WO2014192107A1 - 駐車支援装置 - Google Patents

駐車支援装置 Download PDF

Info

Publication number
WO2014192107A1
WO2014192107A1 PCT/JP2013/064942 JP2013064942W WO2014192107A1 WO 2014192107 A1 WO2014192107 A1 WO 2014192107A1 JP 2013064942 W JP2013064942 W JP 2013064942W WO 2014192107 A1 WO2014192107 A1 WO 2014192107A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
angle
vehicle
automatic control
steering angle
Prior art date
Application number
PCT/JP2013/064942
Other languages
English (en)
French (fr)
Inventor
啓介 尾山
宏亘 石嶋
英彦 三好
慶介 秦
Original Assignee
トヨタ自動車 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車 株式会社 filed Critical トヨタ自動車 株式会社
Priority to EP13885593.7A priority Critical patent/EP3006272A4/en
Priority to PCT/JP2013/064942 priority patent/WO2014192107A1/ja
Priority to CN201380076854.1A priority patent/CN105246744A/zh
Priority to US14/893,671 priority patent/US9676414B2/en
Priority to JP2015519550A priority patent/JP5967303B2/ja
Publication of WO2014192107A1 publication Critical patent/WO2014192107A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/027Parking aids, e.g. instruction means
    • B62D15/0285Parking performed automatically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor

Definitions

  • the present invention relates to a parking assistance device.
  • the steering wheel when assisting the vehicle entering and leaving the parking space, the steering wheel is operated by automatic control of the steering device without performing the steering operation of the driver.
  • the load on the steering device increases and the temperature of the steering device tends to rise. This is not preferable because it causes inconvenience due to overheating of the steering apparatus such as a decrease in durability performance of the steering apparatus.
  • An object of the present disclosure is to provide a parking assist device that can suppress an increase in temperature of the steering device when executing automatic control of the steering device.
  • the parking assist device for solving the above problem assists the operation of the steering wheel for entering and leaving the vehicle with respect to the parking space by automatic control of the steering device.
  • the parking assist device includes a route calculation unit that calculates a movement route for moving the vehicle to a target position, and a steering angle that calculates a target steering angle of a steered wheel necessary for moving the vehicle along the movement route.
  • a calculation unit and a steering angle detection unit that detects an actual steering angle of the steered wheels are provided.
  • the control unit stops the operation of the steered wheel through the automatic control when the target steering angle is closer to the neutral angle than the actual steering angle, and the target steering angle is closer to the neutral angle than the actual steering angle.
  • the steering wheel is operated through the automatic control.
  • the parking assist device when the steering wheel is automatically controlled by the steering device, when the actual steering angle is changed toward the neutral angle, the steering wheel operation through the automatic control is stopped. The steering angle is changed by using the force. On the other hand, when the actual steering angle is changed in a direction away from the neutral angle, the steering wheel is operated through automatic control of the steering device. At this time, since the steering reaction force cannot be used to change the steering angle, the steering angle is changed through operation of the steering wheel by automatic control of the steering device. As described above, according to the parking assist device, when the steering reaction force can be used when changing the steering angle, the operation of the steering wheel by the automatic control of the steering device can be stopped. Therefore, when the automatic control by the steering device is executed, the load on the steering device can be reduced as compared with a device in which the operation of the steered wheel through the automatic control is executed in the entire period during the execution. Temperature rise can be suppressed.
  • the control unit allows the operation stop of the steered wheels through the automatic control of the steering device when a deviation amount of the moving position of the vehicle from the moving route is equal to or less than a predetermined value, When the deviation amount is larger than a predetermined value, it is preferable that the operation stop of the steered wheel through the automatic control of the steering device is prohibited.
  • the parking assist device when the actual steering angle is changed toward the neutral angle during the steering wheel operation support by the automatic control of the steering device, the vehicle is moving along the movement path. In order to change the steering angle using the steering reaction force, the operation of the steered wheels through the automatic control can be stopped. In addition, when the moving position of the vehicle deviates from the movement path only by changing the steering angle using the steering reaction force, the vehicle is operated by operating the steering wheel through automatic control of the steering device. It is possible to eliminate the shift of the movement position. Therefore, the use of the steering reaction force can suppress the temperature rise of the steering device and suppress the deviation of the moving position of the vehicle from the moving path, so that the vehicle can appropriately enter and leave the parking space.
  • the control unit permits the operation of the steered wheels to be stopped through automatic control of the steering device when the temperature of the steering device is equal to or higher than the determination temperature, and steers when the temperature of the steering device is lower than the determination temperature. It is preferable that the operation stop of the steered wheel through the automatic control of the device is prohibited.
  • the parking assist device described above when the steering angle is changed toward the neutral angle when assisting operation of the steered wheels by automatic control, if the temperature of the steering device is high, steering is performed using the steering reaction force. Since the operation of the steered wheel through automatic control to stop the wheel is stopped, the temperature rise of the steering device can be accurately suppressed at this time. In addition, when the temperature of the steering device is low and its rise is not a problem, the steering wheel is operated through automatic control of the steering device to quickly change the actual steering angle, thereby making the vehicle a short route. It is possible to move quickly to the target position by moving the.
  • the control unit controls the steering wheel through the automatic control until the actual steering angle becomes the neutral angle. It can be configured to stop the operation.
  • the operation of the steered wheels through automatic control of the steering device can be stopped during the turning operation until the actual steering angle becomes a neutral angle. It can suppress suitably.
  • the schematic diagram which shows an example of the operation
  • the schematic diagram which shows an example of the operation
  • the vehicle 10 is provided with a steering device 20 for adjusting the traveling direction thereof.
  • the steering device 20 includes a motor 21 that is drivingly connected to the steering wheel 11 and the steering wheel 12 of the vehicle 10, and a drive circuit 22 that drives the motor 21.
  • the steering device 20 operates the steering wheel 12 of the vehicle 10 through the operation of the steering wheel 11 by the driver, and has a function of assisting the operation of the steering wheel 11 by the driver with the driving force of the motor 21. .
  • the steering device 20 can operate the steering wheel 12 only by the driving force of the motor 21 even when the driver does not operate the steering wheel 11.
  • the driver's seat of the vehicle 10 displays information related to driving and the like, a display panel 13 that receives various operations from the driver, and a speaker that informs the driver of information and warnings related to driving by voice. 14 is provided.
  • a plurality of clearance sonars 31 for detecting the presence or absence of a nearby object is attached to the front end (upper end in the figure) of the vehicle 10, and the width direction (left and right direction in the figure) of the front part of the vehicle 10 is attached.
  • An ultrasonic sensor 32 for detecting the presence or absence of an object present on the side of the width direction of the vehicle 10 is attached to the side surface.
  • a plurality of clearance sonars 33 for detecting the presence or absence of an object existing in the vicinity of the vehicle 10 are attached to the rear end (lower end in the figure) of the vehicle 10.
  • An ultrasonic sensor 34 for detecting the presence or absence of an object present on the side of the vehicle 10 in the width direction is attached.
  • the electronic control unit 30 includes a shift position sensor 35 that detects the operation position of the shift lever 15 operated by the driver, an accelerator position sensor 36 that detects the operation amount of the accelerator pedal 16 that is depressed by the driver, A brake switch 37 that detects whether or not the driver has depressed the brake pedal 17 is also connected.
  • the electronic control unit 30 includes a wheel speed sensor 38 that detects the rotation speed of the wheels (steering wheels 12 and the like) in the vehicle 10 and a steering angle detection unit that detects the operation angle (actual steering angle Rag) of the steering wheels 12.
  • the angle sensor 39 the angle sensor 40 for detecting the temperature of the motor 21, and the like.
  • the electronic control device 30 controls the operations of the display panel 13, the speaker 14, and the steering device 20, and inputs a signal output from the panel 13 as the driver operates the display panel 13.
  • the electronic control device 30 assists the vehicle 10 entering the parking space when the vehicle 10 is parked in the predetermined parking space. That is, the electronic control unit 30 performs the operation of the steering wheel 12 for entering the vehicle 10 into the parking space through the automatic control of the steering device 20 (specifically, the motor 21) instead of performing the steering operation of the driver. This assists the vehicle 10 entering the parking space.
  • the electronic control device 30 functions as a route calculation unit, a steering angle calculation unit, and a control unit.
  • the assistance by the automatic control of the steering device 20 is started when a request for assistance (hereinafter referred to as entry assistance) when the vehicle 10 enters the parking space by the operation of the display panel 13 by the driver or the like is started.
  • This entry support includes an operation mode (parallel parking mode) that supports parking (parallel parking) in which the parking space of the own vehicle is sandwiched between other vehicles in the width direction of the own vehicle, and the parking space of the own vehicle.
  • These operation modes are set by an operation on the display panel 13 by the driver.
  • the electronic control unit 30 measures the preparation for measuring the size of the parking space by the display on the display panel 13 and the sound from the speaker 14. Instruct the driver to perform the start action.
  • the vehicle A is located at the position indicated by the solid line in FIG.
  • An instruction is given to stop the vehicle A forwardly at a position immediately before the vehicle A approaches the portion corresponding to the parking space P1 due to the advance of the vehicle A. Further, an instruction is given to release the depression operation of the brake pedal 17 with the shift lever 15 (FIG. 1) being operated to the drive position with the vehicle A stopped at that position.
  • the electronic control unit 30 measures the size of the parking space P1 (FIG. 2) using the clearance sonars 31 and 33 and the ultrasonic sensors 32 and 34 on the condition that the driver has performed the above measurement start operation. Execute the measurement process.
  • the host vehicle A is reciprocated back and forth between a position indicated by a solid line and a position indicated by a two-dot chain line, that is, a position immediately after passing the side of the parking space P1 by the advance of the host vehicle A.
  • the electronic control unit 30 monitors signals from the clearance sonars 31 and 33 and the ultrasonic sensors 32 and 34 during the reciprocal movement, and the size of the parking space P1 and the parking space P1 based on the signals from these sensors. The relative position of the own vehicle A with respect to the vehicle is grasped.
  • the electronic control unit 30 calculates an approach route (entrance route) to the parking space P1 from the position indicated by the solid line in the own vehicle A based on the margin of the size of the parking space P1 relative to the size of the own vehicle A. To do.
  • the approach route not only the margin of the size of the parking space P1 relative to the size of the host vehicle A as described above, but also the surrounding space P2 used for the approach of the host vehicle A to the parking space P1. It is preferable to consider the size of.
  • the size of the surrounding space P2 can be determined based on the signals from the clearance sonars 31 and 33 and the ultrasonic sensors 32 and 34 at the same time when the size of the parking space P1 is determined by the measurement process. Is possible.
  • the electronic control unit 30 gives instructions to the driver regarding the operation of the shift lever 15, the accelerator pedal 16, and the brake pedal 17 so that the host vehicle A moves along the calculated approach route as the travel route,
  • the steering device 20 (specifically, the motor 21 and the drive circuit 22) is automatically controlled in accordance with the driver's operation based on the instruction.
  • the steering wheel 12 is operated so that the movement of the own vehicle A along the approach route is realized only by driving the motor 21 of the steering device 20 without steering operation.
  • the operation of the steered wheel 12 is executed as follows. That is, first, the movement position of the vehicle 10 is calculated based on the initial position of the vehicle 10 (relative position of the vehicle 10 at the start of entry assistance), the wheel speed SPD, and the actual steering angle Rag. Based on the approach route, a target steering angle Tag necessary for moving the vehicle 10 along the approach route is calculated. Then, the operation of the steering device 20 is controlled so that the target steering angle Tag and the actual steering angle Rag coincide with each other.
  • FIG. 3 shows an example of the operation mode of the steered wheels 12 based on the automatic control of the steering device 20 at the time of executing the entry assistance in the parallel parking mode.
  • the approach support in the parallel parking mode first, as shown by the solid line arrow in FIG. 3, after the own vehicle A is moved forward and crosses the front of the parking space P1, the rear part of the own vehicle A is changed to the parking space P1. The vehicle is stopped at a directed position (a position indicated by a two-dot chain line in FIG. 3).
  • the steered wheels 12 are operated through the drive of the motor 21 of the steering device 20 so that the direction of the steered wheels 12 is the direction in which the host vehicle A is separated from the parking space P1 (the right direction in the example shown in FIG.
  • the host vehicle A is moved backward while switching the direction of the steering wheel 12, and the host vehicle A is moved to the parking position as the target position in the parking space P1.
  • the direction of the steered wheels 12 is switched to the direction opposite to the direction at the time of forward movement (left direction in the example shown in FIG. 3), and thereafter gradually approaches the neutral angle (the angle at which the vehicle 10 goes straight).
  • Steering wheel 12 is operated through driving of motor 21 of steering device 20.
  • the parking of the own vehicle A to the parking space P1 is completed when the own vehicle A is stopped at the parking position.
  • the electronic control unit 30 prepares for measuring the size of the parking space by the display on the display panel 13 or the sound from the speaker 14.
  • the driver is instructed to perform the measurement start operation. Specifically, the vehicle A is moved to the position indicated by the solid line in FIG. An instruction is given to stop the vehicle A forwardly at a position immediately before the vehicle A approaches the portion corresponding to the parking space P1. Further, an instruction is given to release the depression operation of the brake pedal 17 with the shift lever 15 (FIG. 1) being operated to the drive position with the vehicle A stopped at that position.
  • the electronic control unit 30 measures the size of the parking space P1 (FIG. 4) using the clearance sonars 31 and 33 and the ultrasonic sensors 32 and 34 on the condition that the driver has performed the above measurement start operation. Execute the measurement process.
  • the own vehicle A is moved from the position indicated by the solid line in FIG. 4 to the position indicated by the two-dot chain line, that is, the position immediately after passing the side of the parking space P1 by the advance of the own vehicle A and stopped.
  • the electronic control unit 30 monitors signals from the clearance sonars 31 and 33 and the ultrasonic sensors 32 and 34 shown in FIG. 1 while the vehicle A moves from the position indicated by the solid line to the position indicated by the two-dot chain line. Based on the signal from the sensor, the size of the parking space P1 and the relative position of the vehicle A with respect to the parking space P1 are grasped.
  • the electronic control unit 30 is based on the margin of the size of the parking space P1 with respect to the size of the own vehicle A, and the own vehicle A with respect to the parking space P1 from the position indicated by the two-dot chain line in FIG. Find the approach route (entrance route).
  • the approach route not only the margin of the size of the parking space P1 relative to the size of the host vehicle A as described above, but also the surrounding space P2 used for the approach of the host vehicle A to the parking space P1. It is preferable to consider the size of.
  • the size of the surrounding space P2 can be determined based on the signals from the clearance sonars 31 and 33 and the ultrasonic sensors 32 and 34 at the same time when the size of the parking space P1 is determined by the measurement process. Is possible.
  • the electronic control unit 30 gives instructions to the driver regarding the operation of the shift lever 15, the accelerator pedal 16, and the brake pedal 17 so that the vehicle A moves along the approach route calculated as described above, and
  • the steering device 20 is automatically controlled in accordance with the driver's operation based on the instruction.
  • the steered wheels 12 are operated so that the movement of the vehicle A along the approach route is realized only by driving the motor 21 of the steering device 20 without steering operation by the driver. In this way, the approach of the own vehicle A to the parking space P1 is supported.
  • FIG. 5 shows an example of the operation mode of the steered wheels 12 based on the automatic control of the steering device 20 at the time of executing the entry support in the parallel parking mode.
  • the steered wheel 12 is operated through the driving of the motor 21 of the steering device 20 in a mode in which the own vehicle A enters the parking space P1 by moving backward. Is done. Specifically, first, the direction of the steered wheels 12 is changed to one direction (left direction in the example shown in FIG. 5) so that the rear part of the host vehicle A faces the parking space P1 during reverse travel. Thereafter, the direction of the steered wheels 12 is switched to the opposite direction (right direction in the example shown in FIG.
  • the approach of the own vehicle A to the parking space P1 is supported in both the parallel parking mode and the parallel parking mode.
  • the steering device 20 is automatically controlled as described above, but also the vehicle A for moving the vehicle A along the approach route. It is also possible to automatically adjust the driving force, drive the brake, and change the shift position.
  • the steering wheel 12 when assisting the vehicle 10 to enter the parking space P1, the steering wheel 12 is operated by the automatic control of the steering device 20 without the driver operating the steering wheel 11. Done. Therefore, when the automatic control is executed, the load on the steering device 20 (specifically, the motor 21 and the drive circuit 22) tends to increase and the temperature of the device 20 tends to rise. This is not preferable because it causes inconvenience due to overheating of the device 20 such as a decrease in durability performance of the steering device 20.
  • the control target value of the steering angle (the target steering angle Tag) with respect to the actual steering angle (actual steering angle Rag) detected by the angle sensor 39 when executing the automatic control of the steering device 20 When the angle is closer to the neutral angle, the operation of the steered wheels 12 through the automatic control is stopped. Specifically, when the target steering angle Tag changes in a manner that crosses the neutral angle, the target steering angle Tag is closer to the neutral angle than the actual steering angle Rag until the actual steering angle Rag becomes the neutral angle. Then, the operation of the steering wheel 12 through the automatic control is stopped.
  • the actual steering angle Rag when the target steering angle Tag is not an angle closer to the neutral angle than the actual steering angle Rag, that is, the actual steering angle Rag is between the target steering angle Tag and the neutral angle, the actual steering angle Rag is When changing in a direction away from the neutral angle, the actual steering angle Rag can be changed by operating the steering device 20 against the steering reaction force.
  • the direction of the steering wheel 12 is opposite to the direction at the time of forward movement (in the example shown in FIG. It is changed until it becomes the direction).
  • the steering wheel 12 changes its direction so that the actual steering angle Rag approaches the neutral angle. Therefore, the steering reaction force is used to change the steering angle. Is possible.
  • the operation of the steering wheel 12 through the automatic control of the steering device 20 is stopped, and the steering wheel 11 is moved in one direction (counterclockwise direction) as indicated by a white arrow in FIG.
  • the actual steering angle Rag is changed by utilizing the steering reaction force in a rotating manner.
  • the direction of the steered wheels 12 changes so that the actual steering angle Rag is separated from the neutral angle.
  • the steering wheel 12 is operated through the automatic control of the steering device 20 to change the actual steering angle Rag.
  • the actual steering angle Rag is gradually changed to the neutral angle in order to guide the host vehicle A to the parking position.
  • the target steering angle Tag is closer to the neutral angle than the actual steering angle Rag, it is necessary to precisely adjust the actual steering angle Rag to stop the vehicle A at the parking position.
  • the operation of the steered wheels 12 by the automatic control of the steering device 20 is executed.
  • the steering wheel 12 when entering the vehicle in the parallel parking mode, the steering wheel 12 is oriented so that the actual steering angle Rag is separated from the neutral angle in the first period of the period in which the vehicle 10 enters the parking space P1. Is changed to one direction (left direction in the example shown in FIG. 7). At this time, since the steering reaction force cannot be used to change the steering angle, the steering wheel 11 is rotated in one direction (counterclockwise direction) as shown by a black arrow in FIG. The steering wheel 12 is operated through automatic control of the steering device 20, and the actual steering angle Rag is changed.
  • the direction of the steering wheel 12 is opposite to the previous period during the same period (right direction in the example shown in FIG. 7). It is changed until it becomes the direction.
  • the steering wheel 12 changes in direction so that the actual steering angle Rag approaches the neutral angle in the first half, and thus it is possible to use the steering reaction force to change the steering angle. is there.
  • the operation of the steering wheel 12 through the automatic control of the steering device 20 is stopped, and the steering wheel 11 is rotated in one direction (clockwise direction) as indicated by a white arrow in FIG.
  • the actual steering angle Rag is changed using the steering reaction force.
  • the direction of the steered wheels 12 changes so that the actual steering angle Rag is separated from the neutral angle.
  • the steering wheel 12 is operated through the automatic control of the steering device 20 to change the actual steering angle Rag.
  • the actual steering angle Rag is used to guide the host vehicle A to the parking position when entering the vehicle in the parallel parking mode. Is gradually changed to the neutral angle. At this time, although the target steering angle Tag is closer to the neutral angle than the actual steering angle Rag, it is necessary to precisely adjust the actual steering angle Rag to stop the vehicle A at the parking position.
  • the operation of the steered wheels 12 by the automatic control of the steering device 20 is executed.
  • the steering device is used when the actual steering angle Rag is changed toward the neutral angle during the turning-back operation in both the entry assistance in the parallel parking mode and the entry assistance in the parallel parking mode.
  • the operation of the steering wheel 12 through the automatic control 20 is stopped, and the actual steering angle Rag is changed in the form of using the steering reaction force.
  • the operation of the steered wheels 12 through the automatic control of the steering device 20 is executed. At this time, since the steering reaction force cannot be used to change the steering angle, the actual steering angle Rag is changed through the operation of the steering wheel 12 by automatic control of the steering device 20.
  • the operation of the steering wheel 12 by the automatic control of the steering apparatus 20 can be stopped.
  • the current supplied to the motor 21 becomes “0”. Therefore, in this case, since the operating state of the motor 21 is in a free state in which rotational torque is not applied to the output shaft, the output shaft of the motor 21 rotates and steers when the steering reaction force acts on the steering device 20. The direction of the ring 12 changes. In addition, at this time, heat generation due to power consumption in the motor 21 and its drive circuit 22 is suppressed.
  • the steering device 20 (specifically, the motor 21 and the drive circuit 22) of the steering device 20 is compared with a device in which the operation of the steering wheel 12 through automatic control is executed during the entire period during which automatic control by the steering device 20 is being executed.
  • the load can be reduced, and the temperature rise of the steering device 20 can be suppressed.
  • the steering wheel 12 is operated in one direction from the state operated in one direction with respect to the neutral angle in both the entry assistance in the parallel parking mode and the entry assistance in the parallel parking mode.
  • a switching operation such as operating to a state is executed.
  • a steering reaction force acts on the steered wheel 12 until the actual steering angle Rag becomes a neutral angle. Therefore, even if the operation of the steered wheel 12 through automatic control of the steering device 20 is stopped at this time, The actual steering angle Rag can be changed.
  • the operation of the steered wheels 12 through the automatic control of the steering device 20 is stopped for a period until the actual steering angle Rag becomes a neutral angle during such a turning operation. Temperature rise can be suppressed.
  • the target steering angle Tag is an angle closer to the neutral angle than the actual steering angle Rag, that is, when the steering reaction force can be used to change the actual steering angle Rag.
  • the temperature of the steering device 20 is equal to or higher than the determination temperature J, the operation of the steered wheels 12 through the automatic control of the device 20 is stopped.
  • the durability performance is reduced when the operation of the steered wheels 12 by the automatic control of the steering device 20 is executed during the entire execution period of the approach support.
  • a temperature range in which the temperature of the apparatus 20 may rise to a certain extent is obtained in advance.
  • the minimum temperature in such a temperature range is stored in the electronic control unit 30 as the determination temperature J.
  • the operation of the steering wheel 12 through the automatic control of the steering device 20 is executed in order to quickly change the direction of the steering wheel 12.
  • the vehicle 10 can be moved along a short route suitable for entering the parking space P1, and the vehicle 10 can be quickly moved to the parking position in the parking space P1.
  • the series of processes shown in the flowchart of FIG. 8 conceptually shows the execution procedure of the automatic control process, and the actual process of the automatic control process is executed by the electronic control unit 30 as an interrupt process at predetermined intervals. Is done. Note that the automatic control process is executed on the condition that the calculation of the approach route is completed when the entry support of the vehicle 10 is executed.
  • step S101: NO when the temperature of the steering device 20 (specifically, the motor 21) is lower than the determination temperature J (step S101: NO), the vehicle 10 stops at the parking position in the parking space P1. Until this is done (step S106: NO), the steering wheel 12 is operated by automatic control of the steering device 20 (step S105). Then, when the vehicle 10 stops at the parking position (step S106: YES), the automatic control of the steering device 20 is stopped (step S107), and this process ends.
  • step S101 when the temperature of the steering device 20 is equal to or higher than the determination temperature J (step S101: YES), the steered wheels 12 are automatically controlled by the steering device 20 based on the relationship between the actual steering angle Rag and the target steering angle Tag.
  • the automatic control is executed while switching between execution (step S105) and execution stop (step S103).
  • Step S102 when the actual steering angle Rag is closer to the neutral angle with respect to the target steering angle Tag, or when the target steering angle Tag is closer to the neutral angle with respect to the actual steering angle Rag than in the turning-back operation.
  • Step S105 the operation of the steered wheels 12 by the automatic control of the steering device 20 is executed.
  • the operation of the steering wheel 12 by such automatic control is executed until the moving position of the vehicle 10 becomes the parking position (step S106: NO).
  • step S101: YES When the temperature of the steering device 20 is equal to or higher than the determination temperature J (step S101: YES), when the target steering angle Tag becomes closer to the neutral angle than the actual steering angle Rag during the turning operation of the vehicle 10 (step S102). : YES), the operation of the steered wheels 12 by the automatic control of the steering device 20 is stopped (step S103). As a result, the operating state of the motor 21 becomes a free state in which rotational torque is not applied to the output shaft. Therefore, when a steering reaction force is applied while the vehicle 10 is traveling, the motor 21 rotates and the direction of the steering wheel 12 changes. To come. The target steering angle Tag is calculated even when the operation of the steered wheels 12 by the automatic control is stopped.
  • the change speed of the steering angle using the steering reaction force when the operation of the steering wheel 12 through the automatic control is stopped is slower than the change speed of the steering angle through the operation of the steering wheel 12 by the automatic control. Therefore, when the operation of the steering wheel 12 by the automatic control is stopped during the turning operation, the target steering angle Tag is closer to the neutral angle than the actual steering angle Rag until the actual steering angle Rag becomes a neutral angle. It becomes an angle.
  • step S103 The process of step S103 is continuously executed until the actual steering angle Rag becomes a neutral angle (step S104: NO).
  • step S104 YES
  • execution of the operation of the steered wheels 12 by automatic control of the steering device 20 is started (step S105).
  • the operation of the steering wheel 12 through the automatic control of the steering device 20 is stopped during the period until the actual steering angle Rag becomes a neutral angle during the turning operation of the vehicle 10.
  • the temperature rise of the steering device 20 can be suppressed.
  • step S106 when the vehicle 10 is stopped at the parking position (step S106: YES), the automatic control of the steering device 20 is stopped (step S107), and this process is ended.
  • the operation of the steering wheel 12 through the automatic control of the steering device 20 is stopped when the target steering angle Tag is closer to the neutral angle than the actual steering angle Rag for the turning operation, and the target steering angle Tag is It is executed when the angle is not close to the neutral angle with respect to the actual steering angle Rag. Therefore, when the steering reaction force can be used when changing the actual steering angle Rag, the operation of the steering wheel 12 by the automatic control of the steering device 20 can be stopped. Therefore, when the automatic control of the steering device 20 is executed, the load on the steering device 20 can be reduced as compared with a device in which the operation of the steered wheels 12 through the automatic control is executed in the entire period during the execution. The temperature rise of the steering device 20 can be suppressed.
  • the steering wheel 12 is operated through automatic control of the steering device 20 when the target steering angle Tag is closer to the neutral angle with respect to the actual steering angle Rag for the turning operation. Execution conditions for the process that stops are different. Specifically, the operation stop of the steering wheel 12 by the automatic control is permitted when the temperature of the motor 21 is equal to or higher than the determination temperature J in the apparatus of the first embodiment, whereas in the apparatus of the present embodiment, Permitted when the displacement amount of the moving position of the vehicle 10 from the approach route is equal to or less than a predetermined value.
  • the operation of the steered wheels 12 through the automatic control is stopped. Therefore, at this time, the actual steering angle Rag can be changed using the steering reaction force.
  • the operation of the steered wheels 12 through the automatic control of the steering device 20 is performed. By executing, the direction of the steered wheel 12 can be quickly changed, and the shift of the moving position of the vehicle 10 from the approach route can be eliminated.
  • FIG. 9 shows an example of the relationship between the approach route and the movement position of the vehicle 10 when the shift amount of the movement position of the vehicle 10 from the approach route becomes large.
  • the solid arrow indicates the approach route
  • the broken line indicates the transition of the movement position of the vehicle 10.
  • the deviation amount ⁇ P can be calculated as follows, for example. That is, first, the movement distance of the vehicle 10 from the initial position (the position of the vehicle 10 at the start of entry assistance) is calculated based on the detection signal of the wheel speed sensor 38, and the position moved on the entry route by the movement distance. Is calculated as an ideal movement position PT of the vehicle 10. Further, the actual movement position PR of the vehicle 10 is calculated based on the initial position, the actual steering angle Rag, and the wheel speed SPD. Then, the distance between the ideal movement position PT and the actual movement position PR is calculated as the deviation amount ⁇ P.
  • the relationship between the deviation amount ⁇ P and the mode of entry of the vehicle 10 into the parking space P1 is obtained based on the results of various experiments and simulations by the inventors.
  • the deviation amount ⁇ P that can ensure the function of properly entering 10 into the parking space P1 is required.
  • the maximum value of the deviation amount ⁇ P thus determined is stored in the electronic control unit 30 as the predetermined value.
  • the deviation amount ⁇ P becomes larger than a predetermined value, that is, when there is a possibility that the vehicle 10 cannot be properly entered into the parking space P1, steering through automatic control of the steering device 20 is performed.
  • the operation of the wheel 12 is executed, and the direction of the steered wheel 12 is quickly changed.
  • the amount of deviation ⁇ P is reduced to such an extent that the vehicle 10 properly enters the parking space P1. Therefore, according to the present embodiment, as described above, by utilizing the steering reaction force, the temperature rise of the steering device 20 is suppressed, and the deviation between the entry route and the moving position of the vehicle 10 is suppressed, and the parking space P1.
  • the vehicle 10 can appropriately enter the vehicle.
  • the series of processes shown in the flowchart of FIG. 10 conceptually shows the execution procedure of the automatic control process, and the actual process of the automatic control process is an electronic control unit 30 as an interrupt process for each predetermined cycle. It is executed by.
  • This automatic control process is executed on the condition that the calculation of the approach route is completed when the vehicle 10 performs the entry support.
  • FIG. 10 the same processes as those in the automatic control process (FIG. 8) of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the target steering angle Tag is neutral with respect to the actual steering angle Rag when the actual steering angle Rag is closer to the neutral angle with respect to the target steering angle Tag, or by an operation other than the turning-back operation.
  • step S102: NO the operation of the steered wheels 12 by the automatic control of the steering device 20 is executed (step S105).
  • step S102 When the target steering angle Tag becomes closer to the neutral angle than the actual steering angle Rag during the turning-back operation of the vehicle 10 (step S102: YES), the shift amount ⁇ P of the moving position of the vehicle 10 from the approach route is equal to or less than a predetermined value.
  • Step S201: YES the operation of the steering wheel 12 by the automatic control of the steering device 20 is stopped (Step S103).
  • the operating state of the motor 21 becomes a free state in which rotational torque is not applied to the output shaft. Therefore, when a steering reaction force is applied while the vehicle 10 is traveling, the motor 21 rotates and the direction of the steering wheel 12 changes. To come.
  • the processing in step S103 is continuously executed until the actual steering angle Rag becomes a neutral angle (step S104: NO).
  • step S102 when the operation of the steered wheels 12 by the automatic control of the steering device 20 is stopped (step S102: YES), the shift amount ⁇ P of the movement position of the vehicle 10 from the approach route becomes larger than a predetermined value (step S201). : NO), execution of the operation of the steered wheels 12 by the automatic control of the steering device 20 is started (step S105). The process in step S105 is continuously executed until the deviation amount ⁇ P becomes equal to or less than a predetermined value (step S201: NO). As a result, the shift amount ⁇ P is reduced, so that the movement position of the vehicle 10 is prevented from greatly deviating from the approach route.
  • the automatic control of the steering device 20 when the deviation ⁇ P is equal to or less than the predetermined value during the period until the actual steering angle Rag becomes the neutral angle during the turning operation of the vehicle 10, the automatic control of the steering device 20 is performed. Since the operation of the steering wheel 12 is stopped, the temperature rise of the steering device 20 is suppressed.
  • step S106 the automatic control of the steering device 20 is stopped (step S107), and this process is ended.
  • the current supplied to the motor 21 is not limited to “0”, but the rotating shaft of the motor 21 is rotated by the steering reaction force. If the direction of the steered wheels 12 changes, a slight amount of current may be supplied to the motor 21.
  • the driving support device of each of the above embodiments is not limited to a device provided with the steering wheel 11 as a steering operator that changes the direction of the steering wheel 12 by an operation by the driver, but a device or an operation provided with an operation lever.
  • the present invention can also be applied to a device provided with a switch.
  • the automatic control is performed when it is determined that there is a possibility that the vehicle 10 may come into contact with an obstacle in a situation where the operation of the steered wheels 12 by the automatic control of the steering device 20 is stopped when the vehicle 10 enters the vehicle.
  • the operation of the steered wheel 12 through the stop may be released and the operation may be started.
  • the steering wheel 12 can be operated by automatic control of the steering device 20 when the vehicle 10 may come into contact with an obstacle.
  • the moving position of the vehicle 10 can be returned to the approach route by starting, and contact of the vehicle 10 with the obstacle can be avoided.
  • the possibility that the vehicle 10 may come into contact with the obstacle is determined based on the distance between the obstacle 10 detected by the clearance sonars 31 and 33 and the ultrasonic sensors 32 and 34, and the parking space. It can be determined based on the relationship among P1, the surrounding space P2, and the movement position of the vehicle 10.
  • the temperature of the motor 21 detected by the temperature sensor 40 instead of using the temperature of the motor 21 detected by the temperature sensor 40 as the temperature of the steering device 20, the temperature of any part of the steering device 20 such as the temperature of the drive circuit 22 is detected. Thus, the temperature of the steering device 20 can be used.
  • step S101 of the automatic control process (FIG. 8) of the first embodiment may be omitted.
  • step S101 of the automatic control process (FIG. 8) of 1st Embodiment
  • step S201 of the automatic control process (FIG. 10) of 2nd Embodiment.
  • step S101: YES the temperature of the steering device 20 is equal to or higher than the determination temperature J
  • step S201: YES the deviation amount of the moving position of the vehicle 10 from the approach route is equal to or less than a predetermined value
  • step S101: NO when the temperature of the steering device 20 is lower than the determination temperature J (step S101: NO), or when the deviation amount ⁇ P from the approach path of the moving position of the vehicle 10 is larger than a predetermined value (step S201: NO), the steering The operation of the steering wheel 12 through the automatic control of the device 20 is executed without being stopped.
  • the method of calculating the deviation amount ⁇ P of the moving position of the vehicle 10 from the approach route is arbitrarily changed, such as the method of calculating the shortest distance between the moving position of the vehicle 10 and the approach route as the deviation amount. can do. In short, it is only necessary to be able to calculate a value that can determine that the moving position of the vehicle 10 is deviated from the approach route.
  • the target steering angle Tag becomes closer to the neutral angle than the actual steering angle Rag due to the turning operation of the vehicle 10, but when the automatic control processing is executed, the target steering angle Tag is actually steered when the vehicle 10 is traveling.
  • the operation of the steered wheels 12 by the automatic control of the steering device 20 may be stopped.
  • the steering wheel 12 can be operated during the execution of the automatic control using the steering reaction force, and the temperature rise of the steering device 20 can be suppressed.
  • the process of stopping the operation of the steering wheel 12 by the automatic control of the steering device 20 when the target steering angle Tag is closer to the neutral angle than the actual steering angle Rag supports the approach of the vehicle 10 to the parking space P1.
  • it can also be executed when executing the exit support for supporting the exit of the vehicle 10 from the parking space P1.
  • exit support is started when an exit request for exit support is made by an operation on the display panel 13 by the driver.
  • the electronic control unit 30 instructs the driver to perform a measurement start operation as preparation for measuring the size of the parking space P1. Specifically, an instruction to release the depression of the brake pedal 17 while the shift lever 15 is in the drive position while the vehicle A is in the parking space P1 as indicated by a solid line in FIG. give.
  • the electronic control unit 30 executes a measurement process for measuring the size of the parking space P1 on the condition that the driver has performed the above measurement start operation. In this measurement process, the host vehicle A is reciprocated back and forth within a range not hitting an obstacle.
  • the electronic control unit 30 monitors signals from the clearance sonars 31 and 33 and the ultrasonic sensors 32 and 34 during the reciprocal movement, and based on the signals from these sensors, the electronic control unit 30 detects the parking space P1 and the surrounding space P2. The size and the relative position of the own vehicle A with respect to the parking space P1 are grasped. Thereafter, the electronic control unit 30 determines the route of the vehicle A leaving the parking space P1 where the vehicle A is parked based on the margin of the size of the parking space P1 relative to the size of the vehicle A (see FIG. 11 is calculated, and the steering device 20 is automatically controlled so that the vehicle A moves to the target position along the route.
  • the electronic control unit 30 starts the measurement start operation as a preparation for measuring the size of the parking space by the display on the display panel 13 or the sound from the speaker 14.
  • the electronic control unit 30 gives instructions to the driver to do. Specifically, an instruction to release the depression of the brake pedal 17 with the shift lever 15 in the drive position while the vehicle A is in the parking space P1 as shown by the solid line in FIG. give.
  • the electronic control unit 30 executes measurement processing for measuring the size of the parking space P1 using the clearance sonars 31 and 33 and the ultrasonic sensors 32 and 34 on the condition that the driver has performed the above measurement start operation. To do. As the measurement process, the electronic control unit 30 monitors the signals from the clearance sonars 31 and 33 and the ultrasonic sensors 32 and 34, and moves the own vehicle A back and forth within a range not hitting an obstacle such as the vehicle B and the vehicle C. Move back and forth. Furthermore, the electronic control unit 30 monitors signals from the clearance sonars 31 and 33 and the ultrasonic sensors 32 and 34 during the reciprocal movement, and based on the signals from these sensors, the electronic control unit 30 detects the parking space P1 and the surrounding space P2.
  • the size and the relative position of the own vehicle A with respect to the parking space P1 are grasped. And the electronic control unit 30 is based on the margin of the size of the parking space P1 relative to the size of the own vehicle A, and the exit path of the own vehicle A from the parking space P1 where the own vehicle A is parked (see FIG. 12 is calculated, and the steering device 20 is automatically controlled so that the vehicle A moves to the target position along the route.
  • the movement position of the vehicle 10 is calculated based on the initial position of the vehicle 10 (relative position of the vehicle 10 at the start of exit assistance), the wheel speed SPD, and the actual steering angle Rag, Based on the moving position and the exit route, a target steering angle Tag for moving the vehicle 10 along the exit route is calculated. Then, the operation of the steering device 20 is controlled so that the target steering angle Tag and the actual steering angle Rag coincide with each other.
  • the steered wheel by automatic control of the steering device 20 is provided on the condition that the target steering angle Tag is closer to the neutral angle than the actual steering angle Rag. Twelve operations may be stopped.
  • the vehicle 10 is not limited to directly determining that the target steering angle Tag is closer to the neutral angle than the actual steering angle Rag based on the relationship between the target steering angle Tag, the actual steering angle Rag, and the neutral angle. It may be estimated based on the driving state.
  • the target steering angle Tag is closer to the neutral angle than the actual steering angle Rag during the period until the actual steering angle Rag becomes a neutral angle when the turning operation is performed. Therefore, it is possible to determine that the target steering angle Tag is closer to the neutral angle than the actual steering angle Rag by estimating that the period is based on the driving state of the vehicle 10. The period is determined based on the relationship between the approach route (or exit route) and the actual movement position of the vehicle 10, or the actual steering angle Rag continues to change toward the neutral angle side for a certain time or more. Can be judged by being.
  • a condition such as “a period until the actual steering angle Rag becomes a neutral angle when the turning operation is performed” may be set. That is, it is determined whether or not it is a period until the actual steering angle Rag becomes a neutral angle when the turning operation is performed, and when it is during the same period, the operation of the steering wheel 12 by the automatic control of the steering device 20 is stopped. When it is not during the same period, the operation of the steered wheels 12 by the automatic control may be executed. Even with such a device, when the steering reaction force can be used when the actual steering angle Rag is changed, the operation of the steered wheels 12 by the automatic control of the steering device 20 can be stopped. Can be obtained.
  • SYMBOLS 10 ... Vehicle, 11 ... Steering wheel, 12 ... Steering wheel, 13 ... Display panel, 14 ... Speaker, 15 ... Shift lever, 16 ... Accel pedal, 17 ... Brake pedal, 20 ... Steering device, 21 ... Motor, 22 ... Drive Circuit, 30 ... Electronic control unit, 31, 33 ... Clearance sonar, 32, 34 ... Ultrasonic sensor, 35 ... Shift position sensor, 36 ... Accelerator position sensor, 37 ... Brake switch, 38 ... Wheel speed sensor, 39 ... Angle sensor 40 ... Temperature sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

 駐車支援装置は、駐車スペースに対する車両の進入を行うための操舵輪の操作をステアリング装置の自動制御によって支援する。自動制御の実行時に、車両を駐車位置に移動させるための進入経路を算出するとともに同進入経路に沿って車両を移動させるための目標操舵角Tagを算出し、実操舵角Ragを検出する。目標操舵角Tagが実操舵角Ragに対し中立角寄りの角度であるときには(S102:YES)、自動制御を通じた操舵輪の操作を停止する(S103)。目標操舵角Tagが実操舵角Ragに対し中立角寄りの角度でないときには(S102:NO)、自動制御を通じた操舵輪の操作を実行する(S105)。

Description

駐車支援装置
 本発明は、駐車支援装置に関する。
 自動車などの車両に、所定の駐車スペースへの駐車や同駐車スペースからの発進に際してそれら駐車や発進を支援するための駐車支援装置を搭載することが実用されている。駐車支援装置では、駐車スペースに対する車両の進入や退出を行うための車両の操舵輪の操作を、運転者によるステアリング操作によって行うことに代えて、ステアリング装置の自動制御を通じて行うようにしている(特許文献1参照)。特許文献1に記載の装置では、駐車スペースに対する車両の進入や退出に際して、同車両を移動させるための移動経路が定められると、ステアリングホイールを運転者が保持していないことを条件に、ステアリング装置の自動制御を通じた操舵輪の操作が開始される。
特開2010-195224号公報
 上記駐車支援装置では、駐車スペースに対する車両の進入や退出を支援する際に、運転者のステアリング操作が行われることなくステアリング装置の自動制御によって操舵輪が操作されるため、その自動制御の実行時にステアリング装置の負荷が大きくなって同ステアリング装置の温度が上昇し易くなる傾向がある。これはステアリング装置の耐久性能の低下を招くなど、同ステアリング装置の過熱による不都合の原因となるため好ましくない。
 本開示の目的は、ステアリング装置の自動制御の実行に際して同ステアリング装置の温度上昇を抑えることのできる駐車支援装置を提供することにある。
 上記課題を解決するための駐車支援装置は、駐車スペースに対する車両の進入や退出を行うための操舵輪の操作をステアリング装置の自動制御によって支援する。この駐車支援装置は、車両を目標位置に移動させるための移動経路を算出する経路算出部と、車両を前記移動経路に沿って移動させるために必要な操舵輪の目標操舵角を算出する操舵角算出部と、操舵輪の実際の操舵角を検出する操舵角検出部とを備える。そして制御部は、目標操舵角が実際の操舵角に対し中立角寄りの角度であるときには前記自動制御を通じた操舵輪の操作を停止し、目標操舵角が実際の操舵角に対し中立角寄りの角度でないときには前記自動制御を通じた操舵輪の操作を実行するように構成される。
 車両では、操舵角がその中立角(車両を直進させる角度)以外の角度に操作された場合に、操舵角を中立角に戻す方向に作用する力(ステアリング反力)が発生する。そのため、目標操舵角が実際の操舵角に対し中立角寄りの角度であるとき、すなわち実際の操舵角を中立角に向けて変化させるときには、ステアリング装置を操作しなくても、上記ステアリング反力により操舵角が変化するようになる。これに対して、目標操舵角が実際の操舵角に対し中立寄りの角度でないとき、すなわち目標操舵角と中立角との間に実際の操舵角があるために実際の操舵角を中立角から離間する方向に変化させるときには、上記ステアリング反力に抗してステアリング装置を操作することによって操舵角を変化させることが可能になる。
 上記駐車支援装置では、ステアリング装置の自動制御による操舵輪の操作支援に際して、実際の操舵角を中立角に向けて変化させるときには、自動制御を通じた操舵輪の操作が停止され、このときには上記ステアリング反力を利用することによって操舵角が変更される。一方、実際の操舵角を中立角から離間する方向に変化させるときには、ステアリング装置の自動制御を通じた操舵輪の操作が実行される。このときには、操舵角の変更にステアリング反力を利用することができないため、ステアリング装置の自動制御による操舵輪の操作を通じて操舵角が変更される。このように上記駐車支援装置によれば、操舵角の変更に際して上記ステアリング反力を利用できるときには、ステアリング装置の自動制御による操舵輪の操作を停止させることができる。そのため、ステアリング装置による自動制御の実行に際して、その実行中の全期間において自動制御を通じた操舵輪の操作が実行される装置と比較して、ステアリング装置の負荷を低減することができ、同装置の温度上昇を抑えることができる。
 上記駐車支援装置において、前記制御部は、前記移動経路からの車両の移動位置のずれ量が予め定められた所定値以下であるときにはステアリング装置の自動制御を通じた操舵輪の操作停止を許可し、前記ずれ量が所定値より大きいときにはステアリング装置の自動制御を通じた操舵輪の操作停止を禁止するように構成されることが好ましい。
 上記駐車支援装置によれば、ステアリング装置の自動制御による操舵輪の操作支援に際して実際の操舵角を中立角に向けて変化させるときに、車両が前記移動経路に沿って移動している状況では、ステアリング反力を利用して操舵角を変更するべく、自動制御を通じた操舵輪の操作を停止させることができる。しかも、そうしたステアリング反力を利用した操舵角の変更だけでは車両の移動位置が前記移動経路からずれてしまう場合には、ステアリング装置の自動制御を通じた操舵輪の操作を実行することによって、同車両の移動位置のずれを解消することができる。したがって、ステアリング反力の利用によってステアリング装置の温度上昇の抑制を図りつつ、車両の移動位置の移動経路からのずれを抑えて駐車スペースに対する同車両の進入や退出を適正に行うことができる。
 上記駐車支援装置において、前記制御部は、ステアリング装置の温度が判定温度以上であるときにはステアリング装置の自動制御を通じた操舵輪の操作停止を許可し、ステアリング装置の温度が判定温度未満であるときにはステアリング装置の自動制御を通じた操舵輪の操作停止を禁止するように構成されることが好ましい。
 上記駐車支援装置によれば、自動制御による操舵輪の操作支援に際して実際の操舵角を中立角に向けて変化させるときに、ステアリング装置の温度が高い場合には、ステアリング反力を利用して操舵輪を操作するべく自動制御を通じた操舵輪の操作が停止されるため、このときステアリング装置の温度上昇を的確に抑えることができる。しかも、ステアリング装置の温度が低くその上昇が問題にならない場合には、同ステアリング装置の自動制御を通じた操舵輪の操作を実行して実際の操舵角を速やかに変化させることにより、車両を短い経路で移動させて目標位置まで速やかに移動させることが可能になる。
 上記駐車支援装置において、前記制御部は、前記目標操舵角が前記中立角を跨ぐ態様で変化するときに、前記実際の操舵角が前記中立角になるまで、前記自動制御を通じた前記操舵輪の操作を停止するように構成されることができる。
 駐車スペースに対する車両の進入や退出を行う際には、操舵輪を中立角に対して一方向に操作された状態から他方向に操作される状態まで動作させるといった切り返し動作が実行されることが多い。こうした切り返し動作では、実際の操舵角が中立角になるまでの期間において操舵輪にステアリング反力が作用するため、このとき自動制御を通じた操舵輪の操作を停止しても操舵角を変更することが可能である。
 上記駐車支援装置によれば、そうした切り返し動作に際して実際の操舵角が中立角になるまでの期間、ステアリング装置の自動制御を通じた操舵輪の操作を停止させることができるため、同装置の温度上昇を好適に抑えることができる。
駐車支援装置の第1実施形態が適用される車両全体を示す略図。 並列駐車モードでの進入支援に際して駐車スペースを測定するときの自車の動きを示す略図。 並列駐車モードでの進入支援の実行時における操舵輪の動作態様の一例を示す略図。 縦列駐車モードでの進入支援に際して駐車スペースを測定するときの自車の動きを示す略図。 縦列駐車モードでの進入支援の実行時における操舵輪の動作態様の一例を示す略図。 並列駐車モードでの進入支援の実行時における操舵輪の動作態様の一例を示す略図。 縦列駐車モードでの進入支援の実行時における操舵輪の動作態様の一例を示す略図。 第1実施形態の自動制御処理の実行手順を示すフローチャート。 駐車支援装置の第2実施形態の自動制御処理の実行時における進入経路と車両の移動位置との関係の一例を示す略図。 第2実施形態の自動制御処理の実行手順を示すフローチャート。 並列駐車モードでの退出支援の実行時における操舵輪の動作態様の一例を示す略図。 縦列駐車モードでの退出支援の実行時における操舵輪の動作態様の一例を示す略図。
 (第1実施形態)
 以下、駐車支援装置の第1実施形態について説明する。
 図1に示すように、車両10には、その進行方向を調整するためのステアリング装置20が設けられている。このステアリング装置20は、ステアリングホイール11や車両10の操舵輪12に駆動連結されたモータ21と同モータ21を駆動するための駆動回路22とを備えている。ステアリング装置20は、運転者によるステアリングホイール11の操作を通じて車両10の操舵輪12を動作させるものであり、運転者によるステアリングホイール11の操作をモータ21の駆動力によって補助する機能を有している。なお、ステアリング装置20は、運転者によるステアリングホイール11の操作がなされないときであっても、モータ21の駆動力のみによって上記操舵輪12を動作させることが可能になっている。車両10の運転席には、運転に関係する情報等を表示するとともに運転者からの各種の操作を受け付けるディスプレイパネル13や、運転に関係する情報および警告を運転者に対して音声によって報知するスピーカ14が設けられている。
 車両10の前端(図中上端)には付近に存在する物体の有無を検知するための複数のクリアランスソナー31が取り付けられており、同車両10の前部における幅方向(図中左右方向)の側面には車両10の幅方向の側方に存在する物体の有無を検知するための超音波センサ32が取り付けられている。また、車両10の後端(図中下端)にはその付近に存在する物体の有無を検知するための複数のクリアランスソナー33が取り付けられており、同車両10の後部における幅方向の側面には車両10の幅方向の側方に存在する物体の有無を検知するための超音波センサ34が取り付けられている。
 これらクリアランスソナー31,33および超音波センサ32,34は、車両10の各種制御を行うための電子制御装置30に接続されている。この電子制御装置30には、運転者によって操作されるシフトレバー15の操作位置を検出するシフトポジションセンサ35や、運転者によって踏み込み操作されるアクセルペダル16の操作量を検出するアクセルポジションセンサ36、運転者によるブレーキペダル17の踏み込み操作の有無を検出するブレーキスイッチ37も接続されている。その他、電子制御装置30には、車両10における車輪(操舵輪12等)の回転速度を検出する車輪速センサ38や、操舵輪12の操作角(実操舵角Rag)を検出する操舵角検出部としての角度センサ39、モータ21の温度を検出する温度センサ40等も接続されている。
 また、電子制御装置30は、ディスプレイパネル13、スピーカ14、およびステアリング装置20の作動を制御するとともに、運転者によるディスプレイパネル13の操作に伴い同パネル13から出力される信号を入力する。電子制御装置30は、所定の駐車スペースに車両10を駐車する際に同駐車スペースへの車両10の進入を支援する。すなわち、電子制御装置30は、駐車スペースに対する車両10の進入を行うための操舵輪12の操作を運転者のステアリング操作によって行う代わりにステアリング装置20(詳しくは、モータ21)の自動制御を通じて行い、それによって駐車スペースへの車両10の進入を支援する。本実施形態では、電子制御装置30が経路算出部、操舵角算出部、並びに制御部として機能する。
 こうしたステアリング装置20の自動制御による支援は、運転者によるディスプレイパネル13の操作等によって、駐車スペースに車両10を進入させる際の支援(以下、進入支援という)の要求があったときに開始される。この進入支援には、自車の駐車スペースが他の車両によって自車の幅方向に挟まれた状態になる駐車(並列駐車)を支援する動作モード(並列駐車モード)と、自車の駐車スペースが他の車両によって自車の前後方向に挟まれた状態になる駐車(縦列駐車)を支援する動作モード(縦列駐車モード)とがある。これら動作モードは、運転者のディスプレイパネル13上での操作等によって設定される。
 以下、並列駐車モードや縦列駐車モードでの進入支援の概要について個別に説明する。
 ここでは先ず、並列駐車モードでの進入支援について説明する。
 並列駐車モードが設定されて進入支援が開始されると、電子制御装置30は、ディスプレイパネル13上での表示やスピーカ14からの音声により、駐車スペースの大きさの計測を行うための準備として計測開始動作を行うように運転者に指示を与える。
 詳しくは、図2に示すように、自車Aを同図に実線で示す位置、すなわち他の車両Bおよび車両Cで挟まれた駐車スペースP1の側方であって同駐車スペースP1に対して自車Aの前進によって同自車Aが駐車スペースP1に対応する部分にさしかかる直前の位置において、自車Aを前向きに停車させるように指示を与える。更に、その位置で自車Aを停止させた状態のもと、シフトレバー15(図1)をドライブポジションに操作した状態でブレーキペダル17の踏み込み操作を解除するよう指示を与える。電子制御装置30は、以上の計測開始動作を運転者が行ったことを条件として、クリアランスソナー31,33および超音波センサ32,34を用いて駐車スペースP1(図2)の大きさを計測する計測処理を実行する。
 この計測処理では、自車Aを、実線で示す位置と二点鎖線で示す位置、すなわち駐車スペースP1の側方を自車Aの前進によって通過した直後の位置との間で前後に往復移動させる。電子制御装置30は、この往復移動の際にクリアランスソナー31,33および超音波センサ32,34からの信号をモニタし、それらセンサからの信号に基づいて駐車スペースP1の大きさ、および駐車スペースP1に対する自車Aの相対位置を把握する。その後、電子制御装置30は、自車Aの大きさに対する駐車スペースP1の大きさの余裕分に基づき、自車Aにおける実線で示す位置からの駐車スペースP1に対する進入の経路(進入経路)を算出する。なお、進入経路を算出する際には、上述したように自車Aの大きさに対する駐車スペースP1の大きさの余裕分だけでなく、その駐車スペースP1に対する自車Aの進入に用いる周辺スペースP2の大きさも加味することが好ましい。なお、周辺スペースP2の大きさについては、上記計測処理によって駐車スペースP1の大きさを把握する際、それと同時にクリアランスソナー31,33および超音波センサ32,34からの信号に基づいて把握することが可能である。
 電子制御装置30は、その算出された移動経路としての進入経路に沿って自車Aが移動するよう、シフトレバー15、アクセルペダル16、およびブレーキペダル17の操作に関する指示を運転者に与えるとともに、その指示に基づく運転者の操作に合わせてステアリング装置20(詳しくは、そのモータ21および駆動回路22)の自動制御を行う。この自動制御では、運転者がステアリング操作することなくステアリング装置20のモータ21の駆動のみにより、自車Aの上記進入経路に沿った移動が実現するよう操舵輪12が操作される。この操舵輪12の操作は次のように実行される。すなわち先ず、車両10の初期位置(進入支援の開始時の車両10の相対位置)と車輪速SPDと実操舵角Ragとに基づいて車両10の移動位置が算出されるとともに、同移動位置と前記進入経路とに基づいて車両10を進入経路に沿って移動させるために必要な目標操舵角Tagが算出される。そして、この目標操舵角Tagと実操舵角Ragとが一致するようにステアリング装置20の作動が制御される。
 図3は、並列駐車モードでの進入支援の実行時におけるステアリング装置20の自動制御に基づく操舵輪12の動作態様の一例を示している。並列駐車モードでの進入支援では、先ず、図3に実線の矢印で示すように、自車Aを前進させて駐車スペースP1の前を横切らせた後、自車Aの後部を駐車スペースP1に向けた位置(図3に二点差線で示す位置)で停車させる。このとき操舵輪12の向きが自車Aを駐車スペースP1から離間させる方向(図3に示す例では右方向)になるように、ステアリング装置20のモータ21の駆動を通じて操舵輪12が操作される。その後、図3に一点鎖線の矢印で示すように、操舵輪12の向きを切替えつつ自車Aを後進させて、自車Aを駐車スペースP1における目標位置としての駐車位置まで移動させる。このときには、先ず操舵輪12の向きが前進時の向きと反対方向(図3に示す例では左方向)まで切替えられ、その後において徐々に中立角(車両10を直進させる角度)に近づくように、ステアリング装置20のモータ21の駆動を通じて操舵輪12が操作される。そして、自車Aが駐車位置で停止されることによって駐車スペースP1への自車Aの駐車が完了する。
 次に、縦列駐車モードでの進入支援について説明する。
 縦列駐車モードが設定されて進入支援が開始される場合には、電子制御装置30は、ディスプレイパネル13上での表示やスピーカ14からの音声により、駐車スペースの大きさの計測を行うための準備として計測開始動作を行うように運転者に指示を与える。詳しくは、自車Aを図4に実線で示す位置、すなわち他の車両Bおよび車両Cで挟まれた駐車スペースP1の側方であって同駐車スペースP1に対して自車Aの前進によって同自車Aが駐車スペースP1に対応する部分にさしかかる直前の位置に、その自車Aを前向きに停車させるように指示を与える。更に、その位置で自車Aを停止させた状態のもと、シフトレバー15(図1)をドライブポジションに操作した状態でブレーキペダル17の踏み込み操作を解除するよう指示を与える。電子制御装置30は、以上の計測開始動作を運転者が行ったことを条件として、クリアランスソナー31,33および超音波センサ32,34を用いて駐車スペースP1(図4)の大きさを計測する計測処理を実行する。
 この計測処理では、自車Aを図4の実線で示す位置から二点鎖線で示す位置、すなわち駐車スペースP1の側方を自車Aの前進によって通過した直後の位置まで移動させて停止させる。電子制御装置30は、自車Aが実線で示す位置から二点鎖線で示す位置まで移動する間、図1に示すクリアランスソナー31,33および超音波センサ32,34からの信号をモニタし、それらセンサからの信号に基づいて駐車スペースP1の大きさ、および駐車スペースP1に対する自車Aの相対位置を把握する。
 そして、電子制御装置30は、自車Aの大きさに対する駐車スペースP1の大きさの余裕分に基づき、自車Aにおける図4の二点鎖線で示す位置からの駐車スペースP1に対する自車Aの進入の経路(進入経路)を求める。なお、進入経路を算出する際には、上述したように自車Aの大きさに対する駐車スペースP1の大きさの余裕分だけでなく、その駐車スペースP1に対する自車Aの進入に用いる周辺スペースP2の大きさも加味することが好ましい。なお、周辺スペースP2の大きさについては、上記計測処理によって駐車スペースP1の大きさを把握する際、それと同時にクリアランスソナー31,33および超音波センサ32,34からの信号に基づいて把握することが可能である。
 電子制御装置30は、上述したように算出される進入経路に沿って自車Aが移動するよう、シフトレバー15、アクセルペダル16、およびブレーキペダル17の操作に関する指示を運転者に与えるとともに、その指示に基づく運転者の操作に合わせてステアリング装置20の自動制御を行う。この自動制御では、運転者がステアリング操作することなくステアリング装置20のモータ21の駆動のみにより、自車Aの上記進入経路に沿った移動が実現するよう操舵輪12が動作される。こうして駐車スペースP1に対する自車Aの進入が支援される。
 図5は、縦列駐車モードでの進入支援の実行時におけるステアリング装置20の自動制御に基づく操舵輪12の動作態様の一例を示している。縦列駐車モードでの進入支援では、図5に矢印で示すように、後進させることによって自車Aが駐車スペースP1内に進入する態様で、ステアリング装置20のモータ21の駆動を通じて操舵輪12が操作される。具体的には先ず、後進に際して自車Aの後部が駐車スペースP1のほうを向くように、操舵輪12の向きが一方向(図5に示す例では左方向)に変更される。その後、切り返し動作によって操舵輪12の向きが反対方向(図5に示す例では右方向)まで切替えられる。更に、その後において徐々に中立角に近づくように操舵輪12の向きが変更される。このようにしてステアリング装置20のモータ21の駆動を通じて操舵輪12が操作されて、自車Aが駐車位置で停止されると、駐車スペースP1への自車Aの駐車が完了する。
 このように本実施形態の装置では、並列駐車モードおよび縦列駐車モードのいずれの場合にも、駐車スペースP1に対する自車Aの進入が支援される。なお、駐車スペースP1に対する自車Aの進入を支援するに当たり、上述したようにステアリング装置20の自動制御を行うだけでなく、自車Aを上記進入経路に沿って移動させるための自車Aの駆動力の調整、ブレーキの駆動、およびシフトポジションの変更を自動的に行うようにすることも可能である。
 ところで、上記駐車支援装置では、駐車スペースP1への車両10の進入を支援する際に、運転者によるステアリングホイール11の操作が行われることなく、ステアリング装置20の自動制御によって操舵輪12の操作が行われる。そのため、上記自動制御の実行時にステアリング装置20(詳しくは、モータ21および駆動回路22)の負荷が大きくなって同装置20の温度が上昇し易くなる傾向がある。これはステアリング装置20の耐久性能の低下を招くなど、同装置20の過熱による不都合の原因となるため好ましくない。
 そのため本実施形態では、ステアリング装置20の自動制御の実行時に、操舵角の制御目標値(前記目標操舵角Tag)が前記角度センサ39により検出される実際の操舵角(実操舵角Rag)に対し中立角寄りの角度であるときに、上記自動制御を通じた操舵輪12の操作を停止するようにしている。詳しくは、目標操舵角Tagが中立角を跨ぐ態様で変化するときにおいて実操舵角Ragが中立角になるまでの間、目標操舵角Tagが実操舵角Ragに対し中立角寄りの角度になるため、上記自動制御を通じた操舵輪12の操作が停止される。一方、ステアリング装置20の自動制御の実行に際して、目標操舵角Tagが実操舵角Ragに対し中立角寄りの角度でないとき、すなわち目標操舵角Tagと中立角との間に実操舵角Ragがあるときには、上記自動制御を通じた操舵輪12の操作が実行される。
 以下、このようにステアリング装置20の自動制御を実行することによる作用について説明する。
 車両10では実操舵角Ragが中立角以外の角度に操作された場合に、実操舵角Ragを中立角に戻す方向に作用する力(ステアリング反力)が発生する。そのため、目標操舵角Tagが実操舵角Ragに対し中立角寄りの角度であるとき、すなわち実操舵角Ragを中立角に向けて変化させるときには、ステアリング装置20を操作しなくても、上記ステアリング反力により実操舵角Ragが変化するようになる。これに対して、目標操舵角Tagが実操舵角Ragに対し中立角寄りの角度でないとき、すなわち目標操舵角Tagと中立角との間に実操舵角Ragがあるために同実操舵角Ragを中立角から離間する方向に変化させるときには、上記ステアリング反力に抗してステアリング装置20を操作することによって、実操舵角Ragを変化させることが可能になる。
 図6に示すように、並列駐車モードでの進入支援に際して、車両10を駐車スペースP1の前を横切るように前進させた後に停止させるときには、実操舵角Ragが中立角から離間するように、操舵輪12の向きが一方向(図6に示す例では右方向)に変更される。このときには、操舵角の変更にステアリング反力を利用することができないため、図6中に黒塗りの矢印で示すように、ステアリングホイール11を一方向(時計回り方向)に回転させる態様で、ステアリング装置20の自動制御を通じて操舵輪12が操作されて実操舵角Ragが変更される。
 その後、車両10を操舵輪12の向きを切替えつつ後進させて駐車スペースP1における駐車位置まで移動させるときには、先ず、操舵輪12の向きが前進時の向きから反対方向(図6に示す例では左方向)の向きになるまで変更される。そうした切り返し動作が実行される期間(切り返し期間)の前半においては、実操舵角Ragが中立角に近づくように操舵輪12の向きが変化するため、操舵角の変更にステアリング反力を利用することが可能である。本実施形態では、このときステアリング装置20の自動制御を通じた操舵輪12の操作が停止されて、図6中に白抜きの矢印で示すようにステアリングホイール11を一方向(反時計回り方向)に回転させる態様で、上記ステアリング反力を利用するかたちで実操舵角Ragが変更される。一方、上記切り返し期間の後半(詳しくは、実操舵角Ragが中立角を超えた後)においては、実操舵角Ragが中立角から離間するように操舵輪12の向きが変化する。このときには操舵角の変更にステアリング反力を利用することができないため、ステアリング装置20の自動制御を通じて操舵輪12が操作されて実操舵角Ragが変更される。更に、車両10の切り返し動作の完了後には、自車Aを駐車位置に案内するべく、実操舵角Ragが中立角まで徐々に変更される。このときには、目標操舵角Tagが実操舵角Ragに対し中立角寄りの角度になるとはいえ、実操舵角Ragを緻密に調節して自車Aを駐車位置に正確に停車させる必要があるため、ステアリング装置20の自動制御による操舵輪12の操作が実行される。
 また図7に示すように、縦列駐車モードでの進入支援に際して、車両10を駐車スペースP1に進入させる期間の前期においては、実操舵角Ragが中立角から離間するように、操舵輪12の向きが一方向(図7に示す例では左方向)に変更される。このときには、操舵角の変更にステアリング反力を利用することができないため、図7中に黒塗りの矢印で示すように、ステアリングホイール11を一方向(反時計回り方向)に回転させる態様で、ステアリング装置20の自動制御を通じて操舵輪12が操作されて実操舵角Ragが変更される。
 縦列駐車モードでの進入支援に際して、車両10を駐車スペースP1に進入させる期間の中期では、操舵輪12の向きが、同期間の前期の向きから反対方向(図7に示す例では右方向)の向きになるまで変更される。そうした切り返し動作が実行される切り返し期間では、その前半において実操舵角Ragが中立角に近づくように操舵輪12の向きが変化するため、操舵角の変更にステアリング反力を利用することが可能である。本実施形態では、このときステアリング装置20の自動制御を通じた操舵輪12の操作が停止されて、図7中に白抜きの矢印で示すようにステアリングホイール11を一方向(時計回り方向)に回転させる態様で、上記ステアリング反力を利用するかたちで実操舵角Ragが変更される。一方、上記切り返し期間の後半(詳しくは、実操舵角Ragが中立角を超えた後)においては、実操舵角Ragが中立角から離間するように操舵輪12の向きが変化する。このときには操舵角の変更にステアリング反力を利用することができないため、ステアリング装置20の自動制御を通じて操舵輪12が操作されて実操舵角Ragが変更される。
 また、縦列駐車モードでの進入支援に際して、車両10を駐車スペースP1に進入させる期間の終期、すなわち車両10の切り返し動作の完了後には、自車Aを駐車位置に案内するべく、実操舵角Ragが中立角まで徐々に変更される。このときには、目標操舵角Tagが実操舵角Ragに対し中立角寄りの角度になるとはいえ、実操舵角Ragを緻密に調節して自車Aを駐車位置に正確に停車させる必要があるため、ステアリング装置20の自動制御による操舵輪12の操作が実行される。
 このように本実施形態の装置では、並列駐車モードでの進入支援および縦列駐車モードでの進入支援のいずれにおいても、切り返し動作に際して実操舵角Ragを中立角に向けて変化させるときに、ステアリング装置20の自動制御を通じた操舵輪12の操作が停止されて、上記ステアリング反力を利用するかたちで実操舵角Ragが変更される。その一方で、実操舵角Ragを中立角から離間する方向に変化させるときには、ステアリング装置20の自動制御を通じた操舵輪12の操作が実行される。このときには、操舵角の変更にステアリング反力を利用することができないために、ステアリング装置20の自動制御による操舵輪12の操作を通じて実操舵角Ragが変更される。
 これにより本実施形態の装置によれば、実操舵角Ragの変更に際して上記ステアリング反力を利用できるときに、ステアリング装置20の自動制御による操舵輪12の操作を停止させることができる。本実施形態では、ステアリング装置20の自動制御を通じた操舵輪12の操作が停止される場合、モータ21に供給される電流が「0」になる。そのため、この場合にはモータ21の作動状態がその出力軸に回転トルクが付与されないフリー状態になることから、ステアリング装置20にステアリング反力が作用することによってモータ21の出力軸が回転して操舵輪12の向きが変化するようになる。しかも、このときモータ21やその駆動回路22での電力消費に伴う発熱が抑えられる。そのため、ステアリング装置20による自動制御の実行中の全期間において自動制御を通じた操舵輪12の操作が実行される装置と比較して、ステアリング装置20(詳しくは、そのモータ21や駆動回路22)の負荷を低減することができ、同ステアリング装置20の温度上昇を抑えることができる。
 本実施形態の装置では、並列駐車モードでの進入支援および縦列駐車モードでの進入支援のいずれにおいても、操舵輪12を中立角に対して一方向に操作された状態から他方向に操作される状態まで動作させるといった切り返し動作が実行される。この切り返し動作では、実操舵角Ragが中立角になるまでの期間において操舵輪12にステアリング反力が作用するため、このときステアリング装置20の自動制御を通じた操舵輪12の操作を停止しても実操舵角Ragを変更することが可能である。本実施形態の装置によれば、そうした切り返し動作に際して実操舵角Ragが中立角になるまでの期間、ステアリング装置20の自動制御を通じた操舵輪12の操作が停止されるため、同ステアリング装置20の温度上昇が抑えられるようになる。
 また本実施形態の装置では、目標操舵角Tagが実操舵角Ragに対し中立角寄りの角度であるとき、すなわち実操舵角Ragの変更にステアリング反力を利用することが可能なときであっても、ステアリング装置20の温度が判定温度J以上であるときに限って、同装置20の自動制御を通じた操舵輪12の操作を停止させるようにしている。本実施形態では、発明者らによる各種の実験やシミュレーションの結果に基づいて、進入支援の全実行期間においてステアリング装置20の自動制御による操舵輪12の操作を実行した場合に耐久性能の低下を招く程度に同装置20の温度が上昇する可能性のある温度範囲が予め求められている。そして、そうした温度範囲の最低温度が前記判定温度Jとして電子制御装置30に記憶されている。
 これにより、ステアリング装置20の自動制御による支援に際して実操舵角Ragを中立角に向けて変化させるときに、ステアリング装置20の温度が高く同装置20の過度の温度上昇が懸念される場合には、ステアリング反力を利用して操舵輪12を操作するべく自動制御を通じた操舵輪12の操作が停止される。このときモータ21に供給される電流が「0」になるため、モータ21やその駆動回路22での電力消費に伴う発熱が抑えられて、ステアリング装置20の温度上昇が的確に抑えられるようになる。
 一方、ステアリング装置20の温度が低くその上昇が問題にならない場合には、切り返し動作によって目標操舵角Tagが実操舵角Ragに対し中立角寄りの角度になっても、ステアリング装置20の自動制御を通じた操舵輪12の操作が実行される。ステアリング反力を利用して操舵輪12の向きを変更する場合には、ステアリング装置20の自動制御を通じて変更する場合と比較して、その変更速度を高くすることができないために、進入支援に際して車両10が実際に移動する経路が長くなったり、その移動時間が長くなったりし易いと云える。本実施形態の装置では、ステアリング装置20の温度上昇が問題にならないときには、操舵輪12の向きを速やかに変更するべく、ステアリング装置20の自動制御を通じた操舵輪12の操作が実行される。これにより、車両10を駐車スペースP1への進入に適した短い経路で移動させることが可能になり、同車両10を駐車スペースP1内の駐車位置まで速やかに移動させることができる。
 以下、車両10の進入支援に際してステアリング装置20を自動制御する処理(自動制御処理)について、図8に示すフローチャートを参照しつつ詳しく説明する。
 図8のフローチャートに示される一連の処理は、上記自動制御処理の実行手順を概念的に示したものであり、自動制御処理の実際の処理は所定周期毎の割り込み処理として電子制御装置30により実行される。なお自動制御処理は、車両10の進入支援の実行に際して進入経路の算出が完了したことを条件に実行される。
 図8に示すように、この処理では、ステアリング装置20(詳しくは、モータ21)の温度が判定温度J未満であるときには(ステップS101:NO)、車両10が駐車スペースP1内の駐車位置で停止するまでの間(ステップS106:NO)、ステアリング装置20の自動制御による操舵輪12の操作が実行される(ステップS105)。そして、車両10が駐車位置で停止すると(ステップS106:YES)、ステアリング装置20の自動制御が停止されて(ステップS107)、本処理が終了される。
 本処理では、ステアリング装置20の温度が判定温度J未満である場合には、ステアリング装置20の温度が低いためにその上昇が問題にならないとして、同装置20の自動制御を通じた操舵輪12の操作停止が禁止される。これにより、車両10を駐車スペースP1内の駐車位置まで速やかに移動させることができる。なお、ステアリング装置20の耐久性能の低下を抑えるためには、同装置20の温度が予め定められた上限温度を超えたときに進入支援の実行を停止させることが考えられる。こうした装置では、ステアリング装置20の温度上昇を招くと、進入支援の実行機会の減少を招いてしまう。本実施形態によれば、そうした装置において、ステアリング装置20の温度上昇が抑えられて同温度が上限温度を超える頻度が低くなるため、進入支援の実行機会の減少を抑えることができる。
 一方、ステアリング装置20の温度が判定温度J以上である場合には(ステップS101:YES)、実操舵角Ragと目標操舵角Tagとの関係に基づいて、ステアリング装置20の自動制御による操舵輪12の操作の実行(ステップS105)と実行停止(ステップS103)とを切替えつつ同自動制御が実行される。
 先ずは、実操舵角Ragが目標操舵角Tagに対し中立角寄りの角度であるときや、切り返し動作以外の動作で目標操舵角Tagが実操舵角Ragに対し中立角寄りの角度になったときには(ステップS102:NO)、ステアリング装置20の自動制御による操舵輪12の操作が実行される(ステップS105)。こうした自動制御による操舵輪12の操作は、車両10の移動位置が駐車位置になるまでの間(ステップS106:NO)、実行される。
 そして、ステアリング装置20の温度が判定温度J以上である場合に(ステップS101:YES)、車両10の切り返し動作に際して目標操舵角Tagが実操舵角Ragに対し中立角寄りの角度になると(ステップS102:YES)、ステアリング装置20の自動制御による操舵輪12の操作が停止される(ステップS103)。これにより、モータ21の作動状態がその出力軸に回転トルクが付与されないフリー状態になるため、車両10の走行中にステアリング反力が作用すると、モータ21が回転して操舵輪12の向きが変化するようになる。なお、上記自動制御による操舵輪12の操作の停止中においても目標操舵角Tagの算出は実行される。上記自動制御を通じた操舵輪12の操作の停止時におけるステアリング反力を利用した操舵角の変更速度は、上記自動制御による操舵輪12の操作を通じた操舵角の変更速度と比較して遅い。そのため、切り返し動作に際して上記自動制御による操舵輪12の操作が停止されるときに、実操舵角Ragが中立角になるまでの間は、目標操舵角Tagは実操舵角Ragに対し中立角寄りの角度になる。
 ステップS103の処理は、実操舵角Ragが中立角になるまでの間(ステップS104:NO)、継続して実行される。そして、実操舵角Ragが中立角になると(ステップS104:YES)、ステアリング装置20の自動制御による操舵輪12の操作の実行が開始される(ステップS105)。このように本実施形態の自動制御処理では、車両10の切り返し動作に際して実操舵角Ragが中立角になるまでの期間、ステアリング装置20の自動制御を通じた操舵輪12の操作が停止されて、同ステアリング装置20の温度上昇が抑えられる。
 そして、その後において車両10が駐車位置で停止されると(ステップS106:YES)、ステアリング装置20の自動制御が停止されて(ステップS107)、本処理は終了される。
 以上説明したように、本実施形態によれば、以下に記載する効果が得られる。
 (1)ステアリング装置20の自動制御を通じた操舵輪12の操作を、切り返し動作のために目標操舵角Tagが実操舵角Ragに対し中立角寄りの角度であるときには停止し、目標操舵角Tagが実操舵角Ragに対し中立角寄りの角度でないときには実行するようにした。そのため、実操舵角Ragの変更に際してステアリング反力を利用できるときに、ステアリング装置20の自動制御による操舵輪12の操作を停止させることができる。したがって、ステアリング装置20の自動制御の実行に際して、その実行中の全期間において自動制御を通じた操舵輪12の操作が実行される装置と比較して、ステアリング装置20の負荷を低減することができ、同ステアリング装置20の温度上昇を抑えることができる。
 (2)ステアリング装置20の温度が判定温度J以上であるときには同装置20の自動制御を通じた操舵輪12の操作停止を許可し、ステアリング装置20の温度が判定温度J未満であるときには上記自動制御を通じた操舵輪12の操作停止を禁止するようにした。これにより、ステアリング装置20の温度が高い場合には、ステアリング反力を利用して操舵輪12を操作するべく自動制御を通じた操舵輪12の操作を停止させることができる。そのため、ステアリング装置20の温度上昇を的確に抑えることができる。しかも、ステアリング装置20の温度が低くその上昇が問題にならない場合には、切り返し動作のために目標操舵角Tagが実操舵角Ragに対し中立角寄りの角度になったときであっても、同装置20の自動制御を通じた操舵輪12の操作が実行されるため、車両10を駐車スペースP1内の駐車位置まで速やかに移動させることができる。
 (3)目標操舵角Tagが中立角を跨ぐ態様で変化するときに、実操舵角Ragが中立角になるまでの間、ステアリング装置20の自動制御を通じた操舵輪12の操作を停止するようにした。そのため、ステアリング装置20の温度上昇を抑えることができる。
 (第2実施形態)
 以下、駐車支援装置の第2実施形態について、第1実施形態との相違点を中心に説明する。
 本実施形態と第1実施形態とは、切り返し動作のために目標操舵角Tagが実操舵角Ragに対し中立角寄りの角度になったときにステアリング装置20の自動制御を通じた操舵輪12の操作を停止させる処理の実行条件が異なる。詳しくは、上記自動制御による操舵輪12の操作停止が、第1実施形態の装置ではモータ21の温度が判定温度J以上であるときに許可されるのに対して、本実施形態の装置では前記進入経路からの車両10の移動位置のずれ量が所定値以下であるときに許可される。
 以下、このようにステアリング装置20の自動制御を実行することによる作用について説明する。
 本実施形態では、車両10の進入支援に際して、上記自動制御を通じて実操舵角Ragを中立角に向けて変化させるときに、進入経路からの車両10の移動位置のずれ量が小さい状況、すなわち車両10が前記移動経路に沿って移動している状況では、上記自動制御を通じた操舵輪12の操作が停止される。そのため、このときステアリング反力を利用して実操舵角Ragを変更することができる。しかも、そうしたステアリング反力を利用した実操舵角Ragの変更の結果、車両10の移動位置が前記進入経路からずれてしまった場合には、ステアリング装置20の自動制御を通じた操舵輪12の操作を実行することによって操舵輪12の向きを速やかに変更して、進入経路からの車両10の移動位置のずれを解消することができる。
 図9に、進入経路からの車両10の移動位置のずれ量が大きくなる場合における進入経路と車両10の移動位置との関係の一例を示す。なお図9において、実線の矢印は進入経路を示し、破線は車両10の移動位置の推移を示している。
 図9に示すように、ステアリング装置20の自動制御を通じた操舵輪12の操作が停止されているときに、前記進入経路から車両10の移動位置がずれて、そのずれ量ΔP(本例では、車両10の理想的な移動位置PTと実際の移動位置PRとの距離)が所定値より大きくなると、上記自動制御を通じた操舵輪12の操作が開始される。
 上記ずれ量ΔPは例えば次のようにして算出することができる。すなわち先ず、車輪速センサ38の検出信号に基づき前記初期位置(進入支援の開始時の車両10の位置)からの車両10の移動距離を算出するとともに、その移動距離だけ進入経路上を移動した位置を車両10の理想的な移動位置PTとして算出する。また、前記初期位置と実操舵角Ragと車輪速SPDとに基づいて車両10の実際の移動位置PRを算出する。そして、理想的な移動位置PTと実際の移動位置PRとの距離を上記ずれ量ΔPとして算出する。なお本実施形態では、発明者らによる各種の実験やシミュレーションの結果に基づいて上記ずれ量ΔPと駐車スペースP1への車両10の進入態様との関係が求められて、同関係をもとに車両10を駐車スペースP1に適正に進入させる機能を確保できる上記ずれ量ΔPが求められている。そして、そのようにして求められたずれ量ΔPの最大値が上記所定値として電子制御装置30に記憶されている。
 実施形態の装置では、上記ずれ量ΔPが所定値より大きくなったとき、すなわち車両10を駐車スペースP1に適正に進入させることができなくなるおそれがあるときに、ステアリング装置20の自動制御を通じた操舵輪12の操作が実行されて同操舵輪12の向きが速やかに変更される。これにより、上記ずれ量ΔPが、駐車スペースP1への車両10の進入が適正に行われる程度に小さくなる。したがって本実施形態によれば、前述したようにステアリング反力を利用することによってステアリング装置20の温度上昇の抑制を図りつつ、記進入経路と車両10の移動位置とのずれを抑えて駐車スペースP1に対する車両10の進入を適正に行うことができる。
 以下、本実施形態の自動制御処理について、図10に示すフローチャートを参照しつつ詳しく説明する。
 図10のフローチャートに示される一連の処理は、上記自動制御処理の実行手順を概念的に示したものであり、自動制御処理の実際の処理は、所定周期毎の割り込み処理として、電子制御装置30により実行される。なお、この自動制御処理は、車両10の進入支援の実行に際して進入経路の算出が完了したことを条件に実行される。また、図10では、先の第1実施形態の自動制御処理(図8)と同一の処理については同一の符号を付して示し、その詳細な説明は割愛する。
 図10に示すように、この処理では、実操舵角Ragが目標操舵角Tagに対し中立角寄りの角度であるときや、切り返し動作以外の動作によって目標操舵角Tagが実操舵角Ragに対し中立角寄りの角度になったときには(ステップS102:NO)、ステアリング装置20の自動制御による操舵輪12の操作が実行される(ステップS105)。
 そして、車両10の切り返し動作に際して目標操舵角Tagが実操舵角Ragに対し中立角寄りの角度になると(ステップS102:YES)、進入経路からの車両10の移動位置のずれ量ΔPが所定値以下であることを条件に(ステップS201:YES)、ステアリング装置20の自動制御による操舵輪12の操作が停止される(ステップS103)。これにより、モータ21の作動状態がその出力軸に回転トルクが付与されないフリー状態になるため、車両10の走行中にステアリング反力が作用すると、モータ21が回転して操舵輪12の向きが変化するようになる。こうしたステップS103の処理は、実操舵角Ragが中立角になるまでの間(ステップS104:NO)、継続して実行される。
 ただし、ステアリング装置20の自動制御による操舵輪12の操作が停止されているときに(ステップS102:YES)、進入経路からの車両10の移動位置のずれ量ΔPが所定値より大きくなると(ステップS201:NO)、ステアリング装置20の自動制御による操舵輪12の操作の実行が開始される(ステップS105)。このステップS105の処理は、上記ずれ量ΔPが所定以下になるまで(ステップS201:NO)、継続して実行される。これにより、上記ずれ量ΔPが小さくなるため、車両10の移動位置が進入経路から大きく外れることが回避されるようになる。
 このように本実施形態の自動制御処理では、車両10の切り返し動作に際して実操舵角Ragが中立角になるまでの期間において上記ずれ量ΔPが所定値以下であるときには、ステアリング装置20の自動制御を通じた操舵輪12の操作が停止されるため、同ステアリング装置20の温度上昇が抑えられる。
 そして、車両10が駐車位置で停止されると(ステップS106:YES)、ステアリング装置20の自動制御が停止されて(ステップS107)、本処理は終了される。
 以上説明したように、本実施形態によれば、先の(1)および(3)に記載した効果に加えて、以下の(4)に記載する効果が得られるようになる。
 (4)進入経路からの車両10の移動位置のずれ量ΔPが予め定められた所定値以下であるときにはステアリング装置20の自動制御を通じた操舵輪12の操作停止を許可し、上記ずれ量ΔPが所定値より大きいときには上記自動制御を通じた操舵輪12の操作停止を禁止するようにした。そのため、ステアリング反力を利用することによってステアリング装置20の温度上昇の抑制を図りつつ、進入経路と車両10の移動位置とのずれを抑えて駐車スペースP1に対する車両10の進入を適正に行うことができる。
 (他の実施形態)
 なお、上記各実施形態は、以下のように変更して実施してもよい。
 ・ステアリング装置20の自動制御による操舵輪12の操作を停止する際に、モータ21に供給される電流を「0」にすることに限らず、ステアリング反力によってモータ21の回転軸が回転して操舵輪12の向きが変化するのであれば、同モータ21に若干量の電流を供給してもよい。
 ・上記各実施形態の運転支援装置は、運転者による操作によって操舵輪12の向きを変更するステアリング操作子として、ステアリングホイール11が設けられた装置に限らず、操作レバーが設けられた装置や操作スイッチが設けられた装置などにも適用することができる。
 ・車両10の進入支援に際してステアリング装置20の自動制御による操舵輪12の操作が停止されている状況で、同車両10が障害物に接触する可能性があると判定されたときに、上記自動制御を通じた操舵輪12の操作の停止を解除して同操作を開始するようにしてもよい。こうした装置によれば、車両10の移動位置が進入経路から外れてしまった結果、同車両10が障害物に接触する可能性があるときに、ステアリング装置20の自動制御による操舵輪12の操作を開始して車両10の移動位置を進入経路に戻すことができ、同車両10の障害物への接触を回避することができる。なお、車両10が障害物に接触する可能性があることは、クリアランスソナー31,33や超音波センサ32,34により検出される障害物と車両10との距離に基づいて判定したり、駐車スペースP1と周辺スペースP2と車両10の移動位置との関係に基づいて判定したりすることができる。
 ・第1実施形態において、温度センサ40により検出したモータ21の温度をステアリング装置20の温度として用いることに代えて、例えば駆動回路22の温度など、ステアリング装置20の任意の部分の温度を検出してステアリング装置20の温度として用いることができる。
 ・第1実施形態の自動制御処理(図8)のステップS101の処理を省略してもよい。
 ・第1実施形態の自動制御処理(図8)のステップS101の処理と第2実施形態の自動制御処理(図10)のステップS201の処理とを共に実行するようにしてもよい。こうした装置では、ステアリング装置20の温度が判定温度J以上であり(ステップS101:YES)、且つ車両10の移動位置の進入経路からのずれ量ΔPが所定値以下であるときに(ステップS201:YES)、ステアリング装置20の自動制御を通じた操舵輪12の操作停止が許可される。一方、ステアリング装置20の温度が判定温度J未満であるときや(ステップS101:NO)、車両10の移動位置の進入経路からのずれ量ΔPが所定値より大きいときには(ステップS201:NO)、ステアリング装置20の自動制御を通じた操舵輪12の操作が停止されることなく実行される。
 ・第2実施形態において、車両10の移動位置の進入経路からのずれ量ΔPを算出する方法は、車両10の移動位置と進入経路との最短距離をずれ量として算出する方法など、任意に変更することができる。要は、車両10の移動位置が進入経路からずれていることを判定可能な値を算出することができればよい。
 ・車両10の切り返し動作によって目標操舵角Tagが実操舵角Ragに対し中立角寄りの角度になったときに限らず、自動制御処理の実行に際して、車両10の走行時に目標操舵角Tagが実操舵角Ragに対し中立角寄りの角度になったときであれば、ステアリング装置20の自動制御による操舵輪12の操作を停止するようにしてもよい。こうした装置によっても、ステアリング反力を利用して上記自動制御の実行中に操舵輪12を操作することができ、ステアリング装置20の温度上昇を抑えることができる。
 ・目標操舵角Tagが実操舵角Ragに対し中立角寄りの角度であるときにステアリング装置20の自動制御による操舵輪12の操作を停止する処理は、車両10の駐車スペースP1への進入を支援する進入支援の実行に際して実行することの他、車両10の駐車スペースP1からの退出を支援する退出支援の実行時に実行することもできる。以下、退出支援の具体例を説明する。退出支援は、運転者によるディスプレイパネル13上での操作等によって退出支援の実行要求があったときに開始される。
 並列駐車モードでの退出支援が開始されると、電子制御装置30は、駐車スペースP1の大きさの計測を行うための準備として計測開始動作を行うように運転者に指示を与える。具体的には、自車Aが図11に実線で示すように駐車スペースP1内にある状態のもと、シフトレバー15をドライブポジションに操作した状態でブレーキペダル17の踏み込み操作を解除するよう指示を与える。電子制御装置30は、以上の計測開始動作を運転者が行ったことを条件として、駐車スペースP1の大きさを計測する計測処理を実行する。この計測処理では、自車Aを障害物に当たらない範囲で前後に往復移動させる。更に、電子制御装置30は、上記往復移動の際にクリアランスソナー31,33および超音波センサ32,34からの信号をモニタし、それらセンサからの信号に基づいて駐車スペースP1やその周辺スペースP2の大きさ、および駐車スペースP1に対する自車Aの相対位置を把握する。その後、電子制御装置30は、自車Aの大きさに対する駐車スペースP1の大きさの余裕分に基づき、自車Aを駐車している駐車スペースP1からの同自車Aの退出の経路(図11中に黒塗りの矢印で示す退出経路)を算出し、その経路に沿って自車Aが目標位置まで移動するようステアリング装置20の自動制御を行う。
 縦列駐車モードでの退出支援が開始されると、電子制御装置30は、ディスプレイパネル13上での表示やスピーカ14からの音声により、駐車スペースの大きさの計測を行うための準備として計測開始動作を行うように運転者に指示を与える。具体的には、自車Aが図12の実線で示すように駐車スペースP1内にある状態のもと、シフトレバー15をドライブポジションに操作した状態でブレーキペダル17の踏み込み操作を解除するよう指示を与える。
 電子制御装置30は、以上の計測開始動作を運転者が行ったことを条件として、クリアランスソナー31,33および超音波センサ32,34を用いて駐車スペースP1の大きさを計測する計測処理を実行する。電子制御装置30は、上記計測処理として、クリアランスソナー31,33および超音波センサ32,34からの信号をモニタしつつ、自車Aを車両Bおよび車両C等の障害物に当たらない範囲で前後に往復移動させる。更に、電子制御装置30は、上記往復移動の際にクリアランスソナー31,33および超音波センサ32,34からの信号をモニタし、それらセンサからの信号に基づいて駐車スペースP1やその周辺スペースP2の大きさ、および駐車スペースP1に対する自車Aの相対位置を把握する。そして、電子制御装置30は、自車Aの大きさに対する駐車スペースP1の大きさの余裕分に基づき、自車Aを駐車している駐車スペースP1からの同自車Aの退出の経路(図12中に黒塗りの矢印で示す退出経路)を算出し、その経路に沿って自車Aが目標位置まで移動するようステアリング装置20の自動制御を行う。
 こうした退出支援における自動制御では、車両10の初期位置(退出支援の開始時の車両10の相対位置)と車輪速SPDと実操舵角Ragとに基づいて車両10の移動位置が算出されるとともに、同移動位置と前記退出経路とに基づいて車両10を退出経路に沿って移動させるための目標操舵角Tagが算出される。そして、この目標操舵角Tagと実操舵角Ragとが一致するようにステアリング装置20の作動が制御される。こうした退出支援に際してステアリング装置20の自動制御が実行されるときに、目標操舵角Tagが実操舵角Ragに対し中立角寄りの角度になったことを条件に、ステアリング装置20の自動制御による操舵輪12の操作を停止してもよい。
 ・目標操舵角Tagが実操舵角Ragに対し中立角寄りの角度であることを、目標操舵角Tagと実操舵角Ragと中立角との関係に基づいて直接判断することに限らず、車両10の運転状態に基づき推定するようにしてもよい。上記各実施形態では、例えば切り返し動作の実行時において実操舵角Ragが中立角になるまでの期間では目標操舵角Tagが実操舵角Ragに対し中立角寄りの角度になる。そのため、車両10の運転状態に基づいて上記期間であることを推定することにより、目標操舵角Tagが実操舵角Ragに対し中立角寄りの角度であると判断することができる。上記期間であることは、進入経路(または退出経路)と車両10の実際の移動位置との関係に基づいて判断したり、実操舵角Ragが一定時間以上中立角側に向けて変化し続けていることをもって判断したりすることができる。
 ・ステアリング装置20の自動制御による操舵輪12の操作を停止する条件として、「目標操舵角Tagが実操舵角Ragに対し中立角寄りの角度であること」といった条件を設定することに代えて、「切り返し動作の実行時において実操舵角Ragが中立角になるまでの期間であること」といった条件を設定してもよい。すなわち、切り返し動作の実行時において実操舵角Ragが中立角になるまでの期間であるか否かを判定し、同期間であるときにはステアリング装置20の自動制御による操舵輪12の操作を停止する一方、同期間でないときには上記自動制御による操舵輪12の操作を実行するようにしてもよい。こうした装置によっても、実操舵角Ragの変更に際してステアリング反力を利用できるときに、ステアリング装置20の自動制御による操舵輪12の操作を停止させることができるため、上記各実施形態に準じた作用効果を得ることができる。
 10…車両、11…ステアリングホイール、12…操舵輪、13…ディスプレイパネル、14…スピーカ、15…シフトレバー、16…アクセルペダル、17…ブレーキペダル、20…ステアリング装置、21…モータ、22…駆動回路、30…電子制御装置、31,33…クリアランスソナー、32,34…超音波センサ、35…シフトポジションセンサ、36…アクセルポジションセンサ、37…ブレーキスイッチ、38…車輪速センサ、39…角度センサ、40…温度センサ。

Claims (4)

  1.  駐車スペースに対する車両の進入や退出を行うための操舵輪の操作をステアリング装置の自動制御によって支援する駐車支援装置において、
     前記車両を目標位置に移動させるための移動経路を算出する経路算出部と、
     前記車両を前記移動経路に沿って移動させるために必要な前記操舵輪の目標操舵角を算出する操舵角算出部と、
     前記操舵輪の実際の操舵角を検出する操舵角検出部と、
     前記目標操舵角が前記実際の操舵角に対し中立角寄りの角度であるときには前記自動制御を通じた前記操舵輪の操作を停止し、前記目標操舵角が前記実際の操舵角に対し前記中立角寄りの角度でないときには前記自動制御を通じた前記操舵輪の操作を実行するように構成される制御部と
    を備える駐車支援装置。
  2.  前記制御部は、前記移動経路からの前記車両の移動位置のずれ量が予め定められた所定値以下であるときには前記自動制御を通じた前記操舵輪の操作停止を許可し、前記ずれ量が前記所定値より大きいときには前記自動制御を通じた前記操舵輪の操作停止を禁止するように構成される
    請求項1に記載の駐車支援装置。
  3.  前記制御部は、前記ステアリング装置の温度が判定温度以上であるときには前記自動制御を通じた前記操舵輪の操作停止を許可し、前記ステアリング装置の温度が前記判定温度未満であるときには前記自動制御を通じた前記操舵輪の操作停止を禁止するように構成される
    請求項1に記載の駐車支援装置。
  4.  前記制御部は、前記目標操舵角が前記中立角を跨ぐ態様で変化するときに、前記実際の操舵角が前記中立角になるまで、前記自動制御を通じた前記操舵輪の操作を停止するように構成される
    請求項1~3のいずれか一項に記載の駐車支援装置。
PCT/JP2013/064942 2013-05-29 2013-05-29 駐車支援装置 WO2014192107A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13885593.7A EP3006272A4 (en) 2013-05-29 2013-05-29 PARK ASSIST DEVICE
PCT/JP2013/064942 WO2014192107A1 (ja) 2013-05-29 2013-05-29 駐車支援装置
CN201380076854.1A CN105246744A (zh) 2013-05-29 2013-05-29 驻车支援装置
US14/893,671 US9676414B2 (en) 2013-05-29 2013-05-29 Parking assistance device
JP2015519550A JP5967303B2 (ja) 2013-05-29 2013-05-29 駐車支援装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/064942 WO2014192107A1 (ja) 2013-05-29 2013-05-29 駐車支援装置

Publications (1)

Publication Number Publication Date
WO2014192107A1 true WO2014192107A1 (ja) 2014-12-04

Family

ID=51988179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064942 WO2014192107A1 (ja) 2013-05-29 2013-05-29 駐車支援装置

Country Status (5)

Country Link
US (1) US9676414B2 (ja)
EP (1) EP3006272A4 (ja)
JP (1) JP5967303B2 (ja)
CN (1) CN105246744A (ja)
WO (1) WO2014192107A1 (ja)

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6110349B2 (ja) * 2014-09-12 2017-04-05 アイシン精機株式会社 駐車支援装置
US10286953B2 (en) * 2014-09-17 2019-05-14 Ford Global Technologies, Llc Autopark steering wheel snap reduction
US9396554B2 (en) 2014-12-05 2016-07-19 Symbol Technologies, Llc Apparatus for and method of estimating dimensions of an object associated with a code in automatic response to reading the code
JP2017030569A (ja) * 2015-07-31 2017-02-09 アイシン精機株式会社 駐車支援装置
JP6278019B2 (ja) * 2015-09-25 2018-02-14 トヨタ自動車株式会社 車両用運転支援装置
KR102327341B1 (ko) * 2015-11-19 2021-11-17 주식회사 만도모빌리티솔루션즈 스마트 주차 지원 시스템 및 방법
US10352689B2 (en) * 2016-01-28 2019-07-16 Symbol Technologies, Llc Methods and systems for high precision locationing with depth values
US10145955B2 (en) 2016-02-04 2018-12-04 Symbol Technologies, Llc Methods and systems for processing point-cloud data with a line scanner
US10721451B2 (en) 2016-03-23 2020-07-21 Symbol Technologies, Llc Arrangement for, and method of, loading freight into a shipping container
US10606272B2 (en) * 2016-07-20 2020-03-31 Hyundai Motor Company Method for guiding parking mode in remote automatic parking support system
US10776661B2 (en) 2016-08-19 2020-09-15 Symbol Technologies, Llc Methods, systems and apparatus for segmenting and dimensioning objects
JP6788439B2 (ja) * 2016-08-31 2020-11-25 本田技研工業株式会社 出庫支援装置
WO2018042530A1 (ja) * 2016-08-31 2018-03-08 本田技研工業株式会社 出庫支援装置
US11042161B2 (en) 2016-11-16 2021-06-22 Symbol Technologies, Llc Navigation control method and apparatus in a mobile automation system
US10451405B2 (en) 2016-11-22 2019-10-22 Symbol Technologies, Llc Dimensioning system for, and method of, dimensioning freight in motion along an unconstrained path in a venue
US10354411B2 (en) 2016-12-20 2019-07-16 Symbol Technologies, Llc Methods, systems and apparatus for segmenting objects
US10663590B2 (en) 2017-05-01 2020-05-26 Symbol Technologies, Llc Device and method for merging lidar data
WO2018204342A1 (en) 2017-05-01 2018-11-08 Symbol Technologies, Llc Product status detection system
US11449059B2 (en) 2017-05-01 2022-09-20 Symbol Technologies, Llc Obstacle detection for a mobile automation apparatus
US10726273B2 (en) 2017-05-01 2020-07-28 Symbol Technologies, Llc Method and apparatus for shelf feature and object placement detection from shelf images
US10949798B2 (en) 2017-05-01 2021-03-16 Symbol Technologies, Llc Multimodal localization and mapping for a mobile automation apparatus
US10591918B2 (en) 2017-05-01 2020-03-17 Symbol Technologies, Llc Fixed segmented lattice planning for a mobile automation apparatus
AU2018261257B2 (en) 2017-05-01 2020-10-08 Symbol Technologies, Llc Method and apparatus for object status detection
US11367092B2 (en) 2017-05-01 2022-06-21 Symbol Technologies, Llc Method and apparatus for extracting and processing price text from an image set
WO2018201423A1 (en) 2017-05-05 2018-11-08 Symbol Technologies, Llc Method and apparatus for detecting and interpreting price label text
FR3068943B1 (fr) * 2017-07-13 2020-08-28 Renault Sas Procede et systeme d'aide au stationnement d'un vehicule automobile
US10521914B2 (en) 2017-09-07 2019-12-31 Symbol Technologies, Llc Multi-sensor object recognition system and method
US10572763B2 (en) 2017-09-07 2020-02-25 Symbol Technologies, Llc Method and apparatus for support surface edge detection
US10613540B2 (en) * 2017-11-07 2020-04-07 Wipro Limited Method and system for autonomously steering a vehicle in a reverse path in real-time
US10823572B2 (en) 2018-04-05 2020-11-03 Symbol Technologies, Llc Method, system and apparatus for generating navigational data
US10740911B2 (en) 2018-04-05 2020-08-11 Symbol Technologies, Llc Method, system and apparatus for correcting translucency artifacts in data representing a support structure
US11327504B2 (en) 2018-04-05 2022-05-10 Symbol Technologies, Llc Method, system and apparatus for mobile automation apparatus localization
US10832436B2 (en) 2018-04-05 2020-11-10 Symbol Technologies, Llc Method, system and apparatus for recovering label positions
US10809078B2 (en) 2018-04-05 2020-10-20 Symbol Technologies, Llc Method, system and apparatus for dynamic path generation
US10821972B2 (en) * 2018-09-13 2020-11-03 Ford Global Technologies, Llc Vehicle remote parking assist systems and methods
US11010920B2 (en) 2018-10-05 2021-05-18 Zebra Technologies Corporation Method, system and apparatus for object detection in point clouds
US11506483B2 (en) 2018-10-05 2022-11-22 Zebra Technologies Corporation Method, system and apparatus for support structure depth determination
US11090811B2 (en) 2018-11-13 2021-08-17 Zebra Technologies Corporation Method and apparatus for labeling of support structures
US11003188B2 (en) 2018-11-13 2021-05-11 Zebra Technologies Corporation Method, system and apparatus for obstacle handling in navigational path generation
US11079240B2 (en) 2018-12-07 2021-08-03 Zebra Technologies Corporation Method, system and apparatus for adaptive particle filter localization
US11416000B2 (en) 2018-12-07 2022-08-16 Zebra Technologies Corporation Method and apparatus for navigational ray tracing
US11100303B2 (en) 2018-12-10 2021-08-24 Zebra Technologies Corporation Method, system and apparatus for auxiliary label detection and association
US11015938B2 (en) 2018-12-12 2021-05-25 Zebra Technologies Corporation Method, system and apparatus for navigational assistance
US10731970B2 (en) 2018-12-13 2020-08-04 Zebra Technologies Corporation Method, system and apparatus for support structure detection
CA3028708A1 (en) 2018-12-28 2020-06-28 Zih Corp. Method, system and apparatus for dynamic loop closure in mapping trajectories
KR20200103464A (ko) * 2019-02-25 2020-09-02 현대자동차주식회사 차량 제어 장치 및 방법
US11080566B2 (en) 2019-06-03 2021-08-03 Zebra Technologies Corporation Method, system and apparatus for gap detection in support structures with peg regions
US11662739B2 (en) 2019-06-03 2023-05-30 Zebra Technologies Corporation Method, system and apparatus for adaptive ceiling-based localization
US11151743B2 (en) 2019-06-03 2021-10-19 Zebra Technologies Corporation Method, system and apparatus for end of aisle detection
US11960286B2 (en) 2019-06-03 2024-04-16 Zebra Technologies Corporation Method, system and apparatus for dynamic task sequencing
US11341663B2 (en) 2019-06-03 2022-05-24 Zebra Technologies Corporation Method, system and apparatus for detecting support structure obstructions
US11200677B2 (en) 2019-06-03 2021-12-14 Zebra Technologies Corporation Method, system and apparatus for shelf edge detection
US11402846B2 (en) 2019-06-03 2022-08-02 Zebra Technologies Corporation Method, system and apparatus for mitigating data capture light leakage
US11507103B2 (en) 2019-12-04 2022-11-22 Zebra Technologies Corporation Method, system and apparatus for localization-based historical obstacle handling
US11107238B2 (en) 2019-12-13 2021-08-31 Zebra Technologies Corporation Method, system and apparatus for detecting item facings
US11822333B2 (en) 2020-03-30 2023-11-21 Zebra Technologies Corporation Method, system and apparatus for data capture illumination control
US11450024B2 (en) 2020-07-17 2022-09-20 Zebra Technologies Corporation Mixed depth object detection
DE102020211549A1 (de) * 2020-09-15 2022-03-17 Volkswagen Aktiengesellschaft Automatisches Auswählen einer aus einer Mehrzahl von Parkassistenzfunktionen bei einem Kraftfahrzeug
US11593915B2 (en) 2020-10-21 2023-02-28 Zebra Technologies Corporation Parallax-tolerant panoramic image generation
US11392891B2 (en) 2020-11-03 2022-07-19 Zebra Technologies Corporation Item placement detection and optimization in material handling systems
US11847832B2 (en) 2020-11-11 2023-12-19 Zebra Technologies Corporation Object classification for autonomous navigation systems
US11954882B2 (en) 2021-06-17 2024-04-09 Zebra Technologies Corporation Feature-based georegistration for mobile computing devices

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001122146A (ja) * 1999-08-19 2001-05-08 Mitsubishi Electric Corp 電動式パワーステアリング制御装置及びその制御方法
JP2003175854A (ja) * 2001-12-10 2003-06-24 Honda Motor Co Ltd 車両操舵装置
JP2004249913A (ja) * 2003-02-21 2004-09-09 Koyo Seiko Co Ltd 電動パワーステアリング装置
JP2005271877A (ja) * 2004-03-26 2005-10-06 Kayaba Ind Co Ltd ステアリング装置
JP2007326413A (ja) * 2006-06-06 2007-12-20 Jtekt Corp 車両用操舵装置
JP2010195224A (ja) 2009-02-25 2010-09-09 Aisin Seiki Co Ltd 駐車支援装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3912926A1 (de) * 1988-04-21 1989-11-02 Fuji Heavy Ind Ltd Motorsteuervorrichtung fuer eine elektrische servolenkeinrichtung
JP3036562B2 (ja) * 1991-12-25 2000-04-24 アイシン精機株式会社 車輌の自動操舵制御装置
JP3881776B2 (ja) * 1998-05-15 2007-02-14 本田技研工業株式会社 車両の自動操舵装置
JP4057743B2 (ja) * 1999-05-26 2008-03-05 本田技研工業株式会社 車両の操舵装置
JP4151303B2 (ja) 2002-04-24 2008-09-17 トヨタ自動車株式会社 駐車支援装置
JP3949073B2 (ja) * 2003-03-27 2007-07-25 トヨタ自動車株式会社 駐車支援装置
CN100473152C (zh) * 2003-07-11 2009-03-25 株式会社日立制作所 图像处理相机***及图像处理相机控制方法
JP4235051B2 (ja) * 2003-08-29 2009-03-04 トヨタ自動車株式会社 駐車支援装置
EP1720758B1 (de) * 2004-03-05 2016-06-29 Continental Teves AG & Co. oHG Einparkhilfe
JP4470592B2 (ja) * 2004-06-02 2010-06-02 株式会社アドヴィックス 駐車補助制御装置
DE102005034699A1 (de) * 2005-07-26 2007-02-08 Robert Bosch Gmbh Verfahren zur Unterstützung eines Einparkvorgangs eines Fahrzeugs
JP4618035B2 (ja) * 2005-07-27 2011-01-26 株式会社アドヴィックス 車両走行制御装置
JP4677880B2 (ja) * 2005-10-25 2011-04-27 日産自動車株式会社 駐車支援装置および駐車支援方法
WO2007052496A1 (ja) * 2005-10-31 2007-05-10 Toyota Jidosha Kabushiki Kaisha 駐車支援装置
DE102005061909A1 (de) * 2005-12-23 2007-07-05 Volkswagen Ag Parklenkassistenzsystem und Verfahren zum Betreiben eines Parklenkassistenzsystems
JP4587050B2 (ja) * 2006-06-13 2010-11-24 株式会社ジェイテクト 車両用操舵装置
DE102006057230A1 (de) * 2006-12-05 2008-07-03 Volkswagen Ag Parklenkassistenzsystem mit verbesserter Ein- und Ausschaltlogik
JPWO2009060663A1 (ja) * 2007-11-08 2011-03-17 ボッシュ株式会社 駐車支援装置
JP2009190531A (ja) 2008-02-13 2009-08-27 Jtekt Corp 発進支援装置
JP4433060B2 (ja) * 2008-02-18 2010-03-17 トヨタ自動車株式会社 駐車支援装置
EP2305537B1 (en) * 2008-07-15 2014-04-23 JTEKT Corporation Vehicle steering device
JP2010228591A (ja) 2009-03-27 2010-10-14 Bosch Corp 駐車支援制御装置及び方法
DE102009046966B4 (de) 2009-11-23 2019-01-31 Robert Bosch Gmbh Verfahren zur Unterstützung des Fahrers eines Fahrzeugs
DE102010028714A1 (de) 2010-05-07 2011-11-10 Robert Bosch Gmbh Verfahren zum Einparken eines Kraftfahrzeuges sowie Einparksystem
JP2012066709A (ja) 2010-09-24 2012-04-05 Aisin Seiki Co Ltd 駐車支援装置
EP2921375B1 (en) 2012-11-02 2018-01-10 Toyota Jidosha Kabushiki Kaisha Parking assist device
US9828028B2 (en) 2013-06-05 2017-11-28 Toyota Jidosha Kabushiki Kaisha Parking assist device
WO2014207850A1 (ja) 2013-06-26 2014-12-31 トヨタ自動車 株式会社 駐車支援装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001122146A (ja) * 1999-08-19 2001-05-08 Mitsubishi Electric Corp 電動式パワーステアリング制御装置及びその制御方法
JP2003175854A (ja) * 2001-12-10 2003-06-24 Honda Motor Co Ltd 車両操舵装置
JP2004249913A (ja) * 2003-02-21 2004-09-09 Koyo Seiko Co Ltd 電動パワーステアリング装置
JP2005271877A (ja) * 2004-03-26 2005-10-06 Kayaba Ind Co Ltd ステアリング装置
JP2007326413A (ja) * 2006-06-06 2007-12-20 Jtekt Corp 車両用操舵装置
JP2010195224A (ja) 2009-02-25 2010-09-09 Aisin Seiki Co Ltd 駐車支援装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3006272A4 *

Also Published As

Publication number Publication date
EP3006272A4 (en) 2016-06-15
EP3006272A1 (en) 2016-04-13
JP5967303B2 (ja) 2016-08-10
CN105246744A (zh) 2016-01-13
JPWO2014192107A1 (ja) 2017-02-23
US9676414B2 (en) 2017-06-13
US20160107690A1 (en) 2016-04-21

Similar Documents

Publication Publication Date Title
JP5967303B2 (ja) 駐車支援装置
JP6032363B2 (ja) 駐車支援装置
JP5582255B1 (ja) 駐車支援装置
JP6056975B2 (ja) 車両用操舵制御装置および車両用操舵制御方法
JP6049811B1 (ja) 自動駐車制御装置
WO2014196040A1 (ja) 駐車支援装置
WO2015005026A1 (ja) 車両用操舵制御装置および車両用操舵制御方法
JP2015048034A (ja) 自動運転装置
JP2015110380A (ja) 駐車支援装置
JP2006347460A (ja) 走行支援装置
WO2014203334A1 (ja) 運転支援装置
JP2016150593A (ja) 車両制御装置および車両制御方法
JP6070859B2 (ja) 車両用操舵制御装置および車両用操舵制御方法
WO2014091613A1 (ja) 駐車支援装置
JP2019043209A (ja) 操舵支援装置
JP2014024462A (ja) 駐車支援装置
JP2888216B2 (ja) 自動操舵システム
JP6373916B2 (ja) 駐車出庫支援装置
JP5888251B2 (ja) 車両の自動操舵装置
JP2018020634A (ja) 操舵補助装置及び操舵補助方法
JP2006123605A (ja) 自動誘導装置
JP5928321B2 (ja) 駐車支援装置
JP4862523B2 (ja) 車両用操舵装置
JP2013163490A (ja) 車両用運転支援装置
JP2009123127A (ja) 走行車両の停止制御装置及び停止制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13885593

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015519550

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013885593

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013885593

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14893671

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE