、40〜80vol%(40vol%以上80vol%以下)であることが必要とされる。また、同時に、磁性粉の含有割合が20〜60vol%(20vol%以上60vol%以下)、且つ、炭素粉の含有割合が20〜60vol%(20vol%以上60vol%以下)であることが必要とされる。磁性粉及び炭素粉の合計含有割合が40vol%未満であると、複素誘電率εの虚数部ε"の値が、190以下となり、GHz帯域の周波数を有する高周波電磁ノイズに対する抑制効果が不十分となるため、不適である。また、磁性粉及び炭素粉の合計含有割合が80vol%を超えると、複素誘電率εの虚数部ε"の値が、1600以上となり、電磁ノイズの抑制の観点から不都合な電磁反射が生起されるため、不適である。磁性粉及び炭素粉の含有割合が各々20vol%以上とすることにより、複素誘電率εの虚数部ε"の値が200以上となり、GHz帯域における挿入損失に対し、磁性粉による磁気損失効果と炭素粉による誘電損失効果とが両立される。   In the electromagnetic noise suppression member of the present embodiment, the total content ratio of the magnetic powder and the carbon powder is required to be 40 to 80 vol% (40 vol% or more and 80 vol% or less). At the same time, the content ratio of the magnetic powder is required to be 20 to 60 vol% (20 vol% or more and 60 vol% or less), and the content ratio of the carbon powder is 20 to 60 vol% (20 vol% or more and 60 vol% or less). The When the total content ratio of the magnetic powder and the carbon powder is less than 40 vol%, the value of the imaginary part ε ″ of the complex dielectric constant ε is 190 or less, and the effect of suppressing high frequency electromagnetic noise having a frequency in the GHz band is insufficient. Also, if the total content ratio of magnetic powder and carbon powder exceeds 80 vol%, the value of the imaginary part ε ″ of the complex dielectric constant ε becomes 1600 or more, which is inconvenient from the viewpoint of suppressing electromagnetic noise. Is unsuitable because it causes electromagnetic reflections. When the content ratio of the magnetic powder and the carbon powder is 20 vol% or more, the value of the imaginary part ε ″ of the complex dielectric constant ε becomes 200 or more, and the magnetic loss effect and carbon by the magnetic powder against the insertion loss in the GHz band. The dielectric loss effect by the powder is compatible.

本実施形態の電磁ノイズ抑制部材においては、上記の配合組成を採用することにより、電磁ノイズ抑制部材の複素誘電率εの虚数部ε"の値を、1GHzにおいて200〜1500(200以上1500以下)の範囲内の値に調節することができ、その結果、後述する実験評価等から、電磁ノイズのエネルギ損失を効果的に増大させ、且つ、不都合な電磁反射の発生を有効に防止してGHz帯域における優れた電磁ノイズ抑制効果を実現し得ることが確認された。また、この場合、電磁ノイズ抑制部材の正弦正接tanδは、1GHzにおいて0.35〜1.5(0.35以上1.5以下)の範囲内の値に調整される傾向にあることも確認された。   In the electromagnetic noise suppressing member of the present embodiment, by adopting the above-described composition, the value of the imaginary part ε ″ of the complex dielectric constant ε of the electromagnetic noise suppressing member is 200 to 1500 (200 or more and 1500 or less) at 1 GHz. As a result, the energy loss of electromagnetic noise can be effectively increased and the occurrence of undesirable electromagnetic reflections can be effectively prevented from the experimental evaluation described later. In this case, the sine tangent tan δ of the electromagnetic noise suppressing member is 0.35 to 1.5 (0.35 or more and 1.5 or less) at 1 GHz. It was also confirmed that there was a tendency to be adjusted to a value within the range of

より具体的には、上述の組成であれば、1GHzを超えるような周波数を有する高周波電磁ノイズに対し、下記式(2)で表される磁場抑制効果の指標の一つであるΔH(単位は[dB]。この値が小さいほど磁場抑制効果が高いと言える。)が、従来のシートに比較して−10dB程度低下すること、換言すれば、1GHzを超えるような電磁ノイズの高周波成分を、従来に比して格段に抑制し得ることが確認された。なお、本発明者らの知見によれば、かかる高周波数帯域においては、電磁損失に対する誘電損失の寄与は、磁気損失と同等又はそれ以上であり、よって、かかる条件においては、ΔHの大小は、磁気損失のみならず誘電損失の大小の傾向をも表す指標となり得る。   More specifically, with the above-described composition, ΔH (in units of one of the indices of the magnetic field suppression effect expressed by the following formula (2) with respect to high-frequency electromagnetic noise having a frequency exceeding 1 GHz. [DB] It can be said that the smaller this value, the higher the magnetic field suppression effect.) However, it is about -10 dB lower than the conventional sheet, in other words, the high frequency component of electromagnetic noise exceeding 1 GHz, It was confirmed that it can be remarkably suppressed as compared with the prior art. According to the knowledge of the present inventors, in such a high frequency band, the contribution of the dielectric loss to the electromagnetic loss is equal to or more than the magnetic loss. Therefore, under such conditions, the magnitude of ΔH is: It can be an index representing not only the magnetic loss but also the tendency of the dielectric loss.

ΔH=20×log(HNSS/H0) …(2)
式(2)中、HNSSは、以下に説明する磁場強度の測定方法において、電磁ノイズ抑制部材を用いた場合の磁場強度を示し、H0は、同測定方法において、電磁ノイズ抑制部材を用いない場合の磁場強度を示す。
ΔH = 20 × log (H NSS / H 0 ) (2)
In Formula (2), H NSS indicates the magnetic field strength when an electromagnetic noise suppression member is used in the magnetic field strength measurement method described below, and H 0 uses the electromagnetic noise suppression member in the measurement method. The magnetic field strength when not present is shown.

ここで、図1は、上記ΔHを算出するための磁場強度の測定を行なっている状態を概略的に示す斜視図である。同図において、ベースシートB上には、マイクロストリップライン(MSL;例えば、特性インピーダンス50Ω;幅30mm×長さ140mm)が形成されており、その一方端Tは50Ωで終端されており、他方端Sには、ネットワークアナライザNに接続された入力信号ラインLsが接続されている。また、マイクロストリップライン(MSL)の延在方向の中央部は、本実施形態による電磁ノイズ抑制部材である電磁ノイズ抑制シート1で覆われており、ベースシートBの1mm上方に、磁界プローブMFPが設置されている。   Here, FIG. 1 is a perspective view schematically showing a state in which the magnetic field strength for calculating the ΔH is being measured. In the figure, a microstrip line (MSL; for example, characteristic impedance 50Ω; width 30 mm × length 140 mm) is formed on the base sheet B, one end T of which is terminated at 50Ω, and the other end An input signal line Ls connected to the network analyzer N is connected to S. Further, the central portion in the extending direction of the microstrip line (MSL) is covered with the electromagnetic noise suppression sheet 1 which is an electromagnetic noise suppression member according to the present embodiment, and the magnetic field probe MFP is 1 mm above the base sheet B. is set up.

この磁界プローブMFPは、測定信号ラインLmを介してネットワークアナライザNに接続されている。ネットワークアナライザNは、例えば、シグナルジェネレータとスペクトルアナライザを兼ねており、図1に示す状態において、ネットワークアナライザNから0dBの入力信号がマイクロストリップライン(MSL)の他方端Sへ入力され、そのときの磁界プローブMFPの出力電圧VsをネットワークアナライザNで測定する。次に、電磁ノイズ抑制シート1を用いない、つまり、マイクロストリップラインMSLを電磁ノイズ抑制シート1で覆わないこと以外は、上記と同様にして、磁界プローブMFPの出力電圧V0をネットワークアナライザNで測定する。   This magnetic field probe MFP is connected to the network analyzer N via a measurement signal line Lm. For example, the network analyzer N serves as both a signal generator and a spectrum analyzer. In the state shown in FIG. 1, an input signal of 0 dB is input from the network analyzer N to the other end S of the microstrip line (MSL). The network analyzer N measures the output voltage Vs of the magnetic field probe MFP. Next, the output voltage V0 of the magnetic field probe MFP is measured with the network analyzer N in the same manner as above except that the electromagnetic noise suppression sheet 1 is not used, that is, the microstrip line MSL is not covered with the electromagnetic noise suppression sheet 1. To do.

そして、上記式(2)は、下記式(3)で表されるとおり展開することができ、磁界プローブMFPのアンテナ係数AFが未知であっても、磁界プローブMFPの出力電圧Vs,V0から、ΔHを算出することができる。
ΔH=20×log(HNSS/H0)=20×log{(AF・Vs)/(AF・V0)} …(3)
Then, the above equation (2) can be expanded as represented by the following equation (3), and even if the antenna coefficient AF of the magnetic field probe MFP is unknown, the output voltage Vs, V0 of the magnetic field probe MFP is ΔH can be calculated.
ΔH = 20 × log (H NSS / H 0 ) = 20 × log {(AF · Vs) / (AF · V0)} (3)

なお、本実施形態の電磁ノイズ抑制部材の複素誘電率εの虚数部ε"の値は、1GHzにおいて250〜1400(250以上1400以下)の範囲であることが好ましい。この範囲にすると、電磁ノイズに対して損失効果(特に、誘電損失)を増大させ、且つ、不都合な電磁反射の発生を抑止でき、GHz帯域において優れた電磁ノイズ抑制効果を実現できる。   The value of the imaginary part ε ″ of the complex dielectric constant ε of the electromagnetic noise suppressing member of this embodiment is preferably in the range of 250 to 1400 (250 to 1400) at 1 GHz. In contrast, it is possible to increase the loss effect (particularly dielectric loss), to suppress the occurrence of inconvenient electromagnetic reflection, and to realize an excellent electromagnetic noise suppression effect in the GHz band.

また、本実施形態の電磁ノイズ抑制部材は、1GHzにおける正弦正接tanδが0.35〜1.5(0.35以上1.5以下)の範囲内であることが好ましい。   Moreover, it is preferable that the electromagnetic noise suppression member of this embodiment has a sine tangent tan δ at 1 GHz in the range of 0.35 to 1.5 (0.35 or more and 1.5 or less).

さらに、本実施形態の電磁ノイズ抑制部材は、熱伝導率が5W/mK以上であることが好ましい。このようにすると、GHz帯域の周波数を有する高周波電磁ノイズに対して優れた抑制効果を発現できるのみならず、放熱性能が十分に高められた、高性能な電磁ノイズ抑制部材が実現される。   Furthermore, the electromagnetic noise suppression member of the present embodiment preferably has a thermal conductivity of 5 W / mK or higher. If it does in this way, the high performance electromagnetic noise suppression member which not only can express the outstanding suppression effect with respect to the high frequency electromagnetic noise which has a frequency of a GHz band, but the heat dissipation performance was fully improved is realized.

本実施形態の電磁ノイズ抑制部材は、所望の形態で使用することができる。例えば、上述したようにシート状に形成された電磁ノイズ抑制部材は、図1に示す如く、電磁ノイズの防御又は抑制対象であるマイクロストリップライン(MSL)等の電子デバイスや電子回路の一部又は全部を、平らに又は一重に包む如く覆うように設置されてもよく、或いは、ノイズ対策の対象物を二重(二段重ね)以上の多重(多段重ね)に覆うこともできる。また、シート状に形成された電磁ノイズ抑制部材は、電磁ノイズの遮蔽対象であり放熱源でもあるLSI等の電子部品のパッケージ一面に貼着してもよい。さらには、本実施形態の電磁ノイズ抑制部材は、例えば、山折り・谷折りパターンが連設されたひだや折り目を有するプリーツ状に折り畳んだ構造を有する形態で用いることもできる。このような形態で用いることにより、電磁ノイズ抑制シートの面方向への熱拡散効果を活用し、電子部品で発生する熱を縦、横、高さのいかなる方向にも効果的に拡散させることが可能となり、その結果、放熱効果を一段と向上させることができ、上述した電磁ノイズ抑制機能のみならず、ヒートシンク機能をも備えた、電磁ノイズ抑制部材を実現することができる。   The electromagnetic noise suppression member of this embodiment can be used in a desired form. For example, as described above, the electromagnetic noise suppressing member formed in a sheet shape may be a part of an electronic device such as a microstrip line (MSL) or an electronic circuit that is an object of electromagnetic noise prevention or suppression, as shown in FIG. The whole may be installed so as to be wrapped flatly or in a single layer, or the noise countermeasure object may be covered in multiples (multiple stacks) of double (double stacks) or more. Further, the electromagnetic noise suppressing member formed in a sheet shape may be attached to one surface of a package of an electronic component such as an LSI that is an electromagnetic noise shielding target and a heat radiation source. Furthermore, the electromagnetic noise suppression member of this embodiment can also be used in a form having a structure that is folded in a pleat shape having folds and folds in which mountain fold / valley fold patterns are continuously provided. By using in such a form, the heat diffusion effect in the surface direction of the electromagnetic noise suppression sheet can be utilized to effectively diffuse the heat generated in the electronic component in any direction of length, width and height. As a result, the heat dissipation effect can be further improved, and an electromagnetic noise suppressing member having not only the above-described electromagnetic noise suppressing function but also a heat sink function can be realized.

以下、本発明の実施例について説明するが、本発明はこれらの実施例に限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

(実施例1〜16並びに比較例1及び2)
磁性粉としてセンダスト系(Fe−Si−Al系)の軟磁性扁平粉(平均粒径70μm)を用い、炭素粉としてグラファイト粉(平均粒径40μm)を用い、バインダ樹脂としてアクリル系樹脂を用い、これらの混合割合が異なる種々の混合物をプレス成形することにより、電磁ノイズ抑制部材としての複数の電磁ノイズ抑制シート(実施例1〜18)を作製した。また、炭素粉を含まないこと以外は、実施例の電磁ノイズ抑制シートと同様にして、比較例1及び2のシートも作製した。
(Examples 1 to 16 and Comparative Examples 1 and 2)
Sendust-based (Fe-Si-Al-based) soft magnetic flat powder (average particle size 70 μm) is used as magnetic powder, graphite powder (average particle size 40 μm) is used as carbon powder, acrylic resin is used as binder resin, The various electromagnetic noise suppression sheets (Examples 1-18) as an electromagnetic noise suppression member were produced by press-molding the various mixtures from which these mixing ratios differ. Moreover, the sheet | seat of the comparative examples 1 and 2 was also produced similarly to the electromagnetic noise suppression sheet | seat of an Example except not containing carbon powder.

(電磁ノイズ抑制効果の評価)
実施例1〜14及び比較例1の電磁ノイズ抑制シートに対し、先述した図1に示す測定方法を用いて(入力信号の周波数:6GHz)磁場抑制効果ΔHを測定した。各電磁ノイズ抑制シートにおける成分レシピ(磁性粉及び炭素粉の各含有割合、並びに、それらの合計含有割合)、及び磁場抑制効果ΔHの結果を、ε"及びtanδ(入力信号の周波数:1GHz)と併せて表1にまとめて示す。また、電磁ノイズ抑制部材の複素誘電率εの虚数部ε"に対する磁場抑制効果ΔHをプロットしたグラフを図2に示すとともに、正弦正接tanδに対する磁場抑制効果ΔHをプロットしたグラフを図3に示す。
(Evaluation of electromagnetic noise suppression effect)
For the electromagnetic noise suppression sheets of Examples 1 to 14 and Comparative Example 1, the magnetic field suppression effect ΔH was measured using the measurement method shown in FIG. 1 described above (frequency of input signal: 6 GHz). The component recipe (each content ratio of magnetic powder and carbon powder, and their total content ratio) in each electromagnetic noise suppression sheet, and the result of the magnetic field suppression effect ΔH are ε ″ and tan δ (frequency of input signal: 1 GHz). In addition, the results are summarized in Table 1. A graph plotting the magnetic field suppression effect ΔH against the imaginary part ε ″ of the complex dielectric constant ε of the electromagnetic noise suppression member is shown in FIG. The plotted graph is shown in FIG.

(熱伝導率の測定)
実施例15、16及び比較例2の電磁ノイズ抑制シートの熱伝導率を、レーザフラッシュ法により測定した。得られた結果を、各電磁ノイズ抑制シートにおける成分レシピ(磁性粉及び炭素粉の各含有割合、並びに、それらの合計含有割合)とともに、表2にまとめて示す。
(Measurement of thermal conductivity)
The thermal conductivity of the electromagnetic noise suppression sheets of Examples 15 and 16 and Comparative Example 2 was measured by a laser flash method. The obtained results are shown together in Table 2 together with component recipes (the respective content ratios of magnetic powder and carbon powder, and the total content ratio thereof) in each electromagnetic noise suppression sheet.

なお、上述したとおり、本発明は上記実施形態に限定されるものではなく、その要旨を変更しない限度において様々な変形が可能である。例えば、電磁ノイズ抑制部材として、磁性粉、炭素粉、及びバインダ樹脂に加えて、適宜の添加剤、例えば、必要に応じて難燃剤等の各種添加剤を含んでいてもよい。また、電磁ノイズ抑制シート1の形状は、平膜状やプリーツ状に限らず、コルゲート状やハニカム状であってもよい。さらに、電磁ノイズ抑制シート1が適用される対象は、半導体装置等の電子部品に制限されず、伝送線路や他の電子部品に対して使用可能なこと(特に近傍界用として有用である)は言うまでもない。   In addition, as above-mentioned, this invention is not limited to the said embodiment, A various deformation | transformation is possible in the limit which does not change the summary. For example, as an electromagnetic noise suppression member, in addition to magnetic powder, carbon powder, and binder resin, an appropriate additive, for example, various additives such as a flame retardant may be included as necessary. The shape of the electromagnetic noise suppression sheet 1 is not limited to a flat film shape or a pleated shape, and may be a corrugated shape or a honeycomb shape. Furthermore, the object to which the electromagnetic noise suppression sheet 1 is applied is not limited to electronic components such as semiconductor devices, but can be used for transmission lines and other electronic components (especially useful for the near field). Needless to say.

以上説明したとおり、本発明の電磁ノイズ抑制部材によれば、電磁ノイズ対策における広帯域化が可能であり、また、それのみならず、GHz帯域の周波数を有する高周波電磁ノイズに対して優れた抑制効果を発現することができ、しかも、放熱性にも極めて優れ、且つ、製造コストを低減させることも可能であるので、種々の電子部品を搭載する機器、装置、モジュール、システム、デバイス等、及びそれらの製造や放射電磁ノイズ(EMI)除去等の電磁ノイズ対策に広く且つ有効に利用することができる。   As described above, according to the electromagnetic noise suppression member of the present invention, it is possible to broaden the band for electromagnetic noise countermeasures, and not only that, but also an excellent suppression effect against high frequency electromagnetic noise having a frequency in the GHz band. In addition, it is extremely excellent in heat dissipation and can also reduce the manufacturing cost, so that equipment, devices, modules, systems, devices, etc. on which various electronic components are mounted, and those It can be used widely and effectively for electromagnetic noise countermeasures such as manufacturing of EMI and removal of radiated electromagnetic noise (EMI).

1…電磁ノイズ抑制シート(電磁ノイズ抑制部材)、B…ベースシート、Lm…測定信号ライン、Ls…入力信号ライン、MFP…磁界プローブ、MSL…マイクロストリップライン、N…ネットワークアナライザ、S…他方端、T…一方端。   DESCRIPTION OF SYMBOLS 1 ... Electromagnetic noise suppression sheet (electromagnetic noise suppression member), B ... Base sheet, Lm ... Measurement signal line, Ls ... Input signal line, MFP ... Magnetic field probe, MSL ... Microstrip line, N ... Network analyzer, S ... Other end , T ... One end.

Claims (3)

磁性粉及び炭素粉が樹脂中に含有されてなる電磁ノイズ抑制部材であって、
前記磁性粉及び前記炭素粉の合計含有割合が40〜80vol%であり、
前記磁性粉の含有割合が20〜60vol%であり、
前記炭素粉の含有割合が20〜60vol%であり、且つ、
複素誘電率εの虚数部ε"の値が、1GHzにおいて200〜1500である、
電磁ノイズ抑制部材。
An electromagnetic noise suppression member in which magnetic powder and carbon powder are contained in a resin,
The total content of the magnetic powder and the carbon powder is 40 to 80 vol%,
The content ratio of the magnetic powder is 20 to 60 vol%,
The content ratio of the carbon powder is 20-60 vol%, and
The value of the imaginary part ε ″ of the complex dielectric constant ε is 200 to 1500 at 1 GHz.
Electromagnetic noise suppression member.
正弦正接tanδの値が、1GHzにおいて0.35〜1.5である、
請求項1又は2記載の電磁ノイズ抑制部材。
The value of the sine tangent tan δ is 0.35 to 1.5 at 1 GHz.
The electromagnetic noise suppression member according to claim 1 or 2.
磁性粉及び炭素粉が樹脂中に含有されてなる電磁ノイズ抑制部材であって、
熱伝導率が5W/mK以上である、
電磁ノイズ抑制部材。
An electromagnetic noise suppression member in which magnetic powder and carbon powder are contained in a resin,
The thermal conductivity is 5 W / mK or more,
Electromagnetic noise suppression member.
JP2011049494A 2011-03-07 2011-03-07 Electromagnetic noise suppression member Pending JP2012186384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011049494A JP2012186384A (en) 2011-03-07 2011-03-07 Electromagnetic noise suppression member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011049494A JP2012186384A (en) 2011-03-07 2011-03-07 Electromagnetic noise suppression member

Publications (1)

Publication Number Publication Date
JP2012186384A true JP2012186384A (en) 2012-09-27

Family

ID=47016161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011049494A Pending JP2012186384A (en) 2011-03-07 2011-03-07 Electromagnetic noise suppression member

Country Status (1)

Country Link
JP (1) JP2012186384A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014200035A1 (en) * 2013-06-13 2014-12-18 住友ベークライト株式会社 Electromagnetic wave shielding film, and electronic component mounting substrate
JP2016513139A (en) * 2012-12-20 2016-05-12 ダウ グローバル テクノロジーズ エルエルシー Polymer composite components for wireless communication towers
CN109581069A (en) * 2018-12-13 2019-04-05 北京工业大学 The complex dielectric permittivity calculation method of microwave material under high-temperature wide-frequency
KR20200038254A (en) 2017-09-12 2020-04-10 가부시끼가이샤 리켄 Noise suppression sheet for near field
WO2022130752A1 (en) * 2020-12-16 2022-06-23 廣瀬製紙株式会社 Electromagnetic wave absorber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158483A (en) * 2000-11-21 2002-05-31 Sony Corp Radio wave absorber
JP2009016415A (en) * 2007-07-02 2009-01-22 Technes Co Ltd Resin-made heat sink
JP2009278137A (en) * 2003-04-18 2009-11-26 Nitta Ind Corp Electromagnetic wave absorbing material
JP2010251378A (en) * 2009-04-10 2010-11-04 Bridgestone Corp Method of manufacturing electromagnetic wave absorption sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158483A (en) * 2000-11-21 2002-05-31 Sony Corp Radio wave absorber
JP2009278137A (en) * 2003-04-18 2009-11-26 Nitta Ind Corp Electromagnetic wave absorbing material
JP2009016415A (en) * 2007-07-02 2009-01-22 Technes Co Ltd Resin-made heat sink
JP2010251378A (en) * 2009-04-10 2010-11-04 Bridgestone Corp Method of manufacturing electromagnetic wave absorption sheet

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016513139A (en) * 2012-12-20 2016-05-12 ダウ グローバル テクノロジーズ エルエルシー Polymer composite components for wireless communication towers
WO2014200035A1 (en) * 2013-06-13 2014-12-18 住友ベークライト株式会社 Electromagnetic wave shielding film, and electronic component mounting substrate
JPWO2014200035A1 (en) * 2013-06-13 2017-02-23 住友ベークライト株式会社 Electromagnetic wave shielding film and electronic component mounting board
KR20200038254A (en) 2017-09-12 2020-04-10 가부시끼가이샤 리켄 Noise suppression sheet for near field
CN109581069A (en) * 2018-12-13 2019-04-05 北京工业大学 The complex dielectric permittivity calculation method of microwave material under high-temperature wide-frequency
CN109581069B (en) * 2018-12-13 2020-11-06 北京工业大学 Complex dielectric constant calculation method of microwave material under high temperature and wide frequency
WO2022130752A1 (en) * 2020-12-16 2022-06-23 廣瀬製紙株式会社 Electromagnetic wave absorber

Similar Documents

Publication Publication Date Title
Sankaran et al. Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: A review
JP4849220B2 (en) Electromagnetic interference suppression sheet and manufacturing method thereof, flat cable for high-frequency signal, and flexible printed circuit board
Wang et al. Microwave absorption properties of carbon nanotubes-epoxy composites in a frequency range of 2-20 GHz
US9380736B2 (en) Electromagnetic interference suppressor
JP2012186384A (en) Electromagnetic noise suppression member
JP5218396B2 (en) Electromagnetic interference suppression sheet, high-frequency signal flat cable, flexible printed circuit board, and electromagnetic interference suppression sheet manufacturing method
JP2006032929A5 (en)
KR101560570B1 (en) Composition for complex sheet with EMI shielding and absorbing, thermal dissipation and electric insulation, and complex sheet comprising the same
WO2014098065A1 (en) Electromagnetic interference suppression body
Liu et al. Intense nonlinear dielectric and magnetic resonances of core–shell Ni@ graphene composites and their improved microwave absorption properties
JP2005011878A (en) Electromagnetic wave absorber
JP2007281074A (en) Noise suppression sheet
JP2011134755A (en) Anti-electromagnetic noise member
JP5720358B2 (en) Radio wave suppression sheet, electronic device including the sheet, and radio wave suppression component
JP5103780B2 (en) Electromagnetic interference suppression sheet, high-frequency signal flat cable, flexible printed circuit board
JP2013182931A (en) Electromagnetic noise suppression member
US20070052575A1 (en) Near-field electromagnetic wave absorber
JP2014239236A (en) Thermally conductive sheet
JP5625934B2 (en) Electromagnetic noise countermeasure member and electromagnetic noise countermeasure method using the same
JP2010186856A (en) Heat conductive sheet
Kumari et al. Electromagnetic shielding using ceramic materials
JP2000244167A (en) Electromagnetic-wave-disturbance preventive material
JP5605766B2 (en) Radio wave suppression body, electronic device including the radio wave suppression body, and radio wave suppression component
Younes et al. Magnetic spinel manganese ferrite nanocrystal carbon nanotube thin mats with improved electromagnetic shielding performance
TW201402663A (en) Polymeric composite with high thermal conductivity and EMI shielding

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20130419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130508

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141021