WO2014184880A1 - 単層で加熱接合機能を有するアルミニウム合金材及びその製造方法、ならびに、当該アルミニウム合金材を用いたアルミニウム接合体 - Google Patents

単層で加熱接合機能を有するアルミニウム合金材及びその製造方法、ならびに、当該アルミニウム合金材を用いたアルミニウム接合体 Download PDF

Info

Publication number
WO2014184880A1
WO2014184880A1 PCT/JP2013/063454 JP2013063454W WO2014184880A1 WO 2014184880 A1 WO2014184880 A1 WO 2014184880A1 JP 2013063454 W JP2013063454 W JP 2013063454W WO 2014184880 A1 WO2014184880 A1 WO 2014184880A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
alloy material
less
mass
aluminum
Prior art date
Application number
PCT/JP2013/063454
Other languages
English (en)
French (fr)
Inventor
黒崎友仁
新倉昭男
寺山和子
村瀬崇
松居悠
望月淳一
荒木俊雄
Original Assignee
株式会社Uacj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Uacj filed Critical 株式会社Uacj
Priority to EP13884783.5A priority Critical patent/EP2998412B1/en
Priority to PCT/JP2013/063454 priority patent/WO2014184880A1/ja
Priority to CN201380076617.5A priority patent/CN105229182B/zh
Priority to MX2015015592A priority patent/MX2015015592A/es
Priority to KR1020157034644A priority patent/KR102118856B1/ko
Priority to BR112015028766-2A priority patent/BR112015028766B1/pt
Priority to JP2014527099A priority patent/JP5732594B2/ja
Priority to MYPI2015703871A priority patent/MY173798A/en
Priority to US14/891,085 priority patent/US20160089860A1/en
Publication of WO2014184880A1 publication Critical patent/WO2014184880A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/016Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of aluminium or aluminium alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/04Casting aluminium or magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent

Definitions

  • the present invention heats the other members in a single layer by supplying a liquid phase necessary for joining without using a joining member such as a brazing material or a filler material and the material itself is in a semi-molten state.
  • a joining member such as a brazing material or a filler material
  • Aluminum alloy material that can be joined and joining method thereof, and aluminum joined body using the aluminum material and more specifically, an aluminum alloy material that can be heat joined in a single layer excellent in deformation resistance during joining heating, and its
  • the present invention relates to a joining method and an aluminum joined body using the aluminum material.
  • brazing methods In manufacturing a structure such as a heat exchanger having an aluminum alloy material as a constituent member, it is necessary to join aluminum alloy materials together or an aluminum alloy material and a different material.
  • Various methods are known for joining aluminum alloy materials, and brazing methods (brazing methods) are often used among them.
  • the brazing method is often used because it takes into account advantages such as being able to obtain a strong bond in a short time without melting the base material.
  • Examples of a method for producing a heat exchanger using a joining method of an aluminum alloy material by a brazing method include a method using a brazing sheet clad with a brazing material made of an Al—Si alloy; an extruded material coated with a powder brazing material And a method in which a brazing material is separately applied to a portion that needs to be joined after assembling each material (Patent Documents 1 to 3). Furthermore, the section of “3.2 Brazing sheet” in Non-Patent Document 1 describes details of these clad brazing sheets and powder brazing materials.
  • brazing methods have been developed in the manufacture of aluminum alloy structural bodies.
  • a method of using a brazing sheet in which a tube material is clad with a brazing material, or a method of separately applying Si powder or Si-containing wax to the tube material was adopted.
  • the tube material is used as a single layer, a method of using a brazing sheet in which a fin material is clad with a brazing material has been adopted.
  • Patent Document 4 describes a method using a single-layer brazing sheet instead of the clad brazing sheet described above. In this method, it has been proposed to use a single layer brazing sheet for a heat exchanger for the tube material and the tank material of the heat exchanger.
  • an aluminum alloy material called a single-layer brazing sheet and used in the MONOBRAZE method is referred to as an aluminum alloy material having a single-layer heat bonding function in the present invention.
  • Patent Document 5 in a method of manufacturing a joined body using a single-layer aluminum alloy material, by controlling the alloy composition, temperature during joining, pressurization, surface properties, etc., it is possible to obtain a good joint and deform. There has been proposed a joining method in which almost no occurrence occurs. In the present invention, the joining method disclosed in Patent Document 5 is called a MONOBRAZE method.
  • Patent Document 6 discloses a structure in which a single layer aluminum alloy is used as a tube material, and a good bondability is obtained by controlling the size of dispersed particles in the tube material when a heat exchanger is manufactured by the MONOBRAZE method. Has been proposed.
  • brazing sheet In order to produce a clad material such as a brazing sheet, it is necessary to produce each layer separately and further to laminate them.
  • the use of a brazing sheet is against the demand for cost reduction of heat exchangers and the like. Also, the application of the powder brazing material is reflected in the product cost by the amount of the brazing material cost.
  • the present invention has been made based on the background as described above.
  • the temperature of the solidus is higher than the solidus temperature at the time of joining heating.
  • a single-layer aluminum alloy material excellent in deformation resistance and a joining method thereof, and an aluminum joined body using the aluminum alloy material It is what we propose.
  • the present invention is suitable for a thin material such as a fin material for a heat exchanger.
  • the present inventors have improved the aluminum alloy material used in the MONOBRAZE method, so that it is heated to a temperature higher than the solidus temperature at the time of bonding heating and becomes a semi-molten state.
  • the present inventors have found that an aluminum alloy material excellent in deformation resistance during bonding heating has been obtained, and the present invention has been completed.
  • the aluminum alloy material according to the present invention is made of an aluminum alloy containing Si: 1.0 to 5.0 mass%, Fe: 0.01 to 2.0 mass%, the balance being Al and inevitable impurities, Al system intermetallic compound having an equivalent circle diameter of .01 ⁇ 0.5 [mu] m is 10 ⁇ 1 ⁇ 10 4 cells / [mu] m 3 exists, Si-based intermetallic compound having an equivalent circle diameter of 5.0 ⁇ 10 [mu] m is 200 An aluminum alloy material having a heat bonding function with a single layer characterized by the presence of / mm 2 or less.
  • the amount of solute Si contained in the aluminum alloy is 0.7% or less.
  • the aluminum alloy further contains one or more selected from Mg: 0.05 to 2.0 mass%, Cu: 0.05 to 1.5 mass%, and Mn: 0.05 to 2.0 mass%. You should do it.
  • the aluminum alloy may further contain one or more selected from Zn: 6.0 mass% or less, In: 0.3 mass% or less, and Sn: 0.3 mass% or less.
  • the aluminum alloy is selected from Ti: 0.3 mass% or less, V: 0.3 mass% or less, Cr: 0.3 mass% or less, Ni: 2.0 mass% or less, and Zr: 0.3 mass% or less. Or it is good to further contain 2 or more types.
  • the aluminum alloy is one selected from Be: 0.1 mass% or less, Sr: 0.1 mass% or less, Bi: 0.1 mass% or less, Na: 0.1 mass% or less, and Ca: 0.05 mass% or less. Or it is good to further contain 2 or more types.
  • the aluminum alloy has a tensile strength of 80 to 250 MPa before heat bonding.
  • the present invention is also a method for producing an aluminum alloy material having a heat bonding function with a single layer as described above, wherein the aluminum alloy for the aluminum alloy material is continuously rolled and rolled, and a rolled plate is cooled.
  • the annealing conditions in all annealing processes are 1 to 2 at a temperature of 250 to 550 ° C. It includes a method for producing an aluminum alloy material having a single layer and a heat bonding function, characterized in that it is 10 hours and the rolling reduction in the final cold rolling stage is 50% or less.
  • a rolled plate having a thickness of 1 to 500 ⁇ m mainly composed of aluminum and aluminum oxide is rolled in a state of adhering to the surface of the twin roll, and the rolling plate width is about 1 mm. It is assumed that the rolling load is 500 to 5000 N.
  • the present invention further provides an aluminum joined body manufactured by heat-joining two or more aluminum members, and using the aluminum alloy material described above for at least one of the two or more aluminum members. Including.
  • the crystal grain size in the metal structure of the aluminum alloy material used for at least one of the two or more members is 100 ⁇ m or more.
  • the aluminum alloy material according to the present invention has a heat bonding function with a single layer unlike conventional bonding methods such as brazing, and can be bonded to various members to be bonded in a single layer state. And although it will be in a semi-molten state at the time of joining heating, it is an aluminum material excellent in deformation resistance. Thereby, the request
  • FIG. 4 is an external view of a three-stage test piece (minicore) used in the first to third embodiments.
  • This aluminum alloy material contains, as essential elements, Si concentration: 1.0 to 5.0 mass% (hereinafter, simply referred to as “%”) and Fe: 0.01 to 2.0%, the balance being Al and inevitable
  • % Si concentration: 1.0 to 5.0 mass%
  • Fe Fe
  • An Al—Si—Fe-based aluminum alloy composed of impurities has a basic composition, and an Al-based intermetallic compound having a circle-equivalent diameter of 0.01 to 0.5 ⁇ m exists in the metal structure.
  • Si is an element that generates an Al—Si-based liquid phase and contributes to bonding.
  • Si concentration is defined as 1.0% to 5.0%.
  • the Si concentration is preferably 1.5% to 3.5%, more preferably 2.0% to 3.0%. Since the amount of the liquid phase that oozes out increases as the volume increases and the heating temperature increases, the amount of the liquid phase required during heating depends on the amount of Si required for the structure of the structure to be manufactured and the bonding heating. It is desirable to adjust the temperature.
  • Fe has the effect of improving the strength by being slightly dissolved in the matrix, and also has the effect of preventing the strength from being lowered particularly at high temperatures by being dispersed as a crystallized product or a precipitate. .
  • the addition amount of Fe is less than 0.01%, not only the above effect is small, but also high purity metal must be used and the cost increases.
  • it exceeds 2.0% a coarse intermetallic compound is produced at the time of casting, causing a problem in manufacturability. Further, when the joined body is exposed to a corrosive environment (particularly a corrosive environment in which a liquid flows), the corrosion resistance decreases.
  • the addition amount of Fe is set to 0.01% to 2.0%.
  • a preferable addition amount of Fe is 0.2% to 1.0%.
  • the aluminum alloy material according to the present invention is heated to the solidus temperature or higher during bonding heating by the MONOBRAZE method. At this time, the aluminum alloy material is deformed mainly by grain boundary sliding. Therefore, as the metal structure, (1) it is desirable that the crystal grains become coarse during bonding heating. (2) Further, when a liquid phase is generated at the grain boundary, deformation due to the grain boundary slip is likely to occur, so that it is desirable to suppress generation of the liquid phase at the grain boundary. In the present invention, the crystal structure after heating becomes coarse, and the metal structure in which the liquid phase generation at the grain boundary is suppressed is defined.
  • an Al-based intermetallic compound having an equivalent circle diameter of 0.01 to 0.5 ⁇ m exists as dispersed particles.
  • This Al-based intermetallic compound is composed of Al-Fe-based, Al-Fe-Si-based, Al-Mn-Si-based, Al-Fe-Mn-based, Al-Fe-Mn-Si-based compounds, etc. It is an intermetallic compound to be formed.
  • An Al-based intermetallic compound having a circle-equivalent diameter of 0.01 to 0.5 ⁇ m does not become a recrystallization nucleus when heated, but functions as pinning particles that suppress the growth of grain boundaries.
  • the aluminum alloy material according to the present invention has an Al-based intermetallic compound having an equivalent circle diameter of 0.01 to 0.5 ⁇ m, the recrystallization nuclei are prevented from growing innumerably during heating, and the limited recrystallization nuclei. Since only the crystal grows, the crystal grains after heating become coarse. Further, by collecting solid solution Si in the grains, liquid phase generation at the grain boundaries is relatively suppressed.
  • volume density of Al type intermetallic compound The effect of said Al type intermetallic compound is more reliably exhibited because the volume density of Al type intermetallic compound is an appropriate range. Specifically, it exists at a volume density of 10 to 1 ⁇ 10 4 pieces / ⁇ m 3 in any part of the material. When the volume density is less than 10 particles / ⁇ m 3 , the pinning effect is too small, so that the number of recrystallized grains that can be grown increases and coarse crystal grains are hardly formed. In addition, since the nuclei for liquid phase generation are reduced, the action of collecting the solid solution Si within the grains is not sufficiently exerted, and the ratio of the solid solution Si within the grains contributing to the growth of the liquid phase generated at the grain boundaries increases.
  • the deformation resistance is reduced.
  • the volume density exceeds 1 ⁇ 10 4 particles / ⁇ m 3 , since the pinning effect is too great, the growth of all recrystallized grains is suppressed and coarse crystal grains are hardly formed.
  • generation since there are too many nuclei of liquid phase production
  • the volume density is within the above range.
  • the volume density is preferably 50 to 5 ⁇ 10 3 pieces / ⁇ m 2 , and more preferably 100 to 1 ⁇ 10 3 pieces / ⁇ m 2 .
  • Al-based intermetallic compounds having an equivalent circle diameter of less than 0.01 ⁇ m are excluded because they are substantially difficult to measure.
  • Al-based intermetallic compounds having an equivalent circle diameter of more than 0.5 ⁇ m exist, they do not act effectively as pinning particles, so the effects according to the present invention are small and are not regulated.
  • An Al-based intermetallic compound having an equivalent circle diameter of more than 0.5 ⁇ m can act as a nucleus for liquid phase formation.
  • an Al-based intermetallic compound having an equivalent circle diameter exceeding 0.5 ⁇ m reduces the effect of collecting solute Si per volume of the compound. Also excluded from the scope.
  • the equivalent circle diameter of the Al-based intermetallic compound can be determined by TEM observation of a thin-walled sample by electrolytic polishing.
  • the equivalent circle diameter means the equivalent circle diameter. It is preferable to obtain the equivalent circle diameter before joining by analyzing the TEM observation image as a two-dimensional image in the same manner as the SEM observation image.
  • the film thickness of the sample is also measured using the EELS method or the like in each field of view observed by TEM. After image analysis of the TEM observation image as a two-dimensional image, the measurement volume is obtained by multiplying the measurement area of the two-dimensional image by the film thickness measured by the EELS method, and the volume density is calculated.
  • Si-based intermetallic compounds and Al-based intermetallic compounds can be more accurately distinguished by elemental analysis using EDS or the like.
  • the aluminum alloy material having a heat bonding function with a single layer according to the present invention having characteristics in the Si and Fe concentration ranges and the metal structure is in a semi-molten state to supply a liquid phase during bonding heating. This makes it possible to join and has excellent deformation resistance.
  • Si type intermetallic compound In addition to the prescription
  • Si-based intermetallic compounds having a circle-equivalent diameter of 5.0 to 10 ⁇ m are present in a cross section in the material of 200 pieces / mm 2 or less.
  • the Si-based intermetallic compound includes (1) elemental Si, and (2) an element such as Ca or P in part of elemental Si.
  • the cross section in the material is an arbitrary cross section of the aluminum alloy material, for example, a cross section along the thickness direction, or a cross section parallel to the plate material surface. From the viewpoint of simplicity of material evaluation, it is preferable to adopt a cross section along the thickness direction.
  • Si-based intermetallic compound having a circle-equivalent diameter of 5.0 ⁇ m to 10 ⁇ m becomes a nucleus of recrystallization when heated. For this reason, when the surface density of the Si-based intermetallic compound exceeds 200 / mm 2 , the crystal grains become fine because of many recrystallization nuclei, and the deformation resistance during bonding heating decreases. If the surface density of the Si-based intermetallic compound is 200 pieces / mm 2 or less, since the number of recrystallized nuclei is small, only specific crystal grains grow and coarse crystal grains are obtained, which is resistant to deformation during bonding heating. Improves.
  • the surface density is preferably 20 pieces / mm 2 or less. Note that the smaller the amount of Si-based intermetallic compound having an equivalent circle diameter of 5.0 ⁇ m to 10 ⁇ m, the better the deformation resistance. Therefore, the surface density is most preferably 0 piece / mm 2 .
  • the equivalent circle diameter of the Si-based intermetallic compound is limited to 5.0 ⁇ m to 10 ⁇ m for the following reason. Although Si-based intermetallic compounds having an equivalent circle diameter of less than 5.0 ⁇ m exist, they were excluded from the subject because they do not work as recrystallization nuclei. In addition, Si-based intermetallic compounds having an equivalent circle diameter exceeding 10 ⁇ m cause cracks during production and are difficult to produce. Therefore, since the Si-based intermetallic compound having such a large equivalent circle diameter is not present in the aluminum alloy, it was also excluded from the object.
  • the equivalent circle diameter of the Si-based intermetallic compound can be determined by performing SEM observation (reflection electron image observation) of the cross section.
  • the equivalent circle diameter means the equivalent circle diameter. It is preferable to obtain the equivalent circle diameter of the dispersed particles before joining by image analysis of the SEM photograph. The surface density can be calculated from the image analysis result and the measurement area. Further, the Si-based intermetallic compound and the Al-based intermetallic compound can also be distinguished by contrast contrast by SEM-reflection electron image observation. Further, the metal species of the dispersed particles can be more accurately specified by EPMA (X-ray microanalyzer) or the like.
  • Si solid solution amount is prescribed
  • the aluminum alloy material according to the present invention preferably has a Si solid solution amount of 0.7% or less before bonding by the MONOBRAZE method.
  • the Si solid solution amount is a measured value at room temperature of 20 to 30 ° C.
  • solute Si diffuses in the solid phase during heating and contributes to the growth of the surrounding liquid phase. If the amount of solute Si is 0.7% or less, the amount of liquid phase generated at the grain boundary due to diffusion of solute Si is reduced, and deformation during heating can be suppressed.
  • solute Si is 0.6% or less.
  • the lower limit of the amount of solute Si is not specifically limited, it naturally depends on the Si content of the aluminum alloy and the manufacturing method, and is 0% in the present invention.
  • a single layer aluminum alloy material having a heat bonding function according to the present invention has a predetermined amount of Si as an essential element in order to improve deformation resistance during bonding heating. And Fe.
  • Si and Fe In order to further improve the strength, in addition to the essential elements Si and Fe, one or more selected from a predetermined amount of Mn, Mg and Cu are further added as the first selective additive element. Is done. Even when such a first selective additive element is contained, the volume density of the Al-based intermetallic compound and the surface density of the Si-based intermetallic compound are defined as described above.
  • Mn Mn forms Al—Mn—Si, Al—Mn—Fe—Si, and Al—Mn—Fe intermetallic compounds together with Si and Fe, and acts as dispersion strengthening, or an aluminum matrix It is an important additive element that improves the strength by solid solution and solid solution strengthening. If the amount of Mn added exceeds 2.0%, a coarse intermetallic compound is easily formed and the corrosion resistance is lowered. On the other hand, if the amount of Mn added is less than 0.05%, the above effect is insufficient. Therefore, the amount of Mn added is 0.05 to 2.0% or less. A preferable Mn addition amount is 0.1% to 1.5%.
  • Mg Mg undergoes age hardening by Mg 2 Si after bonding heating, and the strength is improved by this age hardening.
  • Mg is an additive element that exhibits the effect of improving the strength. If the amount of Mg added exceeds 2.0%, it reacts with the flux to form a high melting point compound, so that the bondability is significantly lowered. On the other hand, if the amount of Mg added is less than 0.05%, the above effect is insufficient. Therefore, the amount of Mg added is 0.05 to 2.0%. A preferable amount of Mg is 0.1% to 1.5%.
  • Cu Cu is an additive element that improves the strength by solid solution in the matrix.
  • the amount of Cu added exceeds 1.5%, the corrosion resistance decreases.
  • the addition amount of Cu is set to 0.05 to 1.5%.
  • a preferable Cu addition amount is 0.1% to 1.0%.
  • Second selective additive element in order to further improve the corrosion resistance, in addition to the essential element and / or the first selective additive element, a predetermined amount of Zn, In and Sn is selected. One kind or two or more kinds are further added as a second selective additive element. Even when such a second selective additive element is contained, the volume density of the Al-based intermetallic compound and the surface density of the Si-based intermetallic compound are defined as described above.
  • Zn addition amount is set to 6.0% or less.
  • a preferable Zn addition amount is 0.05% to 6.0%.
  • Sn and In Sn and In have an effect of exerting a sacrificial anodic action.
  • the corrosion rate increases and the self-corrosion resistance decreases. Therefore, the addition amounts of Sn and In are each 0.3% or less.
  • a preferable addition amount of Sn and In is 0.05% to 0.3%, respectively.
  • the third selective additive element in order to further improve the strength and corrosion resistance, in addition to at least one of the essential element, the first selective additive element and the second selective additive element, One or more selected from a predetermined amount of Ti, V, Cr, Ni and Zr is further added as a third selective additive element. Even when such a third selective additive element is contained, the volume density of the Al-based intermetallic compound and the surface density of the Si-based intermetallic compound are defined as described above.
  • Ti and V are distributed in layers and have an effect of preventing the progress of corrosion in the thickness direction. When the added amount exceeds 0.3%, coarse crystals are generated, which impairs moldability and corrosion resistance. Therefore, the added amounts of Ti and V are each 0.3% or less. A preferable addition amount of Ti and V is 0.05% to 0.3%, respectively.
  • Ni Ni crystallizes or precipitates as an intermetallic compound, and exhibits the effect of improving the strength after bonding by dispersion strengthening.
  • the amount of Ni added is in the range of 2.0% or less, preferably in the range of 0.05% to 2.0%. When the Ni content exceeds 2.0%, it becomes easy to form a coarse intermetallic compound, and the workability is lowered and the self-corrosion resistance is also lowered.
  • Zr Zr precipitates as an Al—Zr-based intermetallic compound, and exhibits the effect of improving the strength after bonding by dispersion strengthening.
  • the Al—Zr-based intermetallic compound acts on the coarsening of crystal grains during heating.
  • the addition amount exceeds 0.3%, it becomes easy to form a coarse intermetallic compound, and the plastic workability is lowered. Therefore, the amount of Zr added is set to 0.3% or less.
  • a preferable Zr addition amount is 0.05% to 0.3%.
  • the fourth selective additive element In the aluminum alloy material according to the present invention, in order to further improve the bondability by improving the characteristics of the liquid phase, the essential elements and the first to third selective additive elements are added. In addition to at least one, one or more selected from a predetermined amount of Be, Sr, Bi, Na, and Ca may be further added as the fourth selective additive element. Even when such a fourth selective additive element is contained, the volume density of the Al-based intermetallic compound and the surface density of the Si-based intermetallic compound are defined as described above.
  • Such elements include Be: 0.1% or less, Sr: 0.1% or less, Bi: 0.1% or less, Na: 0.1% or less, and Ca: 0.05% or less. Two or more kinds are added as necessary.
  • the preferred ranges of these elements are Be: 0.0001% to 0.1%, Sr: 0.0001% to 0.1%, Bi: 0.0001% to 0.1%, Na: 0.0. 0001% to 0.1% or less, Ca: 0.0001% to 0.05% or less.
  • These trace elements can improve the bondability by fine dispersion of Si particles, improvement in fluidity of the liquid phase, and the like. If these trace elements are less than the above-mentioned preferable specified range, effects such as fine dispersion of Si particles and improvement of fluidity of the liquid phase may be insufficient. On the other hand, when the above preferred range is exceeded, adverse effects such as a decrease in corrosion resistance occur.
  • the aluminum alloy material that generates the liquid phase of the present invention preferably has a difference between the solid phase temperature and the liquidus temperature of 10 ° C. or more.
  • the difference between the solidus temperature and the liquidus temperature is small, the temperature range in which the solid and liquid coexist is narrowed, and the amount of liquid phase generated is controlled. Difficult to do. Therefore, this difference is preferably set to 10 ° C. or more.
  • alloys having a composition satisfying this condition include Al—Si alloys, Al—Si—Mg alloys, Al—Si—Cu alloys, Al—Si—Zn alloys, and Al—Si—Cu—Mg alloys. Can be mentioned. In addition, it becomes easy to control to an appropriate liquid phase amount, so that the difference of solidus temperature and liquidus temperature becomes large. Therefore, the upper limit of the difference between the solidus temperature and the liquidus temperature is not particularly limited.
  • the aluminum alloy material according to the present invention preferably has a tensile strength before joining by MONOBRAZE method of 80 to 250 MPa. If the tensile strength is less than 80 MPa, the strength required for molding into a product shape is insufficient, and molding cannot be performed. If this tensile strength exceeds 250 MPa, the shape retention after molding is poor, and when assembled as a joined body, a gap is formed between the other members and the jointability deteriorates.
  • the tensile strength before bonding by the MONOBRAZE method is a value measured at room temperature of 20 to 30 ° C.
  • the ratio (T / T0) of the tensile strength (T0) before joining by the MONOBRAZE method to the tensile strength (T) after joining is preferably in the range of 0.6 to 1.1. If (T / T0) is less than 0.6, the strength of the material may be insufficient, and the function as a structure may be impaired. If it exceeds 1.1, precipitation at the grain boundary becomes excessive, and the grain boundary Corrosion may occur easily.
  • the aluminum alloy material according to the present invention is manufactured using a continuous casting method.
  • the continuous casting method since the cooling rate at the time of solidification is high, coarse crystals are hardly formed, and formation of Si-based intermetallic compounds having an equivalent circle diameter of 5.0 ⁇ m to 10 ⁇ m is suppressed. As a result, since the number of recrystallization nuclei can be reduced, only specific crystal grains grow and coarse crystal grains are obtained.
  • an Al-based intermetallic compound having a circle-equivalent diameter of 0.01 ⁇ m to 0.5 ⁇ m is promoted in subsequent processing steps.
  • an Al-based intermetallic compound having an equivalent circle diameter of 0.01 ⁇ m to 0.5 ⁇ m which has the effect of pinning with an appropriate strength and the effect of collecting solute Si in the grains, Only the produced crystal grains grow, coarse crystal grains are obtained, and the formation of a liquid phase at the grain boundary is suppressed, so that the deformation resistance is improved.
  • the amount of solid solution Si in the matrix decreases due to the formation of an Al-based intermetallic compound having an equivalent circle diameter of 0.01 ⁇ m to 0.5 ⁇ m.
  • the amount of solute Si supplied to the grain boundary during bonding heating is further reduced, generation of a liquid phase at the grain boundary is suppressed, and deformation resistance is improved.
  • the continuous casting method is not particularly limited as long as it is a method of continuously casting a plate-shaped ingot such as a twin roll type continuous casting and rolling method or a twin belt type continuous casting method.
  • the twin-roll type continuous casting and rolling method is a method in which molten aluminum is supplied between a pair of water-cooled rolls from a refractory hot-water supply nozzle, and a thin plate is continuously cast and rolled.
  • the Hunter method, the 3C method, and the like are known.
  • the twin belt type continuous casting method is a method in which molten metal is poured between rotating belts facing each other up and down and solidified by cooling from the belt surface to form a slab. This is a continuous casting method in which a slab is continuously drawn out and wound into a coil.
  • the cooling rate during casting is several to several hundred times faster than the semi-continuous casting method.
  • the cooling rate in the semi-continuous casting method is 0.5 to 20 ° C./second
  • the cooling rate in the twin roll type continuous casting and rolling method is 100 to 1000 ° C./second.
  • the dispersed particles generated during casting have a feature that they are finely and densely distributed as compared with the semi-continuous casting method.
  • the generation of coarse crystals is suppressed, and the crystal grains during bonding heating become coarse.
  • the cooling rate is high, the amount of solid solution of the additive element can be increased.
  • the cooling rate in the twin roll continuous casting and rolling method is preferably 100 to 1000 ° C./second. If it is less than 100 ° C./second, it is difficult to obtain a target metal structure, and if it exceeds 1000 ° C./second, stable production becomes difficult.
  • the speed of the rolled plate when casting by the twin roll type continuous casting and rolling method is preferably 0.5 to 3 m / min.
  • the casting speed affects the cooling rate.
  • a sufficient cooling rate as described above cannot be obtained and the compound becomes coarse.
  • it exceeds 3 m / min the aluminum material is not sufficiently solidified between rolls during casting, and a normal plate-shaped ingot cannot be obtained.
  • the molten metal temperature when casting by the twin roll type continuous casting and rolling method is preferably in the range of 650 to 800 ° C.
  • the molten metal temperature is the temperature of the head box immediately before the hot water supply nozzle.
  • 650 ° C. coarse intermetallic compound dispersed particles are generated in the hot water supply nozzle, and they are mixed into the ingot to cause a sheet break during cold rolling.
  • the molten metal temperature exceeds 800 ° C., the aluminum material is not sufficiently solidified between the rolls during casting, and a normal plate-shaped ingot cannot be obtained.
  • a more preferable molten metal temperature is 680 to 750 ° C.
  • the plate thickness of the plate-shaped ingot cast by the twin roll continuous casting and rolling method is preferably 2 mm to 10 mm. In this thickness range, the solidification rate at the central portion of the plate thickness is fast, and a uniform structure can be easily obtained.
  • the plate thickness is less than 2 mm, the amount of aluminum passing through the casting machine per unit time is small, and it becomes difficult to stably supply the molten metal in the plate width direction.
  • the plate thickness exceeds 10 mm, winding with a roll becomes difficult.
  • a more preferable plate thickness of the plate-shaped ingot is 4 mm to 8 mm.
  • annealing is performed at 250 to 550 ° C. for 1 to 10 hours. This annealing may be performed in any process except the final cold rolling in the manufacturing process after casting, and it is necessary to perform it once or more.
  • the upper limit of the number of times of annealing is preferably 3 times, more preferably 2 times. This annealing is performed in order to soften the material and make it easy to obtain the desired material strength by final rolling. By this annealing, the size and density of the intermetallic compound in the material and the solid solution amount of the additive element are optimally adjusted. I can do it.
  • the annealing temperature is less than 250 ° C.
  • the softening of the material is insufficient, and the TS before brazing heating becomes high.
  • TS before brazing heating is high, since the moldability is inferior, the core dimensions are deteriorated, and as a result, the durability is lowered.
  • annealing is performed at a temperature exceeding 550 ° C.
  • the amount of heat input to the material during the manufacturing process becomes too large, so that the intermetallic compounds are coarsely and sparsely distributed. Coarse and loosely distributed intermetallic compounds are difficult to incorporate solid solution elements, and the amount of solid solution in the material is difficult to decrease. Further, the above effect is not sufficient at an annealing temperature of less than 1 hour, and the above effect is saturated at an annealing time exceeding 10 hours, which is economically disadvantageous.
  • the tempering may be O material or H material.
  • the final cold rolling rate is important.
  • the final cold rolling rate is 50% or less, and the preferable final cold rolling rate is 5% to 50%.
  • the final cold rolling rate exceeds 50%, a large number of recrystallization nuclei are generated during heating, and the crystal grain size after bonding heating becomes fine.
  • the final cold rolling reduction is less than 5%, the manufacture may be substantially difficult.
  • the dispersed particles can be made finer than in semi-continuous casting by the above-described twin roll continuous casting and rolling process and the subsequent manufacturing process.
  • Aluminum coating is a film composed mainly of aluminum and aluminum oxide.
  • the aluminum coating formed on the roll surface during casting improves the wetting between the roll surface and the molten metal and improves the heat transfer between the roll surface and the molten metal.
  • twin roll continuous casting and rolling may be performed with a molten aluminum of 680 to 740 ° C. at a rolling load of 500 N / mm or more, or before the start of twin roll continuous casting and rolling.
  • the wrought aluminum alloy sheet heated to 300 ° C. or higher may be rolled twice or more at a rolling reduction of 20% or more.
  • the molten aluminum or aluminum alloy plate used for forming the aluminum coating is particularly preferably a 1000 series alloy with few additive elements, but the coating can be formed using other aluminum alloy systems.
  • the thickness of the aluminum coating always increases, so boron nitride or carbon release agent (graphite spray or soot) is applied to the roll surface at 10 ⁇ g / cm 2 to suppress further formation of the aluminum coating. It can also be physically removed with a brush roll or the like.
  • the aluminum coating thickness is preferably 1 to 500 ⁇ m. Thereby, the cooling rate of the molten metal is optimally adjusted, and it becomes possible to cast an aluminum alloy having an intermetallic compound density and an Si solid solution amount that are excellent in deformation resistance during bonding heating. If the aluminum coating thickness is less than 1 ⁇ m, the wettability between the roll surface and the molten metal is poor, and the contact area between the roll surface and the molten metal becomes small. Thereby, the heat transferability between the roll surface and the molten metal deteriorates, and the cooling rate of the molten metal decreases. As a result, the intermetallic compound becomes coarse and a desired intermetallic compound density cannot be obtained.
  • the roll surface and the molten metal may be locally non-contact. In that case, the ingot is remelted and the molten metal having a high solute concentration oozes out to the surface of the ingot to cause surface segregation, and there is a possibility that a coarse intermetallic compound is formed on the surface of the ingot.
  • the aluminum coating thickness exceeds 500 ⁇ m, the wettability between the roll surface and the molten metal is improved, but the heat transferability between the roll surface and the molten metal is significantly deteriorated because the coating is too thick.
  • the aluminum coating thickness is more preferably 80 to 410 ⁇ m.
  • the roll center line 3 and the outlet of the nozzle tip 4 which are opposed to each other vertically. It is carried out by injecting a molten aluminum alloy 1 through a nozzle tip 4 made of refractory.
  • the region 2 during continuous casting can be roughly divided into a rolled region 5 and a non-rolled region 6.
  • the aluminum alloy in the rolling region 5 has been solidified to become an ingot, and a roll separating force is generated against the rolling of the roll.
  • the center portion of the plate thickness exists as an unsolidified molten metal, so that no roll separation force is generated.
  • the position of the solidification start point 7 hardly moves even if the casting conditions are changed. Therefore, if the casting speed is increased or the molten metal temperature is increased and the rolling region 5 is reduced as shown in FIG. 1, the molten sump is deepened, and as a result, the cooling rate is decreased. Conversely, when the casting speed is slowed or the molten metal temperature is lowered and the rolling region 5 is enlarged as shown in FIG. 2, the molten sump becomes shallower and the cooling rate increases.
  • the cooling rate can be controlled by measuring the rolling load 8, which is the vertical component of the roll separation force, that is, the increase / decrease of the rolling region.
  • the molten metal sump is a solid-liquid interface between the solidified part and the unsolidified part at the time of casting, and when this interface deeply penetrates in the rolling direction to form a valley shape, the sump is deep, On the other hand, if the interface is nearly flat without entering the rolling direction, the sump is shallow.
  • the rolling load is preferably 500 to 5000 N / mm.
  • the rolling region 4 is small and the melt sump is deep. Thereby, a cooling rate becomes low, a coarse crystallized substance is easy to be formed, and it becomes difficult to form a fine precipitate.
  • the number of recrystallized grains having coarse crystallized crystals as nuclei increases during bonding heating, and the crystal grains become finer, so that they are easily deformed.
  • an appropriate pinning effect cannot be obtained, and the amount of Si solid solution increases, so that the liquid phase generated at the grain boundary during bonding heating increases and is likely to deform. .
  • solute atoms gather at the center of the plate thickness and cause centerline segregation.
  • an aluminum joined body according to the present invention is manufactured using the MONOBRAZE method that utilizes the joining ability exhibited by the aluminum alloy material itself without using a brazing material.
  • the aluminum joined body is a joined body in which two or more members are joined, and at least one member constituting the joined body is made of the aluminum alloy material according to the present invention.
  • the other member may be an aluminum alloy material according to the present invention, or another aluminum alloy material or a pure aluminum material.
  • the method for producing an aluminum joined body according to the present invention comprises combining the aluminum alloy material according to the present invention with at least one member to be joined as another member to be joined with another member to be joined, followed by heat treatment. A joining member is joined.
  • the ratio of the mass of the liquid phase generated in the aluminum alloy material to the total mass of the aluminum alloy material exceeds 0% and is 35% or less. It is necessary to join at temperature. Since the bonding cannot be performed unless the liquid phase is generated, the liquid phase ratio needs to be more than 0%. However, if the liquid phase is small, joining may be difficult, so the liquid phase ratio is preferably 5% or more. If the liquid phase ratio exceeds 35%, the amount of liquid phase to be generated is too large, and the aluminum alloy material is greatly deformed during bonding heating, and the shape cannot be maintained. A more preferable liquid phase ratio is 5 to 30%, and a still more preferable liquid phase ratio is 10 to 20%.
  • the time during which the liquid phase ratio is 5% or more is preferably 30 to 3600 seconds. More preferably, the time during which the liquid phase ratio is 5% or more is 60 to 1800 seconds, whereby sufficient filling is performed and reliable bonding is performed. If the time during which the liquid phase ratio is 5% or more is less than 30 seconds, the joint may not be sufficiently filled with the liquid phase. On the other hand, if it exceeds 3600 seconds, the deformation of the aluminum material may proceed. In the bonding method according to the present invention, the liquid phase moves only in the very vicinity of the bonded portion, so that the time required for filling does not depend on the size of the bonded portion.
  • the bonding temperature may be 580 ° C. to 640 ° C.
  • the holding time at the bonding temperature may be about 0 to 10 minutes.
  • 0 minutes means that the cooling is started as soon as the temperature of the member reaches a predetermined joining temperature.
  • the holding time is more preferably 30 seconds to 5 minutes.
  • the bonding temperature for example, when the Si amount is about 1 to 1.5%, it is desirable to increase the bonding heating temperature to 610 to 640 ° C. Conversely, when the Si amount is about 4 to 5%, the bonding heating temperature may be set to a low value of 580 to 590 ° C.
  • the liquid phase ratio defined in the present invention can be usually obtained by lever principle from the alloy composition and the maximum attainable temperature using an equilibrium diagram.
  • the phase diagram can be used to determine the liquid phase ratio using the principle of leverage.
  • the liquid phase ratio can be obtained using equilibrium calculation diagram software.
  • the equilibrium calculation phase diagram software incorporates a technique for determining the liquid phase ratio based on the lever principle using the alloy composition and temperature.
  • Equilibrium calculation state diagram software includes Thermo-Calc; Thermo-Calc Software AB, etc.
  • the heating atmosphere in the heat treatment is preferably a non-oxidizing atmosphere substituted with nitrogen, argon or the like.
  • better bondability can be obtained by using a non-corrosive flux.
  • non-corrosive flux coating method examples include a method of sprinkling the flux powder after assembling the members to be joined, and a method of spraying the flux powder suspended in water.
  • the adhesion of the coating can be improved by mixing and applying a binder such as an acrylic resin to the flux powder.
  • the non-corrosive flux used for obtaining a normal flux function include KAlF 4 , K 2 AlF 5 , K 2 AlF 5 .H 2 O, K 3 AlF 6 , AlF 3 , KZnF 3 , K 2 SiF 6 and the like.
  • cesium-based fluxes such as Cs 3 AlF 6 , CsAlF 4 .2H 2 O, Cs 2 AlF 5 .H 2 O, and the like.
  • the aluminum alloy material having a heat bonding function with a single layer according to the present invention can be bonded well by the above heat treatment and control of the heating atmosphere.
  • the stress generated in the aluminum alloy material can be maintained at a relatively small stress so that a good shape can be maintained.
  • the maximum value of the stress generated in the aluminum alloy material is P (kPa) and the liquid phase ratio is V (%), P If the condition of ⁇ 460-12V is satisfied, a very stable junction can be obtained.
  • the value indicated by the right side (460-12V) of this equation is the critical stress, and if a stress exceeding this value is applied to the aluminum alloy material, there is a risk of significant deformation.
  • the stress generated in the aluminum alloy material is determined from the shape and load. For example, it can be calculated using a structural calculation program or the like.
  • the surface form of the joint as well as the pressure of the joint may affect the bondability, and a smoother surface can be obtained when both surfaces are smooth.
  • the sum of the arithmetic average waviness Wa1 and Wa2 obtained from the unevenness of the surfaces of both joint surfaces of the paired members to be joined before joining satisfies Wa1 + Wa2 ⁇ 10 ( ⁇ m)
  • Wa1 + Wa2 ⁇ 10 ( ⁇ m) it is more sufficient. Bonding is obtained.
  • the arithmetic mean waviness Wa1 and Wa2 are defined by JISB0633, and the cut-off value is set so that the wavelength becomes uneven between 25 and 2500 ⁇ m, and the waviness curve measured with a laser microscope or a confocal microscope. It is requested from.
  • the aluminum alloy material having a heat bonding function with a single layer according to the present invention preferably has a crystal particle size of 100 ⁇ m or more after heat bonding by the MONOBRAZE method. . Since the grain boundary portion is melted at the time of heating, if the crystal grains are small, the crystal grains are liable to be displaced at the grain boundary, causing deformation. Since observation of crystal grains during heating is extremely difficult, the crystal grain diameter after heating is judged. When the crystal grains after heating are less than 100 ⁇ m, the material is likely to be deformed during bonding.
  • the upper limit of the crystal grain size is not particularly limited, but depends on the manufacturing conditions of the aluminum alloy material and the bonding conditions of the MONOBRAZE method, and is 1500 ⁇ m in the present invention.
  • the measurement of crystal grains is calculated as the average crystal grain diameter based on the crystal grain measurement method of ASTM E112-96.
  • First Embodiment First, test materials having components A1 to A67 in Tables 1 to 3 were used. In these tables, “ ⁇ ” in the alloy composition indicates that it is below the detection limit, and “remainder” includes inevitable impurities.
  • a cast ingot was produced by the twin roll continuous casting and rolling method (CC) using the test material.
  • the melt temperature at the time of casting by the twin roll type continuous casting and rolling method was 650 to 800 ° C., and the casting speed was variously changed as shown in Tables 4 to 6.
  • the cooling rate is in the range of 300 to 700 ° C./second by controlling the aluminum coating thickness and controlling the sump in the molten metal by rolling load. it is conceivable that.
  • a cast ingot having a width of 130 mm, a length of 20000 mm, and a thickness of 7 mm was obtained.
  • the obtained plate-shaped ingot is cold-rolled to 0.7 mm, after intermediate annealing at 420 ° C. ⁇ 2 hours, cold-rolled to 0.071 mm, and then annealed at 350 ° C. ⁇ 3 hours for the second time. Later, it was rolled to 0.050 mm at a final cold rolling rate of 30% to obtain a test material.
  • the arithmetic average waviness Wa of the test material was about 0.5 ⁇ m.
  • a crystal grain refining agent was added at a molten metal temperature of 680 ° C to 750 ° C. At that time, the molten metal flowing through the tub connecting between the molten metal holding furnace and the head box just before the hot water supply nozzle was continuously charged at a constant speed using a wire-shaped crystal grain refining agent rod.
  • the crystal grain refining agent an Al-5Ti-1B alloy was used, and the addition amount was adjusted to be 0.002% in terms of B amount.
  • test materials of the components A44, 48, 50, 51, and 54 in Tables 2 and 3 were cast in a size of 100 mm ⁇ 300 mm using a semi-continuous casting method (DC).
  • the casting rate was 30 mm / min, and the cooling rate was 1 ° C./second.
  • the ingot cast by the semi-continuous casting method was hot-rolled to 3 mm by heating to 500 ° C. after chamfering. Thereafter, the rolled plate was cold-rolled to 0.070 mm, subjected to intermediate annealing at 380 ° C. for 2 hours, and further rolled to 0.050 mm at a final cold rolling rate of 30% to obtain a test material.
  • test materials were evaluated for manufacturability in the production process.
  • the evaluation method for manufacturability is as follows: when a plate or slab is manufactured, no problem occurs in the manufacturing process and a sound plate or slab is obtained. The case where rolling became difficult due to the generation of a huge intermetallic compound and there was a problem in manufacturability was evaluated as x.
  • the volume density of the Al-based intermetallic compound in the manufactured plate material was measured by TEM observation of a cross section along the plate thickness direction.
  • a sample for TEM observation was prepared using electrolytic etching.
  • the film thickness was determined by EELS measurement, and a field of view having an average film thickness of 50 to 200 ⁇ m was selected and observed.
  • the Si-based intermetallic compound and the Al-based intermetallic compound can be distinguished by performing mapping by STEM-EDS. Observation was performed for 10 fields of view at 100000 times for each sample, and the number of Al-based intermetallic compounds having an equivalent circle diameter of 0.01 ⁇ m to 0.5 ⁇ m was measured by image analysis of each TEM photograph. The measurement area of this image was multiplied by the average film thickness to obtain the measurement volume, and the volume density was calculated.
  • the surface density of the Si-based intermetallic compound in the produced plate material was measured by SEM observation of a cross section along the plate thickness direction.
  • Si-based intermetallic compounds and Al-based intermetallic compounds (Al-Fe-Mn-Si-based intermetallic compounds) were distinguished using SEM-backscattered electron image observation and SEM-secondary electron image observation.
  • an Al-based intermetallic compound provides a strong white contrast
  • an Si-based intermetallic compound provides a low white contrast. Since the Si-based intermetallic compound has a weak contrast, it may be difficult to distinguish fine particles.
  • a sample etched for about 10 seconds with a colloidal silica suspension after surface polishing was observed with a SEM-secondary electron image.
  • Particles that provide a strong black contrast are Si-based intermetallic compounds. Observation was carried out for 5 fields of each sample, and the SEM photograph of each field of view was subjected to image analysis to examine the surface density of the Si-based intermetallic compound having a circle-equivalent diameter of 5.0 ⁇ m to 10 ⁇ m.
  • each test material was formed into a fin material having a width of 16 mm, a mountain height of 7 mm, and a pitch of 2.5 mm.
  • the combination material of composition B1 in Table 3 was combined with a 0.4 mm thick electro-sealed tube material and incorporated in a stainless steel jig to produce a three-stage test piece (minicore) shown in FIG. .
  • This mini-core is immersed in a 10% suspension of non-corrosive fluoride flux, dried, and then heated in a nitrogen atmosphere under the joining heating conditions shown in Tables 4 to 6 to join the fin material and the tube material. did.
  • Example 16 it heated and joined in the vacuum, without apply
  • the holding time at each temperature during bonding was set to 30 to 3600 seconds.
  • a compressive load of about 4N is generated between the stainless steel jig and the mini-core due to the difference in thermal expansion coefficient between the stainless steel jig and the aluminum material.
  • a stress of about 10 kPa is generated on the surface.
  • the fin was peeled from the tube, and the 40 joint portions of the mini-core tube and the fin were examined, and the ratio (joining rate) of the completely joined portions was measured. Then, the joining rate was judged as ⁇ for 90% or more, ⁇ for 80% or more and less than 90%, ⁇ for 70% or more and less than 80%, and ⁇ for less than 70%.
  • the fin height of the mini-core before and after joining was measured to evaluate the deformation rate due to fin buckling. That is, the ratio of the fin height change (decrease) after bonding to the fin height before bonding is 3% or less, ⁇ 3% to 5% or less, ⁇ 5% to 8% or less, ⁇ , 8% Those exceeding the value were judged as x.
  • the tensile test of the material before and after joining by the MONOBRAZE method was performed.
  • the tensile test was performed on each sample at a room temperature of 20 to 30 ° C. according to JIS Z2241 under the conditions of a tensile speed of 10 mm / min and a gauge length of 50 mm.
  • the tensile test after joining by MONOBRAZE method evaluated the sample heated on the joining heating conditions of MONOBRAZE method equivalent to a mini-core within 24 hours after cooling to the said room temperature.
  • the crystal grain size in the metal structure of the material after bonding by the MONOBRAZE method was measured.
  • the measurement method was a method based on ASTM E112-96.
  • the L-LT cross section was polished and surface-treated by anodizing to facilitate observation of the crystal grain structure.
  • the crystal grain structure of the sample of the present invention is observed with an optical microscope, and the reference image of the crystal grain structure defined by ASTM is compared with the cross-sectional image of the sample of the present invention.
  • the crystal grain size of the reference image with similar is adopted.
  • test materials (Examples 1 to 40) having the conditions defined by the present invention with respect to the composition of the aluminum alloy material passed all of the joining rate, fin buckling, and tensile strength.
  • Examples 12 to 26 are test materials made of an alloy to which Mg, Cu, Mn, Ni, Ti, V, Zr, and Cr are further added as additive elements. It was confirmed that these additive elements had an effect of improving the strength.
  • Comparative Example 1 since the Si component was less than the specified amount, even when the bonding heating temperature was relatively high, the liquid phase generation rate was low, the bonding rate was low, and the bonding property was unacceptable.
  • each component of Si, Fe, and Mn is within the specified amount range, but the volume density of the Al-based intermetallic compound is less than specified, the crystal grains after heating become smaller, and the liquid phase formation Since the number of nuclei was small, the formation of a liquid phase at the grain boundary was promoted, the fins buckled, and the deformation rate was unacceptable.
  • Comparative Example 6 the Si, Fe, and Mn components are all within the specified amount range, but the volume density of the Al-based intermetallic compound exceeds the specified value, and the number of nuclei for forming the liquid phase is too large, so that it contacts the grain boundary. The liquid phase increased, the fins buckled and the deformation rate was unacceptable.
  • Comparative Example 7 the Si and Fe components are both within the specified amount range, but the volume density of the Al-based intermetallic compound is lower than the specified density, the crystal grain size after heating is reduced, and the liquid phase is formed. Since the number of nuclei was small, the formation of a liquid phase at the grain boundary was promoted, the fins buckled, and the deformation rate was unacceptable.
  • the Si and Fe components are both within the specified amount range, but the surface density of the Si-based intermetallic compound exceeds the specified value, and the volume density of the Al-based intermetallic compound is lower than the specified value. Since the crystal grains were small and there were few nuclei for liquid phase formation, liquid phase formation at the grain boundaries was promoted, the fins buckled, and the deformation rate was unacceptable.
  • Second Embodiment Here, the effect of additive elements on corrosion resistance was examined. As shown in Table 7, the material manufactured in the first embodiment was extracted and formed into the same fin as in the first embodiment. And the test piece (mini-core) of 3 steps
  • This mini-core is immersed in a 10% suspension of non-corrosive fluoride flux, dried, then heated to various bonding heating temperatures shown in Table 7 in a nitrogen atmosphere, and held for 3 minutes. The fin and the tube were joined.
  • Examples 41 to 54 in this embodiment an aluminum alloy to which Zn, Cu, Mn, In, Sn, Ti, and V are added as additive elements is used as a test material. From Table 7, the improvement of corrosion resistance was seen compared with the aluminum alloy in which Zn etc. of Example 41 to which Zn or the like was not added was confirmed, and the usefulness of these additive elements could be confirmed.
  • the control of the metal structure by the manufacturing process was examined. From the material manufactured in the first embodiment, the composition No. A3 was extracted and fin materials with a final plate thickness of 0.05 mm were manufactured in various manufacturing steps as shown in Table 8. The surface density of the Si-based intermetallic compound, the surface density of the Al-based intermetallic compound, and the Si solid solution amount of the base plate of each material were measured. The results are shown in Table 9. In this embodiment, the surface density of the Si intermetallic compound having an equivalent circle diameter of less than 5 ⁇ m and exceeding 10 ⁇ m and the volume density of the Al intermetallic compound having an equivalent circle diameter of more than 0.5 ⁇ m were also measured. The results are also shown in Table 9.
  • the Si-based intermetallic compound density, the Al-based intermetallic compound density, and the Si solid solution amount specified in the present invention in the final plate were as follows. As a result, the joining rate and deformation rate met the standards and passed.
  • Comparative Example 24 the first annealing temperature was high, the volume density of the Al-based intermetallic compound having an equivalent circle diameter of 0.01 to 0.5 ⁇ m was less than the specified value, and the Si solid solution amount exceeded the specified value. The deformation rate was unacceptable.
  • Comparative Example 25 the first annealing time was short, the volume density of the Al-based intermetallic compound having an equivalent circle diameter of 0.01 to 0.5 ⁇ m exceeded the specification, and the deformation rate was unacceptable.
  • Comparative Example 26 the first annealing time was long, the volume density of the Al-based intermetallic compound having an equivalent circle diameter of 0.01 to 0.5 ⁇ m was less than the specified value, and the Si solid solution amount exceeded the specified value. The deformation rate was unacceptable.
  • An aluminum alloy material having a heat bonding function with a single layer according to the present invention is particularly useful as a fin material of a heat exchanger, for example, and without using a bonding member such as a brazing material or a filler material. It can be joined to other members, and the heat exchanger can be manufactured efficiently.
  • a bonding member such as a brazing material or a filler material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laminated Bodies (AREA)
  • Arc Welding In General (AREA)
  • Ceramic Products (AREA)
  • Metal Rolling (AREA)
  • Continuous Casting (AREA)

Abstract

 ろう材又は溶加材のような接合部材を使用することなく、単層で加熱接合可能なアルミニウム合金材及びその接合方法、ならびに、当該アルミニウム材を用いたアルミニウム接合体を提供する。 Si:1.0~5.0mass%、Fe:0.01~2.0mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金からなり、0.01~0.5μmの円相当径を有するAl系金属間化合物が10~1×10個/μm存在し、5.0~10μmの円相当径を有するSi系金属間化合物が200個/mm以下存在することを特徴とする単層で加熱接合機能を有するアルミニウム合金材及びその製造方法、ならびに、これを用いたアルミニウム接合体を提供する。

Description

単層で加熱接合機能を有するアルミニウム合金材及びその製造方法、ならびに、当該アルミニウム合金材を用いたアルミニウム接合体
 本発明は、ろう材又は溶加材のような接合部材を使用することなく、材料自体が半溶融状態になって接合に必要な液相を供給することで、他の部材に単層で加熱接合可能なアルミニウム合金材及びその接合方法、ならびに、当該アルミニウム材を用いたアルミニウム接合体に関し、詳細には、接合加熱時において耐変形性に優れた単層で加熱接合可能なアルミニウム合金材及びその接合方法、ならびに、当該アルミニウム材を用いたアルミニウム接合体に関する。
 アルミニウム合金材を構成部材とする熱交換器等の構造体の製造に際しては、アルミニウム合金材同士又はアルミニウム合金材と異種材料とを接合する必要がある。アルミニウム合金材の接合方法としては、様々な方法が知られているが、それらの中でブレージング法(ろう付け法)が多く用いられている。ブレージング法が多く用いられるのは、母材を溶融させることなく短時間で強固な接合を得ることができる等の利点が考慮されるためである。ブレージング法によるアルミニウム合金材の接合方法を用いて熱交換器等を製造する方法としては、例えば、Al-Si合金からなるろう材をクラッドしたブレージングシートを用いる方法;粉末ろう材を塗布した押出材を用いる方法;各材料を組付け後に接合が必要な部分に別途ろう材を塗布する方法;などが知られている(特許文献1~3)。更に、非特許文献1の「3.2 ろうとブレージングシート」の章には、これらのクラッドブレージングシートや粉末ろう材の詳細が説明されている。
 これまで、アルミニウム合金材の構造体の製造においては、様々なブレージング法が開発されてきた。例えば自動車用熱交換器においては、フィン材を単層で用いる場合には、チューブ材にろう材をクラッドしたブレージングシートを使用する方法や、チューブ材にSi粉末やSi含有ろうを別途塗布する方法が採用されていた。一方、チューブ材を単層で用いる場合には、フィン材にろう材をクラッドしたブレージングシートを使用する方法が採用されていた。
 特許文献4には、上述したクラッド材のブレージングシートに替えて、単層ブレージングシートを用いる方法が記載されている。この方法においては、熱交換器のチューブ材とタンク材に熱交換器用単層ブレージングシートを用いることが提案されている。ここで単層ブレージングシートと呼ばれ、MONOBRAZE法に用いられているアルミニウム合金材を、本発明では単層で加熱接合機能を有するアルミニウム合金材と呼ぶ。
 特許文献5には、単層のアルミニウム合金材を用いて接合体を製造する方法において、合金組成や接合中の温度、加圧、表面性状などを制御することで、良好な接合を得ると共に変形がほとんど起こらない接合方法が提案されている。本発明では、特許文献5に示される接合法をMONOBRAZE法と呼ぶ。
 特許文献6には、単層のアルミニウム合金をチューブ材として用い、MONOBRAZE法で熱交換器を製造する際に、チューブ材の分散粒子のサイズを制御することで良好な接合性を得た構造体が提案されている。
特開2008-303405公報 特開2009-161835号公報 特開2008-308760号公報 特開2010-168613号公報 特許第5021097号公報 特開2012-51028号公報
「アルミニウムブレージングハンドブック(改訂版)」社団法人軽金属溶接構造協会 2003年
 ブレージングシートのようなクラッド材を製造するには、各層を別々に製造し、更にそれらを重ね接合する工程が必要である。ブレージングシートの使用は熱交換器等のコストダウンの要求に反することとなる。また、粉末ろう材の塗布もろう材コストの分だけ製品コストに反映されることとなる。
 これに対して、上述のように、クラッド材によるブレージングシートに替えて単層で加熱接合機能を有するアルミニウム合金材を適用するという提案もある。この方法では、単層で加熱接合機能を有するアルミニウム合金材から接合に必要な液相を供給しつつも、構造体としての形状を維持することが提案されている。しかしながら、例えば、熱交換器製造において、単層で加熱接合機能を有するアルミニウム合金材をチューブ材やフィン材としてそのまま用いると、熱交換器の製造時の加熱によって大きく変形してしまう虞がある。
 また、上述のMONOBRAZE法のように、合金組成や接合時の温度、加圧、表面性状などを制御することで、単層で加熱接合機能を有するアルミニウム合金材を用いた接合においても、良好な接合と形状維持を両立する方法も提案されている。しかしながら、より高い精度の接合及び接合中の形状維持の達成が望まれている。特に板厚が1mm以下のフィン材においては、板厚方向の曲げ応力に対して変形が生じ易く、接合中の形状維持のためには液相率を低く抑える必要がある。しかしながら、材料の体積が小さいために低い液相率では液相が十分に生成され難く、接合と形状維持の両立のためには更なる改善が求められていた。
 以上のように、熱交換器等のアルミニウム合金構造体のコストダウンのためには、ろう材を使わずに単層同士の材料で接合を行うMONOBRAZE法が好ましいといえる。しかしながら、単層で加熱接合機能を有するアルミニウム合金材をMONOBRAZE法に単に適用しても、部材の変形又は接合率の低下の問題を回避することは困難である。上述の特許文献4、6では、板厚が比較的厚いチューブ材に単層のアルミニウム合金材を適用することで変形が顕著ではないが、板厚の薄いフィン材のような部材に単層のアルミニウム合金材を適用する場合は、接合加熱中の変形が著しいという問題があった。
 本発明は、上記のような背景のもとになされたものであり、単層のアルミニウム合金材を用いた各種のアルミニウム合金接合体をMONOBRAZE法によって製造するに際して、接合加熱時に固相線温度以上に加熱され、半溶融状態となって接合部に液相を供給しつつも、耐変形性に優れる単層のアルミニウム合金材及びその接合方法、ならびに、当該アルミニウム合金材を用いたアルミニウム接合体を提案するものである。特に本発明は、熱交換器用のフィン材など、板厚の薄い材料に用いる場合に適している。
 本発明者らは、上記課題を解決すべく鋭意検討の結果、MONOBRAZE法に用いるアルミニウム合金材を改良することにより、接合加熱時に固相線温度以上に加熱され、半溶融状態になるにも関わらず、接合加熱中の耐変形性に優れたアルミニウム合金材を得ることを見出し、本発明を完成するに至った。
 すなわち、本発明に係るアルミニウム合金材は、Si:1.0~5.0mass%、Fe:0.01~2.0mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金からなり、0.01~0.5μmの円相当径を有するAl系金属間化合物が10~1×10個/μm存在し、5.0~10μmの円相当径を有するSi系金属間化合物が200個/mm以下存在することを特徴とする単層で加熱接合機能を有するアルミニウム合金材とした。
 前記アルミニウム合金に含まれる固溶Si量は、0.7%以下であるものとする。
 前記アルミニウム合金は、Mg:0.05~2.0mass%、Cu:0.05~1.5mass%及びMn:0.05~2.0mass%から選択される1種又は2種以上を更に含有するものとするとよい。
 前記アルミニウム合金は、Zn:6.0mass%以下、In:0.3mass%以下及びSn:0.3mass%以下から選択される1種又は2種以上を更に含有するものとするとよい。
 前記アルミニウム合金は、Ti:0.3mass%以下、V:0.3mass%以下、Cr:0.3mass%以下、Ni:2.0mass%以下及びZr:0.3mass%以下から選択される1種又は2種以上を更に含有するものとするとよい。
 前記アルミニウム合金は、Be:0.1mass%以下、Sr:0.1mass%以下、Bi:0.1mass%以下、Na:0.1mass%以下及びCa:0.05mass%以下から選択される1種又は2種以上を更に含有するものとするとよい。
 前記アルミニウム合金は、加熱接合前における引張強さが80~250MPaであるものとする。
 本発明は、また、上記の単層で加熱接合機能を有するアルミニウム合金材の製造方法であって、前記アルミニウム合金材用のアルミニウム合金を双ロール式連続鋳造圧延する鋳造工程と、圧延板を冷間圧延する2回以上の冷間圧延工程と、冷間圧延工程中において圧延板を1回以上の焼鈍する焼鈍工程を含み、全ての焼鈍工程における焼鈍条件が250~550℃の温度で1~10時間であり、最終冷間圧延段階における圧下率が50%以下である、ことを特徴とする単層で加熱接合機能を有するアルミニウム合金材の製造方法を含む。
 前記鋳造工程の双ロール式連続鋳造圧延においては、圧延板のアルミニウム及び酸化アルミニウムを主成分とする厚さ1~500μmの皮膜が、双ロール表面に付着した状態で圧延され、圧延板幅1mmあたりの圧延荷重が500~5000Nであるものとする。
 本発明は、更に、二つ以上のアルミニウム部材を加熱接合することにより製造され、前記二つ以上のアルミニウム部材の少なくとも一つに上記のアルミニウム合金材を用いたことを特徴とするアルミニウム接合体を含む。
 上記加熱接合後において、前記二つ以上の部材の少なくとも一つに用いた前記アルミニウム合金材の金属組織における結晶粒径を100μm以上であるものとする。
 本発明に係るアルミニウム合金材は、ブレージング法等の従来の接合方法とは異なり単層で加熱接合機能を有するものであり、単層の状態で各種の被接合部材と接合できる。そして、接合加熱時に半溶融状態となるにも関わらず、耐変形性に優れたアルミニウム材である。これにより、接合体の製造におけるコストダウンの要求に答えることができる。例えば、熱交換器用フィン材のように板厚が非常に薄い材料として有用である。また、より高精度な接合性や寸法制度が求められる製品にも適用が可能となる。更に、従来の接合方法では不可能であった形状を有する接合体の製造や、部材の薄肉化を可能とする。
双ロール式連続鋳造圧延法において、注入されたアルミニウム溶湯の冷却速度を説明するための説明図である。 双ロール式連続鋳造圧延法において、注入されたアルミニウム溶湯の冷却速度を説明するための説明図である。 第1~第3実施形態で用いた3段積みのテストピース(ミニコア)の外観図である。
1.単層で加熱接合機能を有するアルミニウム合金材
 以下、本発明について具体的に説明する。まず、本発明に係る単層で加熱接合機能を有するアルミニウム合金材について説明する。このアルミニウム合金材は、必須元素としてSi濃度:1.0~5.0mass%(以下、単に「%」と記す)及びFe:0.01~2.0%を含有し、残部Al及び不可避的不純物からなるAl-Si―Fe系のアルミニウム合金を基本組成とし、その金属組織において、0.01~0.5μmの円相当径を有するAl系金属間化合物が存在するものである。以下に、これらの特徴について説明する。
1-1.必須元素について
1-1-1.Si濃度について
 Si濃度について、SiはAl-Si系の液相を生成し、接合に寄与する元素である。但し、Si濃度が1.0%未満の場合は充分な量の液相を生成することができず、液相の染み出しが少なくなり、接合が不完全となる。一方、5.0%を超えるとアルミニウム合金材中の液相の生成量が多くなるため、加熱中の材料強度が極端に低下し、構造体の形状維持が困難となる。従って、Si濃度を1.0%~5.0%と規定する。このSi濃度は、好ましくは1.5%~3.5%であり、より好ましくは2.0%~3.0%である。尚、染み出す液相の量は体積が大きく、加熱温度が高いほど多くなるので、加熱時に必要とする液相の量は、製造する構造体の構造に応じて必要となるSi量や接合加熱温度を調整することが望ましい。
1-1-2.Fe濃度について
 Fe濃度について、Feはマトリクスに若干固溶して強度を向上させる効果を有するのに加えて、晶出物や析出物として分散して特に高温での強度低下を防止する効果を有する。Feは、その添加量が0.01%未満の場合、上記の効果が小さいだけでなく、高純度の地金を使用する必要がありコストが増加する。また、2.0%を超えると、鋳造時に粗大な金属間化合物が生成し、製造性に問題が生じる。また、本接合体が腐食環境(特に液体が流動するような腐食環境)に曝された場合には耐食性が低下する。更に、接合時の加熱によって再結晶した結晶粒が微細化して粒界密度が増加するため、接合前後で寸法変化が大きくなる。従って、Feの添加量は0.01%~2.0%とする。好ましいFeの添加量は、0.2%~1.0%である。
1-2.Al系金属間化合物について
 次に、本発明に係るアルミニウム合金材の金属組織における特徴について説明する。本発明に係るアルミニウム合金材は、MONOBRAZE法による接合加熱時に固相線温度以上に加熱される。この時、アルミニウム合金材は主に粒界すべりによって変形する。そこで、金属組織としては、(1)接合加熱時に結晶粒が粗大になることが望ましい。(2)また、粒界に液相が生成すると粒界すべりによる変形が起こり易くなるため、粒界での液相生成が抑制されることが望ましい。本発明では、加熱後の結晶粒が粗大になり、粒界での液相生成が抑制される金属組織を規定する。
 すなわち、本発明に係る単層で加熱接合機能を有するアルミニウム合金材では、円相当径0.01~0.5μmのAl系金属間化合物が分散粒子として存在する。このAl系金属間化合物は、Al-Fe系、Al-Fe-Si系、Al-Mn―Si系、Al-Fe-Mn系、Al-Fe-Mn-Si系化合物等、Alと添加元素によって生成する金属間化合物である。0.01~0.5μmの円相当径を有するAl系金属間化合物は、加熱時に再結晶核とはならずに、結晶粒界の成長を抑制するピン止め粒子として働く。また、液相が生成する核となり、粒内の固溶Siを集める働きを有する。本発明に係るアルミニウム合金材は、円相当径0.01~0.5μmのAl系金属間化合物を有するため、加熱時に再結晶核が無数に成長するのが抑制され、限られた再結晶核のみが成長するので、加熱後の結晶粒が粗大になる。また、粒内の固溶Siを集めることで、相対的に粒界での液相生成を抑制する。
1-2-1.Al系金属間化合物の体積密度について
 上記のAl系金属間化合物の効果は、Al系金属間化合物の体積密度が適切な範囲であることでより確実に発揮される。具体的には、材料中の任意部分において10~1×10個/μmの体積密度で存在する。体積密度が10個/μm未満の場合には、ピン止め効果が小さすぎるため、成長することができる再結晶粒が多くなり、粗大な結晶粒が形成され難くなる。また、液相生成の核が少なくなるため、粒内の固溶Siを集める作用が十分に発揮されず、粒内の固溶Siが粒界で生成した液相の成長に寄与する割合が増加し、耐変形性が低下する。一方、体積密度が1×10個/μmを超える場合には、ピン止め効果が大きすぎるため、あらゆる再結晶粒の成長が抑制され、粗大な結晶粒が形成され難くなる。また、液相生成の核が多すぎるため、直接粒界に接してしまう液相が増加し、粒界の液相がより成長してしまう。適切な強さのピン止め効果により、限られた結晶粒のみが成長し、結晶粒が粗大化するため、及び適切な液相生成の核を形成し、粒内の固溶Siを集めて粒界での液相生成を抑制するためには、上記体積密度の範囲内とする。なお、この体積密度は、好ましくは50~5×10個/μmであり、より好ましくは100~1×10個/μmである。
1-2-2.Al系金属間化合物の円相当径について
 円相当径0.01μm未満のAl系金属間化合物は、実質的に測定が困難なため対象外とする。また、円相当径0.5μmを超えるAl系金属間化合物は存在するが、ピン止め粒子としてはほとんど有効に作用しないため、本発明に係る効果に影響は小さく規定の対象外とする。また、円相当径0.5μmを超えるAl系金属間化合物は液相生成の核としては作用し得る。しかしながら、粒内の固溶Siを集める効果は化合物表面からの距離で決まるため、円相当径0.5μmを超えるAl系金属間化合物では、当該化合物の体積当りにおける固溶Si収集効果が小さくなることからも対象外とする。
 尚、Al系金属間化合物の円相当径は、電解研磨により薄肉加工したサンプルをTEM観察することで決定することができる。ここで、円相当径とは円相当直径をいう。TEM観察画像をSEM観察画像と同様に2次元像として画像解析することで接合前の円相当径を求めるのが好ましい。また、体積密度を算出するためには、TEM観察した各視野においてEELS法などを用いてサンプルの膜厚も測定する。TEM観察像を2次元像として画像解析した後、2次元像の測定面積にEELS法で測定した膜厚を乗じることで測定体積を求め、体積密度を算出する。サンプルの膜厚が厚すぎると、電子の透過方向に重複する粒子数が増えて正確な測定が困難になるので、膜厚50nm~200nmの範囲となる部分を観察するのが望ましい。また、Si系金属間化合物とAl系金属間化合物は、EDSなどで元素分析することでより正確に区別することができる。
 以上説明した、Si、Fe濃度範囲及び金属組織に特徴を有する本発明に係る単層で加熱接合機能を有するアルミニウム合金材は、接合加熱時にそれ自体が半溶融状態となって液相を供給することで接合を可能にするとともに、耐変形性にも優れる。
1-3.Si系金属間化合物について
 本発明に係るアルミニウム合金材では、上記Al系金属間化合物に関する規定に加えて、Si系金属間化合物に関しても規定する。本発明に係るアルミニウム合金材では、5.0~10μmの円相当径を有するSi系金属間化合物が、材料中の断面において200個/mm以下存在する。ここで、Si系金属間化合物とは、(1)単体Si、及び(2)単体Siの一部にCaやPなどの元素を含むものである。尚、材料中の断面とは、アルミニウム合金材の任意の断面であり、例えば厚さ方向に沿った断面でもよく、板材表面と平行な断面でもよい。材料評価の簡便性の観点から、厚さ方向に沿った断面を採用するのが好ましい。
1-3-1.Si系金属間化合物の面密度について
 ここで、5.0μm~10μmの円相当径を有するSi系金属間化合物は、加熱時に再結晶の核となる。そのため、Si系金属間化合物の面密度が200個/mmを超えると、再結晶核が多いために結晶粒が微細になり、接合加熱中の耐変形性が低下する。Si系金属間化合物の面密度が200個/mm以下であれば、再結晶核の数が少ないため特定の結晶粒のみが成長し、粗大な結晶粒が得られ、接合加熱中の耐変形性が向上する。上記面密度は、好ましくは20個/mm以下である。なお、5.0μm~10μmの円相当径を有するSi系金属間化合物が少ないほど耐変形性が向上するため、上記面密度が0個/mmが最も好ましい。
1-3-2.Si系金属間化合物の円相当径について
 なお、Si系金属間化合物の円相当径を5.0μm~10μmに限定するのは、以下の理由による。円相当径が5.0μm未満のSi系金属間化合物は存在するが、再結晶の核としては働き難いため対象から除外した。また、円相当径が10μmを超えるSi系金属間化合物は、製造時に割れの原因となり製造が困難となる。従って、このように大きな円相当径を有するSi系金属間化合物はアルミニウム合金中に存在させることがないため、これも対象から除外した。
 尚、Si系金属間化合物の円相当径は、断面のSEM観察(反射電子像観察)を行うことで決定することができる。ここで、円相当径とは円相当直径をいう。SEM写真を画像解析することで、接合前の分散粒子の円相当径を求めることが好ましい。画像解析結果と測定面積から面密度を算出できる。また、Si系金属間化合物とAl系金属間化合物は、SEM-反射電子像観察で、コントラストの濃淡で区別することもできる。また、分散粒子の金属種は、EPMA(X線マイクロアナライザー)等でより正確に特定することができる。
1-4.Si固溶量について
 また、本発明に係るアルミニウム合金材では、上記Al系金属間化合物及びSi系金属間化合物の規定に加え、Si固溶量が規定される。本発明に係るアルミニウム合金材は、MONOBRAZE法による接合前において、Si固溶量が0.7%以下であることが好ましい。なお、このSi固溶量は、20~30℃の室温における測定値である。上述のように固溶Siは加熱中に固相拡散し、周囲の液相の成長に寄与する。固溶Si量が0.7%以下であれば、固溶Siの拡散によって粒界に生成する液相量が少なくなり、加熱中の変形を抑制できる。一方、固溶Si量が0.7%を超えると、粒界に生成した液相に取り込まれるSiが増加する。その結果、粒界に生成する液相量が増加して、変形が起こり易くなる。より好ましい固溶Si量は、0.6%以下である。なお、固溶Si量の下限値は特に限定するものではないが、アルミニウム合金のSi含有量及び製造方法によって自ずと決まり、本発明では0%である。
1-5.第1の選択的添加元素について
 上述のように、本発明に係る単層で加熱接合機能を有するアルミニウム合金材は、接合加熱中の耐変形性の向上のために、必須元素として所定量のSi及びFeを含有する。そして、強度を更に向上させるために、必須元素であるSi及びFeに加えて、所定量のMn、Mg及びCuから選択される1種又は2種以上が第1の選択的添加元素として更に添加される。なお、このような第1の選択的添加元素を含有する場合においても、Al系金属間化合物の体積密度及びSi系金属間化合物の面密度については、上記の通りに規定される。
1-5-1.Mnについて
 Mnは、SiやFeとともにAl-Mn-Si系、Al-Mn-Fe-Si系、Al-Mn-Fe系の金属間化合物を形成し、分散強化として作用し、或いは、アルミニウム母相中に固溶して固溶強化により強度を向上させる重要な添加元素である。Mn添加量が2.0%を超えると、粗大金属間化合物が形成され易くなり耐食性を低下させる。一方、Mn添加量が0.05%未満では、上記の効果が不十分となる。従って、Mn添加量は0.05~2.0%以下とする。好ましいMn添加量は、0.1%~1.5%である。
1-5-2.Mgについて
 Mgは、接合加熱後においてMgSiによる時効硬化が生じ、この時効硬化によって強度向上が図られる。このように、Mgは強度向上の効果を発揮する添加元素である。Mg添加量が、2.0%を超えるとフラックスと反応して、高融点の化合物を形成するため著しく接合性が低下する。一方、Mg添加量が0.05%未満では、上記の効果が不十分となる。従って、Mg添加量は0.05~2.0%とする。好ましいMg添加量は、0.1%~1.5%である。
1-5-3.Cuについて
 Cuは、マトリクス中に固溶して強度向上させる添加元素である。Cu添加量が、1.5%を超えると耐食性が低下する。一方、Cu添加量が0.05%未満では、上記の効果が不十分となる。従って、Cuの添加量は0.05~1.5%とする。好ましいCu添加量は、0.1%~1.0%である。
1-6.第2の選択的添加元素について
 本発明においては、耐食性を更に向上させるために、上記必須元素及び/又は第1の選択的添加元素に加えて、所定量のZn、In及びSnから選択される1種又は2種以上が第2の選択的添加元素として更に添加される。なお、このような第2の選択的添加元素を含有する場合においても、Al系金属間化合物の体積密度及びSi系金属間化合物の面密度については、上記の通りに規定される。
1-6-1.Znについて
 Znの添加は、犠牲防食作用による耐食性向上に有効である。Znはマトリクス中にほぼ均一に固溶しているが、液相が生じると液相中に溶け出して液相のZnが濃化する。液相が表面に染み出すと、染み出した部分におけるZn濃度が上昇するため、犠牲陽極作用によって耐食性が向上する。また、本発明のアルミニウム合金材を熱交換器に応用する場合、本発明のアルミニウム合金材をフィンに用いることで、チューブ等を防食する犠牲防食作用を働かせることもできる。Zn添加量が6.0%を超えると腐食速度が速くなって自己耐食性が低下する。従って、Zn添加量は、6.0%以下とする。好ましいZn添加量は、0.05%~6.0%である。
1-6-2.Sn、Inについて
 SnとInは、犠牲陽極作用を発揮する効果を奏する。それぞれの添加量が0.3%を超えると腐食速度が速くなり自己耐食性が低下する。従って、SnとInの添加量はそれぞれ、0.3%以下とする。好ましいSnとInの添加量はそれぞれ、0.05%~0.3%である。
1-7.第3の選択的添加元素について
 本発明においては、強度や耐食性を更に向上させるために、上記必須元素、第1の選択的添加元素及び第2の選択的添加元素の少なくともいずれかに加えて、所定量のTi、V、Cr、Ni及びZrから選択される1種又は2種以上が第3の選択的添加元素として更に添加される。なお、このような第3の選択的添加元素を含有する場合においても、Al系金属間化合物の体積密度及びSi系金属間化合物の面密度については、上記の通りに規定される。
1-7-1.Ti、Vについて
 Ti及びVは、マトリクス中に固溶して強度向上させる他に、層状に分布して板厚方向の腐食の進展を防ぐ効果がある。それぞれの添加量が0.3%を超えると粗大晶出物が発生し、成形性、耐食性を阻害する。従って、Ti及びVの添加量はそれぞれ、0.3%以下とする。好ましいTi及びVの添加量はそれぞれ、0.05%~0.3%である。
1-7-2.Crについて
 Crは、固溶強化により強度を向上させ、またAl-Cr系の金属間化合物の析出により、加熱後の結晶粒粗大化に作用する。添加量が0.3%を超えると粗大な金属間化合物を形成し易くなり、塑性加工性を低下させる。よって、Crの添加量は0.3%以下とする。好ましいCrの添加量は、0.05%~0.3%である。
1-7-3.Niについて
 Niは、金属間化合物として晶出又は析出し、分散強化によって接合後の強度を向上させる効果を発揮する。Niの添加量は、2.0%以下の範囲とし、好ましくは0.05%~2.0%の範囲である。Niの含有量が2.0%を超えると、粗大な金属間化合物を形成し易くなり、加工性を低下させ自己耐食性も低下する。
1-7-4.Zrについて
 ZrはAl-Zr系の金属間化合物として析出し、分散強化によって接合後の強度を向上させる効果を発揮する。また、Al-Zr系の金属間化合物は加熱中の結晶粒粗大化に作用する。添加量が0.3%を超えると粗大な金属間化合物を形成し易くなり、塑性加工性を低下させる。よって、Zrの添加量は0.3%以下とする。好ましいZrの添加量は、0.05%~0.3%である。
1-8.第4の選択的添加元素について
 本発明に係るアルミニウム合金材では、液相の特性改善を図ることにより接合性を更に良好にするために、上記必須元素及び第1~3の選択的添加元素の少なくともいずれかに加えて、所定量のBe、Sr、Bi、Na及びCaから選択される1種又は2種以上を第4の選択的添加元素として更に添加してもよい。なお、このような第4の選択的添加元素を含有する場合においても、Al系金属間化合物の体積密度及びSi系金属間化合物の面密度については、上記の通りに規定される。
 このような元素としては、Be:0.1%以下、Sr:0.1%以下、Bi:0.1%以下、Na:0.1%以下及びCa:0.05%以下の1種又は2種以上が必要に応じて添加される。なお、これら各元素の好ましい範囲は、Be:0.0001%~0.1%、Sr:0.0001%~0.1%、Bi:0.0001%~0.1%、Na:0.0001%~0.1%以下、Ca:0.0001%~0.05%以下である。これらの微量元素はSi粒子の微細分散、液相の流動性向上等によって接合性を改善することができる。これらの微量元素は、上記の好ましい規定範囲未満では、Si粒子の微細分散や液相の流動性向上等の効果が不十分となる場合がある。また、上記の好ましい規定範囲を超えると耐食性低下等の弊害を生じる。
1-9.Si、Fe、Mnの含有量の関係
 ところで、Fe及びMnはいずれも、Siと共にAl-Fe-Mn-Si系の金属間化合物を形成する。Al-Fe-Mn-Si系金属間化合物を生成するSiは液相の生成への寄与が小さいため、接合性が低下することになる。そのため、本発明に係るアルミニウム合金材でFe及びMnを添加する場合には、Si、Fe、Mnの含有量について留意することが好ましい。具体的には、Si、Fe、Mnの含有量(mass%)をそれぞれS、F、Mとしたとき、1.2≦S-0.3(F+M)≦3.5の関係式を満たすことが好ましい。S-0.3(F+M)が1.2未満の場合は、接合が不十分となる。一方、S-0.3(F+M)が3.5より大きい場合は、接合前後で形状が変化し易くなる。
1-10.材料の固相線と液相線について
 尚、本発明の液相を生成するアルミニウム合金材は、固相線温度と液相線温度の差が10℃以上であるものが好ましい。固相線温度を超えると液相の生成が始まるが、固相線温度と液相線温度の差が小さいと、固体と液体が共存する温度範囲が狭くなり、発生する液相の量を制御することが困難となる。従って、この差を10℃以上とするのが好ましい。例えば、この条件を満たす組成を有する合金としては、Al-Si系合金、Al-Si-Mg系、Al-Si-Cu系、Al-Si-Zn系及びAl-Si-Cu-Mg系等が挙げられる。尚、固相線温度と液相線温度の差が大きくなるほど、適切な液相量に制御するのが容易になる。従って、固相線温度と液相線温度の差の上限は、特に限定されるものではない。
1-11.MONOBRAZE法による接合前における引張強さ
 また、本発明に係るアルミニウム合金材は、MONOBRAZE法による接合前の引張強さが80~250MPaであるものが好ましい。この引張強さが80MPa未満であると、製品の形状に成形するために必要な強度が足りず、成形することができない。この引張強さが250MPaを超えると、成形した後の形状保持性が悪く、接合体として組み立てたときに他の部材との間に隙間ができて接合性が悪化する。なお、MONOBRAZE法による接合前の引張強さは、20~30℃の室温での測定値をいう。また、MONOBRAZE法による接合前の引張強さ(T0)と接合後の引張強さ(T)の比(T/T0)が、0.6~1.1の範囲であることが好ましい。(T/T0)が0.6未満の場合には、材料の強度が不足し、構造体としての機能が損なわれる場合があり、1.1を超えると粒界での析出が過剰となり粒界腐食が起こりやすくなる場合がある。
2.単層で加熱接合機能を有するアルミニウム合金材の製造方法
 次に、本発明に係る単層で加熱接合機能を有するアルミニウム合金材の製造方法について説明する。本発明に係るアルミニウム合金材は、連続鋳造法を用いて製造される。連続鋳造法では、凝固時の冷却速度が速いため、粗大な晶出物が形成され難く、円相当径5.0μm~10μmのSi系金属間化合物の形成が抑制される。その結果、再結晶核の数が少なくできるため特定の結晶粒のみが成長し、粗大な結晶粒が得られる。また、Mn、Feなどの固溶量が大きくなるため、その後の加工工程で円相当径0.01μm~0.5μmのAl系金属間化合物の形成が促進される。このように、適切な強さのピン止め効果と、粒内の固溶Siを集める効果が得られる円相当径0.01μm~0.5μmのAl系金属間化合物が形成されることにより、限られた結晶粒のみが成長し、粗大な結晶粒が得られ、かつ粒界での液相生成が抑制され、耐変形性が向上する。
 また、連続鋳造法では、円相当径0.01μm~0.5μmのAl系金属間化合物の形成により、マトリクス中の固溶Si量が低下する。その結果、接合加熱中の粒界に供給される固溶Si量が更に減少し、粒界での液相生成が抑制され、耐変形性が向上する。
 連続鋳造法としては、双ロール式連続鋳造圧延法や双ベルト式連続鋳造法等の連続的に板状鋳塊を鋳造する方法であれば特に限定されるものではない。双ロール式連続鋳造圧延法とは、耐火物製の給湯ノズルから一対の水冷ロール間にアルミニウム溶湯を供給し、薄板を連続的に鋳造圧延する方法であり、ハンター法や3C法等が知られている。また、双ベルト式連続鋳造法は、上下に対峙し水冷されている回転ベルト間に溶湯を注湯してベルト面からの冷却で溶湯を凝固させてスラブとし、ベルトの反注湯側より該スラブを連続して引き出してコイル状に巻き取る連続鋳造方法である。
 双ロール式連続鋳造圧延法では、鋳造時の冷却速度が半連続鋳造法に比べて数倍~数百倍速い。例えば、半連続鋳造法の場合の冷却速度が0.5~20℃/秒であるのに対し、双ロール式連続鋳造圧延法の場合の冷却速度は100~1000℃/秒である。そのため、鋳造時に生成する分散粒子が、半連続鋳造法に比べて微細かつ高密度に分布する特徴を有する。これにより粗大な晶出物の発生が抑制されるため、接合加熱中の結晶粒が粗大化する。また、冷却速度が速いために、添加元素の固溶量を増加させることができる。これにより、その後の熱処理によって微細な析出物が形成され、接合加熱中の結晶粒粗大化に寄与することができる。本発明においては、双ロール式連続鋳造圧延法の場合の冷却速度を100~1000℃/秒とするのが好ましい。100℃/秒未満では目的の金属組織を得ることが困難となり、1000℃/秒を超えると安定した製造が困難となる。
 双ロール式連続鋳造圧延法で鋳造する際の圧延板の速度は0.5~3m/分が好ましい。鋳造速度は、冷却速度に影響を及ぼす。鋳造速度が0.5m/分未満の場合は、上記のような十分な冷却速度が得られず化合物が粗大になる。また、3m/分を超える場合は、鋳造時にロール間でアルミニウム材が十分に凝固せず、正常な板状鋳塊が得られない。
 双ロール式連続鋳造圧延法で鋳造する際の溶湯温度は、650~800℃の範囲が好ましい。溶湯温度は、給湯ノズル直前にあるヘッドボックスの温度である。溶湯温度が650℃未満の温度では、給湯ノズル内に粗大な金属間化合物の分散粒子が生成し、それらが鋳塊に混入することで冷間圧延時の板切れの原因となる。溶湯温度が800℃を超えると、鋳造時にロール間でアルミニウム材が十分に凝固せず、正常な板状鋳塊が得られない。より好ましい溶湯温度は680~750℃である。
 双ロール式連続鋳造圧延法で鋳造する板状鋳塊の板厚は2mm~10mmが好ましい。この厚さ範囲においては、板厚中央部の凝固速度も速く、均一組織な組織が得られ易い。板厚が2mm未満であると、単位時間当たりに鋳造機を通過するアルミニウム量が少なく、安定して溶湯を板幅方向に供給することが困難になる。一方、板厚が10mmを超えると、ロールによる巻取りが困難になる。より好ましい板状鋳塊の板厚は、4mm~8mmである。
 双ロール式連続鋳造圧延法で鋳造された板状鋳塊を最終板厚に冷間圧延する工程中において、250~550℃で1~10時間の範囲で焼鈍を行う。この焼鈍は鋳造後の製造工程において、最終冷間圧延を除くどの工程で行っても良く、1回以上行う必要がある。なお、焼鈍の回数の上限は好ましくは3回、より好ましくは2回である。この焼鈍は、材料を軟化させて最終圧延で所望の材料強度を得易くするために行われ、この焼鈍により材料中の金属間化合物のサイズ及び密度、添加元素の固溶量を最適に調整することが出来る。焼鈍温度が250℃未満では、材料の軟化が不十分なために、ろう付け加熱前のTSが高くなる。ろう付け加熱前のTSが高いと、成形性に劣るためコア寸法が悪化し、結果として耐久性が低下する。一方、550℃を超えた温度で焼鈍を行うと、製造工程中の材料への入熱量が多くなりすぎるために、金属間化合物が粗大かつ疎に分布することになる。粗大かつ疎に分布した金属間化合物は、固溶元素を取り込み難く、材料中の固溶量が低下し難い。また、1時間未満の焼鈍温度では上記の効果が十分ではなく、10時間を越えた焼鈍時間では上記の効果が飽和しているために経済的に不利となる。
 また、調質はO材でもよくH材でもよい。H1n材またはH2n材とする場合は、最終冷間圧延率が重要である。最終冷間圧延率は50%以下であり、好ましい最終冷間圧延率は5%~50%である。最終冷間圧延率が50%を超えると、加熱時に再結晶核が多数発生し、接合加熱後の結晶粒径が微細になる。なお、最終冷間圧延率が5%未満では、製造が実質上に困難となる場合がある。
2-1.双ロール式連続鋳造圧延法における金属間化合物密度の制御
 上述の双ロール式連続鋳造圧延法とその後の製造工程により、半連続鋳造に比べて分散粒子を微細にすることが可能である。しかしながら、本発明に係るアルミニウム合金材の金属組織を得るためには、凝固時の冷却速度をより精密に制御することが重要となる。本発明者らは、上記冷却速度の制御が、アルミコーティング厚みの制御及び圧延荷重による溶湯内サンプ制御によって可能であることを見出した。
2-1-1.アルミコーティング厚みの制御
 アルミコーティングとは、アルミニウム及び酸化アルミニウムを主成分とする皮膜である。鋳造中にロール表面に形成されるアルミコーティングは、ロール表面と溶湯の濡れを良くし、ロール表面と溶湯間の熱伝達を向上させる。アルミコーティングを形成するためには、680~740℃のアルミニウム溶湯を500N/mm以上の圧延荷重にて双ロール式連続鋳造圧延を実施してもよく、或いは、双ロール式連続鋳造圧延開始前に300℃以上に加熱した展伸材用アルミニウム合金板を圧下率20%以上で2回以上圧延させてもよい。アルミコーティング形成に使用するアルミニウム溶湯又はアルミニウム合金板は、添加元素の少ない1000系合金が特に好ましいが、その他のアルミニウム合金系を用いてもコーティング形成は可能である。鋳造中、アルミコーティング厚みは常に増加するため、窒化ホウ素、または炭素系離型剤(グラファイトスプレー、もしくは煤)をロール表面に10μg/cmで塗布し、アルミコーティングの更なる形成を抑制する。また、ブラシロール等で物理的に除去することも可能である。
 アルミコーティング厚みは1~500μmとするのが好ましい。これにより、溶湯の冷却速度が最適に調整され、接合加熱時の耐変形性に優れる金属間化合物密度とSi固溶量を有するアルミニウム合金を鋳造することが可能となる。アルミコーティング厚みが1μm未満では、ロール表面と溶湯の濡れ性が悪いため、ロール表面と溶湯の接触面積が小さくなる。これにより、ロール表面と溶湯の熱伝達性が悪化し、溶湯の冷却速度が低下する。その結果、金属間化合物が粗大化し、所望の金属間化合物密度を得られない。また、ロール表面と溶湯の濡れ性が悪いと、ロール表面と溶湯が局所的に非接触となる場合もある。その場合、鋳塊が再溶解して溶質濃度の高い溶湯が鋳塊表面へ染み出して表面偏析が生じ、鋳塊表面において粗大な金属間化合物が形成される虞もある。一方、アルミコーティング厚みが500μmを超えると、ロール表面と溶湯の濡れ性は向上するものの、コーティングが厚すぎるためにロール表面及び溶湯間の熱伝達性は著しく悪化する。その結果、この場合も溶湯の冷却速度が低下するため、金属間化合物が粗大化し、所望の金属間化合物密度及びSi固溶量を得られない。アルミコーティング厚みは、より好ましくは80~410μmである。
2-1-2.圧延荷重による溶湯内サンプ制御
 連続鋳造板の金属間化合物密度については、本来凝固時の冷却速度を制御して操作することが望ましい。但し、鋳造中の冷却速度測定は非常に困難であり、オンラインで計測できるパラメータにて金属間化合物密度を制御することが必要とされる。
 双ロール式連続鋳造圧延法は、図1、2に示すように、上下に対向配置された金属製冷却ロール2A、2Bとロール中心線3とノズルチップ4の出口に囲まれた領域2に、耐火物製のノズルチップ4を介してアルミニウム合金の溶湯1を注入して実施される。ここで、連続鋳造中の領域2は、圧延領域5と非圧延領域6に大別できる。圧延領域5におけるアルミニウム合金は凝固が完了し鋳塊となっており、ロールの圧下に対してロール分離力が発生する。一方、非圧延領域6におけるアルミニウム合金は、ロール近傍の凝固は完了しているものの、板厚中央部は未凝固の溶湯として存在しているため、ロール分離力は発生しない。凝固開始点7の位置は、鋳造条件を変化させても、ほぼ移動しない。そのため、鋳造速度を速く、又は、溶湯温度を高くして、図1に示すように圧延領域5を小さくすると溶湯内サンプは深くなり、結果として冷却速度は低下する。反対に鋳造速度を遅く、又は、溶湯温度を低くして、図2に示すように圧延領域5を大きくすると溶湯内サンプは浅くなり、冷却速度は増加する。このように、冷却速度は、圧延領域の増減、すなわちロール分離力の垂直成分である圧延荷重8の計測によって制御可能である。なお、溶湯内サンプとは、鋳造時の凝固部と未凝固部の固液界面のことであり、この界面が圧延方向に深く入りこんで谷型を形成している場合はサンプが深いと言い、反対に圧延方向に入りこまず平坦に近い界面を形成している場合はサンプが浅いという。
 上記圧延荷重は、500~5000N/mmとするのが好ましい。圧延荷重が500N/mm未満では、図1に示すように圧延領域4が小さく、溶湯内サンプが深い状況となる。これにより冷却速度が低くなり、粗大な晶出物が形成され易く、微細な析出物は形成され難くなる。その結果、接合加熱中に粗大な晶出物を核とする再結晶粒が増加し、結晶粒が微細になるため変形し易くなる。また、微細な析出物が疎になることで適切なピン止め効果が得られず、Si固溶量も多くなるために接合加熱中において粒界に生成する液相が増加し、変形し易くなる。更に、溶質原子が板厚中央部に集まり、中心線偏析を起こす要因ともなる。
 一方、圧延荷重が5000N/mmを超えると、図2に示すように圧延領域5が大きく、溶湯内サンプが浅い状況となる。これにより、冷却速度が高くなりすぎ、Al系金属間化合物分布が過密となる。その結果、接合加熱中にピン止め効果が働きすぎて結晶粒が微細となり、変形し易くなる。また、ロール表面からの抜熱量が大きいため、ロール表面と非接触の溶湯(メニスカス部9)まで凝固が進行する。そのため、鋳造中の溶湯供給が不十分となり、リップルが深くなって鋳塊表面における表面欠陥が生じる。この表面欠陥は、圧延時の割れの起点となり得る。
2-2.圧延荷重の測定方法
 双ロール式連続鋳造圧延法においては、鋳造中に鋳塊がロールを押し上げる力と、鋳造前から鋳造中まで上下ロール間にかかる一定の力が発生する。これら2つの力の和は、ロール中心線に平行な成分として、油圧式シリンダにて計測することが可能である。したがって、圧延荷重は、鋳造開始前と鋳造中におけるシリンダ圧の増加分を力に変換し、鋳造板の幅で割ることで求められる。例えば、シリンダ数が2個、シリンダ径が600mm、1つのシリンダ圧の増加が4MPa、鋳造中の圧延板の幅が1500mmであった場合、板状鋳塊の単位幅あたりの圧延荷重は、下記式から1508N/mmとなる。
  4×300×π÷1500×2=1508N/mm
3.単層で加熱接合機能を有するアルミニウム合金材を用いたアルミニウム接合体
 次に、本発明に係るアルミニウム接合体について述べる。本発明ではろう材を使用することなく、アルミニウム合金材自体が発揮する接合能力を利用するMONOBRAZE法を利用してアルミニウム接合体が製造される。本発明においてアルミニウム接合体とは、二つ以上の部材が接合されてなる接合体であって、これを構成する部材の少なくとも一つの部材が本発明に係るアルミニウム合金材からなるものである。他の部材は、本発明に係るアルミニウム合金材でも良く、他のアルミニウム合金材又は純アルミニウム材でもよい。本発明に係るアルミニウム接合体の製造方法は、本発明に係るアルミニウム合金材を二つ以上の部材の少なくとも一つの被接合部材として他の被接合部材と組み合わせた後、加熱処理を行ってこれら被接合部材を接合するものである。例えば、熱交換器のフィン材としての利用を考慮すれば、フィン材自身の変形が大きな課題となる。そのため、MONOBRAZE法の接合条件を管理することも重要である。具体的には、本発明に係るアルミニウム合金材内部に液相が生成する固相線温度以上液相線温度以下であり、かつ該アルミニウム合金材に液相が生成し、強度が低下して形状を維持できなくなる温度以下の温度で、接合に必要な時間加熱する。
 さらに具体的な加熱条件としては、アルミニウム合金材の全質量に対する当該アルミニウム合金材内に生成する液相の質量の比(以下、液相率と記す。)が0%を超え35%以下となる温度で接合する必要がある。液相が生成しなければ接合ができないので液相率は0%より多いことが必要である。しかしながら、液相が少ないと接合が困難となる場合があるため、液相率は5%以上にすることが好ましい。液相率が35%を超えると、生成する液相の量が多過ぎて、接合加熱時にアルミニウム合金材は大きく変形してしまい形状を保てなくなる。より好ましい液相率は5~30%であり、更に好ましい液相率は10~20%である。
 また、液相が被接合部材間に十分に充填される為にはその充填時間も考慮することが好ましく、液相率が5%以上である時間が30~3600秒であるのが好ましい。より好ましくは、液相率5%以上の時間が60~1800秒であり、これにより更に十分な充填が行われ確実な接合がなされる。液相率が5%以上である時間が30秒未満では、接合部に液相が十分に充填されない場合がある。一方、3600秒を超えると、アルミニウム材の変形が進む場合がある。尚、本発明における接合方法では、液相は接合部の極近傍においてしか移動しないので、この充填に必要な時間は接合部の大きさには依存しない。
 望ましい加熱条件の具体例としては、本発明に係る上記アルミニウム合金材の場合、580℃~640℃を接合温度とし、接合温度での保持時間を0~10分程度とすればよい。ここで、0分とは、部材の温度が所定の接合温度に到達したらすぐに冷却を開始することを意味する。上記保持時間は、より好ましくは30秒から5分である。接合温度については、例えば、Si量が1~1.5%程度の場合は接合加熱温度を610~640℃と高めにすることが望ましい。逆に、Si量が4~5%程度の場合は接合加熱温度を580~590℃と低めに設定するとよい。また、接合部の金属組織を後述する好適な状態にするため組成に応じて加熱条件を調整しても良い。
 尚、加熱中における実際の液相率を測定することは極めて困難である。そこで、本発明で規定する液相率は、通常、平衡状態図を利用して、合金組成と最高到達温度から、てこの原理(lever rule)によって求めることができる。すでに状態図が明らかになっている合金系においては、その状態図を使用し、てこの原理を用いて液相率を求めることができる。一方、平衡状態図が公表されていない合金系に関しては、平衡計算状態図ソフトを利用して液相率を求めることができる。平衡計算状態図ソフトには、合金組成と温度を用いて、てこの原理で液相率を求める手法が組み込まれている。平衡計算状態図ソフトには、Thermo-Calc;Thermo-Calc Software AB社製などがある。平衡状態図が明らかになっている合金系においても、平衡計算状態図ソフトを用いて液相率を計算しても、平衡状態図からてこの原理を用いて液相率を求めた結果と同じ結果となるので、簡便化のために、平衡計算状態図ソフトを利用しても良い。
 また、加熱処理における加熱雰囲気は窒素やアルゴン等で置換した非酸化性雰囲気等が好ましい。また、非腐食性フラックスを使用することで更に良好な接合性を得ることができる。更に、真空中や減圧中で加熱して接合することも可能である。
 上記非腐食性フラックス塗布する方法には、被接合部材を組み付けた後、フラックス粉末を振りかける方法や、フラックス粉末を水に懸濁してスプレー塗布する方法等がある。あらかじめ素材に塗装する場合には、フラックス粉末にアクリル樹脂等のバインダーを混合して塗布すれば、塗装の密着性を高めることができる。通常のフラックスの機能を得るために用いる非腐食性フラックスとしては、KAlF、KAlF、KAlF・HO、KAlF、AlF、KZnF、KSiF等のフッ化物系フラックスや、CsAlF、CsAlF・2HO、CsAlF・HO等のセシウム系フラックスが挙げられる。
 本発明に係る単層で加熱接合機能を有するアルミニウム合金材は、上記のような加熱処理及び加熱雰囲気の制御により良好に接合することができる。但し、特に接合時の液相率が大きくなる場合、上記アルミニウム合金材内に発生する応力は比較的小さな応力に留めたほうが良好な形状を維持できる。このようにアルミニウム合金材内の応力を考慮することが好ましい場合、当該アルミニウム合金材内に発生する応力のうちの最大値をP(kPa)、液相率をV(%)とした場合、P≦460-12Vの条件を満たせば、非常に安定した接合が得られる。この式の右辺(460-12V)で示される値は限界応力であり、これを超える応力がアルミニウム合金材に加わると大きな変形が発生するおそれがある。アルミニウム合金材に発生する応力は、形状と荷重から求められる。例えば、構造計算プログラム等を用いて計算することができる。
 更に、接合部の圧力と同様に接合部の表面形態も接合性に影響を与えることがあり、両面が平滑な方がより安定した接合が得られる。本発明においては、接合前の対となる被接合部材の双方の接合面の表面の凹凸から求められる算術平均うねりWa1とWa2の和が、Wa1+Wa2≦10(μm)を満たす場合に、更に十分な接合が得られる。尚、算術平均うねりWa1、Wa2は、JISB0633で規定されるものであり、波長が25~2500μmの間で凹凸となるようカットオフ値を設定し、レーザー顕微鏡やコンフォーカル顕微鏡で測定されたうねり曲線から求められる。
4.加熱接合後におけるアルミニウム合金材の金属組織における結晶粒径について
 本発明に係る単層で加熱接合機能を有するアルミニウム合金材は、MONOBRAZE法による加熱接合後における結晶粒径が100μm以上であるものが好ましい。加熱時は粒界部分が溶融しているため、結晶粒が小さいと粒界で結晶粒同士のずれが生じ易くなって変形が起こる。加熱中の結晶粒の観察は極めて困難なため、加熱後の結晶粒径で判断する。加熱後の結晶粒が100μm未満であると、接合時に材料が変形し易くなる。なお、上記結晶粒径の上限値は特に限定されるものではないが、アルミニウム合金材の製造条件とMONOBRAZE法の接合条件に依存するものであり、本発明では1500μmである。なお、結晶粒の測定はASTM E112-96の結晶粒測定法に基づき、平均結晶粒径として算出する。
 以下に、本発明を実施例と比較例に基づいて詳細に説明する。
 第1実施形態:まず、表1~3のA1~A67の成分の試験材を用いた。これらの表において、合金組成の「-」は検出限界以下であることを示すものであり、「残部」は不可避的不純物を含む。上記試験材を用いて、双ロール式連続鋳造圧延法(CC)により鋳造鋳塊を製造した。双ロール式連続鋳造圧延法で鋳造する際の溶湯温度は650~800℃であり、鋳造速度は表4~6に示すように種々変更した。なお、冷却速度については、直接的な測定が困難であるが、上述のように、アルミコーティング厚みの制御及び圧延荷重による溶湯内サンプ制御によって、300~700℃/秒の範囲となっているものと考えられる。このような鋳造工程により、幅130 mm、長さ20000mm、厚さ7mmの鋳造鋳塊を得た。次に、得られた板状鋳塊を0.7mmまで冷間圧延し、420℃×2時間の中間焼鈍後に、0.071mmまで冷間圧延し、350℃×3時間の2回目の焼鈍の後に、0.050mmまで最終冷間圧延率30%で圧延して供試材とした。また、供試材の算術平均うねりWaは約0.5μmであった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 鋳造時には、溶湯温度680℃~750℃において結晶粒微細化剤を投入した。その際溶湯保持炉と給湯ノズル直前にあるヘッドボックスの間を連結する樋を流れる溶湯に対して、ワイヤー状の結晶粒微細化剤ロッドを用いて一定速度で連続的に投入した。結晶粒微細化剤はAl-5Ti-1B合金を使用して、B量換算で0.002%となるよう添加量を調整した。
 また、表2、3のA44、48、50、51、54の成分の試験材は、半連続鋳造法(DC)を用いて100mm×300mmのサイズで鋳造した。鋳造速度は30mm/分とし、冷却速度は1℃/秒とした。半連続鋳造法で鋳造した鋳塊を面削後に500℃に加熱して3mm厚まで熱間圧延した。その後、圧延板を0.070mmまで冷間圧延し、380℃×2時間の中間焼鈍後、更に0.050mmまで最終冷間圧延率30%で圧延して試験材とした。
 これらの試験材については、製造過程における製造性の評価を行った。製造性の評価方法は、板材又はスラブを製造した際に、製造過程において問題が発生せず健全な板材やスラブが得られた場合を○とし、鋳造時に割れが発生した場合や、鋳造時の巨大金属間化合物発生が原因で圧延が困難となり、製造性に問題があった場合を×とした。
 また、製造した板材(素板)中のAl系金属間化合物の体積密度は、板厚方向に沿った断面のTEM観察により測定した。TEM観察用サンプルは電解エッチングを用いて作成した。TEM観察時には膜厚をEELS測定により求め、平均的に50~200μmの膜厚である視野を選択して観察した。Si系金属間化合物とAl系金属間化合物とは、STEM-EDSによりマッピングを行うことで区別することができる。観察は各サンプル100000倍で10視野ずつ行い、それぞれのTEM写真を画像解析することで円相当径0.01μm~0.5μmのAl系金属間化合物数を測定した。この画像の測定面積に平均膜厚を乗じることで測定体積とし、体積密度を算出した。
 また、製造した板材(素板)中のSi系金属間化合物の面密度は、板厚方向に沿った断面をSEM観察により測定した。Si系金属間化合物とAl系金属間化合物(Al-Fe-Mn-Si系金属間化合物)は、SEM-反射電子像観察とSEM-二次電子像観察を用いて区別した。反射電子像観察では、白いコントラストが強く得られるものがAl系金属間化合物であり、白いコントラストが弱く得られるものはSi系金属間化合物である。Si系金属間化合物はコントラストが弱いため、微細な粒子などは判別がつき難いことがある。その場合は表面研磨後コロイダルシリカ系研濁液で10秒程度エッチングしたサンプルをSEM-二次電子像観察した。黒いコントラストが強く得られる粒子がSi系金属間化合物である。観察は各サンプル5視野ずつ行い、それぞれの視野のSEM写真を画像解析することで、サンプル中の円相当径5.0μm~10μmのSi系金属間化合物の面密度を調べた。
 次に、各試験材を図3に示すように、幅16mm、山高さ7mm、ピッチ2.5mmのフィン材に成形した。これに表3のB1の組成の合わせ材を板厚0.4mmの電縫加工したチューブ材と組み合わせ、ステンレス製のジグに組み込み、図3に示す3段積みのテストピース(ミニコア)を作製した。
 そして、このミニコアを非腐食性の弗化物系フラックスの10%懸濁液に浸漬、乾燥後、窒素雰囲気中で表4~6に示す接合加熱条件で加熱し、フィン材とチューブ材とを接合した。尚、実施例16についてはフラックスを塗布せずに、真空中で加熱して接合した。また、接合時の各温度における保持時間は30~3600秒とした。なお、このミニコアの場合、ステンレスジグとアルミニウム材の熱膨張率の差で接合加熱時にはステンレスジグとミニコアとの間に約4Nの圧縮荷重が生じ、接合面積から計算すると、フィンとチューブとの接合面には約10kPaの応力が生じていることになる。
 フィン材とチューブ材とを接合した後に、フィンをチューブから剥してミニコアのチューブとフィンの接合部40箇所を調べ、完全に接合している箇所の比率(接合率)を測定した。そして、接合率が90%以上を◎、80%以上90%未満を○、70%以上80%未満を△、70%未満を×と判定した。
 また、接合前後のミニコアのフィン高さを測定してフィン座屈による変形率についても評価した。すなわち、接合前のフィン高さに対する接合後のフィン高さ変化(減少)の割合が3%以下を◎、3%を超え5%以下を○、5%を超え8%以下を△、8%を超えるものを×と判定した。
 本実施形態では、MONOBRAZE法による接合前後の材料の引張試験を行った。引張試験は、各サンプルに対し、引張速度10mm/min、ゲージ長50mmの条件で、JIS Z2241に従って、20~30℃の室温にて実施した。なお、MONOBRAZE法による接合後の引張試験は、ミニコアと同等のMONOBRAZE法の接合加熱条件で加熱したサンプルを上記室温まで冷却して24時間以内に評価した。
 本実施形態では、MONOBRAZE法による接合後の材料の金属組織における結晶粒径を測定した。測定方法は、ASTM E112-96に基づく方法で行った。まず、本発明サンプルの単板をミニコアと同等の接合加熱条件で加熱した後、L-LT断面を研磨し陽極酸化法にて表面処理することで、結晶粒組織を観察し易くした。光学顕微鏡にて本発明サンプルの結晶粒組織を観察し、ASTMが規定している結晶粒組織の基準画像を、本発明サンプルの断面像と照合し、本発明サンプルの断面像に最も結晶粒組織が似ている基準画像の結晶粒径を採用した。
 以上の各試験材について、鋳造方法、鋳造速度、製造性評価、Al系金属間化合物の体積密度、Si系金属間化合物の面密度、接合加熱条件、接合前後の引張試験評価、接合後の結晶粒径、接合率及び変形率を、表4~6に示す。なお、接合加熱条件における平衡液相率は、平衡状態図計算ソフトによる計算値である。
 表4、5から、アルミニウム合金材の組成において本発明が規定する条件を具備するものは、製造性が良好であった。一方、表6に示すように、合金組成A55、A60~A64の加工では、合金組成が規定範囲内になかったため、鋳造時に巨大な金属間化合物が生成し、最終板厚まで圧延できなかった。
 次いで、接合試験結果について、ミニコアの各サンプルについての評価結果と、フィン材のアルミニウム合金材の組成(表1~3)とを対比する。アルミニウム合金材の組成に関して本発明が規定する条件を具備する供試材(実施例1~40)は、接合率、フィン座屈、引張強度のいずれも合格であった。また、実施例12~26は、添加元素として、更にMg、Cu、Mn、Ni、Ti、V、Zr、Crを添加した合金からなる供試材であるが、これらは変形率の評価が更に良好となり、これらの添加元素に強度向上の効果があることが確認された。
 一方、比較例1では、Si成分が規定量に満たないため、接合加熱温度を比較的高温としても液相の生成率が低くなり、接合率が低くなり接合性が不合格であった。
 比較例2では、Si成分が規定量を超えているため、接合加熱温度を比較的低温としても液相の生成率が高くなり、フィンが座屈して変形率が不合格であった。
 比較例3では、Si、Fe及びMnの各成分がいずれも規定量範囲内であるが、Al系金属間化合物の体積密度が規定を下回り、加熱後の結晶粒が小さくなり、また液相生成の核が少なかったため粒界での液相生成が促進され、フィンが座屈して変形率が不合格であった。
 比較例4では、FeとMnの成分がともに規定量を超えていたため製造性に問題があり、評価ができなかった。
 比較例5では、Fe成分が規定量に満たないため、Al系金属間化合物の体積密度が規定の密度を下回り、加熱後の結晶粒径が小さくなり、また液相生成の核が少なかったため粒界での液相生成が促進され、フィンが座屈して変形率が不合格であった。
 比較例6では、Si、Fe、Mn成分がいずれも規定量範囲内であるが、Al系金属間化合物の体積密度が規定を上回り、また液相生成の核が多すぎたために粒界に接する液相が増加し、フィンが座屈して変形率が不合格であった。
 比較例7では、Si及びFeの成分がいずれも規定量範囲内であるが、Al系金属間化合物の体積密度が規定の密度を下回り、加熱後の結晶粒径が小さくなり、また液相生成の核が少なかったため粒界での液相生成が促進され、フィンが座屈して変形率が不合格であった。
 比較例8では、Si及びFeの成分がいずれも規定量範囲内であるが、Si系金属間化合物の面密度が規定を超え、Al系金属間化合物の体積密度が規定を下回り、加熱後の結晶粒が小さくなり、また液相生成の核が少なかったため粒界での液相生成が促進され、フィンが座屈して変形率が不合格であった。
 比較例9では、Mgの含有量が規定を超えたため、接合加熱時にフラックスが有効に働かず接合性が低下し、接合率の評価が不合格であった。
 比較例10では、Niの含有量が規定を超えたため、製造性に問題があり、評価ができなかった。
 比較例11では、Tiの含有量が規定を超えたため、製造性に問題があり、評価ができなかった。
 比較例12では、Vの含有量が規定を超えたため、製造性に問題があり、評価ができなかった。
 比較例13では、Zrの含有量が規定を超えたため、製造性に問題があり、評価ができなかった。
 比較例14では、Crの含有量が規定を超えたため、製造性に問題があり、評価ができなかった。
 第2実施形態:ここでは、添加元素による耐食性への影響について検討した。表7に示すように、第1実施形態にて製造した材料を抜粋して、第1実施形態と同様のフィンに成形した。そして、第1実施形態と同様にして3段積みのテストピース(ミニコア)を作製した(図3)。このミニコアを非腐食性の弗化物系フラックスの10%懸濁液に浸漬、乾燥後、窒素雰囲気中で、表7に示す種々の接合加熱温度に加熱し、3分の保持時間に保持してフィンとチューブとを接合した。
Figure JPOXMLDOC01-appb-T000007
 そして、第1実施形態と同様にして、接合率と変形率を評価した。更に第1実施形態と同様にして、Al系金属間化合物の体積密度、Si系金属間化合物の面密度及び接合加熱後の結晶粒径も測定した。これらの評価結果と測定結果を表7に示す。
 更に、フィン自身の耐食性評価のためにCASS試験を500時間行い、フィンの腐食状態を確認した。光学顕微鏡による断面観察においてフィンが70%以上残存していたものを◎、50%以上70%未満のものを○、30%以上50%未満のものを△、30%未満のものを×と判定した。以上の評価結果を表7に示す。
 この実施形態における実施例41~54では、添加元素として、Zn、Cu、Mn、In、Sn、Ti、Vを添加したアルミニウム合金を供試材とするものである。表7から、これらの実施例は、実施例41のZn等が添加されていないアルミニウム合金と比較すると耐食性の向上が見られており、これらの添加元素の有用性が確認できた。
 一方、比較例15では、Cuの含有量が規定を超えたため、自己耐食性が低下し、耐食性の評価が不合格となった。
 比較例16では、Znの含有量が規定を超えたため、腐食速度が著しく増加し、耐食性の評価が不合格となった。
比較例17では、Inの含有量が規定を超えたため、腐食速度が著しく増加し、耐食性の評価が不合格となった。
比較例18では、Snの含有量が規定を超えたため、腐食速度が著しく増加し、耐食性の評価が不合格となった。
第3実施形態:ここでは、製造工程による金属組織の制御を検討した。第1実施形態にて製造した材料から組成No.A3を抜粋して、表8に示すように種々の製造工程にて最終板厚0.05mmのフィン材を製造した。それぞれの材料の素板のSi系金属間化合物の面密度、Al系金属間化合物の面密度、Si固溶量を測定した。結果を表9に示す。なお、この実施態様では、円相当径が5μm未満及び10μmを超えるSi金属間化合物の面密度、ならびに、円相当径が0.5μmを超えるAl金属間化合物の体積密度も併せて測定した。この結果も表9に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 次いで、第1実施形態と同様のフィンに成形した。そして、第1実施形態と同様にして3段積みのテストピース(ミニコア)を作製した(図3)。このミニコアを非腐食性の弗化物系フラックスの10%懸濁液に浸漬、乾燥後、窒素雰囲気中で、600℃に加熱し、
3分間の保持時間に保持してフィンとチューブとを接合した。接合加熱後の結晶粒径の測定と、接合性及び変形性の評価は第1実施形態と同様に行った。結果を表9に示す。
 表8、9に示すように、実施例55~68では製造工程が適切であったため、最終板において本発明に規定するSi系金属間化合物密度、Al系金属間化合物密度及びSi固溶量が得られ、接合率と変形率が基準を満たして合格となった。
 比較例19では、鋳造時の圧延荷重が小さすぎたため冷却速度が遅くなり、最終板において円相当径5~10μmのSi系金属間化合物の面密度が規定を超え、加熱後の結晶粒径が小さくなり、変形率の評価が不合格であった。
 比較例20では、圧延荷重が大きすぎたために溶湯供給が不十分となり、鋳造時に割れが発生し、製造が不可能であった。
 比較例21では、鋳造時のロールコーティング厚みがゼロであったため冷却速度が遅くなり、最終板において円相当径0.01~0.5μmのAl系金属間化合物の体積密度が規定を下回り、加熱後の結晶粒径が小さくなり、また、Si固溶量が規定を超えたため、変形率が不合格であった。
 比較例22では、鋳造時のロールコーティング厚みが厚すぎたため冷却速度が遅くなり、最終板において円相当径0.01~0.5μmのAl系金属間化合物の体積密度が規定を下回り、加熱後の結晶粒径が小さくなり、また、Si固溶量が規定を超えたため、変形率が不合格であった。
 比較例23では1回目の焼鈍温度が低く、円相当径円相当径0.01~0.5μmのAl系金属間化合物の体積密度が規定を超え、変形率が不合格であった。
 比較例24では1回目の焼鈍温度が高く、円相当径円相当径0.01~0.5μmのAl系金属間化合物の体積密度が規定を下回り、また、Si固溶量が規定を超えたため、変形率が不合格であった。
 比較例25では1回目の焼鈍時間が短く、円相当径円相当径0.01~0.5μmのAl系金属間化合物の体積密度が規定を超え、変形率が不合格であった。
 比較例26では1回目の焼鈍時間が長く、円相当径円相当径0.01~0.5μmのAl系金属間化合物の体積密度が規定を下回り、また、Si固溶量が規定を超えたため、変形率が不合格であった。
 本発明に係る単層で加熱接合機能を有するアルミニウム合金材は、例えば熱交換器のフィン材として特に有用であり、ろう材や溶加材のような接合部材を使用することなく熱交換器の他の部材と接合可能であり、熱交換器を効率的に製造することができる。本発明に係るアルミニウム合金材をMONOBRAZE法によって加熱接合する場合において、寸法や形状の変化は殆ど生じない。本発明に係るアルミニウム合金材及びこれを用いた接合体は、工業上顕著な効果を奏するものである。
 1・・・アルミニウム合金の溶湯
 2・・・領域
 2A・・・ロール
 2B・・・ロール
 3・・・ロール中心線3
 4・・・ノズルチップ
 5・・・圧延領域 
 6・・・非圧延領域
 7・・・凝固開始点
 8・・・圧延荷重
 9・・・メニスカス部

Claims (11)

  1.  Si:1.0~5.0mass%、Fe:0.01~2.0mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金からなり、0.01~0.5μmの円相当径を有するAl系金属間化合物が10~1×10個/μm存在し、5.0~10μmの円相当径を有するSi系金属間化合物が200個/mm以下存在することを特徴とする単層で加熱接合機能を有するアルミニウム合金材。
  2.  前記アルミニウム合金に含まれる固溶Si量が0.7%以下である、請求項1に記載の単層で加熱接合機能を有するアルミニウム合金材。
  3.  前記アルミニウム合金が、Mg:0.05~2.0mass%、Cu:0.05~1.5mass%及びMn:0.05~2.0mass%から選択される1種又は2種以上を更に含有する、請求項1又は2に記載の単層で加熱接合機能を有するアルミニウム合金材。
  4.  前記アルミニウム合金が、Zn:6.0mass%以下、In:0.3mass%以下及びSn:0.3mass%以下から選択される1種又は2種以上を更に含有する、請求項1~3のいずれか一項に記載の単層で加熱接合機能を有するアルミニウム合金材。
  5.  前記アルミニウム合金が、Ti:0.3mass%以下、V:0.3mass%以下、Cr:0.3mass%以下、Ni:2.0mass%以下及びZr:0.3mass%以下から選択される1種又は2種以上を更に含有する、請求項1~4のいずれか一項に記載の単層で加熱接合機能を有するアルミニウム合金材。
  6.  前記アルミニウム合金が、Be:0.1mass%以下、Sr:0.1mass%以下、Bi:0.1mass%以下、Na:0.1mass%以下及びCa:0.05mass%以下から選択される1種又は2種以上を更に含有する、請求項1~5のいずれか一項に記載の単層で加熱接合機能を有するアルミニウム合金材。
  7.  加熱接合前における引張強さが80~250MPaである、請求項1~6のいずれか一項に記載の単層で加熱接合機能を有するアルミニウム合金材。
  8.  請求項1~7のいずれか一項に記載の単層で加熱接合機能を有するアルミニウム合金材の製造方法であって、前記アルミニウム合金材用のアルミニウム合金を双ロール式連続鋳造圧延する鋳造工程と、圧延板を冷間圧延する2回以上の冷間圧延工程と、冷間圧延工程中において圧延板を1回以上の焼鈍する焼鈍工程を含み、全ての焼鈍工程における焼鈍条件が250~550℃の温度で1~10時間であり、最終冷間圧延段階における圧下率が50%以下である、ことを特徴とする単層で加熱接合機能を有するアルミニウム合金材の製造方法。
  9.  前記鋳造工程の双ロール式連続鋳造圧延において、圧延板のアルミニウム及び酸化アルミニウムを主成分とする厚さ1~500μmの皮膜が、双ロール表面に付着した状態で圧延され、圧延板幅1mmあたりの圧延荷重が500~5000Nである、請求項8に記載の単層で加熱接合機能を有するアルミニウム合金材の製造方法。
  10.  二つ以上のアルミニウム部材を加熱接合することにより製造され、前記二つ以上のアルミニウム部材の少なくとも一つに請求項1~7のいずれか一項に記載のアルミニウム合金材を用いたことを特徴とするアルミニウム接合体。
  11.  加熱接合後において、前記二つ以上の部材の少なくとも一つに用いた前記アルミニウム合金材の金属組織における結晶粒径が100μm以上である、請求項10に記載のアルミニウム接合体。
PCT/JP2013/063454 2013-05-14 2013-05-14 単層で加熱接合機能を有するアルミニウム合金材及びその製造方法、ならびに、当該アルミニウム合金材を用いたアルミニウム接合体 WO2014184880A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP13884783.5A EP2998412B1 (en) 2013-05-14 2013-05-14 Method for manufacturing an aluminum alloy material, the single layer of which allows thermal bonding
PCT/JP2013/063454 WO2014184880A1 (ja) 2013-05-14 2013-05-14 単層で加熱接合機能を有するアルミニウム合金材及びその製造方法、ならびに、当該アルミニウム合金材を用いたアルミニウム接合体
CN201380076617.5A CN105229182B (zh) 2013-05-14 2013-05-14 以单层具有加热接合功能的铝合金材及其制造方法、以及使用了该铝合金材的铝接合体
MX2015015592A MX2015015592A (es) 2013-05-14 2013-05-14 Material de aleacion de aluminio que tiene funcion de union termica en una sola capa, metodo de fabricacion del mismo, y cuerpo unido de aluminio utilizando el material de aleacion de aluminio.
KR1020157034644A KR102118856B1 (ko) 2013-05-14 2013-05-14 단층으로 가열 접합 기능을 가지는 알루미늄 합금재와 그 제조방법 및 상기 알루미늄 합금재를 이용한 알루미늄 접합체
BR112015028766-2A BR112015028766B1 (pt) 2013-05-14 2013-05-14 Material à base de liga de alumínio com função de ligação térmica em uma única camada, método para sua fabricação e corpo ligado por alumínio usando-se o material à base de liga de alumínio
JP2014527099A JP5732594B2 (ja) 2013-05-14 2013-05-14 単層で加熱接合機能を有するアルミニウム合金材及びその製造方法、ならびに、当該アルミニウム合金材を用いたアルミニウム接合体
MYPI2015703871A MY173798A (en) 2013-05-14 2013-05-14 Aluminum alloy material having thermal bonding function in single layer, manufacturing method for same, and aluminum bonded body using the aluminum alloy material
US14/891,085 US20160089860A1 (en) 2013-05-14 2013-05-14 Aluminum alloy material having thermal bonding function in single layer, manufacturing method for same, and aluminum bonded body using the aluminum alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/063454 WO2014184880A1 (ja) 2013-05-14 2013-05-14 単層で加熱接合機能を有するアルミニウム合金材及びその製造方法、ならびに、当該アルミニウム合金材を用いたアルミニウム接合体

Publications (1)

Publication Number Publication Date
WO2014184880A1 true WO2014184880A1 (ja) 2014-11-20

Family

ID=51897901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063454 WO2014184880A1 (ja) 2013-05-14 2013-05-14 単層で加熱接合機能を有するアルミニウム合金材及びその製造方法、ならびに、当該アルミニウム合金材を用いたアルミニウム接合体

Country Status (8)

Country Link
US (1) US20160089860A1 (ja)
EP (1) EP2998412B1 (ja)
JP (1) JP5732594B2 (ja)
KR (1) KR102118856B1 (ja)
CN (1) CN105229182B (ja)
BR (1) BR112015028766B1 (ja)
MX (1) MX2015015592A (ja)
WO (1) WO2014184880A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143631A1 (ja) * 2015-03-11 2016-09-15 三菱マテリアル株式会社 接合体の製造方法、ヒートシンク付パワーモジュール用基板の製造方法、及び、ヒートシンクの製造方法
JP2016168625A (ja) * 2015-03-11 2016-09-23 三菱マテリアル株式会社 接合体の製造方法、ヒートシンク付パワーモジュール用基板の製造方法、及び、ヒートシンクの製造方法
JP2018090840A (ja) * 2016-11-30 2018-06-14 株式会社Uacj 熱交換器用アルミニウム合金フィン材、当該熱交換器用アルミニウム合金フィン材を用いた熱交換器用アルミニウム合金フィン材コイル、当該熱交換器用アルミニウム合金フィン材又は熱交換器用アルミニウム合金フィン材コイルを用いて製造されるコルゲートフィン材、ならびに、これらコルゲートフィン材を用いて製造される熱交換器
WO2018128036A1 (ja) * 2017-01-06 2018-07-12 株式会社Uacj 熱交換器用のアルミニウム合金フィン材及びその製造方法
CN113201672A (zh) * 2021-04-20 2021-08-03 北京科技大学 一种高烤漆硬化增量的Al-Mg-Si-Cu-Zn合金及制备方法
WO2022176420A1 (ja) * 2021-02-16 2022-08-25 株式会社Uacj アルミニウム合金板、その製造方法及び熱交換器

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3006888B1 (en) * 2013-06-02 2020-08-05 UACJ Corporation Heat exchanger, and fin material for said heat exchanger
KR101511632B1 (ko) * 2013-09-05 2015-04-13 한국기계연구원 쌍롤 주조법을 이용한 알루미늄-아연계 합금 판재의 제조방법 및 이에 따라 제조되는 알루미늄-아연계 합금 판재
JP6557476B2 (ja) * 2015-02-10 2019-08-07 三菱アルミニウム株式会社 アルミニウム合金フィン材
KR101717491B1 (ko) * 2015-07-07 2017-03-20 윈엔윈(주) 용탕단조법을 이용한 고인성 알루미늄 합금 양궁 핸들의 제조방법 및 양궁 핸들
JP6347312B1 (ja) * 2017-10-30 2018-06-27 新日鐵住金株式会社 クラッド板
KR101910466B1 (ko) * 2017-11-24 2018-10-25 주식회사 에스제이테크 내식성과 열전도도가 우수한 고강도 다이캐스팅용 알루미늄 합금 및 이를 제조하는 방법과 이를 이용한 알루미늄 합금 주조품의 제조방법
CN108624787A (zh) * 2018-04-28 2018-10-09 东莞市润华铝业有限公司 一种散热器用铝合金及其制备方法
KR102472890B1 (ko) * 2020-08-20 2022-12-02 ㈜에스엘엠글로벌 열전도율이 우수한 주조용 알루미늄 합금 및 알루미늄 합금 주조방법
KR102472891B1 (ko) * 2020-09-02 2022-12-02 ㈜에스엘엠글로벌 열전도율이 우수한 주조용 알루미늄 합금 및 알루미늄 합금 주조방법
CN112195375B (zh) * 2020-10-16 2022-04-12 江苏常铝铝业集团股份有限公司 一种自钎焊铝合金箔材及其制造方法
CN112620597A (zh) * 2020-12-30 2021-04-09 镇江龙源铝业有限公司 一种列控***rbc机柜散热齿片用铝材的制备方法
CN114606403A (zh) * 2022-02-17 2022-06-10 银邦金属复合材料股份有限公司 新能源动力电池用铝合金高强度水冷板及其制备方法
CN116891964A (zh) * 2023-09-11 2023-10-17 山东三源铝业有限公司 一种无复合层自钎焊铝合金材料及制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63278643A (ja) * 1987-05-08 1988-11-16 Kobe Steel Ltd アルミニウム及びアルミニウム合金鋳造板の製造方法
JPH0521097B2 (ja) 1987-04-14 1993-03-23 Asahi Chemical Ind
JP2003034851A (ja) * 2001-07-26 2003-02-07 Furukawa Electric Co Ltd:The ブレージング用アルミニウム合金フィン材の製造方法
WO2006003899A1 (ja) * 2004-06-30 2006-01-12 Sumitomo Electric Industries, Ltd. マグネシウム合金材の製造方法
JP2007517986A (ja) * 2004-01-12 2007-07-05 アルコア インコーポレイテッド 高伝導性フィンストック合金、製造方法及び得られた製品
JP2008303405A (ja) 2007-06-05 2008-12-18 Mitsubishi Alum Co Ltd 熱交換器ヘッダプレート用アルミニウム合金材料および熱交換器用ろう付け体
JP2008308760A (ja) 2006-12-21 2008-12-25 Mitsubishi Alum Co Ltd ろう付によって製造される高強度自動車熱交換器用部材に用いられる、成形性と耐エロージョン性に優れた自動車熱交換器用高強度アルミニウム合金材、及びその製造方法
JP2009161835A (ja) 2008-01-09 2009-07-23 Sumitomo Light Metal Ind Ltd アルミニウム製熱交換器及びその製造方法
JP2010168613A (ja) 2009-01-21 2010-08-05 Furukawa-Sky Aluminum Corp 熱交換器用単層ブレージングシートおよびそれを使用した熱交換器
JP2012051028A (ja) 2010-08-06 2012-03-15 Furukawa-Sky Aluminum Corp アルミニウム合金材を用いた構造体とその接合方法
WO2013080650A1 (ja) * 2011-12-02 2013-06-06 古河スカイ株式会社 アルミニウム合金材、ならびに、アルミニウム合金構造体及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5021097B1 (ja) 1970-09-03 1975-07-19
JP2003112286A (ja) * 2001-09-28 2003-04-15 Furukawa Electric Co Ltd:The アルミニウム合金ろう材およびアルミニウム合金製熱交換器の製造方法
CN1726114A (zh) * 2002-12-12 2006-01-25 昭和电工株式会社 铝合金钎焊材料、钎焊件、使用所述材料的钎焊制品及其钎焊方法,钎焊热交换管、使用所述钎焊热交换管的热交换器及其制造方法
JP4726455B2 (ja) * 2004-09-22 2011-07-20 古河スカイ株式会社 アルミニウム合金材のろう付け方法およびアルミニウム合金製熱交換器の製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521097B2 (ja) 1987-04-14 1993-03-23 Asahi Chemical Ind
JPS63278643A (ja) * 1987-05-08 1988-11-16 Kobe Steel Ltd アルミニウム及びアルミニウム合金鋳造板の製造方法
JP2003034851A (ja) * 2001-07-26 2003-02-07 Furukawa Electric Co Ltd:The ブレージング用アルミニウム合金フィン材の製造方法
JP2007517986A (ja) * 2004-01-12 2007-07-05 アルコア インコーポレイテッド 高伝導性フィンストック合金、製造方法及び得られた製品
WO2006003899A1 (ja) * 2004-06-30 2006-01-12 Sumitomo Electric Industries, Ltd. マグネシウム合金材の製造方法
JP2008308760A (ja) 2006-12-21 2008-12-25 Mitsubishi Alum Co Ltd ろう付によって製造される高強度自動車熱交換器用部材に用いられる、成形性と耐エロージョン性に優れた自動車熱交換器用高強度アルミニウム合金材、及びその製造方法
JP2008303405A (ja) 2007-06-05 2008-12-18 Mitsubishi Alum Co Ltd 熱交換器ヘッダプレート用アルミニウム合金材料および熱交換器用ろう付け体
JP2009161835A (ja) 2008-01-09 2009-07-23 Sumitomo Light Metal Ind Ltd アルミニウム製熱交換器及びその製造方法
JP2010168613A (ja) 2009-01-21 2010-08-05 Furukawa-Sky Aluminum Corp 熱交換器用単層ブレージングシートおよびそれを使用した熱交換器
JP2012051028A (ja) 2010-08-06 2012-03-15 Furukawa-Sky Aluminum Corp アルミニウム合金材を用いた構造体とその接合方法
WO2013080650A1 (ja) * 2011-12-02 2013-06-06 古河スカイ株式会社 アルミニウム合金材、ならびに、アルミニウム合金構造体及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Aluminum Brazing Handbook (Revised", 2003, THE JAPAN LIGHT METAL WELDING AND CONSTRUCTION ASSOCIATION
See also references of EP2998412A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143631A1 (ja) * 2015-03-11 2016-09-15 三菱マテリアル株式会社 接合体の製造方法、ヒートシンク付パワーモジュール用基板の製造方法、及び、ヒートシンクの製造方法
JP2016168625A (ja) * 2015-03-11 2016-09-23 三菱マテリアル株式会社 接合体の製造方法、ヒートシンク付パワーモジュール用基板の製造方法、及び、ヒートシンクの製造方法
CN107427954A (zh) * 2015-03-11 2017-12-01 三菱综合材料株式会社 接合体的制造方法、自带散热器的功率模块用基板的制造方法及散热器的制造方法
TWI753854B (zh) * 2015-03-11 2022-02-01 日商三菱綜合材料股份有限公司 接合體之製造方法、附散熱片之電力模組用基板之製造方法、及散熱片之製造方法
JP2018090840A (ja) * 2016-11-30 2018-06-14 株式会社Uacj 熱交換器用アルミニウム合金フィン材、当該熱交換器用アルミニウム合金フィン材を用いた熱交換器用アルミニウム合金フィン材コイル、当該熱交換器用アルミニウム合金フィン材又は熱交換器用アルミニウム合金フィン材コイルを用いて製造されるコルゲートフィン材、ならびに、これらコルゲートフィン材を用いて製造される熱交換器
WO2018128036A1 (ja) * 2017-01-06 2018-07-12 株式会社Uacj 熱交換器用のアルミニウム合金フィン材及びその製造方法
JP2018111842A (ja) * 2017-01-06 2018-07-19 株式会社Uacj 熱交換器用のアルミニウム合金フィン材及びその製造方法
US11807919B2 (en) 2017-01-06 2023-11-07 Uacj Corporation Aluminum alloy fin material for heat exchanger and method for manufacturing the same
WO2022176420A1 (ja) * 2021-02-16 2022-08-25 株式会社Uacj アルミニウム合金板、その製造方法及び熱交換器
CN113201672A (zh) * 2021-04-20 2021-08-03 北京科技大学 一种高烤漆硬化增量的Al-Mg-Si-Cu-Zn合金及制备方法

Also Published As

Publication number Publication date
JPWO2014184880A1 (ja) 2017-02-23
EP2998412A1 (en) 2016-03-23
BR112015028766B1 (pt) 2019-05-14
KR102118856B1 (ko) 2020-06-04
BR112015028766A2 (pt) 2017-07-25
EP2998412B1 (en) 2019-11-06
KR20160009600A (ko) 2016-01-26
US20160089860A1 (en) 2016-03-31
MX2015015592A (es) 2016-03-03
EP2998412A4 (en) 2017-01-18
CN105229182A (zh) 2016-01-06
JP5732594B2 (ja) 2015-06-10
CN105229182B (zh) 2017-06-30

Similar Documents

Publication Publication Date Title
JP5732594B2 (ja) 単層で加熱接合機能を有するアルミニウム合金材及びその製造方法、ならびに、当該アルミニウム合金材を用いたアルミニウム接合体
JP5436714B2 (ja) アルミニウム合金材、ならびに、アルミニウム合金構造体及びその製造方法
JP5345264B1 (ja) 熱交換器フィン用のアルミニウム合金材及びその製造方法、ならびに、当該アルミニウム合金材を用いた熱交換器
JP5698416B1 (ja) 熱交換器及び当該熱交換器用フィン材
WO2010137649A1 (ja) 熱交換器用アルミニウム合金製ブレージングシートおよび熱交換器用アルミニウム合金製ろう付け体
JP2012051028A (ja) アルミニウム合金材を用いた構造体とその接合方法
JP2005254329A (ja) クラッド材およびその製造方法、ならびにクラッド材の製造装置
JP2014114475A (ja) アルミニウム合金ブレージングシート及びその製造方法、ならびに、当該アルミニウム合金ブレージングシートを用いた熱交換器
JP6909028B2 (ja) アルミニウム合金製フィン材及びこれを用いたアルミニウム合金製ブレージングシート、ならびに、当該フィン材又はブレージングシートをフィンに用いた熱交換器
JP2012040611A (ja) アルミニウム合金材を用い、耐食性に優れた構造体とその接合方法
WO2017179625A1 (ja) アルミニウム合金製のフィン材、アルミニウム合金製のブレージングシート、および熱交換器
JP2009046705A (ja) 耐食性に優れた熱交換器用押出扁平多穴管及び熱交換器
WO2022176420A1 (ja) アルミニウム合金板、その製造方法及び熱交換器
JP5566155B2 (ja) Al合金鋳ぐるみ製品およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380076617.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014527099

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13884783

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/015592

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 14891085

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013884783

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157034644

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201508414

Country of ref document: ID

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015028766

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015028766

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151116