WO2014156384A1 - オート・フォーカス装置およびその動作制御方法 - Google Patents

オート・フォーカス装置およびその動作制御方法 Download PDF

Info

Publication number
WO2014156384A1
WO2014156384A1 PCT/JP2014/053971 JP2014053971W WO2014156384A1 WO 2014156384 A1 WO2014156384 A1 WO 2014156384A1 JP 2014053971 W JP2014053971 W JP 2014053971W WO 2014156384 A1 WO2014156384 A1 WO 2014156384A1
Authority
WO
WIPO (PCT)
Prior art keywords
focus
evaluation value
lens
focus lens
unit
Prior art date
Application number
PCT/JP2014/053971
Other languages
English (en)
French (fr)
Inventor
江波戸 尚
隆久 佐藤
愛子 関谷
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2014156384A1 publication Critical patent/WO2014156384A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/34Systems for automatic generation of focusing signals using different areas in a pupil plane
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals
    • G02B7/38Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals measured at different points on the optical axis, e.g. focussing on two or more planes and comparing image data

Definitions

  • the present invention relates to an auto-focus device and an operation control method thereof.
  • the camera auto focus is roughly divided into phase difference AF and contrast AF.
  • phase difference AF light entering from a lens is divided into two parts and guided to a sensor for phase difference AF, and the direction and amount of focus are determined from two intervals formed.
  • Contrast AF is also placed at a position where the optical path length difference is different from that in which the focus lens is searched for a high contrast while moving the focus lens based on the image captured on the image sensor (focused image AF).
  • contrast AF optical path length difference AF
  • the optical path length difference AF is used. Both phase-difference AF and contrast AF are provided, and the most suitable AF is selected according to the subject's change and shooting conditions, preventing focus control in the wrong direction and unnecessary blurring. There is a thing to do (patent document 1).
  • Contrast AF can position the focus lens at the in-focus position with high accuracy, but the positioning range is limited to when the focus lens is within the allowable positioning range near the in-focus position. Positioning cannot be performed when there is a focus lens.
  • phase difference AF even if the focus lens is located far away from the in-focus position, it can be driven to the in-focus position, but the focus lens is not very accurately positioned at the in-focus position. is not.
  • Cited Document 1 it is not considered to make use of such features of the AF method.
  • An object of the present invention is to position the focus lens at the in-focus position by making use of the features of contrast AF and phase difference AF.
  • the autofocus device is based on the amount of focus deviation in the pupil division direction of the two subject images formed by dividing the light incident through the focus lens into two by pupil division.
  • a first in-focus evaluation value output unit for outputting a first in-focus evaluation value signal, and a first imaging in which optical path lengths are arranged at different positions in an optical path of light incident through a focus lens
  • a second focus evaluation value signal indicating a focus shift amount based on the output signal of the element, the second image sensor, the output signal of the first image sensor, and the output signal of the second image sensor.
  • the focus evaluation value output unit Output first focus evaluation value
  • the focus lens is moved based on the signal, and the second focus evaluation output from the second focus evaluation value output unit when the focus lens is closer to the position where the subject image is focused than the threshold position.
  • the focus lens is positioned at the position where the subject image is in focus based on the value signal, and the position where the focus lens is positioned by the focus lens movement unit is the focus.
  • the first position determination unit and the first position determination unit for determining whether or not the position of the lens is based on the first focus evaluation value signal output from the first focus evaluation value output unit.
  • a first movement control unit for controlling the focus / lens moving unit to move the focus / lens based on the first focusing evaluation value signal output from the first focusing evaluation value output unit. It is characterized by being.
  • the present invention also provides an operation control method suitable for an autofocus device. That is, in this method, the first focus evaluation value output unit shifts the position in the pupil division direction of two subject images formed by dividing the light incident through the focus lens into two by pupil division. A first focus evaluation value signal indicating the amount of focus shift based on the amount of light, and the second focus evaluation value output unit has optical path lengths in the optical paths of light incident through the focus lens.
  • a second focus evaluation value signal indicating a focus shift amount is output, and the focus / lens moving unit
  • the first focus evaluation value output unit outputs the first focus evaluation value when the position of the focus lens is far from the position where the subject image is in focus beyond the threshold value near the position where the subject image is in focus.
  • the focus evaluation value signal of If the focus lens is moved and the focus lens is closer to the position where the subject image is in focus than the threshold value position it is based on the second focus evaluation value signal output from the second focus evaluation value output unit.
  • the focus lens is positioned at the position where the subject image is in focus, and the position where the focus lens is positioned by the focus lens moving unit is the position of the focus lens where the subject image is focused. Is determined based on the first focus evaluation value signal output from the first focus evaluation value output unit, and the movement control unit uses the first position determination unit to focus the focus / lens moving unit. In response to determining that the position where the lens is positioned is not the position of the focus lens at which the subject image is in focus, the first focus evaluation value output unit outputs the first focus output value. Based on the focus evaluation value signal is for controlling the focus lens moving unit to move the focus lens.
  • the first AF sensor that can move the focus lens relatively quickly is not high in accuracy until the focus lens reaches a threshold position near the position where the subject image is focused.
  • the focus lens is moved on the basis of the first focus evaluation value signal output from.
  • the second AF sensor output from the second AF sensor that cannot be quickly moved but can be positioned at the focus position with high accuracy.
  • the focus lens is moved based on the in-focus evaluation value signal and positioned at the in-focus position.
  • the second focus evaluation value signal output from the second AF sensor may be determined to be positioned at the focus position when the focus lens is outside the allowable range. For this reason, if the imaging lens changes and the focus lens continues to position the focus lens based on the second focus evaluation value signal output from the second AF sensor, the focus lens is within the allowable range. It may be determined that the lens is positioned at the in-focus position even though it is not positioned at the in-focus position, and the in-focus state may not be achieved. For this reason, when the focus lens is moved based on the second focus evaluation value signal output from the second AF sensor and positioned at the focus position, the first AF sensor output from the first AF sensor.
  • the position of the focus lens positioned based on the second focus evaluation value signal output from the second AF sensor based on the first focus evaluation value signal is a position where the subject image is in focus If it is determined that the position is not such a position, the focus lens is moved based on the first focus evaluation value signal output from the first AF sensor. As a result, even if the focus lens is positioned based on the second focus evaluation value signal output from the second AF sensor due to a scene change or the like, it cannot be positioned at the focus position. It becomes possible to position in the focal position.
  • a second movement control unit that controls the focus / lens moving unit to move the focus / lens may be further provided.
  • the first focus evaluation output from the first focus evaluation value output unit in response to the focus lens moving toward the position where the subject image is focused and reaching the threshold position.
  • the focus lens position where the subject image determined based on the value signal is in focus and the subject image determined based on the second focus evaluation value signal output from the second focus evaluation value output unit A second position determining unit that determines whether or not the position of the focus lens to be matched may be further included.
  • the focus / lens moving unit outputs the second focus evaluation value signal output from the second focus evaluation value output unit in response to the determination that the second position determination unit matches.
  • the focus lens will be positioned at the position where the subject image is in focus.
  • the first focus evaluation value signal or the second focus evaluation value signal output from the first focus evaluation value output unit After the focus lens is positioned at a position where the subject image is in focus by the focus / lens moving unit, the first focus evaluation value signal or the second focus evaluation value signal output from the first focus evaluation value output unit. Focusing is performed based on the first focus evaluation value signal output from the first focus evaluation value output unit in response to a change in the second focus evaluation value signal output from the focus evaluation value output unit.
  • the position of the lens is farther from the in-focus position than the threshold position, and is expressed by the focus lens moving direction and the second in-focus evaluation value signal represented by the first in-focus evaluation value signal.
  • the first determination unit that determines whether or not the movement direction of the focus lens is coincident, and the position of the focus lens is farther from the in-focus position than the threshold position by the first determination unit.
  • a third movement control unit for controlling the focus lens moving unit to move the focus lens based on the first focusing evaluation value signal output from the first focusing evaluation value output unit. Further, it may be provided.
  • the first focus evaluation value signal or the second focus evaluation value signal output from the first focus evaluation value output unit After the focus lens is positioned at a position where the subject image is in focus by the focus / lens moving unit, the first focus evaluation value signal or the second focus evaluation value signal output from the first focus evaluation value output unit. Focusing is performed based on the first focus evaluation value signal output from the first focus evaluation value output unit in response to a change in the second focus evaluation value signal output from the focus evaluation value output unit.
  • the lens position is closer to the in-focus position than the threshold position, and is expressed by the focus lens moving direction and the second in-focus evaluation value signal represented by the first in-focus evaluation value signal.
  • the position of the focus lens is closer to the in-focus position than the threshold value position by the second determination section that determines whether or not the movement direction of the focus lens is not matched, and the second determination section.
  • a fourth movement control unit for controlling the focus lens moving unit to move the focus lens based on the second focus evaluation value signal output from the second focus evaluation value output unit. May be.
  • the structure of an imaging lens unit is shown.
  • the relationship between the image sensor for optical path length difference AF and the imaging position of a subject image is shown.
  • the relationship between the AF evaluation value and the focus / lens position is shown.
  • the relationship between the phase difference AF evaluation value and the focus / lens position is shown.
  • the relationship between the differential AF evaluation value and the focus / lens position is shown. It is a flowchart which shows a focusing process procedure. It is a flowchart which shows a focusing process procedure.
  • FIG. 1 shows an embodiment of the present invention, and shows an optical configuration of a part of a photographing lens unit 1 and a camera body 20 used for broadcasting or the like.
  • the taking lens unit 1 is detachably attached to the camera body 20.
  • the photographic lens unit 1 includes a focus lens (focus lens group) 2, a zoom lens (zoom lens group) 3, and a front relay so as to have an optical axis common to the optical axis O1 of the photographic lens unit 1
  • a lens (front relay / lens group) 5 and a rear relay / lens (rear relay / lens group) 7 are included.
  • a diaphragm 4 is arranged between the zoom lens 3 and the front relay lens 5 so that the optical axis O1 of the photographing lens unit 1 passes through the center.
  • a half mirror 6 is arranged between the front relay lens 5 and the rear relay lens 7.
  • the camera body 20 is provided with a color separation prism 21 having an optical axis common to the optical axis O1 of the photographing lens unit 1 when the photographing lens unit 1 is mounted.
  • the color separation prism 21 includes a first prism 22, a second prism 23, and a third prism 24, and incident light is separated into a red component, a green component, and a blue component.
  • An imaging CCD 26 and a third imaging CCD 27 are arranged.
  • the photographing lens unit 1 includes an AF relay lens (AF relay lens) that uses a part of the light reflected at the center of the half mirror 6 as an optical axis [optical axis for AF (auto focus)] O2.
  • Lens group 8 is provided.
  • a half mirror 40 (which may be a reflecting prism) is provided downstream of the AF relay lens 8.
  • a total reflection mirror 9 is provided after the half mirror 40.
  • An optical path length difference AF sensor 55 is provided in the total reflection direction of the total reflection mirror 9.
  • the optical path length difference AF sensor 55 includes a split prism 10 composed of a first prism 11 and a second prism 12.
  • a first AF CCD 13 and a second AF CCD 14 are provided on the exit surface of the first prism 11 and the exit surface of the second prism 12, respectively.
  • the light beam incident on the photographic lens unit 1 passes through the focus lens 2, zoom lens 3, aperture 4, front relay lens 5, half mirror 6 and rear relay lens 7, and enters the camera body 20. Led.
  • the light beam is decomposed into a red light component, a green light component, and a blue light component, respectively, and the first image pickup CCD 25, the second image pickup CCD 26, and the third image pickup device.
  • a subject image is formed on each of the CCDs 27 for use.
  • Video signals representing subject images of the red light component, the green light component, and the blue light component are output from the first imaging CCD 25, the second imaging CCD 26, and the third imaging CCD 27, respectively.
  • the light beam incident on the taking lens unit 1 is partially reflected by the half mirror 6.
  • the light beam reflected by the half mirror 6 passes through the AF relay lens 8 and is guided to the half mirror 40.
  • a part of the light incident on the half mirror 40 is reflected and incident on the phase difference sensor 41 included in the phase difference AF sensor 45.
  • the phase difference sensor 41 includes a condenser lens, a separator lens, and an image sensor (all not shown).
  • the light incident on the phase difference sensor 41 is condensed by the condenser lens and divided into two by the separator lens.
  • the light divided into two forms an image on the image sensor as two images.
  • the focus lens 2 can be controlled so that the focus lens 2 is focused from the interval between the two images.
  • the phase difference sensor 41 outputs video signals representing two images, and the evaluation value calculation circuit 42 generates a phase difference AF evaluation value representing the degree of focusing of the subject image obtained by imaging.
  • a signal representing the phase difference AF evaluation value (first focus evaluation value signal) is input to the selector 33 via the amplifier circuit 43.
  • the light transmitted through the half mirror 40 is totally reflected by the total reflection mirror 9.
  • the light beam totally reflected by the total reflection mirror 9 is incident on the splitting prism 10 included in the optical path length difference AF sensor 55, a part is incident on the first optical path length difference AF CCD 13, and the rest is the second optical path length.
  • the light enters the CCD 14 for difference AF.
  • An AF signal is output from each of the first optical path length difference AF CCD 13 and the second optical path length difference AF CCD 14.
  • Signals output from the first optical path length difference AF CCD 13 and the second optical path length difference AF CCD 14 are input to the evaluation value calculation circuits 51 and 52, respectively, and indicate the degree of focusing of the focus lens 2. Is evaluated. Signals representing the evaluation values calculated in the evaluation value calculation circuits 51 and 52 are supplied to the subtraction circuit 53. The signal representing the evaluation value calculated in the evaluation value calculating circuit 52 is subtracted in the subtracting circuit 53 from the signal representing the evaluation value calculated in the evaluation value calculating circuit 51 to obtain a differential AF evaluation value. A signal representing the differential AF evaluation value (second focus evaluation value signal) is amplified by the amplifier circuit 54 and is supplied to the selector 33.
  • the phase difference AF evaluation value signal output from the amplifier circuit 43 and the difference AF evaluation value signal output from the amplifier circuit 54 are also input to the switching control circuit 31.
  • the selector 33 is controlled based on the input phase difference AF evaluation value signal and the difference AF evaluation value signal, and the phase difference AF evaluation value signal output from the amplifier circuit 43 or the difference AF evaluation value signal output from the amplifier circuit 54 Either one is supplied to the gain control amplification circuit 34.
  • the gain control amplification circuit 34 the input signal is amplified and applied to the focus motor 35 as a control signal representing the rotation direction and the rotation speed.
  • the focus lens 2 is moved by the focus motor 35.
  • FIG. 2 shows the relationship between the optical distances of the first imaging CCD 25, the second imaging CCD 26, the third imaging CCD 27, the first optical path length difference AF CCD 13, and the second optical path length difference AF CCD 14. Is shown.
  • An optical system for causing light to enter the first imaging CCD 25, the second imaging CCD 26, the third imaging CCD 27, the first optical path length difference AF CCD 13, and the second optical path length difference AF CCD 14 is provided. Represented by lens 30.
  • the optical distances until the light enters the first imaging CCD 25, the second imaging CCD 26, and the third imaging CCD 27 are all equal.
  • the optical distance until the light enters the first optical path length difference AF CCD 13 is a predetermined distance from the first imaging CCD 25, the second imaging CCD 26, and the third imaging CCD 27.
  • the optical distance until the light enters the second optical path length difference AF CCD 14 is equal to a predetermined distance from the first imaging CCD 25, the second imaging CCD 26, and the third imaging CCD 27.
  • the first imaging CCD 25, the second imaging CCD 26, the third imaging CCD 27, the first optical path length difference AF CCD 13, and the second optical path length difference so as to be equal when they are arranged after a distance.
  • the positional relationship of the AF CCD 14 (optically equidistantly spaced positions) is defined. Temporarily, the first imaging CCD 25, the second imaging CCD 26, the third imaging CCD 27, the first optical path length difference AF CCD 13, and the second optical path length difference AF CCD 14 are arranged on the same optical axis. The first optical path length difference AF CCD 13 and the second optical path length difference AF CCD 14 are arranged at equally spaced positions before and after the first imaging CCD 25, the second imaging CCD 26, and the third imaging CCD 27. It is equivalent to what is done.
  • FIG. 3 shows the relationship between the AF evaluation value and the position of the focus lens 2.
  • a graph G51 is obtained from the evaluation value signal calculated by the evaluation value calculation circuit 51 based on the signal output from the first optical path length difference AF CCD 13, and the signal output from the second optical path length difference AF CCD 14 is obtained.
  • a graph G52 is obtained from the evaluation value signal calculated by the evaluation value calculation circuit 52 based on the above.
  • the first imaging CCD 25, the second imaging CCD 26, the third imaging CCD 27, the first optical path length difference AF CCD 13, and the second optical path length difference AF are assumed to be on the same optical axis.
  • the first optical path length difference AF CCD 13 and the second optical path length difference are arranged at equal intervals before and after the first imaging CCD 25, the second imaging CCD 26, and the third imaging CCD 27. Since this is equivalent to the arrangement of the AF CCD 14, at the intersections of the graphs G51 and G52 obtained from the signals of the first optical path length difference AF CCD 13 and the second optical path length difference AF CCD 14, respectively.
  • a certain focus lens position P0 is the position of the focus lens 2 where the subject image is focused on the first imaging CCD 25, the second imaging CCD 26, and the third imaging CCD 27.
  • FIG. 4 shows the relationship between the phase difference AF evaluation value and the position of the focus lens 2.
  • the horizontal axis indicates the position of the focus lens 2, and the vertical axis indicates the phase difference AF evaluation value.
  • the position of the focus lens 2 is determined from the relationship between the calculated phase difference AF evaluation value and the graph G0. For example, if the phase difference AF evaluation value calculated by the evaluation value calculation circuit 42 is D21 or D22, the position of the focus lens 2 is P11 or P12. If the phase difference AF evaluation value is 0, the position P0 of the focus lens 2 is substantially equal to the in-focus position at which the subject image is in focus. By moving the focus lens 2 so that the phase difference AF evaluation value becomes 0, the subject image is brought into focus.
  • the relationship between the AF evaluation value and the focus lens 2 is a stepped graph 0, and when the phase difference AF evaluation value is 0, the focus position P0 may not correspond completely.
  • threshold positions P1 and P2 in the vicinity of the focus position P0 are defined, and the focus lens 2 is located outside these threshold positions P1 and P2 (from the focus position P0).
  • the phase difference evaluation value is used (phase difference AF use range) as shown in FIG.
  • the focus lens 2 is positioned using the differential AF evaluation value shown in FIG. 5 (optical path length difference AF use range).
  • FIG. 5 is a graph G53 showing the relationship between the differential AF evaluation value signal output from the subtraction circuit 53 and the position of the focus lens 2.
  • the horizontal axis is the focus lens position, and the vertical axis is the differential AF evaluation value.
  • the positional relationship between the differential AF evaluation value and the focus lens 2 corresponds one to one. If the differential AF evaluation value is known, the position of the focus lens 2 between the position P11 of the focus lens 2 corresponding to the positive peak value D11 and the position P12 of the focus lens 2 corresponding to the negative peak value D12. I understand. The position of the focus lens 2 at which the differential AF evaluation value is 0 is the in-focus position.
  • the difference AF evaluation value indicates the difference between the graphs G51 and G52, and the focus lens 2 position P11 indicated by the positive peak value D11 and the focus peak indicated by the negative peak value D12. If there is no focus lens 2 between the lens 2 and the position P12, the focus lens 2 cannot be positioned at the focus position P0.
  • the distance between the position P11 and the position P12 is called an optical path length difference AF possible range based on the optical path length difference AF sensor 55. Further, in this embodiment, as described above, the range is within the optical path length difference AF possible range and between the first threshold value position P1 and the second threshold value position P2 near the in-focus position P0.
  • the focus lens 2 is positioned using the phase difference AF evaluation value obtained from the phase difference sensor 45 until the phase difference AF usage range is entered, but when the focus lens 2 enters the phase difference AF usage range.
  • the focus lens 2 is positioned using the differential AF evaluation value obtained from the optical path length difference AF sensor 55.
  • the focus lens 2 can be moved quickly by moving the focus lens 2 using the phase difference AF evaluation value obtained from the phase difference sensor 45.
  • the focus lens 2 can be accurately positioned at the in-focus position P0.
  • 6 and 7 are flowcharts showing the focusing processing procedure.
  • phase difference AF sensor 45 and the optical path length difference AF sensor 55 are driven, and based on the phase difference AF, the phase difference AF evaluation value and the optical path length difference indicating the amount of displacement from the focus position of the focus lens 2.
  • a differential AF evaluation value based on the AF is calculated (step 61).
  • the selector 34 is switched so that the focus lens 2 approaches the in-focus position P0 (step 62).
  • the phase difference AF evaluation value signal is used, since the focus lens 2 can be moved quickly, the time until focusing can be shortened. Focusing is performed using the phase difference AF evaluation value signal obtained from the phase difference AF sensor 45 until the focus lens 2 enters the optical path length difference AF use range beyond the threshold position P1 or P2 as shown in FIG. The lens 2 is moved (NO in step 63).
  • the position of the focus lens 2 determined based on the phase difference AF evaluation value signal obtained from the phase difference AF sensor 45 It is confirmed whether or not the position of the focus lens 2 determined based on the differential AF evaluation value signal obtained from the optical path length difference AF sensor 55 is substantially the same (step 64). If they are not substantially the same (NO in step 64), it is considered that some kind of error has occurred, and a predetermined error process is performed. However, the focus lens 2 may be moved to the in-focus position P0 using the phase difference AF evaluation value signal obtained from the phase difference AF sensor 45.
  • the focus lens is based on the differential AF evaluation value signal obtained from the optical path length difference AF sensor 55 in order to accurately position the focus lens 2 at the in-focus position P0. 2 is moved (step 65).
  • the focus lens 2 is positioned at the focus position P0 based on the differential AF evaluation value signal (YES in step 66)
  • the phase difference AF evaluation obtained from the phase difference sensor 45 as to whether or not the focus position is correct is obtained.
  • a determination is made based on the value signal (step 67).
  • the focus / lens 2 can be positioned using the differential AF evaluation value signal obtained from the optical path length difference AF sensor 55 due to a change in the imaging scene or the like. It is considered that the focus lens 2 has moved outside the positioning allowable range. For this purpose, the focus lens 2 is moved again using the phase difference AF evaluation value signal obtained from the phase difference AF sensor 45 (step 62).
  • step 68 If it is determined that the in-focus position is correct (YES in step 68), whether the value of the phase difference AF evaluation value signal or the value of the difference AF evaluation value signal has changed to some extent (the position of the focus lens 2 is the optical path length). It is confirmed whether or not the difference AF is out of use range (step 69).
  • the value of the phase difference AF evaluation value signal or the difference AF evaluation value signal changes to some extent (YES in step 69)
  • the moving direction of the lens 2 and the moving direction of the focus lens 2 known from the optical path length difference AF evaluation value signal are the same (step 70).
  • step 70 the focus lens 2 is moved using the phase difference AF evaluation value signal faster than the focus lens 2 is moved using the difference AF evaluation value signal. Since control is possible, the focus lens is moved again using the phase difference AF evaluation value signal (step 62).
  • the focus lens 2 is in the optical path. It is confirmed whether or not the long difference AF is possible (step 71). If the focus lens 2 is out of the optical path length difference AF possible range (YES in step 71), the focus lens 2 cannot be positioned using the differential AF evaluation value signal, so the phase difference AF evaluation value signal is used. The focus lens 2 is moved (step 62).
  • the focus control based on the optical path length difference AF sensor 55 is more reliable than the focus control based on the phase difference AF sensor 45. Therefore, focusing control based on the optical path length difference AF sensor 55 is continued as it is.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Automatic Focus Adjustment (AREA)
  • Studio Devices (AREA)
  • Focusing (AREA)

Abstract

 光路長差AFと位相差AFとの特徴を生かす。 フォーカス・レンズが光路長差AF使用範囲内に入るまでは位相差AFを用いてフォーカス・レンズを移動する。フォーカス・レンズが光路長差AF使用範囲内に入ると,光路長差AFを利用してフォーカス・レンズが合焦位置P0に位置決めされる。撮像シーン変化などにより,フォーカス・レンズがフォーカス位置決め許容範囲内であるが,光路長差AF使用範囲外となってしまうと,位相差AFを利用してフォーカス・レンズが再び移動させられる。

Description

オート・フォーカス装置およびその動作制御方法
 この発明は,オート・フォーカス装置およびその動作制御方法に関する。
 カメラのオート・フォーカスは,大別して位相差AF,コントラストAFがある。位相差AFは,レンズから入った光を二つに分けて位相差AF用のセンサに導き,結像した二つの間隔からピントの方向と量を判断するものである。コントラストAFは,さらに、撮像素子に写った画像をもとにフォーカス・レンズを動かしながらコントラストが大きいところを探してピントを合わせるもの(撮像画AF)と、光路長差が異なる位置に配置された二つの撮像素子で被写体を撮像し,それぞれの撮像素子から得られた画像信号にもとづいてピントを合わせるコントラストAF(光路長差AF)があり、放送用テレビ・カメラに装着されるレンズのコントラストAFとしては、光路長差AFが利用される。位相差AFとコントラストAFとの両方のAFが設けられており,被写体の変化や撮影状況に応じて最適なAFを選択し,誤った方向へのフォーカス制御や不要なボケの発生を未然に防止するというものもある(特許文献1)。
特許第4775930号
 コントラストAFは,高精度にフォーカス・レンズを合焦位置に位置決めできるが,その位置決め範囲はフォーカス・レンズが合焦位置近傍にある位置決め許容範囲内にある場合に限られ,その位置決め許容範囲外にフォーカス・レンズがある場合には位置決めできない。これに対して,位相差AFでは、合焦位置から大きく外れた位置にフォーカス・レンズがあっても、合焦位置への駆動を行える反面、フォーカス・レンズの合焦位置への位置決めはあまり正確ではない。引用文献1においては,このようなAF方式の特徴を生かすことは考えられていない。
 この発明は,コントラストAF,位相差AFの特徴を生かしてフォーカス・レンズを合焦位置に位置決めすることを目的とする。
 この発明によるオート・フォーカス装置は,フォーカス・レンズを通って入射する光が瞳分割により二つに分けられて結像する二つの被写体像の瞳分割方向の位置ずれ量にもとづいてピントのずれ量を示す第1の合焦評価値信号を出力する第1の合焦評価値出力部,フォーカス・レンズを通って入射する光の光路において,光路長が互いに異なる位置に配置された第1の撮像素子および第2の撮像素子,第1の撮像素子の出力信号と第2の撮像素子の出力信号とにもとづいてピントのずれ量を示す第2の合焦評価値信号を出力する第2の合焦評価値出力部,フォーカス・レンズの位置が,被写体像が合焦する位置近傍のしきい値以上に被写体像が合焦する位置から離れている場合は第1の合焦評価値出力部から出力される第1の合焦評価値信号にもとづいてフォーカス・レンズを移動し,フォーカス・レンズがしきい値位置よりも被写体像が合焦する位置に近い場合は第2の合焦評価値出力部から出力する第2の合焦評価値信号にもとづいてフォーカス・レンズを,被写体像が合焦する位置に位置決めするフォーカス・レンズ移動部,フォーカス・レンズ移動部によってフォーカス・レンズが位置決めされた位置が,被写体像が合焦するフォーカス・レンズの位置かどうかを,第1の合焦評価値出力部から出力した第1の合焦評価値信号にもとづいて判定する第1の位置判定部,ならびに第1の位置判定部によって,フォーカス・レンズ移動部によってフォーカス・レンズが位置決めされた位置が,被写体像が合焦するフォーカス・レンズの位置ではないと判定されたことに応じて,第1の合焦評価値出力部から出力される第1の合焦評価値信号にもとづいてフォーカス・レンズを移動するようにフォーカス・レンズ移動部を制御する第1の移動制御部を備えていることを特徴とする。
 この発明は,オート・フォーカス装置に適した動作制御方法も提供している。すなわち,この方法は,第1の合焦評価値出力部が,フォーカス・レンズを通って入射する光が瞳分割により二つに分けられて結像する二つの被写体像の瞳分割方向の位置ずれ量にもとづいてピントのずれ量を示す第1の合焦評価値信号を出力し,第2の合焦評価値出力部が,フォーカス・レンズを通って入射する光の光路において,光路長が互いに異なる位置に配置された第1の撮像素子および第2の撮像素子のそれぞれの出力信号とにもとづいてピントのずれ量を示す第2の合焦評価値信号を出力し,フォーカス・レンズ移動部が,フォーカス・レンズの位置が,被写体像が合焦する位置近傍のしきい値以上に被写体像が合焦する位置から離れている場合は第1の合焦評価値出力部から出力される第1の合焦評価値信号にもとづいてフォーカス・レンズを移動し,フォーカス・レンズがしきい値位置よりも被写体像が合焦する位置に近い場合は第2の合焦評価値出力部から出力する第2の合焦評価値信号にもとづいてフォーカス・レンズを,被写体像が合焦する位置に位置決めし,位置判定部が,フォーカス・レンズ移動部によってフォーカス・レンズが位置決めされた位置が,被写体像が合焦するフォーカス・レンズの位置かどうかを,第1の合焦評価値出力部から出力した第1の合焦評価値信号にもとづいて判定し,移動制御部が,第1の位置判定部によって,フォーカス・レンズ移動部によってフォーカス・レンズが位置決めされた位置が,被写体像が合焦するフォーカス・レンズの位置ではないと判定されたことに応じて,第1の合焦評価値出力部から出力される第1の合焦評価値信号にもとづいてフォーカス・レンズを移動するようにフォーカス・レンズ移動部を制御するものである。
 この発明によると,フォーカス・レンズが,被写体像が合焦する位置近傍のしきい値位置となるまでは,精度は高く無いが比較的速くフォーカス・レンズを移動させることができる第1のAFセンサから出力される第1の合焦評価値信号にもとづいてフォーカス・レンズが移動させられる。フォーカス・レンズが,被写体像が合焦する位置近傍のしきい値位置となると,フォーカス・レンズの移動を速くできないが高精度に合焦位置に位置決めできる第2のAFセンサから出力される第2の合焦評価値信号にもとづいてフォーカス・レンズが移動させられ,合焦位置に位置決めされる。
 第2のAFセンサから出力される第2の合焦評価値信号は,許容範囲外にフォーカス・レンズがある場合には,合焦位置に位置決めされていると判断されてしまうことがある。このために,撮像シーンが変化してフォーカス・レンズが第2のAFセンサから出力される第2の合焦評価値信号にもとづいてフォーカス・レンズの位置決めを続けているとフォーカス・レンズが許容範囲外となり,合焦位置に位置決めされていないにもかかわらず,合焦位置に位置決めされていると判断され,合焦できないことがある。このために,第2のAFセンサから出力される第2の合焦評価値信号にもとづいてフォーカス・レンズが移動させられ,合焦位置に位置決めされると,第1のAFセンサから出力する第1の合焦評価値信号にもとづいて,第2のAFセンサから出力される第2の合焦評価値信号にもとづいて位置決めされたフォーカス・レンズの位置が,被写体像が合焦する位置かどうかが判定され,そのような位置ではないと判定されると第1のAFセンサから出力する第1の合焦評価値信号にもとづいてフォーカス・レンズが移動させられる。これにより、シーン変化などにより,第2のAFセンサから出力される第2の合焦評価値信号にもとづいてフォーカス・レンズが位置決めされると,合焦位置に位置決めできなくなるような場合でも,合焦位置に位置決めできるようになる。
 第1の移動制御部によるフォーカス・レンズ移動部の制御によりフォーカス・レンズが移動されたことに応じて,第2の合焦評価値出力部から出力される第2の合焦評価値信号にもとづいてフォーカス・レンズを移動するようにフォーカス・レンズ移動部を制御する第2の移動制御部をさらに備えるようにしてもよい。また,フォーカス・レンズが,被写体像が合焦する位置に向けて移動してしきい値位置となったことに応じて第1の合焦評価値出力部から出力される第1の合焦評価値信号にもとづいて定められる被写体像が合焦するフォーカス・レンズの位置と第2の合焦評価値出力部から出力される第2の合焦評価値信号にもとづいて定められる被写体像が合焦するフォーカス・レンズの位置とが一致するかどうかを判定する第2の位置判定部をさらに備えてもよい。その場合,フォーカス・レンズ移動部は,記第2の位置判定部によって一致すると判定されたことに応じて,第2の合焦評価値出力部から出力される第2の合焦評価値信号にもとづいてフォーカス・レンズを,被写体像が合焦する位置に位置決めするものとなろう。
 フォーカス・レンズ移動部によりフォーカス・レンズが,被写体像が合焦する位置に位置決めされた後に,第1の合焦評価値出力部から出力される第1の合焦評価値信号または第2の合焦評価値出力部から出力される第2の合焦評価値信号が変化したことに応じて,第1の合焦評価値出力部から出力される第1の合焦評価値信号にもとづいてフォーカス・レンズの位置が,しきい値位置よりも合焦位置から遠い位置となり,かつ第1の合焦評価値信号によって表されるフォーカス・レンズの移動方向および第2の合焦評価値信号によって表されるフォーカス・レンズの移動方向に一致しているかどうかを判定する第1の判定部,および第1の判定部によってフォーカス・レンズの位置が,しきい値位置よりも合焦位置から遠い位置となり,かつ第1の合焦評価値信号によって表されるフォーカス・レンズの移動方向および第2の合焦評価値信号によって表されるフォーカス・レンズの移動方向に一致していると判定されたことに応じて,第1の合焦評価値出力部から出力される第1の合焦評価値信号にもとづいてフォーカス・レンズを移動するようにフォーカス・レ ンズ移動部を制御する第3の移動制御部をさらに備えてもよい。
 フォーカス・レンズ移動部によりフォーカス・レンズが,被写体像が合焦する位置に位置決めされた後に,第1の合焦評価値出力部から出力される第1の合焦評価値信号または第2の合焦評価値出力部から出力される第2の合焦評価値信号が変化したことに応じて,第1の合焦評価値出力部から出力される第1の合焦評価値信号にもとづいてフォーカス・レンズの位置が,しきい値位置よりも合焦位置に近い位置となり,かつ第1の合焦評価値信号によって表されるフォーカス・レンズの移動方向および第2の合焦評価値信号によって表されるフォーカス・レンズの移動方向に一致していないどうかを判定する第2の判定部,および第2の判定部によってフォーカス・レンズの位置が,しきい値位置よりも合焦位置から近い位置となり,かつ第1の合焦評価値信号によって表されるフォーカス・レンズの移動方向および第2の合焦評価値信号によって表されるフォーカス・レンズの移動方向に一致していないと判定されたことに応じて,第2の合焦評価値出力部から出力される第2の合焦評価値信号にもとづいてフォーカス・レンズを移動するようにフォーカス・レンズ 移動部を制御する第4の移動制御部をさらに備えてもよい。
撮像レンズ・ユニットの構成を示している。 光路長差AF用撮像素子と被写体像の結像位置との関係を示している。 AF評価値とフォーカス・レンズ位置との関係を示している。 位相差AF評価値とフォーカス・レンズ位置との関係を示している。 差分AF評価値とフォーカス・レンズ位置との関係を示している。 合焦処理手順を示すフローチャートである。 合焦処理手順を示すフローチャートである。
 図1は,この発明の実施例を示すもので,放送用などに利用される撮影レンズ・ユニット1とカメラ本体20の一部の光学的構成を示している。
 撮影レンズ・ユニット1は着脱自在にカメラ本体20に装着されている。
 撮影レンズ・ユニット1には,撮影レンズ・ユニット1の光軸O1と共通の光軸をもつようにフォーカス・レンズ(フォーカス・レンズ群)2,ズーム・レンズ(ズーム・レンズ群)3,前側リレー・レンズ(前側リレー・レンズ群)5および後側リレー・レンズ(後側リレー・レンズ群)7が含まれている。ズーム・レンズ3と前側リレー・レンズ5との間には,撮影レンズ・ユニット1の光軸O1が中心を通るように絞り4が配置されている。また,前側リレー・レンズ5と後側リレー・レンズ7との間にはハーフ・ミラー6が配置されている。
 カメラ本体20には,撮影レンズ・ユニット1が装着されたときに撮影レンズ・ユニット1の光軸O1と共通の光軸をもつ色分解プリズム21が設けられている。この色分解プリズム21には,第1のプリズム22,第2のプリズム23および第3のプリズム24が含まれており,入射した光が赤色成分,緑色成分および青色成分に分解される。第1のプリズム22の出射面に対向する位置,第2のプリズム23の出射面に対向する位置および第3のプリズム24の出射面に対向する位置に,第1の撮像用CCD25,第2の撮像用CCD26および第3の撮像用CCD27がそれぞれ配置されている。
 さらに,撮影レンズ・ユニット1には,ハーフ・ミラー6の中心で反射した一部の光を光軸[AF(オート・フォーカス)用光軸]O2とするAF用リレー・レンズ(AF用リレー・レンズ群)8が設けられている。AF用リレー・レンズ8の後段にはハーフ・ミラー40(反射プリズムでもよい)が設けられている。また,ハーフ・ミラー40の後段には全反射ミラー9が設けられている。
 全反射ミラー9の全反射方向には光路長差AFセンサ55が設けられている。光路長差AFセンサ55には第1のプリズム11と第2のプリズム12とから構成される分割プリズム10が含まれている。第1のプリズム11の出射面および第2のプリズム12の出射面には第1のAF用CCD13および第2のAF用CCD14がそれぞれ設けられている。
 撮影レンズ・ユニット1に入射した光線束は,フォーカス・レンズ2,ズーム・レンズ3,絞り4,前側リレー・レンズ5,ハーフ・ミラー6および後側リレー・レンズ7を透過してカメラ本体20に導かれる。カメラ本体20に含まれる光分解プリズム21において,光線束は,赤色光成分,緑色光成分および青色光成分にそれぞれ分解され,第1の撮像用CCD25,第2の撮像用CCD26および第3の撮像用CCD27のそれぞれにおいて被写体像が結像する。第1の撮像用CCD25,第2の撮像用CCD26および第3の撮像用CCD27のそれぞれから赤色光成分,緑色光成分および青色光成分の被写体像を表わす映像信号が出力されることとなる。
 撮影レンズ・ユニット1に入射した光線束は,ハーフ・ミラー6において一部が反射する。ハーフ・ミラー6において反射した光線束は,AF用リレー・レンズ8を透過し,ハーフ・ミラー40に導かれる。
 ハーフ・ミラー40に入射した光の一部は反射して位相差AFセンサ45に含まれる位相差センサ41に入射する。
 位相差センサ41には集光レンズ,セパレータ・レンズおよび撮像素子(いずれも図示略)が含まれている。位相差センサ41に入射した光が集光レンズによって集光され,かつセパレータ・レンズによって二つに分けられる。二つに分けられた光が撮像素子上で二つの画像として結像する。二つの画像の間隔からフォーカス・レンズ2が合焦するようにフォーカス・レンズ2を制御できる。位相差センサ41からは,二つの画像を表わす映像信号が出力され,評価値算出回路42において,撮像によって得られた被写体像の合焦の程度を表わす位相差AF評価値が生成される。位相差AF評価値を表わす信号(第1の合焦評価値信号)は増幅回路43を介してセレクタ33に入力する。
 ハーフ・ミラー40を透過した光は,全反射ミラー9において全反射する。全反射ミラー9において全反射した光線束は光路長差AFセンサ55に含まれる分割プリズム10に入射し,一部が第1の光路長差AF用CCD13に入射し,残りが第2の光路長差AF用CCD14に入射する。第1の光路長差AF用CCD13および第2の光路長差AF用CCD14のそれぞれからAF用の信号が出力することとなる。
 第1の光路長差AF用CCD13および第2の光路長差AF用CCD14からそれぞれ出力した信号は評価値算出回路51および52にそれぞれに入力し,フォーカス・レンズ2の合焦の程度を表わすそれぞれの評価値が算出される。評価値算出回路51および52のそれぞれにおいて算出された評価値を表わす信号は,減算回路53に与えられる。評価値算出回路51において算出された評価値を表わす信号から,評価値算出回路52において算出された評価値を表わす信号が,減算回路53において減算され,差分AF評価値が得られる。差分AF評価値を表わす信号(第2の合焦評価値信号)が増幅回路54において増幅されてセレクタ33に与えられる。
 増幅回路43から出力した位相差AF評価値信号および増幅回路54から出力した差分AF評価値信号は,切替制御回路31にも入力する。入力した位相差AF評価値信号および差分AF評価値信号にもとづいてセレクタ33が制御され,増幅回路43から出力される位相差AF評価値信号または増幅回路54から出力される差分AF評価値信号のいずれかがゲイン制御増幅回路34に与えられる。ゲイン制御増幅回路34において,入力した信号が増幅されて,回転方向および回転速度を表わす制御信号としてフォーカス・モータ35に与えられる。フォーカス・モータ35によってフォーカス・レンズ2が移動させられる。
 図2は,第1の撮像用CCD25,第2の撮像用CCD26および第3の撮像用CCD27ならびに第1の光路長差AF用CCD13および第2の光路長差AF用CCD14の光学的距離の関係を示している。
 第1の撮像用CCD25,第2の撮像用CCD26および第3の撮像用CCD27ならびに第1の光路長差AF用CCD13および第2の光路長差AF用CCD14に光を入射させるための光学系がレンズ30によって表わされている。
 第1の撮像用CCD25,第2の撮像用CCD26および第3の撮像用CCD27に入射するまでの光学的距離は,いずれも等しい。これに対して,第1の光路長差AF用CCD13に入射するまでの光学的距離は,第1の撮像用CCD25,第2の撮像用CCD26および第3の撮像用CCD27から所定の距離だけ前に配置された場合に等しく,第2の光路長差AF用CCD14に入射するまでの光学的距離は,第1の撮像用CCD25,第2の撮像用CCD26および第3の撮像用CCD27から所定の距離だけ後に配置された場合に等しくなるように,第1の撮像用CCD25,第2の撮像用CCD26および第3の撮像用CCD27ならびに第1の光路長差AF用CCD13および第2の光路長差AF用CCD14の位置関係(光学的に前後等間隔の位置)が規定されている。仮に同一光軸上に第1の撮像用CCD25,第2の撮像用CCD26および第3の撮像用CCD27ならびに第1の光路長差AF用CCD13および第2の光路長差AF用CCD14が配置されると,第1の撮像用CCD25,第2の撮像用CCD26および第3の撮像用CCD27の前後等間隔の位置に第1の光路長差AF用CCD13および第2の光路長差AF用CCD14が配置されていることと等価となる。
 図3は,AF評価値とフォーカス・レンズ2の位置との関係を示している。
 第1の光路長差AF用CCD13から出力される信号にもとづいて評価値算出回路51において算出された評価値信号からグラフG51が得られ,第2の光路長差AF用CCD14から出力される信号にもとづいて評価値算出回路52において算出された評価値信号からグラフG52が得られる。
 上述したように,仮に同一光軸上に第1の撮像用CCD25,第2の撮像用CCD26および第3の撮像用CCD27ならびに第1の光路長差AF用CCD13および第2の光路長差AF用CCD14が配置されると,第1の撮像用CCD25,第2の撮像用CCD26および第3の撮像用CCD27の前後等間隔の位置に第1の光路長差AF用CCD13および第2の光路長差AF用CCD14が配置されていることと等価であるから,第1の光路長差AF用CCD13および第2の光路長差AF用CCD14のそれぞれの信号から得られたグラフG51およびG52との交点であるフォーカス・レンズ位置P0が,第1の撮像用CCD25,第2の撮像用CCD26および第3の撮像用CCD27に被写体像が合焦するフォーカス・レンズ2の位置となる。
 図4は,位相差AF評価値とフォーカス・レンズ2の位置との関係を示している。横軸がフォーカス・レンズ2の位置を示し,縦軸が位相差AF評価値を示している。
 評価値算出回路42において位相差AF評価値が算出されると,算出された位相差AF評価値とグラフG0との関係からフォーカス・レンズ2の位置が分る。たとえば,評価値算出回路42において算出された位相差AF評価値がD21またはD22であれば,フォーカス・レンズ2の位置は,P11またはP12である。また,位相差AF評価値が0であれば,フォーカス・レンズ2の位置P0は被写体像が合焦する合焦位置とほぼ等しい。位相差AF評価値が0となるようにフォーカス・レンズ2が移動させられることにより被写体像が合焦することとなる。
 AF評価値とフォーカス・レンズ2との関係はステップ状のグラフ0となり,位相差AF評価値が0のときに合焦位置P0は完全には対応しないことがある。
 また,この実施例では,合焦位置P0近傍のしきい値位置P1およびP2が規定されており,フォーカス・レンズ2が,これらのしきい値位置P1およびP2よりも外側(合焦位置P0から遠くなる位置)にフォーカス・レンズ2がある場合には図4に示すように位相差評価値が利用される(位相差AF使用範囲)。これに対して,フォーカス・レンズ2がしきい値位置P1からP2の間にあるときには図5に示す差分AF評価値を利用してフォーカス・レンズ2が位置決めされる(光路長差AF使用範囲)。
 図5は,減算回路53から出力される差分AF評価値信号とフォーカス・レンズ2の位置と関係を示すグラフG53である。横軸がフォーカス・レンズ位置であり,縦軸が差分AF評価値である。
 差分AF評価値の正のピーク値D11と負のピーク値D12との間では,差分AF評価値とフォーカス・レンズ2の位置関係は一対一に対応する。差分AF評価値が分れば,正のピーク値D11に対応するフォーカス・レンズ2の位置P11と負のピーク値D12に対応するフォーカス・レンズ2の位置P12との間におけるフォーカス・レンズ2の位置も分る。差分AF評価値が0となるフォーカス・レンズ2の位置が合焦位置である。
 差分AF評価値は,図3に示すようにグラフG51とG52との差分を示しており,正のピーク値D11で示されるフォーカス・レンズ2の位置P11と負のピーク値D12で示されるフォーカス・レンズ2の位置P12との間にフォーカス・レンズ2が無ければ,フォーカス・レンズ2を合焦位置P0に位置決めできない。その位置P11と位置P12との間を光路長差AFセンサ55にもとづく光路長差AF可能範囲と呼ぶこととする。また,この実施例では,上述のように光路長差AF可能範囲内であって,合焦位置P0近傍の第1のしきい値位置P1と第2のしきい値位置P2との間の範囲(位相差AF使用範囲)に入るまでは位相差センサ45から得られる位相差AF評価値を利用してフォーカス・レンズ2が位置決めされるが,位相差AF使用範囲にフォーカス・レンズ2が入ると光路長差AFセンサ55から得られる差分AF評価値を利用してフォーカス・レンズ2が位置決めされる。位相差AF範囲外にフォーカス・レンズ2があるときには,位相差センサ45から得られる位相差AF評価値を利用してフォーカス・レンズ2を移動するとフォーカス・レンズ2を速く移動させることができるのに対して,光路長差AFセンサ55から得られる差分AF評価値を利用してフォーカス・レンズ2を移動した方がフォーカス・レンズ2を合焦位置P0に正確に位置決めできるからである。
 図6および図7は,合焦処理手順を示すフローチャートである。
 位相差AFセンサ45および光路長差AFセンサ55の両方のセンサが駆動され,位相差AFにもとづいてフォーカス・レンズ2の合焦位置からの位置ずれ量を示す位相差AF評価値および光路長差AFにもとづく差分AF評価値が算出される(ステップ61)。
 まず,位相差AFセンサ45から得られる位相差AF評価値信号を利用して,フォーカス・レンズ2が合焦位置P0に近づくようにセレクタ34が切り替えられる(ステップ62)。位相差AF評価値信号を利用する場合には,フォーカス・レンズ2を速く移動させることができるので合焦までの時間を短縮できる。フォーカス・レンズ2が図5に示すようにしきい値位置P1またはP2を越えて光路長差AF使用範囲内に入るまで,位相差AFセンサ45から得られる位相差AF評価値信号を利用してフォーカス・レンズ2が移動させられる(ステップ63でNO)。
 フォーカス・レンズ2が光路長差AF使用範囲内に入ると(ステップ63でYES),位相差AFセンサ45から得られた位相差AF評価値信号にもとづいて決定されるフォーカス・レンズ2の位置と光路長差AFセンサ55から得られた差分AF評価値信号にもとづいて決定されるフォーカス・レンズ2の位置とがほぼ同じかどうかが確認される(ステップ64)。ほぼ同じでなければ(ステップ64でNO),何らかのエラーが生じたと考えられるので所定のエラー処理が行われる。もっとも,位相差AFセンサ45から得られる位相差AF評価値信号を利用してフォーカス・レンズ2を合焦位置P0に移動するようにしてもよい。
 ほぼ同じと考えられると(ステップ64でYES),フォーカス・レンズ2を正確に合焦位置P0に位置決めするために光路長差AFセンサ55から得られた差分AF評価値信号にもとづいてフォーカス・レンズ2が移動させられる(ステップ65)。差分AF評価値信号にもとづいてフォーカス・レンズ2が合焦位置P0に位置決めされると(ステップ66でYES),その合焦位置が正しい位置かどうかが位相差センサ45から得られる位相差AF評価値信号にもとづいて判定される(ステップ67)。合焦位置が正しくないと判定されると(ステップ68でNO),撮像シーン変化などにより光路長差AFセンサ55からえられる差分AF評価値信号を用いてフォーカス・レンズ2の位置決めが可能なフォーカス位置決め許容範囲外にフォーカス・レンズ2が動いてしまったものと考えられる。このために,再び位相差AFセンサ45から得られる位相差AF評価値信号を用いてフォーカス・レンズ2が移動させられる(ステップ62)。
 合焦位置が正しいと判定されると(ステップ68でYES),位相差AF評価値信号の値または差分AF評価値信号の値が,ある程度変化したかどうか(フォーカス・レンズ2の位置が光路長差AF使用範囲外となったかどうか)が確認される(ステップ69)。位相差AF評価値信号または差分AF評価値信号の値がある程度変化すると(ステップ69でYES),フォーカス・レンズ2が光路長差AF可能範囲内にある場合に位相差AF評価値信号から分かるフォーカス・レンズ2の移動方向と光路長差AF評価値信号から分かるフォーカス・レンズ2の移動方向が同じかどうかが確認される(ステップ70)。同じであれば(ステップ70でYES),差分AF評価値信号を用いてフォーカス・レンズ2を移動させるよりも位相差AF評価値信号を用いてフォーカス・レンズ2を移動させた方が速く合焦制御できるので,位相差AF評価値信号を用いて再度フォーカス・レンズが移動させられる(ステップ62)。
 位相差AF評価値信号から分かるフォーカス・レンズ2の移動方向と光路長差AF評価値信号から分かるフォーカス・レンズ2の移動方向が同じでなければ(ステップ70でNO),フォーカス・レンズ2が光路長差AF可能範囲外かどうかが確認される(ステップ71)。フォーカス・レンズ2が光路長差AF可能範囲外であると(ステップ71でYES),差分AF評価値信号を用いてフォーカス・レンズ2を位置決めすることができないので位相差AF評価値信号を用いてフォーカス・レンズ2が移動させられる(ステップ62)。フォーカス・レンズ2が光路長差AFのフォーカス位置決め範囲内であると(ステップ71でNO),光路長差AFセンサ55にもとづく合焦制御を位相差AFセンサ45にもとづく合焦制御よりも信頼性が高いと見なして,そのまま光路長差AFセンサ55にもとづく合焦制御が続けられる。
13,14 光路長差AF用撮像素子
30 制御装置
31 切替制御回路
33 セレクタ
34 ゲイン制御増幅回路
41 位相差センサ
42,51,52 評価値算出回路
45 位相差AFセンサ
55 光路長差AFセンサ

Claims (6)

  1.  フォーカス・レンズを通って入射する光が瞳分割により二つに分けられて結像する二つの被写体像の瞳分割方向の位置ずれ量にもとづいてピントのずれ量を示す第1の合焦評価値信号を出力する第1の合焦評価値出力部,
     前記フォーカス・レンズを通って入射する光の光路において,光路長が互いに異なる位置に配置された第1の撮像素子および第2の撮像素子,
     前記第1の撮像素子の出力信号と前記第2の撮像素子の出力信号とにもとづいてピントのずれ量を示す第2の合焦評価値信号を出力する第2の合焦評価値出力部,
     前記フォーカス・レンズの位置が,被写体像が合焦する位置近傍のしきい値以上に被写体像が合焦する位置から離れている場合は前記第1の合焦評価値出力部から出力される第1の合焦評価値信号にもとづいて前記フォーカス・レンズを移動し,前記フォーカス・レンズが前記しきい値位置よりも被写体像が合焦する位置に近い場合は前記第2の合焦評価値出力部から出力する第2の合焦評価値信号にもとづいて前記フォーカス・レンズを,被写体像が合焦する位置に位置決めするフォーカス・レンズ移動部,
     前記フォーカス・レンズ移動部によって前記フォーカス・レンズが位置決めされた位置が,被写体像が合焦する前記フォーカス・レンズの位置かどうかを,前記第1の合焦評価値出力部から出力した第1の合焦評価値信号にもとづいて判定する第1の位置判定部,ならびに
     前記第1の位置判定部によって,前記フォーカス・レンズ移動部によって前記フォーカス・レンズが位置決めされた位置が,被写体像が合焦する前記フォーカス・レンズの位置ではないと判定されたことに応じて,前記第1の合焦評価値出力部から出力される第1の合焦評価値信号にもとづいて前記フォーカス・レンズを移動するように前記フォーカス・レンズ移動部を制御する第1の移動制御部,
     を備えたオート・フォーカス装置。
  2.  前記第1の移動制御部による前記フォーカス・レンズ移動部の制御により前記フォーカス・レンズが移動されたことに応じて,前記第2の合焦評価値出力部から出力される第2の合焦評価値信号にもとづいて前記フォーカス・レンズを移動するように前記フォーカス・レンズ移動部を制御する第2の移動制御部,
     をさらに備えた請求項1に記載のオート・フォーカス装置。
  3.  前記フォーカス・レンズが,被写体像が合焦する位置に向けて移動して前記しきい値位置となったことに応じて前記第1の合焦評価値出力部から出力される第1の合焦評価値信号にもとづいて定められる被写体像が合焦する前記フォーカス・レンズの位置と前記第2の合焦評価値出力部から出力される第2の合焦評価値信号にもとづいて定められる被写体像が合焦する前記フォーカス・レンズの位置とが一致するかどうかを判定する第2の位置判定部をさらに備え,
     前記フォーカス・レンズ移動部は,
     前記第2の位置判定部によって一致すると判定されたことに応じて,前記第2の合焦評価値出力部から出力される第2の合焦評価値信号にもとづいて前記フォーカス・レンズを,被写体像が合焦する位置に位置決めするものである,
     請求項1または2に記載のオート・フォーカス装置。
  4.  前記フォーカス・レンズ移動部により前記フォーカス・レンズが,被写体像が合焦する位置に位置決めされた後に,前記第1の合焦評価値出力部から出力される第1の合焦評価値信号または前記第2の合焦評価値出力部から出力される第2の合焦評価値信号が変化したことに応じて,前記第1の合焦評価値出力部から出力される第1の合焦評価値信号にもとづいて前記フォーカス・レンズの位置が,前記しきい値位置よりも合焦位置から遠い位置となり,かつ前記第1の合焦評価値信号によって表される前記フォーカス・レンズの移動方向および前記第2の合焦評価値信号によって表される前記フォーカス・レンズの移動方向に一致しているかどうかを判定する第1の判定部,および
     前記第1の判定部によって前記フォーカス・レンズの位置が,前記しきい値位置よりも合焦位置から遠い位置となり,かつ前記第1の合焦評価値信号によって表される前記フォーカス・レンズの移動方向および前記第2の合焦評価値信号によって表される前記フォーカス・レンズの移動方向に一致していると判定されたことに応じて,前記第1の合焦評価値出力部から出力される第1の合焦評価値信号にもとづいて前記フォーカス・レンズを移動するように前記フォーカス・レンズ移動部を制御する第3の移動制御部,
     をさらに備えた請求項1から3のうち,いずれか一項に記載のオート・フォーカス装置。
  5.  前記フォーカス・レンズ移動部により前記フォーカス・レンズが,被写体像が合焦する位置に位置決めされた後に,前記第1の合焦評価値出力部から出力される第1の合焦評価値信号または前記第2の合焦評価値出力部から出力される第2の合焦評価値信号が変化したことに応じて,前記第1の合焦評価値出力部から出力される第1の合焦評価値信号にもとづいて前記フォーカス・レンズの位置が,前記しきい値位置よりも合焦位置に近い位置となり,かつ前記第1の合焦評価値信号によって表される前記フォーカス・レンズの移動方向および前記第2の合焦評価値信号によって表される前記フォーカス・レンズの移動方向に一致していないどうかを判定する第2の判定部,および
     前記第2の判定部によって前記フォーカス・レンズの位置が,前記しきい値位置よりも合焦位置から近い位置となり,かつ前記第1の合焦評価値信号によって表される前記フォーカス・レンズの移動方向および前記第2の合焦評価値信号によって表される前記フォーカス・レンズの移動方向に一致していないと判定されたことに応じて,前記第2の合焦評価値出力部から出力される第2の合焦評価値信号にもとづいて前記フォーカス・レンズを移動するように前記フォーカス・レンズ移動部を制御する第4の移動制御部,
     をさらに備えた請求項1から4のうち,いずれか一項に記載のオート・フォーカス装置。
  6.  第1の合焦評価値出力部が,フォーカス・レンズを通って入射する光が瞳分割により二つに分けられて結像する二つの被写体像の瞳分割方向の位置ずれ量にもとづいてピントのずれ量を示す第1の合焦評価値信号を出力し,
     第2の合焦評価値出力部が,前記フォーカス・レンズを通って入射する光の光路において,光路長が互いに異なる位置に配置された第1の撮像素子および第2の撮像素子のそれぞれの出力信号とにもとづいてピントのずれ量を示す第2の合焦評価値信号を出力し,
     フォーカス・レンズ移動部が,前記フォーカス・レンズの位置が,被写体像が合焦する位置近傍のしきい値以上に被写体像が合焦する位置から離れている場合は前記第1の合焦評価値出力部から出力される第1の合焦評価値信号にもとづいて前記フォーカス・レンズを移動し,前記フォーカス・レンズが前記しきい値位置よりも被写体像が合焦する位置に近い場合は前記第2の合焦評価値出力部から出力する第2の合焦評価値信号にもとづいて前記フォーカス・レンズを,被写体像が合焦する位置に位置決めし,
     位置判定部が,前記フォーカス・レンズ移動部によって前記フォーカス・レンズが位置決めされた位置が,被写体像が合焦する前記フォーカス・レンズの位置かどうかを,前記第1の合焦評価値出力部から出力した第1の合焦評価値信号にもとづいて判定し,
     移動制御部が,前記第1の位置判定部によって,前記フォーカス・レンズ移動部によって前記フォーカス・レンズが位置決めされた位置が,被写体像が合焦する前記フォーカス・レンズの位置ではないと判定されたことに応じて,前記第1の合焦評価値出力部から出力される第1の合焦評価値信号にもとづいて前記フォーカス・レンズを移動するように前記フォーカス・レンズ移動部を制御する,
     オート・フォーカス装置の動作制御方法。
PCT/JP2014/053971 2013-03-29 2014-02-20 オート・フォーカス装置およびその動作制御方法 WO2014156384A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-071299 2013-03-29
JP2013071299A JP2016106242A (ja) 2013-03-29 2013-03-29 オート・フォーカス装置およびその動作制御方法

Publications (1)

Publication Number Publication Date
WO2014156384A1 true WO2014156384A1 (ja) 2014-10-02

Family

ID=51623385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053971 WO2014156384A1 (ja) 2013-03-29 2014-02-20 オート・フォーカス装置およびその動作制御方法

Country Status (2)

Country Link
JP (1) JP2016106242A (ja)
WO (1) WO2014156384A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005234325A (ja) * 2004-02-20 2005-09-02 Canon Inc レンズ制御装置、撮像装置およびレンズ制御方法
JP2007304188A (ja) * 2006-05-09 2007-11-22 Sony Corp 撮像装置およびafモジュール
JP2008203294A (ja) * 2007-02-16 2008-09-04 Canon Inc 撮像装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005234325A (ja) * 2004-02-20 2005-09-02 Canon Inc レンズ制御装置、撮像装置およびレンズ制御方法
JP2007304188A (ja) * 2006-05-09 2007-11-22 Sony Corp 撮像装置およびafモジュール
JP2008203294A (ja) * 2007-02-16 2008-09-04 Canon Inc 撮像装置

Also Published As

Publication number Publication date
JP2016106242A (ja) 2016-06-16

Similar Documents

Publication Publication Date Title
JP5388544B2 (ja) 撮像装置およびそのフォーカス制御方法
US8687284B2 (en) Lens apparatus
KR101395015B1 (ko) 카메라, 초점 검출방법, 및 제어방법
US10264173B2 (en) Image capturing apparatus and control method thereof, and storage medium
JP5919436B2 (ja) オート・フォーカス装置およびその動作制御方法
US8422878B2 (en) Imaging apparatus performing auto focusing function with plurality of band pass filters and auto focusing method applied to the same
JP4599116B2 (ja) オートフォーカスシステム
JP2010256824A (ja) 撮像装置
US11089222B2 (en) Shake correction device, shake correction method, shake correction program, lens device, and imaging device
WO2016035642A1 (ja) 撮影装置、撮影装置本体、及びレンズ鏡筒
JP2008046415A (ja) レンズ装置
JP5025527B2 (ja) 撮像装置
WO2014156383A1 (ja) オート・フォーカス装置およびその動作制御方法
WO2014156384A1 (ja) オート・フォーカス装置およびその動作制御方法
JP5359150B2 (ja) 撮像装置
JP5446720B2 (ja) 焦点検出装置、撮像装置
JP2011123339A (ja) レンズシステム
JP4692425B2 (ja) オートフォーカスシステム
JP2009109792A (ja) オートフォーカス装置及びこれを用いるカメラ
JP2006215285A (ja) オートフォーカスシステム
JP2006215284A (ja) オートフォーカスシステム
JP2006064970A (ja) オートフォーカスシステム
JP5475417B2 (ja) 撮像素子の特性調整方法及び特性調整装置
JP2008225239A (ja) オートフォーカスシステム
JP2004118141A (ja) オートフォーカスシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14776228

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14776228

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP