WO2014167659A1 - 光情報記録再生装置 - Google Patents

光情報記録再生装置 Download PDF

Info

Publication number
WO2014167659A1
WO2014167659A1 PCT/JP2013/060772 JP2013060772W WO2014167659A1 WO 2014167659 A1 WO2014167659 A1 WO 2014167659A1 JP 2013060772 W JP2013060772 W JP 2013060772W WO 2014167659 A1 WO2014167659 A1 WO 2014167659A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording
recording medium
reproducing apparatus
optical
distance
Prior art date
Application number
PCT/JP2013/060772
Other languages
English (en)
French (fr)
Inventor
藤田 浩司
Original Assignee
日立コンシューマエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立コンシューマエレクトロニクス株式会社 filed Critical 日立コンシューマエレクトロニクス株式会社
Priority to US14/782,891 priority Critical patent/US20160049170A1/en
Priority to JP2015511003A priority patent/JPWO2014167659A1/ja
Priority to CN201380075492.4A priority patent/CN105122367A/zh
Priority to PCT/JP2013/060772 priority patent/WO2014167659A1/ja
Publication of WO2014167659A1 publication Critical patent/WO2014167659A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H1/2205Reconstruction geometries or arrangements using downstream optical component
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2286Particular reconstruction light ; Beam properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • G03H1/2645Multiplexing processes, e.g. aperture, shift, or wavefront multiplexing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0908Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for focusing only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13925Means for controlling the beam wavefront, e.g. for correction of aberration active, e.g. controlled by electrical or mechanical means
    • G11B7/13927Means for controlling the beam wavefront, e.g. for correction of aberration active, e.g. controlled by electrical or mechanical means during transducing, e.g. to correct for variation of the spherical aberration due to disc tilt or irregularities in the cover layer thickness
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H1/2205Reconstruction geometries or arrangements using downstream optical component
    • G03H2001/2207Spatial filter, e.g. for suppressing higher diffraction orders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H1/2205Reconstruction geometries or arrangements using downstream optical component
    • G03H2001/221Element having optical power, e.g. field lens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • G03H1/2645Multiplexing processes, e.g. aperture, shift, or wavefront multiplexing
    • G03H2001/2675Phase code multiplexing, wherein the sub-holograms are multiplexed according to spatial modulation of the reference beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/35Transverse intensity distribution of the light beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/40Particular irradiation beam not otherwise provided for
    • G03H2222/46Reconstruction beam at reconstruction stage
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2223/00Optical components
    • G03H2223/12Amplitude mask, e.g. diaphragm, Louver filter
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/085Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam into, or out of, its operative position or across tracks, otherwise than during the transducing operation, e.g. for adjustment or preliminary positioning or track change or selection
    • G11B7/08547Arrangements for positioning the light beam only without moving the head, e.g. using static electro-optical elements
    • G11B7/08564Arrangements for positioning the light beam only without moving the head, e.g. using static electro-optical elements using galvanomirrors

Definitions

  • the present invention relates to an optical information recording / reproducing apparatus that records information on an optical information recording medium using the interference pattern of signal light and reference light as page data and / or reproduces information from the optical information recording medium.
  • optical discs with a recording density of 128 GB have become commercially available from the BD (Blu-ray-Disc) standard.
  • BD Blu-ray-Disc
  • hologram recording technology that can realize high-capacity, high-speed recording and reproduction using holograms is attracting attention.
  • signal light having page data information obtained by two-dimensionally modulating information with a spatial light modulator is superposed on the reference light inside the recording medium, and the refractive index in the recording medium is determined by the interference fringe pattern generated at that time.
  • the recording medium is irradiated with the reference light used for recording, and the hologram recorded in the recording medium acts like a diffraction grating to generate diffracted light.
  • the signal light and the phase information are reproduced as the same light.
  • the reproduced signal light is detected two-dimensionally at high speed using an image sensor.
  • the feature of hologram recording / reproducing technology is that it is possible to record and reproduce two-dimensional information on an optical recording medium with a single hologram, and to multiplex-record on the same part of the recording medium, so that it has a large capacity and high speed transfer. realizable.
  • Patent Document 1 Japanese Patent Laid-Open No. 2007-293238
  • Patent Document 1 is a technique for adjusting the focus of hologram reproduction light with respect to a two-dimensional image sensor when reproducing hologram data.
  • the reference light and the signal light are overlapped to record the light interference on the recording medium. Therefore, it is difficult to mount an optical focus adjustment mechanism. Therefore, in hologram recording, every time the recording position of the medium is changed, the distance between the objective lens and the recording medium fluctuates due to distortion, deformation due to deformation of the recording medium, and mechanical tolerances. The hologram position (height) varies in the direction and is recorded.
  • an object of the present invention is to increase the reproduction speed of the hologram.
  • the hologram reproduction speed can be increased.
  • FIG. 6 is a block diagram showing a recording / reproducing apparatus for an optical information recording medium that records and / or reproduces digital information using holography.
  • the optical information recording / reproducing device 10 is connected to an external control device 91 via an input / output control circuit 90.
  • the optical information recording / reproducing apparatus 10 receives the information signal to be recorded from the external control device 91 by the input / output control circuit 90.
  • the optical information recording / reproducing apparatus 10 transmits the reproduced information signal to the external control apparatus 91 by the input / output control circuit 90.
  • the optical information recording / reproducing apparatus 10 includes a pickup 11, a reproduction reference light optical system 12, a cure optical system 13, a disk rotation angle detection optical system 14, and a rotation motor 50.
  • the optical information recording medium 1 is a rotation motor. 50 can be rotated.
  • the pickup 11 plays a role of irradiating the optical information recording medium 1 with reference light and signal light and recording digital information on the recording medium using holography.
  • the information signal to be recorded is sent by the controller 89 to the spatial light modulator in the pickup 11 via the signal generation circuit 86, and the signal light is modulated by the spatial light modulator.
  • the reproduction reference light optical system 12 When reproducing the information recorded on the optical information recording medium 1, the reproduction reference light optical system 12 generates a light wave that causes the reference light emitted from the pickup 11 to enter the optical information recording medium in a direction opposite to that during recording. Generate. Reproduction light reproduced by the reproduction reference light is detected by a photodetector (to be described later) in the pickup 11, and a signal is reproduced by the signal processing circuit 85.
  • the irradiation time of the reference light and the signal light applied to the optical information recording medium 1 can be adjusted by controlling the opening / closing time of the shutter in the pickup 11 via the shutter control circuit 87 by the controller 89.
  • the cure optical system 13 plays a role of generating a light beam used for pre-cure and post-cure of the optical information recording medium 1.
  • Precure is a pre-process for irradiating a predetermined light beam in advance before irradiating the desired position with reference light and signal light when recording information at a desired position in the optical information recording medium 1.
  • Post-cure is a post-process for irradiating a predetermined light beam after recording information at a desired position in the optical information recording medium 1 so that additional recording cannot be performed at the desired position.
  • the disk rotation angle detection optical system 14 is used to detect the rotation angle of the optical information recording medium 1.
  • a signal corresponding to the rotation angle is detected by the disk rotation angle detection optical system 14, and a disk rotation motor control circuit is detected by the controller 89 using the detected signal.
  • the rotation angle of the optical information recording medium 1 can be controlled via 88.
  • a predetermined light source driving current is supplied from the light source driving circuit 82 to the light sources in the pickup 11, the cure optical system 13, and the disk rotation angle detection optical system 14, and each light source emits a light beam with a predetermined light amount. Can do.
  • the pickup 11 and the disc cure optical system 13 are provided with a mechanism capable of sliding the position in the radial direction of the optical information recording medium 1, and the position is controlled via the access control circuit 81.
  • the recording technology using the principle of angle multiplexing of holography tends to have a very small tolerance for the deviation of the reference beam angle.
  • a mechanism for detecting the deviation amount of the reference beam angle is provided in the pickup 11, a servo control signal is generated by the servo signal generation circuit 83, and the deviation amount is corrected via the servo control circuit 84. It is necessary to provide a servo mechanism for this purpose in the optical information recording / reproducing apparatus 10.
  • the pickup 11, the cure optical system 13, and the disk rotation angle detection optical system 14 may be simplified by combining several optical system configurations or all optical system configurations into one.
  • FIG. 1 shows an example of an optical system configuration of an optical pickup 11 in an optical information recording / reproducing apparatus 10 of the present invention.
  • the light beam emitted from the light source 101 passes through the collimator lens 102 and enters the shutter 103.
  • the shutter 103 When the shutter 103 is open, the light beam passes through the shutter 103 and is polarized by the optical element 104 composed of a half-wave plate so that the light quantity ratio of P-polarized light and S-polarized light becomes a desired ratio.
  • the light enters a PBS (Polarization Beam Splitter) prism 105.
  • PBS Polarization Beam Splitter
  • the light beam that has passed through the PBS prism 105 functions as the signal light 106, and after the light beam diameter is enlarged by the beam expander 108, the light beam passes through the phase mask 109, the relay lens 110, and the PBS prism 111 and passes through the spatial light modulator 112. Is incident on.
  • the signal light to which information is added by the spatial light modulator 112 reflects the PBS prism 111 and propagates through the relay lens 113 and the polytopic filter 114. Thereafter, the signal light is condensed on the optical information recording medium 1 by the objective lens 115.
  • the light beam reflected from the PBS prism 105 works as reference light 107 and is set to a predetermined polarization direction according to recording or reproduction by the polarization direction conversion element 116, and then passes through the mirror 117 and the mirror 118. , And enters the galvanometer mirror 119.
  • the galvanometer mirror 119 adjusts the optical axis angle of the reference light by adjusting the angle of the mirror with the actuator 120, passes through the lens 121 and the lens 122, and then enters the recording medium 1.
  • the signal light and the reference light are made to overlap and enter in the recording medium 1 to form an interference fringe pattern (hologram) 125 of light, and the information is obtained by exposing this pattern to the recording medium 1. Record.
  • the incident angle of the reference light incident on the recording medium 1 can be changed by the galvanometer mirror 119, multiple recording can be performed at the same location on the recording medium.
  • the method of recording the light interference pattern by overlapping the two light beams is based on the optical reference point of the optical pickup 11, for example, the distance between the objective lens 115 and the surface of the recording medium 1 (optical height).
  • the depth (height) at which the hologram 125 is recorded is uniquely determined.
  • the distance (optical height) between the objective lens 115 and the surface of the recording medium 1 is not a constant value.
  • the recording medium 1 will be described as a disc shape, but the present invention is not limited to this.
  • the recording medium is rotated, surface shake occurs and the optical height fluctuates. Further, the height of the section in which the recording medium 1 is moved in the radial direction from the inner periphery to the outer periphery varies in the machine tolerance. Therefore, every time the recording location is changed with respect to the recording medium 1, the depth at which the hologram 125 is recorded varies in the thickness direction (depth) within the recording medium 1.
  • the reference light 107 is incident on the recording medium 1, and the light beam transmitted through the recording medium 1 is reflected by the galvanometer mirror 124 whose angle can be adjusted by the actuator 123, thereby generating reproduction reference light.
  • the reproduction light reproduced by the reproduction reference light propagates through the objective lens 115, the relay lens 113, and the polytopic filter 114. Thereafter, the reproduction light passes through the PBS prism 111 and enters the photodetector 150, and the recorded signal can be reproduced.
  • an image sensor can be used as the photodetector 150, but any element may be used as long as page data can be reproduced.
  • the objective lens 115 reproduction optical height
  • a predetermined accuracy for example, ⁇ 12 ⁇ m or less is required.
  • the hologram 125 existing in the thickness direction (depth) in the recording medium 1 must be detected, but there is no physical detection method.
  • the optical conditions for obtaining the reproduction light from the hologram 125 for example, the Bragg angle condition of the reference light, the laser wavelength condition, and the pitch angle condition of the recording medium and the reference light are satisfied. There must be. In order to realize high-speed reproduction, it is necessary to adjust the reproduction optical height to the best even when reproduction light from the hologram 125 cannot be obtained.
  • Example 1 the optical height at the time of recording the hologram 125 is reproduced at the time of reproduction, so that the reproduction optical height adjustment can be realized equivalently.
  • the configuration will be described below.
  • the location where the hologram 125 is recorded on the recording medium is designated.
  • the recording medium 1 will be described by taking a circular shape as an example, but this may be any medium shape.
  • An address value indicating a physical recording location is assigned to the recording medium 1 in advance, and based on this address, the rotation angle ( ⁇ ) and the radial position (R) of the recording medium 1 are associated with each other physically.
  • the position information is converted, the spindle motor 127 is rotated by ⁇ angle, and the radius moving stage 128 is moved by the R thread, thereby positioning to the recording location of the target address.
  • the positioning to the recording location may be performed by orthogonal coordinates of the recording medium on the X axis and the Y axis.
  • the positioning operation will be described by taking an example of positioning based on the rotation angle ( ⁇ ) and the radial position (R) of the recording medium 1.
  • the rotation angle ( ⁇ ) and the radial movement position (R) of the recording medium 1 are converted in association with the address by the medium position specifying unit 135 and transmitted to the medium movement control unit 134.
  • the medium movement control unit 134 calculates the rotational movement amount and sled movement amount from the current rotation angle ( ⁇ ) and radial movement position (R) to the target rotation angle ( ⁇ ) and radial movement position (R).
  • the calculation result is transmitted to the R ⁇ drive unit 131.
  • the R ⁇ driving unit 131 rotates the spindle motor 127 and further drives the radial movement stage 128 to perform R thread driving, thereby performing recording positioning of the recording medium 1.
  • the distance (optical height) from the optical reference point to the surface of the recording medium 1 is measured by the distance measuring device 126 provided at the optical reference point of the pickup 11.
  • the distance measuring device 126 is, for example, optical distance measurement using surface reflection of the recording medium 1.
  • the distance measuring device 126 is not limited to this as long as the distance from the optical reference point to the surface of the recording medium 1 can be measured. Any measuring means may be used.
  • the optical height is measured at or near the surface position of the recording medium 1 on which the hologram 125 is recorded.
  • the measurement signal from the distance measuring device 126 is transmitted to the z distance calculation unit 130, and the value of the optical height is calculated.
  • the optical height value is transmitted to the storage unit 133.
  • the designated address is transmitted to the storage unit 133 via the medium position designation unit 135.
  • the storage unit 133 stores the optical height measurement result in association with the designated address (recording location).
  • Fig. 4 shows a conceptual diagram of storage of the optical height measurement result for the recording location (area).
  • the optical height measurement operation and the storage operation of the measurement results are performed corresponding to all the hologram recording locations (books) on the recording medium.
  • the optical height is determined by using a plurality of books as one area.
  • a measurement operation and a storage operation of the measurement result may be performed. This is very small with respect to the recording medium 1 such as the size of the hologram 125, for example, a square size of 760 ⁇ m ⁇ 380 ⁇ m. It is particularly effective and reasonable in some cases.
  • the operation of the embodiment will be described below as an address for each book.
  • the predetermined area is a predetermined number of hologram assembly areas, for example, a cure site unit for performing a cure (for example, 80 x 80 holograms). Area) or a bookcase unit (for example, an integer number of areas on the Cure site), and particularly a unit in which the number of holograms is collected in the process and sequence related to recording, it is desirable to manage easily.
  • the number of holograms in the area is not limited and may be any number depending on the physical state of the recording medium.
  • the measurement result of the distance (optical height) between the objective lens 115 and the surface of the recording medium 1 is (W1).
  • the area 2 where the hologram 125 is recorded next is a state where the recording medium 1 is close to the objective lens 115, and the measurement result of the distance (optical height) between the objective lens 115 and the surface of the recording medium 1 is (W2).
  • the area 3 where the hologram 125 is recorded next is a state in which the recording medium 1 is closer to the objective lens 115, and the distance (optical height) measurement result between the objective lens 115 and the surface of the recording medium 1 is ( W3).
  • the area 1 is recorded from the center of the recording medium thickness to the upper position, the area 2 is recorded near the center of the recording medium thickness, and the area 3 is recorded. Recording is performed from the center of the medium thickness to the lower position.
  • the optical height information measured for each area is stored in the storage unit 133 in association with each measurement area.
  • As a management method as an area for example, class management in which a plurality of book addresses belong to the area may be used.
  • the storage unit 133 stores data in a storage unit 133 provided inside an optical information recording / reproducing apparatus (not shown). At this time, the recording medium unique number is stored in association with it.
  • the unique number of the recording medium 1 is added to the recording information of the spatial light modulator 112 and recorded as management information of the recording medium 1.
  • the polytopic filter 114 is an optical filter for blocking the reproduction light from the hologram adjacent to the target reproduction hologram. it can.
  • the polytopic filter 114 is disposed at the condensing position of the relay lens 113 and allows only the reproduction light from the target hologram to pass through.
  • the operation of the optical filter will be described using a polytopic filter as an example, but an optical filter having the same effect, for example, an angle filter may be used.
  • FIG. 5 shows a part of the optical system configuration when the recording medium 1 is defocused during hologram reproduction.
  • the recording medium 1 shows an example when the position before defocus (DF1) is changed to the position after defocus (DF2).
  • DF1 position before defocus
  • DF2 position after defocus
  • the diffracted light from the hologram to be reproduced is displaced relative to the optical pickup in the defocus direction, and a part of the diffracted light cannot pass through the polytopic filter 114 (160 and 161 in FIG. 5). ) Occurs.
  • the reproduction quality is deteriorated due to a lack of a part of the reproduction image or a decrease in the light amount.
  • the recording medium 1 may be moved to the defocus (DF1) position.
  • the right side of FIG. 5 shows an optical state when the polytopic filter 114 is moved by an optical defocus amount corresponding to the defocus amount, for example, the defocus amount (eg, 142) of the optical magnification.
  • the defocus amount eg, 142
  • the diffracted light from the hologram to be reproduced passes through the polytopic filter 114, and a reproduced image with a reproduction signal quality can be projected onto the photodetector 150. it can. That is, if the optical height at the time of recording can be reproduced at the time of reproduction, the reproduced light passing through the polytopic filter can project a reproduced image on the photodetector 150 in an optimum state.
  • the medium position designation unit 135 converts the rotation angle ( ⁇ ) and the radial movement position (R) of the recording medium 1 in association with the address, and moves the medium. It is transmitted to the control unit 134.
  • the medium movement control unit 134 calculates the rotational movement amount and sled movement amount from the current rotation angle ( ⁇ ) and radial movement position (R) to the target rotation angle ( ⁇ ) and radial movement position (R), The calculation result is transmitted to the R ⁇ drive unit 131.
  • the R ⁇ driving unit 131 rotates the spindle motor 127 and further moves the radius moving stage 128 by R threads, thereby performing reproduction positioning of the recording medium 1.
  • the distance (optical height) from the optical reference point to the surface of the recording medium 1 is measured by the distance measuring device 126 provided at the optical reference point of the pickup 11.
  • the measurement signal from the distance measuring device 126 is transmitted to the z distance calculation unit 130, and the value of the optical height is calculated.
  • the optical height value is transmitted to the movement amount calculation unit 132.
  • the reproduction designated address is transmitted to the storage unit 133 via the medium position designation unit 135.
  • the optical height information at the time of recording associated with the designated address or the area classified into the addresses is read and transmitted to the movement amount calculation unit 132.
  • the movement amount calculation unit 132 calculates the difference between the optical height information during reproduction (current) and the optical height during recording (past).
  • the movement amount of the polytopic filter 130 in the optical axis direction is multiplied by the optical system magnification, for example, 10 times the difference value of the optical height, and the movement amount of the polytopic filter is calculated and transmitted to the PPF driving unit 129.
  • the PPF driving unit 129 drives the polytopic filter in the optical axis direction by driving the actuator 151 for the deviation from the optical height during reproduction. Further, the polytopic filter 114 performs adjustment movement only during reproduction, and transmits a mode selection signal instructing that the reproduction mode is selected from the input terminal 136 to the PPF drive unit in order to fix to a predetermined machine position during recording. . By doing so, the optical height during recording can be adjusted to be optically equivalent to the optical height during reproduction. On the other hand, since the polytopic filter 114 is movable during reproduction, it is essential to fix the polytopic filter 114 at a predetermined machine position during recording.
  • the storage unit 133 may be in the optical information recording / reproducing apparatus or in a higher management system connected to the optical information recording / reproducing apparatus.
  • the storage unit 133 Since the storage unit 133 stores optical height information of a plurality of recording media, it is necessary to assign a unique number to each recording medium and identify the storage medium with the unique number of the recording medium during reproduction.
  • a semiconductor memory and a magnetic memory are provided in a case (for example, a cartridge) that covers a recording medium (not shown), and the recording medium's unique number is recorded in the memory and then read out to identify the unique number of the recording medium. can do.
  • the memory may embed RFID in a part of the inside of the recording medium, record a recording medium unique number, and perform a reading operation.
  • the host side to which the apparatus is connected may include the storage unit 133.
  • FIG. 7 shows an operation flow at the time of recording and FIG. 8 shows an operation flow at the time of reproduction in the first embodiment.
  • the recording address of the medium 1 is set (STEP 1), then the medium is moved to the recording address, and the positioning is completed (STEP 3).
  • the optical height is measured (STEP 4), and the optical height information corresponding to the recording address is recorded in the memory (STEP 5).
  • a playback address is set (STEP 8), and optical height information at the time of recording corresponding to the playback address is read from the memory (STEP 9).
  • the medium is moved to the reproduction address to complete the positioning (STEP 9).
  • the optical height is measured (STEP 11), and the difference between the measurement result and the optical height at the time of recording read from the memory is calculated (STEP 12).
  • the difference calculation result is multiplied by the optical magnification of the polytopic filter (STEP 13), and the polytopic filter is driven on the Z axis based on the multiplication result (STEP 14).
  • defocus adjustment during reproduction can be realized by reproducing the optical height during recording using a polytopic filter during reproduction.
  • the polytopic filter is a lightweight optical member, it can move at high speed, and defocus adjustment during reproduction can be performed at high speed. Further, the defocus adjustment of the next reproduction position can be performed in parallel using the polytopic filter while changing the reproduction position of the recording medium. Furthermore, there is a great effect that the defocus adjustment at the time of reproduction can be performed before the hologram reproduction light is obtained, that is, in the state where the hologram reproduction light is not obtained. These effects can be expected to improve the playback speed. Further, even when the recording device and the reproducing device are different, the effect can be exhibited in the compatible reproduction by matching the optical height between the recording and the reproducing.
  • optical height information at the time of recording corresponding to the address of the recording medium 1 is recorded and reproduced in the management information area of the recording medium 1, and the operation will be described below with reference to FIG.
  • the rotation angle ( ⁇ ) and the radial movement position (R) of the recording medium 1 are converted in association with the address by the medium position specifying unit 135, This is transmitted to the medium movement control unit 134.
  • the medium movement control unit 134 calculates the rotational movement amount and sled movement amount from the current rotation angle ( ⁇ ) and radial movement position (R) to the target rotation angle ( ⁇ ) and radial movement position (R), The calculation result is transmitted to the R ⁇ drive unit 131.
  • the R ⁇ drive unit 131 rotates the spindle motor 127 and moves the radius moving stage 128 by R threads to perform recording positioning of the recording medium 1.
  • the distance (optical height) from the optical reference point to the surface of the recording medium 1 is measured by the distance measuring device 126 provided at the optical reference point of the pickup 11.
  • the measurement signal from the distance measuring device 126 is transmitted to the z distance calculation unit 130, and the value of the optical height is calculated.
  • the optical height value is transmitted to the data processing unit 139.
  • the designated recording address is transmitted to the data processing unit 139 via the medium position designation unit 135.
  • the data processing unit 139 performs table data processing on the optical height measurement result in association with the designated recording address, and transmits it to the medium recording processing unit 144.
  • the medium recording processing unit 144 converts the recording address and optical height information converted into the table data into data to be recorded on the recording medium.
  • the recording address and optical height information converted into table data generated by the medium recording processing unit 144 are added to the recording information input from the input terminal 141 by the recording signal processing unit 143, and spatial light modulation is performed as a signal A.
  • the optical height information corresponding to the recording address converted into table data is recorded on the recording medium 1 as management information of the recording medium 1. The optical height at the time of recording and reproducing the management information will be described below.
  • the address of the management information for recording the optical height information is recorded, for example, at the innermost circumferential position of the area where the influence of the disc surface rotation is the smallest.
  • the optical height at this time is determined in advance.
  • the recording medium 1 is driven to the optical height in the optical axis direction (Z axis).
  • FIG. 3 shows a configuration diagram for controlling the movement of the recording medium in the Z-axis direction. Description of the same functional blocks as those in FIG. 1 is omitted.
  • the measurement signal from the distance measuring device 126 is transmitted to the z distance calculation unit 130, and the value of the optical height is calculated.
  • the optical height information is calculated by the movement amount calculation unit 132 as a difference from the optical height value when the management information is recorded, and the calculation information is transmitted to the z drive unit 145.
  • the z drive unit 145 adjusts and drives the optical height to a predetermined value by being transmitted to the Z-axis stage actuator 146 that moves the recording medium 1 in the Z-axis direction. In this operation, management information is recorded and reproduced in the same manner. In this way, with respect to important management information, the optical height can be physically made the same between recording and reproduction without requiring optical height information at the time of recording.
  • the reproduction light of the hologram 125 enters the photodetector 150, and the image information is transmitted as a signal B to the reproduction signal processing unit 142.
  • the reproduction signal processing unit 142 outputs a reproduction information signal to the output terminal 140 and transmits the optical height information for the address of the recording medium to the data processing unit 139.
  • the data processing unit 139 obtains the optical height information with respect to the address relating to the recording medium 1, the data processing unit 139 performs the same function operation as the storage unit 133 in FIG. The calculation operation and driving are performed.
  • FIG. 9 shows an operation flow during recording and FIG. 10 shows an operation flow during reproduction in the second embodiment.
  • the address where the management information of the medium 1 is recorded is set (STEP 17), then the medium is moved to the set address, and the positioning is completed (STEP 18).
  • the optical height is measured (STEP 19), the difference between the target optical height and the optical height measurement result is calculated, and the Z-axis is driven according to the calculation result (STEP 20). All the optical height information is collectively recorded as management information on the medium (Step 21).
  • the reproduction address where the management information of the medium 1 is recorded is set (STEP 24), and the medium is moved to the reproduction address and the positioning is completed (STEP 25).
  • the optical height is measured (STEP 26), the difference between the target optical height and the optical height measurement result is calculated, and the Z-axis is driven according to the calculation result (STEP 27). All optical height information in the disc is read from the management information (STEP 28).
  • the optical height information at the time of recording is recorded as the management information of the recording medium and reproduced, so that the optical height information can be physically associated with the recording medium 1. .
  • the accuracy of data writing and reading of recording and reproduction can be improved.
  • defocus adjustment at the time of reproduction can be performed in a state where reproduction light of the hologram cannot be obtained.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files that realize each function can be stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
  • Lens 122 ... Lens, 123 ... Actuator, 124 ... mirror, 125 ... hologram, 126 ... distance measuring instrument, 127 ... Spindle motor, 128 ... Radial movement stage, 129 ... PPF drive unit, 130 ... z distance calculation unit, 131 ... R ⁇ drive unit, 132 ... movement amount calculation unit, 133 ... storage unit, 134 ... medium movement control unit, 135 ... medium position designation unit, 136... Input terminal (playback mode) 137... Input terminal (medium number) 138 ... Input terminal (address), 139 ... Data processing unit, 140 ... output terminal (reproduction signal), 141 ...

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)
  • Holo Graphy (AREA)

Abstract

 信号光と参照光との干渉パターンをページデータとして記録するホログラム記録では、記録時と再生時で光学系に対する記録媒体内のホログラムとの相対位置が一致している場合に再生データ品質が良いホログラム再生像が取得できる。しかしながら、記録時の光学系基準点と記録媒体との距離は、記録媒体の機械的歪、記録媒体を保持する機構公差により記録場所毎に変動するため、記録媒体内でホログラムの記録深さが変動する。再生時は前記ホログラムを高速に再生することができない。 記録時に記録媒体のアドレスに対応させた光学系基準点と記録媒体との距離を計測し、記憶部へ記憶する。再生時は、記録媒体の再生アドレスに対応した前記記憶部からの距離情報を読み出し前記読み出した距離情報と再生時の光学系基準点と記録媒体との距離計測結果とを基に開口フィルタを光軸方向へ高速に位置調整を行うことで、記録時と再生時で光学系に対する記録媒体内のホログラムとの相対位置を同等にすることができる。

Description

光情報記録再生装置
 本発明は信号光と参照光との干渉パターンをページデータとして光情報記録媒体に情報を記録する、および/または光情報記録媒体から情報を再生する光情報記録再生装置に関する。
 民生用においても128GBの記録密度を持つ光ディスクの商品化がBD(Blu-ray Disc)規格より可能となってきた。一方でさらなる大容量のアーカイブストレージのニーズが高まってきており、光ストレージにおいても1TB以上の大容量化が望まれる。次世代光ストレージ技術に関する研究が行われる中、ホログラムを利用して大容量で高速に記録再生が実現できるホログラム記録技術が注目を集めている。ホログラム記録技術は、情報を空間光変調器により2次元に変調したページデータ情報を有する信号光を、記録媒体の内部で参照光と重ね合わせ、その時に生じる干渉縞パターンによって記録媒体内に屈折率変調を生じさせることで情報を光学的に記録媒体に記録する技術である。前記情報の再生時は、記録時に用いた参照光を記録媒体に照射することで、記録媒体中に記録されているホログラムが回折格子のように作用して回折光を生じ、この回折光が記録した信号光と位相情報を含めて同一の光として再生される。再生された信号光は、画像センサーを用いて2次元に高速に検出される。ホログラム記録再生技術の特長は、1つのホログラムによって2次元の情報を光記録媒体に記録、再生可能であり、さらに記録媒体の同一箇所へ多重記録することができることから大容量で且つ、高速転送を実現できる。
 ホログラムの技術として、例えば特開2007-293238号公報報(特許文献1)がある。
本公報には、「ホログラムを用いた光情報再生装置において,光情報検出器と対物レンズ間の距離を変える駆動部を備え、前記距離を変化させることで、光情報検出器で検出される検出イメージのフォーカスを調節する光情報再生装置。」と記載されている。
特開2007-293238号公報
 特許文献1は、ホログラムデータを再生するにあたり、ホログラム再生光を2次元のイメージセンサーに対してフォーカス調整を行う技術である。2光束のページ多重型ホログラムの記録再生では、参照光と信号光をオーバーラップさせて、光の干渉を記録媒体へ記録するものであるため、光学的なフォーカス調整機構を搭載することは難しい。そのため、ホログラムの記録においては、媒体の記録位置を変更する毎に、記録媒体の歪み、変形による面触れ、及び機械公差から対物レンズと記録媒体との距離が変動するため、記録媒体内の厚み方向にホログラム位置(高さ)が変動して記録されてしまう。このホログラムを再生するためには、対物レンズと記録媒体内のホログラムまでの高さを検出する必要があるが、物理的に前記ホログラムまでの高さを検出することはできない。また光学的に前記ホログラム高さを検出するためには、再生目標とするホログラムの記録位置へ正確に移動し、ホログラム再生光が得られる条件、例えば参照光のブラッグ角度、参照光の波長が成立する必要がありフォーカス調整開始までに時間を要するため、再生速度を向上することができない。
 そこで、本発明の目的は、ホログラムの再生速度を高速化することである。
 上記課題は、例えば請求項の範囲に記載の発明により解決される。
 本発明によれば、ホログラムの再生速度を高速化することができる。
本発明の実施の形態1を示す図 本発明の実施の形態2を示す図 本発明の実施の形態2の記録媒体の高さを変更する機構を示す図 記録場所に対する光学高さ計測結果記憶を示す図。 ポリトピックフィルタのデフォーカス状態・デフォーカス調整完了状態を示す図 記録再生装置を示すブロック図 実施の形態1の記録時における動作フロー 実施の形態1の再生時における動作フロー 実施の形態2の記録時における動作フロー 実施の形態2の再生時における動作フロー
 以下、本発明の実施例について図面を用いて説明する。
 本発明の実施形態を添付図面にしたがって説明する。
 図6はホログラフィを利用してデジタル情報を記録および/または再生する光情報記録媒体の記録再生装置を示すブロック図である。
 光情報記録再生装置10は、入出力制御回路90を介して外部制御装置91と接続されている。記録する場合には、光情報記録再生装置10は外部制御装置91から記録する情報信号を入出力制御回路90により受信する。再生する場合には、光情報記録再生装置10は再生した情報信号を入出力制御回路90により外部制御装置91に送信する。
 光情報記録再生装置10は、ピックアップ11、再生用参照光光学系12、キュア光学系13、ディスク回転角度検出用光学系14、及び回転モータ50を備えており、光情報記録媒体1は回転モータ50によって回転可能な構成となっている。
 ピックアップ11は、参照光と信号光を光情報記録媒体1に照射してホログラフィを利用してデジタル情報を記録媒体に記録する役割を果たす。この際、記録する情報信号はコントローラ89によって信号生成回路86を介してピックアップ11内の空間光変調器に送られ、信号光は空間光変調器によって変調される。
 光情報記録媒体1に記録した情報を再生する場合は、ピックアップ11から出射された参照光を記録時とは逆の向きに光情報記録媒体に入射させる光波を再生用参照光光学系12にて生成する。再生用参照光によって再生される再生光をピックアップ11内の後述する光検出器によって検出し、信号処理回路85によって信号を再生する。
 光情報記録媒体1に照射する参照光と信号光の照射時間は、ピックアップ11内のシャッタの開閉時間をコントローラ89によってシャッタ制御回路87を介して制御することで調整できる。
 キュア光学系13は、光情報記録媒体1のプリキュアおよびポストキュアに用いる光ビームを生成する役割を果たす。プリキュアとは、光情報記録媒体1内の所望の位置に情報を記録する際、所望位置に参照光と信号光を照射する前に予め所定の光ビームを照射する前工程である。ポストキュアとは、光情報記録媒体1内の所望の位置に情報を記録した後、該所望の位置に追記不可能とするために所定の光ビームを照射する後工程である。
 ディスク回転角度検出用光学系14は、光情報記録媒体1の回転角度を検出するために用いられる。光情報記録媒体1を所定の回転角度に調整する場合は、ディスク回転角度検出用光学系14によって回転角度に応じた信号を検出し、検出された信号を用いてコントローラ89によってディスク回転モータ制御回路88を介して光情報記録媒体1の回転角度を制御する事が出来る。
 光源駆動回路82からは所定の光源駆動電流がピックアップ11、キュア光学系13、ディスク回転角度検出用光学系14内の光源に供給され、各々の光源からは所定の光量で光ビームを発光することができる。
 また、ピックアップ11、そして、ディスクキュア光学系13は、光情報記録媒体1の半径方向に位置をスライドできる機構が設けられており、アクセス制御回路81を介して位置制御がおこなわれる。
 ところで、ホログラフィの角度多重の原理を利用した記録技術は、参照光角度のずれに対する許容誤差が極めて小さくなる傾向がある。
 従って、ピックアップ11内に、参照光角度のずれ量を検出する機構を設けて、サーボ信号生成回路83にてサーボ制御用の信号を生成し、サーボ制御回路84を介して該ずれ量を補正するためのサーボ機構を光情報記録再生装置10内に備えることが必要となる。
 また、ピックアップ11、キュア光学系13、ディスク回転角度検出用光学系14は、いくつかの光学系構成または全ての光学系構成をひとつに纏めて簡素化しても構わない。
 図1は本発明の光情報記録再生装置10における光ピックアップ11の光学系構成の一例を示したものである。まずホログラムの記録手順について説明する。光源101を出射した光ビームはコリメートレンズ102を透過し、シャッタ103に入射する。シャッタ103が開いている時は、光ビームはシャッタ103を通過した後、2分の1波長板で構成される光学素子104によってP偏光とS偏光の光量比が所望の比になるように偏光方向が調整された後、PBS(Polarization Beam Splitter)プリズム105に入射する。PBSプリズム105を透過した光ビームは、信号光106として働き、ビームエキスパンダ108によって光ビーム径が拡大された後、位相マスク109、リレーレンズ110、PBSプリズム111を透過して空間光変調器112に入射する。空間光変調器112によって情報が付加された信号光は、PBSプリズム111を反射し、リレーレンズ113ならびにポリトピックフィルタ114を伝播する。その後、信号光は対物レンズ115によって光情報記録媒体1に集光する。
 一方、PBSプリズム105を反射した光ビームは、参照光107として働き、偏光方向変換素子116によって記録時または再生時に応じて所定の偏光方向に設定された後、ミラー117ならびにミラー118を経由して、ガルバノミラー119に入射する。ガルバノミラー119はアクチュエータ120によってミラーの角度を調整することで参照光の光軸角度を調整し、レンズ121とレンズ122を通過した後、記録媒体1に入射する。このように信号光と参照光とを記録媒体1内でオーバーラップして入射させることで、光の干渉縞パターン(ホログラム)125を形成し、このパターンを記録媒体1に露光することで情報を記録する。また、ガルバノミラー119によって記録媒体1に入射する参照光の入射角度を変化させることができるため、記録媒体の同一箇所へ多重記録することができる。
 2光束をオーバーラップさせて光の干渉パターンを記録する方式は、光学ピックアップ11の光学基準点、例えば対物レンズ115と記録媒体1表面との距離(光学高さ)に応じて、記録媒体1内でのホログラム125が記録される深さ(高さ)が一意的に決まる。しかしながら、記録媒体1が移動する毎に対物レンズ115と記録媒体1表面との距離(光学高さ)は一定値ではない。以下、操作の説明上記録媒体1は円盤状として説明するがこれに限定されることはない。
 記録媒体を回転させると面振れが発生して光学高さが変動する。また記録媒体1を半径方向へ内周から外周へ移動する区間の高さは機械公差分変動する。そのため記録媒体1に対して記録場所を変更する毎に記録媒体1内の厚み方向(深さ)にホログラム125が記録される深さが変動する。
 次に、ホログラムの再生手順について説明する。参照光107を記録媒体1に入射し、記録媒体1を透過した光ビームを、アクチュエータ123によって角度調整可能なガルバノミラー124にて反射させることで再生用参照光を生成する。この再生用参照光によって再生された再生光は、対物レンズ115、リレーレンズ113ならびにポリトピックフィルタ114を伝播する。その後、再生光はPBSプリズム111を透過して光検出器150に入射し、記録した信号を再生することができる。光検出器150は、例えば撮像素子を用いることができるが、ページデータを再生可能であれば、どのような素子であっても構わない。
 再生光を光検出器150へ正しく像を結ぶためには、記録媒体1の内部に記録されているホログラム125と光ピックアップ11の光学基準点、例えば対物レンズ115との距離(再生光学高さ)が所定値、例えば3mmに対し、所定精度、例えば±12μm以下が必要である。
 ホログラム125を再生するためには、記録媒体1内の厚み方向(深さ)に存在するホログラム125を検出しなければならないが、物理的に検出する方法はない。一方、光学的に検出する方法はあるが、ホログラム125からの再生光が得られる光学的条件、例えば参照光のブラッグ角条件、レーザーの波長条件、記録媒体と参照光のピッチ角条件が満足しなければならない。高速再生を実現するためには、ホログラム125からの再生光を得られない状態であっても、前記の再生光学高さをベストな調整にする事が必要である。
 そこで、実施例1ではホログラム125の記録時の光学高さを再生時に再現することで、等価的に再生光学高さ調整を実現できる構成とした。以下その構成について説明する。記録時において、記録媒体上にホログラム125を記録する場所の指定をする。以下記録媒体1は円形を例に説明するが、これがいかなる媒体形状であってもよい。
 記録媒体1に対しあらかじめ物理的な記録場所を示すアドレス値を割り当てを行ってあり、このアドレスを基に、記録媒体1の回転角(θ)と半径位置(R)を対応付けして物理的位置情報変換し、スピンドルモーター127をθ角回転し、半径移動ステージ128をRスレッド移動することで、目的アドレスの記録場所へ位置決めを行う。前記、記録場所への位置決めは、記録媒体をX軸とY軸で直行座標にて行ってもよい。以下位置決め動作の説明は、記録媒体1の回転角(θ)と半径位(R)による位置決めを例に行う。
 入力端子138から記録アドレスを入力すると媒***置指定部135にて記録媒体1の回転角(θ)と半径移動位置(R)がアドレスと対応付けて変換され、媒体移動制御部134へ伝達される。媒体移動制御部134は、現在の回転角(θ)及び半径移動位置(R)から目的とする回転角(θ)及び半径移動位置(R)までの回転移動量及びスレッド移動量を算出しその算出結果をRθ駆動部131へ伝達する。Rθ駆動部131は、スピンドルモータ127を回転し、さらに半径移動ステージ128をRスレッド駆動することで、記録媒体1の記録位置決めを行う。
 次に記録位置決めが完了すると、ピックアップ11の光学基準点に設けた距離計測器126により、光学基準点と記録媒体1表面までの距離(光学高さ)を計測する。前記距離計測器126は、例えば記録媒体1の表面反射を利用した光学距離計測であるが、光学基準点から記録媒体1の表面までの距離が計測できるものであれば、これに限定することはなくいずれの計測手段であってもよい。前記光学高さはホログラム125を記録する記録媒体1の表面位置、あるいはその表面位置に近い場所を計測する。距離計測器126からの計測信号はz距離演算部130へ伝達され、光学高さの値を演算する。光学高さの値は、記憶部133へ伝達される。一方、指定されたアドレスは、媒***置指定部135を介して記憶部133へ伝達される。記憶部133は、指定されたアドレス(記録場所)に対応付けて前記光学の高さ計測結果を記憶する。
 図4に記録場所(エリア)に対する光学高さ計測結果の記憶の概念図を示す。記録媒体上のホログラム記録場所(ブック)毎の全てに対応して、光学高さ計測の動作及び該計測結果の記憶動作を実施するが、複数のブックを1つの領域(エリア)として光学高さ計測動作及び該計測結果の記憶動作をしてもよい。これは記録媒体1に対してホログラム125のサイズ、例えば760μm×380μmの四角サイズと大変小さいことから、複数ブック分の記録場所に対する光学高さの変化量はデフォーカス調整仕様以下、例えば±12μmである場合に特に有効且つ合理的である。以下実施例の動作の説明はブック毎のアドレスとして説明をするが、このアドレスを所定のエリアは、所定数のホログラム集合領域、例えばCureを実施するCureサイト単位(例えば、ホログラム80個×80個領域)あるいは、ブックケース単位(例えばCureサイトの整数個の領域)であって、特に記録に関し処理、シーケンス上でホログラムの数が纏まった単位であれば管理がしやすく望ましい。また前記エリア内のホログラムの数は限定することなく記録媒体の物理的な状態によっていかなる数であってもよい。
 図4のエリア1において、対物レンズ115と記録媒体1の表面までの距離(光学高さ)計測結果は(W1)である。続いて次にホログラム125を記録するエリア2は、記録媒体1が対物レンズ115に近づいた状態であり、対物レンズ115と記録媒体1の表面までの距離(光学高さ)計測結果は(W2)である。さらに続いて次にホログラム125を記録するエリア3は、記録媒体1が対物レンズ115にさらに近づいた状態であり、対物レンズ115と記録媒体1の表面までの距離(光学高さ)計測結果は(W3)である。記録媒体1内のホログラム125の記録された高さ(深さ)は、エリア1は記録媒体厚中央から上位置へ記録され、エリア2は、記録媒体厚中央付近へ記録され、エリア3は記録媒体厚中央から下位置へ記録される。前記エリア毎に計測された光学高さ情報は、該計測エリア毎に対応付けして記憶部133へ記憶されていく。エリアとしての管理方法は例えば、複数のブックアドレスが該エリアに属するクラス管理を用いてもよい。記憶部133は、図示しない光情報記録再生装置の内部に備えた記憶部133に記憶する。このとき合わせて記録媒体固有番号を対応づけて記憶する。前記記録媒体1の固有番号は、前記空間光変調器112の記録情報に付加して記録媒体1の管理情報として記録する。次に再生時のデフォーカスに対する再生信号品質の低下の様態について図5を用いて説明する。ポリトピックフィルタ114は、目的の再生ホログラムに隣接するホログラムからの再生光を遮光するための光学フィルタであり、ホログラムサイズと光学的に同じ形状,サイズの通過穴から成り、薄く軽量な素材で実現できる。ポリトピックフィルタ114は、リレーレンズ113の集光位置に配置して目的のホログラムからの再生光のみを通過させる。以下、光学フィルターの動作説明は、ポリトピックフィルタを一例に説明するが、同様な効果がある光学フィルター、例えばアングルフィルタであってもよい。
 図5の左側は、ホログラム再生時に記録媒体1がデフォーカスした場合の光学系構成の一部を示したものである。記録媒体1は、デフォーカス前の位置(DF1)からデフォーカス後の位置(DF2)となった場合の例を示す。この場合、再生したいホログラムからの回折光は光ピックアップに対して相対的にデフォーカス方向の位置ずれを発生し、ポリトピックフィルタ114にて回折光が一部通過できない部分(図5の160と161)が生じる。その結果、再生像の一部が欠如したり光量が低下して再生品質が低下する問題が発生する。これを解決するために、記録時と同じ光学高さとなるように記録媒体1をデフォーカス(DF1)の位置へ移動する手段、あるいはポリトピックフィルタ114自身を前記デフォーカス量に相当する光学倍率分を光学的デフォーカス量として光軸方向へ移動する手段とがある。ここでは高速応答性が実現できるポリトピックフィルタ114を移動する手段について説明するが記録媒体1をデフォーカス(DF1)の位置へ移動してもよい。
 図5の右側はポリトピックフィルター114をデフォーカス量に相当する光学的デフォーカス量、例えばデフォーカス量に光学倍率の例えば10倍の移動(142)をさせた場合の光学的様態を示す。ポリトピックフィルター114を光軸方向にデフォーカス調整することで、再生したいホログラムからの回折光はポリトピックフィルタ114を通過し、再生信号品質が得られる再生像を光検出器150に投影することができる。すなわち、記録時の光学高さを再生時に再現することができれば、ポリトピックフィルタを通過する再生光は最適状態にて再生像を光検出器150に投影することができる。
 次に再生時のデフォーカス調整制御の動作について図1を用いて説明する。再生時は、入力端子138から、再生アドレスを入力すると、媒***置指定部135にて、記録媒体1の回転角(θ)と半径移動位置(R)がアドレスと対応付けて変換され、媒体移動制御部134へ伝達される。媒体移動制御部134は、現在の回転角(θ)及び半径移動位置(R)から目的とする回転角(θ)及び半径移動位置(R)までの回転移動量及びスレッド移動量を算出し、その算出結果をRθ駆動部131へ伝達する。Rθ駆動部131は、スピンドルモータ127を回転し、さらに半径移動ステージ128をRスレッド移動することで、記録媒体1の再生位置決めを行う。再生位置決めを完了すると、ピックアップ11の光学基準点に設けた距離計測器126により、光学基準点と記録媒体1の表面までの距離(光学高さ)を計測する。距離計測器126からの計測信号はz距離演算部130へ伝達され、光学高さの値を演算する。光学高さの値は移動量演算部132へ伝達される。一方、再生指定されたアドレスは、媒***置指定部135を介して記憶部133へ伝達される。記憶部133からは、指定されたアドレスまたはアドレスにクラスわけされたエリアに対応付けされた記録時の光学高さ情報が読み出され、移動量演算部132へ伝達される。移動量演算部132は、再生時(現在)の光学高さ情報と記録時(過去)の光学高さの差分が演算される。ポリトピックフィルタ130の光軸方向移動量は光学系倍率、例えば10倍が前記光学高さの差分値に乗算されて、ポリトピックフィルタの移動量が演算され、PPF駆動部129へ伝達される。
 PPF駆動部129は、再生時の光学高さからのずれ分をアクチュエータ151を駆動することで、ポリトピックフィルタを光軸方向へ駆動する。またポリトピックフィルタ114は再生時のみ調整移動を行い、記録時は所定の機械位置へ固定とするために、入力端子136より再生モードであることを指示するモード選択信号をPPF駆動部へ伝達する。こうすることで記録時の光学高さを再生時の光学高さと光学的等価に調整することができる。
一方、再生時はポリトピックフィルタ114は可動式な構成としているため、記録時ではポリトピックフィルタ114を所定の機械位置へ固定することが必須である。可動式ポリトピックフィルタを固定することが困難であるため、記録時はアクチュエータを持たない(図示しない)第二の固定した記録用ポリトピックフィルタへ機械的に切替動作を行ってもよい。
記憶部133は光情報記録再生装置の内部あるいは、光情報記録再生装置に接続される上位管理システムにあってもよい。
 記憶部133は、複数の記録媒体の光学高さ情報を夫々記憶するため、記録媒体毎に固有番号を割り振り、再生時に記録媒体の固有番号で当該記憶媒体を識別する必要がある。これは、例えば(図示しない)記録媒体を覆うケース(例えばカートリッジ)内に半導体メモリ、磁気メモリを備え、該メモリ内に記録媒体の固有番号を記録し、読み出すことで記録媒体の固有番号を識別することができる。前記メモリは、記録媒体内部の一部にRFIDを埋め込み、記録媒体固有番号を記録し、読み出し動作を行ってもよい。また、装置を接続されたホスト側が記憶部133を備えても構わない。
 以上の第一の実施例の記録時の動作フローを図7に、再生時の動作フローを図8に示す。まずはじめに、媒体1の記録アドレスを設定する(STEP1)、次に前記記録アドレスへ媒体移動を行い、位置付けを完了する(STEP3)。次に光学高さの計測を行い(STEP4),記録アドレスに対応させた前記光学高さ情報をメモリへ記録する(STEP5)。
 一方再生動作は、再生アドレスを設定し(STEP8),メモリより前記再生アドレスに対応した記録時の光学高さ情報を読込む(STEP9)。次に前記再生アドレスへ媒体移動を行い位置付けを完了する(STEP9)。次に光学高さの計測を行い(STEP11),前記計測結果と、前記メモリから読み出した記録時の光学高さとの差分を演算(STEP12)する。前記差分演算結果にポリトピックフィルタの光学倍率を乗算し(STEP13)、前記乗算結果を基にポリトピックフィルタをZ軸に駆動(STEP14)する。
 以上の第一の実施例では、再生時にポリトピックフィルタを用いて、記録時の光学高さを再現することで再生時のデフォーカス調整を実現することができる。また、ポリトピックフィルターは軽量な光学部材であることから高速に移動することができ、高速に再生時のデフォーカス調整を行うことができる。また、記録媒体の再生位置を変更移動中に次の再生位置のデフォーカス調整を、ポリトピックフィルターを用いて並行して行うことができる。さらには、ホログラム再生光が得られる前段階で、つまりホログラムの再生光が得られない状態において、再生時のデフォーカス調整を行うことができる等の効果は大きい。これらの効果により再生速度を向上することが期待できる。また、記録装置と再生装置が異なる場合においても、光学高さを記録と再生で一致させることで互換再生においてもその効果を発揮することができる。
 本発明の実施形態を図2にしたがって説明する。図1と同一機能ブロックについての説明は省略する。本実施例では記録媒体1のアドレスに対応した記録時の光学高さ情報を当該記録媒体1の管理情報領域へ記録、再生するものであり、以下その動作を図2を用いて説明する。
 まず記録時の動作において、入力端子138から記録アドレスを入力すると、媒***置指定部135にて、記録媒体1の回転角(θ)と半径移動位置(R)がアドレスと対応付けて変換され、媒体移動制御部134へ伝達される。媒体移動制御部134は、現在の回転角(θ)及び半径移動位置(R)から目的とする回転角(θ)及び半径移動位置(R)までの回転移動量及びスレッド移動量を算出し、その算出結果をRθ駆動部131へ伝達する。Rθ駆動部131は、スピンドルモータ127を回転し、半径移動ステージ128をRスレッド移動することで、記録媒体1の記録位置決めを行う。
 次に前記記録位置決めが完了すると、ピックアップ11の光学基準点に設けた距離計測器126により、光学基準点と記録媒体1表面までの距離(光学高さ)を計測する。距離計測器126からの計測信号はz距離演算部130へ伝達され、光学高さの値を演算する。光学高さの値は、データ処理部139へ伝達される。指定された記録アドレスは、媒***置指定部135を介してデータ処理部139へ伝達される。データ処理部139は、指定された記録アドレスに対応付けて前記光学の高さ計測結果をテーブルデータ処理して媒体記録処理部144へ伝達する。媒体記録処理部144は、前記テーブルデータ化した記録アドレスと光学高さ情報を記録媒体へ記録するデータに変換する。媒体記録処理部144で生成されたテーブルデータ化した記録アドレスと光学高さ情報は、記録信号処理部143にて、入力端子141から入力された記録情報に追加されて、信号Aとして空間光変調器112へ入力されて、ホログラム記録データを光学的に生成し、記録媒体1へテーブルデータ化した記録アドレスに対する光学高さ情報を記録媒体1の管理情報として記録する。前記管理情報の記録時と再生時の光学高さについて以下説明する。
 光学高さ情報を記録する管理情報のアドレスは、例えばDiscの回転面振れの影響が一番小さいエリアの最内周位置へ前記管理情報を記録する、この時の光学高さはあらかじめ決められた光学高さに記録媒体1を光軸方向(Z軸)へ駆動する。
 図3に記録媒体をZ軸方向へ可動制御する構成図を示す。図1と同一機能ブロックの説明は省略する。距離計測器126からの計測信号はz距離演算部130へ伝達され、光学高さの値を演算する。光学高さ情報は移動量演算部132において、管理情報を記録するときの光学高さ値との差分の演算を行い、その演算情報をz駆動部145へ伝達する。z駆動部145は、記録媒体1をZ軸方向へ可動するZ軸ステージアクチュエータ146へ伝達されることで、光学高さをあらかじめ決められた値に調整駆動する。この動作は管理情報を記録、再生のいずれも同様の動作を行う。こうすることで重要な管理情報に関しては、記録時の光学高さ情報を必要としないで物理的に光学の高さを記録と再生で同じにすることができる。
 次に図2に戻り、記録媒体1の再生アドレスに対する光学高さ情報の再生動作について説明する。ホログラム125の再生光は、光検出器150へ入射し、その画像情報は信号Bとして再生信号処理部142へ伝達される。再生信号処理部142は、再生情報信号を出力端子140へ出力し、データ処理部139へ記録媒体のアドレスに対する光学高さ情報を伝達する。データ処理部139は、記録媒体1に関するアドレスに対した光学高さ情報を得ると、以降データ処理部139は、前記図1の記憶部133と同一機能動作を行い、以降ポリトピックフィルターの駆動量の算出動作及び駆動を実施する。
 以上の第二の実施例の記録時の動作フローを図9に、再生時の動作フローを図10に示す。まずはじめに、媒体1の管理情報を記録してあるアドレスを設定する(STEP17)、次に前記設定アドレスへ媒体移動を行い、位置付けを完了する(STEP18)。次に光学高さの計測を行い(STEP19),目標光学高さと前記光学高さ計測結果との差分を演算し、その演算結果に応じてZ軸を駆動する(STEP20)、次にDisc内の光学の高さ全情報を媒体へ管理情報として一括記録する(Step21)。
 一方、前記管理情報の再生動作は、媒体1の管理情報を記録してある再生アドレスを設定し(STEP24), 前記再生アドレスへ媒体移動を行い位置付けを完了する(STEP25)。次に、光学高さの計測を行い(STEP26)、目標光学高さと前記光学高さ計測結果との差分を演算し、その演算結果に応じてZ軸を駆動する(STEP27)、次にDisc内の管理情報からDisc内の光学の高さ全情報を読み出す(STEP28)。
 以上の第二の実施例では、記録時の光学高さ情報を記録媒体の管理情報として記録し、再生することで、記録媒体1に物理的に対応させて光学高さ情報を持つことができる。また、重要な管理情報を記録、再生する物理的な光学高さを記録時と再生時で同じ高さにすることで記録再生のデータ書き込み及び読み出しの確度を向上することができる。また、ホログラムの再生光が得られない状態において、再生時のデフォーカス調整を行うことができる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
1・・・記録媒体、11・・・光ピックアップ、12・・・再生用参照光光学系、
101・・・光源、102・・・コリメートレンズ、103・・・シャッタ、
104・・・1/2波長板、105・・・偏光ビームスプリッタ、106・・・信号光、
107・・・参照光、108・・・ビームエキスパンダ、109・・・位相マスク、
110・・・リレーレンズ、111・・・偏光ビームスプリッタ、112・・・空間光変調器、
113・・・リレーレンズ、114・・・ポリトピックフィルタ、115・・・対物レンズ、
116・・・偏光方向変換素子、117・・・ミラー、118・・・ミラー、119・・・ミラー、
120・・・アクチュエータ、121・・・レンズ、
122・・・レンズ、123・・・アクチュエータ、
124・・・ミラー、125・・・ホログラム、126・・・距離計測器、
127・・・スピンドルモーター、128・・・半径移動ステージ、129・・・PPF駆動部、
130・・・z距離演算部、131・・・Rθ駆動部、132・・・移動量演算部、
133・・・記憶部、134・・・媒体移動制御部、135・・・媒***置指定部、
136・・・入力端子(再生モード)137・・・入力端子(媒体番号)
138・・・入力端子(アドレス)、139・・・データ処理部、
140・・・出力端子(再生信号)、141・・・入力端子(記録情報)、
142・・・再生信号処理部、143・・・記録信号処理部、144・・・媒体記録処理部、
145・・・z駆動部、146・・・Z軸ステージアクチュエータ、150・・・光検出器、
151・・・アクチュエータ

Claims (15)

  1.  記録媒体に信号光と参照光を照射してホログラムを形成することで情報を記録し、記録媒体のホログラムに参照光を照射することで情報信号を再生する光情報記録再生装置であって、
     レーザー光源と、
     前記レーザー光源からの出射光を信号光と参照光に分岐する分岐部と、
     前記信号光に情報信号を付加する空間光変調部と、
     前記記録媒体に、前記情報信号が付加された信号光を照射するための対物レンズと、
     前記記録媒体に参照光を照射したときの回折光を検出する光検出部と、
     前記対物レンズを含む光学構造部の所定点から前記記録媒体までの距離を計測する距離計測部と、を備え、
     記録の際の前記距離に関する情報は前記記録媒体またはメモリに記憶され、該記憶された前記距離に関する情報に基づいて再生が行われることを特徴とする光情報記録再生装置。
  2.  請求項1に記載の光情報記録再生装置であって、
     前記距離に関する情報は、前記記録媒体の固有番号に応じた情報であることを特徴とする光情報記録再生装置。
  3.  請求項1に記載の光情報記録再生装置であって、
     前記距離に関する情報は、前記記録媒体上のエリアに応じた情報であることを特徴とする光情報記録再生装置。
  4.  請求項1に記載の光情報記録再生装置であって、
     前記回折光のノイズを抑制するフィルタと、
     前記フィルタを駆動する駆動部と、を備え、
     前記駆動部は、前記距離に関する情報に基づいて、前記フィルタを駆動することを特徴とする光情報記録再生装置。
  5.  請求項4に記載の光情報記録再生装置であって、
     前記距離計測部は、再生の際の前記距離を測定し、
     前記測定された再生の際の前記距離に関する情報と記録の際の前記距離に関する情報とに基づいて、前記駆動部は、前記フィルタを駆動することを特徴とする光情報記録再生装置。
  6.  請求項5に記載の光情報記録再生装置であって、
     前記測定された再生の際の前記距離と記録の際の前記距離の差分に関する情報に基づいて、前記駆動部は、前記フィルタを駆動することを特徴とする光情報記録再生装置。
  7.  請求項4に記載の光情報記録再生装置であって、
     前記駆動部は、前記フィルタを光軸方向に駆動することを特徴とする光情報記録再生装置。
  8.  請求項1に記載の光情報記録再生装置であって、
     前記距離計測部は、前記対物レンズを含む光学構造部の所定点から前記記録媒体の表面までの距離を計測することを特徴とする光情報記録再生装置。
  9.  請求項3に記載の光情報記録再生装置であって、
     前記記録媒体上のエリアは複数のアドレスを含むエリアであることを特徴とする光情報記録再生装置。
  10.  請求項1に記載の光情報記録再生装置であって、
     前記記録媒体を移動する記録媒体駆動部を備え、
     前記記録媒体駆動部は、前記距離に関する情報に基づいて、前記記録媒体を駆動することを特徴とする光情報記録再生装置。
  11.  請求項10に記載の光情報記録再生装置であって、
     前記記録媒体駆動部は、前記対物レンズを含む光学構造部の所定点から前記記録媒体までの距離との差分が所定値以下となるように、前記記録媒体を駆動することを特徴とする光情報記録再生装置。
  12.  請求項1に記載の光情報記録再生装置であって、
     前記メモリは、前記記録媒体を覆うケースに備えられている、または光情報記録再生装置に内臓されている、または、光情報記録再生装置に接続されたホストが有していることを特徴とする光情報記録再生装置。
  13.  請求項1に記載の光情報記録再生装置であって、
     前記前記記録媒体の管理情報領域に、記録の際の前記距離に関する情報が記憶されることを特徴とする光情報記録再生装置。
  14.  請求項4に記載の光情報記録再生装置であって、
     前記フィルタの駆動は、前記記録媒体に再生アドレスを割当てて該アドレスに対して記録媒体の位置決めを行う期間に実施することを特徴とする光情報記録再生装置。
  15.  記録媒体に信号光と参照光を照射してホログラムを形成することで情報を記録する記録方法であって、
     前記レーザー光を照射するステップと、
     前記レーザー光を信号光と参照光に分岐するステップと、
     前記信号光に情報信号を付加するステップと、
     前記記録媒体に参照光を照射したときの回折光を検出するステップと、
     前記対物レンズを含む光学構造部の所定点から前記記録媒体までの距離を計測するステップと、
     記録の際の前記距離に関する情報を記憶するステップと、
     を備えることを特徴とする記録方法。
PCT/JP2013/060772 2013-04-10 2013-04-10 光情報記録再生装置 WO2014167659A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/782,891 US20160049170A1 (en) 2013-04-10 2013-04-10 Optical information recording and reconstructing device
JP2015511003A JPWO2014167659A1 (ja) 2013-04-10 2013-04-10 光情報記録再生装置
CN201380075492.4A CN105122367A (zh) 2013-04-10 2013-04-10 光信息记录再现装置
PCT/JP2013/060772 WO2014167659A1 (ja) 2013-04-10 2013-04-10 光情報記録再生装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/060772 WO2014167659A1 (ja) 2013-04-10 2013-04-10 光情報記録再生装置

Publications (1)

Publication Number Publication Date
WO2014167659A1 true WO2014167659A1 (ja) 2014-10-16

Family

ID=51689094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060772 WO2014167659A1 (ja) 2013-04-10 2013-04-10 光情報記録再生装置

Country Status (4)

Country Link
US (1) US20160049170A1 (ja)
JP (1) JPWO2014167659A1 (ja)
CN (1) CN105122367A (ja)
WO (1) WO2014167659A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016072004A1 (ja) * 2014-11-07 2016-05-12 株式会社日立製作所 ホログラム記録再生装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102083875B1 (ko) * 2014-08-11 2020-03-03 한국전자통신연구원 홀로그래픽 영상에 대한 품질 측정 장치 및 방법
CN108052771B (zh) * 2017-12-29 2021-04-13 上海望友信息科技有限公司 光学基准点识别方法、***、计算机可读存储介质及设备
CN112631101A (zh) * 2020-12-30 2021-04-09 宋建明 一种全息立体空间成像方法、装置及***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008276838A (ja) * 2007-04-26 2008-11-13 Fuji Xerox Co Ltd 光信号記録媒体及び光情報記録再生装置
JP2009048736A (ja) * 2007-08-22 2009-03-05 Fujifilm Corp ホログラフィック情報再生方法およびホログラフィック情報再生装置
JP2009266285A (ja) * 2008-04-23 2009-11-12 Sony Corp 光情報記録装置、光情報記録方法、光情報再生装置、光情報再生方法及び光情報記録媒体
JP2012154979A (ja) * 2011-01-24 2012-08-16 Hitachi Consumer Electronics Co Ltd 光情報再生方法および光情報再生装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4450062B2 (ja) * 2007-12-07 2010-04-14 ソニー株式会社 ホログラムメディアの製造方法、マスターホログラムメディアの製造方法、記録媒体及びホログラムメディア製造装置
EP2228793A1 (en) * 2009-03-11 2010-09-15 Thomson Licensing Multilayer coaxial holographic storage system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008276838A (ja) * 2007-04-26 2008-11-13 Fuji Xerox Co Ltd 光信号記録媒体及び光情報記録再生装置
JP2009048736A (ja) * 2007-08-22 2009-03-05 Fujifilm Corp ホログラフィック情報再生方法およびホログラフィック情報再生装置
JP2009266285A (ja) * 2008-04-23 2009-11-12 Sony Corp 光情報記録装置、光情報記録方法、光情報再生装置、光情報再生方法及び光情報記録媒体
JP2012154979A (ja) * 2011-01-24 2012-08-16 Hitachi Consumer Electronics Co Ltd 光情報再生方法および光情報再生装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016072004A1 (ja) * 2014-11-07 2016-05-12 株式会社日立製作所 ホログラム記録再生装置

Also Published As

Publication number Publication date
JPWO2014167659A1 (ja) 2017-02-16
US20160049170A1 (en) 2016-02-18
CN105122367A (zh) 2015-12-02

Similar Documents

Publication Publication Date Title
JP2009070475A (ja) 光情報記録再生装置
JP5753768B2 (ja) 光情報記録装置、光情報再生装置、光情報記録再生装置、光情報記録方法、光情報再生方法および光情報記録再生方法
JP5183667B2 (ja) 再生装置および再生方法
JP5096191B2 (ja) 光ピックアップおよび、それを用いた光情報再生装置および光情報記録再生装置
JP4881914B2 (ja) 光情報記録再生装置及び光情報記録方法
JP5125351B2 (ja) 光情報記録再生装置
WO2014167659A1 (ja) 光情報記録再生装置
JP4969558B2 (ja) 光情報再生装置、光情報記録再生装置
US7903526B2 (en) Recording/reproducing apparatus, method of reproducing data, and servo controlling method
JP5753767B2 (ja) 光情報記録再生装置、光情報記録再生方法、光情報記録媒体
WO2014199504A1 (ja) 光情報記録再生装置、及び調整方法
JP2014049162A (ja) 光情報記録装置
JP5238209B2 (ja) 光情報記録再生装置とその方法および光情報記録媒体
JP5868494B2 (ja) 光情報記録再生装置、および光情報記録再生方法、および再生装置
JP6077110B2 (ja) 光情報再生装置および調整方法
JP5993956B2 (ja) 光情報記録再生装置および光情報記録再生方法
JP5211816B2 (ja) 光情報記録再生装置
JP5075556B2 (ja) 光情報記録/再生装置及びディスク判別方法
WO2014097412A1 (ja) 光情報再生装置、及び光情報再生方法
JP2012069207A (ja) ホログラフィを用いたホログラフィックメモリ
JP4861951B2 (ja) 光情報記録/再生装置
JP2011187101A (ja) 光情報記録再生装置、及び光情報再生方法
JP5802494B2 (ja) ホログラフィックメモリ再生装置、ホログラフィックメモリ再生方法およびホログラム記録媒体
JP2012133879A (ja) 情報記録装置、情報再生装置および記録媒体
JP2009080873A (ja) 光情報記録/再生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881876

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015511003

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14782891

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13881876

Country of ref document: EP

Kind code of ref document: A1