WO2014157531A1 - 熱線制御シート - Google Patents

熱線制御シート Download PDF

Info

Publication number
WO2014157531A1
WO2014157531A1 PCT/JP2014/058887 JP2014058887W WO2014157531A1 WO 2014157531 A1 WO2014157531 A1 WO 2014157531A1 JP 2014058887 W JP2014058887 W JP 2014058887W WO 2014157531 A1 WO2014157531 A1 WO 2014157531A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat ray
mass
control sheet
light
heat
Prior art date
Application number
PCT/JP2014/058887
Other languages
English (en)
French (fr)
Inventor
健太郎 秋山
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2014157531A1 publication Critical patent/WO2014157531A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0018Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for preventing ghost images

Definitions

  • the present invention relates to a heat ray control sheet having excellent visibility by suppressing generation of multiple images and capable of controlling a heat dose according to an incident angle of light.
  • the heat ray control sheet has a function of controlling the heat dose to be transmitted by absorbing light in the infrared region (hereinafter sometimes referred to as “infrared rays” or “heat rays”) among the light from the light source.
  • the functional sheet has a function of blocking heat ray intake into the room and suppressing an increase in the space temperature by being attached to a window glass or the like.
  • Patent Document 1 discloses a “stacked type” sheet.
  • FIG. 5 is a schematic cross-sectional view showing an example of a laminated type heat ray control sheet. As illustrated in FIG.
  • the stacked heat ray control sheet 50 is obtained by forming a heat ray shielding film 52 including particles (heat ray absorbing particles) 53 that absorb heat rays on a base material 51.
  • the heat ray absorbing particles 53 are first inorganic fine particles 53a such as antimony-doped tin oxide (hereinafter sometimes abbreviated as ATO), and the second inorganic fine particles 53b are hexaboride.
  • ATO antimony-doped tin oxide
  • LaB 6 lanthanum
  • such a laminated heat ray control sheet absorbs heat rays quantitatively regardless of the incident angle of light from the light source. For this reason, for example, when the heat ray control sheet is used for a window glass or the like, even in summer when it is desired to shield the heat ray to suppress the rise in the room temperature, even in the winter season when the heat ray is taken in to raise the room temperature. Since the heat dose absorbed by the control sheet is uniform, the heat dose taken into the room could not be adjusted according to the season.
  • Patent Document 2 discloses a “louver type” heat ray control sheet that selectively adjusts the heat dose by selectively transmitting or shielding heat rays according to the incident angle.
  • the louver type heat ray control sheet has a plurality of groove portions 103 formed in a straight line and in parallel in the light transmitting portion 101, and the groove portion 103 includes a heat ray absorbing portion containing heat ray absorbing particles. 102.
  • the adherend 104 such as a window glass, it is possible to selectively transmit and shield the heat ray by utilizing the change in the incident angle of light with respect to the heat ray control sheet 100. it can.
  • the temperature rise in the interior of the vehicle or the interior of the vehicle is suppressed by reducing the intake of heat rays in the summer, and the interior of the vehicle or the interior of the vehicle by sufficiently capturing the heat rays in the winter. It is possible to suppress a temperature decrease such as.
  • the XY plane is the sheet surface of the heat ray control sheet
  • the X direction is the length direction
  • the Y direction is the width direction
  • the Z direction is the thickness (groove depth) direction of the heat ray control sheet.
  • FIG. 7 is an explanatory diagram for explaining a light transmission path according to an incident angle of light in a louver type heat ray control sheet. 7 corresponds to a view of the heat ray control sheet 100 of FIG. 6 as viewed from the X direction, and is an aspect in which the heat ray control sheet 100 is attached to the adherend 104.
  • the light source L in FIG. 7 is the sun.
  • FIG. 7A when the solar altitude is high as in summer, the incident angle ( ⁇ 1 ) of sunlight increases, and sunlight from the side surface of the heat ray absorbing unit 102 increases. Incidence increases.
  • FIG. 7 shows a case where the surface having the heat ray absorbing portion among the sheet surfaces of the heat ray control sheet is on the light source side, but the same applies to the case where the sheet surface facing the surface is on the light source side.
  • louver type heat ray control sheet ATO is used as heat ray absorbing particles from the viewpoint of high light transmittance.
  • the amount of ATO used is increased in order to improve the heat ray absorption ability, the visibility of the appearance and the like seen from the adherend when the heat ray control sheet is used on an adherend such as a window glass is used.
  • the phenomenon that the color of the image is decomposed and a rainbow-like unclear image appears. Such a phenomenon is not seen in the laminated type heat ray control sheet, and is unique to the louver type.
  • an image in which colors appear to be separated in the direction of streaking is referred to as a “multiple image”.
  • the present invention has been made in view of the above circumstances, and provides a heat ray control sheet that has excellent visibility by suppressing the generation of multiple images and can control the heat dose according to the incident angle of light.
  • the main purpose is to do.
  • the present invention provides a light transmission part having a plurality of grooves on one surface, and lanthanum hexaboride and antimony doped as heat ray absorbing particles formed in the groove part of the light transmission part.
  • a heat ray control sheet characterized by being.
  • the heat-absorbing ability of the heat-absorbing part is obtained by adding lanthanum hexaboride having a high heat-absorbing ability to the predetermined amount of antimony-doped tin oxide as the heat-absorbing particles so as to have a predetermined content.
  • the content of antimony-doped tin oxide can be reduced without lowering.
  • the heat ray control sheet of the present invention can have high light transmittance without developing multiple images, and can control the heat dose according to the incident angle of light.
  • the content of the lanthanum hexaboride in the heat ray absorbing portion is preferably 0.6% by mass or less. This is because a decrease in visible light transmittance can be suppressed in the heat ray absorbing portion, and a heat ray control sheet having high transparency can be obtained.
  • the total sum of the content of the antimony-doped tin oxide and the content of the lanthanum hexaboride in the heat ray absorbing portion is preferably 4.2% by mass or more.
  • Lanthanum hexaboride is about one-sixth the amount of antimony-doped tin oxide and exhibits the same heat ray absorption ability as antimony-doped tin oxide. Therefore, the total of the content of antimony-doped tin oxide and 6 times the addition amount of lanthanum hexaboride is 4.2% by mass or more, that is, when the antimony-doped tin oxide is used alone, the desired heat ray absorption ability is obtained.
  • a heat ray absorbing portion obtained by adding a predetermined content of lanthanum hexaboride to antimony-doped tin oxide has a high heat ray absorbing ability and controls the heat dose according to the incident angle of light. It is possible to obtain a heat ray control sheet having excellent visibility in which the appearance of multiple images is suppressed.
  • FIG. 5 is a correlation diagram between the content of heat ray absorbing particles and heat ray transmittance when LaB 6 is used alone as a heat ray absorbing particle and when ATO is used alone.
  • FIG. 5 is a correlation diagram between the content of heat ray absorbing particles and heat ray transmittance when LaB 6 is used alone as a heat ray absorbing particle and when ATO is used alone.
  • FIG. 5 is a correlation diagram between the content of heat ray absorbing particles and heat ray transmittance when LaB 6 is used alone as a heat ray absorbing particle and when ATO is used alone.
  • the heat ray control sheet of this invention includes a light transmission part having a plurality of grooves on one surface, and is formed in the groove part of the light transmission part, and includes lanthanum hexaboride and antimony-doped tin oxide as heat ray absorption particles.
  • a heat ray absorbing part wherein the content of the lanthanum hexaboride in the heat ray absorbing part is 0.8% by mass or less, and the content of the antimony-doped tin oxide is 8% by mass or less. It is what.
  • FIG. 1 is a schematic perspective view showing an example of the heat ray control sheet of the present invention
  • FIG. 2 is a schematic cross-sectional view (longitudinal cross-sectional view) seen from the X direction of FIG.
  • FIG. 3 is a schematic view showing an example of the heat ray absorbing portion in the present invention.
  • the XY plane is the sheet surface of the heat ray control sheet
  • the X direction is the length direction of each part
  • the Y direction is the width direction of each part
  • the Z direction is the thickness of the heat ray control sheet (the depth of the groove).
  • A) direction As illustrated in FIGS.
  • the heat ray control sheet 10 of the present invention includes a light transmission part 1 having a plurality of groove parts 3 on one surface, and a heat ray absorption part 2 formed in the groove part 3. It has. Moreover, as illustrated in FIG. 3, the heat ray absorbing portion 2 in the present invention has a predetermined content of lanthanum hexaboride (LaB 6 ) 21 and antimony-doped tin oxide (ATO) 22 as the heat ray absorbing particles 11. It is contained in.
  • LaB 6 lanthanum hexaboride
  • ATO antimony-doped tin oxide
  • ATO is generally used as heat ray absorbing particles from the viewpoint of heat ray absorption ability and good light transmittance.
  • the heat ray control sheet In order for the heat ray control sheet to have high heat ray absorption ability, it is necessary to increase the content of ATO in the heat ray absorption part.
  • the louver type heat ray control sheet is used on an adherend such as a window glass, so that the appearance and the like are visible. There is a problem that decreases.
  • the refractive index difference increases at the interface between the heat ray absorbing portion including ATO and the light transmitting portion not including ATO. Therefore, when the light is transmitted, the visible light reflected at the interface repeatedly undergoes multiple reflections in the heat ray control sheet, and as a result, the reflected light and incident light cause interference phenomenon, resulting in multiple images. It is assumed.
  • LaB 6 having higher heat ray absorbing ability than ATO is added, and the heat ray control has a heat ray absorbing part in which each content is within a predetermined range.
  • LaB 6 exhibits a heat-absorbing ability equivalent to that of ATO at a use amount of about one-sixth of ATO as will be described later. From this, by adding LaB 6 , the content of ATO can be reduced to an amount that does not cause multiple images, that is, 8% by mass or less, without reducing the heat ray absorbing ability of the heat ray absorbing portion. it can.
  • the heat ray control sheet of the present invention maintains high heat ray absorption ability by adding LaB 6 , even if the incident angle of light is large and the amount of light incident on the heat ray absorbing part is large, Can be sufficiently absorbed.
  • LaB 6 exhibits a green color and has a defect that the light transmittance is lower than that of ATO. For this reason, if the amount of LaB 6 added is excessively increased, the heat ray absorption ability is improved, but the heat ray control sheet may be colored by the green color exhibited by LaB 6 and the light transmittance may be impaired. Therefore, in the present invention, by setting the content of LaB 6 to 0.8% by mass or less, a heat ray control sheet having light transmittance equivalent to that when ATO is used alone as heat ray absorbing particles is used. It was possible.
  • the heat ray control sheet of the present invention has excellent visibility by suppressing the generation of multiple images by defining the heat ray absorbing particles contained in the heat ray absorbing portion, and the light incident angle. Accordingly, it becomes possible to control the heat dose taken into the room or the like.
  • “High heat ray absorption ability” means that the heat dose absorbed in the heat ray absorption part is large. That is, it means that the heat ray transmittance in the heat ray absorbing part is low and the heat dose taken into the room or the like is small. Further, “low heat ray absorption ability” means that the heat dose absorbed in the heat ray absorbing portion is small. That is, it means that the heat ray transmittance in the heat ray absorbing part is high and the heat dose taken into the room or the like is large.
  • the present invention includes at least a light transmission part having a groove part and a heat ray absorption part.
  • a light transmission part having a groove part and a heat ray absorption part.
  • the heat ray control sheet of the present invention will be described for each part.
  • the heat ray absorbing portion in the present invention is formed in the groove portion of the light transmitting portion and contains lanthanum hexaboride and antimony-doped tin oxide as heat ray absorbing particles, and the hexaboride in the heat ray absorbing portion.
  • the content of lanthanum is 0.8% by mass or less
  • the content of the antimony-doped tin oxide is 8% by mass or less.
  • Heat-absorbing particles The content of ATO in the heat-absorbing part can absorb a desired heat dose in the heat-absorbing part by adding a predetermined amount of LaB 6 described later, and the heat-ray control of the present invention
  • the amount in which the sheet does not exhibit multiple images and has a desired visible light transmittance that is, 8% by mass or less, preferably 4% by mass or less, with respect to 100% by mass of the total mass of the heat ray absorbing portion.
  • the heat ray control sheet of the present invention can have a desired light transmittance, and the aggregation of ATO particles, the heat ray absorption part and the light transmission part Since multiple reflection at the interface is less likely to occur, it is possible to suppress the appearance of multiple images on the sheet.
  • content of ATO it is preferable that it is 1 mass% or more, and it is preferable that it is 2 mass% or more especially. If the content of ATO is small, even if LaB 6 is added, the amount of absorption of heat rays corresponding to the decrease in the content of ATO cannot be compensated, and the incident angle of light is particularly large and is incident on the heat ray absorption part. When there is a large amount of light, there is a possibility that heat rays cannot be absorbed sufficiently.
  • the content of LaB 6 in the heat ray absorbing portion is an amount that can make the heat ray absorption amount in the heat ray absorbing portion as desired without lowering the visible light transmittance of the heat ray controlling sheet of the present invention, that is, It is 0.8 mass% or less with respect to 100 mass% of total mass of a heat ray absorption part, and it is preferable that it is 0.6 mass% or less especially.
  • the color of the LaB 6 added heat-absorbing portion and it is possible to prevent the entire hot wire control sheet is colored, it is possible to have a high light transmittance.
  • the content of LaB 6 it is preferred preferably at least 0.01 wt%, it is inter alia 0.05 mass% or more.
  • LaB 6 can exhibit a heat ray absorptivity about 6 times that of ATO. Therefore, in the present invention, the sum of the content of ATO and 6 times the content of LaB 6 is preferably 4.2% by mass or more, and more preferably 4.3% by mass or more. . Hereinafter, this reason will be described in more detail.
  • FIG. 4 is a correlation diagram between the content of heat ray absorbing particles and heat ray transmittance when LaB 6 is used alone as the heat ray absorbing particles and when ATO is used alone.
  • FIG. 4 is based on the following verification results.
  • ATO dispersion ATO content 20% by mass two types of ATO sample liquids were prepared in a similar manner so that the ATO content was 5% by mass and 10% by mass. Prepared.
  • an infrared visible ultraviolet spectrophotometer (UV3100PC, manufactured by Shimadzu Corporation) was used to measure the transmittance in the wavelength range of 800 nm to 2500 nm when the incident angle of light was 0 °. The average value was calculated. The average value of the transmittance was regarded as the heat ray transmittance, and the value of the heat ray transmittance (Y axis) against the content of the heat ray absorbing particles (X axis) was plotted. Also, the heat-ray transmittance of the LaB 6, 2 times the content of LaB 6, 4 times, 6 times, was plotted in the same manner in terms of 8 times. Table 1 shows values of heat ray transmittances in the case of LaB 6 alone (1 time amount) and ATO alone.
  • the heat ray transmittance when the light incident angle ⁇ is 60 ° becomes less than 35%. It is possible to have a high heat ray absorbing ability.
  • the heat-absorbing particles are usually transparent and are preferably nanoparticles.
  • the average particle diameter (D 50 ) is, for example, preferably in the range of 10 nm to 200 nm, more preferably in the range of 20 nm to 150 nm, and particularly preferably in the range of 30 nm to 100 nm. . Further, if the average particle diameter is above the range of the ray absorbing particles, each having an average particle size of LaB 6 and ATO may be equal, or may be one greater than the other. When the average particle diameter of the heat ray absorbing particles is larger than the above range, haze is generated, and the transparency of the heat ray control sheet of the present invention may be lowered.
  • the average particle size is a value obtained by measuring the particle size distribution by the dynamic light scattering method.
  • the average particle diameter can also be obtained by observing the particles of the heat-absorbing particles with an electron microscope and arithmetically averaging.
  • the preferred average particle diameter range at this time is the same as the above-mentioned range.
  • the heat ray absorption part in this invention has binder resin at least other than the heat ray absorption particle mentioned above.
  • the binder resin in the heat ray absorbing part is not particularly limited as long as it is a material that can be cured by irradiation with ionizing radiation.
  • the ionizing radiation may be classified by the quantum energy of the electromagnetic wave, but in the present invention, all ultraviolet rays (UV-A, UV-B, UV-C), visible rays, ⁇ rays, X rays, electron rays are used. Means active energy rays.
  • the binder resin material is preferably an ionizing radiation curable resin polymerized mainly with a monomer, oligomer, prepolymer or polymer having a radical polymerizable active group in the structure, and the ionizing radiation curable resin.
  • the resin include an ultraviolet curable resin, an electron beam curable resin, a visible light curable resin, and a near infrared curable resin. In the present invention, it is particularly preferable to use an ultraviolet curable resin and an electron beam curable resin.
  • reactive oligomers such as epoxy acrylate, urethane acrylate, polyether acrylate, polyester acrylate, polythiol, vinyl pyrrolidone, 2-ethylhexyl acrylate, ⁇ -hydroxy acrylate, tetrahydrofurfuryl acrylate, etc.
  • Reactive monomers such as 2-hydroxy-3-acryloyloxypropyl methacrylate, polyethylene glycol diacrylate, tetraethylene glycol diacrylate, trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, etc. Etc.
  • the binder resin preferably contains a photoinitiator. This is because the binder resin can be cured by irradiation with ionizing radiation such as ultraviolet rays having a wavelength of 300 nm to 400 nm.
  • the photoinitiator can be appropriately selected according to the type of ionizing radiation to be irradiated.
  • An acylphosphine oxide photoinitiator such as Irgacure 907, specifically, Lucirin TPO, Irgacure 819, or the like can be used.
  • the content of the photoinitiator can be appropriately adjusted according to the amount of the binder resin. For example, the content of the photoinitiator is within a range of about 0.1 to 5 parts by mass with respect to 100 parts by mass of the binder resin. It is preferable that
  • the binder resin in the heat ray absorbing portion preferably has a small refractive index with respect to visible light. This is because ATO and LaB 6 have a large refractive index of light in the visible light region, so that the refractive index of the entire heat-absorbing portion can be adjusted by reducing the refractive index of the binder resin.
  • the binder resin content in the heat ray absorbing part is preferably in the range of 40% by mass to 98% by mass with respect to the total mass (100% by mass) of the heat ray absorbing part. It is preferably within the range of 95% by mass.
  • the content of the binder resin is larger than the above range, the concentration of the heat ray absorbing particles may become thin and the heat ray may not be sufficiently absorbed.
  • the content is smaller than the above range, the adhesiveness to the light transmitting part is poor. There is.
  • the heat ray absorbing portion can have a photoinitiator, an ultraviolet absorber, a light stabilizer, a polymerization inhibitor, an antifoaming agent, and the like.
  • the heat ray absorbing portion preferably has a desired refractive index with respect to visible light, and is preferably close to the refractive index with respect to visible light in the light transmitting portion.
  • the refractive index of the heat ray absorbing portion is preferably in the range of 1.40 to 1.80, more preferably in the range of 1.45 to 1.70, particularly 1.50 to 1.70. It is preferable to be within the range of 1.65.
  • the refractive index with respect to visible light of the heat ray absorbing portion is within the above range, the difference in refractive index with the light transmitting portion is reduced, and a heat ray control sheet with high visibility in which the appearance of multiple images is suppressed can be obtained. .
  • the measuring method of the refractive index of a heat ray absorption part it can obtain by the measuring method of the refractive index prescribed
  • the heat ray absorbing portion in the present invention is formed by filling the material of the heat ray absorbing portion described above in the groove portion in the light transmitting portion, the heat ray absorbing portion is usually the same shape as the shape of the groove portion.
  • the longitudinal cross-sectional shape of the heat ray absorbing portion include a triangle, a square, a rectangle, a trapezoid, and a shape having four curved sides.
  • angular part of the said heat ray absorption part may have a curved surface, and the side surface of the said heat ray absorption part may be a curve instead of a straight line.
  • the shape of the heat ray absorbing portion viewed from the sheet surface is not particularly limited, and may be, for example, a straight shape or a curved shape.
  • seat of this invention is not specifically limited, You may arrange
  • seat of this invention what is arrange
  • the height of the heat ray absorbing portion can be appropriately set depending on the desired size of the heat ray control sheet, and is preferably in the range of 10 ⁇ m to 300 ⁇ m, for example, and in particular in the range of 25 ⁇ m to 250 ⁇ m. In particular, it is preferably in the range of 50 ⁇ m to 200 ⁇ m.
  • the height of the heat ray absorbing portion described above is preferably in the range of 50% to 100% with respect to the thickness of the light transmitting portion described later, and in particular, in the range of 60% to 95%. In particular, it is preferable to be within the range of 70% to 90%. This is because if the height of the heat ray absorbing portion is smaller than the above range with respect to the thickness of the light transmitting portion, the thickness of the heat ray control sheet is relatively increased and the flexibility may be lowered.
  • the height of the heat ray absorbing portion is a portion indicated by T1 in FIG.
  • the width of the heat ray absorbing portion is preferably in the range of 5 ⁇ m to 50 ⁇ m, more preferably in the range of 7 ⁇ m to 45 ⁇ m, and particularly preferably in the range of 10 ⁇ m to 40 ⁇ m. If the width of the heat ray absorbing part is larger than the above range, it may be difficult to transmit visible light as the whole heat ray absorbing part and the heat ray control sheet. On the other hand, if the width is smaller than the above range, the height of the heat ray absorbing part may be as described above. In some cases, the heat ray absorbing portion cannot absorb a sufficient heat dose, and the desired heat ray absorbing ability cannot be exhibited.
  • variety of a heat ray absorption part is a part shown by W in FIG.
  • the length of the heat ray absorbing portion is appropriately selected according to the desired size of the heat ray control sheet.
  • the length of the said heat ray absorption part means the length extended in the X direction in FIG.
  • the pitch width of the heat ray absorbing portion is preferably in the range of 30 ⁇ m to 200 ⁇ m, more preferably in the range of 40 ⁇ m to 150 ⁇ m, and particularly preferably in the range of 50 ⁇ m to 110 ⁇ m.
  • the pitch width of the heat ray absorbing part is larger than the above range, light having a large incident angle is difficult to enter the heat ray absorbing part, and the heat ray may not be sufficiently absorbed.
  • the pitch width of the said heat ray absorption part is a part shown by P in FIG.
  • the heat ray absorbing portion forming composition containing the above-described heat ray absorbing portion material can be filled in the groove portion of the light transmitting portion and cured.
  • the viscosity of the composition for forming a heat ray absorbing portion may be any viscosity that can be used in a coating method described later. Specifically, the viscosity is preferably in the range of about 100 Cps to 20000 Cps, more preferably in the range of about 250 to 10000 Cps, and particularly preferably in the range of about 500 to 5000 Cps. If the viscosity of the composition for forming a heat ray absorbing part is higher than the above range, the coating method described later may not be used. Moreover, when lower than the said range, the shape after apply
  • the method for applying the composition for forming a heat ray absorbing portion is not particularly limited as long as it is a method capable of sufficiently filling at least the groove portion with the composition for forming a heat ray absorbing portion.
  • a wiping method, a coating method, a dry laminating method, an extrusion laminating method, or the like can be used.
  • the coating method is preferable from the viewpoint of productivity, the precision of the coated film, and the like.
  • applicator coating, Miya bar coating, wire bar coating, gravure coating, die coating and the like can be used.
  • composition for forming a heat ray absorbing part when applied, an excessive amount of the composition for forming a heat ray absorbing part flowing out from the groove part to the surface of the light transmitting part may be removed by scraping with a squeegee or the like. Good.
  • the curing method of the composition for forming a heat ray absorbing portion curing by irradiation with ionizing radiation is preferable.
  • the type of ionizing radiation is the same as the content described in the above-mentioned section “(2) Other materials”, and thus the description thereof is omitted here.
  • the hardening conditions etc. of the composition for heat ray absorption part formation it can set suitably according to the kind of composition for heat ray absorption part formation, and the kind of ionizing radiation to be used.
  • Light transmitting portion The light transmitting portion in the present invention has a plurality of grooves on one surface. In the light transmission part, both visible light and heat rays are transmitted.
  • the material used for the light transmission part is preferably a material that is cured by irradiation with ionizing radiation, that is, an ionizing radiation curable resin.
  • the ionizing radiation is the same as that described in the section “1.
  • the ionizing radiation curable resin include an ultraviolet curable resin, an electron beam curable resin, a visible light curable resin, a near infrared curable resin, and the like. Among them, an ultraviolet curable resin and an electron beam curable resin are used. It is preferable.
  • the ultraviolet curable resin and the electron beam curable resin can be appropriately selected from conventionally used polymerizable oligomers or prepolymers.
  • examples thereof include polymerizable oligomers or prepolymers, and particularly polyfunctional polymerizable oligomers or prepolymers.
  • the polymerizable oligomer or prepolymer include oligomers and prepolymers having a radically polymerizable unsaturated group in the molecule, such as epoxy (meth) acrylate, urethane (meth) acrylate, and polyether urethane (meth) acrylate.
  • Examples include caprolactone-based urethane (meth) acrylate, polyester (meth) acrylate-based, polyether (meth) acrylate-based oligomers and prepolymers, and these may be used alone or in combination of two or more.
  • (meth) acrylate means “acrylate or methacrylate”.
  • polyfunctional urethane (meth) acrylate when used for the light transmission part, for the purpose of adjusting its viscosity, it is not suitable for monofunctional (meth) acrylate such as methyl (meth) acrylate.
  • a diluent can be used in combination.
  • the monofunctional (meth) acrylate may be used alone or in combination of two or more, or a low molecular weight polyfunctional (meth) acrylate may be used in combination.
  • paintability can also be ensured using said monomer.
  • an ultraviolet curable resin when used as the material for the light transmission part, it is preferable to use a photopolymerization initiator in combination.
  • a photopolymerization initiator As the type of the photopolymerization initiator, those conventionally used can be used.
  • the content of the photopolymerization initiator in the light transmission part is preferably in the range of about 0.1 parts by mass to 5 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin.
  • the light transmission part may contain a weather resistance improver such as an ultraviolet absorber (UVA) in order to further improve the weather resistance.
  • the ultraviolet absorber may be inorganic or organic. Examples of inorganic ultraviolet absorbers include titanium oxide, cerium oxide, and zinc oxide.
  • the average particle size (D 50 ) of the inorganic ultraviolet absorber is preferably in the range of about 5 nm to 120 nm.
  • group, etc. can be used, for example, A triazine type is preferable. This is because the ultraviolet ray absorbing ability is high, and it is difficult to deteriorate against high energy such as ultraviolet rays.
  • the light transmission part includes hard coat properties, light stabilizers, scratch-resistant fillers, polymerization inhibitors, crosslinking agents, antistatic agents, adhesion improvers, antioxidants, leveling agents, thixotropic agents. Further, additives such as a coupling agent, a plasticizer, an antifoaming agent and a filler may be contained.
  • the light transmission part has a plurality of grooves on one surface. Since the heat ray absorbing portion described above is formed in the groove portion, the shape of the groove portion and the shape of the heat ray absorbing portion are the same. The shape, size, and the like of the groove are the same as those described in the section “1. Heat-absorbing part” described above, and thus the description thereof is omitted here.
  • the thickness of the light transmission part is appropriately selected according to the thickness of the target heat ray control sheet and the shape of the groove part, etc., but is preferably in the range of 10 ⁇ m to 300 ⁇ m, and more preferably 25 ⁇ m to It is preferably in the range of 250 ⁇ m, particularly preferably in the range of 50 ⁇ m to 200 ⁇ m.
  • the thickness of the light transmission part is larger than the above range, light loss due to absorption of light incident on the light transmission part occurs, and the visibility of the heat ray control sheet of the present invention is reduced or The thickness of the heat ray control sheet may increase and the flexibility may decrease.
  • it is smaller than the above range it may be difficult to form a groove having a desired shape.
  • the thickness of the light transmission part is a part indicated by T2 in FIG.
  • the visible light transmittance of the light transmission part is preferably 70% or more, more preferably 80% or more, and particularly preferably 90% or more. Generation of light loss due to absorption of light incident on the light transmission portion can be suppressed, and the visibility of the heat ray control sheet can be increased. On the other hand, if the visible light transmittance is lower than the above range, the visible light transmittance of the entire heat ray control sheet of the present invention is also lowered. May not be ensured, and the illuminance in the room may be insufficient.
  • a spectrophotometer (“UV-2450” manufactured by Shimadzu Corporation, JIS K 0115 compliant product) was used, and a Toyobo PET film (product number: Cosmo). This is confirmed by measuring a 10 ⁇ m-thick light transmission part formed on Shine A4300 (thickness 100 ⁇ m) within a measurement wavelength range of 380 nm to 780 nm.
  • the refractive index of the light transmitting part is appropriately adjusted according to the refractive index of the heat ray absorbing part, but is preferably in the range of 1.40 to 1.80, for example 1.45. Is preferably in the range of ⁇ 1.70, and particularly preferably in the range of 1.50 to 1.65.
  • a method for forming the light transmitting portion is not particularly limited as long as the thickness of the light transmitting portion is within a desired range and a plurality of groove portions can be formed.
  • the light transmitting portion-forming composition comprising the light transmitting portion material described above is applied to the shaping plate having the convex portions, the coating film is cross-linked and cured, and the shaping plate is peeled to release the light.
  • a transmission part can be formed.
  • the composition for forming a light transmission part may be applied onto the base material to form a coating film, and then the shaping plate may be pressed and cured by crosslinking.
  • the plate may be disposed so as to face each other, and the composition for forming a light transmission part may be injected therebetween to be crosslinked and cured. Furthermore, as another method, a layer separately formed using the composition for forming a light transmission part may be stacked on a shaping plate or may be bonded.
  • the shaped plate has a plurality of convex portions on the surface, and the shape and size of the convex portions are usually the same as the shape of the groove portions. Further, the shape of the shaping plate is not particularly limited, and examples thereof include a plate shape and a roll shape.
  • the viscosity of the composition for forming a light transmission part is not particularly limited as long as it has a viscosity that can be used in a coating method described later, and is preferably in the range of, for example, about 500 Cps to 5000 Cps.
  • the said composition for light transmissive part formation does not contain a solvent normally, in order to acquire applicability
  • the method for applying the composition for forming a light transmission part is not particularly limited as long as it can be applied so as to have a uniform film thickness.
  • a coating method for example, a spin coating method, a die coating method, a dip coating method, a bar coating method, a gravure printing method, a screen printing method, or the like can be used.
  • composition for forming a light transmission part curing by irradiation with ionizing radiation as described above is preferable, and ultraviolet rays or electron beams are preferably used from the viewpoint of practicality. Moreover, about hardening conditions etc., it can set suitably according to the kind of composition for light transmissive part formation.
  • the heat ray control sheet of the present invention has at least the light transmission part and the heat ray absorption part described above, but other parts as long as the visibility and heat ray absorption ability of the heat ray control sheet are not deteriorated. You may have.
  • part assumed in this invention is demonstrated.
  • seat of this invention may have the base material which can hold
  • the substrate is not particularly limited as long as it has high light transmittance and does not adversely affect the visibility of the heat ray control sheet.
  • a sheet-like or film-like one made of a transparent resin can be used, and among them, a film-like substrate (hereinafter sometimes referred to as a film substrate) is preferably used. It is done.
  • the film substrate may be any material as long as it has transparency to light in the visible light region and has strength to support the light transmission part and the heat ray absorption part.
  • polyethylene terephthalate, polycarbonate, polyester, polyurethane Resin films such as polyvinyl alcohol, polycarbonate, vinyl chloride, fluororesin, and rubber can be used.
  • polyethylene terephthalate and polycarbonate resin films are preferred in terms of transparency and strength.
  • the said film base material may contain antioxidant, a ultraviolet absorber, etc.
  • the said base material may perform the surface treatment etc. on the single side
  • surface treatment by an oxidation method such as corona discharge treatment, chromic acid treatment (wet), flame treatment, hot air treatment, ozone ultraviolet irradiation treatment, and surface treatment by an uneven method such as a sand blast method or a solvent treatment method. Chemical surface treatment or the like can be used.
  • the thickness of the substrate can be appropriately selected depending on the purpose of use, but it is usually preferably in the range of 5 ⁇ m to 200 ⁇ m, and more preferably in the range of 10 ⁇ m to 150 ⁇ m. If it is too thin, curls and wrinkles are likely to occur, and the heat ray control sheet of the present invention may not have the desired strength.
  • the visible light transmittance of the substrate is preferably 70% or more, more preferably 80% or more, and particularly preferably 90% or more. If the visible light transmittance of the substrate is lower than the above range, the visible light transmittance of the entire heat ray control sheet of the present invention is also lowered. There may be cases where lighting cannot be secured and the illuminance in the room is insufficient.
  • the heat ray control sheet of the present invention may have an adhesive layer in order to adhere to an adherend such as a window glass.
  • an adhesive layer in order to adhere to an adherend such as a window glass.
  • any material having weather resistance may be used.
  • acrylic, urethane, silicon, rubber, or the like can be used.
  • an acrylic pressure-sensitive adhesive mainly composed of a polymer or copolymer of an acrylic monomer such as acrylic acid ester or methacrylic acid ester as a material having light resistance, and in particular, n-butyl acrylate. 2-ethylhexyl acrylate or the like is preferably used.
  • the said adhesion layer contains the ultraviolet absorber.
  • the ultraviolet absorber may be either inorganic or organic, and an ultraviolet absorber having a reactive group in the molecule can also be used.
  • the inorganic ultraviolet absorber titanium oxide, cerium oxide, zinc oxide or the like having an average particle diameter of about 5 to 120 nm can be preferably used.
  • an organic type ultraviolet absorber a benzotriazole type, a triazine type, a benzophenone type, a salicylate type, an acrylonitrile type etc. can be mentioned preferably, for example. Of these, triazines are preferable because they have a high ability to absorb ultraviolet rays and do not easily deteriorate even with high energy such as ultraviolet rays.
  • the content of the ultraviolet absorber in the pressure-sensitive adhesive layer is preferably in the range of 0.1 to 25 parts by weight, more preferably in the range of 1 to 25 parts by weight with respect to 100 parts by weight of the pressure-sensitive adhesive. In particular, it is preferably in the range of 3 to 20 parts by mass.
  • the adhesive layer may contain a light stabilizer and the like. This is because the weather resistance of the adhesive layer can be improved.
  • the light stabilizer is preferably a hindered amine light stabilizer or the like, and may have a reactive group in the molecule.
  • Examples of the light stabilizer include 1,2,2,6,6-pentamethyl-4-piperidinyl methacrylate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, bis (1,2 , 2,6,6-pentamethyl-4-piperidinyl) sebacate, methyl (1,2,2,6,6-pentamethyl-4-piperidinyl) sebacate, 2,4-bis [N-butyl-N- (1- And cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl) amino] -6- (2-hydroxyethylamine) -1,3,5-triazine.
  • the content of the light stabilizer in the pressure-sensitive adhesive layer is preferably in the range of 0.05 to 7 parts by weight, more preferably in the range of 0.5 to 5 parts by weight, with respect to 100 parts by weight of the pressure-sensitive adhesive. It is more preferable that the content be within the range of 1 to 5 parts by mass.
  • the position where the adhesive layer is formed can be appropriately selected according to the usage mode of the heat ray control sheet of the present invention.
  • the heat ray control sheet when used for internal application, it is preferably formed on the surface of the light transmission part including the surface of the heat ray absorption part.
  • the thickness of the adhesive layer is preferably in the range of 5 ⁇ m to 100 ⁇ m, and more preferably in the range of 10 ⁇ m to 75 ⁇ m.
  • the adhesive layer is prepared by, for example, diluting the above-mentioned adhesive layer material with a solvent such as ethyl acetate or toluene to prepare a coating solution having a solid content of 20% by mass to 60% by mass, and applying the coating solution to a release sheet or the like. It can form by sticking to the surface which has at least one of a light transmissive part or a heat ray absorption part.
  • a knife coater, a comma coater, a gravure coater, a roll coater or the like can be used as a method of applying the coating solution for the adhesive layer.
  • the coating amount of the material of the adhesive layer is in the range of 10g / m 2 ⁇ 30g / m 2 by dry weight is preferred. By setting it within the above range, sufficient adhesion to the adherend can be obtained, and no sticking layer sticks out during processing.
  • the material used for the release layer is not particularly limited as long as it is generally used. Specific examples include acrylic and methacrylic resins such as polymethyl acrylate and polymethyl methacrylate, polyvinyl chloride resins, cellulose resins, silicone resins, chlorinated rubber, casein, various surfactants, metal oxides, and the like. Or what mixed 2 or more types can be used.
  • seat of this invention has a protective layer from viewpoints, such as a weather resistance and scratch resistance.
  • the protective layer include a weather resistant layer, a hard coat layer, a weather resistant hard coat layer, and a self-cleaning layer.
  • an ionizing radiation curable resin is preferably used as a material for the protective layer.
  • the ionizing radiation curable resin can be appropriately selected from a polymerizable oligomer or prepolymer, and among them, a polyfunctional polymerizable oligomer or prepolymer is preferably used.
  • the polymerizable oligomer or prepolymer include oligomers and prepolymers having radically polymerizable unsaturated groups in the molecule, such as epoxy (meth) acrylate, urethane (meth) acrylate, and polyether urethane (meth) acrylate.
  • caprolactone-based urethane (meth) acrylate polyester (meth) acrylate-based, polyether (meth) acrylate-based oligomers and prepolymers, etc., in particular, polyfunctional urethane (meth) acrylate-based It is preferable in terms of achieving both hard coat properties, and a molecular weight of about 1000 to 5000 is preferable.
  • (meth) acrylate refers to acrylate or methacrylate.
  • the ionizing radiation curable resin includes a caprolactone urethane (meth) acrylate obtained by a reaction of a caprolactone polyol, an organic isocyanate and a hydroxy acrylate, and a polybutadiene oligomer side.
  • a polymer urethane (meth) acrylate such as a highly hydrophobic polybutadiene (meth) acrylate having a (meth) acrylate group in the chain can be used in combination. It is because the weather resistance of a protective layer can be improved by using together. Among these, it is preferable to use a caprolactone-based material in combination.
  • a diluent such as monofunctional (meth) acrylate such as methyl (meth) acrylate is used for the purpose of adjusting the viscosity.
  • the monofunctional (meth) acrylate may be used alone or in combination of two or more, or a low molecular weight polyfunctional (meth) acrylate may be used in combination.
  • applicability paintability can also be ensured using said monomer.
  • the material for the protective layer can contain an ultraviolet absorber, a light stabilizer, a flaw resistant filler such as silica particles, a silicate compound, and the like.
  • an ultraviolet absorber such as silica particles, a silicate compound, and the like.
  • a light stabilizer such as silica particles, a silicate compound, and the like.
  • a flaw resistant filler such as silica particles, a silicate compound, and the like.
  • the specific ultraviolet absorber and light stabilizer the same kind as what was mentioned above can be used.
  • the thickness of the protective layer is preferably within a range of 0.1 ⁇ m to 20 ⁇ m, more preferably within a range of 0.5 ⁇ m to 10 ⁇ m, and particularly preferably within a range of 1 ⁇ m to 8 ⁇ m. It is because it can protect, without reducing the visibility of the heat ray
  • a coating solution obtained by diluting the above-described protective layer material with a desired solvent may be prepared, and the coating solution may be applied to the surface of the heat ray control sheet.
  • a method for applying the coating solution for the protective layer for example, an applicator coat, a beer bar coat, a wire bar coat, a gravure coater, a die coater, or the like can be used.
  • the position where the protective layer is disposed is appropriately selected according to the application mode of the heat ray control sheet of the present invention, and when the heat ray control sheet of the present invention is attached to the adherend, usually, It arrange
  • the heat ray control sheet of the present invention may have, for example, a flattening layer, a scattering layer, and the like on the surfaces of the heat ray absorption part and the light transmission part in addition to the above-described parts. This is because it is possible to suppress the occurrence of the light diffraction phenomenon and the light interference phenomenon in the heat ray control sheet, and to prevent the visibility from being lowered due to the appearance of multiple images. Moreover, you may have a photocatalyst layer for the purpose of control of an air chamber.
  • the planarizing layer preferably has the same optical characteristics as the light transmission part.
  • Heat ray control sheet The heat ray control sheet of the present invention preferably has a small difference in refractive index of light in the visible light region at the interface between the heat ray absorbing portion and the light transmitting portion.
  • the refractive index difference between the heat ray absorbing portion and the light transmitting portion in the present invention is preferably in the range of 0.001 to 0.050, and more preferably in the range of 0.001 to 0.030.
  • the refractive index of visible light of a heat ray control sheet is confirmed by measuring by the method similar to the method demonstrated by the term of "1. heat ray absorption part (3) heat ray absorption part" mentioned above.
  • the heat ray control sheet of the present invention is not particularly limited as long as it has light transmittance and excellent visibility, but for example, the total light transmittance is preferably 70% or more.
  • the total light transmittance is a value measured using a fully automatic direct reading haze computer (HGM-2DP) manufactured by Suga Test Instruments Co., Ltd.
  • the visible light transmittance of the heat ray control sheet of the present invention is preferably high regardless of the incident angle of light, but usually the appearance is observed from an adherend such as a window glass on which the heat ray control sheet is stuck.
  • the visible light transmittance when the light incident angle is 0 ° is preferably in a desired range.
  • the visible light transmittance when the incident angle of light is 0 ° is preferably 65% or more, more preferably 70% or more, and particularly preferably 75% or more.
  • the heat ray transmittance of the heat ray control sheet of the present invention is preferably set as appropriate according to the incident angle of light. That is, it is preferable to have a heat ray transmittance according to the season. For example, in the summer, the heat ray control sheet is required to exhibit a high heat ray absorbing ability from the viewpoint of preventing an increase in indoor temperature due to heat rays taken into the room from the window glass. That is, it is preferable that the heat ray transmittance of the heat ray control sheet is low. Specifically, the heat ray transmittance when the light incident angle is 60 ° is preferably 50% or less, more preferably 40% or less, and particularly preferably less than 35%.
  • the heat ray control sheet exhibits a low heat ray absorbing ability because it is possible to increase the room temperature by taking in a lot of heat rays from the window glass into the room. . That is, it is preferable that the heat ray transmittance of the heat ray control sheet is high.
  • the heat ray transmittance when the incident angle of light is 0 ° is preferably 35% or more, more preferably 40% or more, and particularly preferably 50% or more.
  • the visible light transmittance of the heat ray control sheet was measured by using a infrared visible ultraviolet spectrophotometer (UV3100PC, manufactured by Shimadzu Corporation) and measuring the spectral transmittance in a wavelength range of 380 nm to 780 nm according to JIS A5759-2008. , Calculated by the calculation formula stipulated in the same standard.
  • the heat ray transmittance is an average value of transmittance in a wavelength range of 800 nm to 2500 nm when measured by a method according to the same standard.
  • the diffraction efficiency of the heat ray control sheet of the present invention is preferably small. If the diffraction efficiency is large, the light diffracted in the heat ray control sheet increases, so that the diffracted light interferes with each other, resulting in a difference in light intensity for each wavelength, resulting in an increase in the appearance of multiple images. It is. Specifically, the diffraction efficiency of the heat ray control sheet is preferably 35% or less, and more preferably 30% or less. In the present invention, the diffraction efficiency means that when only a 0th-order light of the diffracted light is passed through a 1 cm square slit located 50 cm away from the heat ray control sheet using a laser having a wavelength of 633 nm. The value calculated by the equation (1) from the intensity I 1 (mW) of the laser light immediately after passing through the heat ray control sheet and the intensity I 2 (mW) of the 0th-order light after passing through the slit.
  • the heat ray control sheet of the present invention preferably has a low haze value, for example, preferably 20% or less, more preferably 10% or less, and particularly preferably 5% or less.
  • a low haze value for example, preferably 20% or less, more preferably 10% or less, and particularly preferably 5% or less.
  • the haze value is higher than the above range, the transparency of the heat ray control sheet becomes low, and the visibility may be lowered when the heat ray control sheet is attached to an adherend such as a window glass.
  • the said haze value is confirmed by measuring according to JISK7136.
  • the heat ray control sheet of the present invention can also be used as “for internal application” to be applied to the inside of the adherend, that is, the indoor side, and can also be applied to the outside of the adherend, that is, the outdoor side. It can also be used as an “outside paste”.
  • the heat ray control sheet is attached to the adherend so that the sheet surface including the surface of the heat ray absorbing portion becomes the light incident surface in any of the usage modes of “inner bonding” or “outer bonding”.
  • the surface facing the sheet surface including the surface of the heat ray absorbing portion may be attached to the adherend so as to be the light incident surface.
  • Manufacturing method As a manufacturing method of the heat ray control sheet of the present invention, as long as it is a method capable of forming an aspect having a light transmission part having a plurality of grooves on one surface and a heat ray absorption part formed in the groove, It is not particularly limited.
  • a composition for forming a light transmission part is applied to a shaping plate having a convex part that is an inverted shape of a groove part, and cured by irradiation with ionizing radiation or the like to form a light transmission part having a groove part.
  • the heat ray control sheet of the present invention can adjust the amount of absorption of heat rays while securing lighting according to the incident angle of light from the light source, and can control the rise and fall of the indoor temperature. Therefore, for example, it can be used by being attached to a window such as a building, a house, a train, a car, a bus, a window glass, an opening, or the like of an airplane or a ship.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
  • Example 1 (Preparation of mold) A plurality of convex portions that are linear in the circumferential direction along the surface direction, the main cutting surface is a rectangle having a height of 150 ⁇ m, and a width of 25 ⁇ m on the plate surface side are arranged in parallel with each other at a pitch width of 105 ⁇ m. A roll mold was prepared.
  • a PET film (product name: A4100 manufactured by Toyobo Co., Ltd.) having a thickness of 100 ⁇ m was used as a base material, and a light transmission part forming composition having the following composition was applied to one surface of the base material.
  • Ultraviolet rays from an ultraviolet irradiation device (Fusion UV System Japan Co., Ltd., light source D bulb) are used as a base material, with the applied composition for forming a light transmission part sandwiched between the mold and the base material. By irradiating from the side, the composition for forming a light transmission part was crosslinked. After that, by releasing the mold, a light transmission part having a groove part on the surface of which a plurality of linearly connected grooves in one direction along the surface direction was formed on one side of the substrate. In addition, the shape of the groove portion was an inverted shape of the convex portion of the mold described above.
  • LaB 6 dispersion resin Preparation of LaB 6 dispersion resin 4 g of KHDS-06 (powder containing 21.5% by mass of LaB 6; manufactured by Sumitomo Metal Mining Co., Ltd.) and 39 g of 2-hydroxy-3-acryloyloxypropyl methacrylate (product name: 701A manufactured by Shin-Nakamura Chemical Co., Ltd.) Then, 86 g of zirconia beads (2 mm ⁇ ) was placed in a glass bottle and dispersed in a paint shaker for 4 hours to obtain a LaB 6 dispersion resin (LaB 6 concentration 2%) having an average particle diameter (D 50 ) of 88 nm.
  • KHDS-06 powder containing 21.5% by mass of LaB 6; manufactured by Sumitomo Metal Mining Co., Ltd.
  • 2-hydroxy-3-acryloyloxypropyl methacrylate product name: 701A manufactured by Shin-Nakamura Chemical Co., Ltd.
  • the average particle size of the LaB 6 dispersed resin is a value obtained by measuring the particle size distribution by a dynamic light scattering method using Microtrac UPA (manufactured by Nikkiso Co., Ltd.). At this time, the background was methyl ethyl ketone and diluted with methyl ethyl ketone for measurement. In addition, it is the value measured by the same method also about the average particle diameter of the ATO particle
  • composition A for forming a heat-absorbing part (Preparation of composition A for forming a heat-absorbing part) Next, using a LaB 6 dispersed resin described above to adjust the heat-absorbing portion forming composition A having the following composition.
  • LaB 6 dispersion resin 30 parts by mass ATO ink (ATO particles (average particle size 52 nm) 20% by mass, UV curable resin composition (containing photopolymerization initiator) 80% by mass) 40 mass parts 2-hydroxy- 3-acryloyloxypropyl methacrylate (product name: 701A, Shin-Nakamura Chemical Co., Ltd.) 27.7 parts by mass, 1-hydroxy-cyclohexyl-phenyl-ketone (product name: Irgacure184, manufactured by BASF) 2.3 parts by mass
  • the composition A for forming a heat ray absorbing part is applied to the surface having the groove part of the light transmitting part, the coating film is squeezed with an iron doctor blade, and only the composition for forming the heat ray absorbing part applied to the region other than the groove part is scraped off.
  • the heat ray absorbing part forming composition was filled only in the groove part.
  • an ultraviolet irradiation device light source D bulb manufactured by Fusion UV System Japan Co., Ltd.
  • the composition for forming a heat ray absorbing portion in the groove portion was crosslinked and cured to form a heat ray absorbing portion.
  • the shape of the said heat ray absorption part was the same as that of the groove
  • Example 2 A heat ray control sheet was obtained in the same manner as in Example 1 except that the composition B for forming a heat ray absorbing part having the following composition was used.
  • Example 3 A heat ray control sheet was obtained in the same manner as in Example 1 except that the composition C for forming a heat ray absorbing part having the following composition was used.
  • LaB 6 dispersion resin 40 parts by mass ATO ink (ATO particles (average particle size: 52 nm) 10% by mass, UV curable resin composition (containing photopolymerization initiator) 90% by mass): 40 parts by mass 2-hydroxy- 3-acryloyloxypropyl methacrylate (product name: 701A, Shin-Nakamura Chemical Co., Ltd.) 17.7 parts by mass, 1-hydroxy-cyclohexyl-phenyl-ketone (product name: Irgacure184, manufactured by BASF) ... 2.3 parts by mass
  • Example 4 A heat ray control sheet was obtained in the same manner as in Example 1 except that the heat ray absorbing part forming composition D having the following composition was used.
  • LaB 6 dispersion resin 10 parts by mass ATO ink (ATO particles (average particle size: 52 nm) 10% by mass, UV curable resin composition (containing photopolymerization initiator) 90% by mass): 80 parts by mass 2-hydroxy- 3-acryloyloxypropyl methacrylate (product name: 701A, Shin-Nakamura Chemical Co., Ltd.) ... 9.2 parts by mass, 1-hydroxy-cyclohexyl-phenyl-ketone (product name: Irgacure184, manufactured by BASF) ... 0.8 parts by mass
  • Example 5 A heat ray control sheet was obtained in the same manner as in Example 1 except that the composition E for forming a heat ray absorbing part having the following composition was used.
  • LaB 6 dispersion resin 20 parts by mass ATO ink (ATO particles (average particle size: 52 nm) 10% by mass, UV curable resin composition (containing photopolymerization initiator) 90% by mass): 40 parts by mass 2-hydroxy- 3-acryloyloxypropyl methacrylate (product name: 701A, Shin-Nakamura Chemical Co., Ltd.) 37.7 parts by mass, 1-hydroxy-cyclohexyl-phenyl-ketone (product name: Irgacure184, manufactured by BASF) 2.3 parts by mass
  • Example 6 A heat ray control sheet was obtained in the same manner as in Example 1 except that the composition F for forming a heat ray absorbing part having the following composition was used.
  • ATO ink ATO particles (average particle size: 52 nm): 20% by mass
  • UV curable resin composition containing photopolymerization initiator: 80% by mass
  • 40 parts by mass: Bisphenol A Type Epoxy Acrylate Product name: EA-1020, Shin-Nakamura Chemical Co., Ltd.
  • 40 parts by mass 2-hydroxy-3-acryloyloxypropyl methacrylate Product name: 701A, Shin-Nakamura Chemical Co., Ltd.
  • ... 17.2 parts by mass 1-hydroxy-cyclohexyl-phenyl-ketone product name: Irgacure184, manufactured by BASF
  • Example 7 A heat ray control sheet was obtained in the same manner as in Example 1 except that the composition G for forming a heat ray absorbing part having the following composition was used.
  • Example 8 A heat ray control sheet was obtained in the same manner as in Example 1 except that the composition H for forming a heat ray absorbing part having the following composition was used.
  • ⁇ Heat ray absorbing part forming composition H> -LaB 6 dispersion resin 10 parts by mass-ATO ink (ATO particles (average particle size 52 nm) 20% by mass, UV curable resin composition (containing photopolymerization initiator) 80 mass%) ... 20 parts by mass-Bisphenol A type epoxy Acrylate (Product name: EA-1020, Shin-Nakamura Chemical Co., Ltd.) ... 40 parts by mass 2-hydroxy-3-acryloyloxypropyl methacrylate (Product name: 701A, Shin-Nakamura Chemical Co., Ltd.) ... 26.9 parts by mass, 1- Hydroxy-cyclohexyl-phenyl-ketone (Product name: Irgacure184, manufactured by BASF) 3.1 parts by mass
  • Example 9 A heat ray control sheet was obtained in the same manner as in Example 1 except that the composition I for forming a heat ray absorbing part having the following composition was used.
  • ⁇ Composition I for forming a heat ray absorbing portion> -LaB 6 dispersion resin 30 parts by mass-ATO ink (ATO particles (average particle size: 52 nm) 20% by mass, UV curable resin composition (containing photopolymerization initiator) 80 mass%): 5 parts by mass-Bisphenol A type epoxy Acrylate (Product name: EA-1020, Shin-Nakamura Chemical Co., Ltd.) ... 40 parts by mass 2-hydroxy-3-acryloyloxypropyl methacrylate (Product name: 701A, Shin-Nakamura Chemical Co., Ltd.) ... 21.3 parts by mass, 1- Hydroxy-cyclohexyl-phenyl-ketone (Product name: Irgacure184, manufactured by BASF) 3.7 parts by mass
  • Example 10 A heat ray control sheet was obtained in the same manner as in Example 1 except that the composition J for forming a heat ray absorbing part having the following composition was used.
  • ⁇ Heat ray absorbing part forming composition J> -LaB 6 dispersion resin 2.5 parts by mass-ATO ink (ATO particles (average particle size 52 nm) 20% by mass, UV curable resin composition (containing photopolymerization initiator) 80% by mass) ... 20 parts by mass-Bisphenol A Type Epoxy Acrylate (Product name: EA-1020 Shin-Nakamura Chemical Co., Ltd.) ...
  • Example 11 A heat ray control sheet was obtained in the same manner as in Example 1 except that the composition K for forming a heat ray absorbing part having the following composition was used.
  • ⁇ Heat ray absorbing part forming composition K> -LaB 6 dispersion resin 0.5 parts by mass-ATO ink (ATO particles (average particle size 52 nm) 20% by mass, UV curable resin composition (containing photopolymerization initiator) 80% by mass) ... 20 parts by mass Type epoxy acrylate (Product name: EA-1020, Shin-Nakamura Chemical Co., Ltd.) 40 parts by mass 2-hydroxy-3-acryloyloxypropyl methacrylate (Product name: 701A, Shin-Nakamura Chemical Co., Ltd.) 36.4 parts by mass 1-hydroxy-cyclohexyl-phenyl-ketone (product name: Irgacure184, manufactured by BASF) 3.1 parts by mass
  • Example 12 A heat ray control sheet was obtained in the same manner as in Example 1 except that the composition L for forming a heat ray absorbing part having the following composition was used.
  • ⁇ Heat ray absorbing part forming composition L> -LaB 6 dispersion resin 0.5 parts by mass-ATO ink (ATO particles (average particle size 52 nm) 20% by mass, UV curable resin composition (containing photopolymerization initiator) 80% by mass) ... 15 parts by mass
  • Type Epoxy Acrylate Product name: EA-1020, Shin-Nakamura Chemical Co., Ltd.
  • 2-hydroxy-3-acryloyloxypropyl methacrylate Product name: 701A, Shin-Nakamura Chemical Co., Ltd.
  • 41.2 parts by mass 1-hydroxy-cyclohexyl-phenyl-ketone product name: Irgacure184, manufactured by BASF
  • Example 1 A heat ray control sheet was obtained in the same manner as in Example 1 except that the composition M for forming a heat ray absorption part having the following composition was used.
  • ATO ink ATO particles (average particle size 52 nm) 10% by mass, UV curable resin composition (containing photopolymerization initiator) 90% by mass) ... 100 parts by mass
  • Example 2 A heat ray control sheet was obtained in the same manner as in Example 1 except that the composition N for forming a heat ray absorbing part having the following composition was used.
  • ATO ink ATO particles (average particle size 52 nm) 20% by mass, UV curable resin composition (containing photopolymerization initiator) 80% by mass) ... 100 parts by mass
  • Example 3 A heat ray control sheet was obtained in the same manner as in Example 1 except that the composition O for forming a heat ray absorbing part having the following composition was used.
  • ⁇ Heat-absorbing part forming composition O> -LaB 6 dispersion resin 45 parts by mass-ATO ink (ATO particles (average particle size 52 nm) 20% by mass, UV curable resin composition (containing photopolymerization initiator) 80 mass%) ... 20 parts by mass-Bisphenol A type epoxy Acrylate (Product name: EA-1020, Shin-Nakamura Chemical Co., Ltd.) 31.9 parts by mass, 1-hydroxy-cyclohexyl-phenyl-ketone (Product name: Irgacure184, manufactured by BASF) 3.1 parts by mass
  • the heat ray control sheets of Examples 1 to 12 and Comparative Examples 1 to 3 are attached to a frame, and a diffracted light beam is slit into a 1 cm square slit located 50 cm away from the heat ray control sheet using a laser having a wavelength of 632.8 nm. Only the 0th order light was allowed to pass through. In this case, the intensity I 1 of the laser beam immediately after passing through the heat ray control sheet (mW), and was determined to 0 the intensity of the primary light I 2 (mW) after passing through the slit. Next, diffraction efficiency was calculated from the following formula (1) using the measured I 1 (mW) and I 2 (mW).
  • Visible light transmittance and heat ray transmittance With respect to the heat ray control sheets of Examples 1 to 12 and Comparative Examples 1 to 3, the visible light transmittance and the heat ray transmittance were measured when the light incident angles were 0 ° and 60 °. Visible light transmittance is specified in the same standard by measuring spectral transmittance in a wavelength range of 380 nm to 780 nm according to JIS A5759-2008 using an infrared visible ultraviolet spectrophotometer (UV3100PC manufactured by Shimadzu Corporation). It is a value calculated by the following calculation formula.
  • the heat ray transmittance is an average value of transmittance in a wavelength range of 800 nm to 2500 nm when measured by a method according to the same standard.
  • Comparative Examples 1 and 2 are heat ray absorbing parts containing only ATO, and the content thereof is more than 8% by mass, so that the visible light transmittance is high when the light incident angle ⁇ is 0 °. Multiple images were remarkably exhibited and the visibility was poor.
  • Comparative Example 3 LaB 6 and ATO were used in combination, and the ATO content was 8% by mass or less. Thus, multiple images were not observed, but the LaB 6 content was 0.00. Since it was more than 8% by mass, the heat ray control sheet exhibited LaB 6 color, and the visible light transmittance was low when the incident angle ⁇ of light was 0 °, and the visibility was poor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Laminated Bodies (AREA)

Abstract

 本発明は、多重像の発生を抑制して優れた視認性を有し、光の入射角度に応じた熱線量の制御が可能な熱線制御シートを提供することを主目的とする。 本発明は、一方の表面に複数本の溝部を有する光透過部と、上記光透過部の上記溝部内に形成され、熱線吸収粒子として六ホウ化ランタンおよびアンチモンドープ酸化錫を含む熱線吸収部と、を有し、上記熱線吸収部における上記六ホウ化ランタンの含有量が0.8質量%以下であり、上記アンチモンドープ酸化錫の含有量が8質量%以下であることを特徴とする熱線制御シートを提供することにより、上記目的を達成する。

Description

熱線制御シート
 本発明は、多重像の発生を抑制して優れた視認性を有し、光の入射角度に応じた熱線量の制御が可能な熱線制御シートに関する。
 近年、地球温暖化等の環境問題の深刻化に伴い、世界的にその対策が進められている。中でも省エネルギーやCOの削減を目的として、熱線制御シートを利用した住宅や自動車等の空間温度の制御方法が注目されており、当該熱線制御シートの開発が進められている。
 熱線制御シートとは、光源からの光のうち、赤外領域の光(以下、「赤外線」または「熱線」とする場合がある。)を吸収することにより、透過する熱線量を制御する機能を有する機能性シートであり、例えば、窓ガラス等に貼り付けることにより、室内への熱線の取り込みを遮蔽し、空間温度の上昇を抑える機能を発揮するものである。
 このような熱線制御シートとして、例えば、特許文献1では、「積層タイプ」のものが開示されている。図5は、積層タイプの熱線制御シートの一例を示す概略断面図である。図5で例示されるように、積層タイプの熱線制御シート50は、基材51上に熱線を吸収する粒子(熱線吸収粒子)53を含む熱線遮蔽膜52が成膜されたものである。特許文献1によれば、上記熱線吸収粒子53として、アンチモンドープ酸化錫(以下、ATOと略する場合がある。)等の第1の無機微粒子53aと、第2の無機微粒子53bとして六ホウ化ランタン(以下、LaBと略する場合がある。)とを併用することにより、可視光領域の光(以下、「可視光線」とする場合がある。)の透過率は低下させずに、熱線の吸収能を向上させた熱線制御シートとすることが可能となる。
 しかし、このような積層タイプの熱線制御シートは、光源からの光の入射角度によらず、定量的に熱線を吸収するものである。このため、例えば、当該熱線制御シートを窓ガラス等に用いる場合、熱線を遮蔽して室内温度の上昇を抑えたい夏季においても、熱線を取り込むことで室内温度の上昇を図りたい冬季においても、熱線制御シートに吸収される熱線量は一律となるため、季節に応じて室内に取り込む熱線量を調整することができなかった。
 これに対し、特許文献2では、熱線を入射角度に応じて選択的に透過または遮蔽し、熱線量の調整を可能とする熱線制御シートとして、「ルーバータイプ」のものが開示されている。ルーバータイプの熱線制御シートとは、図6で例示されるように、光透過部101に直線かつ並列に複数本の溝部103が形成され、上記溝部103には、熱線吸収粒子を含む熱線吸収部102を有するものである。ルーバータイプの熱線制御シート100を窓ガラス等の被着体104に貼り付けることにより、熱線制御シート100に対する光の入射角度の変化を利用して、熱線の透過および遮蔽を選択的に行うことができる。
 そのため、例えば、太陽光を光源とする場合等においては、夏季には熱線の取り込みを低減することで室内や車内等の温度上昇を抑制し、冬季には熱線を十分に取り込むことで室内や車内等の温度低下を抑制することが可能である。
 なお、図6において、XY平面が熱線制御シートのシート面となり、X方向が長さ方向、Y方向が幅方向、Z方向が熱線制御シートの厚さ(溝部の深さ)方向となる。また、図6では、熱線制御シートのシート面のうち、熱線吸収部を有する面の対向面を被着体側とする場合を例示したものであるが、熱線吸収部を有する面を被着体側とした場合も同様である。
 また、ルーバータイプの熱線制御シートは、光の入射角度に応じて熱線を選択的に透過するだけでなく、可視光線の透過についても効率よく行うことが可能である。
 図7はルーバータイプの熱線制御シートにおける、光の入射角度による光の透過経路を説明するための説明図である。なお、図7は、図6の熱線制御シート100をX方向から見た図に相当するものであり、被着体104に貼り付けた態様である。また、図7における光源Lは太陽とする。
 例えば、図7(a)で例示されるように、夏季のように太陽高度が高い場合は、太陽光の入射角度(θ)は大きくなり、上記熱線吸収部102の側面からの太陽光の入射が多くなる。このとき、可視光線は、熱線吸収部102を透過して被着体104側に取り込まれ、一方で、熱線は上記熱線吸収部102に含まれる熱線吸収粒子により吸収されるため、被着体104側への取り込みが遮蔽される。つまり、夏季の室内等においては、太陽光の可視光線を利用した照度の確保を図ると共に、熱線による室内温度の上昇の抑制を行うことが可能となる。
 一方、図7(b)で例示されるように、冬季のように太陽高度が低い場合は、太陽光の入射角度(θ)が小さくなる。つまり、太陽光は熱線制御シート100のシート面に対して垂直に近い角度から入射されるため、図7(a)で例示した夏季の場合に比べて、光透過部101へ入射する太陽光の割合が増加する。光透過部101においては、可視光線も熱線も透過されるため、被着体104側に取り込むことができる。
 このため、冬季の室内等においては、太陽光の可視光線を利用した照度の確保と、熱線による室内温度の上昇との両方を図ることが可能となる。
 なお、図7は、熱線制御シートのシート面のうち、熱線吸収部を有する面を光源側とした場合であるが、当該面と対向するシート面を光源側とした場合も同様である。
特開2000-169765号公報 特開2011-69126号公報
 ルーバータイプの熱線制御シートにおいては、高い光透過性を有するという観点から、熱線吸収粒子としてATOが使用される。しかし、熱線吸収能を向上させるためにATOの使用量を増加させると、当該熱線制御シートを窓ガラス等の被着体に貼って使用する際に、上記被着体から見える外観等の視認性が低下するという問題がある。すなわち、窓ガラス等の被着体に熱線制御シートを貼った状態で外観等を見る際に、被着体に映る像に上下方向に平行な複数のスジが入り、上記スジの入った方向に対して像の色が分解して虹状の不鮮明な像が発現するという現象が生じてしまう。この様な現象は、積層タイプの熱線制御シートでは見られず、ルーバータイプに特有なものとされる。
 なお、以下の説明において、スジの入る方向に色が分解して見える像を「多重像」と称する。
 本発明は、上記実情に鑑みてなされたものであり、多重像の発生を抑制して優れた視認性を有し、光の入射角度に応じた熱線量の制御が可能な熱線制御シートを提供することを主目的とする。
 上記課題を解決するために、本発明は、一方の表面に複数本の溝部を有する光透過部と、上記光透過部の上記溝部内に形成され、熱線吸収粒子として六ホウ化ランタンおよびアンチモンドープ酸化錫を含む熱線吸収部と、を有し、上記熱線吸収部における上記六ホウ化ランタンの含有量が0.8質量%以下であり、上記アンチモンドープ酸化錫の含有量が8質量%以下であることを特徴とする熱線制御シートを提供する。
 本発明によれば、熱線吸収粒子として、所定量のアンチモンドープ酸化錫に、熱線吸収能の高い六ホウ化ランタンを所定の含有量となるように添加することにより、熱線吸収部の熱線吸収能を低下させることなく、アンチモンドープ酸化錫の含有量を低減させることができる。これにより、本発明の熱線制御シートは、多重像を発現させることなく高い光透過性を有することができ、且つ、光の入射角度に応じた熱線量の制御が可能となる。
 上記発明においては、上記熱線吸収部における上記六ホウ化ランタンの含有量が0.6質量%以下であることが好ましい。熱線吸収部において可視光線透過率の低下を抑制することができ、高い透明性を有する熱線制御シートとすることができるからである。
 上記発明においては、上記熱線吸収部における上記アンチモンドープ酸化錫の含有量と上記六ホウ化ランタンの含有量の6倍との総和が4.2質量%以上であることが好ましい。六ホウ化ランタンは、アンチモンドープ酸化錫の約6分の1の量で、アンチモンドープ酸化錫と同等の熱線吸収能を発揮する。そこで、アンチモンドープ酸化錫の含有量と六ホウ化ランタンの添加量の6倍との総和を4.2質量%以上、すなわち、アンチモンドープ酸化錫を単体で使用する場合に所望の熱線吸収能を示す為に必要な量以上とすることにより、熱線吸収能を維持することができ、且つ、多重像の発現が抑制された高い光透過性を有する熱線制御シートとすることができるからである。
 本発明においては、アンチモンドープ酸化錫に所定の含有量の六ホウ化ランタンを添加した熱線吸収部とすることにより、高い熱線吸収能を有し、光の入射角度に応じて熱線量を制御することができ、且つ、多重像の発現が抑制された優れた視認性を有する熱線制御シートとすることができるという効果を奏する。
本発明の熱線制御シートの一例を示す概略斜視図である。 図1のX方向から見た概略断面図である。 本発明における熱線吸収部の一例を示す模式図である。 熱線吸収粒子としてLaBを単体で用いた場合、およびATOを単体で用いた場合の、熱線吸収粒子の含有量と熱線透過率との相関図である。 積層タイプの熱線制御シートの一例を示す概略断面図である。 ルーバータイプの熱線制御シートの一例を示す模式図である。 ルーバータイプの熱線制御シートにおける、光の入射角度による光の透過経路を説明するための説明図である。
 以下、本発明の熱線制御シートについて詳細に説明する。
A.熱線制御シート
 本発明の熱線制御シートについて説明する。本発明の熱線制御シートは、一方の表面に複数本の溝部を有する光透過部と、上記光透過部の上記溝部内に形成され、熱線吸収粒子として六ホウ化ランタンおよびアンチモンドープ酸化錫を含む熱線吸収部と、を有し、上記熱線吸収部における上記六ホウ化ランタンの含有量が0.8質量%以下であり、上記アンチモンドープ酸化錫の含有量が8質量%以下であることを特徴とするものである。
 本発明の熱線制御シートについて、図を例示して説明する。図1は、本発明の熱線制御シートの一例を示す概略斜視図であり、図2は図1のX方向から見た概略断面図(縦断面図)である。また、図3は本発明における熱線吸収部の一例を示す模式図である。なお、図1において、XY平面が熱線制御シートのシート面であり、X方向が各部位の長さ方向、Y方向が各部位の幅方向、Z方向が熱線制御シートの厚さ(溝部の深さ)方向である。
 図1および図2で例示されるように、本発明の熱線制御シート10は、一方の表面に複数本の溝部3を有する光透過部1と、上記溝部3内に形成された熱線吸収部2とを有するものである。また、図3で例示されるように、本発明における熱線吸収部2は、熱線吸収粒子11として、六ホウ化ランタン(LaB)21およびアンチモンドープ酸化錫(ATO)22がそれぞれ所定の含有量で含有されるものである。
 一般的なルーバータイプの熱線制御シートにおいては、熱線吸収能を有し、且つ、光透過性が良好である観点から、熱線吸収粒子としてATOの使用が一般的である。
 熱線制御シートが高い熱線吸収能を有するためには、熱線吸収部におけるATOの含有量を増加させる必要がある。しかし、ATOの含有量が増加する程、ルーバータイプの熱線制御シートを窓ガラス等の被着体に貼って使用する際に、熱線制御シート上に多重像が発現するため、外観等の視認性が低下するという問題がある。
 ルーバータイプの熱線制御シート上に多重像が発現する要因としては、以下の理由が想定される。
 熱線吸収部においてATOの含有量が増加すると、ATOの粒子が凝集しやすくなり、熱線吸収部に入射した光は凝集したATOに当たることで散乱される。一方、光透過部においてはATO等の粒子を含んでおらず、光の散乱が発生しないため、光透過部を透過する光と、光透過部および熱線吸収部を透過する光とで、拡散の偏りが生じてしまう。この光の拡散の偏りにより、熱線制御シートを介して視認される像が多重像となることが想定される。
 また、ATOの含有量が増加することにより、ATOを含む熱線吸収部と含まない光透過部との界面において屈折率差が大きくなる。そのため、光が透過する際に、当該界面において反射された可視光線は熱線制御シート内において繰り返し多重反射を起こし、その結果、反射光および入射光が干渉現象を生じるため、多重像が発現するものと想定される。
 このことから、熱線制御シート上に多重像を発現させないためには、熱線吸収部に含有されるATOの量を低減させる必要がある。しかし、上述したように、ATOの含有量の低減は、熱線吸収能の低下につながるため、多重像を発現しない程度までATOの含有量を低減させると、熱線吸収部において吸収される熱線量も低下してしまい、熱線制御シートとしての本来の機能を十分に発揮できないという問題がある。
 これに対し、本発明においては、熱線吸収粒子として、ATOに加え、ATOよりも熱線吸収能の高いLaBを添加し、それぞれの含有量が所定の範囲内にある熱線吸収部を有する熱線制御シートとすることにより、上述の課題を解決するに至った。
 LaBは、後述するようにATOの約6分の1の使用量で、ATOと同等の熱線吸収能を発揮する。このことから、LaBを添加することにより、熱線吸収部の熱線吸収能を低下させることなく、ATOの含有量を多重像が発現しない程度の量、すなわち、8質量%以下まで低減させることができる。これにより、ATOの凝集による光の散乱や、光透過部と熱線吸収部との界面における多重反射等の発生を抑えることができ、熱線制御シート上に多重像が発現することを防止できる。また、本発明の熱線制御シートは、LaBを添加することにより高い熱線吸収能が維持されるため、光の入射角度が大きく熱線吸収部に入射される光量が多い場合であっても、熱線を十分に吸収することができる。
 一方で、LaBは緑色を呈するものであり、ATOと比較して光透過率が低いという欠点を有する。そのため、LaBの添加量を多くし過ぎると、熱線吸収能は向上するが、LaBの呈する緑色により熱線制御シートが着色されてしまい、光透過性が損なわれる場合がある。そこで、本発明においては、LaBの含有量を0.8質量%以下とすることにより、熱線吸収粒子としてATOを単独で使用する場合と同等の光透過性を有する熱線制御シートとすることを可能とした。
 このように、本発明の熱線制御シートは、熱線吸収部に含まれる熱線吸収粒子を規定することにより、多重像の発生を抑制して優れた視認性を有し、且つ、光の入射角度に応じて室内等に取り込まれる熱線量の制御を可能とするものとなる。
 なお、「熱線吸収能が高い」とは、熱線吸収部において吸収される熱線量が多いことをいう。すなわち、熱線吸収部における熱線透過率が低く、室内等に取り込まれる熱線量が少ないことを意味する。
 また、「熱線吸収能が低い」とは、熱線吸収部において吸収される熱線量が少ないことをいう。すなわち、熱線吸収部における熱線透過率が高く、室内等に取り込まれる熱線量が多いことを意味する。
 本発明は、溝部を有する光透過部および熱線吸収部を少なくとも有するものである。
 以下、本発明の熱線制御シートについて、各部位ごとに説明する。
1.熱線吸収部
 まず、本発明における熱線吸収部について説明する。本発明における熱線吸収部とは、上記光透過部の上記溝部内に形成され、熱線吸収粒子として六ホウ化ランタンおよびアンチモンドープ酸化錫を含むものであって、上記熱線吸収部における上記六ホウ化ランタンの含有量が0.8質量%以下であり、上記アンチモンドープ酸化錫の含有量が8質量%以下であることを特徴とするものである。
(1)熱線吸収粒子
 熱線吸収部におけるATOの含有量は、後述する所定量のLaBを添加することにより熱線吸収部において所望の熱線量を吸収することができ、かつ、本発明の熱線制御シートが多重像を発現せず所望の可視光線透過率を有する量、すなわち、熱線吸収部の全質量100質量%に対して8質量%以下であり、中でも4質量%以下であることが好ましい。
 ATOの含有量を8質量%以下とすることにより、本発明の熱線制御シートは所望の光透過率を有することができ、また、ATOの粒子の凝集や、熱線吸収部と光透過部との界面における多重反射が発生しにくくなるため、当該シート上に多重像が発現することを抑制できる。
 なお、ATOの含有量の下限としては、1質量%以上であることが好ましく、中でも2質量%以上であることが好ましい。ATOの含有量が少ないと、LaBを添加しても、ATOの含有量の減少分に相当する熱線の吸収量を補うことが出来ず、特に光の入射角度が大きく熱線吸収部に入射される光量が多い場合に、熱線を十分に吸収できない可能性がある。
 熱線吸収部におけるLaBの含有量は、本発明の熱線制御シートの可視光線透過率を低下させることなく、熱線吸収部での熱線吸収量を所望のものとすることが可能な量、すなわち、熱線吸収部の全質量100質量%に対して、0.8質量%以下であり、中でも0.6質量%以下であることが好ましい。LaBの含有量を0.8質量%以下とすることにより、ATOの含有量を上述の範囲以下に低減させても、添加されるLaBにより熱線吸収部における熱線吸収量を維持することができる。また、上記範囲内とすることにより、添加されるLaBの色により熱線吸収部および熱線制御シート全体が着色されることを防止でき、高い光透過性を有することが出来る。中でもLaBの含有量を0.6質量%以下とすることにより、熱線吸収部において可視光線透過率の低下を抑制することができ、透明性の高い熱線制御シートとすることができる。
 なお、LaBの含有量の下限としては、0.01質量%以上であることが好ましく、中でも0.05質量%以上であることが好ましい。LaBの含有量が上記下限を下回ると、ATOの含有量の減少分に相当する熱線吸収量を補うことが出来ず、特に光の入射角度が大きく熱線吸収部に入射される光量が多い場合に、熱線を十分に吸収できない可能性がある。
 また、LaBおよびATOの単位質量当たりの熱線吸収能について、LaBはATOの約6倍の熱線吸収能を発揮することができる。このことから、本発明においては、ATOの含有量とLaBの含有量の6倍との和が4.2質量%以上であることが好ましく、中でも4.3質量%以上であることが好ましい。
 以下、この理由について更に詳細に説明する。
 図4は、熱線吸収粒子としてLaBを単体で用いた場合、およびATOを単体で用いた場合の熱線吸収粒子の含有量と熱線透過率との相関図である。なお、図4は、以下の検証結果に基づくものである。
(検証)
<サンプル液の調製>
 LaB含有量が0.3質量%、0.5質量%、1.0質量%となるように、LaB分散液(住友金属鉱山社製 製品名:KHF-7A トルエン分散液 LaB含有量1.85質量%)とペンタエリスリトールトリアクリレート(日本化薬社製 製品名:PET-30)とを混合し、固形分50質量%となるようにメチルエチルケトンで希釈後、光開始剤(BASF社製 製品名:Irgacure184)をペンタエリスリトールトリアクリレートの4質量%分添加し、3種類のLaBサンプル液を調製した。
 また、ATO分散液(三菱マテリアル社製 MEK分散液 ATO含有量20質量%)を用い、同様の方法で、ATO含有量が5質量%、10質量%となるように2種類のATOサンプル液を調製した。
<熱線透過率の測定>
 LaB含有量が0.3質量%、0.5質量%、1.0質量%の3種類のLaBサンプル液を、それぞれPET基材(東洋紡社製 製品名:A4100 100μm厚)上にバーコーターで塗布し、70℃のオーブンで30秒乾燥後、窒素雰囲気下でUV硬化させることにより、3種類のLaBコーティング膜(膜厚10μm)を得た。
 同様に、ATO含有量が5質量%、10質量%と2種類のATOサンプル液を用い、LaBコーティング膜の製法と同様の方法により、2種類のATOコーティング膜(膜厚10μm)を得た。
 各コーティング膜について、赤外可視紫外分光光度計((株)島津製作所社製 UV3100PC)を使用し、光の入射角度が0°のときの800nm~2500nmの波長域における透過率を測定し、その平均値を算出した。透過率の平均値を熱線透過率とし、熱線吸収粒子の含有量(X軸)に対する熱線透過率の値(Y軸)をプロットした。
 また、LaBの熱線透過率については、LaBの含有量を2倍量、4倍量、6倍量、8倍量に換算して同様にプロットした。表1は、LaB単体(1倍量)の場合およびATO単体の場合の熱線透過率の値を示すものである。
Figure JPOXMLDOC01-appb-T000001
 図4より、LaB含有量の6倍量換算に対する熱線透過率のグラフが、ATO含有量に対する熱線透過率のグラフの直線および延長線上に位置することから、LaBは、ATOの6分の1の含有量で、同等の熱線透過率を示すものといえる。
 また、熱線吸収部においてATOを単体で使用する場合、その含有量を所定量以上とすることで、光の入射角度θが60°のときの熱線制御シートの熱線吸収能を特に高いものとすることができる。すなわち、後述するように、光の入射角度θが60°のときの、熱線制御シートの熱線透過率を35%未満とすることができる。
 このため、ATOの含有量とLaBの含有量の6倍との和を4.2質量%以上とすることにより、光の入射角度θが60°のときの熱線透過率が35%未満となり、高い熱線吸収能を有することが可能となる。
 上記熱線吸収粒子は、通常、透明性を有するものであり、ナノ微粒子であることが好ましい。その平均粒径(D50)としては、例えば、10nm~200nmの範囲内であることが好ましく、中でも20nm~150nmの範囲内であることが好ましく、特に30nm~100nmの範囲内であることが好ましい。また、熱線吸収粒子の平均粒径が上記範囲内であれば、LaBおよびATOのそれぞれの平均粒径は、同等であってもよく、一方が他方より大きくてもよい。
 熱線吸収粒子の平均粒径が上記範囲よりも大きいと、ヘイズを生じてしまい、本発明の熱線制御シートの透明性が低下する場合がある。一方、上記範囲よりも小さいと、熱線吸収粒子の分散安定性や量産性に劣る場合がある。
 なお、上記平均粒径は、動的光散乱法により粒度分布を測定して求めた値である。また、上記平均粒径は、熱線吸収粒子の粒子を電子顕微鏡で観察し、算術平均により求めることも可能であり、このときの好適な平均粒径の範囲についても上述の範囲と同様である。
(2)その他の材料
 本発明における熱線吸収部は、上述した熱線吸収粒子の他に、少なくともバインダ樹脂を有することが好ましい。
 上記熱線吸収部におけるバインダ樹脂は、電離放射線の照射により硬化し得る材料であれば特に限定されるものではない。なお、電離放射線とは電磁波が有する量子エネルギーで区分することもあるが、本発明ではすべての紫外線(UV-A、UV-B、UV-C)、可視光線、γ線、X線、電子線、活性エネルギー線等を意味する。
 上記バインダ樹脂の材料としては、構造中にラジカル重合性の活性基を有するモノマー、オリゴマー、プレポリマーまたはポリマーを主成分として重合された電離放射線硬化性樹脂であることが好ましく、上記電離放射線硬化性樹脂としては、紫外線硬化性樹脂、電子線硬化性樹脂、可視光線硬化性樹脂、近赤外線硬化性樹脂等が挙げられる。本発明においては、中でも、紫外線硬化性樹脂および電子線硬化性樹脂を用いることが好ましい。具体的には、エポキシアクリレート系、ウレタンアクリレート系、ポリエーテルアクリレート系、ポリエステルアクリレート系、ポリチオール系等の反応性オリゴマー、ビニルピロリドン、2-エチルヘキシルアクリレート、β-ヒドロキシアクリレート、テトラヒドロフルフリルアクリテート等の反応性のモノマー、2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート、ポリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート等の2官能以上のモノマー等が挙げられる。
 また、上記バインダ樹脂には光開始剤が含まれることが好ましい。波長300nm~400nmの紫外線等の電離放射線を照射してバインダ樹脂を硬化させることができるからである。上記光開始剤としては、照射する電離放射線の種類に応じて適宜選択でき、例えば、ケトン系やアセトフェノン系の光開始剤、具体的には、サンドレー1000、Darocure1163、Darocure1173、Irgacure183、Irgacure369、Irgacure651、Irgacure907等、アシルホスフィンオキサイド系の光開始剤、具体的には、Lucirin TPO、Irgacure819等を用いることができる。なお、上記光開始剤の含有量としては、バインダ樹脂の量に応じて適宜調整することができ、例えば、バインダ樹脂100質量部に対して、0.1質量部~5質量部程度の範囲内であることが好ましい。
 熱線吸収部におけるバインダ樹脂は、可視光線に対する屈折率が小さいことが好ましい。ATOおよびLaBは可視光領域の光の屈折率が大きいため、バインダ樹脂の屈折率を小さくすることで、熱線吸収部全体の屈折率を調整することができるからである。
 上記熱線吸収部におけるバインダ樹脂の含有量としては、熱線吸収部の全質量(100質量%)に対して、40質量%~98質量%の範囲内であることが好ましく、中でも、50質量%~95質量%の範囲内であることが好ましい。バインダ樹脂の含有量が上記範囲よりも多いと、熱線吸収粒子の濃度が薄くなり熱線を十分に吸収できない場合があり、一方、上記範囲よりも少ないと、光透過部との密着性に劣る場合がある。
 また、上記熱線吸収部は、上述した熱線吸収粒子およびバインダ樹脂の他に、光開始剤、紫外線吸収剤、光安定剤、重合禁止剤、消泡剤等を有することができる。
(3)熱線吸収部
 熱線吸収部は、可視光線に対して所望の屈折率を有することが好ましく、中でも光透過部における可視光線に対する屈折率と近いものであることが好ましい。具体的には、熱線吸収部の屈折率が1.40~1.80の範囲内であることが好ましく、中でも1.45~1.70の範囲内であることが好ましく、特に1.50~1.65の範囲内であることが好ましい。熱線吸収部の可視光線に対する屈折率が上記範囲内にあることにより、光透過部との屈折率差が小さくなり、多重像の出現が抑制された視認性の高い熱線制御シートとすることができる。
 なお、熱線吸収部の屈折率の測定方法としては、JIS K 7142に規定された屈折率の測定方法により得ることができる。具体的には、アッベ屈折計((株)アタゴ社製)により、温度23℃の条件下で測定波長589nmのナトリウム光源を用いて測定することができる。
 本発明における熱線吸収部は、光透過部における溝部内に上述した熱線吸収部の材料が充填されて形成されるものであるため、上記熱線吸収部は、通常、上記溝部の形状と同じ形状となる。
 上記熱線吸収部の縦断面形状としては、三角形、正方形、長方形、台形状、四辺が曲線である形状等が挙げられる。また、溝部の形状に応じて、上記熱線吸収部の角部は曲面を有していても良く、上記熱線吸収部の側面が直線でなく曲線であってもよい。
 また、シート面から見た上記熱線吸収部の形状としては、特に限定されるものではなく、例えば、直線状であってもよく、曲線等の形状であってもよい。さらに、本発明の熱線制御シートのシート面から見た上記熱線吸収部の配置は、特に限定されるものではなく、並列して配置されていてもよく、平行に並んで配置されていてもよく、他方向にランダムに配置されていてもよい。本発明の熱線制御シートのシート面から見た熱線吸収部としては、直線状に平行に配置されるものが好適である。
 上記熱線吸収部の高さとしては、所望の熱線制御シートの大きさ等により適宜設定することができ、例えば10μm~300μmの範囲内であることが好ましく、中でも25μm~250μmの範囲内であることが好ましく、特に50μm~200μmの範囲内であることが好ましい。熱線吸収部の高さを上記範囲内とすることにより、例えば、夏季の太陽光のように入射角度の大きい光が、熱線吸収部の表面の広範囲において入射しやすくなるため、より多くの熱線が吸収されることで室内等の温度上昇を抑制することができるからである。
 また、上述した熱線吸収部の高さは、後述する光透過部の厚さに対して、50%~100%の範囲内であることが好ましく、中でも60%~95%の範囲内であることが好ましく、特に70%~90%の範囲内であることが好ましい。上記熱線吸収部の高さが光透過部の厚さに対して上記範囲よりも小さいと、相対的に熱線制御シートの厚みが増え、屈曲性が低下する可能性があるからである。なお、熱線吸収部の高さとは、図2中のT1で示される部分である。
 上記熱線吸収部の幅としては、5μm~50μmの範囲内であることが好ましく、中でも7μm~45μmの範囲内であることが好ましく、特に10μm~40μmの範囲内であることが好ましい。熱線吸収部の幅が上記範囲よりも大きいと、熱線吸収部および熱線制御シート全体として可視光線を透過しにくくなる場合があり、一方、上記範囲よりも小さいと、熱線吸収部の高さを上述の範囲とすることができない場合や、熱線吸収部が十分な熱線量を吸収できず、所望の熱線吸収能を発揮出来ない場合がある。なお、熱線吸収部の幅とは、図2においてWで示される部分である。
 上記熱線吸収部の長さとしては、所望の熱線制御シートの大きさに応じて適宜選択されるものである。なお、上記熱線吸収部の長さとは、図1においてX方向に伸びた長さをいう。
 熱線吸収部のピッチ幅としては、30μm~200μmの範囲内であることが好ましく、中でも40μm~150μmの範囲内であることが好ましく、特に50μm~110μmの範囲内であることが好ましい。熱線吸収部のピッチ幅が上記範囲よりも大きいと、入射角度の大きい光が上記熱線吸収部に入射しにくくなり、熱線を十分に吸収することができない場合がある。一方、上記範囲よりも小さいと、光透過部において可視光線が透過しにくくなる場合がある。なお、上記熱線吸収部のピッチ幅とは、図2においてPで示される部分である。
 上記熱線吸収部の形成方法としては、例えば、上述した熱線吸収部の材料を含む熱線吸収部形成用組成物を、光透過部の溝部に充填して硬化させることにより形成することができる。
 上記熱線吸収部形成用組成物の粘度としては、後述する塗布方法に用いることが可能な粘度であればよい。具体的には、上記粘度が100Cps~20000Cps程度の範囲内であることが好ましく、中でも250~10000Cps程度の範囲内であることが好ましく特に、500~5000Cps程度の範囲内であることが好ましい。熱線吸収部形成用組成物の粘度が上記範囲よりも高いと、後述する塗布方法を用いることができない場合がある。また、上記範囲よりも低いと、熱線吸収部形成用組成物を塗布してから硬化させるまでの間の形状を保持できない場合がある。
 上記熱線吸収部形成用組成物の塗布方法としては、少なくとも溝部内に熱線吸収部形成用組成物を十分に充填させることができる方法であれば、特に限定されるものではない。具体的な塗布方法としては、ワイピング法、コーティング法、ドライラミネート法、押出しラミネート法等を用いることができ、中でもコーティング法を用いることが、生産性や塗布膜の精密性等から好ましい。上記コーティング法としては、アプリケーターコート、ミヤバーコート、ワイヤバーコート、グラビアコート、ダイコート等を用いることができる。
 また、熱線吸収部形成用組成物を塗布する際に、溝部から光透過部の表面に流れ出た過剰量の熱線吸収部形成用組成物を、スキージ等を用いて摺り切りを行い除去してもよい。
 上記熱線吸収部形成用組成物の硬化方法としては、電離放射線の照射による硬化が好ましい。電離放射線の種類については、上述した「(2)その他の材料」の項で説明した内容と同様であるため、ここでの説明は省略する。また、熱線吸収部形成用組成物の硬化条件等については、熱線吸収部形成用組成物の種類や使用する電離放射線の種類に応じて適宜設定することができる。
2.光透過部
 本発明における光透過部は、一方の表面に複数本の溝部を有するものである。上記光透過部においては、可視光線および熱線の両方が透過されるものである。
 光透過部に用いられる材料としては、電離放射線の照射により硬化する材料、すなわち電離放射線硬化性樹脂であることが好ましい。電離放射線については、上述した「1.熱線吸収部」の項で説明した内容と同様である。電離放射線硬化性樹脂としては、紫外線硬化性樹脂、電子線硬化性樹脂、可視光線硬化性樹脂、近赤外線硬化性樹脂等が挙げられるが、中でも、紫外線硬化性樹脂および電子線硬化性樹脂を用いることが好ましい。
 紫外線硬化性樹脂および電子線硬化性樹脂としては、従来から慣用されている重合性オリゴマーないしはプレポリマーの中から適宜選択して用いることができる。例えば、重合性オリゴマーないしはプレポリマー、特には、多官能の重合性オリゴマーないしはプレポリマーが挙げられる。重合性オリゴマーないしはプレポリマーとしては、分子中にラジカル重合性不飽和基を持つオリゴマーやプレポリマー、例えば、エポキシ(メタ)アクリレート系、ウレタン(メタ)アクリレート系やポリエーテル系ウレタン(メタ)アクリレートやカプロラクトン系ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート系、ポリエーテル(メタ)アクリレート系のオリゴマーやプレポリマー等が挙げられ、これらを単独で用いてもよく2種類以上を併用してもよい。なお、本発明において、「(メタ)アクリレート」とは、「アクリレート又はメタクリレート」を意味する。
 また、光透過部に用いられる材料として多官能性のウレタン(メタ)アクリレートを用いる場合、その粘度を調整する等の目的で、メチル(メタ)アクリレートなどの単官能性(メタ)アクリレートのような希釈剤を併用することができる。上記単官能性(メタ)アクリレートは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよく、低分子量の多官能性(メタ)アクリレートを併用してもよい。また、希釈剤としては、上記のモノマーを用いて、塗布性を確保することもできる。
 また、光透過部の材料として紫外線硬化性樹脂を用いる場合には、光重合開始剤を併用することが好ましい。上記光重合開始剤の種類としては、従来慣用されているものを用いることができる。上記光透過部における光重合開始剤の含有量としては、上記紫外線硬化性樹脂100質量部に対して、0.1質量部~5質量部程度の範囲内であることが好ましい。
 光透過部は、耐候性をさらに向上させるために、紫外線吸収剤(UVA)等の耐候性改善剤を含有してもよい。上記紫外線吸収剤は、無機系であっても有機系であってもよい。無機系の紫外線吸収剤としては、例えば酸化チタン、酸化セリウム、酸化亜鉛等が挙げられる。上記無機系の紫外線吸収剤の平均粒径(D50)は5nm~120nm程度の範囲内であることが好ましい。また、有機系の紫外線吸収剤としては、例えばベンゾトリアゾール系、トリアジン系、ベンゾフェノン系、サリチレート系、アクリロニトリル系等を用いることができ、中でも、トリアジン系が好ましい。紫外線吸収能が高く、また紫外線等の高エネルギーに対しても劣化しにくいからである。
 光透過部は、上述した材料の他に、ハードコート性、光安定剤、耐傷フィラー、重合禁止剤、架橋剤、帯電防止剤、接着性向上剤、酸化防止剤、レベリング剤、チクソ性付与剤、カップリング剤、可塑剤、消泡剤、充填剤等の添加剤を含有しても良い。
 また、光透過部は、一方の表面に複数本の溝部を有するものである。上記溝部内において上述した熱線吸収部が形成されるため、上記溝部の形状と上記熱線吸収部の形状とは同じものとなる。
 上記溝部の形状、大きさ等については、上述した「1.熱線吸収部」の項で説明した内容と同様であるため、ここでの説明は省略する。
 光透過部の厚さとしては、目的とする熱線制御シートの厚さおよび溝部の形状等に応じて適宜選択されるものであるが、10μm~300μmの範囲内であることが好ましく、中でも25μm~250μmの範囲内であることが好ましく、特に50μm~200μmの範囲内であることが好ましい。光透過部の厚さが上記範囲よりも大きいと、上記光透過部に入射した光が吸収されてしまうことによる光の損失が発生し、本発明の熱線制御シートの視認性が低下する場合や、熱線制御シートの厚みが増して屈曲性が低下する場合がある。一方、上記範囲よりも小さいと、所望の形状を有する溝部を形成することが困難になる場合がある。
 なお、光透過部の厚さとは、図2においてT2で示される部分である。
 光透過部の可視光線透過率としては、70%以上であることが好ましく、中でも80%以上であることが好ましく、特に90%以上であることが好ましい。光透過部に入射した光が吸収されることによる光の損失の発生を抑制することができ、熱線制御シートの視認性を高いものとすることができる。一方、可視光線透過率が上記範囲よりも低いと、本発明の熱線制御シート全体としての可視光線透過率も低下するため、上記熱線制御シートの外観が暗くなる場合や、室内等へ十分な採光が確保できずに室内等の照度が不足する場合がある。
 なお、光透過部の可視光線透過率の測定方法については、分光光度計((株)島津製作所製「UV-2450」、JIS K 0115準拠品)を用い、東洋紡績製PETフィルム(品番:コスモシャインA4300、厚さ100μm)上に形成された膜厚10μmの光透過部を、測定波長380nm~780nmの範囲内で測定することにより確認される。
 また、光透過部の屈折率としては、熱線吸収部の屈折率に応じて適宜調整されるものであるが、例えば1.40~1.80の範囲内であることが好ましく、中でも1.45~1.70の範囲内であることが好ましく、特に1.50~1.65の範囲内であることが好ましい。
 光透過部の屈折率を上記範囲内とすることにより、熱線吸収部との界面における光の反射や屈折の発生を抑制することができるため、熱線吸収部および光透過部を透過して出射される可視光線の減衰を抑制することができる。これにより、熱線吸収部および光透過部を透過した可視光線と、光透過部を透過した可視光線との出射光の偏りを低減させることができ、熱線制御シートにおいて多重像の発現を抑制することが可能となる。
 なお、光透過部の屈折率の測定方法としては、上述した「1.熱線吸収部 (3)熱線吸収部」の項で説明した方法と同様の方法により測定することができる。
 光透過部の形成方法としては、当該光透過部の厚さが所望の範囲内であり、複数の溝部を形成することができる方法であれば、特に限定されない。
 具体的には、凸部を有する賦形版に上述した光透過部の材料から成る光透過部形成用組成物を塗布し、当該塗布膜を架橋硬化させ、賦形版を剥離することにより光透過部を形成することができる。
 また、基材を使用する場合は、基材上に光透過部形成用組成物を塗布して塗布膜を成膜した後に賦形版を押圧し、架橋硬化させてもよく、基材と賦形版とを対向するように配置し、その間に光透過部形成用組成物を注入して架橋硬化させてもよい。
 さらに、他の方法として、光透過部形成用組成物を用いて別途成膜した層を賦形版に積載してもよく、貼り合わせてもよい。
 なお、上記賦形版は、表面上に複数本の凸部を有するものであり、上記凸部の形状およびその大きさは、通常、溝部の形状と同一のものである。また、当該賦形版の形状としては特に限定されないが、例えば板状、ロール状等が挙げられる。
 上記光透過部形成用組成物の粘度としては、後述する塗布方法に用いることが可能な粘度を有していればよく、例えば500Cps~5000Cps程度の範囲内であることが好ましい。なお、上記光透過部形成用組成物は、通常、溶剤を含まないものであるが、塗布性を得るために、上述した光透過部の材料を溶剤等に溶解させたものであってもよい。
 上記光透過部形成用組成物の塗布方法としては、均一の膜厚となるように塗布できる方法であれば特に限定されるものではない。この様な塗布方法としては、例えば、スピンコート法、ダイコート法、ディップコート法、バーコート法、グラビア印刷法、スクリーン印刷法などを用いることができる。
 上記光透過部形成用組成物の硬化方法としては、上述した電離放射線の照射による硬化が好ましく、中でも実用的である点から紫外線、または電子線を用いることが好ましい。
 また、硬化条件等については、光透過部形成用組成物の種類に応じて適宜設定することができる。
3.その他の構成
 本発明の熱線制御シートは、上述した光透過部および熱線吸収部を少なくとも有するものであるが、当該熱線制御シートの視認性および熱線吸収能を低下させないものであれば、その他の部位を有していてもよい。以下、本発明において想定される部位について説明する。
(1)基材
 本発明の熱線制御シートは、熱線制御シート全体の形状を保持することができる基材を有していてもよい。
 上記基材としては、高い光透過性を有し、熱線制御シートの視認性に悪影響を与えないものであれば特に限定されない。この様な基材としては、透明性を有する樹脂からなるシート状やフィルム状のものを用いることができ、中でもフィルム状の基材(以下、フィルム基材と称する場合がある。)が好ましく用いられる。
 上記フィルム基材としては、可視光領域の光に対して透明性を有し、光透過部および熱線吸収部を支持する強度を有するものであれば良く、例えば、ポリエチレンテレフタレート、ポリカーボネート、ポリエステル、ポリウレタン、ポリビニルアルコール、ポリカーボネート、塩化ビニル、フッ素樹脂、ゴム等の樹脂フィルムを用いることができる。中でも、透明性および強度の点から、ポリエチレンテレフタレート、ポリカーボネートの樹脂フィルムが好ましい。また、上記フィルム基材は、酸化防止剤や紫外線吸収剤等を含んでいても良い。
 なお、上記基材は、必要に応じて片面または両面に表面処理等を行っていても良い。上記表面処理としては、コロナ放電処理、クロム酸処理(湿式)、火炎処理、熱風処理、オゾン紫外線照射処理等の酸化法による表面処理や、サンドブラスト法、溶剤処理法等の凹凸化法による表面処理、化学的表面処理等を用いることができる。
 基材の厚さとしては、使用目的に応じて適宜選択することができるが、通常は5μm~200μmの範囲内であることが好ましく、中でも10μm~150μmの範囲内であることが好ましい。薄すぎるとカールやシワが入りやすく、本発明の熱線制御シートが所望の強度を有さない場合があるからである。
 基材の可視光線透過率としては、70%以上であることが好ましく、中でも80%以上であることが好ましく、特に90%以上であることが好ましい。基材の可視光線透過率が上記範囲よりも低いと、本発明の熱線制御シート全体としての可視光線透過率も低下するため、上記熱線制御シートの外観が暗くなる場合や、室内等へ十分な採光が確保できずに室内等の照度が不足する場合がある。
(2)粘着層
 本発明の熱線制御シートは、窓ガラス等の被着体に貼付するために粘着層を有していてもよい。
 粘着層に用いられる粘着剤の材料としては、耐候性を有するものであればよく、例えば、アクリル系、ウレタン系、シリコン系、ゴム系等の粘着剤を用いることができる。中でも、光耐候性を有する材料として、アクリル酸エステルやメタクリル酸エステル等のアクリル系モノマーの重合体や共重合体を主成分とするアクリル系粘着剤を用いることが好ましく、特に、n-ブチルアクリレート、2-エチルへキシルアクリレート等を用いることが好ましい。
 また、上記粘着層は紫外線吸収剤を含有していることが好ましい。紫外線吸収剤を含有させることにより、粘着層の耐候性を向上させることができるからである。
 紫外線吸収剤としては、無機系、有機系のいずれでもよく、分子内に反応性基を有する紫外線吸収剤を用いることもできる。無機系紫外線吸収剤としては、平均粒径が5~120nm程度の酸化チタン、酸化セリウム、酸化亜鉛等を好ましく用いることができる。また、有機系紫外線吸収剤としては、例えばベンゾトリアゾール系、トリアジン系、ベンゾフェノン系、サリチレート系、アクリロニトリル系等が好ましく挙げることができる。中でも、紫外線の吸収能が高く、紫外線等の高エネルギーに対しても劣化しにくいトリアジン系がより好ましい。
 粘着層における紫外線吸収剤の含有量としては、粘着剤100質量部に対して、0.1質量部~25質量部の範囲内であることが好ましく、中でも1質量部~25質量部の範囲内であることが好ましく、特に3質量部~20質量部の範囲内であることが好ましい。
 また、粘着層は光安定剤等を含有していてもよい。粘着層の耐候性を向上させることができるからである。
 上記光安定剤としては、ヒンダードアミン系の光安定剤等が好ましく、また、分子内に反応性基を有するものであってもよい。光安定剤としては、1,2,2,6,6-ペンタメチル-4-ピペリジニルメタクリレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)セバケート、メチル(1,2,2,6,6-ペンタメチル-4-ピペリジニル)セバケート、2,4-ビス[N-ブチル-N-(1-シクロヘキシルオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)アミノ]-6-(2-ヒドロキシエチルアミン)-1,3,5-トリアジン等が挙げられる。
 粘着層における光安定剤の含有量としては、粘着剤100質量部に対して、0.05質量~7質量部の範囲内であることが好ましく、中でも0.5質量部~5質量部の範囲内であることがより好ましく、特に1質量部~5質量部の範囲内であることが好ましい。
 粘着層の形成される位置は、本発明の熱線制御シートの使用態様に応じて適宜選択することができる。例えば、上記熱線制御シートを内貼り用として用いる場合は、熱線吸収部の表面を含む光透過部の表面上に形成されることが好ましい。一方、上記熱線制御シートを外貼り用として用いる場合は、熱線吸収部の表面を含まない光透過部の表面上、または基材上に形成されることが好ましい。上記粘着層の厚さとしては、5μm~100μmの範囲内が好ましく、中でも10μm~75μmの範囲内が好ましい。
 上記粘着層は、例えば、上述した粘着層の材料を、酢酸エチル、トルエン等の溶剤で希釈し固形分20質量%~60質量%の塗布液を調製し、上記塗布液を剥離シート等に塗布したものを、光透過部または熱線吸収部の少なくとも一方を有する表面に貼り付けることにより形成することができる。
 上述の形成方法において、上記粘着層の塗布液を塗布する方法としては、例えば、ナイフコーター、コンマコーター、グラビアコーター、ロールコーター等を用いることができる。また上記塗布方法を用いる場合、上記粘着層の材料の塗布量は、乾燥重量で10g/m~30g/mの範囲内が好ましい。上記範囲内とすることにより、被着体に対して十分な接着力が得られ、また、加工時に粘着層のはみ出し等を生じないからである。
(3)剥離層
 本発明の熱線制御シートが粘着層を有する場合、粘着層上に剥離層を有していてもよい。
 剥離層を有することにより、粘着層に埃等が付着することを防止し、汚れによる熱線制御シートの視認性の低下を防ぐことができるからである。また、本発明の熱線制御シートをロール状とする場合において、巻き出し時に粘着表面が荒れる等の巻き出し不良の発生を防止することができるからである。
 剥離層に用いられる材料としては、一般的に使用されているものであれば特に限定されない。具体的には、ポリメチルアクリレート、ポリメチルメタクリレート等のアクリル系およびメタアクリル系樹脂、ポリ塩化ビニル樹脂、セルロース樹脂、シリコン樹脂、塩化ゴム、カゼイン、各種界面活性剤、金属酸化物等の1種または2種以上混合したものを用いることができる。
(4)保護層
 本発明の熱線制御シートは、耐候性や耐傷性等の観点から保護層を有していることが好ましい。保護層の種類としては、耐候層、ハードコート層、耐候ハードコート層、自浄性層等を挙げることができる。
 保護層の材料としては、電離放射線硬化性樹脂を用いることが好ましい。上記電離放射線硬化性樹脂としては、重合性オリゴマーないしはプレポリマーの中から適宜選択して用いることができ、中でも、多官能の重合性オリゴマーないしはプレポリマーを用いることが好ましい。上記重合性オリゴマーないしはプレポリマーとしては、分子中にラジカル重合性不飽和基を持つオリゴマーやプレポリマー、例えば、エポキシ(メタ)アクリレート系、ウレタン(メタ)アクリレート系やポリエーテル系ウレタン(メタ)アクリレートやカプロラクトン系ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート系、ポリエーテル(メタ)アクリレート系のオリゴマーやプレポリマー等が挙げられ、特に、多官能性のウレタン(メタ)アクリレート系が、耐候性とハードコート性を両立させる点で好ましく、分子量としては、1000~5000程度のものが好ましい。
 なお、ここでの(メタ)アクリレートとは、アクリレートまたはメタクリレートを指す。
 上記電離放射線硬化性樹脂には、上記の多官能性の重合性オリゴマーの他に、カプロラクトン系ポリオールと有機イソシアネートとヒドロキシアクリレートとの反応により得られるカプロラクトン系ウレタン(メタ)アクリレートや、ポリブタジエンオリゴマーの側鎖に(メタ)アクリレート基をもつ疎水性の高いポリブタジエン(メタ)アクリレート等のような高分子ウレタン(メタ)アクリレートを併用することができる。併用することにより、保護層の耐候性を向上することができるからである。中でも、カプロラクトン系の材料を併用することが好ましい。
 また、保護層の材料として多官能性のウレタン(メタ)アクリレートを用いる場合、その粘度を調整する等の目的で、メチル(メタ)アクリレート等の単官能性(メタ)アクリレートのような希釈剤を併用することができる。上記単官能性(メタ)アクリレートは1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよく、低分子量の多官能性(メタ)アクリレートを併用してもよい。また、希釈剤としては、上記のモノマーを用いて、塗布性を確保することもできる。
 なお、上記保護層の材料には、紫外線吸収剤や光安定剤、シリカ粒子等の耐傷フィラー、シリケート化合物等を含有させることができる。なお、具体的な紫外線吸収剤および光安定剤については、上述したものと同様の種類を用いることができる。
 保護層の厚さとしては、0.1μm~20μmの範囲内であることが好ましく、中でも0.5μm~10μmの範囲内であることが好ましく、特に1μm~8μmの範囲内であることが好ましい。保護層の厚さを上記範囲内とすることにより、本発明の熱線制御シートの視認性等を低下させることなく保護することができるからである。
 保護層の形成方法としては、例えば、上述した保護層の材料を所望の溶剤で希釈した塗布液を調製し、上記塗布液を熱線制御シートの表面に塗布して形成することができる。
 上述の形成方法において、上記保護層の塗布液を塗布する方法としては、例えばアプリケーターコート、ビヤバーコート、ワイヤバーコート、グラビアコーター、ダイコーター等を用いることができる。
 保護層が配置される位置は、本発明の熱線制御シートの貼り付け態様に応じて適宜選択されるものであり、本発明の熱線制御シートを被着体に貼り付けた際に、通常、上記被着体に対して上記熱線制御シートの最外層となるように配置されるものである。
(5)その他
 本発明の熱線制御シートは、上述した部位の他に、例えば、熱線吸収部および光透過部の表面上に平坦化層、散乱層等を有していてもよい。当該熱線制御シートにおける光の回折現象や光の干渉現象の発生を抑制し、多重像の発現による視認性の低下を防止することが可能となるからである。また、空気室のコントロールを目的として光触媒層を有していてもよい。なお、上記平坦化層は、光透過部と同等の光学特性を有するものが好ましい。
4.熱線制御シート
 本発明の熱線制御シートは、熱線吸収部および光透過部の界面における可視光領域の光の屈折率差が小さいことが好ましい。熱線吸収部および光透過部の可視光線の屈折率差を小さいものとすることにより、当該界面において可視光線の多重反射が発生するのを抑制し、多重像を発現しにくい熱線制御シートとすることができるからである。
 本発明における熱線吸収部と光透過部との屈折率差は、0.001~0.050の範囲内であることが好ましく、中でも0.001~0.030の範囲内であることが好ましく、特に0.001~0.020の範囲内であることが好ましい。
 なお、熱線制御シートの可視光線の屈折率は、上述した「1.熱線吸収部 (3)熱線吸収部」の項で説明した方法と同様の方法により測定することで確認されるものである。
 本発明の熱線制御シートは、光透過性を有し、優れた視認性を有するものであれば特に限定されるものではないが、例えば、全光線透過率が70%以上であることが好ましい。
 なお、ここでの全光線透過率は、スガ試験機株式会社製 全自動直読ヘイズコンピュータ(HGM-2DP)を用いて測定した値である。
 また、本発明の熱線制御シートの可視光線透過率としては、光の入射角度に因らず高いことが好ましいが、通常、熱線制御シートが貼られた窓ガラス等の被着体から外観を観察する場合に、観察者、熱線制御シートおよび観察対象が成す角度がほぼ0°であることから、光の入射角度が0°のときの可視光線透過率が、所望の範囲にあることが好ましい。具体的には、光の入射角度が0°のときの可視光線透過率が65%以上であることが好ましく、中でも70%以上であることが好ましく、特に75%以上であることが好ましい。
 光の入射角度が0°のとき可視光線透過率を上記範囲とすることにより、外観等を明瞭に観察することができる。また、室内等に取り込まれる可視光線の量も増えるため、光源からの光を利用して室内の照度を確保することもできる。
 また、本発明の熱線制御シートの熱線透過率としては、光の入射角度に応じて適宜設定されることが好ましい。すなわち、季節に応じた熱線透過率を有することが好ましい。
 例えば、夏季の場合は、窓ガラスから室内へ熱線が取り込まれることによる室内温度の上昇を防止するという点から、熱線制御シートは高い熱線吸収能を発揮することが求められる。つまり、熱線制御シートの熱線透過率が低いことが好ましい。具体的には、光の入射角度が60°のときの熱線透過率が50%以下であることが好ましく、中でも40%以下であることが好ましく、特に35%未満であることが好ましい。
 一方、冬季の場合は、窓ガラスから室内へ多くの熱線を取り込むことで、室内温度の上昇を図ることが可能であるという点から、熱線制御シートが発揮する熱線吸収能は低いことが求められる。つまり、熱線制御シートの熱線透過率が高いことが好ましい。具体的には、光の入射角度が0°のときの熱線透過率が35%以上であることが好ましく、中でも40%以上であることが好ましく、特に50%以上であることが好ましい。
 なお、熱線制御シートの可視光線透過率は、赤外可視紫外分光光度計((株)島津製作所社製 UV3100PC)を使用し、JIS A5759-2008に従い380nm~780nmの波長域における分光透過率測定し、同規格に規定される算出式により算出したものである。また、熱線透過率は、同規格に準ずる方法で測定した時の800nm~2500nmの波長域における透過率の平均値である。
 本発明の熱線制御シートの回折効率としては、小さいことが好ましい。回折効率が大きいと、熱線制御シートにおいて回折する光が増えるため、回折光が互いに干渉し合うことにより波長毎に光の強度に差異が生じ、結果として多重像の発現を増大させることになるからである。熱線制御シートの回折効率として、具体的は、35%以下であることが好ましく、中でも30%以下であることが好ましい。
 なお、本発明において回折効率とは、波長633nmのレーザーを用いて、熱線制御シートから50cm離れた位置にある1cm正方角のスリットに、回折光のうちの0次光のみを通過させた時の、熱線制御シートを透過直後のレーザー光の強度I(mW)、およびスリットを通過後の0次光の強度I(mW)から、式(1)により算出される値である。
Figure JPOXMLDOC01-appb-M000002
 また、本発明の熱線制御シートはヘイズ値が低いことが好ましく、例えば20%以下であることが好ましく、中でも10%以下であることが好ましく、特に5%以下であることが好ましい。ヘイズ値が上記範囲よりも高いと熱線制御シートの透明性が低いものとなり、窓ガラス等の被着体に上記熱線制御シートを貼り付けた際に視認性が低下する場合がある。なお、上記ヘイズ値は、JIS K 7136に準じて測定することにより確認される。
 本発明の熱線制御シートの使用態様としては、被着体の内側、すなわち室内側に貼付ける「内貼り用」として使用することもでき、また、上記被着体の外側、すなわち屋外側に貼付ける「外貼り用」として使用することもできる。
 また、熱線制御シートは、「内貼り用」または「外貼り用」のどちらの使用態様においても、熱線吸収部の表面を含むシート面を光入射面となるように被着体に貼り付けてもよく、熱線吸収部の表面を含むシート面と対抗する面を光入射面となるように被着体に貼り付けてもよい。
5.製造方法
 本発明の熱線制御シートの製造方法としては、一方の表面に複数本の溝部を有する光透過部、および上記溝部内に形成された熱線吸収部を有する態様を形成できる方法であれば、特に限定されるものではない。
 当該製造方法の例としては、溝部の反転形状である凸部を有する賦形版に光透過部形成用組成物を塗布し、電離放射線等の照射により硬化させて溝部を有する光透過部を形成し、続いて、上記溝部内に熱線吸収部形成用組成物を充填し、電離放射線等の照射により硬化させて熱線吸収部を形成する方法等が挙げられる。なお、各部位の形成方法については、上述した各部位の項において説明した内容と同様であるため、ここでの説明は省略する。
6.用途
 本発明の熱線制御シートは、光源からの光の入射角度に応じて、採光を確保しながら熱線の吸収量を調整することができ、室内温度の上昇および低下を制御することが可能であることから、例えば、ビル、家屋、電車、車、バス等の車両、飛行機、船舶等の窓ガラス、開口部等に貼り付けて使用することができる。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
 以下に実施例および比較例を示し、本発明をさらに詳細に説明する。
[実施例1]
(金型の準備)
 面方向に沿って円周方向に直線状に連なり、主切断面が高さ150μm、版表面側の幅25μmの長方形となる凸部が、105μmのピッチ幅で複数本が互いに平行に配列されたロール状の金型を準備した。
(溝部を有する光透過部の形成)
 厚さが100μmのPETフィルム(製品名:A4100 東洋紡績社製)を基材として、上記基材の一方の表面に、下記の組成から成る光透過部形成用組成物を塗布した。
<光透過部形成用組成物>
・エトキシ化ビスフェノールAジアクリレート(m+n=3)(製品名:ABE-300 新中村化学社製) … 40質量部
・エトキシ化ビスフェノールAジアクリレート(m+n=10)(製品名:A-BPE-10 新中村化学社製) … 60質量部
・1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(製品名:Irgacure184 BASF社製) … 4質量部
 上述の金型と上記基材との間に、塗布した当該光透過部形成用組成物を挟んだ状態で、紫外線照射装置(フュージョンUVシステムジャパン株式会社製 光源Dバルブ)からの紫外線を基材側より照射することにより、当該光透過部形成用組成物を架橋させた。その後、金型を離型することにより、面方向に沿って一方向に直線状に複数本が連なる溝部を表面に有する光透過部を基材の片面側に形成した。なお、溝部の形状は、上述の金型の凸部の反転形状であった、
(LaB分散樹脂の調製)
 KHDS-06(LaB21.5質量%含有粉、住友金属鉱産社製)を4gと、2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート(製品名:701A 新中村化学社製)を39gとを、ジルコニアビーズ(2mmφ)86gとともにガラス瓶に入れ、ペイントシェーカーで4時間分散処理し、平均粒径(D50)が88nmのLaB分散樹脂(LaB濃度2%)を得た。
 LaB分散樹脂の平均粒径は、マイクロトラックUPA(日機装株式会社製)を用い、動的光散乱法により粒度分布を測定して得た値である。このとき、バックグラウンドはメチルエチルケトンとし、メチルエチルケトンで希釈して測定した。なお、後述する熱線吸収部形成用組成物に使用されるATOインク中のATO粒子の平均粒径についても、同様の方法で測定された値である。
(熱線吸収部形成用組成物Aの調製)
 次に、上述のLaB分散樹脂を用い、下記の組成を有する熱線吸収部形成用組成物Aを調整した。
<熱線吸収部形成用組成物A>
・LaB分散樹脂 … 30質量部
・ATOインク(ATO粒子(平均粒径52nm)20質量%、紫外線硬化樹脂組成物(光重合開始剤含有)80質量%) … 40質量部
・2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート(製品名:701A 新中村化学社製) … 27.7質量部
・1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(製品名:Irgacure184 BASF社製) … 2.3質量部
(熱線吸収部の形成)
 熱線吸収部形成用組成物Aを光透過部の溝部を有する表面に塗布し、塗膜を鉄製ドクターブレードでスキージし、溝部以外の領域に塗布された熱線吸収部形成用組成物のみを掻き取り除去し、溝部内のみに熱線吸収部形成用組成物を充填させた。紫外線照射装置(フュージョンUVシステムジャパン株式会社製 光源Dバルブ)からの紫外線を照射することにより、溝部内の熱線吸収部形成用組成物を架橋硬化させて熱線吸収部を形成した。なお、上記熱線吸収部の形状等は、上述した溝部の形状等と同様であった。
(平坦化層の形成)
 上述の光透過部用樹脂組成物を上記光透過部の熱線吸収部を有する表面上におよそ20μm厚となるように塗布しUV硬化させ、平坦化層を形成し、熱線制御シートを得た。
[実施例2]
 下記の組成を有する熱線吸収部形成用組成物Bを用いたこと以外は、実施例1と同様にして熱線制御シートを得た。
<熱線吸収部形成用組成物B>
・LaB分散樹脂 … 30質量部
・ATOインク(ATO粒子(平均粒径52nm)10質量%、紫外線硬化樹脂組成物(光重合開始剤含有)90質量%) … 40質量部
・2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート(製品名:701A 新中村化学社製) … 27.7質量部
・1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(製品名:Irgacure184 BASF社製) … 2.3質量部
[実施例3]
 下記の組成を有する熱線吸収部形成用組成物Cを用いたこと以外は、実施例1と同様にして熱線制御シートを得た。
<熱線吸収部形成用組成物C>
・LaB分散樹脂 … 40質量部
・ATOインク(ATO粒子(平均粒径52nm)10質量%、紫外線硬化樹脂組成物(光重合開始剤含有)90質量%) … 40質量部
・2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート(製品名:701A 新中村化学社製) … 17.7質量部
・1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(製品名:Irgacure184 BASF社製) … 2.3質量部
[実施例4]
 下記の組成を有する熱線吸収部形成用組成物Dを用いたこと以外は、実施例1と同様にして熱線制御シートを得た。
<熱線吸収部形成用組成物D>
・LaB分散樹脂 … 10質量部
・ATOインク(ATO粒子(平均粒径52nm)10質量%、紫外線硬化樹脂組成物(光重合開始剤含有)90質量%) … 80質量部
・2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート(製品名:701A 新中村化学社製) … 9.2質量部
・1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(製品名:Irgacure184 BASF社製) … 0.8質量部
[実施例5]
 下記の組成を有する熱線吸収部形成用組成物Eを用いたこと以外は、実施例1と同様にして熱線制御シートを得た。
<熱線吸収部形成用組成物E>
・LaB分散樹脂 … 20質量部
・ATOインク(ATO粒子(平均粒径52nm)10質量%、紫外線硬化樹脂組成物(光重合開始剤含有)90質量%) … 40質量部
・2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート(製品名:701A 新中村化学社製) … 37.7質量部
・1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(製品名:Irgacure184 BASF社製) … 2.3質量部
[実施例6]
 下記の組成を有する熱線吸収部形成用組成物Fを用いたこと以外は、実施例1と同様にして熱線制御シートを得た。
<熱線吸収部形成用組成物F>
・LaB分散樹脂 … 0.5質量部
・ATOインク(ATO粒子(平均粒径52nm)20質量%、紫外線硬化樹脂組成物(光重合開始剤含有)80質量%) … 40質量部
・ビスフェノールA型エポキシアクリレート(製品名:EA-1020 新中村化学社製) … 40質量部
・2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート(製品名:701A 新中村化学社製) … 17.2質量部
・1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(製品名:Irgacure184 BASF社製) … 2.3質量部
[実施例7]
 下記の組成を有する熱線吸収部形成用組成物Gを用いたこと以外は、実施例1と同様にして熱線制御シートを得た。
<熱線吸収部形成用組成物G>
・LaB分散樹脂 … 30質量部
・ATOインク(ATO粒子(平均粒径52nm)20質量%、紫外線硬化樹脂組成物(光重合開始剤含有)80質量%) … 10質量部
・ビスフェノールA型エポキシアクリレート(製品名:EA-1020 新中村化学社製) … 40質量部
・2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート(製品名:701A 新中村化学社製) … 16.5質量部
・1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(製品名:Irgacure184 BASF社製) … 3.5質量部
[実施例8]
 下記の組成を有する熱線吸収部形成用組成物Hを用いたこと以外は、実施例1と同様にして熱線制御シートを得た。
<熱線吸収部形成用組成物H>
・LaB分散樹脂 … 10質量部
・ATOインク(ATO粒子(平均粒径52nm)20質量%、紫外線硬化樹脂組成物(光重合開始剤含有)80質量%) … 20質量部
・ビスフェノールA型エポキシアクリレート(製品名:EA-1020 新中村化学社製) … 40質量部
・2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート(製品名:701A 新中村化学社製) … 26.9質量部
・1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(製品名:Irgacure184 BASF社製) … 3.1質量部
[実施例9]
 下記の組成を有する熱線吸収部形成用組成物Iを用いたこと以外は、実施例1と同様にして熱線制御シートを得た。
<熱線吸収部形成用組成物I>
・LaB分散樹脂 … 30質量部
・ATOインク(ATO粒子(平均粒径52nm)20質量%、紫外線硬化樹脂組成物(光重合開始剤含有)80質量%) … 5質量部
・ビスフェノールA型エポキシアクリレート(製品名:EA-1020 新中村化学社製) … 40質量部
・2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート(製品名:701A 新中村化学社製) … 21.3質量部
・1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(製品名:Irgacure184 BASF社製) … 3.7質量部
[実施例10]
 下記の組成を有する熱線吸収部形成用組成物Jを用いたこと以外は、実施例1と同様にして熱線制御シートを得た。
<熱線吸収部形成用組成物J>
・LaB分散樹脂 … 2.5質量部
・ATOインク(ATO粒子(平均粒径52nm)20質量%、紫外線硬化樹脂組成物(光重合開始剤含有)80質量%) … 20質量部
・ビスフェノールA型エポキシアクリレート(製品名:EA-1020 新中村化学社製) … 40質量部
・2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート(製品名:701A 新中村化学社製) … 34.4質量部
・1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(製品名:Irgacure184 BASF社製) … 3.1質量部
[実施例11]
 下記の組成を有する熱線吸収部形成用組成物Kを用いたこと以外は、実施例1と同様にして熱線制御シートを得た。
<熱線吸収部形成用組成物K>
・LaB分散樹脂 … 0.5質量部
・ATOインク(ATO粒子(平均粒径52nm)20質量%、紫外線硬化樹脂組成物(光重合開始剤含有)80質量%) … 20質量部
・ビスフェノールA型エポキシアクリレート(製品名:EA-1020 新中村化学社製) … 40質量部
・2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート(製品名:701A 新中村化学社製) … 36.4質量部
・1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(製品名:Irgacure184 BASF社製) … 3.1質量部
[実施例12]
 下記の組成を有する熱線吸収部形成用組成物Lを用いたこと以外は、実施例1と同様にして熱線制御シートを得た。
<熱線吸収部形成用組成物L>
・LaB分散樹脂 … 0.5質量部
・ATOインク(ATO粒子(平均粒径52nm)20質量%、紫外線硬化樹脂組成物(光重合開始剤含有)80質量%) … 15質量部
・ビスフェノールA型エポキシアクリレート(製品名:EA-1020 新中村化学社製) … 40質量部
・2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート(製品名:701A 新中村化学社製) … 41.2質量部
・1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(製品名:Irgacure184 BASF社製) … 3.3質量部
[比較例1]
 下記の組成を有する熱線吸収部形成用組成物Mを用いたこと以外は、実施例1と同様にして熱線制御シートを得た。
<熱線吸収部形成用組成物M>
・ATOインク(ATO粒子(平均粒径52nm)10質量%、紫外線硬化樹脂組成物(光重合開始剤含有)90質量%) … 100質量部
[比較例2]
 下記の組成を有する熱線吸収部形成用組成物Nを用いたこと以外は、実施例1と同様にして熱線制御シートを得た。
<熱線吸収部形成用組成物N>
・ATOインク(ATO粒子(平均粒径52nm)20質量%、紫外線硬化樹脂組成物(光重合開始剤含有)80質量%) … 100質量部
[比較例3]
 下記の組成を有する熱線吸収部形成用組成物Oを用いたこと以外は、実施例1と同様にして熱線制御シートを得た。
<熱線吸収部形成用組成物O>
・LaB分散樹脂 … 45質量部
・ATOインク(ATO粒子(平均粒径52nm)20質量%、紫外線硬化樹脂組成物(光重合開始剤含有)80質量%) … 20質量部
・ビスフェノールA型エポキシアクリレート(製品名:EA-1020 新中村化学社製) … 31.9質量部
・1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(製品名:Irgacure184 BASF社製) … 3.1質量部
 実施例1~12および比較例1~3の熱線制御シートについて、熱線吸収部の総質量(100質量%)に占めるLaBおよびATOのそれぞれの含有量を表2に示す。
Figure JPOXMLDOC01-appb-T000003
(評価用サンプル)
 実施例1~12および比較例1~3の熱線制御シートの平坦化層の上に、光学粘着材(製品名:LUCIACS CS9621T 日東電工社製)を用いてガラス板(3mm厚)と貼り合せ、評価用サンプルとした。
[評価1]
(目視評価)
 実施例1~12および比較例1~3の熱線制御シートに対して、以下の項目について目視評価を行った。
 <外観>
 目視によりぼやけの程度(多重像の発現程度)を評価した。不都合なく像を視認できるものを○、多重像が発現し、顕著にぼやけて見えるものを×とした。
 <色味>
 目視により色味の程度を評価した。熱線制御シートへの着色に不都合のないものを○、熱線制御シートの着色が顕著なものを×とした。
(回折効率)
 実施例1~12および比較例1~3の熱線制御シートを枠に取り付け、波長632.8nmのレーザーを用いて、熱線制御シートから50cm離れた位置にある1cm正方角のスリットに、回折光のうちの0次光のみを通過させた。このとき、熱線制御シートを透過した直後のレーザー光の強度I(mW)、およびスリットを通過後の0次光の強度I(mW)と測定した。次に、測定したI(mW)およびI(mW)を用いて、下記式(1)より回折効率を算出した。
Figure JPOXMLDOC01-appb-M000004
(可視光線透過率および熱線透過率)
 実施例1~12および比較例1~3の熱線制御シートについて、光の入射角度が0°および60°のときの可視光線透過率および熱線透過率を測定した。可視光線透過率は、赤外可視紫外分光光度計((株)島津製作所社製 UV3100PC)を使用し、JIS A5759-2008に従い380nm~780nmの波長域における分光透過率測定し、同規格において規定される算出式により算出した値である。また、熱線透過率は、同規格に準ずる方法で測定した時の800nm~2500nmの波長域における透過率の平均値である。なお、熱線制御シートに対する光の入射角度が60°の場合の測定は、試験体を傾斜させて行った。
 上記評価の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000005
 実施例1~12で示されるように、熱線吸収部におけるLaBの含有量を0.8質量%以下とし、ATOの含有量を8質量%以下とすることにより、目視評価において多重像の発現および熱線制御シートの着色による視認の阻害は確認されなかった。中でも、LaBの含有量を0.6質量%以下とすることにより、光の入射角度θが0°のときの可視光線透過率が70%以上を示し、かつ、多重像の発現が確認されないことから、良好な視認性を有することができた。また、ATOの含有量とLaBの含有量の6倍との和を4.2質量%以上とすることにより、光の入射角度θが60°のときの熱線透過率を35%未満となり、高い熱線吸収能を有することができた。
 一方、比較例1および2では、ATOのみを含む熱線吸収部であり、その含有量が8質量%よりも多いことから、光の入射角度θが0°のときの可視光線透過率は高いものの、多重像が顕著に発現した、視認性の悪いものであった。
 また、比較例3では、LaBとATOとを併用しておりATOの含有量が8質量%以下であることから、多重像の発現は見られなかったが、LaBの含有量が0.8質量%よりも多いことから、熱線制御シートがLaBの色を呈しており、光の入射角度θが0°のときの可視光線透過率も低く、視認性の悪いものであった。
 1 … 光透過部
 2 … 熱線吸収部
 3 … 溝部
 11 … 熱線吸収粒子
 21 … 六ホウ化ランタン(LaB
 22 … アンチモンドープ酸化錫(ATO)
 10 … 熱線制御シート

Claims (3)

  1.  一方の表面に複数本の溝部を有する光透過部と、
     前記光透過部の前記溝部内に形成され、
     熱線吸収粒子として六ホウ化ランタンおよびアンチモンドープ酸化錫を含む熱線吸収部と、を有し、
     前記熱線吸収部における前記六ホウ化ランタンの含有量が0.8質量%以下であり、前記アンチモンドープ酸化錫の含有量が8質量%以下であることを特徴とする熱線制御シート。
  2.  前記熱線吸収部における前記六ホウ化ランタンの含有量が0.6質量%以下であることを特徴とする請求の範囲第1項に記載の熱線制御シート。
  3.  前記熱線吸収部における前記アンチモンドープ酸化錫の含有量と前記六ホウ化ランタンの含有量の6倍との総和が4.2質量%以上であることを特徴とする請求の範囲第1項または第2項に記載の熱線制御シート。
PCT/JP2014/058887 2013-03-29 2014-03-27 熱線制御シート WO2014157531A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-071494 2013-03-29
JP2013071494A JP2014197042A (ja) 2013-03-29 2013-03-29 熱線制御シート

Publications (1)

Publication Number Publication Date
WO2014157531A1 true WO2014157531A1 (ja) 2014-10-02

Family

ID=51624492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058887 WO2014157531A1 (ja) 2013-03-29 2014-03-27 熱線制御シート

Country Status (2)

Country Link
JP (1) JP2014197042A (ja)
WO (1) WO2014157531A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169765A (ja) * 1998-12-10 2000-06-20 Sumitomo Metal Mining Co Ltd 日射遮蔽膜用塗布液及びこれを用いた日射遮蔽膜
JP2001089202A (ja) * 1999-05-17 2001-04-03 Sumitomo Metal Mining Co Ltd 日射遮蔽合わせガラス
JP2004091219A (ja) * 2002-08-29 2004-03-25 Nippon Sheet Glass Co Ltd 熱遮蔽合わせガラス
JP2008247623A (ja) * 2007-03-29 2008-10-16 Toppan Printing Co Ltd 熱線遮断ガラス
JP2011069126A (ja) * 2009-09-25 2011-04-07 Sekisui Chem Co Ltd 採光遮熱シート及び合わせガラス
JP2011094469A (ja) * 2009-09-29 2011-05-12 Sekisui Chem Co Ltd 調光用ルーバーシート、調光体及び調光方法
WO2013141375A1 (ja) * 2012-03-22 2013-09-26 大日本印刷株式会社 熱線制御シート

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169765A (ja) * 1998-12-10 2000-06-20 Sumitomo Metal Mining Co Ltd 日射遮蔽膜用塗布液及びこれを用いた日射遮蔽膜
JP2001089202A (ja) * 1999-05-17 2001-04-03 Sumitomo Metal Mining Co Ltd 日射遮蔽合わせガラス
JP2004091219A (ja) * 2002-08-29 2004-03-25 Nippon Sheet Glass Co Ltd 熱遮蔽合わせガラス
JP2008247623A (ja) * 2007-03-29 2008-10-16 Toppan Printing Co Ltd 熱線遮断ガラス
JP2011069126A (ja) * 2009-09-25 2011-04-07 Sekisui Chem Co Ltd 採光遮熱シート及び合わせガラス
JP2011094469A (ja) * 2009-09-29 2011-05-12 Sekisui Chem Co Ltd 調光用ルーバーシート、調光体及び調光方法
WO2013141375A1 (ja) * 2012-03-22 2013-09-26 大日本印刷株式会社 熱線制御シート

Also Published As

Publication number Publication date
JP2014197042A (ja) 2014-10-16

Similar Documents

Publication Publication Date Title
JP5794369B2 (ja) ウィンドウフィルム
SG177079A1 (en) Optical body, wall member, fitting, and solar shading device
JP5709707B2 (ja) 熱線遮蔽材
WO2013141375A1 (ja) 熱線制御シート
JP5499837B2 (ja) 熱線遮蔽フィルム
KR20190053920A (ko) 눈부심 방지성 반사 방지 하드 코팅 필름, 화상 표시 장치, 눈부심 방지성 반사 방지 하드 코팅 필름 제조 방법
WO2016194560A1 (ja) 赤外遮蔽フィルム
JP6225673B2 (ja) ウィンドウフィルム
JP2014085408A (ja) 熱線制御シート
JP2014137575A (ja) 光制御フィルムの製造方法
JP6447409B2 (ja) ウィンドウフィルム
JP2014160234A (ja) 熱線制御シートの製造方法、熱線制御シートおよび熱線制御シート付き窓
JP5750848B2 (ja) 画像表示装置用光学部材
WO2014157531A1 (ja) 熱線制御シート
JP6540161B2 (ja) 合わせガラス
JP6217880B2 (ja) 光制御部材およびそれを用いた光制御機能付き合わせガラス
JP2014137440A (ja) 光制御フィルムの製造方法
TW201736868A (zh) 光學體以及玻璃材
JP2014115359A (ja) 熱線制御シート
JP4691356B2 (ja) 画像表示装置用の視野角規制シート
JP2014174214A (ja) 熱線制御シート
WO2017175588A1 (ja) 光学体、窓材及びロールカーテン
JP2014115357A (ja) 熱線制御シートおよび熱線制御シート付き窓
JP2014115358A (ja) 熱線制御シートおよび熱線制御シート付き窓
JP6776546B2 (ja) 光制御シート、および合わせガラスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14772939

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14772939

Country of ref document: EP

Kind code of ref document: A1