WO2014187205A1 - 遥控信号的发送及接收的装置和方法、遥控设备 - Google Patents

遥控信号的发送及接收的装置和方法、遥控设备 Download PDF

Info

Publication number
WO2014187205A1
WO2014187205A1 PCT/CN2014/075681 CN2014075681W WO2014187205A1 WO 2014187205 A1 WO2014187205 A1 WO 2014187205A1 CN 2014075681 W CN2014075681 W CN 2014075681W WO 2014187205 A1 WO2014187205 A1 WO 2014187205A1
Authority
WO
WIPO (PCT)
Prior art keywords
remote control
azimuth
model
control signal
current
Prior art date
Application number
PCT/CN2014/075681
Other languages
English (en)
French (fr)
Inventor
黄程
Original Assignee
上海九鹰电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海九鹰电子科技有限公司 filed Critical 上海九鹰电子科技有限公司
Priority to EP14801802.1A priority Critical patent/EP3001144A4/en
Priority to US14/892,697 priority patent/US20160189537A1/en
Publication of WO2014187205A1 publication Critical patent/WO2014187205A1/zh

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H30/00Remote-control arrangements specially adapted for toys, e.g. for toy vehicles
    • A63H30/02Electrical arrangements
    • A63H30/04Electrical arrangements using wireless transmission
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C2201/00Transmission systems of control signals via wireless link
    • G08C2201/30User interface
    • G08C2201/32Remote control based on movements, attitude of remote control device
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C2201/00Transmission systems of control signals via wireless link
    • G08C2201/70Device selection
    • G08C2201/71Directional beams

Definitions

  • the present invention relates to the field of remote control models, and in particular, to a transmitting device and method for remote control signals, a receiving device and method for remote control signals, and a remote control device. Background technique
  • the operator must observe carefully, judge correctly, operate properly, and respond promptly, in order to correctly operate the remote control model, otherwise it is easy to cause
  • the remote control model collides and the like, and the remote control model is damaged.
  • FIG. 1 is a schematic diagram of the operation of a conventional remote controller in the prior art.
  • the usual steps of maneuvering the model are as follows:
  • Step (1) the operator manipulates the handle action
  • Step (2) generating a manipulation instruction
  • step (3) the manipulation command is modulated by the high frequency circuit and output.
  • the remote control of the model is more difficult.
  • the aircraft model if the user wants to make the correct remote control, it takes a long time to practice flying, and in the process, it is inevitable to fall. A lot of bad aircraft, this will not only delay the user's time, spend money, but more importantly, it will affect the user's experience.
  • remote control of other types of models there are also problems that are difficult to operate and difficult to get started.
  • the mode of operation is pilot-led.
  • pilot-dominated mode After the aircraft model receives the remote command, the action direction of the aircraft model is assumed to be performed by the pilot in the cockpit of the model, in accordance with the direction confirmed by the pilot. Therefore, the pilot-led approach can also be called "regular manipulation.”
  • FIG. 2 it is a schematic diagram of a situation in which the pilot dominates the situation (the situation in which the tail faces the operator).
  • the aileron joystick on the remote control as an example, when the tail of the aircraft model faces the operator, the direction of motion of the model is consistent with the steering direction of the operator.
  • Figure 3 is a schematic illustration of another scenario in which the pilot dominates (the case where the nose faces the operator).
  • the model of the airborne flight turns, the situation changes.
  • the aileron joystick on the remote control is still operated left and right. "The direction action is constant, but the operator on the ground sees that the direction of the model's motion becomes reversed.
  • the change in the push-pull lever manipulation is the same as in the aileron manipulation.
  • the direction of the aircraft's movement as seen by the operator changes constantly. This requires the operator to accurately determine the aerial attitude of the model at all times so that the model can be controlled in accordance with the pilot's dominant direction.
  • the direction is very difficult for users who are just in contact with the remote control model, especially for models that have no obvious difference between the head and the tail (for example, multi-axis aircraft), it is more difficult for the user to identify the head of the model. The direction.
  • the direction detecting module is only carried on the flight control board, and currently, only the headless mode control in the take-off direction can be achieved. If the aircraft deviates from the take-off course during the flight, it will cause chaos in the front, rear, left and right directions.
  • the "headless mode” RC mode in the prior art is respectively rotated at the time of takeoff (the group diagram on the left side in Fig. 4, wherein the group diagram is a combination of the aircraft and the remote controller), and the RC mode is rotated 90. (The group map in the middle of Figure 4) and 180. (Fig.
  • FIG. 4 is a group diagram on the right side), in which the position of the nose in the aircraft and the longitudinal axis H of the remote controller are indicated.
  • the aircraft nose and the longitudinal axis H of the remote control (longitudinal axis)
  • the position of the pointing can be opposite to the direction of the longitudinal axis H shown in Fig. 2, and therefore, will not be described.
  • the aircraft recorded the takeoff direction during takeoff and used it as the heading of the aircraft.
  • the middle and right panels in Figure 4 are rotated 90 clockwise. And 180.
  • the aircraft After the response to the remote control, the aircraft always takes the take-off direction directly in front.
  • the flight mode of the aircraft in response to the steering command is as follows: the elevator pushes forward, the aircraft flies forward; the elevator pulls back, the aircraft flies backward; the aileron right Push the right fly, the aileron pushes the left left, and realizes the headless mode of the flight direction.
  • the aircraft when the aircraft deviates from the takeoff direction, the aircraft corresponds to a schematic diagram of the operation of the remote controller.
  • the group diagram on the left side of Figure 5 in the case where the aircraft deviates from the take-off direction during flight, if the controller is facing the aircraft, since the aircraft still takes the take-off direction as the heading, the front of the aircraft becomes the controller. Left, the elevator is pushed forward, the aircraft flies to the left; the elevator is pulled back, the aircraft flies to the right; the aileron pushes forward and the aileron pushes left and then flies; therefore, the movement direction of the model will be chaotic, but complicated Control operation.
  • the present invention provides a device and method for transmitting a remote control signal, and a device and method for receiving a remote control signal, which can realize true meaning.
  • the all-round “headless manipulation method” in this paper, this manipulation method is also called intelligent manipulation mode), which reduces the operation difficulty of the remote control model and improves the user experience.
  • a transmitting device for a remote control signal is provided on the remote controller side.
  • the transmitting device of the above remote control signal includes:
  • a generator coupled to the sensor, for generating a remote control signal, wherein the remote control signal includes manipulation information and azimuth information indicating an azimuth;
  • Transmitter used to send remote control signals.
  • the above sensor is used for measuring the magnitude and direction of the geomagnetic field at the current position of the remote controller, and determining the current azimuth of the remote controller according to the measurement result.
  • the above sensor is a geomagnetic sensor.
  • the current azimuth of the remote controller is an azimuth angle pointed by the longitudinal axis of the remote controller.
  • the generator in the case where the return flight operation is triggered, the generator generates a return flight signal, and the transmitter transmits a return flight signal.
  • a receiving device for a remote control signal is provided on a remote control model side.
  • the receiving device includes:
  • a receiver for receiving a remote control signal
  • a processor configured to determine manipulation information and azimuth information contained in the remote control signal, the azimuth information is used to indicate a current azimuth of the sender of the remote control signal, and the processor is configured to use the current azimuth of the remote control model and the current sender Azimuth, repairing the direction of motion contained in the manipulation information Positive, the actual direction of motion of the remote control model is determined, wherein the actual motion direction is in the same direction as the motion direction contained in the manipulation information.
  • the sensor is used to measure the magnitude and direction of the geomagnetic field at the current location of the remote control model, and then determines the current azimuth of the remote control model according to the measurement result.
  • the above sensor is a geomagnetic sensor.
  • the current azimuth of the remote control model is the azimuth pointed by the head of the remote control model.
  • the processor determines the direction toward the sender as the actual direction of motion.
  • the processor is further configured to: when the azimuth information determines that the azimuth of the sender changes, the processor changes the azimuth to adjust the actual motion direction.
  • a method of transmitting a remote control signal is provided.
  • the method includes: determining a current azimuth of the remote controller; generating a remote control signal, wherein the remote control signal includes manipulation information and azimuth information indicating an azimuth; and transmitting the remote control signal.
  • determining the current azimuth of the remote controller comprises: measuring the magnitude and direction of the geomagnetic field of the current position of the remote controller, and determining the current azimuth of the remote controller according to the measurement result.
  • the current azimuth of the remote controller is the azimuth angle pointed by the longitudinal axis of the remote controller.
  • a returning signal is generated and a returning signal is transmitted.
  • a method of receiving a remote control signal is provided.
  • the method comprises: determining a current azimuth of the remote control model; receiving a remote control signal; determining manipulation information and azimuth information contained in the remote control signal, the azimuth information is used to indicate a current azimuth of the sender of the remote control signal, and, according to the remote control model
  • the current azimuth and the current azimuth of the sender correct the direction of motion contained in the manipulation information to determine the actual direction of motion of the remote model, wherein the actual direction of motion is in the same direction as the direction of motion contained in the manipulation information.
  • determining the current azimuth of the remote control model comprises: measuring a magnitude and a direction of a geomagnetic field at a current location of the remote control model, and determining a current azimuth of the remote control model according to the measurement result.
  • the current azimuth of the remote control model is the azimuth pointed by the head of the remote control model.
  • the direction toward the transmitting side is determined as the actual moving direction.
  • the method can further include: In the case where it is determined that the azimuth of the sender changes according to the azimuth information, the actual direction of motion is adjusted according to the changed azimuth.
  • a remote control device comprising: a sensor, configured to determine a posture of the remote control device, and obtain a posture parameter indicating the posture according to the determined posture;
  • a generator coupled to the sensor, for generating a remote control signal according to the attitude parameter and a correspondence between the pre-configured attitude parameter and the remote control command;
  • Transmitter connected to the generator, used to send remote control signals.
  • the sensor is configured to acquire the current posture type of the remote control device, and measure the amplitude corresponding to the current posture type of the remote control device, and determine the posture parameter according to the posture type and the corresponding amplitude.
  • the gesture type includes at least one of the following:
  • Rolling, pitching, and yaw directions wherein the amplitude of the roll is represented by the magnitude of the roll angle, the magnitude of the pitch is represented by the magnitude of the pitch angle, and the magnitude of the yaw direction is represented by the magnitude of the direction angle.
  • the rolling of the remote control device corresponds to a remote command of the aileron rocker of the remote control device;
  • the pitch of the remote control device corresponds to a remote command of the remote control elevator
  • the direction of deflection of the remote control device corresponds to the remote command of the remote control direction rocker.
  • the senor comprises a geomagnetic sensor and/or an inertial sensor.
  • the remote control device includes a remote controller of the electronic model airplane.
  • the invention can make the model determine the actual motion direction of the model according to the azimuth angle of the model itself and the azimuth angle of the remote controller, and can overcome the need in a true sense.
  • the operator can judge the direction of the model and realize the remote control of the intelligent manipulation mode.
  • the present invention can also generate a remote control signal by determining the posture of the remote control device and according to the correspondence between the posture parameter of the remote control device and the remote control command.
  • the remote control model can largely overcome the problem that the control of the remote control model directly depends on the operator's operation technology, so that the remote control model can move according to the user's wishes without having to resort to a complicated remote control method, thereby reducing the difficulty of the model manipulation. , improve the user experience.
  • FIG. 1 is a schematic view showing the operation of a model remote controller in the prior art
  • FIG. 2 is a schematic diagram of remote control of a model by a pilot-preferred manner in the prior art when facing the operator at the tail;
  • Figure 3 is a schematic diagram of remote control of the model by the pilot-preferred method in the prior art when the nose is facing the operator;
  • FIG. 4 is a schematic diagram showing a comparison between a remote control direction and a moving direction of a model of a "headless mode" RC in the prior art
  • FIG. 5 is a schematic diagram showing a comparison between the remote control direction and the movement direction of the aircraft model when the aircraft model of the “headless mode” in the prior art deviates from the take-off direction;
  • FIG. 6 is a block diagram of a transmitting apparatus of a remote control signal according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of a method of transmitting a remote control signal according to an embodiment of the present invention.
  • FIG. 8 is a block diagram of a receiving apparatus of a remote control signal according to an embodiment of the present invention.
  • FIG. 9 is a flowchart of a method of receiving a remote control signal according to an embodiment of the present invention.
  • FIG. 10 is a flow chart of maneuvering a model aircraft according to a technical solution of an embodiment of the present invention
  • FIG. 11 is a schematic diagram of operation of an omnidirectional headless mode (intelligent manipulation mode) in a take-off direction according to an embodiment of the present invention
  • FIG. 12 is a schematic view showing the operation of the omnidirectional headless mode (intelligent manipulation mode) when deviating from the take-off direction according to an embodiment of the present invention
  • FIG. 13 is a schematic diagram showing the principle of a method for transmitting manipulation information by a remote controller according to an embodiment of the present invention
  • FIG. 14 is a schematic diagram showing the principle of receiving remote control information by a remote control model according to an embodiment of the present invention
  • FIG. 15 is a schematic diagram showing the principle of remotely controlling a model by using an operator-led manner
  • Figure 16 is a schematic diagram of the principle of remotely controlling the model using "headless mode"
  • Figure 17 is a block diagram of a remote control device in accordance with an embodiment of the present invention.
  • FIG. 18 is a schematic diagram showing the operation of a model remote controller according to an embodiment of the present invention.
  • Figure 19 is a flow chart showing the operation of the model remote controller of the embodiment of the present invention. detailed description
  • the transmitting apparatus may include:
  • a sensor 61 configured to determine a current azimuth of the remote controller
  • a generator 62 connected to the sensor 61, for generating a remote control signal, wherein the remote control signal includes manipulation information and azimuth information indicating an azimuth;
  • the transmitter 63 is configured to send a remote control signal.
  • the sensor 61 can be used to measure the magnitude and direction of the geomagnetic field at the current position of the remote controller, and determine the current azimuth of the remote controller according to the measurement result.
  • the above sensor 61 may be a geomagnetic sensor.
  • the current azimuth of the remote controller is the azimuth angle pointed by the longitudinal axis of the remote controller (e.g., the longitudinal axis H shown in Fig. 2, the direction of which is the direction of the arrow in Fig. 2).
  • the accelerometer corrected azimuth
  • the operator usually naturally points the longitudinal axis H of the remote control to the aircraft, which is equivalent to measuring the current position of the aircraft.
  • the transmitting device of the remote control signal can also realize automatic return of the model.
  • the generator 62 generates a returning signal
  • the transmitter 63 transmits a returning signal.
  • the automatic return function can be triggered by an automatic return button, and when the ⁇ 3 ⁇ 4 is pressed, the model will automatically return to the controller.
  • the automatic return function in the related art is realized by means of GPS positioning and navigation, and the GPS is expensive, and many products cannot implement the function.
  • the automatic return function of the model is realized by the heading correction, thereby avoiding the use of a high-cost GPS device, thereby effectively reducing the cost of the model.
  • a method of transmitting a remote control signal is provided.
  • the sending method according to the embodiment of the present invention may include:
  • Step S701 determining a current azimuth of the remote controller
  • Step S703 generating a remote control signal, wherein the remote control signal includes manipulation information (which may include direction information for indicating movement of the remote control model) and azimuth information indicating the azimuth angle;
  • manipulation information which may include direction information for indicating movement of the remote control model
  • azimuth information indicating the azimuth angle
  • Step S705 sending a remote control signal.
  • the magnitude and direction of the geomagnetic field at the current position of the remote controller can be measured, and then determined according to the measurement result.
  • the current azimuth of the remote controller may be the azimuth angle pointed by the longitudinal axis H of the remote controller.
  • a returning signal is generated and a returning signal is transmitted.
  • a receiving device for a remote control signal is provided on a remote control model side.
  • a receiving apparatus may include:
  • a sensor 81 configured to determine a current azimuth of the remote control model
  • a receiver 82 configured to receive a remote control signal, and the manipulation information and the azimuth information included in the remote control signal
  • the processor 83 is configured to correct a motion direction included in the manipulation information according to a current azimuth of the remote control model and a current azimuth of the sender, and determine an actual motion direction of the remote control model, where the actual motion direction and the manipulation information are included.
  • the direction of movement is the same.
  • the remote control model itself can determine its azimuth, and can also know the azimuth of the remote controller through the remote control signal, the remote control model can get the direction in which it should move, and can make its movement direction meet the remote control.
  • the remote control model makes a judgment based on the two azimuth angles, and obtains the actual direction of motion of the remote control model, thereby making the leftward motion appear to the operator. Therefore, by means of the technical solution of the invention, remote control
  • the direction of motion of the model is the same as that expected by the user of the remote control. The user does not need to recognize the actual orientation of the remote control model, and the remote control model can determine its own direction of motion.
  • the sensor 81 is used to measure the magnitude and direction of the geomagnetic field at the current location of the remote control model, and the current azimuth of the remote control model is determined according to the measurement result. Further, the above sensor 81 may be a geomagnetic sensor. Adding a geomagnetic sensor to the model (ie, aircraft) flight control board can measure the magnitude and direction of the geomagnetic field at the location of the model, and the azimuth pointed by the nose can be obtained by calculation.
  • model ie, aircraft
  • the current azimuth of the remote control model is the azimuth pointed by the head of the remote control model.
  • the processor 83 determines the direction toward the transmitting side as the actual moving direction.
  • the processor is further configured to: when the azimuth information determines that the azimuth of the sender changes, the processor changes the azimuth to adjust the actual motion direction.
  • a method of receiving a remote control signal is provided.
  • a receiving method includes:
  • Step S901 determining a current azimuth of the remote control model
  • Step S903 receiving a remote control signal (the remote control signal includes the manipulation information and the azimuth information); Step S905, determining the manipulation information and the azimuth information contained in the remote control signal, wherein the azimuth information is used to indicate the current azimuth of the sender of the remote control signal And, according to the current azimuth of the remote control model and the current azimuth of the sender, correcting the motion direction included in the manipulation information to determine the actual motion direction of the remote control model, wherein the actual motion direction and the motion direction included in the manipulation information In the same direction.
  • determining the current azimuth of the remote control model can measure the geomagnetic field size and direction of the current location of the remote control model, and then determining the current azimuth of the remote control model according to the measurement result.
  • the current azimuth of the remote control model is the azimuth pointed by the head of the remote control model.
  • the direction toward the transmitting side is determined as the actual moving direction.
  • the automatic returning is based on the extension function of the heading control.
  • the direction control unit of the remote controller and the aircraft can determine the heading in any direction in any direction, and the aircraft receives a one-button return command, and the aircraft is in the aircraft.
  • the control generates a rudder amount opposite to the longitudinal direction H of the remote controller, and the aircraft flies in the direction of the remote controller, and the controller shakes the elevon joystick to exit the one-key return command to resume normal operation.
  • the direction of the aircraft in the intelligent maneuver mode is the longitudinal axis H of the remote controller, during the returning process, the direction of the aircraft can be corrected by horizontally rotating the remote controller to correct the returning direction of the aircraft.
  • the remote control model can know the azimuth of the changed remote controller, thereby adjusting the current moving direction.
  • the remote control is facing the remote control model, and the remote control model is traveling straight ahead. If the remote control is rotated horizontally by 15 degrees to the left, the remote control model will also travel forward in a direction shifted by 15 degrees to the left.
  • a reference direction may be specified in advance, so that the respective orientations of the remote controller and the remote control model can be determined with the same reference, that is, the azimuth angles of the remote controller and the remote control model can be determined according to This reference direction is determined.
  • the reference direction can be manually set according to needs, for example, the direction can be directed to the north, the east, etc., and this article is no longer - enumerated.
  • FIG. 10 is a flow chart of a method of manipulating an aircraft according to the technical solution of the present invention, the following are specific steps:
  • Step S1001 after initialization, the aircraft receives the remote control information by wireless; step S1003, determining whether the aircraft takes off according to the received remote control information, if not, executing step S1005, if yes, executing step S1007;
  • Step S1005 starting alignment, using the sensor to measure the antenna and model azimuth of the remote controller during takeoff, returning to step S1001, and continuing to the next control loop;
  • Step S1007 calculating a remote controller and a model rotation angle
  • Step S1009 determining whether the aircraft automatically returns to the navigation, if not, executing step S1017, and if yes, executing step S1011;
  • Step S1011 superimposing a backward rudder amount on the control signal of the aircraft;
  • Step S1013 correcting the heading of the aircraft, and performing a control operation
  • Step S1015 controlling the output, returning to step S1001, and continuing to the next control loop;
  • Step S1017 determining whether it is an intelligent manipulation mode, if not, executing step S1019, if yes, executing step S1013;
  • Step S1019 control operations.
  • the remote controller is required to be aligned with the model heading during takeoff, that is, the antenna of the remote controller is directed to the tail of the model; as shown in FIGS. 11-b and 11-c In flight
  • the moving direction of the model is still the same as the direction of movement of the remote controller; as shown in Figures 12-a and 12-b, during flight
  • the model rotates a certain angle
  • the remote control rotates an angle.
  • the direction of the longitudinal axis of the remote control is always the model heading.
  • the motion direction of the model remains with the remote control.
  • the action direction is the same; thus, the model can achieve the 'operator-led approach, (also known as the 'smart manipulation mode').
  • the remote controller can transmit its azimuth to the model receiver wirelessly in real time.
  • the model then corrects the heading of the model according to the change of the azimuth angle of the longitudinal axis of the remote controller, and always maintains the remote control.
  • the direction indicated by the axis H is directly in front of the movement.
  • the azimuth of the remote controller may be the azimuth angle pointed by the longitudinal axis H of the remote controller.
  • the azimuth of the remote controller may also be shared with the longitudinal axis H.
  • the azimuth angle pointed by the line but the inverted arrow; in addition, in other embodiments, the azimuth of the remote control may also be the azimuth pointed by other components on the remote control or lines of other angles.
  • FIG. 13 a schematic diagram of transmitting a heading correction command for a remote controller (ie, an output side).
  • Step (1) producing a manipulation command by manipulating the handle action
  • Step (2) calculating the current orientation of the remote controller by the geomagnetic sensor and the accelerometer, and obtaining the current azimuth of the remote controller;
  • step (3) the manipulation command generated above and the calculated azimuth angle modulate the high frequency circuit and output.
  • the aircraft i.e., the receiving party
  • the aircraft receives the correction command of the remote controller, it performs a navigation correction for itself.
  • Step (1) after receiving the instruction of the heading correction by the high frequency circuit, performing decoding (demodulation), the command including the manipulation command and the remote control azimuth;
  • Step (2) the sensor of the aircraft itself obtains the azimuth of the model (ie, the aircraft) itself by measurement and data solution;
  • Step (3) combined with the azimuth of the remote controller and the model itself, corrects the heading of the model by the instruction of the heading correction, and performs a control operation;
  • Step (4) transmits the operation result to the controlled object (ie, the aircraft).
  • the controlled object ie, the aircraft.
  • the head is turned to the left after the model is rotated 90 degrees to the left.
  • the model is still left and right in the view of the operator. Therefore, it is called the 'operator-led approach.
  • the technical solution of the present invention may include an intelligent manipulation mode and an automatic returning function of the model aircraft, wherein the intelligent manipulation mode is an operator-oriented manipulation mode, and the flight does not need to be determined to determine the orientation and the machine of the model.
  • the model control is simplified, and it is more suitable for novices to fly.
  • the automatic return function the model is too far away from the operator, and it is easy to pull back the operator's manipulation range by using the automatic return function model.
  • a remote control device is provided.
  • the remote control device includes:
  • the sensor 1701 is configured to determine a posture of the remote control device, and obtain a posture parameter indicating the posture according to the determined posture;
  • a generator 1702 coupled to the sensor 1701, configured to generate a remote control signal according to a posture parameter and a correspondence between the preset posture parameter and the remote control instruction;
  • the transmitter 1703 is connected to the generator 1702 for transmitting a remote control signal.
  • the sensor 1701 is further configured to acquire a current posture type of the remote control device, and measure an amplitude corresponding to the current posture type of the remote control device, and determine the posture parameter according to the posture type and the corresponding amplitude.
  • the attitude type includes at least one of the following: roll, pitch, and yaw directions; wherein, the amplitude of the roll is represented by the magnitude of the roll angle, the magnitude of the pitch is represented by the magnitude of the pitch angle, and the magnitude of the yaw direction is represented by the magnitude of the directional angle .
  • the direction of deflection of the remote control device may correspond to a remote command of the remote control direction rocker.
  • the posture type of the remote control device may also be corresponding to other types of remote control commands of the remote control device, for example, the pitch of the remote control device may also be defined as a remote control command to control the model roll. Corresponding.
  • the senor 1701 includes a geomagnetic sensor and/or an inertial sensor. Further, the sensor 1701 may further include other types of sensors for performing attitude sensing, or a combination of these sensors. In addition, sensing of different types of gestures can be achieved by different sensors.
  • the remote control device includes a remote controller of the electronic model airplane.
  • Figure 18 is a schematic view showing the operation of the RC remote controller of the embodiment of the present invention.
  • one or more sensors are added to the conventional remote controller (in different embodiments, the number of sensors depends on the specific situation), and is used to determine the current state of the remote controller.
  • Inertial parameters (corresponding to the above-mentioned attitude parameters, such as: roll, pitch, yaw direction, etc.), in addition, the present invention adds a processor (equivalent to the generator 1702 in the above embodiment), connected to the inertial sensor, Collecting and integrating the sensor data, updating the current posture of the remote controller, obtaining a posture parameter indicating the current posture, and encoding the preset manipulation information corresponding to the posture parameter into the remote control signal, and then transmitting the remote control signal by wireless transmission Send to the receiver (eg: model).
  • a processor equivalent to the generator 1702 in the above embodiment
  • the present invention adds a processor (equivalent to the generator 1702 in the above embodiment), connected to the inertial sensor, Collecting and integrating the sensor data, updating the current posture of the remote controller, obtaining a posture parameter indicating the current posture, and encoding the preset manipulation information corresponding to the posture parameter into the remote control signal, and then transmitting the remote control signal by wireless transmission Send to the receiver (
  • the remote control device can generate a manipulation command according to the action of the joystick on the one hand, and can also acquire an inertia parameter through the sensor on the other hand, and the processor reads the inertia parameter to integrate the inertia.
  • the parameter acquires the current posture information of the remote controller, and then converts the posture into a manipulation instruction (the two functions for generating the manipulation instruction can be controlled by a device such as a switch, thereby selectively activating), and the specific implementation flow can be referred to FIG.
  • the corresponding relationship between the attitude parameter and the manipulation information of the preset remote controller may include, but is not limited to, the following forms.
  • the rotation posture of the remote controller corresponds to the aileron rocker, that is, the remote controller rolls left. , equivalent to the remote control to the left aileron joystick, the remote control right roll, equivalent to the remote control to the right aileron joystick, the magnitude of the roll is determined by the measured roll angle; similarly, the remote control
  • the pitch attitude corresponds to the elevator, and the amplitude of the pitch is also determined by the measured pitch angle;
  • the attitude of the remote controller in the deflection direction corresponds to the direction rocker, and the amplitude of the deflection direction is determined by the measured direction angle. Size determines.
  • the present invention can accurately calculate the current azimuth of the remote control model by adding a sensor to the remote control model, and can obtain the remote control model by receiving the remote control signal and correcting the direction of the remote control model.
  • the actual movement direction is the same as the movement direction contained in the manipulation information given by the remote controller, which increases the user's recognition degree of the movement direction, reduces the operation difficulty of the remote control model, and improves the user experience.
  • the technical solution of the invention utilizes the direction detecting module installed in the remote controller to correct the heading of the aircraft, and realizes the all-round headless mode control; and uses the direction detecting module installed in the remote controller to correct the heading of the aircraft to realize automatic returning;
  • the rotating remote controller can be used to correct the heading of the aircraft without steering, or the invention can also add a sensor for detecting the current posture of the remote control device in the remote control device, and for using the attitude parameter of the remote control device, and The corresponding relationship between the attitude parameter of the remote controller and the remote control command generates a generator for the remote control signal, which realizes no rocker for the model and does not need to be steered, greatly simplifies the manipulation mode of the remote control model including the aircraft model, and improves the user experience. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Toys (AREA)
  • Selective Calling Equipment (AREA)

Abstract

本发明公开了一种遥控信号的发送及接收的装置和方法、遥控设备,其中,遥控信号的接收装置,设置于遥控模型侧。该接收装置包括:传感器,用于确定遥控模型当前的方位角;接收器,用于接收遥控信号;处理器,用于确定遥控信号中包含的操纵信息以及方位角信息,方位角信息用于表示遥控信号的发送方当前的方位角,并且,处理器用于根据遥控模型当前的方位角和发送方当前的方位角,对操纵信息所表示的方向进行修正,确定遥控模型的实际运动方向,其中,实际运动方向与操纵信息所表示的运动方向同向。本发明能够从真正意义上克服需要有操纵者判断模型方向的问题,实现智能操纵方式的遥控,提高用户的体验感。

Description

遥控信号的发送及接收的装置和方法、 遥控设备 技术领域
本发明涉及遥控模型领域, 并且特别地, 涉及一种遥控信号的发送装置和 方法、 遥控信号的接收装置和方法、 遥控设备。 背景技术
现有的关于遥控模型领域的背景技术可分为以下几个部分来描述。
(一) 目前, 操纵遥控模型(诸如^^莫等)时, 操纵员通过操纵遥控器的 手柄和控制开关, 产生操纵信号, 来控制遥控模型的运动。 这种操纵模式下, 遥控模型的运动情况直接依赖于操纵员的操纵技术。在操纵遥控模型的运动时
(包括飞行器在空中飞行、 船模在水中航行、 车辆模型在陆地行驶等), 操纵 员必须做到观察仔细、 判断正确、 操纵适当、 反应及时, 才能够正确操纵遥控 模型, 否则就很容易导致遥控模型出现碰撞等情况, 使遥控模型损坏。
图 1为现有技术中普通遥控器的操作示意图。在现有技术中,通常操纵航 模的步骤如下:
步骤( 1 ), 操作员操纵手柄动作;
步骤( 2 ), 生成操纵指令;
步骤(3 ), 通过高频电路对操纵指令进行调制后输出。
对于刚刚接触遥控模型的用户, 利用现有技术中的遥控器,操纵遥控模型 的难度较大。例如,对于航模,用户需要花费很长时间才能熟练的操作遥控器, 在这个过程中, 航模不免受到砝碰, 甚至会造成航模的损坏。 这样不仅会耽误 用户的时间、 浪费金钱, 更重要的是会影响用户的体验。 类似地, 对于其他类 模型的操纵, 同样存在操作难度大, 不易上手的问题。
(二)遥控器
一直以来,诸如航空模型等多种模型的遥控器,都仅仅发送操纵手柄和控 制开关产生的操纵信号,这种遥控操纵下,遥控模型的运动情况直接依赖于操 纵员的操纵技术。 在遥控模型运动时(包括飞行器在空中飞行、船模在水中航 行、 车辆模型在陆地行驶等), 操纵员必须做到观察仔细、 判断正确、 操纵适 当、反应及时,才能够正确操纵模型,否则就很容易导致模型出现碰撞等情况, 使模型损坏。
但是, 对于刚刚接触遥控模型的用户而言, 模型的遥控存在较大难度, 例 如,对于飞行器模型,如果用户要做到正确的遥控,需要很长时间的练习飞行, 在这个过程中不免要摔坏很多飞行器,这样不仅会耽误用户的时间、花费金钱 , 更重要的是会影响用户的体验。 类似地, 对于其他类模型的遥控, 同样存在操 作难度大, 不易上手的问题。
(三)操纵方式
在现有技术中, 以飞行器模型为例, 其操纵方式为飞行员主导方式。
飞行员主导方式: 在飞行器模型接受遥控指令以后, 飞行器模型的动作方 向是假设操纵员坐在模型的座舱内,依照飞行员主导确认的方向来执行的。所 以飞行员主导方式也可以称为"常规操纵方式"。
如图 2所示, 为飞行员主导方式的一种情况(机尾面对操纵员的情况)的 示意图。以遥控器上副翼操纵杆为例,当飞行器模型的机尾对着操纵员的时候, 模型的动作方向与操纵员的操纵方向是一致的。
图 3为飞行员主导方式的另一种情况(机头面对操纵员的情况)的示意图。 当空中飞行的模型转向以后, 情况就发生了变化, 如图 3所示, 如果模型的机 头对着操纵员飞行, 这时遥控器上副翼操纵杆仍然作左右操纵时, 按"飞行员 主导"的方向动作是不变的, 但是, 在地面上的操纵员看来模型的动作方向变 成反向的了。
推拉杆操纵动作的变化与副翼操纵的情况一样。当飞行器在空中姿态发生 变化以后, 以操纵员看到的飞行器动作方向不断改变。这样就要求操纵员要时 刻准确判明模型的空中姿态,这样才能够按照飞行员主导方向来控制模型。但 是, 要达到这个要求, 对于刚刚接触遥控模型的用户来说具有很高的难度, 尤 其对于头部与尾部没有明显区别的模型 (例如, 多轴飞行器), 用户更加难以 识别模型头部所指向的方向。
(四) 飞行器
过去的航空模型飞行器被动地执行地面操纵员的指令来控制飞行器的飞 行姿态。现在虽然有的飞行器上安装了惯性***的飞控设备,可以增加飞行器 的稳定性。 甚至还可以在飞行器上装置地磁传感器和 GPS ***, 可以实现自 动返航功能, 但是, 安装这些设备会大大增加产品的成本和行飞器的重量。
(五) 关于无头模式
为了避免因为 "飞行员主导 "导致的操作难度, 现有的飞行器加装了传感 器, 以便于实现所谓的"无头模式"飞行。 但是在现有技术中, 仅仅在飞控板上 携有方向检测模块, 并且, 目前只能够能做到在起飞航向上的无头模式控制。 而如果在飞行过程中, 飞行器偏离了起飞航向, 就会导致前后左右的方向上出 现混乱。 如图 4, 为现有技术中的"无头模式"航模分别在起飞时(图 4中左侧 的组图, 其中, 组图为飞行器与遥控器的组合)、 航模转动 90。(图 4 中位于 中间的组图) 以及 180。(图 4 中位于右侧的组图) 时的示意图, 其中, 指出 了飞行器中机头以及遥控器纵轴线 H的位置, 本文中其他图中飞行器机头以 及遥控器纵轴线 H (纵轴线的指向可以与图 2中所示纵轴线 H的指向相反) 的位置类似, 因此, 不再描述。
如图 4左侧的组图所示,在起飞时飞行器记录了起飞方向, 并将该方向作 为飞行器的航向,如图 4中间和右侧的组图为行飞器顺时针转 90。及 180。后响 应摇控的示意图, 飞行器始终以起飞方向为正前方, 此时, 飞行器响应于操纵 命令的运动方式如下: 升降舵前推, 飞行器向前飞; 升降舵后拉, 飞行器向后 飞; 副翼右推右飞, 副翼左推左飞, 实现了该航向上的无头模式。
如图 5所示, 为飞行器偏离起飞方向时, 飞行器对应于遥控器操作的示意 图。 如图 5左侧的组图所示, 在飞行过程中飞行器偏离了起飞方向的情况下, 如果操控者正对着飞行器, 由于飞行器仍将起飞方向作为航向, 飞行器的前变 成了操控者的左, 就导致升降舵前推, 飞行器向左飞; 升降舵后拉, 飞行器向 右飞; 副翼右推前飞, 副翼左推后飞; 因此, 模型的运动方向会出现混乱, 反 而复杂了飞控操作。
更糟糕的是,如图 5左侧的组图所示,如果飞行过程中飞行器偏离了 180°, 飞行器的前却成了操控者的后, 导致前后左右完全颠倒, 更易造成飞机失控、 炸机伤人等意外事故。
类似地, 对于飞行器之外的其他模型, 同样存在难以辨认方向、操控难度 较高的问题, 而对于该问题, 目前尚未提出有效的解决方案。 发明内容
针对相关技术中对于飞行器之外的其他模型, 同样存在难以辨认方向、操 控难度较高的问题,本发明提出一种遥控信号的发送装置和方法以及遥控信号 的接收装置和方法,能够实现真正意义上全方位的"无头操纵方式"(在本文中 , 也将这种操纵方式称为智能操纵方式), 降低遥控模型的操作难度, 提高用户 的体验感。
本发明的技术方案是这样实现的:
根据本发明的一个方面,提供了一种遥控信号的发送装置,位于遥控器侧。 上述遥控信号的发送装置包括:
传感器, 用于确定遥控器当前的方位角;
生成器, 连接至传感器, 用于生成遥控信号, 其中, 遥控信号包括操纵信 息和表示方位角的方位角信息;
发送器, 用于发送遥控信号。
其中,上述传感器用于测量遥控器当前所在位置的地磁场大小及方向,根 据测量结果确定遥控器当前的方位角。
而且, 上述传感器为地磁传感器。
进一步地, 上述遥控器当前的方位角为遥控器的纵轴线所指向的方位角。 此外, 在返航操作被触发的情况下, 生成器生成返航信号, 并且发送器发 送返航信号。
根据本发明的另一个方面,提供了一种遥控信号的接收装置,设置于遥控 模型侧。
该接收装置包括:
传感器, 用于确定遥控模型当前的方位角;
接收器, 用于接收遥控信号;
处理器, 用于确定遥控信号中包含的操纵信息以及方位角信息, 方位角信 息用于表示遥控信号的发送方当前的方位角, 并且, 处理器用于根据遥控模型 当前的方位角和发送方当前的方位角 , 对操纵信息中包含的运动方向进行修 正, 确定遥控模型的实际运动方向, 其中, 实际运动方向与操纵信息中包含的 运动方向同向。
其中, 上述传感器用于测量遥控模型当前所在位置的地磁场大小及方向, 才艮据测量结果确定遥控模型当前的方位角。
并且, 上述传感器为地磁传感器。
进一步地, 遥控模型当前的方位角为遥控模型的头部所指向的方位角。 此外,在接收器接收到返航信号的情况下, 处理器将朝向发送方的方向确 定为实际运动方向。
可选地,处理器还用于在 ^居方位角信息确定发送方的方位角出现变化的 情况下, 处理器 ^居变化后的方位角调整实际运动方向。
根据本发明的另一方面, 提供了一种遥控信号的发送方法。
该方法包括: 确定遥控器当前的方位角; 生成遥控信号, 其中, 遥控信号 包括操纵信息和表示方位角的方位角信息; 发送遥控信号。
其中,确定遥控器当前的方位角包括: 测量遥控器当前所在位置的地磁场 大小及方向, 根据测量结果确定遥控器当前的方位角。
并且, 遥控器当前的方位角为遥控器的纵轴线所指向的方位角。
此外,在返航操作被触发的情况下,则生成返航信号,并且发送返航信号。 根据本发明的另一方面, 提供了一种遥控信号的接收方法。
该方法包括: 确定遥控模型当前的方位角; 接收遥控信号; 确定遥控信号 中包含的操纵信息以及方位角信息,方位角信息用于表示遥控信号的发送方当 前的方位角, 并且, 根据遥控模型当前的方位角和发送方当前的方位角, 对操 纵信息中包含的运动方向进行修正, 确定遥控模型的实际运动方向, 其中, 实 际运动方向与操纵信息中包含的运动方向同向。
其中,确定遥控模型当前的方位角包括: 测量遥控模型当前所在位置的地 磁场大小及方向, 根据测量结果确定遥控模型当前的方位角。
此外, 遥控模型当前的方位角为遥控模型的头部所指向的方位角。
另夕卜,在接收到返航信号的情况下,将朝向发送方的方向确定为实际运动 方向。
另外, 该方法可以进一步包括: 在根据方位角信息确定发送方的方位角出现变化的情况下,根据变化后的 方位角调整实际运动方向。
根据本发明的又一方面, 提供了一种遥控设备, 该遥控设备包括: 传感器, 用于确定遥控设备的姿态, 并根据确定的姿态得到表示该姿态的 姿态参数;
生成器,连接至传感器, 用于根据姿态参数以及预先配置的姿态参数与遥 控指令之间的对应关系 , 生成遥控信号;
发送器, 连接至生成器, 用于发送遥控信号。
其中,在确定遥控设备的姿态时,传感器用于获取遥控设备当前的姿态类 型,并测量遥控设备当前的姿态类型对应的幅度, 并^^据姿态类型和对应的幅 度, 确定姿态参数。
并且, 姿态类型包括以下至少之一:
滚转、 俯仰、 偏转方向; 其中, 滚转的幅度通过滚转角的大小表示、 俯仰 的幅度通过俯仰角的大小表示、 偏转方向的幅度通过方向角大小表示。 其中, 遥控设备的滚转对应于遥控设备副翼摇杆的遥控指令;
遥控设备的俯仰对应于遥控设备升降舵的遥控指令;
遥控设备的偏转方向对应于遥控器方向摇杆的遥控指令。
其中, 传感器包括地磁传感器和 /或惯性传感器。
并且, 遥控设备包括电子航模的遥控器。
本发明通过在遥控模型和遥控器中增加用于确定方位角的传感器,能够使 得模型根据模型本身的方位角和遥控器的方位角 , 确定模型实际的运动方向, 能够从真正意义上克服需要有操纵者判断模型方向的问题,实现智能操纵方式 的遥控, 或者, 本发明还可以通过确定遥控设备的姿态, 并根据遥控设备的姿 态参数与遥控指令之间的对应关系, 生成遥控信号, 以控制遥控模型, 能够很 大程度上克服遥控模型的控制直接依赖于操纵员的操作技术的问题,使得遥控 模型能够按照用户的意愿运动, 而不必单独借助于复杂的遥控方式,从而降低 模型的操纵难度, 提高用户体验。 附图说明
图 1是现有技术中航模遥控器的操作示意图;
图 2是在机尾面对操纵员时通过现有技术中飞行员主导方式对模型进行 遥控的示意图;
图 3 是在机头面对操纵员时通过现有技术中飞行员主导方式对模型进行 遥控的示意图;
图 4是现有技术中 "无头模式"的航模在起飞时遥控方向与航模运动方向 的比较示意图;
图 5 是现有技术中 "无头模式"的航模在偏离起飞方向时遥控方向与航模 运动方向的比较示意图;
图 6是根据本发明实施例的遥控信号的发送装置的框图;
图 7是根据本发明实施例的遥控信号的发送方法的流程图;
图 8是根据本发明实施例的遥控信号的接收装置的框图;
图 9是根据本发明实施例的遥控信号的接收方法的流程图;
图 10是根据本发明实施例的技术方案对航模进行操纵的流程图; 图 11是根据本发明实施例的全方位无头模式(智能操纵方式)在起飞方 向上操作示意图;
图 12是根据本发明实施例的全方位无头模式(智能操纵方式)在偏离起 飞方向时的操作示意图;
图 13 是根据本发明实施例的遥控器发送操纵信息的方法的原理示意图 图;
图 14是根据本发明实施例的遥控模型接收遥控信息的原理示意图; 图 15是采用操作员主导方式对模型进行遥控的原理示意图;
图 16是采用 "无头模式"对模型进行遥控的原理示意图;
图 17是根据本发明实施例的遥控设备的框图;
图 18是本发明实施例的航模遥控器的操作示意图;
图 19是本发明实施例的航模遥控器的操作流程图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其 他实施例, 都属于本发明保护的范围。
根据本发明的实施例, 提供了一种遥控信号的发送装置, 位于遥控器侧。 如图 6所示, 根据本发明实施例的发送装置可以包括:
传感器 61 , 用于确定遥控器当前的方位角;
生成器 62, 连接至传感器 61 , 用于生成遥控信号, 其中, 遥控信号包括 操纵信息和表示方位角的方位角信息;
发送器 63 , 用于发送遥控信号。
其中, 上述传感器 61可以用于测量遥控器当前所在位置的地磁场大小及 方向, 根据测量结果确定遥控器当前的方位角。
而且, 上述传感器 61可以为地磁传感器。 并且, 遥控器当前的方位角为 遥控器纵轴线(例如, 可以是图 2所示的纵轴线 H, 其方向为图 2中箭头的指 向)所指向的方位角。 可以在遥控器里进一步增加加速度计(修正方位角 ), 实时检测遥控器纵轴线 H指向的方位角。 在模型的形式过程中, 操纵员通常 会自然而然地将遥控器纵轴线 H对着飞行器, 这样就等于测量到了飞行器当 前所在的方位。
另夕卜,根据本发明实施例的遥控信号的发送装置还能够实现让模型自动返 航。 此时, 在返航操作被触发的情况下, 生成器 62生成返航信号, 并且发送 器 63发送返航信号。
在相关技术中, 自动返航功能可以通过一个自动返航按键, 来触发, 当该 ^¾被按下的情况下, 模型会自动返航操控者身边。 但是, 相关技术中的自动 返航功能都是借助于 GPS定位导航实现的, 而 GPS造价较高, 很多产品无法 实现该功能。
结合本发明实施例中遥控器和遥控模型中的地磁传感器输出的方位角 ,通 过航向修正, 实现模型的自动返航功能, 避免了采用高成本的 GPS装置, 有 效降低了模型的成本。 根据本发明的另一个实施例, 提供了一种遥控信号的发送方法。
如图 7所示, 根据本发明实施例的发送方法可以包括:
步骤 S701 , 确定遥控器当前的方位角;
步骤 S703 , 生成遥控信号, 其中, 遥控信号包括操纵信息(其中可以包 括用于指示遥控模型运动的方向信息)和表示方位角的方位角信息;
步骤 S705 , 发送遥控信号。
其中,在确定遥控器当前的方位角时,可以测量遥控器当前所在位置的地 磁场大小及方向, 然后根据测量结果来确定。
并且, 遥控器当前的方位角可以为遥控器纵轴线 H所指向的方位角。 此外,在返航操作被触发的情况下,则生成返航信号,并且发送返航信号。 根据本发明的另一个实施例,提供了一种遥控信号的接收装置,设置于遥 控模型侧。
如图 8所示, 根据本发明实施例的接收装置可以包括:
传感器 81 , 用于确定遥控模型当前的方位角;
接收器 82, 用于接收遥控信号, 遥控信号中包含的操纵信息以及方位角 信息;
处理器 83 , 用于根据遥控模型当前的方位角和发送方当前的方位角, 对 操纵信息中包含的运动方向进行修正, 确定遥控模型的实际运动方向, 其中, 实际运动方向与操纵信息中包含的运动方向同向。
也就是说, 因为遥控模型本身能够判断其方位角, 并且也能够通过遥控信 号获知遥控器的方位角,这样,遥控模型就能够得到其应当以什么样的方向运 动, 能够使其运动方向满足遥控器在当前朝向发出的指令中包含的运动方向。 具体而言, 假设遥控器指向模型, 发出向第一方向运动的指令, 而遥控模型此 时的方位角正是指向第一方向, 因此, 遥控模型会直接前进(即, 沿着第一方 向运动),从而使其运动方向满足遥控器所发出指令中的运动方向。进一步地, 假设遥控设备发出向左移动的操纵信息,此时, 不论遥控模型实际的方位角朝 向什么角度,因为遥控模型知道其本身的方位角,同时也知道遥控器的方位角 , 因此 ,遥控模型会根据这两个方位角做出判断,得到遥控模型的实际运动方向, 进而做出在操纵者看来为向左的运动。 因此, 借助于本发明的技术方案, 遥控 模型的运动方向与遥控器使用者期望的方向相同,使用者无需辨识遥控模型的 实际朝向, 遥控模型就能够判断出自身的运动方向。
其中, 上述传感器 81用于测量遥控模型当前所在位置的地磁场大小及方 向, 据测量结果确定遥控模型当前的方位角。 进一步地, 上述传感器 81可 以是地磁传感器。 在模型(即飞行器)飞控板里增加地磁传感器能够测量模型 所处位置的地磁场的大小和方向, 通过计算就可以得到机头所指向的方位角。
并且, 遥控模型当前的方位角为遥控模型的头部所指向的方位角。
此外,在接收器 82接收到返航信号的情况下, 处理器 83将朝向发送方的 方向确定为实际运动方向。
可选地,处理器还用于在 ^居方位角信息确定发送方的方位角出现变化的 情况下, 处理器 ^居变化后的方位角调整实际运动方向。
根据本发明的另一个实施例 , 提供了一种遥控信号的接收方法。
如图 9所示, 根据本发明实施例的接收方法包括:
步骤 S901 , 确定遥控模型当前的方位角;
步骤 S903 , 接收遥控信号(遥控信号中包含操纵信息和方位角信息); 步骤 S905 , 确定遥控信号中包含的操纵信息以及方位角信息, 方位角信 息用于表示遥控信号的发送方当前的方位角, 并且,根据遥控模型当前的方位 角和发送方当前的方位角,对操纵信息中包含的运动方向进行修正,确定遥控 模型的实际运动方向,其中,实际运动方向与操纵信息中包含的运动方向同向。
其中,确定遥控模型当前的方位角可以测量遥控模型当前所在位置的地磁 场大小及方向, 然后根据测量结果确定遥控模型当前的方位角。
并且, 遥控模型当前的方位角为遥控模型的头部所指向的方位角。
此外,在接收到返航信号的情况下,将朝向发送方的方向确定为实际运动 方向。
在本发明的一个实施例中, 自动返航是基于航向控制的延伸功能, 由遥控 器和飞行器的方向控制单元已经可以确定任意方向任意状态下的航向,飞行器 接到一键返航命令, 便在飞行器控制上产生一个与遥控器纵轴线 H方向相反 的舵量, 飞行器便朝遥控器的方向飞行,操控者摇动升降副翼摇杆即退出一键 返航命令, 恢复正常操作。 在本发明的另一个实施例中,由于智能操纵方式下飞行器航向的参照是遥 控器纵轴线 H, 所以在返航过程中,还可以通过水平转动遥控器改变其方向来 修正飞行器的返航航向, 飞行器左偏发射机就往左转, 右偏往右转。 另外, 在 遥控模型按照其他方向行驶期间,通过调整遥控器所指向的方位角,遥控模型 都能够获知遥控器变化后的方位角, 从而调整当前的运动方向。 例如, 遥控器 正对遥控模型, 遥控模型向正前方行驶, 如果此时遥控器向左水平转动 15度 角, 则遥控模型同样会沿着向左偏移 15度角的方向向前行驶。
在实现本发明的技术方案时, 可以预先指定一参考方向, 这样, 就能够以 相同的参照来确定遥控器和遥控模型各自的朝向,也就是说,遥控器和遥控模 型的方位角均可以根据该参考方向来确定。 另外,该参考方向可以根据需要人 为设定, 例如, 该方向可以是指向正北方、 正东方等, 本文不再——列举。
如图 10所示,为根据本发明的技术方案操纵飞行器的一种方法的流程图, 以下为具体步骤:
步骤 S1001 , 在初始化之后, 飞行器通过无线方式接收遥控信息; 步骤 S1003 , 根据接收的遥控信息判断飞行器是否起飞, 如果为否, 则执 行步骤 S1005 , 如果为是, 则执行步骤 S1007;
步骤 S1005 , 起始对准, 使用感应器测量计算起飞时遥控器的天线和模型 方位角, 返回步骤 S1001 , 继续下一控制循环;
步骤 S1007, 计算遥控器和模型转动角度;
步骤 S1009, 判断飞行器是否自动返航, 如果为否, 则执行步骤 S1017, 如果为是, 则执行步骤 S1011 ;
步骤 S1011 , 在飞行器的控制信号中叠加一个向后的舵量;
步骤 S1013 , 修正飞行器的航向, 并进行控制运算;
步骤 S1015 , 控制输出, 返回步骤 S1001 , 继续下一控制循环;
步骤 S1017, 判断是否为智能操纵方式, 如果为否, 则执行步骤 S1019, 如果为是, 则执行步骤 S1013;
步骤 S1019, 控制运算。
在本发明的又一个实施例中, 如图 11-a所示, 起飞时要求遥控器与模型 航向对准, 即遥控器的天线指向模型的尾部; 如图 11-b和 11-c所示, 在飞行 过程中, 如果遥控器纵轴线 H的方向不变, 而模型分别转动 90°和 180°, 模型 的运动方向依然与遥控器运动方向相同; 如图 12-a和 12-b, 在飞行过程中, 不仅模型转动了一定角度, 遥控器也转动了一个角度, 随着遥控器的转动, 模 型的航向也随之改变, 始终保持遥控器纵轴线 H方向为模型航向, 模型的动 作方向依然与遥控器动作方向相同; 于是, 模型这样就能够实现 '操纵员主导 方式, (也可以称为 '智能操纵方式,)。
在飞行器的飞行过程中,遥控器可以实时地把自己的方位角通过无线传输 给模型接收机, 模型再依据遥控器纵轴线 H方位角的变化, 去修正模型自己 的航向, 始终保持遥控器纵轴线 H所指的方向为运动的正前方。
在本文之前描述的实施例中, 遥控器的方位角可以是遥控器纵轴线 H所 指向的方位角, 实际上, 在另一实施例中, 遥控器的方位角还可以是与纵轴线 H共线但是反相的箭头所指向的方位角; 此外, 在其他实施例中, 遥控器的方 位角还可以遥控器上的其他部件或其他角度的线条所指向的方位角。
在实际应用中, 可以参照以下步骤进行模型的航向修正。 如图 13所示, 为遥控器(即输出方)传输航向修正命令的示意图。
步骤( 1 ), 通过操纵手柄动作生产操纵指令;
步骤(2 ), 通过地磁传感器和加速度计计算遥控器当前的方位, 得出遥控 器当前的方位角;
步骤( 3 ), 以上生成的操纵指令及计算得出的方位角对高频电路进行调制 后输出。
如图 14所示, 为飞行器(即接收方)接收遥控器的修正命令后, 对自身 进行航向修正的示意图。
步骤(1 ), 通过高频电路接收航向修正的指令后进行解码(解调), 该指 令包括操纵命令及遥控方位角;
步骤(2 ), 飞行器本身的传感器通过测量以及数据解算得出模型(即飞行 器)本身的方位角;
步骤(3 ), 结合遥控器和模型本身的方位角, 通过航向修正的指令对模型 的航向进行修正, 并进行控制运算;
步骤(4 )将运算结果传输到被控对象(即飞行器)。 如图 15所示, 为操纵员主导方式, 模型在这种方式下飞行时, 不管模型 处在什么方位, 不管它的机头指向哪里, 它永远按照操纵员的操纵方向动作。
如图 16所示, 在本发明的另一个实施例中, 当模型左转 90度以后, 机头 向左。 这个时候副翼操纵杆左、 右操纵时, 在操纵员看来模型仍然是左、 右动 作。 所以, 称为'操纵员主导方式,。
在操纵员主导方式下飞行不需要再用心去判别模型的方位和机头方向 ,想 让模型朝那里飞, 就搬动操纵杆往这个方向。 从此就没有机头这个概念, 所以 也可以称为'全方位无头操纵方式,或者叫做"智能操纵方式"。
本发明的技术方案可以包括智能操纵方式和航模的自动返航功能, 其中, 智能操纵方式是以操纵员为主导的操纵方式,在这种操纵方式下飞 行不需要再用心去判别模型的方位和机头方向, 想让模型朝那里飞, 就搬动操 纵杆往这个方向, 模型控制得到简化, 更适宜新手飞行。
此外, 自动返航功能, 模型飞离操纵员太远, 利用自动返航功能模型就很 容易拉回操纵者的操纵范围。
类似地, 对于飞行器之外的其他模型, 诸如船模型、 汽车模型等, 对于该 类模型的运动方向也可以使用本发明的技术方案来进行操作控制。
根据本发明的实施例, 提供了一种遥控设备。
如图 17所示, 该遥控设备包括:
传感器 1701 , 用于确定遥控设备的姿态, 并根据确定的姿态得到表示该 姿态的姿态参数;
生成器 1702, 连接至传感器 1701 , 用于根据姿态参数以及预先配置的姿 态参数与遥控指令之间的对应关系, 生成遥控信号;
发送器 1703 , 连接至生成器 1702, 用于发送遥控信号。
其中, 在确定遥控设备的姿态时, 传感器 1701还用于获取遥控设备当前 的姿态类型, 并测量遥控设备当前的姿态类型对应的幅度, 并根据姿态类型和 对应的幅度, 确定姿态参数。
其中, 姿态类型包括以下至少之一: 滚转、 俯仰、 偏转方向; 其中, 滚转 的幅度通过滚转角的大小表示、俯仰的幅度通过俯仰角的大小表示、偏转方向 的幅度通过方向角大小表示。 其中, 遥控设备的滚转可以对应于遥控设备副翼摇杆的遥控指令; 遥控设备的俯仰可以对应于遥控设备升降舵的遥控指令;
遥控设备的偏转方向可以对应于遥控器方向摇杆的遥控指令。
此外, 在其他实施例中, 根据需要, 也可以使遥控设备的姿态类型与遥控 设备的其他类型的遥控指令相对应, 比如,遥控设备的俯仰也可以被定义为与 控制模型滚转的遥控指令相对应。
其中, 传感器 1701包括地磁传感器和 /或惯性传感器, 此外, 传感器 1701 还可以包括用于进行姿态感测的其他类型的传感器、或这些传感器的组合。 另 外, 对于不同类型的姿态的感测, 可以通过不同的传感器来实现。
并且, 遥控设备包括电子航模的遥控器。
下面以航模的遥控器为例, 详细说明本发明的实施例。 图 18是本发明实 施例的航模遥控器的操作示意图。根据本发明的技术方案,在传统的遥控器的 上增加了一个或多个传感器(在不同的实施例中,传感器的个数^^据具体情形 而定), 用于确定该遥控器当前的惯性参数(对应于上述的姿态参数, 例如: 滚转、 俯仰、 偏转方向等等), 另外, 本发明增加了处理器(等同于上述实施 例中的生成器 1702 ), 连接至惯性传感器, 用于采集并整合传感器数据, 更新 遥控器当前姿态,得到表示当前姿态的姿态参数, 并将预先设置的与该姿态参 数相对应的操纵信息编码入遥控信号,然后通过无线传输的方式将该遥控信号 发送给接收机(比如: 航模)。 如图 18所示, 根据本发明实施例的遥控设备一 方面可以根据操纵手柄的动作生成操纵指令, 另一方面,还能够通过传感器采 集惯性参数,处理器会读取该惯性参数以整合该惯性参数获取遥控器的当前姿 态信息,之后将姿态转化为操纵指令(这两种产生操纵指令的功能可以通过开 关等器件进行控制, 从而择一激活), 具体的实现流程可以参照图 19所示。
其中,预先设置的遥控器的姿态参数与操纵信息的对应关系可以包括但不 限于以下形式, 例如, 在一个实施例中, 遥控器的滚转姿态与副翼摇杆对应, 即遥控器左滚, 等同于遥控器向左打副翼摇杆, 遥控器右滚, 等同于遥控器向 右打副翼摇杆, 滚转幅度的大小由测量到的滚转角的大小决定; 同理, 遥控器 的俯仰姿态与升降舵对应, 而俯仰的幅度也由测量到的俯仰角的大小决定; 遥 控器的偏转方向的姿态与方向摇杆对应,偏转方向的幅度由测量到的方向角的 大小决定。
不难理解, 通过以上实施例所描述的技术方案, 能够实现无摇杆操纵、 不 需要打舵,仅通过利用遥控器自身的姿态去控制遥控模型 (比如控制飞行器的 飞行), 操作过程十分方便。
综上所述,借助于本发明的上述技术方案,本发明通过在遥控模型中增加 传感器可以准确计算出遥控模型当前的方位角,并通过接收遥控信号并修正遥 控模型的方向,能使遥控模型的实际运动方向与遥控器所给出操纵信息中包含 的运动方向同向, 增加用户对运动方向的辨识度, 降低遥控模型的操作难度, 提高用户的体验感。本发明的技术方案利用遥控器里安装的方向检测模块,去 修正飞行器的航向, 实现全方位无头模式控制; 并且利用遥控器里安装的方向 检测模块, 去修正飞行器的航向, 实现自动返航; 此外能够不打舵, 就实现旋 转遥控器修正飞行器的航向,或者,本发明还可以通过在遥控设备中增加用于 检测该遥控设备当前姿态的传感器, 以及用于根据遥控设备的姿态参数、以及 遥控器姿态参数与遥控指令的对应关系生成遥控信号的生成器,实现了对于模 型的无摇杆、无需打舵操纵,大大简化了包括航模在内的遥控模型的操纵方式, 提高了用户体验感。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发 明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发 明的保护范围之内。

Claims

权利要求书
1. 一种遥控信号的发送装置, 位于遥控器侧, 包括:
传感器, 用于确定所述遥控器当前的方位角;
生成器, 连接至所述传感器, 用于生成遥控信号, 其中, 所述遥控信 号包括操纵信息和表示所述方位角的方位角信息;
发送器, 用于发送所述遥控信号。
2. 根据权利要求 1所述的发送装置, 其特征在于, 所述传感器用于测 量所述遥控器当前所在位置的地磁场大小及方向, 根据测量结果确定所述 遥控器当前的方位角。
3. 根据权利要求 1所述的发送装置, 其特征在于, 所述传感器为地磁 传感器。
4. 根据权利要求 1所述的发送装置, 其特征在于, 所述遥控器当前的 方位角为所述遥控器的纵轴所指向的方位角。
5. 根据权利要求 1所述的发送装置, 其特征在于, 在返航操作被触发 的情况下, 所述生成器生成返航信号, 并且所述发送器发送所述返航信号。
6. 一种遥控信号的接收装置, 设置于遥控模型侧, 其特征在于, 所述 接收装置包括:
传感器, 用于确定所述遥控模型当前的方位角;
接收器, 用于接收遥控信号;
处理器, 用于确定所述遥控信号中包含的操纵信息以及方位角信息, 所述方位角信息用于表示所述遥控信号的发送方当前的方位角, 并且, 所 述处理器用于根据遥控模型当前的方位角和所述发送方当前的方位角, 对 所述操纵信息中包含的运动方向进行修正, 确定所述遥控模型的实际运动 方向, 其中, 所述实际运动方向与所述操纵信息中包含的运动方向同向。
7. 根据权利要求 6所述的接收装置, 其特征在于, 所述传感器用于测 量所述遥控模型当前所在位置的地磁场大小及方向, 根据测量结果确定所 述遥控模型当前的方位角。
8. 根据权利要求 6所述的接收装置, 其特征在于, 所述传感器为地磁 传感器。
9. 根据权利要求 6所述的接收装置, 其特征在于, 所述遥控模型当前 的方位角为所述遥控模型的头部所指向的方位角。
10. 根据权利要求 6所述的接收装置, 其特征在于, 在所述接收器接 收到返航信号的情况下, 所述处理器将朝向所述发送方的方向确定为实际 运动方向。
11. 根据权利要求 6所述的接收装置, 其特征在于, 所述处理器还用 于在根据所述方位角信息确定所述发送方的方位角出现变化的情况下, 所 述处理器根据变化后的方位角调整所述实际运动方向。
12. 一种遥控信号的发送方法, 其特征在于, 包括:
确定遥控器当前的方位角;
生成遥控信号, 其中, 所述遥控信号包括操纵信息和表示所述方位角 的方位角信息;
发送所述遥控信号。
13. 根据权利要求 12所述的发送方法, 其特征在于, 确定遥控器当前 的方位角包括:
测量所述遥控器当前所在位置的地磁场大小及方向, 根据测量结果确 定所述遥控器当前的方位角。
14. 根据权利要求 12所述的发送方法, 其特征在于, 所述遥控器当前 的方位角为所述遥控器的纵轴线所指向的方位角。
15. 根据权利要求 12所述的发送方法, 其特征在于, 在返航操作被触 发的情况下, 则生成返航信号, 并且发送所述返航信号。
16. 一种遥控信号的接收方法, 其特征在于, 包括:
确定所述遥控模型当前的方位角;
接收遥控信号;
确定所述遥控信号中包含的操纵信息以及方位角信息, 所述方位角信 息用于表示所述遥控信号的发送方当前的方位角, 并且, 根据遥控模型当 前的方位角和所述发送方当前的方位角, 对所述操纵信息中包含的运动方 向进行修正, 确定所述遥控模型的实际运动方向, 其中, 所述实际运动方 向与所述操纵信息中包含的运动方向同向。
17. 根据权利要求 16所述的接收方法, 其特征在于, 确定所述遥控模 型当前的方位角包括:
测量所述遥控模型当前所在位置的地磁场大小及方向, 根据测量结果 确定所述遥控模型当前的方位角。
18. 根据权利要求 16所述的接收方法, 其特征在于, 所述遥控模型当 前的方位角为所述遥控模型的头部所指向的方位角。
19. 根据权利要求 16所述的接收方法, 其特征在于, 在接收到返航信 号的情况下, 将朝向所述发送方的方向确定为实际运动方向。
20. 根据权利要求 16所述的接收方法, 其特征在于, 进一步包括: 在根据所述方位角信息确定所述发送方的方位角出现变化的情况下, 根据变化后的方位角调整所述实际运动方向。
21. 一种遥控设备, 其特征在于, 包括:
传感器, 用于确定所述遥控设备的姿态, 并根据确定的姿态得到表示 该姿态的姿态参数;
生成器, 连接至所述传感器, 用于根据所述姿态参数以及预先配置的 姿态参数与遥控指令之间的对应关系, 生成遥控信号;
发送器, 连接至所述生成器, 用于发送所述遥控信号。
22. 根据权利要求 21所述的遥控设备, 其特征在于, 在确定所述遥控 设备的姿态时, 所述传感器用于获取所述遥控设备当前的姿态类型, 并测 量所述遥控设备当前的姿态类型对应的幅度, 并根据所述姿态类型和对应 的幅度, 确定所述姿态参数。
23. 根据权利要求 22所述的遥控设备, 其特征在于, 所述姿态类型包 括以下至少之一:
滚转、 俯仰、 偏转方向; 其中, 滚转的幅度通过滚转角的大小表示、 俯仰的幅度通过俯仰角的大小表示、偏转方向的幅度通过方向角大小表示。
24. 根据权利要求 23所述的遥控设备, 其特征在于,
所述遥控设备的滚转对应于遥控设备副翼摇杆的遥控指令; 所述遥控设备的俯仰对应于遥控设备升降舵的遥控指令; 所述遥控设备的偏转方向对应于遥控器方向摇杆的遥控指令。
25. 根据权利要求 21所述的遥控设备, 其特征在于, 所述传感器包括 地磁传感器和 /或惯性传感器。
26. 根据权利要求 21至 25中任意一项所述的遥控设备, 其特征在于, 所述遥控设备为航模的遥控器。
PCT/CN2014/075681 2013-05-22 2014-04-18 遥控信号的发送及接收的装置和方法、遥控设备 WO2014187205A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14801802.1A EP3001144A4 (en) 2013-05-22 2014-04-18 Remote control signal transmitting and receiving apparatus, method and remote control equipment
US14/892,697 US20160189537A1 (en) 2013-05-22 2014-04-18 Device and method for transmitting remote control signal, device and method for receiving remote control signal and remote control equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310193041.2 2013-05-22
CN201310193041 2013-05-22

Publications (1)

Publication Number Publication Date
WO2014187205A1 true WO2014187205A1 (zh) 2014-11-27

Family

ID=51932748

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2013/080198 WO2014187027A1 (zh) 2013-05-22 2013-07-26 遥控信号的发送装置和方法、以及接收装置和方法
PCT/CN2014/075681 WO2014187205A1 (zh) 2013-05-22 2014-04-18 遥控信号的发送及接收的装置和方法、遥控设备

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/080198 WO2014187027A1 (zh) 2013-05-22 2013-07-26 遥控信号的发送装置和方法、以及接收装置和方法

Country Status (4)

Country Link
US (1) US20160189537A1 (zh)
EP (1) EP3001144A4 (zh)
CN (1) CN104180796A (zh)
WO (2) WO2014187027A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104750113A (zh) * 2015-04-01 2015-07-01 深圳市华海技术有限公司 飞行器及其遥控方法
CN106843266A (zh) * 2016-12-30 2017-06-13 歌尔科技有限公司 一种飞行器的遥控器、朝向控制***和方位指示方法
EP3299920A4 (en) * 2015-05-18 2018-12-26 SZ DJI Technology Co., Ltd. Unmanned aerial vehicle control method and device based on no-head mode

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106030439B (zh) 2014-12-02 2017-12-05 深圳市大疆创新科技有限公司 拨杆结构及采用该拨杆结构的遥控器
CN105793792B (zh) * 2014-12-25 2018-09-25 深圳市大疆创新科技有限公司 无人机的飞行辅助方法和***、无人机和移动终端
CN106483972B (zh) * 2015-08-31 2020-06-09 武汉雄楚高晶科技有限公司 一种无人飞行器及其飞行控制方法、***及遥控装置
US10065319B2 (en) * 2015-11-30 2018-09-04 Delta Electronics, Inc. Tool calibration apparatus of robot manipulator
CN105573338A (zh) * 2015-12-25 2016-05-11 广东美嘉欣创新科技股份有限公司 一种无人机的定点停留和返航控制***
WO2017113648A1 (zh) 2015-12-31 2017-07-06 北京臻迪机器人有限公司 体感遥控器、体感遥控飞行***和方法、无头控制方法
CN107346140B (zh) * 2016-05-06 2020-04-07 北京臻迪机器人有限公司 一种无头控制的方法
CN105573334A (zh) * 2016-02-18 2016-05-11 览意科技(上海)有限公司 无人机无头模式的实现方法及其控制***
CN105700812B (zh) * 2016-02-26 2018-11-23 北京臻迪机器人有限公司 可移动设备的控制方法及装置
CN105676873A (zh) * 2016-03-08 2016-06-15 览意科技(上海)有限公司 无人机的自动降落方法及其控制***
CN105955296B (zh) * 2016-05-30 2019-10-25 广东精荣科技有限公司 飞行器一键返航的方法
US10059446B2 (en) * 2016-06-06 2018-08-28 Traxxas Lp Ground vehicle-like control for remote control aircraft
US11017681B2 (en) * 2016-06-24 2021-05-25 Intel IP Corporation Unmanned aerial vehicle avoiding obstacles
CN106943753A (zh) * 2016-06-25 2017-07-14 王丽芸 自动召回的多轴飞行器玩具及其操控方法
CN107589751A (zh) * 2016-07-07 2018-01-16 中兴通讯股份有限公司 一种信息获取方法和装置
CN106527493B (zh) * 2016-11-29 2020-01-14 深圳市元征科技股份有限公司 一种基于地磁方式的无人机控制方法和无人机
CN106774390A (zh) 2016-12-09 2017-05-31 深圳市道通智能航空技术有限公司 一种飞行器航向控制方法、装置和电子设备
CN106802664B (zh) * 2016-12-22 2021-02-09 深圳市元征科技股份有限公司 一种无人机无头模式的飞行控制方法及无人机
CN108122397A (zh) * 2017-12-19 2018-06-05 广州亿航智能技术有限公司 飞行器、遥控器以及飞行器与遥控器对频的方法
CN108628334B (zh) * 2018-06-28 2022-09-13 广州极飞科技股份有限公司 无人飞行器的控制方法及装置、***、无人飞行器
CN110658853A (zh) * 2018-06-29 2020-01-07 天津深之蓝海洋设备科技有限公司 运载工具遥控方法、运载工具、遥控器及遥控***
CN111665827A (zh) * 2019-03-07 2020-09-15 北京奇虎科技有限公司 一种信息处理方法、控制设备和被控设备
CN110119135B (zh) * 2019-06-13 2022-07-01 湖南农业大学 一种自适应遥控操作方法及***
CN110244632B (zh) * 2019-06-25 2022-01-18 天津大学 一种用于控制无人驾驶工程作业设备的远程遥控***
CN110865639B (zh) * 2019-08-01 2022-01-18 天津大学 无人驾驶碾压机集群智能作业远程监控管理***及方法
CN112543899A (zh) * 2019-12-26 2021-03-23 深圳市大疆创新科技有限公司 可移动载体的控制方法、控制装置、计算机可读存储介质
CN110989629B (zh) * 2019-12-28 2022-08-12 天津大学 一种舰船模型专用一体化控制器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201348739Y (zh) * 2008-12-12 2009-11-18 宋建明 一种用于航模的自动驾驶仪
CN101902594A (zh) * 2010-08-25 2010-12-01 青岛海信电器股份有限公司 遥控器及选择功能菜单的方法
CN102473040A (zh) * 2009-08-11 2012-05-23 英派尔科技开发有限公司 多维控制设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001190861A (ja) * 2000-01-12 2001-07-17 Akuson Data Machine Kk ラジコン飛行機の姿勢制御装置
JP2003202922A (ja) * 2002-01-08 2003-07-18 Yamaha Corp 無線操縦システム、及び無線操縦方法
CN2912140Y (zh) * 2006-05-31 2007-06-13 孟金光 地磁定位无线联动控制云台
TWI290846B (en) * 2006-06-05 2007-12-11 Southern Taiwan University Of Remote control car device
JP2008206668A (ja) * 2007-02-26 2008-09-11 Taya Engineering Kk ラジコン模型
US20090068925A1 (en) * 2007-09-11 2009-03-12 Southern Taiwan University Smart remote control system
CN101134147B (zh) * 2007-09-24 2012-10-31 南台科技大学 一种智慧型遥控***
JP5466995B2 (ja) * 2010-05-24 2014-04-09 パナソニック株式会社 照明用リモコンシステム
CN101937234B (zh) * 2010-08-18 2012-05-09 深圳市沈氏彤创航天模型有限公司 运动姿态的控制方法和控制装置
CN201978499U (zh) * 2011-01-28 2011-09-21 深圳市格兰之特科技有限公司 一种动作感知的遥控器及飞行器
CN102814047A (zh) * 2012-07-19 2012-12-12 南京航空航天大学 双旋翼遥控模型直升机的自主返回***及控制方法
CN103034185B (zh) * 2012-11-21 2016-02-03 深圳一电科技有限公司 通信***及其地面站

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201348739Y (zh) * 2008-12-12 2009-11-18 宋建明 一种用于航模的自动驾驶仪
CN102473040A (zh) * 2009-08-11 2012-05-23 英派尔科技开发有限公司 多维控制设备
CN101902594A (zh) * 2010-08-25 2010-12-01 青岛海信电器股份有限公司 遥控器及选择功能菜单的方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104750113A (zh) * 2015-04-01 2015-07-01 深圳市华海技术有限公司 飞行器及其遥控方法
EP3299920A4 (en) * 2015-05-18 2018-12-26 SZ DJI Technology Co., Ltd. Unmanned aerial vehicle control method and device based on no-head mode
US11079750B2 (en) 2015-05-18 2021-08-03 SZ DJI Technology Co., Ltd. Control methods and apparatuses based on headless mode for unmanned aerial vehicle
CN106843266A (zh) * 2016-12-30 2017-06-13 歌尔科技有限公司 一种飞行器的遥控器、朝向控制***和方位指示方法
CN106843266B (zh) * 2016-12-30 2024-04-05 歌尔科技有限公司 一种飞行器的遥控器、朝向控制***和方位指示方法

Also Published As

Publication number Publication date
US20160189537A1 (en) 2016-06-30
EP3001144A1 (en) 2016-03-30
EP3001144A4 (en) 2017-01-04
CN104180796A (zh) 2014-12-03
WO2014187027A1 (zh) 2014-11-27

Similar Documents

Publication Publication Date Title
WO2014187205A1 (zh) 遥控信号的发送及接收的装置和方法、遥控设备
KR101117207B1 (ko) 스마트폰을 이용한 무인비행체 자동 및 수동 조종시스템
JP6279097B2 (ja) ヘッドレスモードに基づく無人機の制御方法とデバイス
US9360868B2 (en) Ground vehicle-like control for remote control aircraft
EP2403757B1 (en) Unmanned air vehicle (uav), control system and method
CN106249755B (zh) 一种无人机自主导航***及导航方法
JP6767802B2 (ja) 無人飛行体及びその飛行制御方法
CN104906805A (zh) 一种基于主动式姿态检测的航模飞行器安全遥控方法及***
US11327477B2 (en) Somatosensory remote controller, somatosensory remote control flight system and method, and head-less control method
JP5698802B2 (ja) 遠隔操縦装置
CN105549620A (zh) 飞行器遥控棒及控制飞行器飞行的方法
JP5997338B1 (ja) マルチコプター用コントローラおよびマルチコプターの制御方法
JP2005247008A (ja) 無人ヘリコプタ用制御装置
CN106774368B (zh) 飞行器操控和遥控方法、飞行器、遥控设备及飞行器***
KR102117338B1 (ko) 원통좌표계 기반 무인이동체 조종 방법, 이를 구현하기 위한 프로그램이 저장된 기록매체 및 이를 구현하기 위해 매체에 저장된 컴퓨터프로그램
US10620623B2 (en) UAV flight control system
JP2003202922A (ja) 無線操縦システム、及び無線操縦方法
WO2021043332A1 (zh) 一种飞行控制方法、飞行器及飞行***
CN205216197U (zh) 一种基于主动式姿态检测的航模飞行器安全遥控***
US9283490B1 (en) Device for stabilising a flying attitude of a remote-controlled fixed-wing aircraft
JP2009096369A (ja) 無人無線操縦ヘリコプタの操縦支援装置
KR20170019896A (ko) 무인 비행체 및 그 무인 비행체 조종을 위한 원격 조종기
JPH05107000A (ja) 飛翔体の管制方式
JPH06152440A (ja) 遠隔操縦用送信機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14801802

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14892697

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014801802

Country of ref document: EP