WO2014185617A1 - 안테나 장치 및 이의 제조 방법 - Google Patents

안테나 장치 및 이의 제조 방법 Download PDF

Info

Publication number
WO2014185617A1
WO2014185617A1 PCT/KR2013/012400 KR2013012400W WO2014185617A1 WO 2014185617 A1 WO2014185617 A1 WO 2014185617A1 KR 2013012400 W KR2013012400 W KR 2013012400W WO 2014185617 A1 WO2014185617 A1 WO 2014185617A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna device
slot
chip resistors
signal
resonance frequency
Prior art date
Application number
PCT/KR2013/012400
Other languages
English (en)
French (fr)
Inventor
김강욱
강웅
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Priority to US14/888,703 priority Critical patent/US10020588B2/en
Priority to JP2016513857A priority patent/JP6140368B2/ja
Publication of WO2014185617A1 publication Critical patent/WO2014185617A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • H01Q13/085Slot-line radiating ends
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/103Resonant slot antennas with variable reactance for tuning the antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/44Resonant antennas with a plurality of divergent straight elements, e.g. V-dipole, X-antenna; with a plurality of elements having mutually inclined substantially straight portions

Definitions

  • Embodiments of the present invention relate to an antenna device and a method of manufacturing the same.
  • Radar radio detection and ranging
  • RADAR radio detection and ranging
  • microwaves having a wavelength of 30 cm or less are used.
  • Microwaves with a wavelength of 30 cm or less are used for radar because the shorter the wavelength, the better linearity, directivity, sensitivity, and the like.
  • Antennas used in such radars include Vivaldi antennas, logarithmic antennas, impulse radiation antennas, TEM (Transverse Electro Magnetic) horn antennas, and resistive dipoles.
  • Antennas used in radar have common features.
  • the antenna used in the radar may have a low center frequency to have excellent transmission performance to the medium, and operate at a wide bandwidth to obtain a high resolution image.
  • resistive dipoles have been used in radars because they have the advantage of being able to have high density arrangement due to their small volume and low distortion in the time domain. It is constantly being questioned.
  • System hardware or an operator or the like is often present at the rear of the antenna device.
  • the reflected signal by these acts as a clutter to limit the radar system performance.
  • a metal reflector or microwave absorber is installed at the rear of the antenna device.
  • the metal reflector changes the waveform of the signal returned from the target of the electromagnetic signal emitted by the radar or changes the antenna characteristics
  • the microwave absorber is bulky and may cause problems in system implementation.
  • the present invention is an antenna device having a time-domain characteristic suitable for sensing because the power of the signal is weakened by a plurality of chip resistors in the slot so that the reflected signal inside the antenna excluding the feeder is lost over time and its It is another object to provide a manufacturing method.
  • the antenna device includes a ground plate formed of a grounding conductor to perform a grounding function and a slot formed in a specific width and length and positioned above the ground plate, wherein the slot is provided with a signal for feeding. And a plurality of chip resistors positioned in a direction crossing the width of the slot by being spaced apart from the feeding section by a predetermined interval.
  • each of the plurality of chip resistors may have a resistance value of any one of a resistance value determined according to the position of the slot, a predetermined resistance value and a resistor value determined according to the arrangement of the antenna device.
  • the predetermined interval may be determined according to the resonance frequency according to the specification of the antenna device.
  • the predetermined interval may be determined according to a comparison result of a resonance frequency generated between the feed part and the plurality of chip resistors and a resonance frequency according to the specification of the antenna device.
  • the predetermined interval may be set to be greater than the resonance frequency by comparing a resonance frequency generated between the power supply unit and the plurality of chip resistors with a resonance frequency according to a specification of the antenna device.
  • each of the plurality of chip resistors may consume power of the signal when a signal for power feeding is applied to the feeding part.
  • the ground plate may have an absorption rate and an absorption loss rate according to the specifications of the antenna device.
  • the method of manufacturing an antenna device includes forming a ground plate formed of a grounding conductor to perform a grounding function, and forming a slot having a specific width and length on top of the ground plate,
  • the slot includes a power supply unit to which a signal for power supply is applied and a plurality of chip resistors positioned in a direction crossing the width of the slot by a predetermined distance from the power supply unit.
  • each of the plurality of chip resistors may have a resistance value of any one of a resistance value determined according to the position of the slot, a predetermined resistance value and a resistor value determined according to the arrangement of the antenna device.
  • the method of manufacturing the antenna device may include forming a plurality of chip resistors, respectively, by a predetermined interval according to a resonance frequency according to the specification of the antenna device.
  • the method of manufacturing the antenna device is a plurality of spaced apart by a predetermined interval in accordance with the comparison result of the resonance frequency generated between the power supply and the plurality of chip resistors and the specifications of the antenna device.
  • Each of the chip resistors can be formed.
  • the method of manufacturing the antenna device is a plurality of chip resistors by spaced apart by a predetermined interval such that the resonance frequency generated between the feeder and the plurality of chip resistors is greater than the resonance frequency according to the specification of the antenna device. And forming each of them.
  • each of the plurality of chip resistors may consume power of the signal when a signal for power feeding is applied to the feeding part.
  • the ground plate may have an absorption rate and an absorption loss rate according to the specifications of the antenna device.
  • the present invention it is possible to smoothly perform the performance of the radar system by effectively blocking the reflected signal returned from the point other than the target among the electromagnetic signals emitted by the radar.
  • the power of the signal is weakened by a plurality of chip resistors in the slot, and there is no reflected signal inside the antenna except for the reflected signal at the power supply unit over time. Properties can be provided.
  • FIG. 1 is a view illustrating an antenna device according to an embodiment of the present invention.
  • FIG. 2 is a view for explaining the internal structure of the slot in FIG.
  • FIG. 3 is a graph illustrating a complementary relationship between an antenna device and a dipole antenna of FIG. 1.
  • FIG. 4 and 5 are diagrams illustrating a change in radiation amount with time of a general antenna device operating in a resonance mode with the antenna device of FIG. 1.
  • 6 and 7 are graphs illustrating a time domain radiation signal of the antenna device of FIG. 1.
  • FIG. 8 is a flowchart illustrating an embodiment of a method of manufacturing an antenna device according to the present invention.
  • FIG. 1 is a view for explaining an antenna device according to an embodiment of the present invention
  • Figure 2 is a view for explaining the internal structure of the slot in FIG.
  • the antenna device 100 includes a ground plane 101 having an arbitrary dielectric constant and a thickness, and a center frequency wavelength (R) for radiation of an electric and magnetic field.
  • Slot 102 having a length equal to half the length of the wave length ( ⁇ ).
  • the ground plate 101 is formed of a grounding conductor to perform a grounding function.
  • the ground plate 101 may have an absorption rate and an absorption loss rate according to the specifications of the antenna device 100. Accordingly, the ground plate 101 can effectively block the reflected signal returned from the point other than the target among the electromagnetic signals emitted by the radar to facilitate the performance of the system.
  • the ground plate 101 may include a feed line (not shown) for feeding electromagnetic field energy in the slot 102.
  • Slot 102 is formed in a specific width and length and is located on top of ground plate 101 and is loaded by a resistive component.
  • the slot 102 may be implemented in a narrow or wide rectangular shape or circular.
  • the slot 102 may include a plurality of chip resistors 122 and a power feeding unit 112.
  • the power supply unit 110 may receive a signal of a specific pulse. In one embodiment, the feeder 110 may receive a signal of a short pulse.
  • the feeder 112 moves to both ends of the slot arm when a signal for feeding the slot 102 is applied through the feeder line of the ground plate 101, and the antenna device 100 radiates the signal to the target.
  • the signal reflected from the target is used to detect the presence of the target.
  • the power of the signal applied to the feed part 112 is consumed by the plurality of chip resistors 122, and the power of the signal weakens at both ends of the arm of the slot 102 as time passes, thereby reflecting the inside of the antenna. The signal will be lost.
  • Each of the plurality of chip resistors 122 may be positioned in a direction crossing the width of the slot 102 by a predetermined interval from the power supply unit 112.
  • each of the plurality of chip resistors 122 is a result of comparing the resonance frequency generated between the feed section 112 and the plurality of chip resistors 122 according to the specifications of the antenna device 100 According to the power supply unit 112 may be spaced apart by a predetermined interval. In one embodiment, each of the plurality of chip resistors 122 is a predetermined interval such that the resonance frequency generated between the feed section 112 and the plurality of chip resistors is greater than the resonance frequency according to the specification of the antenna device 100. Can be spaced apart.
  • Each of the chip resistors 122 may have a different resistance value.
  • each of the plurality of chip resistors 122 may have a different resistance value according to the position of the slot. In another embodiment, each of the plurality of chip resistors 122 may have a predetermined resistance value. In another embodiment, each of the plurality of chip resistors 122 may have a different resistance value according to the arrangement of the antenna device.
  • Each of the plurality of chip resistors 122 consumes the power of the signal applied to the feeder 112 to weaken the power of the signal.
  • FIG. 3 is a graph illustrating a complementary relationship between an antenna device and a dipole antenna of FIG. 1.
  • FIG. 3 it is a graph showing that the calculation of the input impedance of the antenna device 100 according to the present invention and the input impedance of a general resistive dipole antenna have a complementary relationship.
  • the X axis of the graph represents frequency and the Y axis represents impedance.
  • Reference numeral 310 denotes an input impedance of the resistive dipole antenna
  • reference numeral 320 denotes an input impedance of the antenna device 100 according to the present invention
  • reference numeral 330 denotes Equation 1 below.
  • the Booker's relation calculated by Equation 2 is shown
  • reference numeral 340 denotes an input impedance of the resistive dipole antenna calculated by Equation 1 and Equation 2 and an antenna device according to the present invention.
  • the relationship of the input impedance of 100 is shown.
  • the dipole and slot satisfy the Booker's relation in frequency.
  • the antenna device 100 and the resistive dipole antenna satisfy Booker's relation over a wide band, the antenna device 100 and the resistive dipole antenna according to the present invention are complementary to each other.
  • Equation 2 may be calculated based on [Equation 1].
  • FIGS. 4 and 5 illustrate changes in radiation amount with time of a general antenna device operating in a resonance mode with the antenna device of FIG. 1, and FIGS. 6 and 7 operate in a resonance mode with the antenna device in FIG. 1.
  • FIG. 4 shows a state in which the radiated signal proceeds with time
  • FIG. 6 illustrates the antenna device according to the present invention.
  • (100) emits a signal
  • it is a graph showing the time domain waveform of the emitted signal according to the change of the elevation angle.
  • FIG. 5 illustrates a state in which the radiated signal progresses with time when the general antenna device 100 operating in the resonance mode emits a signal.
  • FIG. 7 illustrates a signal of the general antenna device 100 operating in the resonance mode. Is a graph showing the time-domain waveform of the emitted signal according to the elevation angle.
  • the antenna device 100 radiates a signal in a direction of 0 degrees to 360 degrees at an elevation angle, and a time domain waveform of a signal emitted at each elevation angle is shown in FIG. 6. It can be considered symmetrical with the region waveform. That is, in FIG. 6, the time domain waveform in the 30 ° direction is the same as the time domain waveform in the 150 °, 210 °, and 330 ° directions.
  • the signal first applied at the drive point proceeds in a circular wavefront along the slot arm (410). Over time, the circular wavefront becomes larger and larger, and the power of the signal applied by the resistor loaded into the slot is consumed, and the signal strength becomes weaker (420). When the circular wavefront reaches the end of the slot, the weakened signal proceeds as it is without reflection (430).
  • the antenna 610 is emitted only at the feed part as shown in FIG. 6, there is no additional radiation signal and thus has a time domain characteristic suitable for sensing.
  • the signal first applied at the drive point proceeds in a circular wavefront along the slot arm (510).
  • the circular wavefront becomes larger and larger, and since there is no resistance loaded in the case of a general slot antenna, the signal maintains the strength of the signal without power consumption by the resistance (520).
  • the signal is reflected so that the secondary circular wavefront is formed around the slot end, and the reflected wave generated at the slot end is returned to the drive point (530).
  • the antenna continuously emits radiation 710 not only at the power supply but also at a time taken for the electromagnetic wave to progress through the slot arm.
  • a general slot antenna is used as a radar, it is difficult to distinguish whether a radiated electromagnetic wave is a signal returning to a target or a signal reflected inside the antenna. Since the reflected signal generated inside the antenna can be effectively removed, it is possible to accurately determine the return signal hitting the target, and thus has characteristics suitable for sensing.
  • FIG. 8 is a flowchart illustrating an embodiment of a method of manufacturing an antenna device according to the present invention.
  • step S810 is formed of a grounding conductor to form a ground plate to perform the grounding function.
  • step S820 a slot having a specific width and length is formed on the ground plate.
  • step S820 may form a feed part to which a signal for feeding power is applied to a specific portion of the slot, and form a plurality of chip resistors in a direction crossing the width of the slot by a predetermined distance from the feed part.
  • each of the plurality of chip resistors may have any one of a resistance value determined according to the position of the slot, a predetermined resistance value, and a resistance value determined according to the arrangement of the antenna device.
  • step S820 may form a plurality of chip resistors, respectively, spaced apart by a predetermined interval according to the resonance frequency according to the specification of the antenna device 100.
  • the step S820 may be spaced apart by a predetermined interval according to a result of comparing the resonance frequency generated between the power supply unit and the plurality of chip resistors and the resonance frequency according to the specification of the antenna device 100.
  • the plurality of chip resistors may be formed by being spaced apart by a predetermined interval such that the resonance frequency generated between the feeder and the plurality of chip resistors is greater than the resonance frequency according to the specification of the antenna device. .

Landscapes

  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

본 발명의 일 실시예에 따른 안테나 장치는 접지용 도체로 형성되어 접지기능을 수행하는 접지판 및 특정 폭과 길이로 형성되어 상기 접지판의 상부에 위치하는 슬롯을 포함하고, 상기 슬롯은 급전을 위한 신호가 인가되는 급전부 및 상기 급전부에서 소정 간격만큼 떨어져 상기 슬롯의 폭을 가로지는 방향으로 위치하는 복수의 칩저항들을 포함한다. 따라서, 본 발명은 레이더에 의해 방사된 전자기 신호 중 목표물 이외의 지점들로부터 반사되어 돌아온 반사 신호를 효과적으로 차단함으로써 레이더 시스템의 성능을 원활하게 할 수 있는 안테나 장치 및 이의 제조 방법을 제공하고자 한다.

Description

안테나 장치 및 이의 제조 방법
본 발명의 실시예들은 안테나 장치 및 이의 제조 방법에 관한 것이다.
레이더(radio detection and ranging: RADAR)는 전자기 신호를 방사하고 목표물에서 반사된 신호를 이용하여 목표물의 존재를 알아내는 것이다. 레이더에 사용되는 전파는 파장 30㎝ 이하의 마이크로파가 사용된다. 레이더에는 파장 30㎝ 이하의 마이크로파가 사용되는 이유는 파장이 짧을수록 직선성, 지향성, 감도 등이 좋아지기 때문이다.
이러한 레이더에 사용되는 안테나는 비발디 안테나, 대수주기 안테나, 임펄스 복사 안테나, TEM(Transverse Electro Magnetic) 혼(horn) 안테나, 저항성 다이폴 등이 있다. 레이더에 사용되는 안테나는 공통적인 특징을 가지고 있다. 레이더에 사용되는 안테나는 낮은 중심 주파수를 가져 매질에 대한 우수한 투과성능을 가질 수 있고, 넓은 대역폭에서 동작하여 고해상도의 영상을 얻을 수 있다.
이러한 안테나들 중에서 저항성 다이폴은 부피가 작아 고밀도 배열화가 가능한 장점을 가짐과 동시에 시간 영역에서 왜곡이 적은 초광대역 신호를 복사할 수 있는 장점을 가져 레이더에 활발하게 사용되어 왔으나, 후방복사 및 수신 가능성은 지속적으로 문제시되고 있다.
안테나 장치의 후방에는 흔히 시스템 하드웨어 또는 운용자 등이 존재하게 되는데, 레이더에 의해 방사된 전자기 신호 중, 이들에 의한 반사신호가 클러터로서 작용하여 레이더 시스템 성능을 제한하게 된다. 이러한 문제를 극복하기 위하여 안테나 장치의 후방에 금속 반사판 또는 마이크로웨이브 흡수체를 설치하였다.
하지만, 금속 반사판은 레이더에 의해 방사된 전자기 신호 중 목표물로부터 반사되어 돌아온 신호의 파형을 변화시키거나 안테나 특성을 변화시키며, 마이크로웨이브 흡수체는 부피가 커서 시스템 구현상의 문제로 작용할 수 있다.
본 발명은 레이더에 의해 방사된 전자기 신호 중 목표물 이외의 지점으로부터 반사되어 돌아온 반사 신호를 효과적으로 차단함으로써 시스템의 성능을 원활하게 할 수 있는 안테나 장치 및 이의 제조 방법을 제공하는 것을 목적으로 한다.
또한 본 발명은 슬롯에 있는 복수의 칩저항들에 의해 신호의 파워가 약해져 시간 경과에 따라 급전부를 제외한 안테나 내부에서의 반사 신호가 없어지기 때문에 센싱용으로 적합한 시간 영역 특성을 가지는 안테나 장치 및 이의 제조 방법을 제공하는 것을 다른 목적으로 한다.
본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
실시예들 중에서, 안테나 장치는 접지용 도체로 형성되어 접지기능을 수행하는 접지판 및 특정 폭과 길이로 형성되어 상기 접지판의 상부에 위치하는 슬롯을 포함하고, 상기 슬롯은 급전을 위한 신호가 인가되는 급전부 및 상기 급전부에서 소정 간격만큼 떨어져 상기 슬롯의 폭을 가로지는 방향으로 위치하는 복수의 칩저항들을 포함한다.
일 실시예에서, 상기 복수의 칩저항들 각각은 상기 슬롯의 위치에 따라 결정된 저항 값, 기 설정된 저항 값 및 상기 안테나 장치의 배열구조에 따라 결정된 저항 값 중 어느 하나의 저항 값을 가질 수 있다.
일 실시예에서, 상기 소정 간격은 상기 안테나 장치의 사양에 따른 공진 주파수에 따라 결정될 수 있다.
일 실시예에서, 상기 소정 간격은 상기 급전부와 상기 복수의 칩저항들 사이에서 발생되는 공진 주파수와 상기 안테나 장치의 사양에 따른 공진 주파수의 비교 결과에 따라 결정될 수 있다.
일 실시예에서, 상기 소정 간격은 상기 급전부와 상기 복수의 칩저항들 사이에서 발생되는 공진 주파수와 상기 안테나 장치의 사양에 따른 공진 주파수를 비교하여 상기 공진 주파수보다 크도록 설정될 수 있다.
일 실시예에서, 상기 복수의 칩저항들 각각은 상기 급전부에 급전을 위한 신호가 인가되면 상기 신호의 파워를 소모시킬 수 있다.
일 실시예에서, 상기 접지판은 상기 안테나 장치의 사양에 따른 흡수율 및 흡수 손실율을 가질 수 있다.
실시예들 중에서, 안테나 장치의 제조 방법은 접지용 도체로 형성되어 접지기능을 수행하는 접지판을 형성하는 단계 및 특정 폭과 길이로 형성된 슬롯을 상기 접지판의 상부에 형성하는 단계를 포함하고, 상기 슬롯은 급전을 위한 신호가 인가되는 급전부 및 상기 급전부에서 소정 간격만큼 떨어져 상기 슬롯의 폭을 가로지는 방향으로 위치하는 복수의 칩저항들을 포함한다.
일 실시예에서, 상기 복수의 칩저항들 각각은 상기 슬롯의 위치에 따라 결정된 저항 값, 기 설정된 저항 값 및 상기 안테나 장치의 배열구조에 따라 결정된 저항 값 중 어느 하나의 저항 값을 가질 수 있다.
일 실시예에서, 상기 안테나 장치의 제조 방법은 상기 안테나 장치의 사양에 따른 공진 주파수에 따라 소정 간격만큼 이격시켜 복수의 칩저항들을 각각 형성하는 단계를 포함할 수 있다.
일 실시예에서, 상기 안테나 장치의 제조 방법은 상기 급전부와 상기 복수의 칩저항들 사이에서 발생되는 공진 주파수와 상기 안테나 장치의 사양에 따른 공진 주파수의 비교 결과에 따라 소정 간격만큼 이격시켜 복수의 칩저항들을 각각 형성할 수 있다.
일 실시예에서, 상기 안테나 장치의 제조 방법은 상기 급전부와 상기 복수의 칩저항들 사이에서 발생되는 공진 주파수가 상기 안테나 장치의 사양에 따른 공진 주파수보다 크도록 소정 간격만큼 이격시켜 복수의 칩저항들을 각각 형성하는 단계를 포함할 수 있다.
일 실시예에서, 상기 복수의 칩저항들 각각은 상기 급전부에 급전을 위한 신호가 인가되면 상기 신호의 파워를 소모시킬 수 있다.
일 실시예에서, 상기 접지판은 상기 안테나 장치의 사양에 따른 흡수율 및 흡수 손실율을 가질 수 있다.
본 발명의 이점 및/또는 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.
본 발명에 따르면, 레이더에 의해 방사된 전자기 신호 중 목표물 이외의 지점으로부터 반사되어 돌아온 반사 신호를 효과적으로 차단함으로써 레이더 시스템의 성능을 원활하게 할 수 있다.
본 발명에 따르면, 슬롯에 있는 복수의 칩저항들에 의해 신호의 파워가 약해져 시간 경과에 따라 급전부에서의 반사 신호를 제외하고는 안테나 내부에서의 반사 신호가 존재하지 않아 센싱용으로 적합한 시간 영역 특성을 제공할 수 있다.
도 1은 본 발명의 일 실시예에 따른 안테나 장치를 설명하는 도면이다.
도 2는 도 1에 있는 슬롯의 내부 구조를 설명하는 도면이다.
도 3은 도 1에 있는 안테나 장치와 다이폴 안테나의 상보적 관계를 나타내는 그래프이다.
도 4 및 도 5는 도 1에 있는 안테나 장치와 공진모드로 동작하는 일반적인 안테나 장치의 시간에 따른 복사량 변화를 나타내는 도면이다.
도 6 및 도 7은 도 1에 있는 안테나 장치의 시간 영역 복사신호를 나타내는 그래프이다.
도 8은 본 발명에 따른 안테나 장치의 제조 방법의 일 실시예를 설명하기 위한 흐름도이다.
이하에서는 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 안테나 장치를 설명하는 도면이고, 도 2는 도 1에 있는 슬롯의 내부 구조를 설명하는 도면이다.
도 1 및 도 2를 참조하면, 안테나 장치(100)는 임의의 유전율(Dielectric Constant)과 두께를 갖는 접지판(101) 및 전자기장(Electric and Magnetic Field)의 방사(Radiation)를 위해 중심 주파수 파장(Wavelength, λ)의 1/2만큼의 길이를 갖는 슬롯(102)을 포함한다.
접지판(101)은 접지용 도체로 형성되어 접지기능을 수행한다. 이러한 접지판(101)은 안테나 장치(100)의 사양에 따른 흡수율 및 흡수 손실율을 가질 수 있다. 이에 따라, 접지판(101)은 레이더에 의해 방사된 전자기 신호 중 목표물 이외의 지점으로부터 반사되어 돌아온 반사 신호를 효과적으로 차단함으로써 시스템의 성능을 원활하게 할 수 있도록 한다.
접지판(101)은 슬롯(102)에 전자기장 에너지의 급전을 위한 급전선(미도시됨)을 포함할 수 있다.
슬롯(102)은 특정 폭과 길이로 형성되어 접지판(101)의 상부에 위치하며, 저항 성분에 의해 로드된다. 일 실시예에서, 슬롯(102)은 폭이 좁거나 넓은 사각형 형태이거나 원형 등으로 구현될 수 있다.
슬롯(102)은 복수의 칩저항들(122) 및 급전부(112)를 포함할 수 있다.
급전부(110)는 특정 펄스의 신호를 인가받을 수 있다. 일 실시예에서, 급전부(110)는 짧은 펄스의 신호를 인가받을 수 있다.
급전부(112)는 접지판(101)의 급전선을 통하여 슬롯(102)의 급전을 위한 신호가 인가되면 슬롯 암의 양 끝부분으로 이동하게 되고, 안테나 장치(100)는 신호를 목표물에 방사하고 목표물에서 반사된 신호를 이용하여 목표물의 존재를 알아낸다.
급전부(112)에 인가된 신호의 파워는 복수의 칩저항들(122)에 의해 소모되며, 시간의 경과에 따라 슬롯(102) 암의 양 끝부분에서 신호의 파워가 약해져 안테나 내부에서의 반사 신호가 없어지게 된다.
복수의 칩저항들(122) 각각은 급전부(112)에서 소정 간격만큼 떨어져 슬롯(102)의 폭을 가로지는 방향으로 위치할 수 있다.
일 실시예에서, 복수의 칩저항들(122) 각각은 급전부(112)와 복수의 칩저항들(122) 사이에서 발생되는 공진 주파수와 안테나 장치(100)의 사양에 따른 공진 주파수의 비교 결과에 따라 급전부(112)에서 소정 간격만큼 이격되어 위치할 수 있다. 일 실시예에서, 복수의 칩저항들(122) 각각은 급전부(112)와 복수의 칩저항들 사이에서 발생되는 공진 주파수가 안테나 장치(100)의 사양에 따른 공진 주파수보다 크도록 소정 간격만큼 이격되어 위치할 수 있다.
복수의 칩저항들(122) 각각은 서로 다른 저항 값을 가질 수 있다.
일 실시예에서, 복수의 칩저항들(122) 각각은 슬롯의 위치에 따라 서로 다른 저항 값을 가질 수 있다. 다른 일 실시예에서, 복수의 칩저항들(122) 각각은 기 설정된 저항 값을 가질 수 있다. 또 다른 일 실시예에서, 복수의 칩저항들(122) 각각은 안테나 장치의 배열구조에 따라 서로 다른 저항 값을 가질 수 있다.
복수의 칩저항들(122) 각각은 급전부(112)에 인가된 신호의 파워를 소모시켜 신호의 파워를 약하게 한다.
도 3은 도 1에 있는 안테나 장치와 다이폴 안테나의 상보적 관계를 나타내는 그래프이다.
도 3을 참조하면, 본 발명에 따른 안테나 장치(100)의 입력 임피던스와 일반적인 저항성 다이폴 안테나의 입력 임피던스의 연산이 상보적 관계를 가지는 것을 나타내는 그래프이다. 그래프의 X축은 주파수를 나타내고, Y축은 임피던스를 나타낸다.
참조번호(310)는 저항성 다이폴 안테나의 입력 임피던스를 나타내고, 참조번호(320)는 본 발명에 따른 안테나 장치(100)의 입력 임피던스를 나타내고, 참조번호(330)는 하기의 [수학식 1] 및 [수학식 2]에 의해 산출된 Booker's relation을 나타내고, 참조번호(340)는 하기의 [수학식 1] 및 [수학식 2]에 의해 산출된 저항성 다이폴 안테나의 입력 임피던스와 본 발명에 따른 안테나 장치(100)의 입력 임피던스의 관계를 나타낸다.
일반적으로, 다이폴과 슬롯은 주파수에서 Booker's relation을 만족한다. 도 3에서와 같이 본 발명에 따른 안테나 장치(100)와 저항성 다이폴 안테나는 광대역에 걸쳐 Booker's relation을 만족하기 때문에, 본 발명에 따른 안테나 장치(100)와 저항성 다이폴 안테나는 서로 상보적 구조임을 나타낸다.
수학식 1
Figure PCTKR2013012400-appb-M000001
Zdipole: 저항성 다이폴 안테나의 입력 임피던스
Zslot: 본 발명에 따른 안테나 장치의 입력 임피던스
Eta: 자유공간에서 전자파의 진행에 작용되는 임피던스
수학식 2
Figure PCTKR2013012400-appb-M000002
Zdipole: 저항성 다이폴 안테나의 입력 임피던스
Zslot: 본 발명에 따른 안테나 장치의 입력 임피던스
Eta: 자유공간에서 전자파의 진행에 작용되는 임피던스
[수학식 2]는 [수학식 1]을 기초로 산출될 수 있다.
도 4 및 도 5는 도 1에 있는 안테나 장치와 공진모드로 동작하는 일반적인 안테나 장치의 시간에 따른 복사량 변화를 나타내는 도면이고, 도 6 및 도 7은 도 1에 있는 안테나 장치와 공진모드로 동작하는 일반적인 안테나 장치의 시간 영역 복사신호를 나타내는 그래프이다.
도 4 내지 도 7을 참조하면, 도 4는 본 발명에 따른 안테나 장치(100)가 신호를 방사했을 때, 방사된 신호가 시간에 따라 진행하는 모습을 나타내고, 도 6은 본 발명에 따른 안테나 장치(100)가 신호를 방사했을 때, 방사된 신호의 시간영역 파형을 앙각의 변화에 따라 나타내는 그래프이다.
도 5는 공진모드로 동작하는 일반적인 안테나 장치(100)가 신호를 방사했을 때, 방사된 신호가 시간에 따라 진행하는 모습을 나타내고, 도 7은 공진모드로 동작하는 일반적인 안테나 장치(100)가 신호를 방사했을 때, 방사된 신호의 시간영역 파형을 앙각의 변화에 따라 나타내는 그래프이다.
본 발명에 따른 안테나 장치(100)는 앙각 0˚에서 360˚방향에 대해 신호를 방사하며, 각각의 앙각에서 방사된 신호의 시간영역 파형은 도 6에서 나타낸, 0˚에서 90˚방향에 대한 시간영역 파형과 대칭적으로 간주될 수 있다. 즉, 도 6에서 30˚방향의 시간영역 파형은 150˚, 210˚, 330˚방향의 시간영역 파형과 동일하다.
도 4에서, drive point 에서 처음 인가된 신호는 슬롯 암을 따라 원형 파면을 이루며 진행하게 된다(410). 시간이 지남에 따라 원형파면은 점점 더 크기가 커지게 되고, 슬롯에 로드된 저항에 의해 인가된 신호의 파워가 소모되어 신호의 세기는 점점 더 약해진다(420). 원형파면이 슬롯의 끝단에 이르렀을 때, 이와 같이 약해진 신호는 반사가 일어나지 않고 그대로 진행하게 된다(430).
즉, 안테나는 도 6에서와 같이 급전부에서만 방사(610)가 이루어지기 때문에, 추가적인 방사 신호가 존재하지 않아 센싱용으로 적합한 시간 영역 특성을 가지게 된다.
반면 공진모드로 동작하는 일반적인 슬롯안테나의 경우 도 5에서, drive point 에서 처음 인가된 신호는 슬롯 암을 따라 원형 파면을 이루며 진행하게 된다(510). 시간이 지남에 따라 원형파면은 점점 더 크기가 커지게 되고, 일반적인 슬롯 안테나의 경우 로드된 저항이 없으므로 신호는 저항에 의한 파워소모없이 본 신호의 세기를 유지하게 된다(520). 원형파면이 슬롯의 끝단에 이르렀을 때, 신호는 반사가 발생하여 2차 원형파면이 슬롯 끝단을 중심으로 형성되고, 이와 같이 슬롯 끝단에서 발생한 반사파가 drive point 로 돌아오게 된다(530).
즉, 안테나는 도 7에서와 같이 급전부에서 뿐만 아니라 전자파가 슬롯 암을 진행하는 데 걸리는 시간을 주기로 계속 방사(710)가 이루어진다. 일반적인 슬롯 안테나가 레이더로 사용되었을 경우, 방사된 전자파가 목표물을 맞고 돌아오는 신호인지 아니면 이와 같이 안테나 내부에서 반사되는 신호인지 구분하기 어려워 적합하게 사용될 수 없는 반면, 도 1의 슬롯 안테나 장치의 경우, 안테나 내부에서 발생한 반사신호를 효과적으로 제거할 수 있으므로 목표물을 맞고 돌아오는 신호를 정확하게 판별할 수 있어 센싱용으로 적합한 특성을 가지게 된다.
도 8은 본 발명에 따른 안테나 장치의 제조 방법의 일 실시예를 설명하기 위한 흐름도이다.
도 8을 참조하면, 단계 S810은 접지용 도체로 형성되어 접지기능을 수행하는 접지판을 형성한다. 단계 S820은 특정 폭과 길이로 형성된 슬롯을 상기 접지판의 상부에 형성한다.
일 실시예에서, 단계 S820은 슬롯의 특정 부분에 급전을 위한 신호가 인가되는 급전부를 형성하고, 급전부에서 소정 간격만큼 떨어져 슬롯의 폭을 가로지는 방향으로 복수의 칩저항들을 형성한다. 여기에서, 복수의 칩저항들 각각은 상기 슬롯의 위치에 따라 결정된 저항 값, 기 설정된 저항 값 및 상기 안테나 장치의 배열구조에 따라 결정된 저항 값 중 어느 하나의 저항 값을 가질 수 있다.
일 실시예에서, 단계 S820은 안테나 장치(100)의 사양에 따른 공진 주파수에 따라 소정 간격만큼 이격시켜 복수의 칩저항들을 각각 형성할 수 있다. 다른 일 실시예에서, 단계 S820은 급전부와 복수의 칩저항들 사이에서 발생되는 공진 주파수와 안테나 장치(100)의 사양에 따른 공진 주파수의 비교 결과에 따라 소정 간격만큼 이격시켜 복수의 칩저항들을 각각 형성할 수 있다. 예를 들어, 단계 S820은 급전부와 상기 복수의 칩저항들 사이에서 발생되는 공진 주파수가 상기 안테나 장치의 사양에 따른 공진 주파수보다 크도록 소정 간격만큼 이격시켜 복수의 칩저항들을 각각 형성할 수 있다.
지금까지 본 발명에 따른 구체적인 실시예에 관하여 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서는 여러 가지 변형이 가능함은 물론이다. 그러므로, 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 안 되며, 후술하는 특허 청구의 범위뿐 아니라 이 특허 청구의 범위와 균등한 것들에 의해 정해져야 한다.

Claims (14)

  1. 접지용 도체로 형성되어 접지기능을 수행하는 접지판; 및
    특정 폭과 길이로 형성되어 상기 접지판의 상부에 위치하는 슬롯을 포함하고,
    상기 슬롯은
    급전을 위한 신호가 인가되는 급전부 및 상기 급전부에서 소정 간격만큼 떨어져 상기 슬롯의 폭을 가로지는 방향으로 위치하는 복수의 칩저항들을 포함하는 안테나 장치.
  2. 제1항에 있어서,
    상기 복수의 칩저항들 각각은
    상기 슬롯의 위치에 따라 결정된 저항 값, 기 설정된 저항 값 및 상기 안테나 장치의 배열구조에 따라 결정된 저항 값 중 어느 하나의 저항 값을 가지는 것을 특징으로 하는 안테나 장치.
  3. 제1항에 있어서,
    상기 소정 간격은
    상기 안테나 장치의 사양에 따른 공진 주파수에 따라 결정되는 것을 특징으로 하는 안테나 장치.
  4. 제3항에 있어서,
    상기 소정 간격은
    상기 급전부와 상기 복수의 칩저항들 사이에서 발생되는 공진 주파수와 상기 안테나 장치의 사양에 따른 공진 주파수의 비교 결과에 따라 결정되는 것을 특징으로 하는 안테나 장치.
  5. 제4항에 있어서,
    상기 소정 간격은
    상기 급전부와 상기 복수의 칩저항들 사이에서 발생되는 공진 주파수와 상기 안테나 장치의 사양에 따른 공진 주파수를 비교하여 상기 공진 주파수보다 크도록 설정되는 것을 특징으로 하는 안테나 장치.
  6. 제1항에 있어서,
    상기 복수의 칩저항들 각각은
    상기 급전부에 급전을 위한 신호가 인가되면 상기 신호의 파워를 소모시키는 것을 특징으로 하는 안테나 장치.
  7. 제1항에 있어서,
    상기 접지판은
    상기 안테나 장치의 사양에 따른 흡수율 및 흡수 손실율을 가지는 것을 특징으로 하는 안테나 장치.
  8. 접지용 도체로 형성되어 접지기능을 수행하는 접지판을 형성하는 단계; 및
    특정 폭과 길이로 형성된 슬롯을 상기 접지판의 상부에 형성하는 단계를 포함하고,
    상기 슬롯은
    급전을 위한 신호가 인가되는 급전부 및 상기 급전부에서 소정 간격만큼 떨어져 상기 슬롯의 폭을 가로지는 방향으로 위치하는 복수의 칩저항들을 포함하는 안테나 장치의 제조 방법.
  9. 제8항에 있어서,
    상기 복수의 칩저항들 각각은
    상기 슬롯의 위치에 따라 결정된 저항 값, 기 설정된 저항 값 및 상기 안테나 장치의 배열구조에 따라 결정된 저항 값 중 어느 하나의 저항 값을 가지는 것을 특징으로 하는 안테나 장치의 제조 방법.
  10. 제8항에 있어서,
    상기 안테나 장치의 사양에 따른 공진 주파수에 따라 소정 간격만큼 이격시켜 복수의 칩저항들을 각각 형성하는 단계를 포함하는 것을 특징으로 하는 안테나 장치의 제조 방법.
  11. 제10항에 있어서,
    상기 급전부와 상기 복수의 칩저항들 사이에서 발생되는 공진 주파수와 상기 안테나 장치의 사양에 따른 공진 주파수의 비교 결과에 따라 소정 간격만큼 이격시켜 복수의 칩저항들을 각각 형성하는 단계를 포함하는 것을 특징으로 하는 안테나 장치의 제조 방법.
  12. 제11항에 있어서,
    상기 급전부와 상기 복수의 칩저항들 사이에서 발생되는 공진 주파수가 상기 안테나 장치의 사양에 따른 공진 주파수보다 크도록 소정 간격만큼 이격시켜 복수의 칩저항들을 각각 형성하는 단계를 것을 특징으로 하는 안테나 장치의 제조 방법.
  13. 제8항에 있어서,
    상기 복수의 칩저항들 각각은
    상기 급전부에 급전을 위한 신호가 인가되면 상기 신호의 파워를 소모시키는 것을 특징으로 하는 안테나 장치의 제조 방법.
  14. 제8항에 있어서,
    상기 접지판은
    상기 안테나 장치의 사양에 따른 흡수율 및 흡수 손실율을 가지는 것을 특징으로 하는 안테나 장치의 제조 방법.
PCT/KR2013/012400 2013-05-14 2013-12-30 안테나 장치 및 이의 제조 방법 WO2014185617A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/888,703 US10020588B2 (en) 2013-05-14 2013-12-30 Antenna device and method for manufacturing same
JP2016513857A JP6140368B2 (ja) 2013-05-14 2013-12-30 アンテナ装置及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130054161A KR101471931B1 (ko) 2013-05-14 2013-05-14 안테나 장치 및 이의 제조 방법
KR10-2013-0054161 2013-05-14

Publications (1)

Publication Number Publication Date
WO2014185617A1 true WO2014185617A1 (ko) 2014-11-20

Family

ID=51898569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/012400 WO2014185617A1 (ko) 2013-05-14 2013-12-30 안테나 장치 및 이의 제조 방법

Country Status (4)

Country Link
US (1) US10020588B2 (ko)
JP (1) JP6140368B2 (ko)
KR (1) KR101471931B1 (ko)
WO (1) WO2014185617A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101726704B1 (ko) * 2015-10-22 2017-04-14 아주대학교산학협력단 페브리 페로형의 고이득 공진 안테나
CN106785456A (zh) * 2017-01-18 2017-05-31 佛山市盛夫通信设备有限公司 一种低剖面吸顶天线
CN109765069B (zh) * 2019-01-28 2021-09-07 晶晨半导体(深圳)有限公司 散热器测试方法及***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900004062A (ko) * 1988-08-08 1990-03-27 구니따까 아리무라 슬롯 배열 안테나
KR20040077052A (ko) * 2003-02-27 2004-09-04 한국전자통신연구원 광대역 슬롯 안테나 및 그를 이용한 슬롯 배열 안테나
KR100562952B1 (ko) * 2003-08-05 2006-03-22 박익모 다양한 복사패턴을 갖는 다중 대역용 다기능마이크로스트립 스파이럴 안테나
JP2007060127A (ja) * 2005-08-23 2007-03-08 Sony Corp スロット・アンテナ
US20100176998A1 (en) * 2004-06-28 2010-07-15 Juha Sorvala Chip antenna apparatus and methods

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4006481A (en) * 1975-12-10 1977-02-01 The Ohio State University Underground, time domain, electromagnetic reflectometry for digging apparatus
JPS6023199A (ja) 1983-07-20 1985-02-05 トキコ株式会社 給油装置
SE515832C2 (sv) * 1999-12-16 2001-10-15 Allgon Ab Slitsantennanordning
JP2001185928A (ja) * 1999-12-22 2001-07-06 Asahi Glass Co Ltd 車両用ガラスアンテナ
KR100716636B1 (ko) * 2002-12-06 2007-05-09 가부시키가이샤후지쿠라 안테나
EP1859508A1 (en) * 2005-03-15 2007-11-28 Fractus, S.A. Slotted ground-plane used as a slot antenna or used for a pifa antenna.
KR100756312B1 (ko) * 2005-12-30 2007-09-06 인탑스 주식회사 공진주파수 및 입력 임피던스 조절 가능한 다중 대역내장형 안테나
EP2073312B1 (de) * 2007-12-18 2011-04-20 Rohde & Schwarz GmbH & Co. KG Antennenkoppler
JP5050986B2 (ja) * 2008-04-30 2012-10-17 ソニー株式会社 通信システム
JP5054638B2 (ja) * 2008-08-27 2012-10-24 富士通コンポーネント株式会社 通信装置及びこれを用いたシステム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900004062A (ko) * 1988-08-08 1990-03-27 구니따까 아리무라 슬롯 배열 안테나
KR20040077052A (ko) * 2003-02-27 2004-09-04 한국전자통신연구원 광대역 슬롯 안테나 및 그를 이용한 슬롯 배열 안테나
KR100562952B1 (ko) * 2003-08-05 2006-03-22 박익모 다양한 복사패턴을 갖는 다중 대역용 다기능마이크로스트립 스파이럴 안테나
US20100176998A1 (en) * 2004-06-28 2010-07-15 Juha Sorvala Chip antenna apparatus and methods
JP2007060127A (ja) * 2005-08-23 2007-03-08 Sony Corp スロット・アンテナ

Also Published As

Publication number Publication date
JP6140368B2 (ja) 2017-05-31
KR20140134394A (ko) 2014-11-24
US20160087341A1 (en) 2016-03-24
US10020588B2 (en) 2018-07-10
KR101471931B1 (ko) 2014-12-24
JP2016518797A (ja) 2016-06-23

Similar Documents

Publication Publication Date Title
US5959591A (en) Transverse electromagnetic horn antenna with resistively-loaded exterior surfaces
US4149170A (en) Multiport cable choke
US9103864B2 (en) Non-intrusive cable fault detection and methods
WO2017039161A1 (ko) 레이더 모듈 및 이를 포함하는 차량용 레이더 장치
US7750861B2 (en) Hybrid antenna including spiral antenna and periodic array, and associated methods
WO2016056767A1 (ko) 차량용 레이더 장치
GB2194681A (en) Slotted waveguide antenna and array
WO2014185617A1 (ko) 안테나 장치 및 이의 제조 방법
CN108173002A (zh) 一种基于共形Vivaldi天线的复合极化敏感阵列装置
US6211839B1 (en) Polarized planar log periodic antenna
WO2020085656A1 (ko) 레이더용 안테나
EP3584880B1 (en) Electronic device
WO2020027453A1 (ko) 지면 이격형 지표투과레이다 안테나
JP2001345624A (ja) アレーアンテナ装置
US7852277B2 (en) Circularly polarized horn antenna
JP5622881B2 (ja) 漏洩同軸ケーブル
Kubo et al. Detection of paper sheets based on variation of antenna resonance characteristics
WO2021125466A1 (ko) 전자기 밴드갭 구조물
JP3502945B2 (ja) 電波式センサ
CN210576438U (zh) 一种圆极化阵列Vivaldi天线
KR102187282B1 (ko) 로딩형 슬롯 안테나 및 로딩형 슬롯 안테나 기반 시추공 레이다 시스템
US2961659A (en) Signal processing arrangement having septum divided horn
JP5639097B2 (ja) アンテナ
US20060061514A1 (en) Broadband symmetrical dipole array antenna
CN110416687A (zh) 电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13884607

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14888703

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016513857

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 13884607

Country of ref document: EP

Kind code of ref document: A1