WO2014157568A1 - Quay crane and quay crane control method - Google Patents

Quay crane and quay crane control method Download PDF

Info

Publication number
WO2014157568A1
WO2014157568A1 PCT/JP2014/058997 JP2014058997W WO2014157568A1 WO 2014157568 A1 WO2014157568 A1 WO 2014157568A1 JP 2014058997 W JP2014058997 W JP 2014058997W WO 2014157568 A1 WO2014157568 A1 WO 2014157568A1
Authority
WO
WIPO (PCT)
Prior art keywords
anchor plate
quay crane
guide
moving body
hole
Prior art date
Application number
PCT/JP2014/058997
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 宗史
博司 久保
渡邉 智
大作 羽田
和彰 安藤
Original Assignee
三井造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井造船株式会社 filed Critical 三井造船株式会社
Priority to CN201480018340.5A priority Critical patent/CN105102366A/en
Publication of WO2014157568A1 publication Critical patent/WO2014157568A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C19/00Cranes comprising trolleys or crabs running on fixed or movable bridges or gantries
    • B66C19/002Container cranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C15/00Safety gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C19/00Cranes comprising trolleys or crabs running on fixed or movable bridges or gantries
    • B66C19/007Cranes comprising trolleys or crabs running on fixed or movable bridges or gantries for containers

Definitions

  • the present invention relates to a quay crane used for container handling at a port or an inland container terminal, and a control method for a quay crane.
  • Fig. 13 shows a conventional quay crane.
  • the quay crane 1X includes a leg structure 2X, a traveling device 8 disposed at the lower end of the leg structure 2X, a boom 6 and a girder 7 installed above the leg structure 2X, and the boom 6 and the girder 7. And a trolley (a cargo handling device) 9 that performs the cargo handling operation of the container.
  • the leg structure 2X includes a sea side leg 3a, a land side leg 3b (hereinafter collectively referred to as leg 3), and a horizontal member (hereinafter referred to as portal tie beam) 5 connecting the legs 3a and 3b. is doing. Further, the leg structure 2X includes a sea-side diagonal member 4a and a land-side diagonal member 4b (hereinafter collectively referred to as diagonal members or V-shaped members) extending from above the legs 3a and 3b toward the portal tie beam 5, respectively. A mold diagonal 4).
  • the leg structure 2X has a seismic isolation device 30 that connects the lower end of the V-shaped diagonal member 4 and the portal tie beam 5.
  • the seismic isolation device 30 is composed of laminated rubber and is configured to be displaceable in the transverse direction (sea-land direction) x. Note that z indicates the vertical direction.
  • the quay crane 1X can suppress vibrations when an earthquake occurs. This is because the seismic isolation device 30 installed at the lower end of the V-shaped diagonal member 4 is displaced (slid) in the transverse direction x, and the natural period of vibration of the quay crane 1X can be lengthened.
  • the quay crane 1X equipped with the V-shaped diagonal member 4 and the seismic isolation device 30 has several problems.
  • Level 2 ground motion is defined as the ground motion having the largest magnitude that can be considered at this point from the present to the future according to the Third Proposal of the Japan Society of Civil Engineers.
  • the seismic isolation device 30 made of laminated rubber may break even if it does not reach the limit of the slide distance. This is because, when an earthquake occurs, a tensile force is generated vertically upward z of the seismic isolation device 30, and the seismic isolation device 30 is broken by this pulling. This is because the seismic isolation device 30 made of laminated rubber is particularly strong in the compression direction force but weak in the pulling direction force.
  • the force generated in the vertical direction z of the seismic isolation device 30 is generated by vibration (referred to as rocking R or rocking phenomenon) in which the sea side leg 3a and the land side leg 3b of the quay crane 1X are alternately lifted.
  • the conventional quay crane 1X may not be able to obtain sufficient seismic isolation performance in the event of a large-scale earthquake and may collapse.
  • the present invention has been made in view of the above-described problems, and the purpose thereof is a quay in a quay crane having a V-shaped diagonal member even when a large-scale earthquake (for example, level 2 ground motion) occurs. It is to provide a quay crane capable of suppressing the vibration by increasing the natural period of the crane.
  • a large-scale earthquake for example, level 2 ground motion
  • a quay crane comprises diagonal members extending from above a sea side leg and a land side leg toward a horizontal member connecting the sea side leg and the land side leg, respectively.
  • the quay crane includes a guide installed along the horizontal member, a movable body installed at a lower end portion of the diagonal member and configured to be movable along the guide, and the movable body.
  • a fixing device for fixing the relative position of the guide, and the fixing device is inserted into a through-hole formed to communicate at least one of the guide or the horizontal member and the movable body.
  • An anchor plate, and a support device for supporting the anchor plate the anchor plate has a strength that does not break due to an external force generated on the anchor plate via the movable body, and an earthquake is generated. Occurrence When the support device is operated, the anchor plate is removed from the through hole to release the fixing device, and the moving body is movable along the guide. And
  • the quay crane can suppress the vibration of the quay crane even when a large-scale earthquake occurs. This is because the natural period of the quay crane can be lengthened by the movement of the moving body.
  • the quay crane can prevent an accident in which the moving body is released during normal handling operations. This is because the anchor plate has a strength that does not break against any load generated via the moving body, unlike a shear pin that is supposed to break.
  • the support device has a configuration for supporting the anchor plate from below.
  • the quay crane can easily release the fixing device and obtain a vibration control effect. This is because the anchor plate released from the support by the support device can fall from the through hole by the reciprocating vibration of the moving body. That is, the quay crane has the structure which removes an anchor plate from a through-hole using the reciprocating vibration of a moving body.
  • the anchor plate has a tapered shape that expands from the upper side or the lower side to the other side.
  • the quay crane can improve the response performance when releasing the fixing device. This is because the anchor plate can convert the reciprocating vibration of the movable body into a force in the direction of being pulled out from the through hole via the tapered shape.
  • the quay crane control method extends from above the sea side leg and the land side leg toward the horizontal member connecting the sea side leg and the land side leg, respectively.
  • a quay crane having diagonal members, the quay crane being installed along the horizontal member, and a movable body installed at the lower end of the diagonal member and configured to be movable along the guides;
  • a fixing device for fixing the relative position of the moving body and the guide, and the fixing device is formed so as to communicate at least one of the guide or the horizontal member with the moving body.
  • An anchor plate inserted into the hole, and a support device for supporting the anchor plate, the anchor plate having a strength that does not break due to an external force generated on the anchor plate via the movable body.
  • a quay crane capable of suppressing the vibration by increasing the natural period of the quay crane even when a large-scale earthquake (for example, level 2 ground motion) occurs. be able to.
  • a large-scale earthquake for example, level 2 ground motion
  • FIG. 1 is a schematic view of a quay crane according to an embodiment of the present invention.
  • Drawing 2 is a figure showing the partial section of the side of the quayside crane of an embodiment concerning the present invention.
  • Drawing 3 is a figure showing the partial section of the front of the wharf crane of an embodiment concerning the present invention.
  • Drawing 4 is a figure showing the outline of the fixing device of the quay crane of the embodiment concerning the present invention.
  • FIG. 5 is a diagram showing an outline of a quay crane fixing device according to an embodiment of the present invention.
  • FIG. 6 is a diagram showing an outline of the operation of the quay crane fixing device according to the embodiment of the present invention.
  • FIG. 7 is a diagram showing an outline of a quay crane fixing device according to another embodiment of the present invention.
  • FIG. 8 is a diagram showing an outline of a quay crane fixing device according to another embodiment of the present invention.
  • FIG. 9 is a diagram showing an outline of a quay crane fixing device according to another embodiment of the present invention.
  • FIG. 10 is the figure which showed the outline of the fixing device of the quay crane of different embodiment which concerns on this invention.
  • Drawing 11 is a figure showing an example of an anchor plate of a quay crane of an embodiment concerning the present invention.
  • FIG. 12 is a diagram showing an outline of a quay crane fixing device according to another embodiment of the present invention.
  • FIG. 13 is a schematic view of a conventional quay crane.
  • FIG. 1 shows an outline of a quay crane 1 according to an embodiment of the present invention.
  • the quay crane 1 includes a leg structure 2 including a sea side leg 3a, a land side leg 3b and a horizontal member (hereinafter referred to as a portal tie beam) 5, a boom 6 and a girder 7 installed above the leg structure 2. And a traveling device 8 installed below the leg structure 2.
  • the quay crane 1 is composed of a sea-side diagonal member 4a and a land-side diagonal member 4b (collectively referred to as diagonal members or V-shaped diagonal members 4) extending from above the legs 3a and 3b toward the portal tie beam 5, respectively. )have.
  • the quay crane 1 fixes the moving body 10 installed at the lower end of the V-shaped diagonal member 4, the guide 11 installed along the portal tie beam 5, and the relative position of the moving body 10 and the guide 11. And a fixing device (not shown).
  • a position where the moving body 10 is fixed on the portal tie beam 5 (for example, an intermediate point between the sea-side leg 3a and the land-side leg 3b) is set as an initial position P of the moving body 10.
  • the portal tie beam 5 is formed in a prismatic shape having a cavity inside.
  • the mobile object 10 is unfixed using an emergency earthquake warning, a seismometer, an accelerometer, or the like as an input signal.
  • the moving body 10 can move along the guide 11.
  • the quay crane 1 can obtain the following effects. First, the quay crane 1 can suppress vibration even when a large-scale earthquake such as a level 2 earthquake motion occurs. This is because the natural period of the quay crane 1 can be lengthened by the sliding of the moving body 10.
  • the upper end of the V-shaped diagonal member 4 is fixed above the sea-side leg 3a or the land-side leg 3b at a position equal to or lower than the height of the boom 6 and the girder 7 by pin connection or the like. desirable. This is because the rigidity of the leg structure 2 of the quay crane 1 can be further improved and the natural period can be increased by this configuration.
  • FIG. 2 shows a side view of a partial cross section with a part of the cross section around the moving body 10.
  • the quay crane 1 fixes the movable body 10 installed at the lower ends of the V-shaped diagonal members 4 a and 4 b, the guide 11 installed along the portal tie beam 5, and the relative position of the movable body 10 and the guide 11. And a fixing device 40.
  • the moving body 10 is connected to the V-shaped diagonal members 4a and 4b by pin coupling using pins 13 for example.
  • the moving body 10 is fixed to at least one of the guide 11 or the portal tie beam 5 by a fixing device 40 having, for example, an anchor plate 41 and a support device 42 that supports the anchor plate 41.
  • the moving body 10 is made of a material having high lubricity (for example, MC nylon, Naflon (registered trademark)). This is to realize a smooth slide of the moving body 10.
  • traveling wheels may be installed on at least one of the lower surface, the side surface, or the upper surface of the moving body 10.
  • the guide 11 has an inclined portion (uphill) 14 whose bottom surface is inclined vertically upward from the initial position P toward the sea side leg 3a or the land side leg 3b.
  • the inclined portion 14 of the guide 11 serves as a restoring mechanism that generates a force that returns the moving body 10 to the initial position P.
  • the moving body 10 shown with the broken line has shown a mode that the moving body 10 is moving the inclination part 14, when an earthquake occurs.
  • the fixing device 40 is released by the operation of the support device 42, the dropping of the anchor plate 41, or the like.
  • the moving body 10 moves along the guide 11 by releasing the fixing device 40.
  • the moving body 10 is given a restoring force that always tries to return to the initial position P from the inclined portion 14 that is a restoring mechanism.
  • the mobile body 10 repeats a slide (sliding), changing the advancing direction between the sea side leg 3a and the land side leg 3b during the occurrence of an earthquake.
  • the quay crane 1 can obtain the following effects.
  • the quay crane 1 can suppress vibration even when a large-scale earthquake occurs. This is because the natural period of vibration of the quay crane 1 can be increased by the sliding of the moving body 10.
  • the moving body 10 can be configured to slide along the guide 11 at a distance of ⁇ 500 mm or more, desirably ⁇ 1000 mm or more. This is because the movable body 10 is not restricted by the slide distance due to the influence of material properties and the like unlike the laminated rubber.
  • the guide 11 having the inclined portion 14 is a restoring mechanism that gives a restoring force to the moving body 10.
  • vibration of the quay crane 1 can be suppressed. This is because a force (restoring force) that tries to return to the initial position P acts on the moving body 10 even during an earthquake, and this force acts as a damping force that attenuates the vibration of the quay crane 1. .
  • the moving body 10 can obtain a greater restoring force as it moves away from the initial position P.
  • the connecting portion between the V-shaped diagonal members 4a and 4b and the leg 3 (the sea side leg 3a and the land side leg 3b) and the connecting portion between the V-shaped diagonal members 4a and 4b and the moving body 10 are as described above. It is not limited to the pin connection by the pin 13. This bond may be, for example, a bond through rubber or the like as long as it is a soft bond that can allow a certain deformation.
  • FIG. 3 shows a front view of a partial cross section with a part in cross section around the moving body 10.
  • the moving body 10 is fixed to at least one of the guide 11 and the portal tie beam 5 with a fixing device (for example, an anchor plate) 40.
  • the guide 11 is configured to cover at least the side of the moving body 10.
  • the quay crane 1 releases the fixing of the moving body 10 to the portal tie beam 5 or the guide 11 by releasing the fixing device 40. By releasing the fixing device 40, the moving body 10 can move along the guide 11.
  • the fixing device 40 can be configured to be released by an earthquake early warning, a signal from a seismometer mounted on a container terminal or a quay crane, or the like.
  • the guide 11 has a canopy 20 that covers the upper surface of the moving body 10 as shown in FIG.
  • a vertically upward force is applied to the moving body 10.
  • This vertical upward force is caused by a rocking phenomenon or the like generated in the quay crane.
  • the installation of the canopy 20 can suppress flying objects or the like that hinder the movement of the moving body 10 from falling on the passage in the guide 11.
  • FIG. 4 shows an enlarged schematic view around the fixing device 40.
  • the fixing device 40 includes both the guide 11 and the portal tie beam 5, an anchor plate 41 inserted into a through-hole 43 formed so as to communicate the moving body 10, and a support device 42 that supports the anchor plate 41.
  • the anchor plate 41 is formed in a rectangular parallelepiped, for example.
  • the anchor plate 41 is formed to have a width smaller than the width of the through hole 43 in the transverse direction x of the quay crane 1. Therefore, even when the anchor plate 41 is disposed in the through hole 43, a gap is generated between the movable body 10, the guide 11, and the portal tie beam 5.
  • the support device 42 is, for example, an L-shaped support member, and supports the anchor plate 41 from below so that the anchor plate 41 does not fall from the through hole 43.
  • FIG. 5 shows an enlarged schematic view of the periphery of the fixing device 40 in a normal state where the quay crane 1 performs a cargo handling operation or the like.
  • the movable body 10 of the quay crane 1 receives a horizontal static load Fs via the V-shaped diagonal member 4 in a normal state.
  • This static load Fs is generated due to the structure of the quay crane 1. Further, the magnitude of the static load Fs is about 60 to 200 t, although it varies depending on the scale of the quay crane 1.
  • the moving body 10 moves, for example, to the left in FIG. 5 due to the static load Fs.
  • the anchor plate 40 installed in the through hole 43 is sandwiched between the moving body 10, the guide 11, and the portal tie beam 5. That is, the anchor plate 40 is apparently fixed in the through hole 43 by the static load Fs generated through the movable body 10 and the reaction force Fr generated in the guide 11 and the portal tie beam 5. Therefore, the anchor plate 41 is basically maintained in the through hole 43 even if it is not supported by the support device 42.
  • the support device 42 prevents the anchor plate 41 from falling from the through hole 43.
  • the anchor plate 41 is configured to have a sufficient strength that does not break due to the static load Fs and the reaction force Fr.
  • FIG. 6 shows an outline of the operation of the fixing device 40 when an earthquake occurs.
  • the fixing device 40 first operates the support device 42 to release the support of the anchor plate 41. Specifically, for example, the support of the anchor plate 41 is released by rotating an L-shaped support member. At this time, the anchor plate 41 is still fixed in the through hole 43 because the horizontal stationary load Fs and the reaction force Fr are still generated through the movable body 10.
  • the quay crane 1 vibrates due to the earthquake motion, and this vibration is transmitted to the moving body 10 via the V-shaped diagonal member 4.
  • the moving body 10 starts reciprocating vibration against the direction of the static load Fs (left side in FIG. 6), for example.
  • the amplitude of the moving body 10 at this time is about several mm to several tens mm. Due to the reciprocating vibration of the moving body 10, the horizontal external forces Fs and Fr generated in the anchor plate 41 may be reduced or become zero. At this time, the anchor plate 41 falls by its own weight (see FIG. 6 S1).
  • the anchor plate 41 may be sandwiched and fixed again by the moving body 10, the guide 11, and the portal tie beam 5. Even in such a case, the anchor plate 41 starts to fall again as the moving body 10 moves in the reverse direction (leftward in FIG. 6) as shown in FIG. 6S3. Eventually, as shown in FIG. 6S4, the anchor plate 41 falls from the through-hole 43 and does not restrain the movement of the moving body 10.
  • the anchor plate 41 when the anchor plate 41 is removed from the through hole 43, the fixing device 40 is released, and the movable body 10 reciprocates along the guide 11.
  • the amplitude of the moving body 10 at this time is configured to be ⁇ 500 mm or more, and desirably ⁇ 1000 mm or more.
  • the anchor plate 41 falls after a plurality of reciprocating vibrations of the moving body 10 or falls after one reciprocating vibration of the moving body 10.
  • the state in which the anchor plate 41 is removed from the through hole 43 does not prevent the movable body 10 from reciprocating along the guide 11 in addition to the state in which the anchor plate 41 is completely removed from the through hole 43. To the extent, it also includes the state of moving in the through hole 43.
  • the quay crane 1 of the present invention can obtain the following effects by the above configuration.
  • the quay crane 1 can suppress vibration of the quay crane 1 even when a large-scale earthquake occurs. This is because the natural period of the quay crane 1 can be lengthened.
  • the configuration in which the moving body 10 is fixed by the anchor plate 41 can prevent an accident in which the fixing of the moving body 10 is released during normal times when the quay crane 1 performs a cargo handling operation or the like.
  • the anchor plate 41 has a strength that does not break due to the static load Fs generated in the movable body 10 and other external forces, unlike a shear pin that is assumed to break due to an external force exceeding a predetermined value.
  • the anchor plate 41 does not break and maintains the moving body 10 fixed. Configured to do.
  • the anchor plate 41 can be reliably removed from the through-hole 43 when an earthquake occurs. This is because the anchor plate 41 has a width smaller than the through hole 43 in the transverse direction x, and the quay crane 1 penetrates the anchor plate 41 using the reciprocating vibration of the moving body 10 caused by an earthquake. It is because it has the structure removed from the hole 43.
  • the anchor plate 41 resists the static load Fs generated on the anchor plate 41 and its reaction force Fr. A force sufficient to drop 41 is required. It is practically difficult to generate this force.
  • the anchor plate 41 has a strength that does not break due to the static load Fs received from the moving body 10 and the reaction force Fr received from the guide 11 and the like, and has a width smaller than the through hole 43 in the transverse direction x. If it is, it will not be limited to said shape. For example, even if it is a columnar shape, the same effect as described above can be obtained.
  • FIG. 7 shows an outline of a quay crane fixing device 40A according to another embodiment of the present invention.
  • the fixing device 40A includes a trapezoidal anchor plate 41A having a taper shape in which the lower side is expanded compared to the upper side, and a support device 42A that supports the anchor plate 41A from the lower side.
  • the support device 42 ⁇ / b> A includes a fixing member 50 fixed to the portal tie beam 5, a tilting member 51 that is tiltably supported by the fixing member 50, and a wire 52 connected to the tilting member 51.
  • the wire 52 is connected to the shear pin 32 of the seismic isolation device 31 installed in the vicinity of the traveling device of the quay crane 1.
  • the shear pin 32 is normally fixed so that the seismic isolation device 31 does not slide. When an earthquake occurs, the shear pin 32 is broken by an external force generated in the seismic isolation device 31 and has a function of making the seismic isolation device 31 slidable. Have. Further, the arrangement of the wire 52 is appropriately adjusted by the sheave 53.
  • the tilting member 51 is supported substantially horizontally by the wire 52, and supports the anchor plate 41A from below.
  • the shear pin 32 of the seismic isolation device 31 installed in the vicinity of the traveling device is broken, the tension of the wire 52 is released, and the tilting member 51 tilts downward with its own weight.
  • the support of the anchor plate 41A by the support device 42A is released.
  • the anchor plate 41 ⁇ / b> A falls downward and is removed from the through-hole 43 due to the reciprocating vibration of the moving body 10 as described above.
  • the quay crane of the present invention can obtain the following effects. 1stly, even if a power failure occurs with the occurrence of an earthquake, the quay crane can automatically release the support device 42A. This is because the shear pin 32 configured to break when an earthquake occurs is used as an activation mechanism for releasing the support device 42A.
  • quay cranes can quickly obtain a vibration control effect after an earthquake occurs. This is because the anchor plate 41 ⁇ / b> A having a tapered shape receives a force pushed downward by the reciprocating vibration of the moving body 10. That is, the time for removing the anchor plate 41A from the through hole 43 is shortened, and the response performance when releasing the fixing device 40A is improved.
  • the support device 42A is preferably disposed inside the structure forming the portal tie beam 5 and the legs 3 of the quay crane. This is because the support device 42 ⁇ / b> A can be prevented from being deteriorated due to the influence of external wind and rain.
  • FIG. 8 shows an outline of a quay crane fixing device 40B according to another embodiment of the present invention.
  • the fixing device 40B includes a support device 42B configured by a jack that supports, for example, the trapezoidal anchor plate 41B described above from below.
  • the support device 42B can be constituted by, for example, a hydraulic jack, a pneumatic jack, a mechanical jack, or the like.
  • the fixing device 40B lowers the support device 42B formed of a jack and releases the support of the anchor plate 41B. As a result, the anchor plate 41B is removed from the through hole 43, and the moving body 10 can move along the guide 11.
  • the support device 42B may be configured by, for example, a hydraulic jack, and may be configured to release the hydraulic pressure when an earthquake occurs and to lower the hydraulic jack by its own weight. Further, even a jack having another structure may be configured to be fixed with a stopper or the like in normal times, to release the stopper when an earthquake occurs, and to lower the jack by its own weight. Further, a power source such as a battery may be connected to the support device 42B to actively lower the jack.
  • the quay crane can easily adopt the fixing device 40B. This is because the fixing device 40 ⁇ / b> B can be installed by construction only on the periphery of the moving body 10.
  • FIG. 9 shows an outline of a quay crane fixing device 40C according to another embodiment of the present invention.
  • the fixing device 40C includes an anchor plate 41C and a support device 42C that supports the anchor plate 41C so as to be suspended from above.
  • the support device 42C includes a column 55 fixed to the portal tie beam 5, a tilting member 56 that is supported by the column 55 so that the middle part thereof can tilt, and a first wire that connects one end of the tilting member 56 and the anchor plate 41C. 57 and a second wire 58 connected to the other end of the tilting member 56.
  • the second wire 58 is connected to the traveling device 8 in the vicinity of the seismic isolation device 31 installed on the leg 3.
  • FIG. 9 shows an outline of a quay crane fixing device 40D according to another embodiment of the present invention.
  • the support device 42D constituting the fixing device 40D includes a driving device 59 to which the second wire 58 is connected, a communication device 60 connected to the driving device 59, and a power source 61 such as a battery. .
  • the driving device 59, the communication device 60, the power source 62, and the like can be installed on or in the portal tie beam 5, for example.
  • the communication device 60 connected to the drive device 59 receives a signal notifying that an earthquake has occurred.
  • This signal may be, for example, a signal generated from a displacement measuring device 62 that determines the occurrence of an earthquake from the amount of displacement of the seismic isolation device 31, a signal transmitted from a seismometer at a container terminal where a quay crane is installed, or an earthquake early warning. Etc. can be used.
  • the communication device 60 that has received the signal drives the drive device 59, pulls or winds the second wire 58, and tilts the tilting member 56. Due to the tilting of the tilting member 56, the anchor plate 41D is pulled upward. With this configuration, the quay crane can obtain the same effects as described above.
  • the shape of the anchor plate 41 is not limited to a rectangular parallelepiped shape or a flat plate shape.
  • a substantially T-shaped anchor plate 41E may be employed.
  • the substantially T-shaped anchor plate 41E has a main body portion 64 that is inserted into the through hole, and a horizontal portion 65 that has a width larger than the width of the through hole in the transverse direction x and is not inserted into the through hole. ing.
  • This substantially T-shaped anchor plate 41E can prevent the anchor plate 41E from falling into the portal tie beam 5 especially when employed in the embodiment shown in FIGS. That is, in normal times, the anchor plate 41E can be supported without generating tension on the first wire 57 shown in FIGS. 9 and 10, and therefore, the deterioration of the first wire 57 can be prevented.
  • the anchor plate 41E can be prevented from falling into the portal tie beam 5 and being removed from the through hole.
  • a trapezoidal anchor plate 41F having a tapered shape in which the upper side is expanded compared to the lower side may be adopted.
  • This trapezoidal anchor plate 41F has a lower portion 66 inserted into the through hole, and an upper portion 67 formed so as to have a width larger than the width of the through hole in the transverse direction x and not inserted into the through hole. Yes.
  • the trapezoidal anchor plate 41F receives a force pushed upward by the reciprocating vibration of the moving body 10, the response performance when releasing the fixing device can be improved.
  • a sliding material 68 such as MC nylon or Naflon (registered trademark) may be disposed on the side surface of the trapezoidal anchor plate 41F that comes into contact with the through hole.
  • MC nylon or Naflon registered trademark
  • the anchor plate 41F can be easily removed from the through hole.
  • positions this sliding material 68 is similarly employ
  • FIG. 12 shows an outline of a quay crane fixing device 40G according to another embodiment of the present invention.
  • the fixing device 40G includes an anchor plate 41G that is inserted into a through hole 43G that is formed in a horizontal direction so as to communicate the guide 11 and the moving body 10, and a support device 42G that supports the anchor plate 41G. .
  • the support device 42G has a first wire 57 connected to the anchor plate 41G.
  • the anchor plate 41G has a strength that does not break due to the static load Fs received from the moving body 10 and the reaction force Fr received from the guide 11 and the like, as described above, and is smaller than the through hole 43G in the transverse direction x. It has a width.
  • the fixing device 40G first pulls the first wire 57 by any one of the methods described above when an earthquake occurs.
  • the anchor plate 41G obtains rotational force and is removed from the through hole 43G while rotating in the vertical direction.
  • the through-hole 43G has a size that does not hinder the vertical rotation of the anchor plate 41G, or is configured to have a shape that opens upward. With this configuration, the same effects as described above can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control And Safety Of Cranes (AREA)

Abstract

A quay crane (1) comprises a guide (11) that is disposed along a horizontal member (5), a mobile body (10) that is configured to be movable along the guide (11) and disposed on the bottom end of a diagonal member (4), and an anchoring device (40) that fixes the relative positions of the mobile body (10) and the guide (11). The anchoring device (40) comprises: an anchor plate (41) that is inserted in a through-hole (43) that is formed so as to pass through the mobile body (10) and the guide (11) and/or horizontal member (4); and a supporting device (42) that supports the anchor plate (41). The anchor plate (41) is strong enough to not break from external force generated on the anchor plate (41) via the mobile body (10). When an earthquake occurs, the supporting device (42) is actuated so as to remove the anchor plate (41) from the through-hole (43) and release the anchoring device (40) such that the mobile body (10) becomes able to move along the guide (11).

Description

岸壁クレーン及び岸壁クレーンの制御方法Quay crane and quay crane control method
 本発明は、港湾や内陸地のコンテナターミナルなどで、コンテナの荷役に使用される岸壁クレーン及び岸壁クレーンの制御方法に関するものである。 The present invention relates to a quay crane used for container handling at a port or an inland container terminal, and a control method for a quay crane.
 港湾等のコンテナターミナルでは、岸壁クレーン、門型クレーン、コンテナトレーラ等によって、船舶及びトレーラ間のコンテナの荷役を行っている。このコンテナターミナルにおける地震対策として、岸壁クレーンに免震構造を採用したクレーンが提案されている(例えば特許文献1参照)。 In container terminals such as harbors, containers between ships and trailers are handled by quay cranes, portal cranes, container trailers, etc. As an earthquake countermeasure in this container terminal, a crane that employs a seismic isolation structure for a quay crane has been proposed (for example, see Patent Document 1).
 図13に従来の岸壁クレーンを示す。この岸壁クレーン1Xは、脚構造物2Xと、脚構造物2Xの下端にそれぞれ配置した走行装置8と、脚構造物2Xの上方に設置したブーム6及びガーダ7と、ブーム6及びガーダ7に沿って横行しコンテナの荷役作業を行うトロリ(荷役装置)9と、を有している。 Fig. 13 shows a conventional quay crane. The quay crane 1X includes a leg structure 2X, a traveling device 8 disposed at the lower end of the leg structure 2X, a boom 6 and a girder 7 installed above the leg structure 2X, and the boom 6 and the girder 7. And a trolley (a cargo handling device) 9 that performs the cargo handling operation of the container.
 この脚構造物2Xは、海側脚3aと陸側脚3b(以下、総称して脚3という)と、脚3a、3bを連結する水平部材(以下、ポータルタイビームという)5と、を有している。また、脚構造物2Xは、それぞれの脚3a、3bの上方からポータルタイビーム5に向けてそれぞれ延伸した海側斜材4aと陸側斜材4b(以下、総称して斜材、又はV字型斜材4という)を有している。 The leg structure 2X includes a sea side leg 3a, a land side leg 3b (hereinafter collectively referred to as leg 3), and a horizontal member (hereinafter referred to as portal tie beam) 5 connecting the legs 3a and 3b. is doing. Further, the leg structure 2X includes a sea-side diagonal member 4a and a land-side diagonal member 4b (hereinafter collectively referred to as diagonal members or V-shaped members) extending from above the legs 3a and 3b toward the portal tie beam 5, respectively. A mold diagonal 4).
 更に、脚構造物2Xは、V字型斜材4の下端部とポータルタイビーム5を連結する免震装置30を有している。この免震装置30は、積層ゴムで構成されており、横行方向(海陸方向)xで変位可能に構成されている。なお、zは鉛直方向を示している。 Furthermore, the leg structure 2X has a seismic isolation device 30 that connects the lower end of the V-shaped diagonal member 4 and the portal tie beam 5. The seismic isolation device 30 is composed of laminated rubber and is configured to be displaceable in the transverse direction (sea-land direction) x. Note that z indicates the vertical direction.
 上記の構成により、この岸壁クレーン1Xは、地震発生時の振動を抑制することができる。これは、V字型斜材4の下端部に設置した免震装置30が横行方向xに変位(スライド)し、岸壁クレーン1Xの振動の固有周期を長周期化することができるためである。 With this configuration, the quay crane 1X can suppress vibrations when an earthquake occurs. This is because the seismic isolation device 30 installed at the lower end of the V-shaped diagonal member 4 is displaced (slid) in the transverse direction x, and the natural period of vibration of the quay crane 1X can be lengthened.
 しかしながら、上記のV字型斜材4及び免震装置30を搭載した岸壁クレーン1Xは、いくつかの問題点を有している。第1に、大規模地震が発生した場合に、免震装置30が横行方向xに変形可能となるスライド距離を超えてしまい、免震装置30の積層ゴムが破断してしまう恐れがあるという問題を有している。つまり、岸壁クレーン1Xが、地震発生時に免震機能を失ってしまう恐れがある。これは、積層ゴムで構成した免震装置30のスライド距離が、それほど大きくないためである。具体的には、横行方向xに±300mm以下であった。 However, the quay crane 1X equipped with the V-shaped diagonal member 4 and the seismic isolation device 30 has several problems. First, when a large-scale earthquake occurs, there is a risk that the seismic isolation device 30 may exceed the sliding distance that can be deformed in the transverse direction x, and the laminated rubber of the seismic isolation device 30 may be broken. have. That is, the quay crane 1X may lose the seismic isolation function when an earthquake occurs. This is because the sliding distance of the seismic isolation device 30 made of laminated rubber is not so large. Specifically, it was ± 300 mm or less in the transverse direction x.
 ここで、大規模地震とは、例えば、平成18年の港湾法改正により想定されている地震波であり、レベル2地震動と呼ばれるものである。このレベル2地震動とは、土木学会の第三次提言により、現在から将来にわたって当該地点で考えられる最大級の大きさを持つ地震動と定義されている。 Here, a large-scale earthquake is, for example, a seismic wave assumed by the 2006 revision of the Port Law and is called Level 2 ground motion. This Level 2 ground motion is defined as the ground motion having the largest magnitude that can be considered at this point from the present to the future according to the Third Proposal of the Japan Society of Civil Engineers.
 第2に、上記の免震装置30の破断を回避するために、変位量の大きい免震装置を採用することが困難であるという問題を有している。これは、積層ゴムの大型化によりスライド距離を延長しようとした場合、ゴムの大型化によりばね定数が高くなり、むしろスライド距離が短くなってしまうという性質を有しているためである。また、積層ゴムのばね定数が高くなると(ゴムが硬くなると)、岸壁クレーンの固有周期が短くなってしまう。そのため、地震が発生した際には、岸壁クレーンに大きな加速度が発生し、走行装置8が浮き上がり、脱輪が発生する可能性がある。 Second, in order to avoid breakage of the seismic isolation device 30 described above, it is difficult to adopt a seismic isolation device with a large displacement. This is because, when an attempt is made to extend the slide distance by increasing the size of the laminated rubber, the spring constant increases due to the increase in the size of the rubber, but rather the slide distance becomes shorter. Moreover, when the spring constant of laminated rubber becomes high (when rubber becomes hard), the natural period of a quay crane will become short. Therefore, when an earthquake occurs, a large acceleration is generated in the quay crane, the traveling device 8 is lifted up, and there is a possibility that wheel removal will occur.
 第3に、積層ゴムで構成した免震装置30が、スライド距離の限界に達しない場合であっても、破断してしまう恐れがあるという問題を有している。これは、地震発生時に、免震装置30の鉛直上向きzに引っ張り力が発生し、この引っ張りにより免震装置30が破断してしまうためである。特に、積層ゴムで構成した免震装置30は、圧縮方向の力には強いが、引っ張り方向の力には弱いためである。なお、免震装置30の鉛直方向zに発生する力は、岸壁クレーン1Xの海側脚3a及び陸側脚3bが交互に持ち上がるような振動(ロッキングR又はロッキング現象という)により生じる。 Thirdly, there is a problem that the seismic isolation device 30 made of laminated rubber may break even if it does not reach the limit of the slide distance. This is because, when an earthquake occurs, a tensile force is generated vertically upward z of the seismic isolation device 30, and the seismic isolation device 30 is broken by this pulling. This is because the seismic isolation device 30 made of laminated rubber is particularly strong in the compression direction force but weak in the pulling direction force. In addition, the force generated in the vertical direction z of the seismic isolation device 30 is generated by vibration (referred to as rocking R or rocking phenomenon) in which the sea side leg 3a and the land side leg 3b of the quay crane 1X are alternately lifted.
 以上より、従来の岸壁クレーン1Xは、大規模地震が発生した場合、十分な免震性能を得られず、倒壊してしまう危険性がある。 For the above reasons, the conventional quay crane 1X may not be able to obtain sufficient seismic isolation performance in the event of a large-scale earthquake and may collapse.
特開2003-12275号公報JP 2003-12275 A
 本発明は、上記の問題を鑑みてなされたものであり、その目的は、V字型斜材を有する岸壁クレーンにおいて、大規模地震(例えばレベル2地震動)が発生した場合であっても、岸壁クレーンの固有周期を長周期化し、振動を抑制することのできる岸壁クレーンを提供することである。 The present invention has been made in view of the above-described problems, and the purpose thereof is a quay in a quay crane having a V-shaped diagonal member even when a large-scale earthquake (for example, level 2 ground motion) occurs. It is to provide a quay crane capable of suppressing the vibration by increasing the natural period of the crane.
 上記の目的を達成するための本発明に係る岸壁クレーンは、海側脚及び陸側脚の上方から、該海側脚及び該陸側脚を連結する水平部材に向けてそれぞれ延伸した斜材を有する岸壁クレーンにおいて、該岸壁クレーンが、該水平部材に沿って設置されたガイドと、該斜材の下端部に設置され且つ該ガイドに沿って移動可能に構成された移動体と、該移動体と該ガイドの相対位置を固定する固定装置と、を有しており、該固定装置が、該ガイド又は該水平部材の少なくとも一方と該移動体を連通するように形成された貫通孔に挿入されるアンカープレートと、該アンカープレートを支持する支持装置と、を有しており、該アンカープレートが、該移動体を介して該アンカープレートに生じる外力により破断しない強度を有しており、地震が発生した際に、該支持装置の作動により、該アンカープレートを該貫通孔から取り除いて該固定装置を解除し、該移動体が該ガイドに沿って移動自在となる構成を有していることを特徴とする。 In order to achieve the above object, a quay crane according to the present invention comprises diagonal members extending from above a sea side leg and a land side leg toward a horizontal member connecting the sea side leg and the land side leg, respectively. In the quay crane having the quay crane, the quay crane includes a guide installed along the horizontal member, a movable body installed at a lower end portion of the diagonal member and configured to be movable along the guide, and the movable body. And a fixing device for fixing the relative position of the guide, and the fixing device is inserted into a through-hole formed to communicate at least one of the guide or the horizontal member and the movable body. An anchor plate, and a support device for supporting the anchor plate, the anchor plate has a strength that does not break due to an external force generated on the anchor plate via the movable body, and an earthquake is generated. Occurrence When the support device is operated, the anchor plate is removed from the through hole to release the fixing device, and the moving body is movable along the guide. And
 この構成により、岸壁クレーンは、大規模地震が発生した際であっても、岸壁クレーンの振動を抑制することができる。これは、移動体の移動により、岸壁クレーンの固有周期を長周期化することができるためである。 With this configuration, the quay crane can suppress the vibration of the quay crane even when a large-scale earthquake occurs. This is because the natural period of the quay crane can be lengthened by the movement of the moving body.
 また、岸壁クレーンは、荷役作業等を行う通常時に、移動体の固定が解除される事故を防止することができる。これは、アンカープレートが、破断することを前提とするせん断ピン等と異なり、移動体を介して生じるあらゆる荷重に対して破断しない強度を有しているからである。 In addition, the quay crane can prevent an accident in which the moving body is released during normal handling operations. This is because the anchor plate has a strength that does not break against any load generated via the moving body, unlike a shear pin that is supposed to break.
 上記の岸壁クレーンにおいて、前記支持装置が、前記アンカープレートを下方から支持する構成を有していることを特徴とする。この構成により、岸壁クレーンは、固定装置を容易に解除し、制振効果を得ることができる。これは、支持装置による支持を解除されたアンカープレートが、移動体の往復振動により貫通孔から落下することができるからである。つまり、岸壁クレーンは、移動体の往復振動を利用して、貫通孔からアンカープレートを取り除く構成を有している。 In the above quay crane, the support device has a configuration for supporting the anchor plate from below. With this configuration, the quay crane can easily release the fixing device and obtain a vibration control effect. This is because the anchor plate released from the support by the support device can fall from the through hole by the reciprocating vibration of the moving body. That is, the quay crane has the structure which removes an anchor plate from a through-hole using the reciprocating vibration of a moving body.
 上記の岸壁クレーンにおいて、前記アンカープレートが、上方又は下方から他方にかけて拡開するテーパー形状を有していることを特徴とする。この構成により、岸壁クレーンは、固定装置を解除する際の応答性能を向上することができる。これは、アンカープレートが、テーパー形状を介して、移動体の往復振動を貫通孔から引き抜かれる方向の力に変換できるからである。 In the quay crane described above, the anchor plate has a tapered shape that expands from the upper side or the lower side to the other side. With this configuration, the quay crane can improve the response performance when releasing the fixing device. This is because the anchor plate can convert the reciprocating vibration of the movable body into a force in the direction of being pulled out from the through hole via the tapered shape.
 上記の目的を達成するための本発明に係る岸壁クレーンの制御方法は、海側脚及び陸側脚の上方から、該海側脚及び該陸側脚を連結する水平部材に向けてそれぞれ延伸した斜材を有する岸壁クレーンであり、該岸壁クレーンが、該水平部材に沿って設置されたガイドと、該斜材の下端部に設置され且つ該ガイドに沿って移動可能に構成された移動体と、該移動体と該ガイドの相対位置を固定する固定装置と、を有しており、該固定装置が、該ガイド又は該水平部材の少なくとも一方と該移動体を連通するように形成された貫通孔に挿入されるアンカープレートと、該アンカープレートを支持する支持装置と、を有しており、該アンカープレートが、該移動体を介して該アンカープレートに生じる外力により破断しない強度を有する岸壁クレーンの制御方法であって、地震が発生した際に、該アンカープレートを該貫通孔内に支持する該支持装置を解除する開始ステップと、該移動体の往復振動により、該アンカープレートが該貫通孔から取り除かれる経過ステップと、該アンカープレートによる該移動体の固定が解除され、該移動体が該ガイドに沿って移動自在となる完了ステップを有することを特徴とする。この構成により、岸壁クレーンは、前述と同様の作用効果を得ることができる。 In order to achieve the above object, the quay crane control method according to the present invention extends from above the sea side leg and the land side leg toward the horizontal member connecting the sea side leg and the land side leg, respectively. A quay crane having diagonal members, the quay crane being installed along the horizontal member, and a movable body installed at the lower end of the diagonal member and configured to be movable along the guides; A fixing device for fixing the relative position of the moving body and the guide, and the fixing device is formed so as to communicate at least one of the guide or the horizontal member with the moving body. An anchor plate inserted into the hole, and a support device for supporting the anchor plate, the anchor plate having a strength that does not break due to an external force generated on the anchor plate via the movable body. And a starting step of releasing the support device that supports the anchor plate in the through-hole when an earthquake occurs, and the anchor plate is caused to pass through the reciprocating vibration of the moving body. It has a progress step to be removed from the hole, and a completion step in which the moving body is released from being fixed by the anchor plate, and the moving body is movable along the guide. With this configuration, the quay crane can obtain the same effects as described above.
 本発明に係る岸壁クレーンによれば、大規模地震(例えばレベル2地震動)が発生した場合であっても、岸壁クレーンの固有周期を長周期化し、振動を抑制することのできる岸壁クレーンを提供することができる。 According to the quay crane according to the present invention, there is provided a quay crane capable of suppressing the vibration by increasing the natural period of the quay crane even when a large-scale earthquake (for example, level 2 ground motion) occurs. be able to.
図1は、本発明に係る実施の形態の岸壁クレーンの概略図である。FIG. 1 is a schematic view of a quay crane according to an embodiment of the present invention. 図2は、本発明に係る実施の形態の岸壁クレーンの側面の部分断面を示した図である。 Drawing 2 is a figure showing the partial section of the side of the quayside crane of an embodiment concerning the present invention. 図3は、本発明に係る実施の形態の岸壁クレーンの正面の部分断面を示した図である。 Drawing 3 is a figure showing the partial section of the front of the wharf crane of an embodiment concerning the present invention. 図4は、本発明に係る実施の形態の岸壁クレーンの固定装置の概略を示した図である。Drawing 4 is a figure showing the outline of the fixing device of the quay crane of the embodiment concerning the present invention. 図5は、本発明に係る実施の形態の岸壁クレーンの固定装置の概略を示した図である。FIG. 5 is a diagram showing an outline of a quay crane fixing device according to an embodiment of the present invention. 図6は、本発明に係る実施の形態の岸壁クレーンの固定装置の作動の概略を示した図である。FIG. 6 is a diagram showing an outline of the operation of the quay crane fixing device according to the embodiment of the present invention. 図7は、本発明に係る異なる実施の形態の岸壁クレーンの固定装置の概略を示した図である。FIG. 7 is a diagram showing an outline of a quay crane fixing device according to another embodiment of the present invention. 図8は、本発明に係る異なる実施の形態の岸壁クレーンの固定装置の概略を示した図である。FIG. 8 is a diagram showing an outline of a quay crane fixing device according to another embodiment of the present invention. 図9は、本発明に係る異なる実施の形態の岸壁クレーンの固定装置の概略を示した図である。FIG. 9 is a diagram showing an outline of a quay crane fixing device according to another embodiment of the present invention. 図10は、本発明に係る異なる実施の形態の岸壁クレーンの固定装置の概略を示した図である。FIG. 10: is the figure which showed the outline of the fixing device of the quay crane of different embodiment which concerns on this invention. 図11は、本発明に係る実施の形態の岸壁クレーンのアンカープレートの例を示した図である。Drawing 11 is a figure showing an example of an anchor plate of a quay crane of an embodiment concerning the present invention. 図12は、本発明に係る異なる実施の形態の岸壁クレーンの固定装置の概略を示した図である。FIG. 12 is a diagram showing an outline of a quay crane fixing device according to another embodiment of the present invention. 図13は、従来の岸壁クレーンの概略図である。FIG. 13 is a schematic view of a conventional quay crane.
 以下、本発明に係る実施の形態の岸壁クレーンについて、図面を参照しながら説明する。図1に本発明の実施の形態の岸壁クレーン1の概略を示す。この岸壁クレーン1は、海側脚3a、陸側脚3b及び水平部材(以下、ポータルタイビームという)5を含む脚構造物2と、脚構造物2の上方に設置されたブーム6及びガーダ7と、脚構造物2の下方に設置された走行装置8と、を有している。また、岸壁クレーン1は、脚3a、3bの上方から、ポータルタイビーム5に向けてそれぞれ延伸した海側斜材4a及び陸側斜材4b(総称して、斜材又はV字型斜材4)を有している。 Hereinafter, a quay crane according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an outline of a quay crane 1 according to an embodiment of the present invention. The quay crane 1 includes a leg structure 2 including a sea side leg 3a, a land side leg 3b and a horizontal member (hereinafter referred to as a portal tie beam) 5, a boom 6 and a girder 7 installed above the leg structure 2. And a traveling device 8 installed below the leg structure 2. Further, the quay crane 1 is composed of a sea-side diagonal member 4a and a land-side diagonal member 4b (collectively referred to as diagonal members or V-shaped diagonal members 4) extending from above the legs 3a and 3b toward the portal tie beam 5, respectively. )have.
 更に、岸壁クレーン1は、V字型斜材4の下端部に設置された移動体10と、ポータルタイビーム5に沿って設置されたガイド11と、移動体10とガイド11の相対位置を固定する固定装置(図示しない)と、を有している。ここで、移動体10がポータルタイビーム5上に固定されている位置(例えば、海側脚3aと陸側脚3bの中間点)を、移動体10の初期位置Pとする。また、ポータルタイビーム5は、内部に空洞を有する角柱形状に形成されている。 Further, the quay crane 1 fixes the moving body 10 installed at the lower end of the V-shaped diagonal member 4, the guide 11 installed along the portal tie beam 5, and the relative position of the moving body 10 and the guide 11. And a fixing device (not shown). Here, a position where the moving body 10 is fixed on the portal tie beam 5 (for example, an intermediate point between the sea-side leg 3a and the land-side leg 3b) is set as an initial position P of the moving body 10. The portal tie beam 5 is formed in a prismatic shape having a cavity inside.
 次に、岸壁クレーン1の動作について説明する。まず、地震が発生した際に、緊急地震速報、地震計又は加速度計等を入力信号として、移動体10の固定を解除する。この固定装置の解除により、移動体10は、ガイド11に沿って移動自在となる。 Next, the operation of the quay crane 1 will be described. First, when an earthquake occurs, the mobile object 10 is unfixed using an emergency earthquake warning, a seismometer, an accelerometer, or the like as an input signal. By releasing the fixing device, the moving body 10 can move along the guide 11.
 上記の構成により、岸壁クレーン1は、以下の作用効果を得ることができる。第1に、レベル2地震動等の大規模地震が発生した場合であっても、岸壁クレーン1は振動を抑制することができる。これは、移動体10のスライドにより岸壁クレーン1の固有周期を長くすることができるからである。 With the above configuration, the quay crane 1 can obtain the following effects. First, the quay crane 1 can suppress vibration even when a large-scale earthquake such as a level 2 earthquake motion occurs. This is because the natural period of the quay crane 1 can be lengthened by the sliding of the moving body 10.
 第2に、岸壁クレーンの大型化の要請に応えることができる。特に、岸壁クレーンの大型化に伴い、強度上V字型斜材の設置が必要となった場合であっても、岸壁クレーンの耐震性能を向上することができる。 Second, we can meet the demand for larger quay cranes. In particular, the seismic performance of the quay crane can be improved even when it is necessary to install a V-shaped diagonal material due to the increase in size of the quay crane.
 なお、V字型斜材4の上端部は、海側脚3a又は陸側脚3bの上方であって、ブーム6及びガーダ7の高さと同じか又は低い位置にピン結合等で固定することが望ましい。この構成により、岸壁クレーン1の脚構造物2の剛性をより向上し、固有周期を長くすることができるためである。 Note that the upper end of the V-shaped diagonal member 4 is fixed above the sea-side leg 3a or the land-side leg 3b at a position equal to or lower than the height of the boom 6 and the girder 7 by pin connection or the like. desirable. This is because the rigidity of the leg structure 2 of the quay crane 1 can be further improved and the natural period can be increased by this configuration.
 また、脚構造物2と走行装置8の間に、積層ゴム等で構成した従来の免震装置を設置することが望ましい。岸壁クレーンの耐震性能を向上することができるためである。 Also, it is desirable to install a conventional seismic isolation device composed of laminated rubber between the leg structure 2 and the traveling device 8. This is because the seismic performance of the quay crane can be improved.
 図2に、移動体10を中心に一部を断面とした部分断面の側面図を示す。岸壁クレーン1は、V字型斜材4a、4bの下端部に設置された移動体10と、ポータルタイビーム5に沿って設置されたガイド11と、移動体10とガイド11の相対位置を固定する固定装置40と、を有している。この移動体10は、V字型斜材4a、4bとそれぞれ例えばピン13を利用したピン結合等で連結されている。また、移動体10は、例えばアンカープレート41及びアンカープレート41を支持する支持装置42を有する固定装置40で、ガイド11又はポータルタイビーム5の少なくとも一方に固定されている。更に、移動体10は、潤滑性の高い材料(例えばMCナイロン、ナフロン(登録商標)等)で構成することが望ましい。移動体10の滑らかなスライドを実現するためである。同様の理由で、移動体10の下面、側面又は上面の少なくとも1つに走行輪を設置してもよい。 FIG. 2 shows a side view of a partial cross section with a part of the cross section around the moving body 10. The quay crane 1 fixes the movable body 10 installed at the lower ends of the V-shaped diagonal members 4 a and 4 b, the guide 11 installed along the portal tie beam 5, and the relative position of the movable body 10 and the guide 11. And a fixing device 40. The moving body 10 is connected to the V-shaped diagonal members 4a and 4b by pin coupling using pins 13 for example. The moving body 10 is fixed to at least one of the guide 11 or the portal tie beam 5 by a fixing device 40 having, for example, an anchor plate 41 and a support device 42 that supports the anchor plate 41. Furthermore, it is desirable that the moving body 10 is made of a material having high lubricity (for example, MC nylon, Naflon (registered trademark)). This is to realize a smooth slide of the moving body 10. For the same reason, traveling wheels may be installed on at least one of the lower surface, the side surface, or the upper surface of the moving body 10.
 加えて、ガイド11は、その底面が、初期位置Pから海側脚3a又は陸側脚3bに向かって鉛直上向きに傾斜した傾斜部(上り勾配)14を有している。このガイド11の傾斜部14は、移動体10を初期位置Pに戻す力を発生させる復元機構となる。なお、破線で示した移動体10は、地震が発生した際に、移動体10が傾斜部14を移動している様子を示している。 In addition, the guide 11 has an inclined portion (uphill) 14 whose bottom surface is inclined vertically upward from the initial position P toward the sea side leg 3a or the land side leg 3b. The inclined portion 14 of the guide 11 serves as a restoring mechanism that generates a force that returns the moving body 10 to the initial position P. In addition, the moving body 10 shown with the broken line has shown a mode that the moving body 10 is moving the inclination part 14, when an earthquake occurs.
 次に、岸壁クレーン1の動作について説明する。地震が発生した際、固定装置40が、支持装置42の作動及びアンカープレート41の落下等により、解除される。固定装置40の解除により、移動体10は、ガイド11に沿って移動する。このとき、移動体10は、復元機構である傾斜部14から常に初期位置Pに戻ろうとする復元力を与えられる。また、移動体10は、地震発生中は、海側脚3a及び陸側脚3bの間で、進行方向を変えながらスライド(摺動)を繰り返す。 Next, the operation of the quay crane 1 will be described. When an earthquake occurs, the fixing device 40 is released by the operation of the support device 42, the dropping of the anchor plate 41, or the like. The moving body 10 moves along the guide 11 by releasing the fixing device 40. At this time, the moving body 10 is given a restoring force that always tries to return to the initial position P from the inclined portion 14 that is a restoring mechanism. Moreover, the mobile body 10 repeats a slide (sliding), changing the advancing direction between the sea side leg 3a and the land side leg 3b during the occurrence of an earthquake.
 上記の構成により、岸壁クレーン1は、以下の作用効果を得ることができる。第1に、岸壁クレーン1は、大規模地震が発生した場合であっても、振動を抑制することができる。これは、移動体10のスライドにより、岸壁クレーン1の振動の固有周期を長くできるためである。なお、この移動体10は、ガイド11に沿って±500mm以上、望ましくは±1000mm以上の距離をスライドできるように構成することができる。これは、移動体10が、積層ゴムのように材料物性等の影響から、スライド距離に制約を受けることがないためである。 With the above configuration, the quay crane 1 can obtain the following effects. First, the quay crane 1 can suppress vibration even when a large-scale earthquake occurs. This is because the natural period of vibration of the quay crane 1 can be increased by the sliding of the moving body 10. The moving body 10 can be configured to slide along the guide 11 at a distance of ± 500 mm or more, desirably ± 1000 mm or more. This is because the movable body 10 is not restricted by the slide distance due to the influence of material properties and the like unlike the laminated rubber.
 第2に、地震発生後の岸壁クレーン1の復旧作業を迅速に行うことができる。これは、移動体10に、初期位置Pに戻ろうとする復元力が働いているためである。例えば、地震発生後に、移動体10が初期位置Pまですでに戻っている場合は、移動体10を固定装置40により固定する作業のみで、岸壁クレーン1の復旧作業は完了する。また、移動体10が初期位置Pまで戻りきらない場合であっても、外力を加えて移動体10を初期位置Pに戻す際に、復元力が働くため、復旧作業を迅速に行うことができる。つまり、傾斜部14を有するガイド11は、移動体10に復元力を与える復元機構である。 Second, it is possible to quickly restore the quay crane 1 after the earthquake. This is because a restoring force is exerted on the moving body 10 to return to the initial position P. For example, when the moving body 10 has already returned to the initial position P after the occurrence of the earthquake, the recovery work of the quay crane 1 is completed by only fixing the moving body 10 with the fixing device 40. Further, even when the moving body 10 does not return to the initial position P, the restoring force works when applying the external force to return the moving body 10 to the initial position P, so that the recovery operation can be performed quickly. . That is, the guide 11 having the inclined portion 14 is a restoring mechanism that gives a restoring force to the moving body 10.
 第3に、岸壁クレーン1の振動を抑制することができる。これは、地震発生中であっても移動体10には、初期位置Pに戻ろうとする力(復元力)が働き、この力が岸壁クレーン1の振動を減衰する減衰力として作用するからである。 Third, vibration of the quay crane 1 can be suppressed. This is because a force (restoring force) that tries to return to the initial position P acts on the moving body 10 even during an earthquake, and this force acts as a damping force that attenuates the vibration of the quay crane 1. .
 なお、ガイド11の傾斜部14を下方の凸部を有する円弧状に形成してもよい。この構成により、移動体10は初期位置Pから離れるほど、大きな復元力を得ることができる。また、V字型斜材4a、4bと脚3(海側脚3a及び陸側脚3b)との結合部、及びV字型斜材4a、4bと移動体10との結合部は、上記のピン13によるピン結合に限られない。この結合は、一定の変形を許容することのできる柔結合であれば、例えばゴム等を介在した結合等であってもよい。 In addition, you may form the inclination part 14 of the guide 11 in the circular arc shape which has a downward convex part. With this configuration, the moving body 10 can obtain a greater restoring force as it moves away from the initial position P. Further, the connecting portion between the V-shaped diagonal members 4a and 4b and the leg 3 (the sea side leg 3a and the land side leg 3b) and the connecting portion between the V-shaped diagonal members 4a and 4b and the moving body 10 are as described above. It is not limited to the pin connection by the pin 13. This bond may be, for example, a bond through rubber or the like as long as it is a soft bond that can allow a certain deformation.
 図3に、移動体10を中心に一部を断面とした部分断面の正面を示す。移動体10は、ガイド11又はポータルタイビーム5の少なくとも一方に、固定装置(例えばアンカープレート)40で固定されている。また、ガイド11は、少なくとも移動体10の側方を覆うように構成されている。 FIG. 3 shows a front view of a partial cross section with a part in cross section around the moving body 10. The moving body 10 is fixed to at least one of the guide 11 and the portal tie beam 5 with a fixing device (for example, an anchor plate) 40. The guide 11 is configured to cover at least the side of the moving body 10.
 次に、岸壁クレーン1の動作について説明する。まず、地震が発生した際、岸壁クレーン1は、固定装置40の解除により、ポータルタイビーム5又はガイド11に対する移動体10の固定を解除する。この固定装置40の解除により、移動体10は、ガイド11に沿って移動自在となる。 Next, the operation of the quay crane 1 will be described. First, when an earthquake occurs, the quay crane 1 releases the fixing of the moving body 10 to the portal tie beam 5 or the guide 11 by releasing the fixing device 40. By releasing the fixing device 40, the moving body 10 can move along the guide 11.
 なお、固定装置40は、緊急地震速報や、コンテナターミナル又は岸壁クレーンに搭載した地震計の信号等により、解除されるように構成することができる。 Note that the fixing device 40 can be configured to be released by an earthquake early warning, a signal from a seismometer mounted on a container terminal or a quay crane, or the like.
 また、ガイド11が、図3に示すように移動体10の上面を覆う天蓋20を有するように構成することが望ましい。この構成により、移動体10に鉛直上向きの力が働いた場合であっても、移動体10がガイド11から外れることを防止できる。この鉛直上向きの力は、岸壁クレーンに生じるロッキング現象等を原因とするものである。更に、天蓋20の設置により、移動体10の移動を妨げる飛来物等が、ガイド11内の通路上に落下することを抑制できる。 It is desirable that the guide 11 has a canopy 20 that covers the upper surface of the moving body 10 as shown in FIG. With this configuration, it is possible to prevent the moving body 10 from being detached from the guide 11 even when a vertically upward force is applied to the moving body 10. This vertical upward force is caused by a rocking phenomenon or the like generated in the quay crane. Furthermore, the installation of the canopy 20 can suppress flying objects or the like that hinder the movement of the moving body 10 from falling on the passage in the guide 11.
 図4に、固定装置40周辺を拡大した概略図を示す。固定装置40は、ガイド11及びポータルタイビーム5の両方と、移動体10を連通するように形成された貫通孔43に挿入するアンカープレート41と、アンカープレート41を支持する支持装置42と、を有している。このアンカープレート41は、例えば直方体に形成される。また、アンカープレート41は、岸壁クレーン1の横行方向xにおいて、貫通孔43の幅よりも小さい幅を有するように形成されている。そのため、アンカープレート41は、貫通孔43内に配置された場合であっても、移動体10、ガイド11及びポータルタイビーム5との間に隙間を生じる。更に、支持装置42は、例えばL字型の支持部材であり、アンカープレート41が貫通孔43から落下しないように、下方から支持している。 FIG. 4 shows an enlarged schematic view around the fixing device 40. The fixing device 40 includes both the guide 11 and the portal tie beam 5, an anchor plate 41 inserted into a through-hole 43 formed so as to communicate the moving body 10, and a support device 42 that supports the anchor plate 41. Have. The anchor plate 41 is formed in a rectangular parallelepiped, for example. The anchor plate 41 is formed to have a width smaller than the width of the through hole 43 in the transverse direction x of the quay crane 1. Therefore, even when the anchor plate 41 is disposed in the through hole 43, a gap is generated between the movable body 10, the guide 11, and the portal tie beam 5. Furthermore, the support device 42 is, for example, an L-shaped support member, and supports the anchor plate 41 from below so that the anchor plate 41 does not fall from the through hole 43.
 図5に、岸壁クレーン1が荷役作業等を行う通常時の固定装置40周辺を拡大した概略図を示す。岸壁クレーン1の移動体10は、通常時、V字型斜材4を介して水平方向の静止荷重Fsを受ける。この静止荷重Fsは、岸壁クレーン1の構造上生じるものである。また、静止荷重Fsの大きさは、岸壁クレーン1の規模により異なるが、60~200t程度となる。 FIG. 5 shows an enlarged schematic view of the periphery of the fixing device 40 in a normal state where the quay crane 1 performs a cargo handling operation or the like. The movable body 10 of the quay crane 1 receives a horizontal static load Fs via the V-shaped diagonal member 4 in a normal state. This static load Fs is generated due to the structure of the quay crane 1. Further, the magnitude of the static load Fs is about 60 to 200 t, although it varies depending on the scale of the quay crane 1.
 この静止荷重Fsにより、移動体10は、例えば図5左方に移動する。この移動体10の移動により、貫通孔43内に設置されたアンカープレート40は、移動体10と、ガイド11及びポータルタイビーム5により挟まれた状態となる。つまり、アンカープレート40は、移動体10を介して生じた静止荷重Fsと、ガイド11及びポータルタイビーム5に生じた反力Frにより、貫通孔43内に見かけ上固定された状態となる。そのため、このアンカープレート41は、支持装置42に支持されなくても貫通孔43内に基本的には維持されることになる。 The moving body 10 moves, for example, to the left in FIG. 5 due to the static load Fs. By the movement of the moving body 10, the anchor plate 40 installed in the through hole 43 is sandwiched between the moving body 10, the guide 11, and the portal tie beam 5. That is, the anchor plate 40 is apparently fixed in the through hole 43 by the static load Fs generated through the movable body 10 and the reaction force Fr generated in the guide 11 and the portal tie beam 5. Therefore, the anchor plate 41 is basically maintained in the through hole 43 even if it is not supported by the support device 42.
 ただし、岸壁クレーン1の走行等により、岸壁クレーン1に振動が生じ、移動体10に生じる静止荷重Fsの方向や大きさが変化することがある。支持装置42は、このようなときに、アンカープレート41が、貫通孔43から落下してしまうことを防止している。なお、アンカープレート41は、静止荷重Fs及び反力Frにより破断しない十分な強度を有するように構成されている。 However, due to traveling of the quay crane 1 or the like, vibration may occur in the quay crane 1 and the direction and magnitude of the static load Fs generated on the moving body 10 may change. In such a case, the support device 42 prevents the anchor plate 41 from falling from the through hole 43. The anchor plate 41 is configured to have a sufficient strength that does not break due to the static load Fs and the reaction force Fr.
 図6に、地震発生時の固定装置40の作動の概略を示す。図6S1に示すように、地震が発生した場合、固定装置40は、まず支持装置42を作動させ、アンカープレート41の支持を解除させる。具体的には、例えば、L字型の支持部材を回転させて、アンカープレート41の支持を解除する。このとき、アンカープレート41には、まだ、移動体10を介して水平方向の静止荷重Fsと、その反力Frが生じているため、貫通孔43内に固定された状態となる。 FIG. 6 shows an outline of the operation of the fixing device 40 when an earthquake occurs. As shown in FIG. 6S1, when an earthquake occurs, the fixing device 40 first operates the support device 42 to release the support of the anchor plate 41. Specifically, for example, the support of the anchor plate 41 is released by rotating an L-shaped support member. At this time, the anchor plate 41 is still fixed in the through hole 43 because the horizontal stationary load Fs and the reaction force Fr are still generated through the movable body 10.
 次に、地震動により岸壁クレーン1が振動し、この振動がV字型斜材4を介して移動体10に伝達される。移動体10は、例えば静止荷重Fsの方向(図6左方)に逆らって往復振動を開始する。このときの移動体10の振幅は、数mm~数10mm程度である。この移動体10の往復振動により、アンカープレート41に生じる水平方向の外力Fs、Frが小さくなる、又は0になる場合がある。このとき、アンカープレート41は、自重で落下する(図6S1参照)。 Next, the quay crane 1 vibrates due to the earthquake motion, and this vibration is transmitted to the moving body 10 via the V-shaped diagonal member 4. The moving body 10 starts reciprocating vibration against the direction of the static load Fs (left side in FIG. 6), for example. The amplitude of the moving body 10 at this time is about several mm to several tens mm. Due to the reciprocating vibration of the moving body 10, the horizontal external forces Fs and Fr generated in the anchor plate 41 may be reduced or become zero. At this time, the anchor plate 41 falls by its own weight (see FIG. 6 S1).
 図6S2に示すように、その後、アンカープレート41は、再び、移動体10と、ガイド11及びポータルタイビーム5に挟まれ固定される場合がある。このような場合であっても、アンカープレート41は、図6S3に示すように、移動体10の逆方向(図6左方)への移動により、再び、落下を開始する。最終的には、アンカープレート41は、図6S4に示すように、貫通孔43から落下し、移動体10の移動を拘束しない状態となる。 As shown in FIG. 6S2, after that, the anchor plate 41 may be sandwiched and fixed again by the moving body 10, the guide 11, and the portal tie beam 5. Even in such a case, the anchor plate 41 starts to fall again as the moving body 10 moves in the reverse direction (leftward in FIG. 6) as shown in FIG. 6S3. Eventually, as shown in FIG. 6S4, the anchor plate 41 falls from the through-hole 43 and does not restrain the movement of the moving body 10.
 上記のように、アンカープレート41が貫通孔43から取り除かれると、固定装置40が解除された状態となり、移動体10が、ガイド11に沿って往復動する。このときの移動体10の振幅は、±500mm以上、望ましくは±1000mm以上となるように構成される。なお、アンカープレート41は、移動体10の往復振動の周期や振幅によっては、移動体10の複数回の往復振動後に落下したり、移動体10の1回の往復振動の後に落下したりする。また、アンカープレート41が貫通孔43から取り除かれた状態とは、アンカープレート41が、貫通孔43から完全に抜け落ちた状態に加え、移動体10がガイド11に沿って往復動することを妨げない程度に、貫通孔43内で移動した状態も含む。 As described above, when the anchor plate 41 is removed from the through hole 43, the fixing device 40 is released, and the movable body 10 reciprocates along the guide 11. The amplitude of the moving body 10 at this time is configured to be ± 500 mm or more, and desirably ± 1000 mm or more. Depending on the period and amplitude of the reciprocating vibration of the moving body 10, the anchor plate 41 falls after a plurality of reciprocating vibrations of the moving body 10 or falls after one reciprocating vibration of the moving body 10. Further, the state in which the anchor plate 41 is removed from the through hole 43 does not prevent the movable body 10 from reciprocating along the guide 11 in addition to the state in which the anchor plate 41 is completely removed from the through hole 43. To the extent, it also includes the state of moving in the through hole 43.
 本発明の岸壁クレーン1は、上記の構成により、以下の作用効果を得ることができる。第1に、岸壁クレーン1は、大規模地震が発生した際であっても、岸壁クレーン1の振動を抑制することができる。これは、岸壁クレーン1の固有周期を長周期化することができるためである。 The quay crane 1 of the present invention can obtain the following effects by the above configuration. First, the quay crane 1 can suppress vibration of the quay crane 1 even when a large-scale earthquake occurs. This is because the natural period of the quay crane 1 can be lengthened.
 第2に、移動体10が、アンカープレート41で固定される構成により、岸壁クレーン1が荷役作業等を行う通常時に、移動体10の固定が解除される事故を防止できる。これは、予め定めた値を超える外力により破断することを前提としたせん断ピンと異なり、アンカープレート41が、移動体10に生じる静止荷重Fsその他の外力により破断しない強度を有しているからである。特に、通常時にアンカープレート41に生じる静止荷重Fsが、地震発生時にアンカープレート41に生じる荷重よりも大きくなるような場合であっても、アンカープレート41は破断せず、移動体10の固定を維持するように構成される。 Second, the configuration in which the moving body 10 is fixed by the anchor plate 41 can prevent an accident in which the fixing of the moving body 10 is released during normal times when the quay crane 1 performs a cargo handling operation or the like. This is because the anchor plate 41 has a strength that does not break due to the static load Fs generated in the movable body 10 and other external forces, unlike a shear pin that is assumed to break due to an external force exceeding a predetermined value. . In particular, even when the static load Fs that normally occurs on the anchor plate 41 is larger than the load that occurs on the anchor plate 41 when an earthquake occurs, the anchor plate 41 does not break and maintains the moving body 10 fixed. Configured to do.
 第3に、通常時に、大きな静止荷重Fs及びその反力Frがアンカープレート41に生じている場合であっても、地震発生時に、アンカープレート41を貫通孔43から確実に取り除くことができる。これは、アンカープレート41が、横行方向xにおいて貫通孔43よりも小さい幅を有しており、且つ岸壁クレーン1が、地震により生じる移動体10の往復振動を利用して、アンカープレート41を貫通孔43から取り除く構成を有しているからである。ここで、移動体10の往復動を利用せずに、アンカープレート41を貫通孔43から取り除こうとした場合は、アンカープレート41に生じている静止荷重Fs及びその反力Frに抗してアンカープレート41を落下させるほどの力が必要となる。この力を発生させることは、現実的には困難である。 Third, even when a large static load Fs and its reaction force Fr are generated in the anchor plate 41 at normal times, the anchor plate 41 can be reliably removed from the through-hole 43 when an earthquake occurs. This is because the anchor plate 41 has a width smaller than the through hole 43 in the transverse direction x, and the quay crane 1 penetrates the anchor plate 41 using the reciprocating vibration of the moving body 10 caused by an earthquake. It is because it has the structure removed from the hole 43. Here, when the anchor plate 41 is to be removed from the through hole 43 without using the reciprocating motion of the moving body 10, the anchor plate 41 resists the static load Fs generated on the anchor plate 41 and its reaction force Fr. A force sufficient to drop 41 is required. It is practically difficult to generate this force.
 なお、アンカープレート41は、移動体10から受ける静止荷重Fs及びガイド11等から受けるその反力Frにより破断しない強度を有しており、横行方向xにおいて貫通孔43よりも小さい幅を有していれば、上記の形状に限定されない。例えば、円柱状であっても上記と同様の作用効果を得ることができる。 The anchor plate 41 has a strength that does not break due to the static load Fs received from the moving body 10 and the reaction force Fr received from the guide 11 and the like, and has a width smaller than the through hole 43 in the transverse direction x. If it is, it will not be limited to said shape. For example, even if it is a columnar shape, the same effect as described above can be obtained.
 図7に本発明の異なる実施の形態の岸壁クレーンの固定装置40Aの概略を示す。この固定装置40Aは、上方に比べて下方が拡開したテーパー形状を有する台形状のアンカープレート41Aと、アンカープレート41Aを下方から支持する支持装置42Aと、を有している。この支持装置42Aは、ポータルタイビーム5に固定された固定部材50と、固定部材50に傾動自在に支持された傾動部材51と、傾動部材51に連結されたワイヤー52と、を有している。このワイヤー52は、例えば、岸壁クレーン1の走行装置の近傍に設置された免震装置31のせん断ピン32等に連結されている。このせん断ピン32は、通常時は免震装置31がスライドしないように固定しており、地震発生時は免震装置31に生じた外力により破断し、免震装置31をスライド自在とする機能を有している。また、ワイヤー52は、シーブ53により適宜その配置を調整される。 FIG. 7 shows an outline of a quay crane fixing device 40A according to another embodiment of the present invention. The fixing device 40A includes a trapezoidal anchor plate 41A having a taper shape in which the lower side is expanded compared to the upper side, and a support device 42A that supports the anchor plate 41A from the lower side. The support device 42 </ b> A includes a fixing member 50 fixed to the portal tie beam 5, a tilting member 51 that is tiltably supported by the fixing member 50, and a wire 52 connected to the tilting member 51. . For example, the wire 52 is connected to the shear pin 32 of the seismic isolation device 31 installed in the vicinity of the traveling device of the quay crane 1. The shear pin 32 is normally fixed so that the seismic isolation device 31 does not slide. When an earthquake occurs, the shear pin 32 is broken by an external force generated in the seismic isolation device 31 and has a function of making the seismic isolation device 31 slidable. Have. Further, the arrangement of the wire 52 is appropriately adjusted by the sheave 53.
 次に、固定装置40Aの作動について説明する。岸壁クレーンが荷役等を行う通常時は、傾動部材51が、ワイヤー52により略水平に支持され、アンカープレート41Aを下方から支持する。地震発生時は、地震の影響により、走行装置近傍に設置された免震装置31のせん断ピン32が破断し、ワイヤー52の張力が解放され、傾動部材51が自重で下方に向かって傾動する。以上により、支持装置42Aによるアンカープレート41Aの支持が解除される。その後、アンカープレート41Aは、前述と同様に、移動体10の往復振動により、下方に落下し、貫通孔43から取り除かれた状態となる。 Next, the operation of the fixing device 40A will be described. During normal times when the quay crane performs cargo handling or the like, the tilting member 51 is supported substantially horizontally by the wire 52, and supports the anchor plate 41A from below. When an earthquake occurs, due to the influence of the earthquake, the shear pin 32 of the seismic isolation device 31 installed in the vicinity of the traveling device is broken, the tension of the wire 52 is released, and the tilting member 51 tilts downward with its own weight. As described above, the support of the anchor plate 41A by the support device 42A is released. Thereafter, the anchor plate 41 </ b> A falls downward and is removed from the through-hole 43 due to the reciprocating vibration of the moving body 10 as described above.
 上記の構成により、本発明の岸壁クレーンは以下の作用効果を得ることができる。第1に、地震発生と共に停電が発生した場合であっても、岸壁クレーンは自動的に支持装置42Aを解除できる。これは、地震発生時に破断するように構成されたせん断ピン32を、支持装置42Aを解除する起動機構として利用しているからである。 With the above configuration, the quay crane of the present invention can obtain the following effects. 1stly, even if a power failure occurs with the occurrence of an earthquake, the quay crane can automatically release the support device 42A. This is because the shear pin 32 configured to break when an earthquake occurs is used as an activation mechanism for releasing the support device 42A.
 第2に、岸壁クレーンは、地震発生後、速やかに制振効果を得ることができる。これは、テーパー形状を有するアンカープレート41Aが、移動体10の往復振動により下方に押し出される力を受けるからである。つまり、アンカープレート41Aを貫通孔43から取り除くための時間が短縮され、固定装置40Aを解除する際の応答性能が向上するからである。 Second, quay cranes can quickly obtain a vibration control effect after an earthquake occurs. This is because the anchor plate 41 </ b> A having a tapered shape receives a force pushed downward by the reciprocating vibration of the moving body 10. That is, the time for removing the anchor plate 41A from the through hole 43 is shortened, and the response performance when releasing the fixing device 40A is improved.
 なお、支持装置42Aは、岸壁クレーンのポータルタイビーム5及び脚3を形成する構造物の内部に配置することが望ましい。支持装置42Aが、外界の風雨等の影響により劣化することを防止できるからである。 Note that the support device 42A is preferably disposed inside the structure forming the portal tie beam 5 and the legs 3 of the quay crane. This is because the support device 42 </ b> A can be prevented from being deteriorated due to the influence of external wind and rain.
 図8に本発明の異なる実施の形態の岸壁クレーンの固定装置40Bの概略を示す。この固定装置40Bは、例えば前述した台形状のアンカープレート41Bを、下方から支持するジャッキで構成された支持装置42Bを有している。この支持装置42Bは、例えば油圧式ジャッキや、空気式ジャッキや、機械式ジャッキ等で構成することができる。 FIG. 8 shows an outline of a quay crane fixing device 40B according to another embodiment of the present invention. The fixing device 40B includes a support device 42B configured by a jack that supports, for example, the trapezoidal anchor plate 41B described above from below. The support device 42B can be constituted by, for example, a hydraulic jack, a pneumatic jack, a mechanical jack, or the like.
 次に、固定装置40Bの作動について説明する。固定装置40Bは、地震発生時に、ジャッキで構成された支持装置42Bを下降させ、アンカープレート41Bの支持を解除する。これにより、アンカープレート41Bは、貫通孔43から取り除かれ、移動体10がガイド11に沿って移動可能となる。 Next, the operation of the fixing device 40B will be described. When the earthquake occurs, the fixing device 40B lowers the support device 42B formed of a jack and releases the support of the anchor plate 41B. As a result, the anchor plate 41B is removed from the through hole 43, and the moving body 10 can move along the guide 11.
 なお、支持装置42Bは、例えば油圧式ジャッキで構成し、地震発生時に油圧を開放し、油圧式ジャッキを自重で降下させるように構成することができる。また、他の構造を有するジャッキであっても、通常時は、ストッパー等で固定しておき、地震発生時にストッパーを解除し、ジャッキを自重で降下させるように構成してもよい。更に、支持装置42Bにバッテリー等の電源を接続し、能動的にジャッキを降下させるように構成してもよい。 Note that the support device 42B may be configured by, for example, a hydraulic jack, and may be configured to release the hydraulic pressure when an earthquake occurs and to lower the hydraulic jack by its own weight. Further, even a jack having another structure may be configured to be fixed with a stopper or the like in normal times, to release the stopper when an earthquake occurs, and to lower the jack by its own weight. Further, a power source such as a battery may be connected to the support device 42B to actively lower the jack.
 この構成により、岸壁クレーンは、容易に固定装置40Bを採用することができる。これは、固定装置40Bが、移動体10の周辺部のみの工事で設置できるからである。 With this configuration, the quay crane can easily adopt the fixing device 40B. This is because the fixing device 40 </ b> B can be installed by construction only on the periphery of the moving body 10.
 図9に本発明の異なる実施の形態の岸壁クレーンの固定装置40Cの概略を示す。この固定装置40Cは、アンカープレート41Cと、アンカープレート41Cを上方から懸吊するように支持する支持装置42Cと、を有している。この支持装置42Cは、ポータルタイビーム5に固定された支柱55と、支柱55に中途部を傾動自在に支持された傾動部材56と、傾動部材56の一端とアンカープレート41Cを連結する第1ワイヤー57と、傾動部材56の他端に連結された第2ワイヤー58と、を有している。この第2ワイヤー58は、例えば、脚3に設置された免震装置31の近傍の走行装置8に連結される。 FIG. 9 shows an outline of a quay crane fixing device 40C according to another embodiment of the present invention. The fixing device 40C includes an anchor plate 41C and a support device 42C that supports the anchor plate 41C so as to be suspended from above. The support device 42C includes a column 55 fixed to the portal tie beam 5, a tilting member 56 that is supported by the column 55 so that the middle part thereof can tilt, and a first wire that connects one end of the tilting member 56 and the anchor plate 41C. 57 and a second wire 58 connected to the other end of the tilting member 56. For example, the second wire 58 is connected to the traveling device 8 in the vicinity of the seismic isolation device 31 installed on the leg 3.
 次に、固定装置40Cの作動について説明する。まず、地震の発生により、免震装置31に変異が生じる(図9右方参照)。この変異が、第2ワイヤー58を介して、傾動部材56を傾動させる。この傾動部材56の傾動により、アンカープレート41Cは上方に引き抜かれる。なお、アンカープレート41Cが貫通孔から引き抜かれる際には、アンカープレート41Cは、前述と同様、移動体10からアンカープレート41Cに生じる水平方向の荷重の変動に伴い、徐々に又は1回で引き抜かれる。この構成により、岸壁クレーンは前述と同様の作用効果を得ることができる。 Next, the operation of the fixing device 40C will be described. First, due to the occurrence of an earthquake, a variation occurs in the seismic isolation device 31 (see the right side of FIG. 9). This variation causes the tilting member 56 to tilt through the second wire 58. Due to the tilting of the tilting member 56, the anchor plate 41C is pulled upward. When the anchor plate 41C is pulled out from the through hole, the anchor plate 41C is pulled out gradually or once in accordance with the change in the horizontal load generated on the anchor plate 41C from the moving body 10 as described above. . With this configuration, the quay crane can obtain the same effects as described above.
 図9に本発明の異なる実施の形態の岸壁クレーンの固定装置40Dの概略を示す。この固定装置40Dを構成する支持装置42Dは、前述の第2ワイヤー58が連結された駆動装置59と、駆動装置59に接続された通信装置60及びバッテリー等の電源61と、を有している。この駆動装置59、通信装置60及び電源62等は、例えばポータルタイビーム5上又はその内部に設置することができる。 FIG. 9 shows an outline of a quay crane fixing device 40D according to another embodiment of the present invention. The support device 42D constituting the fixing device 40D includes a driving device 59 to which the second wire 58 is connected, a communication device 60 connected to the driving device 59, and a power source 61 such as a battery. . The driving device 59, the communication device 60, the power source 62, and the like can be installed on or in the portal tie beam 5, for example.
 次に、固定装置40Dの作動について説明する。まず、地震の発生により、駆動装置59に接続された通信装置60が、地震が発生した旨を知らせる信号を受信する。この信号は、例えば免震装置31の変位量から地震発生を判断する変位測定装置62から発生された信号や、岸壁クレーンが設置されたコンテナターミナルの地震計から発信された信号や、緊急地震速報等の信号を利用することができる。 Next, the operation of the fixing device 40D will be described. First, due to the occurrence of an earthquake, the communication device 60 connected to the drive device 59 receives a signal notifying that an earthquake has occurred. This signal may be, for example, a signal generated from a displacement measuring device 62 that determines the occurrence of an earthquake from the amount of displacement of the seismic isolation device 31, a signal transmitted from a seismometer at a container terminal where a quay crane is installed, or an earthquake early warning. Etc. can be used.
 信号を受信した通信装置60は、駆動装置59を駆動させ、第2ワイヤー58を牽引し又は巻き取り、傾動部材56を傾動させる。この傾動部材56の傾動により、アンカープレート41Dは上方に引き抜かれる。この構成により、岸壁クレーンは前述と同様の作用効果を得ることができる。 The communication device 60 that has received the signal drives the drive device 59, pulls or winds the second wire 58, and tilts the tilting member 56. Due to the tilting of the tilting member 56, the anchor plate 41D is pulled upward. With this configuration, the quay crane can obtain the same effects as described above.
 なお、アンカープレート41の形状は、直方体状や平板状に限定されない。例えば、図11左方に示すように、略T字型のアンカープレート41Eを採用してもよい。この略T字型のアンカープレート41Eは、貫通孔内に挿入される本体部分64と、横行方向xにおける貫通孔の幅よりも大きい幅を有し貫通孔内に挿入されない水平部分65を有している。 In addition, the shape of the anchor plate 41 is not limited to a rectangular parallelepiped shape or a flat plate shape. For example, as shown on the left side of FIG. 11, a substantially T-shaped anchor plate 41E may be employed. The substantially T-shaped anchor plate 41E has a main body portion 64 that is inserted into the through hole, and a horizontal portion 65 that has a width larger than the width of the through hole in the transverse direction x and is not inserted into the through hole. ing.
 この略T字型のアンカープレート41Eは、特に、図9及び図10に示した実施例に採用すると、アンカープレート41Eがポータルタイビーム5の内部に落下することを防止できる。つまり、通常時は、図9及び図10に示す第1ワイヤー57に張力を発生させずにアンカープレート41Eを支持できるため、第1ワイヤー57の劣化を防止することができる。 This substantially T-shaped anchor plate 41E can prevent the anchor plate 41E from falling into the portal tie beam 5 especially when employed in the embodiment shown in FIGS. That is, in normal times, the anchor plate 41E can be supported without generating tension on the first wire 57 shown in FIGS. 9 and 10, and therefore, the deterioration of the first wire 57 can be prevented.
 また、事故等により、第1ワイヤー57が切断された場合であっても、アンカープレート41Eがポータルタイビーム5の内部に落下し、貫通孔から取り除かれることを防止できる。 Further, even when the first wire 57 is cut due to an accident or the like, the anchor plate 41E can be prevented from falling into the portal tie beam 5 and being removed from the through hole.
 また、図11右方に示すように、下方に比べて上方が拡開したテーパー形状を有する台形状のアンカープレート41Fを採用してもよい。この台形状のアンカープレート41Fは、貫通孔内に挿入される下部66と、横行方向xにおける貫通孔の幅よりも大きい幅を有するように形成され貫通孔内に挿入されない上部67を有している。この構成により、上記の略T字型アンカープレート41Eと同様の作用効果を得ることができる。更に、台形状のアンカープレート41Fは、移動体10の往復振動により上方に押し出される力を受けるため、固定装置を解除する際の応答性能を向上することができる。 Further, as shown in the right side of FIG. 11, a trapezoidal anchor plate 41F having a tapered shape in which the upper side is expanded compared to the lower side may be adopted. This trapezoidal anchor plate 41F has a lower portion 66 inserted into the through hole, and an upper portion 67 formed so as to have a width larger than the width of the through hole in the transverse direction x and not inserted into the through hole. Yes. With this configuration, it is possible to obtain the same operational effects as those of the substantially T-shaped anchor plate 41E. Furthermore, since the trapezoidal anchor plate 41F receives a force pushed upward by the reciprocating vibration of the moving body 10, the response performance when releasing the fixing device can be improved.
 加えて、貫通孔と接触する台形状のアンカープレート41Fの側面に、例えばMCナイロンやナフロン(登録商標)等の滑り材68を配置する構成としてもよい。この構成により、貫通孔の内壁面とアンカープレート41Fの側面の間の摩擦係数が小さくなるため、アンカープレート41Fを容易に貫通孔から取り除くことができる。なお、この滑り材68を配置する構成は、他の形状を有するアンカープレートにも同様に採用し、同様の作用効果を得ることができる。 In addition, a sliding material 68 such as MC nylon or Naflon (registered trademark) may be disposed on the side surface of the trapezoidal anchor plate 41F that comes into contact with the through hole. With this configuration, since the coefficient of friction between the inner wall surface of the through hole and the side surface of the anchor plate 41F is reduced, the anchor plate 41F can be easily removed from the through hole. In addition, the structure which arrange | positions this sliding material 68 is similarly employ | adopted also to the anchor plate which has another shape, and can obtain the same effect.
 図12に本発明の異なる実施の形態の岸壁クレーンの固定装置40Gの概略を示す。この固定装置40Gは、ガイド11と移動体10を連通するように水平方向に形成された貫通孔43Gに挿入するアンカープレート41Gと、アンカープレート41Gを支持する支持装置42Gと、を有している。この支持装置42Gは、アンカープレート41Gに連結された第1ワイヤー57を有している。ここで、アンカープレート41Gは、前述と同様、移動体10から受ける静止荷重Fs及びガイド11等から受けるその反力Frにより破断しない強度を有しており、横行方向xにおいて貫通孔43Gよりも小さい幅を有している。 FIG. 12 shows an outline of a quay crane fixing device 40G according to another embodiment of the present invention. The fixing device 40G includes an anchor plate 41G that is inserted into a through hole 43G that is formed in a horizontal direction so as to communicate the guide 11 and the moving body 10, and a support device 42G that supports the anchor plate 41G. . The support device 42G has a first wire 57 connected to the anchor plate 41G. Here, the anchor plate 41G has a strength that does not break due to the static load Fs received from the moving body 10 and the reaction force Fr received from the guide 11 and the like, as described above, and is smaller than the through hole 43G in the transverse direction x. It has a width.
 この固定装置40Gは、地震発生時に、まず、前述のいずれかの方法等で、第1ワイヤー57を牽引する。この第1ワイヤー57の牽引により、アンカープレート41Gは、回転力を得て、貫通孔43Gから鉛直方向に回転しながら取り除かれる。このとき、貫通孔43Gは、アンカープレート41Gの鉛直方向の回転を阻害しない程度の大きさを有するか、又は上方を開放した形状を有するように構成される。この構成により、前述と同様の作用効果を得ることができる。 The fixing device 40G first pulls the first wire 57 by any one of the methods described above when an earthquake occurs. By pulling the first wire 57, the anchor plate 41G obtains rotational force and is removed from the through hole 43G while rotating in the vertical direction. At this time, the through-hole 43G has a size that does not hinder the vertical rotation of the anchor plate 41G, or is configured to have a shape that opens upward. With this configuration, the same effects as described above can be obtained.
1     岸壁クレーン
2     脚構造物
3a   海側脚
3b   陸側脚
4     斜材、V字型斜材
5     水平部材(ポータルタイビーム)
10   移動体
11   ガイド
40   固定装置
41   アンカープレート
42   支持装置
43   貫通孔
1 Quay crane 2 Leg structure 3a Sea side leg 3b Land side leg 4 Diagonal material, V-shaped diagonal material 5 Horizontal member (portal tie beam)
DESCRIPTION OF SYMBOLS 10 Mobile body 11 Guide 40 Fixing apparatus 41 Anchor plate 42 Support apparatus 43 Through-hole

Claims (4)

  1.  海側脚及び陸側脚の上方から、該海側脚及び該陸側脚を連結する水平部材に向けてそれぞれ延伸した斜材を有する岸壁クレーンにおいて、
     該岸壁クレーンが、該水平部材に沿って設置されたガイドと、該斜材の下端部に設置され且つ該ガイドに沿って移動可能に構成された移動体と、該移動体と該ガイドの相対位置を固定する固定装置と、を有しており、
     該固定装置が、該ガイド又は該水平部材の少なくとも一方と該移動体を連通するように形成された貫通孔に挿入されるアンカープレートと、該アンカープレートを支持する支持装置と、を有しており、
     該アンカープレートが、該移動体を介して該アンカープレートに生じる外力により破断しない強度を有しており、
     地震が発生した際に、該支持装置の作動により、該アンカープレートを該貫通孔から取り除いて該固定装置を解除し、該移動体が該ガイドに沿って移動自在となる構成を有していることを特徴とする岸壁クレーン。
    In the quay crane having diagonal members extending from above the sea side leg and the land side leg toward the horizontal member connecting the sea side leg and the land side leg,
    The quay crane includes a guide installed along the horizontal member, a movable body installed at a lower end of the diagonal member and configured to be movable along the guide, and a relative relationship between the movable body and the guide. A fixing device for fixing the position,
    The fixing device includes an anchor plate that is inserted into a through-hole formed so as to communicate the movable body with at least one of the guide or the horizontal member, and a support device that supports the anchor plate. And
    The anchor plate has a strength that does not break due to an external force generated in the anchor plate via the moving body,
    When an earthquake occurs, the support device is operated to remove the anchor plate from the through hole to release the fixing device so that the movable body can move along the guide. A quay crane characterized by that.
  2.  前記支持装置が、前記アンカープレートを下方から支持する構成を有していることを特徴とする請求項1に記載の岸壁クレーン。 The quay crane according to claim 1, wherein the support device has a configuration for supporting the anchor plate from below.
  3.  前記アンカープレートが、上方又は下方から他方にかけて拡開するテーパー形状を有していることを特徴とする請求項1又は2に記載の岸壁クレーン。 The quay crane according to claim 1 or 2, wherein the anchor plate has a tapered shape that expands from the upper side or the lower side to the other side.
  4.  海側脚及び陸側脚の上方から、該海側脚及び該陸側脚を連結する水平部材に向けてそれぞれ延伸した斜材を有する岸壁クレーンであり、該岸壁クレーンが、該水平部材に沿って設置されたガイドと、該斜材の下端部に設置され且つ該ガイドに沿って移動可能に構成された移動体と、該移動体と該ガイドの相対位置を固定する固定装置と、を有しており、該固定装置が、該ガイド又は該水平部材の少なくとも一方と該移動体を連通するように形成された貫通孔に挿入されるアンカープレートと、該アンカープレートを支持する支持装置と、を有しており、該アンカープレートが、該移動体を介して該アンカープレートに生じる外力により破断しない強度を有する岸壁クレーンの制御方法であって、
     地震が発生した際に、該アンカープレートを該貫通孔内に支持する該支持装置を解除する開始ステップと、
     該移動体の往復振動により、該アンカープレートが該貫通孔から取り除かれる経過ステップと、
     該アンカープレートによる該移動体の固定が解除され、該移動体が該ガイドに沿って移動自在となる完了ステップを有することを特徴とする岸壁クレーンの制御方法。
    A quay crane having diagonal members extending from above the sea side leg and the land side leg toward a horizontal member connecting the sea side leg and the land side leg, and the quay crane extends along the horizontal member. A guide installed at the lower end of the diagonal member and configured to be movable along the guide, and a fixing device for fixing the relative position of the guide and the guide. An anchor plate inserted into a through-hole formed to communicate at least one of the guide or the horizontal member and the movable body, and a support device for supporting the anchor plate; The anchor plate has a strength that does not break due to an external force generated in the anchor plate via the moving body,
    A starting step of releasing the support device for supporting the anchor plate in the through hole when an earthquake occurs; and
    An elapse step in which the anchor plate is removed from the through hole by reciprocating vibration of the moving body;
    A method for controlling a quay crane, comprising: a completion step in which fixing of the movable body by the anchor plate is released and the movable body is movable along the guide.
PCT/JP2014/058997 2013-03-28 2014-03-27 Quay crane and quay crane control method WO2014157568A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480018340.5A CN105102366A (en) 2013-03-28 2014-03-27 Quay crane and quay crane control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-068717 2013-03-28
JP2013068717A JP2014189392A (en) 2013-03-28 2013-03-28 Quay crane and control method for quay crane

Publications (1)

Publication Number Publication Date
WO2014157568A1 true WO2014157568A1 (en) 2014-10-02

Family

ID=51624524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058997 WO2014157568A1 (en) 2013-03-28 2014-03-27 Quay crane and quay crane control method

Country Status (3)

Country Link
JP (1) JP2014189392A (en)
CN (1) CN105102366A (en)
WO (1) WO2014157568A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107601288A (en) * 2017-11-07 2018-01-19 长沙雅创智能科技有限公司 The wind-proof pull rod of crane
CN113928976A (en) * 2021-11-11 2022-01-14 大连华锐重工集团股份有限公司 Port machinery windproof anchoring device capable of compensating earthquake motion

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10288242A (en) * 1997-04-14 1998-10-27 Fujikura Ltd Stop bar structure of base isolation wind resistance structure
JP2001241209A (en) * 2000-02-28 2001-09-04 Tomoe Corp Seismic isolation equipment used against wind and earthquake in common
JP2003012275A (en) * 2001-06-28 2003-01-15 Kawasaki Heavy Ind Ltd Base isolation structure of crane
JP2003238067A (en) * 2002-02-15 2003-08-27 Kawasaki Heavy Ind Ltd Crane

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3184095B2 (en) * 1996-07-17 2001-07-09 敷島紡績株式会社 Filter cloth
JPH11246172A (en) * 1998-03-05 1999-09-14 Kawatetsu Machinery Co Ltd Crane
JPH11255476A (en) * 1998-03-11 1999-09-21 Ishikawajima Harima Heavy Ind Co Ltd Traveling crane
CN101301980A (en) * 2008-07-03 2008-11-12 同济大学 Port crane earthquake-resistant apparatus using lead core stacking rubber support
CN201343369Y (en) * 2008-11-14 2009-11-11 天津起重设备有限公司 Shock-proof and anti-dropping device for crane
CN201882798U (en) * 2010-11-30 2011-06-29 大连华锐股份有限公司 Pedestrian bridge cran lower truss connection device resisting seismic shock

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10288242A (en) * 1997-04-14 1998-10-27 Fujikura Ltd Stop bar structure of base isolation wind resistance structure
JP2001241209A (en) * 2000-02-28 2001-09-04 Tomoe Corp Seismic isolation equipment used against wind and earthquake in common
JP2003012275A (en) * 2001-06-28 2003-01-15 Kawasaki Heavy Ind Ltd Base isolation structure of crane
JP2003238067A (en) * 2002-02-15 2003-08-27 Kawasaki Heavy Ind Ltd Crane

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107601288A (en) * 2017-11-07 2018-01-19 长沙雅创智能科技有限公司 The wind-proof pull rod of crane
CN113928976A (en) * 2021-11-11 2022-01-14 大连华锐重工集团股份有限公司 Port machinery windproof anchoring device capable of compensating earthquake motion
CN113928976B (en) * 2021-11-11 2024-02-02 大连华锐重工集团股份有限公司 Harbor machinery wind-proof anchoring device capable of compensating earthquake motion

Also Published As

Publication number Publication date
JP2014189392A (en) 2014-10-06
CN105102366A (en) 2015-11-25

Similar Documents

Publication Publication Date Title
JP6134741B2 (en) Receiving assembly for receiving a marine vessel and system for retrieving and placing such a vessel at sea
JP5428584B2 (en) Seismic mechanism of shuttle boom type container crane
JP5269038B2 (en) Elevator equipment
JP5226816B2 (en) crane
WO2014157568A1 (en) Quay crane and quay crane control method
WO2013136635A1 (en) Wharf crane
JP4854755B2 (en) Quay crane
JP6275591B2 (en) Quay crane
JP3609041B2 (en) Isolation structure of container crane
JP6154033B2 (en) Tie-down device
KR102295240B1 (en) Fender Davit Device
JP6658637B2 (en) Rope runout suppression unit
JP5643043B2 (en) Quay crane
JP6199436B2 (en) Harbor cargo handling equipment and seismic isolation method
JP5497959B2 (en) Quay crane
JP6669356B2 (en) Quay crane and control method for quay crane
JP2010138590A (en) Break-down device of underwater base rock and, break-down method of underwater base rock
JP6711482B2 (en) Quay crane and quay crane control method
JP5844534B2 (en) Container terminal
JP7445616B2 (en) Quay crane and its control method
JP7495369B2 (en) Quay crane and control method thereof
JPH08324967A (en) Vibration damping structure for crane
KR20140005359U (en) Align Device of Anchor Chain
JP5932440B2 (en) Harbor cargo handling equipment and seismic isolation method
JP2018154496A (en) Rope vibration suppressing unit and elevator having the rope vibration suppressing unit

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480018340.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14774727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14774727

Country of ref document: EP

Kind code of ref document: A1