WO2014156041A1 - 電源システム及び電源システムの充放電制御方法 - Google Patents

電源システム及び電源システムの充放電制御方法 Download PDF

Info

Publication number
WO2014156041A1
WO2014156041A1 PCT/JP2014/001503 JP2014001503W WO2014156041A1 WO 2014156041 A1 WO2014156041 A1 WO 2014156041A1 JP 2014001503 W JP2014001503 W JP 2014001503W WO 2014156041 A1 WO2014156041 A1 WO 2014156041A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
power supply
battery
unit
connection
Prior art date
Application number
PCT/JP2014/001503
Other languages
English (en)
French (fr)
Inventor
山口 昌男
貴功 原田
和宏 瀬尾
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2014530036A priority Critical patent/JP5615995B1/ja
Priority to CN201480000968.2A priority patent/CN104247198B/zh
Publication of WO2014156041A1 publication Critical patent/WO2014156041A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power supply system that charges a battery unit including a plurality of battery cells with power supplied from a commercial power source and outputs the power of the charged battery unit when the power supplied from the commercial power source is reduced.
  • the present invention relates to a power supply system in which the power of a commercial power supply is stored in a plurality of battery units to increase the output, and a charge / discharge control method for the power supply system.
  • a backup power supply device that is connected to a mobile phone base station or a traffic light and supplies power in the event of a commercial power failure is known.
  • Such a backup power source is connected to the drive target device, and is configured to supply predetermined power to the drive target device when it is detected that an abnormality has occurred in the commercial power source.
  • the present invention has been made to solve such conventional problems, and its main purpose is to charge a plurality of battery units equally while connecting a plurality of battery units in parallel to increase the capacity.
  • Another object of the present invention is to provide a power supply system that can be stably used and a charge / discharge control method for the power supply system.
  • the external power supply 3 connected to the external commercial power supply 30, converts the power supplied from the commercial power supply 30, and supplies the converted power to the drive target device 40.
  • the external power supply 3 is connected to the power supply circuit 4 for converting alternating current supplied from the commercial power supply 30 into direct current of a predetermined output voltage that drives the drive target device 40, and to the output side of the power supply circuit 4,
  • the power supply line 5 that supplies power to the drive target device 40
  • the connection line 6 that is connected to the power supply line 5 and connects the connection unit 1
  • An external connection switch 7 is provided which is turned off when the voltage of the line 5 becomes a predetermined value or less.
  • the connection unit 1 includes a parallel line 8 that connects the plurality of battery units 2 in parallel, a connection unit 9 that connects each battery unit 2 to the parallel line 8, and a control that controls the connection state of the connection unit 9.
  • the parallel line 8 is connected to the connection line 6 of the external power source 3, and the connection part 9 is connected in series between the parallel line 8 and each battery unit 2.
  • a first rectifying element 16 connected in parallel to the switch 11 and having a rectifying action in a direction of energizing the battery unit 2 from the parallel line 8; and connected in parallel to the second switch 12;
  • the unit 2 and a second rectifier element 17 having a rectification action in a direction to energize the said parallel line 8.
  • the control unit 10 precharges each battery unit 2 with the first switch 11 of each connection unit 9 turned off, the second switch 12 turned off, and the third switch 13 turned on. After the balance charging mode and the balance charging mode, the control unit 10 turns on the first switch 11 of each connection unit 9, turns on the second switch 12, turns off the third switch 13, and The normal charging mode for fully charging the battery unit 2 and when each battery unit 2 is fully charged, the control unit 10 turns on the first switch 11 of each connection unit 9 and turns off the second switch 12.
  • the output power of the external power source 3 is When the control unit 10 decreases, the control unit 10 turns on the first switch 11 of each connection unit 9, turns on the second switch 12, and turns off the third switch 13.
  • the external connection switch 7 In the normal discharge mode for supplying power to the power supply line 5 and in the normal discharge mode, when the voltage of the power supply line 5 becomes equal to or lower than the predetermined value, the external connection switch 7 is controlled to be OFF, and each battery unit When the cell voltage of the battery unit 2 falls below a predetermined value in the discharge stop mode in which the discharge from 2 is stopped and the discharge stop mode, the control unit 10 turns off the first switch 11 of each connection unit 9.
  • the plurality of battery units 2 are charged and discharged by switching between the drive stop mode in which the second switch 12 is turned off and the third switch 13 is turned off. .
  • a plurality of battery units connected in parallel can be charged while being equalized.
  • the balance charge mode after precharging while equalizing the battery units with a voltage difference, it is fully charged in the normal charge mode, so that the battery is fully charged while suppressing variations in the state of charge, and the power is discharged when the battery is discharged. You can avoid situations that are exchanged between units.
  • power supply to the drive target device becomes unstable by allocating a large amount of power to charge the battery unit. The situation can also be avoided, and hot standby is also possible in which the battery units are charged in parallel while the operation of the drive target device is continued.
  • the control unit 10 turns on the first switch 11 of each connection unit 9, turns off the second switch 12, and turns on the third switch 13.
  • the battery unit can be recharged by shifting to a recharge mode in which 2 is precharged.
  • the remaining capacity of the plurality of battery units is always set to a sufficient remaining capacity. It can be maintained and can be supplied for a long time in an emergency such as a power failure. Moreover, in the recharge mode, a large inrush current can be prevented by precharging the battery unit.
  • the power of each battery unit 2 is turned on with the second rectifying element 17. Is supplied to the parallel line 8 via the first switch 11 and the power of the parallel line 8 is supplied to the power supply line 5 of the external power supply 3 via the external connection switch 7 in the ON state. A plurality of battery units 2 can be discharged in the preliminary discharge mode.
  • the power of each battery unit is supplied to the second rectifying element, the first switch in the ON state, and the external in the ON state. Since a plurality of battery units are discharged by the preliminary discharge mode supplied to the power supply line via the connection switch, a connection unit is not provided in the control unit without providing a mechanism for detecting a voltage drop of the commercial power source or the external power source. Without switching the power, it is possible to quickly supply power to the power supply line while the output voltage of the external power supply decreases.
  • the connection unit 1 includes the current detection unit 25 that detects the energization state of the connection line 6 of the external power supply 3, and the current detection unit in the preliminary discharge mode.
  • the control unit 10 turns on the first switch 11 of each connection unit 9, turns on the second switch 12, and turns off the third switch 13.
  • the electric power of each battery unit 2 is supplied to the parallel line 8 via the second switch 12 in the ON state and the first switch 11 in the ON state, and the external connection switch in which the power of the parallel line 8 is in the ON state. 7 to the normal discharge mode supplied to the power supply line 5 of the external power source 3 through the battery 7, and the battery units 2 can be discharged.
  • the first switch of each connection unit in the state where the current detection unit detects the discharge current, the first switch of each connection unit is turned on, the second switch is turned on, and the third switch is turned off to switch from the preliminary discharge mode to the normal discharge mode.
  • the normal discharge mode can be switched while confirming the discharge state to the connection line. Further, in the normal discharge mode, each battery unit is discharged through the second switch in the ON state and the first switch in the ON state, so that stable discharge can be performed in a low resistance state.
  • the power supply system of the present invention in the normal charging mode, when the output voltage of the external power supply 3 decreases, the power of each battery unit 2 is switched between the second switch 12 in the ON state and the second switch 12 in the ON state.
  • a normal discharge mode in which power is supplied to the parallel line 8 via one switch 11 and power is supplied to the power supply line 5 of the external power supply 3 via the external connection switch 7 in the ON state. It is possible to discharge from a plurality of battery units 2.
  • the output voltage of the external power supply decreases in the normal charging mode
  • the power of each battery unit is supplied via the second switch in the ON state, the first switch in the ON state, and the external connection switch in the ON state. Since the mode is shifted to the normal discharge mode supplied to the line, the output voltage of the external power supply is reduced without providing a mechanism for detecting a voltage drop of the commercial power supply or the external power supply, and without switching the connection part in the control part. It is possible to quickly supply power to the power supply line in the state.
  • the external connection switch in which the power supplied from the power supply line 5 of the external power supply 3 is in the ON state. 7 is supplied to the parallel line 8 through the power supply line 7 and the power of the parallel line 8 is supplied to each battery unit 2 through the first switch 11 in the ON state and the second switch 12 in the ON state.
  • the battery mode 2 can be charged by shifting to the charging mode.
  • each battery when the output voltage of the external power supply is restored in the normal discharge mode, each battery is connected to the power supply line through the external connection switch in the ON state, the first switch in the ON state, and the second switch in the ON state. Since the mode is changed to the normal charging mode supplied to the unit, the output voltage of the external power supply is restored without providing a mechanism for detecting the voltage restoration of the commercial power supply or the external power supply, and without switching the connection part at the control part.
  • the battery unit can be charged by supplying power quickly in the state.
  • the external connection switch 7 sends a signal from the control unit 10.
  • the control unit 10 turns on the first switch 11 of each connection unit 9, turns off the second switch 12, and turns on the third switch 13, and the voltage difference between the battery units 2. It is possible to equalize the plurality of battery units 2 by shifting to an equalization mode for reducing the battery level.
  • the external connection switch 7 in the balance charging mode, when the difference between the voltage of the power supply line 5 and the voltage of each battery block 20 is equal to or less than a predetermined voltage difference, the external connection switch 7 is It is switched to OFF by a signal from the control unit 10, and the control unit 10 switches the first switch 11 of each connection unit 9 from OFF to ON, and the second switch 12 of each connection unit 9 from OFF to ON, After the third switch 13 of each connection unit 9 is switched from ON to OFF, the external connection switch 7 can be switched ON by a signal from the control unit 10 to shift to the normal charging mode.
  • the first switch of each connection part is turned from OFF to ON
  • the second switch is turned from OFF to ON
  • the third switch is turned on when the external connection switch is turned off. Since switching from ON to OFF, in the step of sequentially switching a plurality of switches, only a part of the battery units is connected to the power supply line, and it is possible to reliably prevent a situation in which an overcurrent flows through the battery units. .
  • the external connection switch 7 when the output voltage of the external power supply 3 is restored in the drive stop mode, the external connection switch 7 is controlled to be ON, and the control unit 10 is connected to each connection unit 9.
  • the first switch 11 is turned off, the second switch 12 is turned off, and the third switch 13 is turned on to shift to the balance charging mode and charge each battery unit 2.
  • the battery unit can be charged via the first rectifying element, and even if a voltage drop of the external power source occurs, discharge is prevented by turning off the first switch. Can be prevented, and a situation in which the voltage difference between the battery units increases due to the discharge can be avoided, and the battery units can be charged with the same voltage.
  • the external power supply 3 can charge the battery unit 2 while switching the output voltage of the power supply circuit 4.
  • a plurality of battery units can be ideally charged by controlling the output voltage of the power supply circuit so that the charging voltage of the battery unit becomes the optimum voltage in the charged state of the battery unit.
  • the first rectifying element 16 and / or the second rectifying element 17 can be diodes.
  • the first switch 11 and / or the second switch 12 can be transistors.
  • the first switch 11 and / or the second switch 12 are FETs, and the first rectifier 16 and / or the second rectifier 17 are parasitic elements built in the FET. It can be a diode.
  • a plurality of battery units 2 formed by connecting a plurality of battery cells 21 in series, and a connection unit 1 that connects the plurality of battery units 2 in parallel and outputs them to the outside.
  • the connection unit 1 is connected to the power supply line 5 of the external power supply 3 that converts the power supplied from the commercial power supply 30 into a direct current and outputs it to the drive target device 40, and is supplied from the power supply line 5.
  • the battery cell 21 of the battery unit 2 is charged with the generated power, and power is supplied from the battery unit 2 to the power supply line 5 in a state where the voltage output from the external power source 3 to the drive target device 40 is reduced.
  • the connection unit 1 is connected to the power supply line 5 of the external power supply 3 that converts the power supplied from the commercial power supply 30 into a direct current and outputs it to the drive target device 40, and is supplied from the power supply line 5.
  • the battery cell 21 of the battery unit 2 is charged with the generated power, and power is supplied from the battery unit 2 to the power supply line 5 in a
  • the connection unit 1 includes a parallel line 8 that connects the plurality of battery units 2 in parallel, a connection unit 9 that connects each battery unit 2 to the parallel line 8, and a control that controls the connection state of the connection unit 9.
  • the parallel line 8 is connected to the power supply line 5 of the external power source 3 via the external connection switch 7 that is turned off when the voltage of the power supply line 5 becomes a predetermined value or less.
  • the connection portion 9 includes a series circuit of a first switch 11 and a second switch 12 connected in series between the parallel line 8 and the battery unit 2, and a current connected in parallel to the second switch 12.
  • a sub-connection circuit 15 composed of a series circuit of a limiting resistor 14 and a third switch 13, and connected in parallel to the first switch 11, and arranged in a direction to energize the battery unit 2 from the parallel line 8.
  • a first rectifying element 16 having an action
  • a second rectifying element 17 connected in parallel with the second switch 12 and having a rectifying action in a direction of energizing the parallel line 8 from the battery unit 2.
  • the control unit 10 precharges each battery unit 2 with the first switch 11 of each connection unit 9 turned off, the second switch 12 turned off, and the third switch 13 turned on.
  • the control unit 10 turns on the first switch 11 of each connection unit 9, turns on the second switch 12, turns off the third switch 13, and The normal charging mode for fully charging the battery unit 2 and when each battery unit 2 is fully charged, the control unit 10 turns on the first switch 11 of each connection unit 9 and turns off the second switch 12. In the full charge mode in which the charging of the battery unit 2 is stopped by turning off the third switch 13 and the full charge mode, the output voltage of the external power source 3 is Then, the control unit 10 turns on the first switch 11 of each connection unit 9, turns on the second switch 12, and turns off the third switch 13, and supplies power from each battery unit 2 to the external power supply 3.
  • the control unit 10 turns off the first switch 11 of each connection unit 9, A plurality of battery units are charged and discharged by switching between a driving stop mode in which the second switch 12 is turned off and the third switch 13 is turned off.
  • a plurality of battery units connected in parallel can be charged while being equalized.
  • the full charge is performed in the normal charge mode. You can avoid situations that are exchanged between units.
  • power supply to the drive target device becomes unstable by allocating a large amount of power to charge the battery unit. The situation can also be avoided, and hot standby is also possible in which the battery units are charged in parallel while the operation of the drive target device is continued.
  • a plurality of battery units 2 formed by connecting a plurality of battery cells 21 in series, and a connection unit that connects the plurality of battery units 2 in parallel and outputs them to the outside.
  • the connection unit 1 is connected to a power supply line 5 of an external power supply 3 that converts the power supplied from the commercial power supply 30 into a direct current and outputs it to the drive target device 40, and this power supply line 5
  • the battery cell 21 of the battery unit 2 is charged with the power supplied from the battery unit 2 and the power output from the battery unit 2 to the power supply line 5 is reduced while the voltage output from the external power supply 3 to the drive target device 40 is reduced.
  • the connection unit 1 includes a parallel line 8 that connects the plurality of battery units 2 in parallel, a connection unit 9 that connects each battery unit 2 to the parallel line 8, and a control that controls the connection state of the connection unit 9.
  • the parallel line 8 is connected to the power supply line 5 of the external power source 3, and the connecting part 9 is connected in series between the parallel line 8 and the battery unit 2.
  • the control unit 10 precharges each battery unit 2 with the first switch 11 of each connection unit 9 turned off, the second switch 12 turned off, and the third switch 13 turned on.
  • the control unit 10 turns on the first switch 11 of each connection unit 9, turns on the second switch 12, turns off the third switch 13, and The normal charging mode for fully charging the battery unit 2 and when each battery unit 2 is fully charged, the control unit 10 turns on the first switch 11 of each connection unit 9 and turns off the second switch 12. In the full charge mode in which the charging of the battery unit 2 is stopped by turning off the third switch 13 and the full charge mode, the output voltage of the external power source 3 is Then, the control unit 10 turns on the first switch 11 of each connection unit 9, turns on the second switch 12, and turns off the third switch 13, and supplies power from each battery unit 2 to the external power supply 3.
  • the control unit 10 turns off the first switch 11 of each connection unit 9 and the second switch 12. Is switched off and the third switch 13 is switched off to charge / discharge a plurality of battery units.
  • a plurality of battery units connected in parallel can be charged while being equalized.
  • the balance charge mode after precharging while equalizing the battery units with a voltage difference, it is fully charged in the normal charge mode, so that the battery is fully charged while suppressing variations in the state of charge, and the power is discharged when the battery is discharged. You can avoid situations that are exchanged between units.
  • power supply to the drive target device becomes unstable by allocating a large amount of power to charge the battery unit. The situation can also be avoided, and hot standby is also possible in which the battery units are charged in parallel while the operation of the drive target device is continued.
  • the charge / discharge control method of the power supply system of the present invention is connected to an external commercial power supply 30, converts the power supplied from the commercial power supply 30 and supplies it to the drive target device 40, and a plurality of A plurality of battery units 2 formed by connecting battery cells 21 in series; and a connection unit 1 for connecting the plurality of battery units 2 in parallel to connect to the external power source 3. Power is supplied to the unit 2 to charge the battery cell 21, and power is supplied from the battery unit 2 to the drive target device 40 while the voltage output from the external power source 3 to the drive target device 40 is reduced. Is a method for controlling charging / discharging of a power supply system configured to supply power.
  • the external power supply 3 is connected to the power supply circuit 4 for converting alternating current supplied from the commercial power supply 30 into direct current of a predetermined output voltage that drives the drive target device 40, and to the output side of the power supply circuit 4,
  • the power supply line 5 that supplies power to the drive target device 40
  • the connection line 6 that is connected to the power supply line 5 and connects the connection unit 1
  • An external connection switch 7 is provided which is turned off when the voltage of the line 5 becomes a predetermined value or less.
  • the connection unit 1 includes a parallel line 8 that connects the plurality of battery units 2 in parallel, a connection unit 9 that connects each battery unit 2 to the parallel line 8, and a control that controls the connection state of the connection unit 9.
  • the parallel line 8 is connected to the connection line 6 of the external power source 3, and the connection part 9 is connected in series between the parallel line 8 and the battery unit 2.
  • a series circuit of the first switch 11 and the second switch 12, a sub-connection circuit 15 connected in parallel with the second switch 12, and comprising a series circuit of the current limiting resistor 14 and the third switch 13, and the first switch A first rectifying element 16 connected in parallel to the switch 11 and having a rectifying action in a direction of energizing the battery unit 2 from the parallel line 8; and connected in parallel to the second switch 12; and And a second rectifier element 17 having a rectification action from the pond unit 2 in the direction of energizing the parallel lines 8.
  • the control unit 10 turns off the first switch 11 of each connection unit 9, turns off the second switch 12, and turns on the third switch 13. 2 and precharging while equalizing each battery unit 2, the control unit 10 turns on the first switch 11 of each connection unit 9, and the second switch 12.
  • the control unit 10 causes the first switch 11 of each connection unit 9 to ON, the second switch 12 OFF, the third switch 13 OFF, and the charging of the battery unit 2 is stopped, and the output voltage of the external power supply 3 is Then, the control unit 10 turns on the first switch 11, turns on the second switch 12, and turns off the third switch 13 of each connection unit 9, and power from each battery unit 2 to the external power supply 3.
  • the external connection switch is turned off when the voltage of the power supply line 5 falls below the predetermined value.
  • the control unit 10 When the cell voltage of the battery unit 2 becomes a predetermined value or less in the state where the discharge from each battery unit 2 is stopped and the discharge from each battery unit 2 is stopped, the control unit 10 And charging / discharging a plurality of battery units 2 by turning off the first switch 11, turning off the second switch 12, and turning off the third switch 13 of each connection portion 9. That.
  • precharging while equalizing battery units with voltage differences and then fully charging them they can be fully charged while suppressing variations in the state of charge, avoiding the situation where power is transferred between battery units during discharge. it can.
  • each battery unit is precharged and then switched to the normal charging process to fully charge the battery unit. A situation where the supply becomes unstable can be avoided, and a hot standby in which the battery units are charged in parallel while the operation of the drive target device is continued is also possible.
  • FIG. 1 is a block diagram showing a power supply system according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing a charge / discharge process in the power supply system shown in FIG.
  • FIG. 3 is a block diagram showing a control state in the balance charge mode of the power supply system shown in FIG.
  • FIG. 4 is a block diagram showing a control state in the equalization mode of the power supply system shown in FIG.
  • FIG. 5 is a diagram illustrating equalization in a state where a battery unit having a high voltage is connected to the connection unit.
  • FIG. 6 is a diagram illustrating equalization in a state where a battery unit having a low voltage is connected to the connection unit.
  • FIG. 1 is a block diagram showing a power supply system according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing a charge / discharge process in the power supply system shown in FIG.
  • FIG. 3 is a block diagram showing a control state in the balance charge mode of the power supply
  • FIG. 7 is a block diagram showing a control state in the normal charge mode (normal discharge mode) of the power supply system shown in FIG.
  • FIG. 8 is a block diagram showing a control state in the full charge mode (preliminary discharge mode) of the power supply system shown in FIG.
  • FIG. 9 is a block diagram showing a control state in the recharge mode (preliminary discharge mode) of the power supply system shown in FIG.
  • FIG. 10 is a block diagram showing a control state in the discharge stop mode of the power supply system shown in FIG.
  • FIG. 11 is a flowchart showing a process in which the power supply system shown in FIG. 1 charges and discharges a plurality of battery units.
  • FIG. 12 is a flowchart showing a process in which the power supply system shown in FIG. 1 charges and discharges a plurality of battery units.
  • each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing.
  • the contents described in some examples and embodiments may be used in other examples and embodiments.
  • the power supply system of the present invention is a backup power supply having a large number of secondary batteries, and is installed in, for example, a mobile phone base station or a traffic light, and used as a power supply in an emergency such as a power failure.
  • this power supply system converts AC power supplied from the commercial power supply into DC power of a predetermined voltage and supplies it to a load that is a drive target device.
  • the built-in secondary battery is charged and the output of the commercial power supply decreases in the event of an emergency such as a power failure, power is supplied from the built-in secondary battery to the load that is to be driven. Drive the target device.
  • the power supply system shown in FIG. 1 is connected to an external commercial power supply 30, converts the power supplied from the commercial power supply 30 and supplies it to the drive target device 40, and a plurality of batteries connected in series A plurality of battery units 2 having cells 21 and a connection unit 1 for connecting the plurality of battery units 2 in parallel and connecting to an external power source 3 are provided.
  • This power supply system supplies the power output from the external power supply 3 to the drive target device 40 so that the drive target device 40 is in an operating state, and the battery cell 21 is supplied with power supplied from the external power supply 3 to each battery unit 2.
  • the power supply system drives the drive target device 40 by supplying power from the battery unit 2 to the drive target device 40 in a state where the voltage output from the external power supply 3 to the drive target device 40 falls below a predetermined value. .
  • the power supply system that connects the plurality of battery units 2 in parallel can increase the capacity of the entire power supply system and extend the time during which power can be supplied to the drive target device 40. Furthermore, the power supply system can replace the battery unit 2 connected to the connection unit 1 due to maintenance or failure, or increase or decrease the number according to the application. Therefore, the number of the plurality of battery units connected to the connection unit is not limited to 6 sets in the power supply system, and can be 2 to 5 sets or 7 sets or more. (External power supply 3) The external power supply 3 converts the alternating current supplied from the commercial power supply 30 into a direct current and outputs it, and supplies this direct-current power to the drive target device 40.
  • An external power supply 3 shown in FIG. 1 is connected to a power supply circuit 4 that converts an alternating current supplied from a commercial power supply 30 into a direct current of a predetermined output voltage that drives the drive target device 40, and an output side of the power supply circuit 4.
  • the power supply circuit 4 is a circuit that converts the alternating current of the commercial power supply 30 into a direct current of a predetermined voltage and outputs it.
  • an AC / DC converter can be used.
  • the power supply circuit 4 that is an AC / DC converter converts, for example, the alternating current of the commercial power supply 30 of 100V to 250V into the direct current of 40V to 56V and outputs it.
  • the output of the power supply circuit 4 is specified in consideration of the power for operating the drive target device 40.
  • the power supply circuit 4 shown in the figure has an output voltage of 50 to 53 V and an output that can operate the drive target device 40.
  • the power supply circuit 4 supplies power to the drive target device 40 via the power supply line 5 in a state where the commercial power supply 30 does not fail.
  • the external power supply 3 shown in the figure includes a controller 31 that controls the output voltage of the power supply circuit 4.
  • the controller 31 is connected to the connection unit 1 via the communication line 32 and controls the output voltage of the power supply circuit 4 according to a request signal input from the connection unit 1.
  • This power supply system can ideally charge a plurality of battery units 2 by controlling the output voltage of the power supply circuit 4 so that the charging voltage of the battery unit 2 becomes an optimum voltage when the battery unit 2 is charged.
  • the external power supply does not necessarily have to have a structure in which the output voltage of the external power supply can be adjusted by the controller. This external power supply outputs a constant voltage from the power supply circuit.
  • a constant current (MAX current of about 0.5 to 1 C) / constant voltage (MAX 4.2 V / cell or so) that regulates a maximum current and a maximum voltage used for charging a lithium ion battery. ) Power supply circuit can be used.
  • the external power supply 3 in FIG. 1 is connected to the power supply line 5 connected to the drive target device 40 on the output side of the power supply circuit 4. Further, the external power source 3 branches the power supply line 5 and connects a connection line 6 on the output side of the power circuit 4, and the connection unit 1 is connected to the connection line 6. Further, the external power source 3 is provided with an external connection switch 7 on the connection line 6 in order to control the connection state between the power supply line 5 and the connection unit 1.
  • the external connection switch 7 a semiconductor switching element such as an FET or a transistor, a contactor, a relay, or the like can be used.
  • the external connection switch 7 connects the power supply line 5 and the connection unit 1 in the ON state to allow charging current and discharge current, and disconnects the power supply line 5 and the connection unit 1 in the OFF state. Cut off charge and discharge currents.
  • the external connection switch 7 provided in the connection line 6 is controlled ON / OFF by a controller 31 built in the external power source 3.
  • the controller 31 is supplied with operating power from the power supply line 5.
  • the controller 31 steps down the power supplied from the power supply line 5 using a DC / DC converter and is supplied with operating power.
  • the controller 31 stops when the voltage of the power supply line 5 becomes a predetermined value or less and the operating power is not supplied.
  • a predetermined value for example, 42 V
  • the controller 31 is driven by the power output from the power supply circuit 4 to the power supply line 5 in the operating state of the external power source 3, that is, in the state where the commercial power source 30 does not fail, and In a state in which the commercial power supply 30 fails, etc., the commercial power supply 30 is driven by power supplied from the connection unit 1 to the power supply line 5 via the connection line 6 and the external connection switch 7 in the ON state. Furthermore, the controller 31 controls ON / OFF of the external connection switch 7 based on various voltage data input from the connection unit 1 via the communication line 32.
  • the controller 31 holds the external connection switch 7 in the ON state when the voltage of each battery unit 2 input from the connection unit 1 is within a predetermined range and is normally charged / discharged. When the voltage becomes lower than the minimum voltage, the external connection switch 7 is turned off, and the connection unit 1 is disconnected from the power supply line 5 to prevent overdischarge of the battery unit 2. Furthermore, the controller 31 detects an abnormality from the battery information or the like of each battery unit 2 input from the connection unit 1, or when an abnormality signal is input from the connection unit 1, switches the external connection switch 7 to OFF. The connection unit 1 can also be disconnected from the power supply line 5. However, the controller can also switch on / off of the external connection switch based on a control signal input from the connection unit via the communication line. This controller is controlled by the connection unit to switch the external connection switch ON / OFF.
  • a non-operating state of the external power source 3 for example, a state in which the commercial power source 30 fails, etc.
  • power is supplied from the connection unit 1 to the power supply line 5.
  • the controller 31 is driven and the external connection switch 7 is kept ON. For this reason, the external connection switch 7 is not switched on until the operating state of the external power supply 3 is reached, that is, until the power failure of the commercial power supply 30 is restored.
  • the controller 31 is driven, and the external connection switch 7 is switched on.
  • the controller can also be driven by supplying operating power from the connection unit via the communication line in a state where power is not supplied from the power supply line.
  • the external power supply can be connected to a controller power supply line by connecting a spare power supply such as a capacitor, and the controller can be stopped by temporarily supplying power from the standby power supply even when the power supply line voltage drops. Can also be delayed.
  • the power supply line 5 is connected to both the output side of the power supply circuit 4 and the output side of the connection unit 1 when the external connection switch 7 is ON. Therefore, the output voltage of the power supply circuit 4 and the output voltage of the connection unit 1 are set substantially equal.
  • the power supply system having this structure when the output voltage of the power supply circuit 4 is reduced due to a power failure, the power is supplied from the connection unit 1 to the power supply line 5 via the external connection switch 7 in the ON state, When power is supplied to 40 and the output voltage of the connection unit 1 decreases, power is supplied from the power supply line 5 to the connection unit 1 via the external connection switch 7 in the ON state.
  • the plurality of battery units 2 connected to are charged.
  • this power supply system detects the voltage drop of the commercial power supply 30 or the external power supply 3 by turning on the external connection switch 7 and always connecting the output side of the connection unit 1 to the power supply line 5. Without providing a mechanism, in a state where the output voltage of the power supply circuit 4 decreases from the output side of the connection unit 1 or a state where the output voltage decreases below a predetermined value (for example, the minimum operating voltage of the device to be driven), power is quickly supplied. Electric power can be supplied to the supply line 5.
  • a predetermined value for example, the minimum operating voltage of the device to be driven
  • the power supply system can also include a mechanism for detecting that the output voltage of the power supply circuit has dropped due to a power failure of the commercial power supply or a failure of the power supply circuit.
  • the external connection switch was turned off during normal times except when the battery unit was charged, and the output voltage of the power supply circuit fell below the specified value due to a power failure of the commercial power supply or failure of the power supply circuit. Is detected, the external connection switch is turned on, and power can be supplied from the connection unit to the power supply line.
  • the battery unit 2 includes a battery block 20 formed by connecting a plurality of battery cells 21 in series, and a detection circuit 22 that detects the state of the battery cells 21 constituting the battery block 20.
  • the battery block 20 preferably has a plurality of battery cells 21 connected in series and in parallel.
  • a battery block 20 formed by connecting a plurality of battery cells 21 in series and in parallel can increase the charge / discharge current while increasing the output voltage.
  • the battery block 20 has a plurality of battery cells 21 connected in series so that the output voltage of the battery unit 2 is substantially equal to the output voltage of the power supply circuit 4 of the external power supply 3. Since the output of the power supply circuit 4 is set to a voltage at which the drive target device 40 connected to the power supply line 5 can be operated, the output of the battery unit 2 is also set to this voltage.
  • the output voltage of the battery unit 2 is 40V to 56V, for example, and is set to about 52V.
  • the battery cell 21 is a lithium ion battery or a nickel metal hydride battery. However, all the batteries which can be charged like a polymer battery and a nickel cadmium battery can be used for a battery cell.
  • 13 battery cells 21 are connected in series so that the output voltage can be about 52V.
  • 43 to 45 battery cells 21 are connected in series, and the output voltage can be set to 51V to 54V.
  • the battery block 20 can increase the current capacity by increasing the number of battery cells 21 connected in parallel.
  • the battery block 20 adjusts the number of battery cells 21 connected in series and in parallel so that, for example, 2.5 kW of power can be output to the power supply line 5 continuously for 2 to 6 hours.
  • the detection circuit 22 detects the state of each battery cell 21 constituting the battery block 20 and transmits the detected battery information to the connection unit 1.
  • the detection circuit 22 detects battery information such as the cell voltage of the battery cell 21, the output voltage of the battery block 20, the charge / discharge current flowing through the battery block 20, and the battery temperature at a predetermined sampling period, and digitally detects the detected battery information.
  • the signal is converted into a signal and output to the connection unit 1.
  • the connection unit 1 connects a plurality of battery units 2 in parallel, controls charging and discharging of these battery units 2, and equalizes the plurality of battery units 2 connected in parallel.
  • connection unit 1 controls a parallel line 8 that connects a plurality of battery units 2 in parallel, a connection unit 9 that connects each battery unit 2 to the parallel line 8, and a connection state of each connection unit 9.
  • control unit 10 controls the connection state of each connection unit 9 by the control unit 10 to control charging / discharging of the plurality of battery units 2 and equalizes the plurality of battery units 2 connected to the parallel line 8.
  • Parallel line 8 is connected to the outputs of the plurality of battery units 2 and connects the plurality of battery units 2 in parallel. Furthermore, the parallel line 8 is connected to the connection line 6 of the external power supply 3.
  • the parallel line 8 connected to the connection line 6 is connected to the power supply line 5 of the external power source 3 via the external connection switch 7 controlled to be turned ON / OFF by the controller 31. Therefore, the parallel line 8 is connected to the power supply line 5 when the external connection switch 7 is ON, and is disconnected from the power supply line 5 when the external connection switch 7 is OFF.
  • the parallel line 8 connected to the power supply line 5 supplies the power output from the battery unit 2 to the power supply line 5, and supplies the power supplied from the power supply line 5 to the battery unit 2. The battery unit 2 is charged.
  • connection part 9 is arrange
  • the first rectification which is connected in parallel with the first switch 11 and has a rectifying action in the direction in which the battery unit 2 is energized is connected in parallel with the first switch 11 and the sub-connection circuit 15 including a series circuit of the current limiting resistor 14 and the third switch 13.
  • An element 16 and a second rectifying element 17 connected in parallel with the second switch 12 and having a rectifying action in a direction of energizing the parallel line 8 from the battery unit 2 are provided.
  • the first switch 11 and the second switch 12 are switches that connect the battery unit 2 to the parallel line 8 when the battery unit 2 is charged or discharged.
  • the first switch 11 and the second switch 12 shown in the figure are connected in series with each other, and are connected between each battery unit 2 and the parallel line 8.
  • the first switch 11 and the second switch 12 are switches that are controlled to be turned ON / OFF by the controller 10, and can be semiconductor switching elements, for example.
  • the first switch 11 and the second switch 12 that are semiconductor switching elements may be FETs or transistors, for example. However, contactors and relays can also be used for the first switch and the second switch.
  • the sub-connection circuit 15 is connected in parallel to the second switch 12 and is configured by a series circuit of a current limiting resistor 14 and a third switch 13.
  • the sub-connection circuit 15 allows a current that is passed from the parallel line 8 to the battery unit 2 in a state where the second switch 12 is turned off and the third switch 13 is turned on, that is, charging current,
  • the charging current to be energized is limited by the current limiting resistor 14.
  • the current limiting resistor 14 charges while limiting an excessive current flowing from the parallel line 8 to the battery unit 2 to a small value.
  • the power supply system that connects a plurality of battery units 2 in parallel needs to connect another new battery unit 2 to the parallel line 8 when replacing the battery unit 2 or increasing the number of battery units 2. .
  • the voltage of the newly connected battery unit 2 is not necessarily the same as the voltage of the parallel line 8.
  • the difference between the voltage of the battery unit 2 and the voltage of the parallel line 8 may cause a large current to flow through the battery unit 2 to be connected.
  • the current limiting resistor 14 limits this current and suppresses an inrush current to the battery unit 2.
  • each battery unit 2 is charged with the output of the external power source 3
  • each battery unit 2 is charged to a predetermined remaining capacity and the voltage of each battery unit 2 rises to a predetermined voltage. It is desirable to limit the charging current of 2 to suppress charging. Also in this case, by charging each battery unit 2 via the sub-connection circuit 15, a plurality of battery units 2 are charged while limiting the charging current flowing through each battery unit 2. The power supplied to the drive target device 40 is prevented from decreasing.
  • the current limiting resistor 14 can increase the electric resistance and reduce the current flowing through the battery unit 2. However, if the electric resistance of the current limiting resistor 14 is increased, the amount of heat generated by Joule heat increases, and the time for charging the battery unit 2 to a predetermined voltage or equalizing a plurality of battery units becomes longer. Therefore, the electric resistance of the current limiting resistor 14 is an electricity that can quickly equalize each battery unit 2 while quickly charging the voltages of the plurality of battery units 2 to a predetermined voltage, and can further reduce the amount of heat generated by energization. Set to resistance.
  • the optimum value of the electric resistance of the current limiting resistor 14 varies depending on the voltage of the battery unit 2, but the voltage of the battery unit 2 is set to 52 V, for example, 1 ⁇ to 10 ⁇ , preferably 1 ⁇ to 5 ⁇ , more preferably 1 ⁇ to 3 ⁇ .
  • the third switch 13 is a switch that is controlled ON / OFF by the control unit 10 and is a semiconductor switching element such as an FET or a transistor. However, relays and contactors can also be used for the third switch.
  • the first rectifying element 16 is connected in parallel with the first switch 11 and has a rectifying action in a direction in which the battery unit 2 is energized from the parallel line 8.
  • the first rectifying element 16 shown in the drawing is a diode, and is connected in a direction allowing energization from the parallel line 8 to the battery unit 2, and allows a current to flow in the direction in which the battery unit 2 is charged.
  • the second rectifying element 17 is connected in parallel with the second switch 12 and has a rectifying action in the direction of energizing the parallel line 8 from the battery unit 2.
  • the second rectifying element 17 shown in the figure is a diode, and is connected in a direction allowing energization from the battery unit 2 to the parallel line 8, and allows a current discharged from the battery unit 2.
  • such a rectifying element can be a parasitic diode built in the FET.
  • This structure can simplify the system configuration by realizing a rectifying action using a parasitic diode provided in advance in the FET.
  • the third switch is an FET having a parasitic diode
  • the parasitic diode of the third switch and the second rectifying element are connected in the same direction.
  • the control unit 10 controls ON / OFF of the first switch 11, the second switch 12, and the third switch 13 provided in each connection unit 9 to optimize the charging state and discharging state of the plurality of battery units 2. Control to the correct state.
  • the control unit 10 controls each switch by outputting a control signal for controlling the semiconductor switching element to be turned on / off for the switch made of the semiconductor switching element. Also, for the switch made of the relay or the contactor, the energizing coil is energized. To switch each switch on and off.
  • the control unit 10 controls charging and discharging of each battery unit 2 to an optimal state based on the battery information input from the detection circuit 22 incorporated in each battery unit 2, and also controls the plurality of battery units 2. Equalize.
  • the control unit 10 in the figure controls equalization and charging / discharging of the battery unit 2 based on the cell voltage of the battery cell 21 and the output voltage of the battery block 20 input from the detection circuit 22.
  • the battery cell 21 made of a lithium ion battery or a nickel metal hydride battery can determine the remaining battery capacity from the battery voltage. For this reason, equalization and charging / discharging of the battery unit 2 can be controlled while determining the remaining capacity of the battery from the cell battery and the output voltage.
  • This method can equalize and charge / discharge a plurality of battery units 2 while determining the battery state in the simplest manner.
  • the power supply system calculates the remaining capacity of each battery cell or battery block by the detection circuit from the integrated value of the charge / discharge current, and calculates the remaining capacity input from the detection circuit and a predetermined threshold value stored in the control unit. It is also possible to control equalization and charge / discharge of each battery unit while making comparisons with the control unit.
  • connection unit 1 shown in FIG. 1 includes a current detection unit 25, and the current detection unit 25 detects the current flowing from the parallel line 8 to the connection line 6 while charging / discharging a plurality of battery units 2. Is controlled to the optimum state.
  • the current detection unit 25 shown in the figure detects a current detection resistor 26 connected in series between the parallel line 8 and the connection line 6 and a voltage across the current detection resistor 26 to detect the voltage across the parallel line 8 and the connection line. 6 and a detection circuit 27 for detecting a charging current and a discharging current flowing between the two.
  • the current detection unit 25 detects a charge / discharge current value flowing between the parallel line 8 and the connection line 6 and inputs the current value to the control unit 10.
  • control unit 10 is connected to the controller 31 of the external power supply 3 via the communication line 32 and transmits various data such as voltage data, battery information, and charge / discharge current values of each battery unit 2 to the controller 31. is doing.
  • the controller 31 controls the external connection switch 7 to ON / OFF based on various data signals input from the control unit 10.
  • control part 10 can also control to transmit the abnormality signal to the controller 31 and to switch the external connection switch 7 to OFF when the abnormality of the battery unit 2 or the battery cell 21 is detected.
  • control unit 10 can output a control signal for switching the external connection switch 7 ON / OFF, and can control the controller 31 with this control signal to control ON / OFF of the external connection switch 7.
  • the control unit 10 puts the external power source 3 into the operating state by the return signal transmitted from the controller 31. It can detect that it has returned.
  • the control unit 10 charges and discharges the plurality of battery units 2 while switching between the plurality of modes. 3 to 10, in each mode shown in FIG. 2, the controller 31 of the external power source 3 switches the external connection switch 7 to ON / OFF, and the control unit 10 includes the first switch 11 provided in each connection unit 9, The state which controls the 2nd switch 12 and the 3rd switch 13 to ON / OFF is shown.
  • the control unit 10 determines the battery state of the plurality of battery units 2 from the battery information of each battery unit 2 input from the detection circuit 22 incorporated in each battery unit 2, for example, the output voltage or cell voltage, and externally.
  • the control unit 10 detects the connection state of the plurality of battery units 2.
  • the control unit 10 recognizes the battery unit 2 connected to the connection unit 1 from the identification signal.
  • the identification signal of each battery unit 2 is input from a detection circuit 22 built in each battery unit 2.
  • the control unit 10 determines whether the number of connected battery units 2, a part of the battery units 2 is removed, or another battery unit 2 is newly connected. The connection state such as whether or not is determined. [Balance charge mode] In this step, the power supply system precharges the battery cells 21 of each battery unit 2 with power supplied from the power supply line 5 of the external power supply 3.
  • the external power supply 3 can suppress a large inrush current to the battery unit 2 by adjusting the output of the power supply circuit 4.
  • the power supply circuit 4 is controlled by the controller 31 so that the output voltage that is the charging voltage of the battery unit 2 can be set to an optimum voltage.
  • the output voltage of the external power source 3 in the balance charging mode that is, the first charging voltage for precharging the battery unit 2 is, for example, 48 V, or from the voltage of the battery block 20 of the battery unit 2 having the maximum output voltage. Also, the voltage can be increased by 0.5V.
  • the controller 31 turns on the external connection switch 7 to turn on the power supply line 5
  • the control unit 10 to which charging power can be supplied from the power supply line 5 to the connection unit 1 from the power supply line 5, the first switch 11 of each connection unit 9 is turned off, the second switch 12 is turned off, the third The switch 13 is turned on to precharge the battery cells 21 of each battery unit 2 with the power supplied from the power supply line 5 of the external power source 3.
  • the drive circuit (drive voltage) 12V on the communication line 28 between the detection circuit 22 and the control unit 10 is supplied to drive the detection circuit 22.
  • the voltage of the power supply circuit 4 is set to a predetermined voltage of about 48V and charged.
  • the predetermined voltage difference for example, about 1.2 V
  • the balance charging mode is terminated.
  • One switch 11 is turned ON, the second switch 12 is turned ON, the third switch 13 is turned OFF, the voltage of the power supply circuit 4 is set to a predetermined voltage (for example, about 52.6 V), and charging is performed as a normal charging mode. .
  • the first switch 11 and the second switch 12 of each connection portion 9 are turned OFF, but the power supplied from the external power supply 3 is the first rectifying element 16.
  • the battery cell 21 is charged by being supplied to each battery unit 2 through the sub-connection circuit 15, that is, the series circuit of the third switch 13 and the current limiting resistor 14 in the ON state. Thereby, since each battery unit 2 is charged via the current limiting resistor 14 in a state of being connected in parallel, it is charged in a state where the voltages of the battery units 2 are equal.
  • the output voltages of all the battery units 2 are equal to or higher than the predetermined first set voltage while equalizing the voltage difference between the battery units 2 to be smaller than the predetermined first voltage difference. It can also be precharged.
  • the voltage difference between all the battery units 2 is less than the first voltage difference, that is, the voltage difference between the battery unit 2 with the maximum output voltage and the battery unit 2 with the minimum output voltage is the first. Equalize until less than one voltage difference.
  • the control part 10 equalizes so that the voltage difference (Vd) between the battery units 2 may be less than 1.2V, for example.
  • each battery unit 2 is charged in a state where the charging current is suppressed by the current limiting resistor 14. This avoids unstable power supply from the external power source 3 to the drive target device 40 without allocating a lot of power for charging each battery unit 2, and continues the operation of the drive target device 40.
  • the battery unit 2 can be charged in parallel. Therefore, the first set voltage is a voltage that can stably supply the operating power from the external power source 3 to the drive target device 40 even when the battery unit 2 is charged without going through the sub-connection circuit 15, and preferably 40V to 50V, for example 42.5V.
  • the first switch 11 is turned off, so that the discharge from the battery unit 2 is prevented, and the battery It is possible to prevent the unit 2 from being overdischarged or from expanding the voltage difference between the battery units 2 due to the discharge.
  • the battery unit 2 with a low output voltage is preferentially charged in a state where the battery unit 2 having a voltage difference is charged. The For this reason, it can charge, reducing the voltage difference of the some battery unit 2, ie, equalizing the battery unit 2 with a voltage difference.
  • the power supplied from the power supply line 5 of the external power supply 3 is supplied to each battery unit 2 via the first rectifying element 16, the third switch 13 in the ON state, and the current limiting resistor 14, the battery The unit 2 is precharged while the charging current is limited by the current limiting resistor 14. For this reason, even in the battery unit 2 having a low voltage, it is safely and stably charged and equalized while effectively preventing a large inrush current from flowing.
  • the balance charging mode described above is a step of precharging the battery units 2 while equalizing them when there is a predetermined voltage difference among the plurality of battery units 2 connected to the connection unit 1.
  • the battery is started, when some battery units are removed, when a new battery unit is connected, when charging starts after the battery unit is discharged, or when the battery unit 2 is charged for the first time, etc. Pre-charge while equalizing the battery units.
  • the equalization mode is set as shown by the chain line arrow in FIG. It is also possible to equalize in a state where the connection unit 1 is disconnected from the power supply line 5 without shifting and precharging each battery unit 2.
  • the power supply system performs equalization to reduce the voltage difference between the battery units 2 so that the voltage difference between the battery units 2 is smaller than the second voltage difference.
  • the battery units 2 can be equalized until the voltage difference between all the battery units 2 becomes less than the second voltage difference.
  • the second voltage difference is 1.2V or more, for example, 2.0V.
  • the controller 31 turns off the external connection switch 7 with a signal from the control unit 10 to disconnect the connection unit 1 from the power supply line 5, and the control unit 10
  • the first switch 11 is turned on, the second switch 12 is turned off, and the third switch 13 is turned on to reduce the voltage difference between the battery units 2.
  • the first switch 11 of each connection portion 9 is turned on, the second switch 12 is turned off, and the third switch 13 is turned on, so that the battery unit has a higher output voltage than the other battery units 2. 4 is output to the parallel line 8 via the second rectifying element 17 and the first switch 11 in the ON state, as shown by a chain line arrow in FIG. Supplied.
  • the power supplied from the battery unit 2 with the high output voltage is supplied to the first switch 11 in the ON state.
  • the charging is performed while the charging current is limited by the current limiting resistor 14 by being supplied via the sub-connection circuit 15, that is, the series circuit of the third switch 13 in the ON state and the current limiting resistor 14. For this reason, even between the battery units 2 having a large voltage difference, while being effectively prevented from flowing a large inrush current, it is charged and discharged safely and stably and equalized.
  • the mode when there is a predetermined voltage difference among the plurality of battery units 2 connected to the connection unit 1, for example, at the time of starting the power system, When a part of the battery units is removed, when a new battery unit is connected, when charging is started after the battery unit is discharged, etc., the mode can be changed to equalize the plurality of battery units.
  • FIG. 5 and FIG. 6 are examples in which a plurality of battery units 2 are equalized in the equalization mode, and show a state in which another battery unit 2 ′ is newly connected to the connection unit 1.
  • FIG. 5 shows equalization in a state where the battery unit 2 ′ whose output voltage is higher than that of the parallel line 8 of the connection unit 1 is connected.
  • the current output from the newly connected battery unit 2 ′ passes through the second rectifying element 17 and the first switch 11 in the ON state to the parallel line 8. It is energized and supplied to another battery unit 2 with a low output voltage.
  • the output of the newly connected battery unit 2 ′ is energized via the second rectifying element 17 without being energized to the current limiting resistor 14 of the connection portion 9 ′ to which the battery unit 2 ′ is connected. .
  • the power of the newly connected battery unit 2 ′ is effectively used for another battery unit 2 without being wasted by the current limiting resistor 14 of the connection portion 9 ′.
  • a large current may flow from the battery unit 2 ′.
  • the amount of heat generated in each current limiting resistor 14 can be reduced by reducing the current flowing through each connection portion 9.
  • FIG. 6 shows equalization in a state where the battery unit 2 ′ whose output voltage is lower than that of the parallel line 8 of the connection unit 1 is connected.
  • power is supplied from the other battery units 2 to the newly connected battery unit 2 ′ via the parallel line 8.
  • the current output from the other battery unit 2 is energized to the parallel line 8 via the second rectifying element 17 of each connection portion 9 and the first switch 11 in the ON state, and the battery unit 2 having a low output voltage. Supplied to '. That is, the output of the other battery unit 2 is energized via the second rectifying element 17 without being energized to the current limiting resistor 14 of each connection part 9.
  • the current output from the other battery unit 2 is reliably prevented from being energized by the current limiting resistor 14 of each connecting portion 9 and generating heat due to Joule heat.
  • the electric power of the other battery unit 2 is effectively used for the newly connected battery unit 2 ′ without being wasted by the current limiting resistor 14 of the connection portion 9.
  • there is a voltage difference between the new battery unit 2 ′ and the parallel line 8 there is a possibility that a large current flows through the battery unit 2 ′. This current is caused by the current limiting resistor 14 of the connection portion 9 ′. As a result, a large inrush current to the battery unit 2 ′ is prevented.
  • the controller 31 turns on the external connection switch 7 so that charging power can be supplied from the power supply line 5 to the connection unit 1.
  • the first switch 11 is turned on, the second switch 12 is turned on, the third switch 13 is turned off, and the battery cells 21 of each battery unit 2 are charged with power supplied from the power supply line 5 of the external power supply 3. .
  • the connection state shown in FIG. 7 since the first switch 11 of each connection part 9 is turned on, the second switch 12 is turned on, and the third switch 13 is turned off, the power supplied from the external power source 3 is as shown in FIG.
  • the battery cells 21 are charged by being supplied to each battery unit 2 in a low resistance state via the first switch 11 in the ON state and the second switch 12 in the ON state. For this reason, the battery unit 2 is ideally charged with the electric power supplied from the external power source 3 without suppressing the charging current. Moreover, since each battery unit 2 is charged by the balance charge mode which is a previous process, even in a state where a plurality of battery units 2 are charged, the voltage of the power supply line 5 is not reduced, that is, the external power source The battery unit 2 can be charged in parallel while avoiding unstable power supply from 3 to the drive target device 40 and continuing the operation of the drive target device 40.
  • the external power supply 3 can adjust the output of the power supply circuit 4 in order to efficiently charge the plurality of battery units 2.
  • the power supply circuit 4 is controlled by the controller 31 so that the output voltage that is the charging voltage of the battery unit 2 is an optimum voltage.
  • the output voltage of the external power source 3 in the normal charging mode that is, the second charging voltage for charging the battery unit 2 can be set to, for example, 52.6V.
  • the controller 31 switches off the external connection switch 7 once in response to a signal from the control unit 10, and the control unit 10 After the switch 11 is switched from OFF to ON, the second switch 12 of each connection section 9 is switched from OFF to ON, and the third switch 13 of each connection section 9 is switched from ON to OFF, the controller 31 switches the external connection switch 7. Can be switched on again. According to this control, the first switch 11 and the second switch 12 of each connection section 9 are sequentially switched from OFF to ON while the external connection switch 7 is OFF, so that only some battery units 2 are ON. Thus, it is possible to reliably prevent the overcurrent from flowing through the battery unit 2 by being connected to the power supply line 5 via the first switch 11 and the second switch 12.
  • the control unit 10 can also perform overcharge protection of the battery unit 2 and the battery cell 21. For example, when the voltage of any one of the plurality of battery units 2 in the charged state becomes equal to or higher than the maximum unit voltage (for example, 53.3 V), the control unit 10 determines that the battery is overcharged, and Protect unit 2 by stopping charging. Moreover, when the voltage of any battery cell 21 exceeds the maximum cell voltage among the battery cells 21 configuring the battery unit 2 in the charged state, the control unit 10 determines that the battery cell 21 is overcharged. The battery unit 2 provided with is stopped and protected.
  • the maximum unit voltage for example, 53.3 V
  • the battery unit 2 formed by directly connecting 13 battery cells 21 composed of a plurality of lithium ion batteries, when the voltage of any one of the battery cells 21 is equal to or higher than the maximum cell voltage of 4.1 V, overcharge and Determination is made to stop and protect the battery unit 2 including the battery cell 21.
  • the normal charging mode is continued until the battery unit 2 is fully charged.
  • the full charging of the battery unit 2 is determined as follows. For example, when the battery cell 21 constituting the battery unit 2 is a lithium ion battery, the charging current is reduced when the lithium ion battery is fully charged. Therefore, it is detected that the charging current is lower than a predetermined current value. Then, it is detected that each battery cell 21 is fully charged.
  • the cell voltage (Vs) of one of the battery cells 21 is equal to or higher than a full charge determination voltage (for example, 3.9 V), and the charge current (Ic) is a full charge determination current (for example, 300 mA). ), It can be determined that the battery cell 21 is fully charged.
  • the control unit 10 for any one of the battery cells 21 Cell voltage (Vs) ⁇ 3.9 V and 0 mA ⁇ charging current (Ic) ⁇ 300 mA Then, it can be determined that the battery cell 21 is fully charged.
  • the battery unit 2 including the battery cell 21 is determined to be fully charged and charging is stopped.
  • a battery unit including a battery cell that is prohibited from being charged or discharged for some reason is not subject to full charge, and any battery cell has a full charge determination voltage of 3.9 V or higher. Charging can be continued without determining that the battery unit that does not satisfy the condition is fully charged.
  • the controller 31 turns on the external connection switch 7 to connect the power supply line 5 and the parallel line 8 of the connection unit 1.
  • the first switch 11 of each connection part 9 is turned on, the second switch 12 is turned off, and the third switch 13 is turned off, so that the battery unit 2 can be discharged to the power supply line 5 in a standby state.
  • This full charge mode is a standby state in which the external connection switch 7 that connects the parallel line 8 to the power supply line 5 of the external power supply 3 is kept in an ON state, and therefore a voltage drop of the commercial power supply 30 or the external power supply 3 is detected. Without providing a mechanism, power can be quickly supplied from the battery unit 2 to the power supply line 5 in a state where the output voltage of the power supply circuit 4 drops below a predetermined value.
  • the power supply system when the full charge mode is continued for a long time, the remaining capacity of each battery cell 21 decreases due to self-discharge, circuit power consumption, and the like. Accordingly, in this full charge mode, the remaining capacity of one of the battery cells 21 is reduced by a predetermined rate (for example, 10%) from the fully charged state, or the cell voltage of any one of the battery cells 21 is reduced to the charge resumption voltage (for example, for example). In a lithium ion battery, charging can be resumed when it becomes 3.85 V or less.
  • the power supply system switches the third switch 13 of each connection unit 9 from OFF to ON in this step and starts recharging. To do.
  • the controller 31 turns on the external connection switch 7 to connect the power supply line 5 and the parallel line 8 of the connection unit 1.
  • the first switch 11 of each connection part 9 is turned on, the second switch 12 is turned off, the third switch 13 is turned on, and the power supplied from the external power source 3 is supplied to each battery unit 2 while being limited by the current limiting resistor 14.
  • the battery cell 21 is precharged. Thereby, it is effectively prevented that a large inrush current flows through the battery unit 2 to be recharged.
  • the external power supply 3 can adjust the output of the power supply circuit 4 in order to precharge while suppressing the charging current to the battery unit 2.
  • the power supply circuit 4 is controlled by the controller 31 so that the output voltage that is the charging voltage of the battery unit 2 is an optimum voltage.
  • the output voltage of the external power supply 3 in the recharging mode that is, the third charging voltage for precharging the battery unit 2 can be set to 52.1 V, for example.
  • the control unit 10 determines whether or not the precharge of the battery unit 2 to be recharged is completed.
  • the end of the precharge is determined, for example, by whether or not the cell voltages of all the battery cells 21 have become equal to or higher than a predetermined voltage (for example, 3.9 V), or whether the precharge time has passed a predetermined time Can be determined.
  • a predetermined voltage for example, 3.9 V
  • the precharge time has passed a predetermined time Can be determined.
  • the above recharge mode can be omitted.
  • the battery can be recharged by shifting to the normal charge mode.
  • Preliminary discharge mode When the output voltage of the power supply circuit 4 of the external power supply 3 drops due to a power failure or the like of the commercial power supply 30 in the full charge mode or the recharge mode, for example, the power supply system is below a predetermined value or below the output voltage of the connection unit 1 When the voltage drops to the preliminary discharge mode, power is supplied from the plurality of battery units 2 to the power supply line 5 of the external power source 3. In this preliminary discharge mode, as indicated by the chain line arrows in FIGS.
  • the external connection switch 7 is turned on, the first switch 11 of each connection section 9 is turned on, the second switch 12 is turned off, and the third switch 13 is turned off.
  • the recharge mode as shown in FIG. 9, the external connection switch 7 is turned on, the first switch 11 of each connection part 9 is turned on, the second switch 12 is turned off, and the third switch 13 is turned off.
  • the current detection unit 25 detects the discharge current. As shown in FIG. 1, the current detection unit 25 detects a current flowing from the parallel line 8 to the connection line 6 and inputs the detected current value to the control unit 10.
  • the control unit 10 detects that the power supply from the battery unit 2 to the power supply line 5 is started by receiving a signal indicating the current value of the discharge current from the current detection unit 25, and detects the second switch 12 is turned on to shift from the preliminary discharge mode to the normal discharge mode so that a large current flows.
  • the control unit 10 since the current detection unit 25 detects the discharge current, the control unit 10 switches the switch of each connection unit 9 to switch from the preliminary discharge mode to the normal discharge mode, so the discharge state of the battery unit 2 is confirmed.
  • the normal discharge mode can be switched.
  • the preliminary discharge mode can be omitted.
  • the power supply system detects that the output voltage of the power supply circuit has dropped below a predetermined voltage due to a power failure of the commercial power supply or a failure of the power supply circuit in the full charge mode or recharge mode, the power supply system shifts to the normal discharge mode. Power can be supplied to the power supply line.
  • the power supply system supplies power from the plurality of battery units 2 to the power supply line 5 by the control circuit 10 switching the second switch 12 of each connection unit 9 ON and the third switch 13 OFF. In this normal discharge mode, as indicated by the chain line arrow in FIG.
  • each battery unit 2 is supplied to the parallel line 8 via the second switch 12 in the ON state and the first switch 11 in the ON state.
  • the power of the parallel line 8 is supplied to the power supply line 5 of the external power source 3 via the external connection switch 7 in the ON state, and discharged from the plurality of battery units 2.
  • each battery unit 2 is discharged through the second switch 12 in the ON state and the first switch 11 in the ON state, so that stable discharge can be performed in a low resistance state.
  • the control unit 10 can also perform overdischarge protection of the battery unit 2 and the battery cell 21. For example, when the voltage of any one of the plurality of battery units 2 in the discharged state becomes equal to or lower than the minimum unit voltage (for example, 39.0 V), the control unit 10 determines that the battery is overdischarged, and The discharge of the unit 2 is stopped and protected. In addition, when the voltage of any one of the battery cells 21 constituting the battery unit 2 in the discharged state becomes equal to or lower than the minimum cell voltage, the control unit 10 determines that the battery cell 21 is overdischarged. The discharge of the battery unit 2 comprising is stopped and protected.
  • the minimum unit voltage for example, 39.0 V
  • the battery unit 2 formed by directly connecting the battery cells 21 made of a plurality of lithium ion batteries, if the voltage of any one of the battery cells 21 is equal to or lower than the minimum cell voltage of 3.0 V, overdischarge occurs. It judges and stops discharge of battery unit 2 provided with this battery cell 21, and protects it.
  • the output voltage of the power supply circuit 4 of the external power supply 3 becomes equal to or higher than a predetermined value, To charge as normal charging mode.
  • the power supply system shifts to the normal charging mode, and the plurality of battery units 2 are charged with the power supplied from the power supply line 5.
  • the external connection switch 7 is in the ON state, the first switch 11 of each connection section 9 is turned on, the second switch 12 is turned on, and the third switch 13 is turned off. It is said.
  • the power supplied from the power supply line 5 of the external power supply 3 is in the ON state as shown by the arrow in FIG. While being supplied to the parallel line 8 via the external connection switch 7, it is supplied to each battery unit 2 via the first switch 11 in the ON state and the second switch 12 in the ON state. Therefore, without providing a mechanism for detecting a voltage increase of the commercial power supply 30 or the external power supply 3 and without switching the connection unit 9 by the control unit 10, the power supply circuit 4 can be quickly restored in the state where the output voltage is restored. Electric power can be supplied from the supply line 5 to the battery unit 2.
  • the power supply system shifts to the normal discharge mode and the plurality of battery units 2 receive external power supplies. 3 is supplied to the power supply line 5.
  • the external connection switch 7 is in the ON state, the first switch 11 of each connection section 9 is turned on, the second switch 12 is turned on, and the third switch 13 is turned off. It is said. Therefore, in this normal charging mode, when the output voltage of the power supply circuit 4 of the external power supply 3 decreases, the power of each battery unit 2 is switched to the ON state of the second switch 12 as shown by the chain line arrow in FIG.
  • the battery unit can be quickly operated in a state where the output voltage of the power supply circuit 4 is lowered. 2 can supply power to the power supply line 5.
  • discharge stop mode In the normal discharge mode, when the battery unit 2 is discharged and becomes equal to or lower than the discharge stop voltage, the power supply system shifts to the discharge stop mode and stops the discharge of the battery unit 2 in this step.
  • the controller 31 In this discharge stop mode, when the voltage of the power supply line 5 becomes a discharge stop voltage of a predetermined value (for example, 42 V) corresponding to the lowest operating voltage of the drive target device 40, the controller 31 is externally connected as shown in FIG. The connection switch 7 is turned off to stop the discharge from the battery unit 2. If the power failure is resolved before the voltage of any battery cell 21 drops to a predetermined value (about 3 V / cell), the controller 31 switches the external connection switch 7 to ON and enters the normal charging mode. Transition.
  • a predetermined value for example, 42 V
  • the controller 31 can switch the external connection switch 7 to OFF based on a signal from the control unit 10.
  • the parallel line 8 of the connection unit 1 is disconnected from the power supply line 5 and the power supply from the battery unit 2 to the power supply line 5 is stopped.
  • the voltage of any one of the battery cells 21 becomes a predetermined value due to power consumption in the internal circuit, cell self-discharge, etc.
  • the voltage is less than (approximately 3 V / cell)
  • a signal is output from the detection circuit 22 of the battery cell 21 and input to the control unit 10. In this state, as shown in FIG.
  • the control unit 10 turns off the first switch 11, the second switch 12, and the third switch 13, and further includes a detection circuit including microcomputers and the like of all the battery units 2. All the detection circuits 22 are shut down (driving stopped) by stopping the driving power (driving voltage) 12 V on the communication line 28 between the control unit 10 and the control unit 10. Thereby, each battery block 20 will be in the state isolate
  • the power supply system shifts to the balance charge mode and charges the battery unit 2.
  • the control unit 10 When the output voltage of the power supply circuit 4 of the external power supply 3 returns to a predetermined value or higher, power is supplied from the power supply line 5 to the control unit 10, the control unit 10 is activated, and the first switch 11, the second switch 12, And the 3rd switch 13 operate
  • the plurality of battery units 2 are precharged while being equalized.
  • the voltage of each battery unit 2 is lowered, and the voltage of each battery unit 2 may vary. Even in this case, the dispersion is eliminated by shifting to the balance charge mode and precharging while equalizing.
  • control unit 10 of the connection unit 1 can also detect and protect the overcurrent of the current flowing through each battery unit 2.
  • the control unit 10 detects a detection value of a charging current and a discharging current flowing through each battery unit 2 from a signal input from a detection circuit 22 built in each battery unit 2 when the battery unit 2 is charged or discharged. To do.
  • the control unit 10 determines that the current is overcurrent and stops charging / discharging the battery unit 2.
  • the upper limit current value at which the control unit 10 determines each battery unit 2 as an overcurrent can be, for example, 27 A to 33 A, and the detection time can be 0.5 seconds to 1.5 seconds.
  • the control unit 10 turns off all the switches of the connection unit 9 connected to the battery unit 2 in which the overcurrent is detected, and stops charging / discharging of the battery unit 2.
  • control unit 10 of the connection unit 1 can detect and protect the overcurrent of the current flowing through the parallel line 8.
  • the connection unit 1 detects a charging current and a discharging current flowing in the parallel line 8 with the current detection unit 25 in the charging state and discharging state of the battery unit 2.
  • the control unit 10 determines that it is an overcurrent and stops charging and discharging all the battery units 2 to protect them.
  • the upper limit current value for determining the overcurrent of the current flowing through the parallel line 8 by the control unit 10 may be, for example, 108A to 132A, and the detection time may be 0.25 seconds to 0.75 seconds.
  • the control unit 10 detects an overcurrent in the parallel line 8, it transmits an abnormal signal to the controller 31 via the communication line 32, and the controller 31 switches the external connection switch 7 to OFF to charge / discharge all the battery units 2. To stop.
  • control unit 10 of the connection unit 1 can also control the charge / discharge state of the battery unit 2 based on the battery temperature detected by the detection circuit 22 of the battery unit 2. For example, when the battery temperature of any one of the battery units 2 is in an abnormal temperature range, the control unit 10 cuts off the connection unit 9 connected to the battery unit 2 and stops charging / discharging of the battery unit 2. .
  • the above power supply system charges the plurality of battery units 2 with the power supplied from the external power supply 3 and the output voltage of the external power supply 3 drops below a predetermined value in the following flowcharts shown in FIGS. 11 and 12.
  • electric power is supplied to the power supply line 5 by discharging from the plurality of battery units 2.
  • the control unit 10 detects the connection state of the plurality of battery units 2 from the identification signal input from the detection circuit 22 of each battery unit 2.
  • the control unit 10 removes the number of connected battery units 2, a part of the battery units 2 from the identification signal input from each battery unit 2, or newly connects another battery unit 2.
  • the connection state such as whether or not has been determined.
  • the control unit 10 determines an allowable maximum current value and the like based on the connection state of the plurality of battery units 2.
  • the controller 31 and the control unit 10 precharge the plurality of battery units 2 while equalizing the plurality of battery units 2 by controlling ON / OFF of each switch as follows. (See Figure 3)
  • the controller 31 controls the output voltage of the power supply circuit 4 to the first charge voltage.
  • the first charging voltage can be set to 48V, for example, or can be set to a voltage (Vmax + 0.5V) larger by 0.5V than the maximum voltage Vmax of the battery unit having the highest output voltage.
  • a predetermined voltage difference for example, about 1.2 V.
  • Step n 4] (Normal charge mode)
  • the controller 31 and the control unit 10 fully turn on the plurality of battery units 2 by controlling ON / OFF of each switch as follows. (See Figure 7) Further, in this normal charging mode, the controller 31 controls the output voltage of the power supply circuit 4 to the second charging voltage.
  • the second charging voltage can be set to, for example, 52.6V.
  • the controller 31 and the control unit 10 control the ON / OFF of each switch as follows to enter a standby state.
  • Step n 9]
  • the control unit 10 determines whether or not the remaining capacity of the battery unit 2 in the standby state is reduced and recharging is necessary.
  • the remaining capacity of any one of the battery cells 21 decreases by a predetermined rate (for example, 10%) from the fully charged state, or when the cell voltage of any one of the battery cells 21 becomes equal to or lower than the charge restart voltage (for example, 3.85 V).
  • N 10 and recharge is started.
  • Step n 10] (Recharge mode)
  • the controller 31 and the control unit 10 precharge a plurality of battery units 2 by controlling ON / OFF of each switch as follows. (See Figure 9) Further, in this recharging mode, the controller 31 controls the output voltage of the power supply circuit 4 to the third charging voltage.
  • the third charging voltage is set lower than the second charging voltage, and can be set to, for example, 52.1V.
  • the recharge mode can be omitted. In this case, when it is determined that recharging is necessary, the recharging can be performed by shifting to the normal charging mode.
  • the control unit 10 determines whether or not the precharge in the recharge mode is finished.
  • the end of the precharge is determined based on whether or not the cell voltages of all the battery cells 21 have become equal to or higher than a predetermined voltage (for example, 3.9 V), or whether the precharge time has passed a predetermined time It can be judged by how.
  • a predetermined voltage for example, 3.9 V
  • Step n 13] (Preliminary discharge mode) In this step, each switch is maintained ON / OFF as follows, and supplies power from the plurality of battery units 2 to the power supply line 5 of the external power supply 3. (See Figs.
  • the preliminary discharge mode can be omitted.
  • Step n 15] (Normal discharge mode)
  • the controller 31 and the control unit 10 continue the discharge state by controlling ON / OFF of each switch as follows.
  • External connection switch ON First switch ............ ON Second switch ............ ON Third switch ............ OFF In the normal discharge mode, the electric power discharged from each battery unit 2 is supplied to the parallel line 8 via the second switch 12 in the ON state and the first switch 11 in the ON state, as shown by the chain arrows in FIG. And the power of the parallel line 8 is supplied to the power supply line 5 of the external power supply 3 through the external connection switch 7 in the ON state.
  • Step n 17] In this step, the control unit 10 determines whether or not the output voltages (Vy) of all the battery units 2 have become equal to or lower than the discharge stop voltage.
  • the controller 31 switches the external connection switch 7 to OFF. In this state, the parallel line 8 is disconnected from the power supply line 5 and the power supply from the battery unit 2 to the power supply line 5 is stopped.
  • a predetermined value about 3 V / cell
  • the control unit 10 turns off all the switches so that all the battery units 2 are disconnected from the parallel line 8.
  • the control circuit 10 stops the driving power (driving voltage) 12V put on the communication line 28 between the battery unit 2 and the detection circuit 22 composed of a microcomputer or the like, and shuts down (drives) all the detection circuits 22. Stop).
  • the power supply system according to the present invention can be suitably used as a backup power supply for supplying power to mobile phone base stations, traffic lights, etc., when a commercial power supply fails.
  • it is suitable for use as a power supply system that can connect multiple battery units with a large number of battery cells in parallel to increase the output while charging with the power supplied from the commercial power supply, and discharge when the output of the commercial power supply decreases. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

 電源システムは、外部電源(3)と複数の電池ユニット(2)と接続ユニット(1)とを備え、外部電源(3)から各電池ユニット(2)に電力を供給して充電し、外部電源(3)の出力低下状態で、電池ユニット(2)から駆動対象機器(40)に電力を供給する。接続ユニット(1)は、複数の電池ユニット(2)を並列接続する並列ライン(8)と、各電池ユニット(2)を並列ライン(8)に接続する接続部(9)と、接続部(9)の接続状態を制御する制御部(10)とを備え、外部接続スイッチ(7)を介して外部電源(3)の電力供給ライン(5)に接続している。制御部(10)は、各電池ユニット(2)を均等化しながらプリチャージするバランス充電モードと、通常充電モードと、満充電モードと、各電池ユニット(2)から電力供給ライン(5)に電力を供給する通常放電モードと、放電停止モードと、駆動停止モードを切り換えて複数の電池ユニット(2)を充放電する。

Description

電源システム及び電源システムの充放電制御方法
 本発明は、複数の電池セルを備える電池ユニットを商用電源から供給される電力で充電し、商用電源から供給される電力が低下した際に、充電された電池ユニットの電力を出力する電源システムに関し、とくに、商用電源の電力を複数の電池ユニットに蓄えて出力を大きくしている電源システム及び電源システムの充放電制御方法に関する。
 携帯電話の基地局や信号機などに接続されて、商用電源の停電時には電力を供給するバックアップ用電源装置が知られている。このようなバックアップ電源は、駆動対象機器と接続されており、商用電源に異常が生じたことを検出すると、駆動対象機器に対して所定の電力を供給するよう構成される。
国際公開第2012/043723号
 このようなバックアップ電源装置においては、より大容量化して長時間の電力供給を可能とするために、複数の電池ユニットを並列に接続することが考えられる。しかしながら、この場合は、複数の電池ユニットの出力電圧が一致しないと、出力の一部が駆動対象機器に対して供給されずに、他の電池ユニットに供給される等の不具合が生じるという問題があった。
 本発明は、従来のこのような問題点を解決するためになされたものであり、その主な目的は、複数の電池ユニットを並列接続して大容量としながら、これらの電池ユニットを均等に充電して安定的に利用可能とする電源システム及び電源システムの充放電制御方法を提供することにある。
 上記課題を解決するために、本発明の電源システムによれば、外部の商用電源30に接続されて、商用電源30から供給される電力を変換して駆動対象機器40に供給する外部電源3と、直列に接続された複数の電池セル21を備える複数の電池ユニット2と、前記複数の電池ユニット2を並列に接続して前記外部電源3に接続する接続ユニット1とを備え、前記外部電源3から各電池ユニット2に電力を供給して、前記電池セル21を充電すると共に、前記外部電源3から駆動対象機器40に出力される電圧が低下する状態で、前記電池ユニット2から駆動対象機器40に電力を供給するようにしている。前記外部電源3は、商用電源30から供給される交流を、駆動対象機器40を駆動する所定の出力電圧の直流に変換する電源回路4と、前記電源回路4の出力側に接続されて、外部の駆動対象機器40に電力を供給する電力供給ライン5と、前記電力供給ライン5に接続されて、前記接続ユニット1を接続する接続ライン6と、前記接続ライン6上に設けられ、前記電力供給ライン5の電圧が所定値以下になるとオフとなる外部接続スイッチ7とを備えている。前記接続ユニット1は、前記複数の電池ユニット2を並列に接続する並列ライン8と、各電池ユニット2を前記並列ライン8に接続する接続部9と、前記接続部9の接続状態を制御する制御部10とを備えており、前記並列ライン8は、前記外部電源3の接続ライン6に接続されており、前記接続部9は、前記並列ライン8と各電池ユニット2の間に直列に接続された第一スイッチ11と第二スイッチ12の直列回路と、前記第二スイッチ12と並列に接続された、電流制限抵抗14と第三スイッチ13の直列回路からなるサブ接続回路15と、前記第一スイッチ11と並列に接続され、かつ前記並列ライン8から該電池ユニット2に通電する方向に整流作用を有する第一整流素子16と、前記第二スイッチ12と並列に接続され、かつ該電池ユニット2から前記並列ライン8に通電する方向に整流作用を有する第二整流素子17とを備えている。電源システムは、前記制御部10が、各接続部9の前記第一スイッチ11をOFF、前記第二スイッチ12をOFF、前記第三スイッチ13をONとして、各電池ユニット2を均等化しながらプリチャージするバランス充電モードと、前記バランス充電モードの後、前記制御部10が、各接続部9の前記第一スイッチ11をON、前記第二スイッチ12をON、前記第三スイッチ13をOFFとして、前記電池ユニット2を満充電させる通常充電モードと、各電池ユニット2が満充電されると、前記制御部10が、各接続部9の前記第一スイッチ11をON、前記第二スイッチ12をOFF、前記第三スイッチ13をOFFとして、前記電池ユニット2の充電を停止する満充電モードと、前記満充電モードにおいて、前記外部電源3の出力電圧が低下すると、前記制御部10が、各接続部9の前記第一スイッチ11をON、前記第二スイッチ12をON、前記第三スイッチ13をOFFとして、各電池ユニット2から前記外部電源3の電力供給ライン5に電力を供給する通常放電モードと、前記通常放電モードにおいて、前記電力供給ライン5の電圧が前記所定値以下になると、前記外部接続スイッチ7がOFFに制御されて、各電池ユニット2からの放電を停止する放電停止モードと、前記放電停止モードにおいて、前記電池ユニット2のセル電圧が所定値以下になると、前記制御部10が、各接続部9の前記第一スイッチ11をOFF、前記第二スイッチ12をOFF、前記第三スイッチ13をOFFとする駆動停止モードとを切り換えて複数の電池ユニット2を充放電している。
 上記構成により、並列接続された複数の電池ユニットを均等化しながら充電させることができる。とくに、バランス充電モードにおいて、電圧差のある電池ユニットを均等化しながらプリチャージした後、通常充電モードで満充電することで、充電状態のばらつきを抑制しながら満充電して、放電時に電力が電池ユニット間で授受される事態を回避できる。また、バランス充電モードで各電池ユニットをプリチャージした後、通常充電モードに切り換えて満充電させるので、電池ユニットの充電に多くの電力を割くことで駆動対象機器への電力供給が不安定となる事態も回避でき、駆動対象機器の動作を継続しつつ電池ユニットの充電を並行して行うホットスタンバイも可能となる。
 また、本発明の電源システムによれば、前記満充電モードにおいて、前記電池ユニット2のいずれかの電池セル21の残容量が満充電状態から所定の割合低下し、あるいは、いずれかの電池セル21のセル電圧が充電再開電圧以下になると、前記制御部10が、各接続部9の前記第一スイッチ11をON、前記第二スイッチ12をOFF、前記第三スイッチ13をONとして、各電池ユニット2をプリチャージする再充電モードに移行して該電池ユニットを再充電することができる。
 上記構成によると、満充電モードが長時間にわたって継続されて、いずれかの電池セルの残容量が減少すると電池ユニットの充電を再開するので、複数の電池ユニットの残容量を常に十分な残容量に保持でき、停電時等の非常時において、長時間にわたって電力供給できる。また、再充電モードにおいて、電池ユニットをプリチャージすることで、大きな突入電流を防止できる。
 さらに、本発明の電源システムによれば、前記満充電モード又は前記再充電モードにおいて、前記外部電源3の出力電圧が低下すると、各電池ユニット2の電力が、前記第二整流素子17とON状態の前記第一スイッチ11を介して前記並列ライン8に供給されると共に、該並列ライン8の電力がON状態の前記外部接続スイッチ7を介して前記外部電源3の電力供給ライン5に供給される予備放電モードによって複数の電池ユニット2から放電することができる。
 上記構成によると、前記満充電モード又は前記再充電モードにおいて、外部電源の出力電圧が低下すると、各電池ユニットの電力が、第二整流素子と、ON状態の第一スイッチと、ON状態の外部接続スイッチとを介して電力供給ラインに供給される予備放電モードによって複数の電池ユニットから放電するので、商用電源や外部電源の電圧低下を検出する機構を設けることなく、また、制御部で接続部を切り換えることなく、外部電源の出力電圧が低下する状態で速やかに電力供給ラインに電力を供給できる。
 さらに、本発明の電源システムによれば、前記接続ユニット1が、前記外部電源3の接続ライン6への通電状態を検出する電流検出部25を備えて、前記予備放電モードにおいて、前記電流検出部25が前記接続ライン25への放電電流を検出すると、前記制御部10が、各接続部9の前記第一スイッチ11をON、前記第二スイッチ12をON、前記第三スイッチ13をOFFとして、各電池ユニット2の電力が、ON状態の第二スイッチ12とON状態の第一スイッチ11を介して前記並列ライン8に供給されると共に、該並列ライン8の電力がON状態の前記外部接続スイッチ7を介して前記外部電源3の電力供給ライン5に供給される通常放電モードに移行して複数の電池ユニット2から放電することができる。
 上記構成によると、電流検出部が放電電流を検出する状態で、各接続部の第一スイッチをON、第二スイッチをON、第三スイッチをOFFとして、予備放電モードから通常放電モードに切り換えるので、接続ラインへの放電状態を確認しながら通常放電モードに切り換えできる。また、通常放電モードにおいては、ON状態の第二スイッチとON状態の第一スイッチを介して各電池ユニットから放電するので、低抵抗な状態で安定して放電できる。
 さらに、本発明の電源システムによれば、前記通常充電モードにおいて、前記外部電源3の出力電圧が低下すると、各電池ユニット2の電力が、ON状態の前記第二スイッチ12とON状態の前記第一スイッチ11を介して前記並列ライン8に供給されると共に、該並列ライン8の電力がON状態の前記外部接続スイッチ7を介して前記外部電源3の電力供給ライン5に供給される通常放電モードに移行して複数の電池ユニット2から放電することができる。
 上記構成によると、通常充電モードにおいて外部電源の出力電圧が低下すると、各電池ユニットの電力がON状態の第二スイッチとON状態の第一スイッチとON状態の外部接続スイッチとを介して電力供給ラインに供給される通常放電モードに移行するので、商用電源や外部電源の電圧低下を検出する機構を設けることなく、また、制御部で接続部を切り換えることなく、外部電源の出力電圧が低下する状態で速やかに電力供給ラインに電力を供給できる。
 さらに、本発明の電源システムによれば、前記通常放電モードにおいて、前記外部電源3の出力電圧が復帰すると、前記外部電源3の電力供給ライン5から供給される電力がON状態の前記外部接続スイッチ7を介して前記並列ライン8に供給されると共に、該並列ライン8の電力がON状態の前記第一スイッチ11とON状態の前記第二スイッチ12を介して各電池ユニット2に供給される通常充電モードに移行して複数の電池ユニット2を充電することができる。
 上記構成によると、通常放電モードにおいて外部電源の出力電圧が復帰すると、電力供給ラインの電力がON状態の外部接続スイッチとON状態の第一スイッチとON状態の第二スイッチとを介して各電池ユニットに供給される通常充電モードに移行するので、商用電源や外部電源の電圧復帰を検出する機構を設けることなく、また、制御部で接続部を切り換えることなく、外部電源の出力電圧が復帰する状態で速やかに電池ユニットに電力を供給して充電できる。
 さらに、本発明の電源システムによれば、前記バランス充電モードにおいて、各電池ユニット2間の電圧差が所定の第二電圧差以上の場合に、前記外部接続スイッチ7が前記制御部10からの信号でOFFに制御され、前記制御部10が、各接続部9の前記第一スイッチ11をON、前記第二スイッチ12をOFF、前記第三スイッチ13をONとして、各電池ユニット2間で電圧差を低減させる均等化モードに移行して複数の電池ユニット2を均等化することができる。
 上記構成により、並列接続された複数の電池ユニットの電圧のばらつきを解消できる。とくに、電圧差の大きい電池ユニット同士を速やかに均等化できる。このように、均等化モードを設けて、予め電池ユニット間の電圧差を均等化することで、充電状態のばらつきを抑制できる。
 さらに、本発明の電源システムによれば、前記バランス充電モードにおいて、前記電力供給ライン5の電圧と各電池ブロック20の電圧との差が所定の電圧差以下になると、前記外部接続スイッチ7が前記制御部10からの信号でOFFに切り換えられ、前記制御部10が、各接続部9の前記第一スイッチ11をOFFからONに、各接続部9の前記第二スイッチ12をOFFからONに、各接続部9の前記第三スイッチ13をONからOFFに切り換えた後、前記外部接続スイッチ7が前記制御部10からの信号でONに切り換えられて前記通常充電モードに移行することができる。
 上記構成により、バランス充電モードから通常充電モードに切り換える制御において、外部接続スイッチがOFFの状態で各接続部の第一スイッチをOFFからONに、第二スイッチをOFFからONに、第三スイッチをONからOFFに切り換えるので、複数のスイッチを順番に切り換える工程で、一部の電池ユニットのみが電力供給ラインに接続された状態となって、この電池ユニットに過電流が流れる事態を確実に防止できる。
 さらに、本発明の電源システムによれば、前記駆動停止モードにおいて、前記外部電源3の出力電圧が復帰すると、前記外部接続スイッチ7がONに制御され、前記制御部10が、各接続部9の前記第一スイッチ11をOFF、前記第二スイッチ12をOFF、前記第三スイッチ13をONとして前記バランス充電モードに移行して各電池ユニット2を充電することができる。
 上記構成により、第一整流素子を経由して電池ユニットの充電を可能としつつ、外部電源の電圧低下が生じても、第一スイッチをOFFさせたことで放電が阻止されるので、電池ユニットからの放電を阻止して、放電によって電池ユニット間の電圧差が拡大する事態を回避できる共に、電池ユニットの電圧を同じにして充電することができる。
 さらに、本発明の電源システムによれば、前記外部電源3が、前記電源回路4の出力電圧を切り換えながら前記電池ユニット2を充電することができる。
 上記構成により、電池ユニットの充電状態において、電池ユニットの充電電圧が最適な電圧となるように電源回路の出力電圧をコントロールして、複数の電池ユニットを理想的に充電できる。
 さらに、本発明の電源システムによれば、前記第一整流素子16及び/又は第二整流素子17をダイオードとすることができる。
 さらに、本発明の電源システムによれば、前記第一スイッチ11及び/又は第二スイッチ12をトランジスタとすることができる。
 さらに、本発明の電源システムによれば、前記第一スイッチ11及び/又は第二スイッチ12をFETとし、前記第一整流素子16及び/又は第二整流素子17を、前記FETに内蔵された寄生ダイオードとすることができる。
 上記構成により、予めFETに備えられた寄生ダイオードを利用した整流作用が図られ、システム構成を簡素化できる。
 本発明の他の電源システムによれば、複数の電池セル21を直列に接続してなる複数の電池ユニット2と、前記複数の電池ユニット2を並列に接続して外部に出力する接続ユニット1とを備え、前記接続ユニット1が、商用電源30から供給される電力を直流に変換して駆動対象機器40に出力する外部電源3の電力供給ライン5に接続されて、この電力供給ライン5から供給される電力で、前記電池ユニット2の電池セル21を充電すると共に、外部電源3から駆動対象機器40に出力される電圧が低下する状態で、前記電池ユニット2から電力供給ライン5に電力を供給するようにしている。前記接続ユニット1は、前記複数の電池ユニット2を並列に接続する並列ライン8と、各電池ユニット2を前記並列ライン8に接続する接続部9と、前記接続部9の接続状態を制御する制御部10とを備えており、前記並列ライン8は、電力供給ライン5の電圧が所定値以下になるとオフになる外部接続スイッチ7を介して外部電源3の電力供給ライン5に接続されており、前記接続部9は、前記並列ライン8と前記電池ユニット2の間に直列に接続された第一スイッチ11と第二スイッチ12の直列回路と、前記第二スイッチ12と並列に接続された、電流制限抵抗14と第三スイッチ13の直列回路からなるサブ接続回路15と、前記第一スイッチ11と並列に接続され、かつ前記並列ライン8から該電池ユニット2に通電する方向に整流作用を有する第一整流素子16と、前記第二スイッチ12と並列に接続され、かつ該電池ユニット2から前記並列ライン8に通電する方向に整流作用を有する第二整流素子17とを備えている。電源システムは、前記制御部10が、各接続部9の前記第一スイッチ11をOFF、前記第二スイッチ12をOFF、前記第三スイッチ13をONとして、各電池ユニット2を均等化しながらプリチャージするバランス充電モードと、前記バランス充電モードの後、前記制御部10が、各接続部9の前記第一スイッチ11をON、前記第二スイッチ12をON、前記第三スイッチ13をOFFとして、前記電池ユニット2を満充電させる通常充電モードと、各電池ユニット2が満充電されると、前記制御部10が、各接続部9の前記第一スイッチ11をON、前記第二スイッチ12をOFF、前記第三スイッチ13をOFFとして、前記電池ユニット2の充電を停止する満充電モードと、前記満充電モードにおいて、外部電源3の出力電圧が低下すると、前記制御部10が、各接続部9の前記第一スイッチ11をON、前記第二スイッチ12をON、前記第三スイッチ13をOFFとして、各電池ユニット2から外部電源3の電力供給ライン5に電力を供給する通常放電モードと、前記通常放電モードにおいて、前記電力供給ライン5の電圧が前記所定値以下になると、外部接続スイッチ7がOFFに制御されて、各電池ユニット2からの放電を停止する放電停止モードと、前記放電停止モードにおいて、前記電池ユニット2のセル電圧が所定値以下になると、前記制御部10が、各接続部9の前記第一スイッチ11をOFF、前記第二スイッチ12をOFF、前記第三スイッチ13をOFFとする駆動停止モードとを切り換えて複数の電池ユニットを充放電している。
 上記構成により、並列接続された複数の電池ユニットを均等化しながら充電させることができる。とくに、バランス充電モードにおいて、電圧差のある電池ユニットを均等化しながらプリチャージした後、通常充電モードで満充電することで、充電状態のばらつきを抑制しながら満充電して、放電時に電力が電池ユニット間で授受される事態を回避できる。また、バランス充電モードで各電池ユニットをプリチャージした後、通常充電モードに切り換えて満充電させるので、電池ユニットの充電に多くの電力を割くことで駆動対象機器への電力供給が不安定となる事態も回避でき、駆動対象機器の動作を継続しつつ電池ユニットの充電を並行して行うホットスタンバイも可能となる。
 さらに、本発明の他の電源システムによれば、複数の電池セル21を直列に接続してなる複数の電池ユニット2と、前記複数の電池ユニット2を並列に接続して外部に出力する接続ユニット1とを備え、前記接続ユニット1が、商用電源30から供給される電力を直流に変換して駆動対象機器40に出力する外部電源3の電力供給ライン5に接続されて、この電力供給ライン5から供給される電力で、前記電池ユニット2の電池セル21を充電すると共に、外部電源3から駆動対象機器40に出力される電圧が低下する状態で、前記電池ユニット2から電力供給ライン5に電力を供給するようにしている。前記接続ユニット1は、前記複数の電池ユニット2を並列に接続する並列ライン8と、各電池ユニット2を前記並列ライン8に接続する接続部9と、前記接続部9の接続状態を制御する制御部10とを備えており、前記並列ライン8は、外部電源3の電力供給ライン5に接続されており、前記接続部9は、前記並列ライン8と前記電池ユニット2の間に直列に接続された第一スイッチ11と第二スイッチ12の直列回路と、前記第二スイッチ12と並列に接続された、電流制限抵抗14と第三スイッチ13の直列回路からなるサブ接続回路15と、前記第一スイッチ11と並列に接続され、かつ前記並列ライン8から該電池ユニット2に通電する方向に整流作用を有する第一整流素子16と、前記第二スイッチ12と並列に接続され、かつ該電池ユニット2から前記並列ライン8に通電する方向に整流作用を有する第二整流素子17とを備えている。電源システムは、前記制御部10が、各接続部9の前記第一スイッチ11をOFF、前記第二スイッチ12をOFF、前記第三スイッチ13をONとして、各電池ユニット2を均等化しながらプリチャージするバランス充電モードと、前記バランス充電モードの後、前記制御部10が、各接続部9の前記第一スイッチ11をON、前記第二スイッチ12をON、前記第三スイッチ13をOFFとして、前記電池ユニット2を満充電させる通常充電モードと、各電池ユニット2が満充電されると、前記制御部10が、各接続部9の前記第一スイッチ11をON、前記第二スイッチ12をOFF、前記第三スイッチ13をOFFとして、前記電池ユニット2の充電を停止する満充電モードと、前記満充電モードにおいて、外部電源3の出力電圧が低下すると、前記制御部10が、各接続部9の前記第一スイッチ11をON、前記第二スイッチ12をON、前記第三スイッチ13をOFFとして、各電池ユニット2から外部電源3の電力供給ライン5に電力を供給する通常放電モードと、前記電池ユニット2のセル電圧が所定値以下になると、前記制御部10が、各接続部9の前記第一スイッチ11をOFF、前記第二スイッチ12をOFF、前記第三スイッチ13をOFFとする駆動停止モードとを切り換えて複数の電池ユニットを充放電している。
 上記構成により、並列接続された複数の電池ユニットを均等化しながら充電させることができる。とくに、バランス充電モードにおいて、電圧差のある電池ユニットを均等化しながらプリチャージした後、通常充電モードで満充電することで、充電状態のばらつきを抑制しながら満充電して、放電時に電力が電池ユニット間で授受される事態を回避できる。また、バランス充電モードで各電池ユニットをプリチャージした後、通常充電モードに切り換えて満充電させるので、電池ユニットの充電に多くの電力を割くことで駆動対象機器への電力供給が不安定となる事態も回避でき、駆動対象機器の動作を継続しつつ電池ユニットの充電を並行して行うホットスタンバイも可能となる。
 さらに、本発明の電源システムの充放電制御方法は、外部の商用電源30に接続されて、商用電源30から供給される電力を変換して駆動対象機器40に供給する外部電源3と、複数の電池セル21を直列に接続してなる複数の電池ユニット2と、前記複数の電池ユニット2を並列に接続して前記外部電源3に接続する接続ユニット1とを備え、前記外部電源3から各電池ユニット2に電力を供給して、前記電池セル21を充電とすると共に、前記外部電源3から駆動対象機器40に出力される電圧が低下する状態で、前記電池ユニット2から駆動対象機器40に電力を供給するようにしてなる電源システムの充放電を制御する方法である。前記外部電源3は、商用電源30から供給される交流を、駆動対象機器40を駆動する所定の出力電圧の直流に変換する電源回路4と、前記電源回路4の出力側に接続されて、外部の駆動対象機器40に電力を供給する電力供給ライン5と、前記電力供給ライン5に接続されて、前記接続ユニット1を接続する接続ライン6と、前記接続ライン6上に設けられ、前記電力供給ライン5の電圧が所定値以下になるとオフとなる外部接続スイッチ7とを備えている。前記接続ユニット1は、前記複数の電池ユニット2を並列に接続する並列ライン8と、各電池ユニット2を前記並列ライン8に接続する接続部9と、前記接続部9の接続状態を制御する制御部10とを備えており、前記並列ライン8は、前記外部電源3の接続ライン6に接続されており、前記接続部9は、前記並列ライン8と前記電池ユニット2の間に直列に接続された第一スイッチ11と第二スイッチ12の直列回路と、前記第二スイッチ12と並列に接続された、電流制限抵抗14と第三スイッチ13の直列回路からなるサブ接続回路15と、前記第一スイッチ11と並列に接続され、かつ前記並列ライン8から該電池ユニット2に通電する方向に整流作用を有する第一整流素子16と、前記第二スイッチ12と並列に接続され、かつ該電池ユニット2から前記並列ライン8に通電する方向に整流作用を有する第二整流素子17とを備えている。さらに、電源システムの充放電制御方法は、前記制御部10が、各接続部9の前記第一スイッチ11をOFF、前記第二スイッチ12をOFF、前記第三スイッチ13をONとして、各電池ユニット2を均等化しながらプリチャージする工程と、各電池ユニット2を均等化しながらプリチャージする工程の後、前記制御部10が、各接続部9の前記第一スイッチ11をON、前記第二スイッチ12をON、前記第三スイッチ13をOFFとして、前記電池ユニット2を満充電させる工程と、各電池ユニット2が満充電されると、前記制御部10が、各接続部9の前記第一スイッチ11をON、前記第二スイッチ12をOFF、前記第三スイッチ13をOFFとして、前記電池ユニット2の充電を停止する工程と、前記外部電源3の出力電圧が低下すると、前記制御部10が、各接続部9の前記第一スイッチ11をON、前記第二スイッチ12をON、前記第三スイッチ13をOFFとして、各電池ユニット2から前記外部電源3の電力供給ライン5に電力を供給する工程と、各電池ユニット2から前記電力供給ライン5に電力を供給する状態で、前記電力供給ライン5の電圧が前記所定値以下になると、前記外部接続スイッチがOFFに制御されて、各電池ユニット2からの放電を停止する工程と、各電池ユニット2からの放電を停止する状態で、前記電池ユニット2のセル電圧が所定値以下になると、前記制御部10が、各接続部9の前記第一スイッチ11をOFF、前記第二スイッチ12をOFF、前記第三スイッチ13をOFFとする工程とで複数の電池ユニット2を充放電する。
 これにより、並列接続された複数の電池ユニットを均等化しながら充電させることができる。とくに、電圧差のある電池ユニットを均等化しながらプリチャージした後、満充電することで、充電状態のばらつきを抑制しながら満充電して、放電時に電力が電池ユニット間で授受される事態を回避できる。また、均等化しながらプリチャージする工程では、各電池ユニットをプリチャージした後、通常の充電工程に切り換えて満充電させるので、電池ユニットの充電に多くの電力を割くことで駆動対象機器への電力供給が不安定となる事態も回避でき、駆動対象機器の動作を継続しつつ電池ユニットの充電を並行して行うホットスタンバイも可能となる。
図1は、本発明の一実施の形態に係る電源システムを示すブロック図である。 図2は、図1に示す電源システムにおける充放電の過程を示すフローチャートである。 図3は、図1に示す電源システムのバランス充電モードにおける制御状態を示すブロック図である。 図4は、図1に示す電源システムの均等化モードにおける制御状態を示すブロック図である。 図5は、接続ユニットに電圧が高い電池ユニットが接続された状態における均等化を示す図である。 図6は、接続ユニットに電圧が低い電池ユニットが接続された状態における均等化を示す図である。 図7は、図1に示す電源システムの通常充電モード(通常放電モード)における制御状態を示すブロック図である。 図8は、図1に示す電源システムの満充電モード(予備放電モード)における制御状態を示すブロック図である。 図9は、図1に示す電源システムの再充電モード(予備放電モード)における制御状態を示すブロック図である。 図10は、図1に示す電源システムの放電停止モードにおける制御状態を示すブロック図である。 図11は、図1に示す電源システムが複数の電池ユニットを充放電する工程を示すフローチャート図である。 図12は、図1に示す電源システムが複数の電池ユニットを充放電する工程を示すフローチャート図である。
(実施の形態1)
 以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための電源システム及び電源システムの充放電制御方法を例示するものであって、本発明は電源システム及び電源システムの充放電制御方法を以下のものに特定しない。なお、特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。特に実施の形態に記載されている構成部材の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。また、一部の実施例、実施形態において説明された内容は、他の実施例、実施形態等に利用可能なものもある。
 本発明の電源システムは、多数の二次電池を備えるバックアップ用電源であって、たとえば、携帯電話の基地局や信号機などに設置されて、停電時等の非常時に電源として使用される。この電源システムは、商用電源から正常に電力が供給される状態にあっては、商用電源から供給される交流電力を、所定の電圧の直流電力に変換して駆動対象機器である負荷に供給し、また、内蔵される二次電池を充電し、停電時等の非常時において、商用電源の出力が低下する状態では、内蔵する二次電池から駆動対象機器となる負荷に電力を供給して駆動対象機器を駆動する。
 図1に示す電源システムは、外部の商用電源30に接続されて、商用電源30から供給される電力を変換して駆動対象機器40に供給する外部電源3と、直列に接続された複数の電池セル21を備える複数の電池ユニット2と、複数の電池ユニット2を並列に接続して外部電源3に接続する接続ユニット1とを備えている。この電源システムは、外部電源3から出力される電力を駆動対象機器40に供給して駆動対象機器40を動作状態としながら、外部電源3から各電池ユニット2に供給される電力で電池セル21を充電する。また、電源システムは、外部電源3から駆動対象機器40に出力される電圧が所定値以下に低下する状態では、電池ユニット2から駆動対象機器40に電力を供給して駆動対象機器40を駆動する。
 図の電源システムは、6組の電池ユニット2を接続ユニット1に接続している。このように、複数の電池ユニット2を並列に接続する電源システムは、電源システム全体の容量を大きくして、駆動対象機器40に電力を供給できる時間を長くできる。さらに、電源システムは、接続ユニット1に接続される電池ユニット2を、メンテナンスや故障等により交換し、あるいは、用途に応じて数を増減することもできる。したがって、電源システムは、接続ユニットに接続される複数の電池ユニットの数を6組には限定せず、2~5組とすることも、7組以上とすることもできる。
(外部電源3)
 外部電源3は、商用電源30から供給される交流を直流に変換して出力し、この直流電力を駆動対象機器40に供給する。図1に示す外部電源3は、商用電源30から供給される交流を、駆動対象機器40を駆動する所定の出力電圧の直流に変換する電源回路4と、この電源回路4の出力側に接続されて、外部の駆動対象機器40に電力を供給する電力供給ライン5と、電源回路4の出力側において、電力供給ライン5に接続された接続ライン6と、接続ライン6上に設けられた外部接続スイッチ7とを備えている。
 電源回路4は、商用電源30の交流を、所定の電圧の直流に変換して出力する回路で、たとえば、AC/DCコンバータが使用できる。AC/DCコンバータである電源回路4は、たとえば、100V~250Vの商用電源30の交流を、40V~56Vの直流に変換して出力する。電源回路4の出力は、駆動対象機器40を動作させる電力を考慮して特定される。図に示す電源回路4は、出力電圧を50~53Vとして、駆動対象機器40を動作できる出力としている。この電源回路4は、商用電源30が停電しない状態では、電力供給ライン5を介して駆動対象機器40に電力を供給する。さらに、図に示す外部電源3は、電源回路4の出力電圧をコントロールするコントローラー31を備えている。このコントローラー31は、通信回線32を介して接続ユニット1に接続されており、接続ユニット1から入力される要求信号に応じて電源回路4の出力電圧をコントロールする。この電源システムは、電池ユニット2の充電状態において、電池ユニット2の充電電圧が最適な電圧となるように電源回路4の出力電圧をコントロールして、複数の電池ユニット2を理想的に充電できる。ただ、外部電源は、必ずしも外部電源の出力電圧をコントローラーで調整できる構造とする必要はない。この外部電源は、電源回路から一定の電圧を出力する。このような電源回路としては、リチウムイオン電池の充電に利用される、最大の電流、最大の電圧を規制した定電流(MAX電流0.5~1C程度)・定電圧(MAX4.2V/セル程度)の電源回路を利用することができる。
 図1の外部電源3は、電源回路4の出力側に、駆動対象機器40に接続される電力供給ライン5を接続している。また、外部電源3は、電源回路4の出力側において、電力供給ライン5を分岐させて接続ライン6を接続しており、この接続ライン6に接続ユニット1を接続している。さらに、外部電源3は、電力供給ライン5と接続ユニット1との接続状態をコントロールするために、接続ライン6上に外部接続スイッチ7を設けている。この外部接続スイッチ7は、FETやトランジスタ等の半導体スイッチング素子、あるいは、コンタクタやリレー等が使用できる。外部接続スイッチ7は、ON状態において、電力供給ライン5と接続ユニット1とを接続して充電電流や放電電流を許容し、OFF状態においては、電力供給ライン5と接続ユニット1とを遮断して充電電流や放電電流を遮断する。
 接続ライン6に設けられた外部接続スイッチ7は、外部電源3に内蔵されたコントローラー31でON/OFFに制御される。このコントローラー31は、図示しないが、電力供給ライン5から動作電力が供給される。コントローラー31は、たとえば、電力供給ライン5から供給される電力をDC/DCコンバータで降圧して動作電力が供給される。このコントローラー31は、電力供給ライン5の電圧が所定値以下になって、動作電力が供給されなくなると停止する。外部接続スイッチ7は、電力供給ライン5の電圧が、駆動対象機器40の最低動作電圧に相当する所定値(たとえば42V)以下になると、コントローラー31が停止してOFFとなる。コントローラー31は、外部電源3の動作状態において、すなわち、商用電源30が停電しない状態においては、電源回路4から電力供給ライン5に出力される電力で駆動され、外部電源3の非動作状態、たとえば、商用電源30が停電する状態等においては、接続ライン6とON状態の外部接続スイッチ7を介して接続ユニット1から電力供給ライン5に供給される電力で駆動される。さらに、コントローラー31は、通信回線32を介して接続ユニット1から入力される各種の電圧データに基づいて外部接続スイッチ7のON/OFFを制御する。
 コントローラー31は、接続ユニット1から入力される各電池ユニット2の電圧が所定の範囲内にあって、正常に充放電される状態では外部接続スイッチ7をONに保持し、いずれかの電池ユニット2の電圧が最低電圧以下になると外部接続スイッチ7をOFFに切り換え、接続ユニット1を電力供給ライン5から遮断して電池ユニット2の過放電を防止する。さらに、コントローラー31は、接続ユニット1から入力される各電池ユニット2の電池情報等から異常を検出し、あるいは、接続ユニット1から異常信号が入力されると、外部接続スイッチ7をOFFに切り換えて接続ユニット1を電力供給ライン5から遮断することもできる。ただ、コントローラーは、通信回線を介して接続ユニットから入力される制御信号に基づいて外部接続スイッチのON/OFFを切り換えることもできる。このコントローラーは、接続ユニットに制御されて、外部接続スイッチのON/OFFを切り換える。
 ここで、外部電源3の非動作状態、たとえば、商用電源30が停電する状態等においては、接続ユニット1から電力供給ライン5に電力が供給され、これらの電力である電力供給ライン5の電力によりコントローラー31が駆動され、外部接続スイッチ7がONを維持する。このため、外部電源3の動作状態となるまで、すなわち、商用電源30の停電が復旧するまでは外部接続スイッチ7はONに切り換えられることはない。外部電源3が動作状態となって電力供給ライン5に電力が出力されると、コントローラー31が駆動されて、外部接続スイッチ7がONに切り換えられる。ただ、コントローラーは、電力供給ラインから電力が供給されない状態において、通信回線を介して接続ユニットから動作電力を供給して駆動することもできる。さらに、図示しないが、外部電源は、コントローラーの電源ラインにコンデンサー等の予備電源を接続して、電力供給ラインの電圧低下時においても、予備電源から一時的に電力供給することで、コントローラーの停止を遅延することもできる。
 電力供給ライン5は、外部接続スイッチ7のON状態では、電源回路4の出力側と接続ユニット1の出力側の両方に接続される。したがって、電源回路4の出力電圧と接続ユニット1の出力電圧は、ほぼ等しく設定されている。この構造の電源システムは、停電により電源回路4の出力電圧が低下する状態では、ON状態の外部接続スイッチ7を介して、接続ユニット1から電力供給ライン5に電力が供給されて、駆動対象機器40に電力が供給され、また、接続ユニット1の出力電圧が低下する状態では、ON状態の外部接続スイッチ7を介して、電力供給ライン5から接続ユニット1に電力が供給されて、接続ユニット1に接続された複数の電池ユニット2を充電する。したがって、この電源システムは、外部接続スイッチ7をON状態として、接続ユニット1の出力側を電力供給ライン5に常に接続した状態とすることで、商用電源30や外部電源3の電圧低下を検出する機構を設けることなく、電源回路4の出力電圧が、接続ユニット1の出力側より低下する状態、または、所定値(例えば、駆動対象機器の最低動作電圧)以下に低下する状態では、速やかに電力供給ライン5に電力を供給できる。
 ただ、電源システムは、商用電源の停電や電源回路の故障等で電源回路の出力電圧が低下したことを検出する機構を備えることもできる。この電源システムは、電池ユニットの充電時を除く通常時においては、外部接続スイッチをOFF状態とし、商用電源の停電、あるいは電源回路の故障等によって電源回路の出力電圧が所定値以下に低下したことを検出すると、外部接続スイッチをONに切り換えて、接続ユニットから電力供給ラインに電力を供給することができる。
(電池ユニット2)
 電池ユニット2は、複数の電池セル21を直列に接続してなる電池ブロック20と、この電池ブロック20を構成する電池セル21の状態を検出する検出回路22とを備えている。電池ブロック20は、好ましくは、複数の電池セル21を直列と並列に接続している。複数の電池セル21を直列と並列に接続してなる電池ブロック20は、出力電圧を高くしながら充放電の電流を大きくできる。電池ブロック20は、複数の電池セル21を直列に接続して、電池ユニット2の出力電圧を、外部電源3の電源回路4の出力電圧にほぼ等しくしている。電源回路4の出力は、電力供給ライン5に接続される駆動対象機器40を動作できる電圧に設定されるので、電池ユニット2の出力もこの電圧に設定される。電池ユニット2の出力電圧は、たとえば、40V~56Vであって、約52Vに設定している。
 電池セル21には、リチウムイオン電池やニッケル水素電池を使用する。ただ、電池セルには、ポリマー電池やニッケルカドミウム電池のように充電できる全ての電池を使用できる。電池セル21をリチウムイオン電池とする電池ブロック20においては、13個の電池セル21を直列に接続して出力電圧を約52Vにできる。電池セル21をニッケル水素電池とする電池ブロック20においては、43~45個の電池セル21を直列に接続して出力電圧を51V~54Vにできる。さらに、電池ブロック20は、並列に接続する電池セル21の数を多くして電流容量を大きくできる。電池ブロック20は、たとえば2.5kWの電力を、2時間~6時間連続して電力供給ライン5に出力できるように、直列と並列に接続する電池セル21の個数を調整する。
 検出回路22は、電池ブロック20を構成する各電池セル21の状態を検出し、検出された電池情報を接続ユニット1に伝送する。検出回路22は、所定のサンプリング周期で、電池セル21のセル電圧、電池ブロック20の出力電圧、電池ブロック20に流れる充放電電流、電池温度等の電池情報を検出し、検出した電池情報をデジタル信号に変換して接続ユニット1に出力する。
(接続ユニット1)
 接続ユニット1は、複数の電池ユニット2を並列に接続しており、これらの電池ユニット2の充電及び放電をコントロールすると共に、並列に接続された複数の電池ユニット2を均等化する。図1に示す接続ユニット1は、複数の電池ユニット2を並列に接続する並列ライン8と、各電池ユニット2を並列ライン8に接続する接続部9と、各接続部9の接続状態を制御する制御部10とを備えている。接続ユニット1は、各接続部9の接続状態を制御部10で制御して、複数の電池ユニット2の充放電を制御し、また、並列ライン8に接続された複数の電池ユニット2を均等化する。
(並列ライン8)
 並列ライン8は、複数の電池ユニット2の出力に接続されて、複数の電池ユニット2を並列に接続している。さらに、並列ライン8は、外部電源3の接続ライン6に接続されている。接続ライン6に接続される並列ライン8は、コントローラー31でON/OFFに制御される外部接続スイッチ7を介して外部電源3の電力供給ライン5に接続される。したがって、並列ライン8は、外部接続スイッチ7のON状態で電力供給ライン5に接続され、外部接続スイッチ7のOFF状態で電力供給ライン5から遮断される。電力供給ライン5に接続された並列ライン8は、電池ユニット2から出力される電力を電力供給ライン5に供給し、また、電力供給ライン5から供給される電力を電池ユニット2に供給して各電池ユニット2を充電する。
 さらに、外部接続スイッチ7をOFF状態として、並列ライン8が電力供給ライン5から遮断された状態として、並列に接続された複数の電池ユニット2を均等化することができる。電力供給ライン5から遮断された状態で、並列ライン8を介して並列に接続される複数の電池ユニット2は、その電圧差によって充放電が行われて均等化される。すなわち、並列ライン8に対して電圧の高い電池ユニット2では、並列ライン8に対して放電が行われ、並列ライン8に対して電圧の低い電池ユニット2では、並列ライン8から供給される電力で充電されて均等化される。
(接続部9)
 接続部9は、各電池ユニット2と並列ライン8との間に配置されており、制御部10にコントロールされて各電池ユニット2と並列ライン8との接続状態を特定する。図1に示す接続部9は、並列ライン8と各電池ユニット2の間に直列に接続された第一スイッチ11と第二スイッチ12の直列回路と、第二スイッチ12と並列に接続された、電流制限抵抗14と第三スイッチ13の直列回路からなるサブ接続回路15と、第一スイッチ11と並列に接続され、かつ並列ライン8から電池ユニット2に通電する方向に整流作用を有する第一整流素子16と、第二スイッチ12と並列に接続され、かつ電池ユニット2から並列ライン8に通電する方向に整流作用を有する第二整流素子17とを備えている。
 第一スイッチ11と第二スイッチ12は、電池ユニット2の充電時や放電時において、電池ユニット2を並列ライン8に接続するスイッチである。図に示す第一スイッチ11と第二スイッチ12は、互いに直列に接続されており、各電池ユニット2と並列ライン8との間に各々接続されている。第一スイッチ11と第二スイッチ12は、制御部10でON/OFFに制御されるスイッチで、たとえば、半導体スイッチング素子とすることができる。半導体スイッチング素子である第一スイッチ11及び第二スイッチ12は、たとえば、FETとし、あるいはトランジスタとすることができる。ただ、第一スイッチと第二スイッチには、コンタクタやリレーも使用できる。
 サブ接続回路15は、第二スイッチ12に並列に接続されており、電流制限抵抗14と第三スイッチ13との直列回路で構成されている。サブ接続回路15は、第二スイッチ12をOFFとし、第三スイッチ13をONとする状態で、並列ライン8から電池ユニット2に通電される電流、すなわち充電電流を許容すると共に、電池ユニット2に通電される充電電流を電流制限抵抗14で制限している。
 並列ライン8に接続される複数の電池ユニット2を充電する状態において、電流制限抵抗14は、並列ライン8から電池ユニット2に流れる過大な電流を小さく制限しながら充電する。複数の電池ユニット2を並列に接続する電源システムは、電池ユニット2を交換し、あるいは電池ユニット2の個数を増加するときに、別の新たな電池ユニット2を並列ライン8に接続する必要がある。このとき、新たに接続される電池ユニット2の電圧は、必ずしも並列ライン8の電圧と同一とはならない。電池ユニット2の電圧と並列ライン8の電圧の差は、接続する電池ユニット2に大きな電流を流すおそれがある。電流制限抵抗14はこの電流を制限して、電池ユニット2への突入電流を抑制する。
 さらに、複数の電池ユニット2を外部電源3から供給される電力で充電する状態において、電力供給ライン5から各電池ユニット2に供給される電力が大きくなると、電力供給ライン5から駆動対象機器40に供給される電力が低下して、駆動対象機器40を駆動できなくなるおそれがある。したがって、外部電源3の出力で電池ユニット2を充電する状態においては、各電池ユニット2が所定の残容量まで充電されて、各電池ユニット2の電圧が所定の電圧に上昇するまでは、電池ユニット2の充電電流を制限して充電を抑制することが望ましい。この場合においても、サブ接続回路15を介して各電池ユニット2の充電を行うことで、各電池ユニット2に流れる充電電流を制限しながら複数の電池ユニット2を充電して、電力供給ライン5から駆動対象機器40に供給される電力が低下するのを防止する。
 電流制限抵抗14は、電気抵抗を大きくして、電池ユニット2に流れる電流を小さくできる。ただ、電流制限抵抗14は、電気抵抗を大きくするとジュール熱による発熱量が増加し、また、電池ユニット2を所定の電圧まで充電し、あるいは複数の電池ユニットを均等化する時間が長くなる。したがって、電流制限抵抗14の電気抵抗は、複数の電池ユニット2の電圧を速やかに所定の電圧まで充電しながら、各電池ユニット2を速やかに均等化でき、さらに、通電による発熱量を少なくできる電気抵抗に設定される。電流制限抵抗14の電気抵抗は、電池ユニット2の電圧によって最適値が異なるが、電池ユニット2の電圧を52Vとして、例えば1Ω~10Ω、好ましくは1Ω~5Ω、さらに好ましくは1Ω~3Ωに設定される。
 第三スイッチ13は、制御部10でON/OFFに制御されるスイッチで、FETやトランジスタ等の半導体スイッチング素子である。ただ、第三スイッチには、リレーやコンタクタも使用できる。
 第一整流素子16は、第一スイッチ11と並列に接続されており、並列ライン8から電池ユニット2に通電する方向に整流作用を有している。図に示す第一整流素子16はダイオードであって、並列ライン8から電池ユニット2への通電を許容する向きに接続しており、電池ユニット2を充電する方向に流れる電流を許容している。
 また、第二整流素子17は、第二スイッチ12と並列に接続されており、電池ユニット2から並列ライン8に通電する方向に整流作用を有している。図に示す第二整流素子17はダイオードであって、電池ユニット2から並列ライン8への通電を許容する向きに接続しており、電池ユニット2から放電される電流を許容している。
 ここで、第一スイッチ11や第二スイッチ12をFETとする構造においては、このような整流素子として、FETに内蔵された寄生ダイオードとすることができる。この構造は、予めFETに備えられた寄生ダイオードを利用して整流作用を実現することで、システム構成を簡素化できる。また、第三スイッチが寄生ダイオードを有するFETの場合は、第三スイッチの寄生ダイオードと第二整流素子の方向が同じ方向となるように接続する。
(制御部10)
 制御部10は、各接続部9に設けた第一スイッチ11、第二スイッチ12、及び第三スイッチ13のON/OFFを制御して、複数の電池ユニット2の充電状態と放電状態とを最適な状態にコントロールする。とくに、充電状態においては、複数の電池ユニット2を均等化しながら充電する。この制御部10は、半導体スイッチング素子からなるスイッチについては、半導体スイッチング素子をオンオフに制御する制御信号を出力して各スイッチを制御し、また、リレーやコンタクタからなるスイッチについては、励磁コイルの通電を制御して各スイッチをオンオフに切り換える。
 制御部10は、各電池ユニット2に内蔵された検出回路22から入力される電池情報に基づいて、各電池ユニット2の充電及び放電を最適な状態にコントロールし、また、複数の電池ユニット2を均等化する。図の制御部10は、検出回路22から入力される電池セル21のセル電圧や電池ブロック20の出力電圧に基づいて、電池ユニット2の均等化や充放電をコントロールしている。たとえば、リチウムイオン電池やニッケル水素電池からなる電池セル21は、電池電圧から電池の残容量を判定できる。このため、セル電池や出力電圧から電池の残容量を判定しながら、電池ユニット2の均等化や充放電をコントロールできる。この方法は、最も簡単に電池状態を判定しながら、複数の電池ユニット2を均等化し、また充放電できる。ただ、電源システムは、各電池セルや電池ブロックの残容量を、充放電電流の積算値から検出回路で演算し、検出回路から入力される残容量と制御部に記憶される所定の閾値とを制御部で比較しながら各電池ユニットの均等化や充放電を制御することもできる。
 さらに、図1に示す接続ユニット1は、電流検出部25を備えており、この電流検出部25で、並列ライン8から接続ライン6に流れる電流を検出しながら、複数の電池ユニット2の充放電を最適な状態にコントロールしている。図に示す電流検出部25は、並列ライン8と接続ライン6との間に直列に接続された電流検出抵抗26と、この電流検出抵抗26の両端の電圧を検出して並列ライン8と接続ライン6の間に流れる充電電流や放電電流を検出する検出回路27とを備えている。電流検出部25は、並列ライン8と接続ライン6の間に流れる充放電の電流値を検出して制御部10に入力する。
 さらに、制御部10は、通信回線32を介して外部電源3のコントローラー31に接続されており、各電池ユニット2の電圧データや電池情報、充放電の電流値等の各種データをコントローラー31に伝送している。コントローラー31は、制御部10から入力される各種のデータ信号に基づいて外部接続スイッチ7をON/OFFに制御する。さらに、制御部10は、電池ユニット2や電池セル21の異常を検出すると異常信号をコントローラー31に伝送し、外部接続スイッチ7をOFFに切り換えるように制御することもできる。さらに、制御部10は、外部接続スイッチ7をON/OFFに切り換える制御信号を出力し、この制御信号でコントローラー31を制御して外部接続スイッチ7のON/OFFを制御することもできる。さらに、商用電源30の停電等により非動作状態にあった外部電源3が動作状態に復帰する状態においては、制御部10は、コントローラー31から伝送される復帰信号により、外部電源3が動作状態に復帰したことを検出できる。
 制御部10は、以下の図2に示すように、複数のモードを切り換えながら、複数の電池ユニット2を充電し、また、放電する。図3ないし図10は、図2に示す各モードにおいて、外部電源3のコントローラー31が外部接続スイッチ7をON/OFFに切り換え、制御部10が、各接続部9に設けた第一スイッチ11、第二スイッチ12、及び第三スイッチ13をON/OFFにコントロールする状態を示している。この制御部10は、各電池ユニット2に内蔵された検出回路22から入力される各電池ユニット2の電池情報、たとえば、出力電圧やセル電圧から複数の電池ユニット2の電池状態を判定し、外部電源3のコントローラー31に各種信号を伝送して外部接続スイッチ7のON/OFFをコントロールする共に、各接続部9に設けた第一スイッチ11、第二スイッチ12、及び第三スイッチ13のON/OFFをコントロールして、複数の電池ユニット2の充放電状態を最適なモードに切り換える。
[電池ユニット検出モード]
 この工程において、制御部10は、複数の電池ユニット2の接続状態を検出する。制御部10は、接続ユニット1に接続された電池ユニット2を識別信号から認識する。各電池ユニット2の識別信号は、各電池ユニット2に内蔵された検出回路22から入力される。制御部10は、電池ユニット2から入力される識別信号から、接続されている電池ユニット2の個数や、一部の電池ユニット2が外され、あるいは、新たに別の電池ユニット2が接続されたかどうか等の接続状態を判定する。
[バランス充電モード]
 この工程において、電源システムは、外部電源3の電力供給ライン5から供給される電力でもって各電池ユニット2の電池セル21をプリチャージする。
 さらに、このバランス充電モードにおいて、外部電源3は、電源回路4の出力を調整して電池ユニット2への大きな突入電流を抑制することができる。電源回路4は、コントローラー31で制御されて、電池ユニット2の充電電圧となる出力電圧を最適な電圧とすることができる。ここで、バランス充電モードにおける外部電源3の出力電圧、すなわち、電池ユニット2をプリチャージする第一充電電圧は、たとえば48Vとし、あるいは、出力電圧が最大の電池ユニット2の電池ブロック20の電圧よりも0.5V高い電圧とすることができる。
 後述するように、放電停止後、さらに、停電状態が継続すると、内部回路での電力消費、セルの自己放電等により、いずれかの電池セル21の電圧が、所定値(約3V/セル)以下になると、その電池セル21の検出回路22より、信号が出力され、制御部10に入力される。この状態で、制御部10は、第一スイッチ11、第二スイッチ12、及び第三スイッチ13をすべてOFFとし、すべての電池ユニット2のマイコン等からなる検出回路22と制御部10との間の通信線28に乗せている駆動電力(駆動電圧)12Vを停止させることで、全ての検出回路22をシャットダウン(駆動停止)させる。これにより、各電池ブロック20が並列ライン8から分離された状態となり、電池セル21の自己放電の差等により、各電池ブロック20の電圧に差異が生じる。
 このバランス充電モードにおいては、停電が解消して商用電源30が復帰し、これをコントローラー31が検知して、図3に示すように、コントローラー31が外部接続スイッチ7をONとして、電源供給ライン5から接続ユニット1に充電電力を供給できる状態とし、電力供給ライン5から駆動電力を供給された制御部10は、各接続部9の第一スイッチ11をOFF、第二スイッチ12をOFF、第三スイッチ13をONとして、外部電源3の電力供給ライン5から供給される電力でもって各電池ユニット2の電池セル21をプリチャージする。検出回路22と制御部10との間の通信線28に乗せている駆動電力(駆動電圧)12Vが供給されることより、検出回路22が駆動する。
 ここで、電源回路4の電圧は、所定電圧約48Vに設定され充電される。そして、電力供給ライン5の所定の電圧約48Vと各電池ブロック20の電圧との差が、全て、所定電圧差(例えば、約1.2V)以下になると、バランス充電モードが終了したとして、第一スイッチ11をON、第二スイッチ12を0N、第三スイッチ13をOFFとし、電源回路4の電圧を、所定電圧(例えば、約52.6V)に設定して、通常充電モードとして、充電する。
 バランス充電モードにおいては、図3に示すように、各接続部9の第一スイッチ11をOFF、第二スイッチ12をOFFとするが、外部電源3から供給される電力は、第一整流素子16と、サブ接続回路15、すなわちON状態の第三スイッチ13と電流制限抵抗14の直列回路とを介して各電池ユニット2に供給されて電池セル21を充電する。これにより、各電池ユニット2は、並列接続された状態で、電流制限抵抗14を介して充電されるので、各電池ユニット2の電圧が等しくなる状態で充電される。
 また、別の実施例として、各電池ユニット2間の電圧差が所定の第一電圧差よりも小さくなるように均等化しながら、全ての電池ユニット2の出力電圧が所定の第一設定電圧以上になるようにプリチャージすることもできる。このバランス充電モードでは、全ての電池ユニット2間の電圧差が第一電圧差未満となるまで、すなわち、出力電圧が最大の電池ユニット2と出力電圧が最小の電池ユニット2との電圧差が第一電圧差未満となるまで均等化する。ここで、電池ユニット2の出力電圧を52Vとする場合、制御部10は、たとえば、電池ユニット2間の電圧差(Vd)が1.2V未満となるように均等化する。
 以上の状態では、各電池ユニット2は、電流制限抵抗14により充電電流が抑制された状態で充電される。これにより、各電池ユニット2の充電に多くの電力を割くことなく、外部電源3から駆動対象機器40への電力供給が不安定となるのを回避して、駆動対象機器40の動作を継続しながら、電池ユニット2の充電を並行して行うことができる。したがって、第一設定電圧は、サブ接続回路15を介することなく電池ユニット2を充電する状態においても、外部電源3から駆動対象機器40に安定して動作電力を供給できる電圧であって、好ましくは40V~50V、たとえば42.5Vとすることができる。また、図3に示す接続状態においては、外部電源3の電力供給ライン5の電圧が低下しても、第一スイッチ11をOFF状態とするので、電池ユニット2からの放電が阻止されて、電池ユニット2が過放電され、あるいは、放電によって電池ユニット2間の電圧差が拡大するのを防止できる。
 以上のように、バランス充電モードでは、全ての電池ユニット2を同じ電圧で充電するので、電圧差がある電池ユニット2を充電する状態においては、出力電圧の低い電池ユニット2が優先的に充電される。このため、複数の電池ユニット2の電圧差を低減させながら、すなわち、電圧差のある電池ユニット2を均等化しながら充電できる。また、外部電源3の電力供給ライン5から供給される電力が、第一整流素子16とON状態の第三スイッチ13と電流制限抵抗14とを介して各電池ユニット2に供給されるので、電池ユニット2は、充電電流が電流制限抵抗14で制限されながらプリチャージされる。このため、電圧が低い電池ユニット2においても、大きな突入電流が流れるのを有効に防止しながら、安全かつ安定して充電されて均等化される。
 以上のバランス充電モードは、接続ユニット1に接続された複数の電池ユニット2に所定の電圧差がある場合において、これらの電池ユニット2を均等化しながらプリチャージする工程であって、たとえば、電源システムの起動時や、一部の電池ユニットの取り外し時、新たな電池ユニットの接続時、電池ユニットの放電後における充電開始時、或いは、最初に電池ユニット2を充電するとき等にモード移行して複数の電池ユニットを均等化しながらプリチャージする。
[均等化モード]
 さらに、バランス充電モードにおいて、各電池ユニット2間の電圧差が前述の第一電圧差よりも大きな第二電圧差以上の場合には、図2の鎖線の矢印で示すように、均等化モードに移行して、各電池ユニット2をプリチャージすることなく、接続ユニット1を電力供給ライン5から遮断した状態で均等化することもできる。
 この工程において、電源システムは、電池ユニット2間の電圧差が第二電圧差よりも小さくなるように、各電池ユニット2間の電圧差を低減させる均等化を行う。この均等化モードでは、全ての電池ユニット2間の電圧差が第二電圧差未満となるまで、電池ユニット2の均等化を行うことができる。ここで、電池ユニット2の出力電圧を52Vとし、第一電圧差を1.2Vとする場合、第二電圧差は、1.2V以上であって、たとえば2.0Vとすることができる。
 この均等化モードでは、図4に示すように、コントローラー31が制御部10からの信号で外部接続スイッチ7をOFFとして接続ユニット1を電源供給ライン5から遮断し、制御部10が、各接続部9の第一スイッチ11をON、第二スイッチ12をOFF、第三スイッチ13をONとして、各電池ユニット2間の電圧差を低減させる。図4に示す接続状態では、各接続部9の第一スイッチ11をON、第二スイッチ12をOFF、第三スイッチ13をONとするので、他の電池ユニット2よりも出力電圧が高い電池ユニット2の出力は、図4の鎖線の矢印で示すように、第二整流素子17と、ON状態の第一スイッチ11とを介して並列ライン8に出力されて、出力電圧の低い電池ユニット2に供給される。また、他の電池ユニット2よりも出力電圧が低い電池ユニット2においては、図4の矢印で示すように、出力電圧が高い電池ユニット2から供給される電力が、ON状態の第一スイッチ11と、サブ接続回路15、すなわちON状態の第三スイッチ13と電流制限抵抗14の直列回路とを介して供給されることにより、充電電流を電流制限抵抗14で制限しながら充電される。このため、電圧差が大きな電池ユニット2間においても、大きな突入電流が流れるのを有効に防止しながら、安全かつ安定して充放電されて均等化される。
 以上の均等化モードは、接続ユニット1に接続された複数の電池ユニット2に所定の電圧差がある場合において、これらの電池ユニット2を均等化する工程として、たとえば、電源システムの起動時や、一部の電池ユニットの取り外し時、新たな電池ユニットの接続時、電池ユニットの放電後における充電開始時等にモード移行して複数の電池ユニットを均等化することができる。
 ここで、図5と図6は、均等化モードにおいて複数の電池ユニット2が均等化される例であって、接続ユニット1に新たに別の電池ユニット2’が接続される状態を示している。図5は、接続ユニット1の並列ライン8よりも出力電圧が高い電池ユニット2’が接続される状態における均等化を示している。この場合、図5の矢印で示すように、新たに接続される電池ユニット2’から出力される電流は、第二整流素子17と、ON状態の第一スイッチ11とを介して並列ライン8に通電されて、出力電圧の低い他の電池ユニット2に供給される。すなわち、新たに接続された電池ユニット2’の出力は、この電池ユニット2’が接続される接続部9’の電流制限抵抗14に通電されることなく第二整流素子17を介して通電される。このため、新たな電池ユニット2’から出力される電流が、接続部9’の電流制限抵抗14に通電されて、ジュール熱によって発熱するのを確実に阻止できる。これにより、新たに接続される電池ユニット2’の電力は、接続部9’の電流制限抵抗14で無駄に消費されることなく他の電池ユニット2に有効に利用される。とくに、新たに接続される電池ユニット2’と並列ライン8との間に大きな電圧差があると、この電池ユニット2’からは大きな電流が流れるおそれがあるが、この電流は、図5の矢印で示すように、他の複数の電池ユニット2に分流されるので、各接続部9に流れる電流を低減させて、各々の電流制限抵抗14における発熱量を低減できる。
 また、図6は、接続ユニット1の並列ライン8よりも出力電圧が低い電池ユニット2’が接続される状態における均等化を示している。この場合、図6の矢印で示すように、新たに接続される電池ユニット2’には、並列ライン8を介して、他の複数の電池ユニット2から電力が供給される。他の電池ユニット2から出力される電流は、各接続部9の第二整流素子17と、ON状態の第一スイッチ11とを介して並列ライン8に通電されて、出力電圧の低い電池ユニット2’に供給される。すなわち、他の電池ユニット2の出力は、各接続部9の電流制限抵抗14に通電されることなく第二整流素子17を介して通電される。このため、他の電池ユニット2から出力される電流が、各接続部9の電流制限抵抗14に通電されてジュール熱によって発熱するのを確実に阻止する。これにより、他の電池ユニット2の電力は、接続部9の電流制限抵抗14で無駄に消費されることなく新たに接続された電池ユニット2’に有効に利用される。また、新たな電池ユニット2’と並列ライン8の間には電圧差があるので、電池ユニット2’には大きな電流が流れるおそれがあるが、この電流は接続部9’の流制限抵抗14で制限されるので、電池ユニット2’への大きな突入電流は阻止される。とくに、新たに接続される電池ユニット2’は、通常はある程度の残容量まで充電されているので、接続ユニット1に既に接続されている他の電池ユニット2との電圧差が異常に大きくなることはなく、電流制限抵抗14の発熱量も低減できる。
[通常充電モード]
 バランス充電モードが終了すると、電源システムは、この工程において、各接続部9の第二スイッチ12をON、第三スイッチ13をOFFとし、外部電源3から供給される電力を電流制限抵抗14で制限することなく、各電池ユニット2に供給して電池セル21を満充電する。
 この通常充電モードにおいて、図7に示すように、コントローラー31が外部接続スイッチ7をONとして、電源供給ライン5から接続ユニット1に充電電力を供給できる状態とし、制御部10は、各接続部9の第一スイッチ11をON、第二スイッチ12をON、第三スイッチ13をOFFとして、各電池ユニット2の電池セル21を、外部電源3の電力供給ライン5から供給される電力でもって充電する。図7に示す接続状態では、各接続部9の第一スイッチ11をON、第二スイッチ12をON、第三スイッチ13をOFFとするので、外部電源3から供給される電力は、図7の矢印で示すように、ON状態の第一スイッチ11と、ON状態の第二スイッチ12とを介して低抵抗な状態で各電池ユニット2に供給されて電池セル21を充電する。このため、電池ユニット2は、充電電流が抑制されることなく、外部電源3から供給される電力で理想的に充電される。また、各電池ユニット2は、前工程であるバランス充電モードによって充電されているので、複数の電池ユニット2を充電する状態においても、電力供給ライン5の電圧を低下させることなく、すなわち、外部電源3から駆動対象機器40への電力供給が不安定となるのを回避して、駆動対象機器40の動作を継続しながら、電池ユニット2の充電を並行して行うことができる。
 とくに、この通常充電モードにおいて、外部電源3は、複数の電池ユニット2を効率よく充電するために、電源回路4の出力を調整することができる。電源回路4は、コントローラー31で制御されて、電池ユニット2の充電電圧となる出力電圧を最適な電圧とする。ここで、通常充電モードにおける外部電源3の出力電圧、すなわち、電池ユニット2を充電する第二充電電圧は、たとえば52.6Vとすることができる。
 また、バランス充電モードから通常充電モードへの移行に際しては、好ましくは、コントローラー31が、制御部10からの信号で外部接続スイッチ7を一旦OFFに切り換え、制御部10が、各接続部9の第一スイッチ11をOFFからONに、各接続部9の第二スイッチ12をOFFからONに、各接続部9の第三スイッチ13をONからOFFにそれぞれ切り換えた後、コントローラー31が外部接続スイッチ7を再びONに切り換えることができる。この制御によると、外部接続スイッチ7をOFFにした状態で、各接続部9の第一スイッチ11と第二スイッチ12を順番にOFFからONに切り換えるので、一部の電池ユニット2のみがON状態の第一スイッチ11と第二スイッチ12を介して電力供給ライン5に接続された状態となって、この電池ユニット2に過電流が流れるのを確実に防止できる。
 さらに、通常充電モードにおいて、制御部10は、電池ユニット2や電池セル21の過充電保護を行うこともできる。たとえば、制御部10は、充電状態にある複数の電池ユニット2のうち、いずれかの電池ユニット2の電圧が最大ユニット電圧(たとえば53.3V)以上になると、過充電と判定して、この電池ユニット2の充電を停止して保護する。また、制御部10は、充電状態にある電池ユニット2を構成する電池セル21のうち、いずれかの電池セル21の電圧が最大セル電圧を超えると、過充電と判定して、この電池セル21を備える電池ユニット2の充電を停止して保護する。たとえば、複数のリチウムイオン電池からなる電池セル21を13直に接続してなる電池ユニット2においては、いずれかの電池セル21の電圧が最大セル電圧である4.1V以上になると、過充電と判定して、この電池セル21を備える電池ユニット2の充電を停止して保護する。
 なお、この通常充電モードは、電池ユニット2が満充電されるまで継続されるが、電池ユニット2の満充電は、以下のようにして判定される。たとえば、電池ユニット2を構成する電池セル21をリチウムイオン電池とする場合、リチウムイオン電池は満充電されると充電電流が低下するので、充電電流が所定の電流値よりも低下することを検出して各電池セル21が満充電されたことを検出する。この電源システムは、たとえば、いずれかの電池セル21のセル電圧(Vs)が満充電判定電圧(たとえば3.9V)以上であって、かつ、充電電流(Ic)が満充電判定電流(たとえば300mA)未満となると、電池セル21が満充電されたと判定することができる。すなわち、制御部10は、いずれかの電池セル21について、
  セル電圧(Vs)≧3.9V、かつ、0mA<充電電流(Ic)<300mA
 となると、電池セル21が満充電されたと判定することができる。いずれかの電池セル21が満充電と判定されると、この電池セル21を備える電池ユニット2は満充電されたと判定して充電が停止される。ただし、何らかの原因で、充電もしくは放電が禁止されている電池セルを含む電池ユニットに関しては、満充電の対象とはせず、また、いずれの電池セルも、満充電判定電圧である3.9V以上を満たしていない電池ユニットに関しても満充電と判定することなく充電を継続することができる。そして、各電池ユニット2が上記の満充電条件を満たすと、その電池ユニット2の充電を停止する。つまり、第二スイッチ12をオフにして、充電を停止する。
[満充電モード]
 通常充電モードにおいて、全ての電池ユニット2の電池セル21が満充電されると、電源システムは、この工程において、全ての接続部9の第二スイッチ12をOFFに切り換えて待機状態とする。
 この満充電モードにおいては、図8に示すように、コントローラー31が外部接続スイッチ7をONとして、電源供給ライン5と接続ユニット1の並列ライン8とを接続された状態とし、制御部10は、各接続部9の第一スイッチ11をON、第二スイッチ12をOFF、第三スイッチ13をOFFとして、電池ユニット2から電力供給ライン5への放電が可能な待機状態とする。この満充電モードは、並列ライン8を外部電源3の電力供給ライン5に接続する外部接続スイッチ7をON状態に保持する待機状態とするので、商用電源30や外部電源3の電圧低下を検出する機構を設けることなく、電源回路4の出力電圧が所定値以下に低下する状態で速やかに電池ユニット2から電力供給ライン5に電力を供給できる。
 さらに、電源システムは、満充電モードが長時間にわたって継続されると、自己放電や回路の消費電力等によって、各電池セル21の残容量が減少する。したがって、この満充電モードにおいて、いずれかの電池セル21の残容量が満充電状態から所定の割合(たとえば10%)低下し、あるいは、いずれかの電池セル21のセル電圧が充電再開電圧(たとえば、リチウムイオン電池においては3.85V)以下になると、充電を再開することができる。
[再充電モード]
 満充電モードにおいて、いずれかの電池ユニット2の再充電が必要と判定されると、電源システムは、この工程において、各接続部9の第三スイッチ13をOFFからONに切り換えて再充電を開始する。
 この再充電モードにおいては、図9に示すように、コントローラー31が外部接続スイッチ7をONとして、電源供給ライン5と接続ユニット1の並列ライン8とを接続された状態とし、制御部10は、各接続部9の第一スイッチ11をON、第二スイッチ12をOFF、第三スイッチ13をONとして、外部電源3から供給される電力を電流制限抵抗14で制限しながら各電池ユニット2に供給して電池セル21をプリチャージする。これにより、再充電される電池ユニット2に大きな突入電流が流れるのが有効に防止される。
 また、この再充電モードにおいて、外部電源3は、電池ユニット2への充電電流を抑制しながらプリチャージするために、電源回路4の出力を調整することができる。電源回路4は、コントローラー31で制御されて、電池ユニット2の充電電圧となる出力電圧を最適な電圧とする。ここで、再充電モードにおける外部電源3の出力電圧、すなわち、電池ユニット2をプリチャージする第三充電電圧は、たとえば52.1Vとすることができる。
 再充電モードにおいて、制御部10は、再充電される電池ユニット2のプリチャージが終了したかどうかを判定する。プリチャージの終了は、たとえば、全ての電池セル21のセル電圧が所定の電圧(たとえば、3.9V)以上になったかどうかで判定し、あるいは、プリチャージ時間が所定の時間を経過したかどうかで判定することができる。電池ユニット2のプリチャージが終了すると、通常充電モードに移行して、各電池ユニット2の電池セル21を満充電する。
 なお、以上の再充電モードは省略することができる。この場合、満充電モードにおいていずれかの電池ユニットに再充電の必要があると判定されると、通常充電モードに移行して再充電することができる。
[予備放電モード]
 電源システムは、満充電モード又は再充電モードにおいて、商用電源30の停電等により外部電源3の電源回路4の出力電圧が低下するとき、例えば、所定値以下、または、接続ユニット1の出力電圧以下に低下すると、予備放電モードに移行して、複数の電池ユニット2から外部電源3の電力供給ライン5に電力を供給する。この予備放電モードにおいては、図8及び図9の鎖線の矢印で示すように、各電池ユニット2から放電される電力が、第二整流素子17とON状態の第一スイッチ11を介して並列ライン8に供給されると共に、並列ライン8の電力がON状態の外部接続スイッチ7を介して外部電源3の電力供給ライン5に供給される。
 ここで、満充電モードでは、図8に示すように、外部接続スイッチ7をONとし、各接続部9の第一スイッチ11をON、第二スイッチ12をOFF、第三スイッチ13をOFFとしている。また、再充電モードでは、図9に示すように、外部接続スイッチ7をONとし、各接続部9の第一スイッチ11をON、第二スイッチ12をOFF、第三スイッチ13をOFFとしている。このため、これらの満充電モード又は再充電モードにおいて、電源回路4の出力電圧が所定値以下に低下すると、各電池ユニット2の電力は、第二整流素子17とON状態の第一スイッチ11を介して並列ライン8に供給されると共に、ON状態の外部接続スイッチ7を介して外部電源3の電力供給ライン5に供給される。したがって、商用電源30や外部電源3の電圧低下を検出する機構を設けることなく、また、制御部10で接続部9を切り換えることなく、電源回路4の出力電圧が所定値以下に低下する状態で速やかに電力供給ライン5に電力を供給できる。
 予備放電モードにおいて、電池ユニット2から電力供給ライン5への電力供給が開始されると、電流検出部25で放電電流が検出される。電流検出部25は、図1に示すように、並列ライン8から接続ライン6に流れる電流を検出し、検出された電流値を制御部10に入力する。制御部10は、電流検出部25から放電電流の電流値を示す信号が入力されることで、電池ユニット2から電力供給ライン5への電力供給が開始されたことを検出して、第二スイッチ12をONとして、大電流が流れるように、予備放電モードから通常放電モードに移行させる。この制御では、電流検出部25が放電電流を検出する状態で、制御部10が各接続部9のスイッチを切り換えて、予備放電モードから通常放電モードに切り換えるので、電池ユニット2の放電状態を確認しながら通常放電モードに切り換えできる。
 ただ、電源システムが、電源回路の出力電圧の低下を検出する機構を備える場合は、この予備放電モードを省略することもできる。この電源システムは、満充電モード又は再充電モードにおいて、商用電源の停電、あるいは電源回路の故障等によって電源回路の出力電圧が所定の電圧以下に低下したことを検出すると、通常放電モードに移行して電力供給ラインに電力を供給することができる。
[通常放電モード]
 この工程において、電源システムは、制御回路10が各接続部9の第二スイッチ12をON、第三スイッチ13をOFFに切り換えて、複数の電池ユニット2から電力供給ライン5に電力を供給する。この通常放電モードにおいては、図7の鎖線の矢印で示すように、各電池ユニット2の電力が、ON状態の第二スイッチ12と、ON状態の第一スイッチ11を介して並列ライン8に供給されると共に、並列ライン8の電力がON状態の外部接続スイッチ7を介して外部電源3の電力供給ライン5に供給されて、複数の電池ユニット2から放電される。以上の通常放電モードにおいては、ON状態の第二スイッチ12とON状態の第一スイッチ11を介して各電池ユニット2から放電するので、低抵抗な状態で安定して放電できる。
 さらに、通常放電モードにおいて、制御部10は、電池ユニット2や電池セル21の過放電保護を行うこともできる。たとえば、制御部10は、放電状態にある複数の電池ユニット2のうち、いずれかの電池ユニット2の電圧が最小ユニット電圧(たとえば39.0V)以下になると、過放電と判定して、この電池ユニット2の放電を停止して保護する。また、制御部10は、放電状態にある電池ユニット2を構成する電池セル21のうち、いずれかの電池セル21の電圧が最小セル電圧以下になると、過放電と判定して、この電池セル21を備える電池ユニット2の放電を停止して保護する。たとえば、複数のリチウムイオン電池からなる電池セル21を13直に接続してなる電池ユニット2においては、いずれかの電池セル21の電圧が最小セル電圧である3.0V以下になると、過放電と判定して、この電池セル21を備える電池ユニット2の放電を停止して保護する。
 さらに、通常放電モードにおいて、商用電源30の停電が復旧すると、外部電源3の電源回路4の出力電圧が所定値以上になり、電源回路4の電圧を、所定電圧(例えば、約52.6V)に設定して、通常充電モードとして充電する。電源システムは、通常充電モードに移行して、電力供給ライン5から供給される電力で複数の電池ユニット2が充電される。ここで、通常放電モードでは、図7に示すように、外部接続スイッチ7がON状態にあり、各接続部9の第一スイッチ11をON、第二スイッチ12をON、第三スイッチ13をOFFとしている。このため、この通常放電モードにおいて、電源回路4の出力電圧が所定値以上に復帰すると、図7の矢印で示すように、外部電源3の電力供給ライン5から供給される電力は、ON状態の外部接続スイッチ7を介して並列ライン8に供給されると共に、ON状態の第一スイッチ11と、ON状態の第二スイッチ12を介して各電池ユニット2に供給される。したがって、商用電源30や外部電源3の電圧上昇を検出する機構を設けることなく、また、制御部10で接続部9を切り換えることなく、電源回路4の出力電圧が復帰する状態で、速やかに電力供給ライン5から電池ユニット2に電力を供給できる。
 さらに、電源システムは、前述の通常充電モードにおいて、商用電源30の停電等により外部電源3の電源回路4の出力電圧が低下すると、通常放電モードに移行して、複数の電池ユニット2から外部電源3の電力供給ライン5に電力を供給する。ここで、通常充電モードでは、図7に示すように、外部接続スイッチ7がON状態にあり、各接続部9の第一スイッチ11をON、第二スイッチ12をON、第三スイッチ13をOFFとしている。このため、この通常充電モードにおいて、外部電源3の電源回路4の出力電圧が低下すると、図7の鎖線の矢印で示すように、各電池ユニット2の電力は、ON状態の第二スイッチ12と、ON状態の第一スイッチ11を介して並列ライン8に供給されると共に、ON状態の外部接続スイッチ7を介して外部電源3の電力供給ライン5に供給される。したがって、商用電源30や外部電源3の電圧低下を検出する機構を設けることなく、また、制御部10で接続部9を切り換えることなく、電源回路4の出力電圧が低下する状態で速やかに電池ユニット2から電力供給ライン5に電力を供給できる。
[放電停止モード]
 通常放電モードにおいて、電池ユニット2が放電されて放電停止電圧以下になると、電源システムは、この工程において、放電停止モードに移行させて電池ユニット2の放電を停止する。この放電停止モードでは、電力供給ライン5の電圧が、駆動対象機器40の最低動作電圧に相当する所定値の放電停止電圧(たとえば42V)になると、図10に示すように、コントローラー31が、外部接続スイッチ7をOFFに切り換え、電池ユニット2からの放電を停止する。そして、いずれかの電池セル21の電圧が、所定値(約3V/セル)まで低下する前に、停電が解消されるなら、コントローラー31が、外部接続スイッチ7をONに切り換え、通常充電モードに移行する。
 また、放電停止モードにおいて、コントローラー31は、制御部10からの信号に基づいて外部接続スイッチ7をOFFに切り換えることもできる。この状態で接続ユニット1の並列ライン8が電力供給ライン5から遮断されて、電池ユニット2から電力供給ライン5への電力供給が停止される。
[駆動停止モード]
 放電停止モードにおいて電池ユニット2からの放電が停止された後、さらに、停電状態が継続すると、内部回路での電力消費、セルの自己放電等により、いずれかの電池セル21の電圧が、所定値(約3V/セル)以下になると、その電池セル21の検出回路22より、信号が出力され、制御部10に入力される。この状態で、制御部10は、図1に示すように、第一スイッチ11、第二スイッチ12、及び第三スイッチ13をすべてOFFとし、さらに、すべての電池ユニット2のマイコン等からなる検出回路22と制御部10との間の通信線28に乗せている駆動電力(駆動電圧)12Vを停止させることで、全ての検出回路22をシャットダウン(駆動停止)させる。これにより、各電池ブロック20が並列ライン8から分離された状態となり、電池セル21の自己放電の差等により、各電池ブロック20の電圧に差異が生じる。
 さらに、駆動停止モードにおいて、商用電源30の停電が復旧して外部電源3の電源回路の出力電圧が所定値以上に復帰すると、電源システムは、バランス充電モードに移行して電池ユニット2の充電を開始する。外部電源3の電源回路4の出力電圧が所定値以上に復帰すると、電力供給ライン5から制御部10に電力が供給され、制御部10が起動状態となり、第一スイッチ11、第二スイッチ12、及び第三スイッチ13が動作して、バランス充電モードに移行する。
 また、バランス充電モードにおいては、前述のように、複数の電池ユニット2が均等化されながらプリチャージされる。ここで、駆動停止モードが継続されて時間が経過すると、各電池ユニット2の電圧が低下して、各電池ユニット2の電圧にバラツキが生じるときがある。この場合においても、バランス充電モードに移行して均等化しながらプリチャージすることでばらつきが解消される。
 さらに、接続ユニット1の制御部10は、各電池ユニット2に流れる電流の過電流を検出して保護することもできる。制御部10は、電池ユニット2の充電状態や放電状態において、各電池ユニット2に流れる充電電流や放電電流の検出値を、各電池ユニット2に内蔵される検出回路22から入力される信号から検出する。制御部10は、各電池ユニット2から入力される充放電の電流値が所定の検出時間にわたって所定の上限電流値を超えると、過電流と判定してこの電池ユニット2の充放電を停止して保護する。ここで、制御部10が各電池ユニット2を過電流と判定する上限電流値は、たとえば27A~33Aとし、検出時間は0.5秒~1.5秒とすることができる。制御部10は、過電流が検出された電池ユニット2に接続された接続部9の全てのスイッチをOFFに切り換えて、この電池ユニット2の充放電を停止する。
 さらに、接続ユニット1の制御部10は、並列ライン8に流れる電流の過電流を検出して保護することもできる。接続ユニット1は、電池ユニット2の充電状態や放電状態において、並列ライン8に流れる充電電流や放電電流を電流検出部25で検出する。制御部10は、電流検出部25で検出される電流値が所定の検出時間にわたって所定の上限電流値を超えると、過電流と判定して全ての電池ユニット2の充放電を停止して保護する。ここで、制御部10が、並列ライン8に流れる電流の過電流を判定する上限電流値は、たとえば、108A~132Aとし、検出時間は0.25秒~0.75秒とすることができる。制御部10は、並列ライン8の過電流を検出すると、通信回線32を介してコントローラー31に異常信号を伝送し、コントローラー31が外部接続スイッチ7をOFFに切り換えて全ての電池ユニット2の充放電を停止する。
 さらにまた、接続ユニット1の制御部10は、電池ユニット2の検出回路22で検出される電池温度によって電池ユニット2の充放電状態をコントロールすることもできる。たとえば、いずれかの電池ユニット2の電池温度が異常な温度範囲になると、制御部10は、この電池ユニット2に接続された接続部9を遮断して、この電池ユニット2の充放電を停止する。
 以上の電源システムは、図11と図12に示す以下のフローチャートで、外部電源3から供給される電力で複数の電池ユニット2を充電すると共に、外部電源3の出力電圧が所定値以下に低下する状態では、複数の電池ユニット2から放電して電力供給ライン5に電力を供給する。
[n=1のステップ]
 このステップにおいて、制御部10は、各電池ユニット2の検出回路22から入力される識別信号から複数の電池ユニット2の接続状態を検出する。制御部10は、各電池ユニット2から入力される識別信号から、接続されている電池ユニット2の個数や、一部の電池ユニット2が外され、あるいは、新たに別の電池ユニット2が接続されたかどうか等の接続状態を判定する。さらに、制御部10は、複数の電池ユニット2の接続状態に基づいて、許容される最大電流値等を決定する。
[n=2のステップ](バランス充電モード)
 このステップにおいて、コントローラー31と制御部10は、以下のように各スイッチのON/OFFを制御して複数の電池ユニット2を均等化しながらプリチャージする。(図3参照)
 さらに、このバランス充電モードにおいて、コントローラー31は、電源回路4の出力電圧を第一充電電圧に制御する。ここで、この第一充電電圧は、たとえば、48Vとし、あるいは、最も出力電圧の高い電池ユニットの最大電圧Vmaxよりも0.5V大きな電圧(Vmax+0.5V)とすることができる。
  外部接続スイッチ……ON
  第一スイッチ…………OFF
  第二スイッチ…………OFF
  第三スイッチ…………ON
[n=3のステップ]
 このステップにおいて、制御部10は、電力供給ライン5の電圧と各電池ブロック20の電圧との差が、所定の電圧差(例えば、約1.2V)よりも小さいかどうかを判定する。電力供給ライン5の電圧と各電池ブロック20の電圧との差が1.2V以上の場合は、n=2のステップに戻って、バランス充電モードを継続する。電力供給ライン5の電圧と各電池ブロック20の電圧との差が1.2V未満になると、n=4のステップに進んで、通常充電モードに移行する。
[n=4のステップ](通常充電モード)
 このステップにおいて、コントローラー31と制御部10は、以下のように各スイッチのON/OFFを制御して複数の電池ユニット2を満充電する。(図7参照)
 さらに、この通常充電モードにおいて、コントローラー31は、電源回路4の出力電圧を第二充電電圧に制御する。ここで、この第二充電電圧は、たとえば、52.6Vとすることができる。
  外部接続スイッチ……ON
  第一スイッチ…………ON
  第二スイッチ…………ON
  第三スイッチ…………OFF
[n=5のステップ]
 通常充電モードにおいて、商用電源30の停電等により、外部電源3の出力電圧が設定値以下に低下すると、n=15のステップに進んで通常放電モードに移行し、複数の電池ユニット2から外部電源3の電力供給ライン5に電力を供給する。
[n=6のステップ]
 このステップにおいて、制御部10は、いずれかの電池ユニット2が満充電されたかどうかを判定する。電池ユニット2が満充電されるまで、n=4のステップに戻って通常充電モードを継続する。いずれかの電池ユニット2が満充電されると、n=7のステップに進んで満充電モードに移行する。 
[n=7のステップ](満充電モード)
 このステップにおいて、コントローラー31と制御部10は、以下のように各スイッチのON/OFFを制御して待機状態とする。(図8参照)
  外部接続スイッチ……ON
  第一スイッチ…………ON
  第二スイッチ…………OFF
  第三スイッチ…………OFF
[n=8のステップ]
 満充電モードにおいて、商用電源30の停電等により、外部電源3の出力電圧が設定値以下に低下すると、n=13のステップに進んで予備放電モードに移行し、複数の電池ユニット2から外部電源3の電力供給ライン5に電力を供給する。
[n=9のステップ]
 このステップにおいて、制御部10は、待機状態にある電池ユニット2の残容量が低下し、再充電の必要があるかどうかを判定する。いずれかの電池セル21の残容量が満充電状態から所定の割合(たとえば10%)低下し、あるいは、いずれかの電池セル21のセル電圧が充電再開電圧(たとえば、3.85V)以下になると、n=10のステップに進んで再充電を開始する。
[n=10のステップ](再充電モード)
 このステップにおいて、コントローラー31と制御部10は、以下のように各スイッチのON/OFFを制御して複数の電池ユニット2をプリチャージする。(図9参照)
 さらに、この再充電モードにおいて、コントローラー31は、電源回路4の出力電圧を第三充電電圧に制御する。ここで、この第三充電電圧は、第二充電電圧よりも低く設定され、たとえば、52.1Vとすることができる。
  外部接続スイッチ……ON
  第一スイッチ…………ON
  第二スイッチ…………OFF
  第三スイッチ…………ON
 なお、なお、再充電モードは省略することもできる。この場合は、再充電の必要があると判定されると、通常充電モードに移行して再充電することができる。
[n=11のステップ]
 再充電モードにおいて、商用電源30の停電等により、外部電源3の出力電圧が設定値以下に低下すると、n=13のステップに進んで予備放電モードに移行し、複数の電池ユニット2から外部電源3の電力供給ライン5に電力を供給する。
[n=12のステップ]
 このステップにおいて、制御部10は、再充電モードにおけるプリチャージが終了したかどうかを判定する。ここで、プリチャージの終了は、全ての電池セル21のセル電圧が所定の電圧(たとえば、3.9V)以上になったかどうかで判定し、あるいは、プリチャージ時間が所定の時間を経過したかどうかで判定することができる。プリチャージが終了するまで、n=10のステップに戻って再充電モードを継続し、プリチャージが終了すると、n=4のステップに進んで通常充電モードに移行する。
[n=13のステップ](予備放電モード)
 このステップにおいて、各スイッチは、以下のようにON/OFFが保持されて、複数の電池ユニット2から外部電源3の電力供給ライン5に電力を供給する。(図8及び図9参照)
  外部接続スイッチ……ON
  第一スイッチ…………ON
  第二スイッチ…………OFF
  第三スイッチ…………ON/OFF
 予備放電モードにおいては、図8及び図9の鎖線の矢印で示すように、各電池ユニット2から放電される電力が、第二整流素子17とON状態の第一スイッチ11を介して並列ライン8に供給されると共に、並列ライン8の電力がON状態の外部接続スイッチ7を介して外部電源3の電力供給ライン5に供給される。これにより、停電等の理由により電源回路4の出力電圧が低下すると、直ちに電池ユニット2から電力供給ライン5への電力供給が開始される。
 ただ、電源システムが、電源回路の出力電圧の低下を検出する機構を備える場合は、この予備放電モードを省略することもできる。この電源システムは、満充電モード又は再充電モードにおいて、商用電源の停電、あるいは電源回路の故障等によって電源回路の出力電圧が所定値以下に低下したことを検出すると、以下のn=15の制御を行って、通常放電モードに移行して電力供給ラインに電力を供給することができる。
[n=14のステップ]
 このステップでは、電流検出部25によって、並列ライン8から接続ライン6に流れる放電電流が検出されたかどうかを判定する。接続ライン6への放電電流が検出されると、n=15のステップに進んで通常放電モードに移行する。
[n=15のステップ](通常放電モード)
 このステップにおいて、コントローラー31と制御部10は、以下のように各スイッチのON/OFFを制御して放電状態を継続する。(図7参照)
  外部接続スイッチ……ON
  第一スイッチ…………ON
  第二スイッチ…………ON
  第三スイッチ…………OFF
 通常放電モードにおいては、図7の鎖線の矢印で示すように、各電池ユニット2から放電される電力が、ON状態の第二スイッチ12と、ON状態の第一スイッチ11を介して並列ライン8に供給されると共に、並列ライン8の電力がON状態の外部接続スイッチ7を介して外部電源3の電力供給ライン5に供給される。
[n=16のステップ]
 通常放電モードにおいて、商用電源30の停電が復旧して、外部電源3の出力電圧が所定値以上に復帰すると、n=4のステップにジャンプし、通常充電モードに移行して電池ユニット2の充電を開始する。
[n=17のステップ]
 このステップにおいて、制御部10は、全ての電池ユニット2の出力電圧(Vy)が放電停止電圧以下になったかどうかを判定する。この放電停止電圧は、駆動対象機器40の最低動作電圧に相当する電圧であって、たとえば、42Vとする。全ての電池ユニット2の出力電圧が放電停止電圧よりも大きい場合は、n=15のステップに戻って通常充電モードを継続する。いずれかの電池ユニット2の出力電圧が放電停止電圧以下になると、n=18のステップに進んで放電停止モードに移行する。
[n=18のステップ](放電停止モード)
 電力供給ライン5の電圧が、駆動対象機器40の最低動作電圧に相当する所定値である放電停止電圧(例えば42V)以下になると、コントローラー31は、外部接続スイッチ7をOFFに切り換える。この状態で並列ライン8が電力供給ライン5から遮断されて、電池ユニット2から電力供給ライン5への電力供給が停止される。(図10参照)
[n=19のステップ]
 放電停止モードにおいて、商用電源30の停電が復旧して、外部電源3の出力電圧が所定値以上に復帰すると、n=4のステップにジャンプし、通常充電モードに移行して電池ユニット2の充電を開始する。
[n=20のステップ]
 このステップにおいて、制御部10は、いずれかの電池セル21の電圧が、所定値(約3V/セル)まで低下したかどうかを判定する。全ての電池セル21の電圧が、所定値(約3V/セル)よりも大きい場合は、n=18のステップに戻って放電停止モードを継続する。いずれかの電池セル21の電圧が所定値(約3V/セル)以下になると、n=21のステップに進んで駆動停止モードに移行する。
[n=21のステップ](駆動停止モード)
 このステップにおいて、制御部10は、全てのスイッチをOFFとし、全ての電池ユニット2が並列ライン8から切り離された状態とする。(図1参照)
  第一スイッチ…………OFF
  第二スイッチ…………OFF
  第三スイッチ…………OFF
 さらに、制御回路10は、電池ユニット2のマイコン等からなる検出回路22との間の通信線28に乗せている駆動電力(駆動電圧)12Vを停止させて、全ての検出回路22をシャットダウン(駆動停止)させる。
[n=22のステップ]
 駆動停止モードにおいて、商用電源30の停電が復旧して、外部電源3の出力電圧が所定値以上に復帰すると、n=2のステップにジャンプし、バランス充電モードに移行して電池ユニット2の充電を開始する。外部電源3の電力供給ライン5の電圧が設定値以上に復帰しない状態では、n=21のステップに戻って駆動停止モードを継続する。
 なお、以上のフローチャートには記載されないが、各モードにおいて、いずれかの電池ユニット2が接続ユニット1から取り外され、あるいは新たな電池ユニット2が接続ユニット1に接続されたことが検出されると、n=1のステップに戻って、電池ユニット2の接続状態の認識から再スタートすることができる。これにより、ホットスタンバイ状態での電池ユニットの脱着を可能としつつ、電池ユニットの脱着時における信頼性を向上できる。
 本発明に係る電源システムは、商用電源の停電時等において、携帯電話の基地局や信号機などに電力を供給するバックアップ用電源として好適に使用できる。とくに、多数の電池セルを備える複数の電池ユニットを並列に接続して出力を大きくしながら、商用電源から供給される電力で充電し、また商用電源の出力低下時には放電できる電源システムとして好適に利用できる。
  1…接続ユニット
  2…電池ユニット     2’…電池ユニット
  3…外部電源
  4…電源回路
  5…電力供給ライン
  6…接続ライン
  7…外部接続スイッチ
  8…並列ライン
  9…接続部        9’…接続部
 10…制御部
 11…第一スイッチ
 12…第二スイッチ
 13…第三スイッチ
 14…電流制限抵抗
 15…サブ接続回路
 16…第一整流素子
 17…第二整流素子
 20…電池ブロック
 21…電池セル
 22…検出回路
 25…電流検出部
 26…電流検出抵抗
 27…検出回路
 28…通信線
 30…商用電源
 31…コントローラー
 32…通信回線
 40…駆動対象機器

Claims (16)

  1.  外部の商用電源に接続されて、商用電源から供給される電力を変換して駆動対象機器に供給する外部電源と、
     直列に接続された複数の電池セルを備える複数の電池ユニットと、
     前記複数の電池ユニットを並列に接続して前記外部電源に接続する接続ユニットとを備え、
     前記外部電源から各電池ユニットに電力を供給して、前記電池セルを充電すると共に、前記外部電源から駆動対象機器に出力される電圧が低下する状態で、前記電池ユニットから駆動対象機器に電力を供給するようにしてなる電源システムであって、
     前記外部電源は、
      商用電源から供給される交流を、駆動対象機器を駆動する所定の出力電圧の直流に変換する電源回路と、
      前記電源回路の出力側に接続されて、外部の駆動対象機器に電力を供給する電力供給ラインと、
      前記電力供給ラインに接続されて、前記接続ユニットを接続する接続ラインと、
      前記接続ライン上に設けられ、前記電力供給ラインの電圧が所定値以下になるとオフとなる外部接続スイッチと、
    を備えており、
     前記接続ユニットは、
      前記複数の電池ユニットを並列に接続する並列ラインと、
      各電池ユニットを前記並列ラインに接続する接続部と、
      前記接続部の接続状態を制御する制御部と、
    を備えており、
     前記並列ラインは、前記外部電源の接続ラインに接続されており、
     前記接続部は、
      前記並列ラインと各電池ユニットの間に直列に接続された第一スイッチと第二スイッチの直列回路と、
      前記第二スイッチと並列に接続された、電流制限抵抗と第三スイッチの直列回路からなるサブ接続回路と、
      前記第一スイッチと並列に接続され、かつ前記並列ラインから該電池ユニットに通電する方向に整流作用を有する第一整流素子と、
      前記第二スイッチと並列に接続され、かつ該電池ユニットから前記並列ラインに通電する方向に整流作用を有する第二整流素子と
    を備えており、
     前記制御部が、各接続部の前記第一スイッチをOFF、前記第二スイッチをOFF、前記第三スイッチをONとして、各電池ユニットを均等化しながらプリチャージするバランス充電モードと
     前記バランス充電モードの後、前記制御部が、各接続部の前記第一スイッチをON、前記第二スイッチをON、前記第三スイッチをOFFとして、前記電池ユニットを満充電させる通常充電モードと、
     各電池ユニットが満充電されると、前記制御部が、各接続部の前記第一スイッチをON、前記第二スイッチをOFF、前記第三スイッチをOFFとして、前記電池ユニットの充電を停止する満充電モードと、
     前記満充電モードにおいて、前記外部電源の出力電圧が低下すると、前記制御部が、各接続部の前記第一スイッチをON、前記第二スイッチをON、前記第三スイッチをOFFとして、各電池ユニットから前記外部電源の電力供給ラインに電力を供給する通常放電モードと、
     前記通常放電モードにおいて、前記電力供給ラインの電圧が前記所定値以下になると、前記外部接続スイッチがOFFに制御されて、各電池ユニットからの放電を停止する放電停止モードと
     前記放電停止モードにおいて、前記電池ユニットのセル電圧が所定値以下になると、前記制御部が、各接続部の前記第一スイッチをOFF、前記第二スイッチをOFF、前記第三スイッチをOFFとする駆動停止モードと
    を切り換えて複数の電池ユニットを充放電することを特徴とする電源システム。
  2.  請求項1に記載の電源システムであって、
     前記満充電モードにおいて、前記電池ユニットのいずれかの電池セルの残容量が満充電状態から所定の割合低下し、あるいは、いずれかの電池セルのセル電圧が充電再開電圧以下になると、前記制御部が、各接続部の前記第一スイッチをON、前記第二スイッチをOFF、前記第三スイッチをONとして、各電池ユニットをプリチャージする再充電モードに移行して該電池ユニットを再充電することを特徴とする電源システム。
  3.  請求項1または2に記載の電源システムであって、
     前記満充電モード又は前記再充電モードにおいて、前記外部電源の出力電圧が低下すると、
     各電池ユニットの電力が、前記第二整流素子とON状態の前記第一スイッチを介して前記並列ラインに供給されると共に、該並列ラインの電力がON状態の前記外部接続スイッチを介して前記外部電源の電力供給ラインに供給される予備放電モードによって複数の電池ユニットから放電することを特徴とする電源システム。
  4.  請求項3に記載の電源システムであって、
     前記接続ユニットが、前記外部電源の接続ラインへの通電状態を検出する電流検出部を備えており、
     前記予備放電モードにおいて、前記電流検出部が前記接続ラインへの放電電流を検出すると、
     前記制御部が、各接続部の前記第一スイッチをON、前記第二スイッチをON、前記第三スイッチをOFFとし、各電池ユニットの電力が、ON状態の第二スイッチとON状態の第一スイッチを介して前記並列ラインに供給されると共に、該並列ラインの電力がON状態の前記外部接続スイッチを介して前記外部電源の電力供給ラインに供給される通常放電モードに移行して複数の電池ユニットから放電することを特徴とする電源システム。
  5.  請求項1から4のいずれかに記載の電源システムであって、
     前記通常充電モードにおいて、前記外部電源の出力電圧が低下すると、
     各電池ユニットの電力が、ON状態の前記第二スイッチとON状態の前記第一スイッチを介して前記並列ラインに供給されると共に、該並列ラインの電力がON状態の前記外部接続スイッチを介して前記外部電源の電力供給ラインに供給される通常放電モードに移行して複数の電池ユニットから放電することを特徴とする電源システム。
  6.  請求項1から5のいずれかに記載の電源システムであって、
     前記通常放電モードにおいて、前記外部電源の出力電圧が復帰すると、
     前記外部電源の電力供給ラインから供給される電力がON状態の前記外部接続スイッチを介して前記並列ラインに供給されると共に、該並列ラインの電力がON状態の前記第一スイッチとON状態の前記第二スイッチを介して各電池ユニットに供給される通常充電モードに移行して複数の電池ユニットを充電することを特徴とする電源システム。
  7.  請求項1から6のいずれかに記載の電源システムであって、
     前記バランス充電モードにおいて、各電池ユニット間の電圧差が所定の第二電圧差以上の場合に、
     前記外部接続スイッチが前記制御部からの信号でOFFに制御され、前記制御部が、各接続部の前記第一スイッチをON、前記第二スイッチをOFF、前記第三スイッチをONとして、各電池ユニット間で電圧差を低減させる均等化モードに移行して複数の電池ユニットを均等化することを特徴とする電源システム。
  8.  請求項1から7のいずれかに記載の電源システムであって、
     前記バランス充電モードにおいて、前記電力供給ラインの電圧と各電池ブロックの電圧との差が所定の電圧差以下になると
     前記外部接続スイッチが前記制御部からの信号でOFFに切り換えられ、前記制御部が、各接続部の前記第一スイッチをOFFからONに、各接続部の前記第二スイッチをOFFからONに、各接続部の前記第三スイッチをONからOFFに切り換えた後、前記外部接続スイッチが前記制御部からの信号でをONに切り換えられて前記通常充電モードに移行することを特徴とする電源システム。
  9.  請求項1から8のいずれかに記載の電源システムであって、
     前記駆動停止モードにおいて、前記外部電源の出力電圧が復帰すると、
     前記外部接続スイッチがONに制御され、前記制御部が、各接続部の前記第一スイッチをOFF、前記第二スイッチをOFF、前記第三スイッチをONとして前記バランス充電モードに移行して各電池ユニットを充電することを特徴とする電源システム。
  10.  請求項1から9のいずれかに記載の電源システムであって、
     前記外部電源が、前記電源回路の出力電圧を切り換えながら前記電池ユニットを充電することを特徴とする電源システム。
  11.  請求項1から10のいずれかに記載の電源システムであって、
     前記第一整流素子及び/又は第二整流素子が、ダイオードであることを特徴とする電源システム。
  12.  請求項1から11のいずれかに記載の電源システムであって、
     前記第一スイッチ及び/又は第二スイッチがトランジスタであることを特徴とする電源システム。
  13.  請求項1から12のいずれかに記載の電源システムであって、
     前記第一スイッチ及び/又は第二スイッチがFETであり、
     前記第一整流素子及び/又は第二整流素子が、前記FETに内蔵された寄生ダイオードであることを特徴とする電源システム。
  14.  直列に接続された複数の電池セルを備える複数の電池ユニットと、
     前記複数の電池ユニットを並列に接続して外部に出力する接続ユニットとを備え、
     前記接続ユニットが、商用電源から供給される電力を直流に変換して駆動対象機器に出力する外部電源の電力供給ラインに接続されて、この電力供給ラインから供給される電力で、前記電池ユニットの電池セルを充電すると共に、外部電源から駆動対象機器に出力される電圧が低下する状態で、前記電池ユニットから電力供給ラインに電力を供給するようにしてなる電源システムであって、
     前記接続ユニットは、
      前記複数の電池ユニットを並列に接続する並列ラインと、
      各電池ユニットを前記並列ラインに接続する接続部と、
      前記接続部の接続状態を制御する制御部と、
    を備えており、
     前記並列ラインは、電力供給ラインの電圧が所定値以下になるとオフになる外部接続スイッチを介して外部電源の電力供給ラインに接続されており、
     前記接続部は、
      前記並列ラインと前記電池ユニットの間に直列に接続された第一スイッチと第二スイッチの直列回路と、
      前記第二スイッチと並列に接続された、電流制限抵抗と第三スイッチの直列回路からなるサブ接続回路と、
      前記第一スイッチと並列に接続され、かつ前記並列ラインから該電池ユニットに通電する方向に整流作用を有する第一整流素子と、
      前記第二スイッチと並列に接続され、かつ該電池ユニットから前記並列ラインに通電する方向に整流作用を有する第二整流素子と
    を備えており、
     前記制御部が、各接続部の前記第一スイッチをOFF、前記第二スイッチをOFF、前記第三スイッチをONとして、各電池ユニットを均等化しながらプリチャージするバランス充電モードと
     前記バランス充電モードの後、前記制御部が、各接続部の前記第一スイッチをON、前記第二スイッチをON、前記第三スイッチをOFFとして、前記電池ユニットを満充電させる通常充電モードと、
     各電池ユニットが満充電されると、前記制御部が、各接続部の前記第一スイッチをON、前記第二スイッチをOFF、前記第三スイッチをOFFとして、前記電池ユニットの充電を停止する満充電モードと、
     前記満充電モードにおいて、前記外部電源の出力電圧が低下すると、前記制御部が、各接続部の前記第一スイッチをON、前記第二スイッチをON、前記第三スイッチをOFFとして、各電池ユニットから前記外部電源の電力供給ラインに電力を供給する通常放電モードと、
     前記通常放電モードにおいて、前記電力供給ラインの電圧が前記所定値以下になると、外部接続スイッチがOFFに制御されて、各電池ユニットからの放電を停止する放電停止モードと、
     前記放電停止モードにおいて、前記電池ユニットのセル電圧が所定値以下になると、前記制御部が、各接続部の前記第一スイッチをOFF、前記第二スイッチをOFF、前記第三スイッチをOFFとする駆動停止モードと
    を切り換えて複数の電池ユニットを充放電することを特徴とする電源システム。
  15.  直列に接続された複数の電池セルを備える複数の電池ユニットと、
     前記複数の電池ユニットを並列に接続して外部に出力する接続ユニットとを備え、
     前記接続ユニットが、商用電源から供給される電力を直流に変換して駆動対象機器に出力する外部電源の電力供給ラインに接続されて、この電力供給ラインから供給される電力で、前記電池ユニットの電池セルを充電すると共に、外部電源から駆動対象機器に出力される電圧が低下する状態で、前記電池ユニットから電力供給ラインに電力を供給するようにしてなる電源システムであって、
     前記接続ユニットは、
      前記複数の電池ユニットを並列に接続する並列ラインと、
      各電池ユニットを前記並列ラインに接続する接続部と、
      前記接続部の接続状態を制御する制御部と、
    を備えており、
     前記並列ラインは、外部電源の電力供給ラインに接続されており、
     前記接続部は、
      前記並列ラインと前記電池ユニットの間に直列に接続された第一スイッチと第二スイッチの直列回路と、
      前記第二スイッチと並列に接続された、電流制限抵抗と第三スイッチの直列回路からなるサブ接続回路と、
      前記第一スイッチと並列に接続され、かつ前記並列ラインから該電池ユニットに通電する方向に整流作用を有する第一整流素子と、
      前記第二スイッチと並列に接続され、かつ該電池ユニットから前記並列ラインに通電する方向に整流作用を有する第二整流素子と
    を備えており、
     前記制御部が、各接続部の前記第一スイッチをOFF、前記第二スイッチをOFF、前記第三スイッチをONとして、各電池ユニットを均等化しながらプリチャージするバランス充電モードと
     前記バランス充電モードの後、前記制御部が、各接続部の前記第一スイッチをON、前記第二スイッチをON、前記第三スイッチをOFFとして、前記電池ユニットを満充電させる通常充電モードと、
     各電池ユニットが満充電されると、前記制御部が、各接続部の前記第一スイッチをON、前記第二スイッチをOFF、前記第三スイッチをOFFとして、前記電池ユニットの充電を停止する満充電モードと、
     前記満充電モードにおいて、前記外部電源の出力電圧が低下すると、前記制御部が、各接続部の前記第一スイッチをON、前記第二スイッチをON、前記第三スイッチをOFFとして、各電池ユニットから前記外部電源の電力供給ラインに電力を供給する通常放電モードと、
     前記電池ユニットのセル電圧が所定値以下になると、前記制御部が、各接続部の前記第一スイッチをOFF、前記第二スイッチをOFF、前記第三スイッチをOFFとする駆動停止モードと
    を切り換えて複数の電池ユニットを充放電することを特徴とする電源システム。
  16.  外部の商用電源に接続されて、商用電源から供給される電力を変換して駆動対象機器に供給する外部電源と、
     直列に接続された複数の電池セルを備える複数の電池ユニットと、
     前記複数の電池ユニットを並列に接続して前記外部電源に接続する接続ユニットとを備え、
     前記外部電源から各電池ユニットに電力を供給して、前記電池セルを充電とすると共に、前記外部電源から駆動対象機器に出力される電圧が低下する状態で、前記電池ユニットから駆動対象機器に電力を供給するようにしており、
     前記外部電源は、
      商用電源から供給される交流を、駆動対象機器を駆動する所定の出力電圧の直流に変換する電源回路と、
      前記電源回路の出力側に接続されて、外部の駆動対象機器に電力を供給する電力供給ラインと、
      前記電力供給ラインに接続されて、前記接続ユニットを接続する接続ラインと、
      前記接続ライン上に設けられ、前記電力供給ラインの電圧が所定値以下になるとオフとなる外部接続スイッチと、
    を備えており、
     前記接続ユニットは、
      前記複数の電池ユニットを並列に接続する並列ラインと、
      各電池ユニットを前記並列ラインに接続する接続部と、
      前記接続部の接続状態を制御する制御部と、
    を備えており、
     前記並列ラインは、前記外部電源の接続ラインに接続されており、
     前記接続部は、
      前記並列ラインと前記電池ユニットの間に直列に接続された第一スイッチと第二スイッチの直列回路と、
      前記第二スイッチと並列に接続された、電流制限抵抗と第三スイッチの直列回路からなるサブ接続回路と、
      前記第一スイッチと並列に接続され、かつ前記並列ラインから該電池ユニットに通電する方向に整流作用を有する第一整流素子と、
      前記第二スイッチと並列に接続され、かつ該電池ユニットから前記並列ラインに通電する方向に整流作用を有する第二整流素子と
    を備えてなる電源システムの充放電制御方法であって、
     前記制御部が、各接続部の前記第一スイッチをOFF、前記第二スイッチをOFF、前記第三スイッチをONとして、各電池ユニットを均等化しながらプリチャージする工程と
     各電池ユニットを均等化しながらプリチャージする工程の後、前記制御部が、各接続部の前記第一スイッチをON、前記第二スイッチをON、前記第三スイッチをOFFとして、前記電池ユニットを満充電させる工程と、
     各電池ユニットが満充電されると、前記制御部が、各接続部の前記第一スイッチをON、前記第二スイッチをOFF、前記第三スイッチをOFFとして、前記電池ユニットの充電を停止する工程と、
     前記外部電源の出力電圧が低下すると、前記制御部が、各接続部の前記第一スイッチをON、前記第二スイッチをON、前記第三スイッチをOFFとして、各電池ユニットから前記外部電源の電力供給ラインに電力を供給する工程と、
     各電池ユニットから前記電力供給ラインに電力を供給する状態で、前記電力供給ラインの電圧が前記所定値以下になると、前記外部接続スイッチがOFFに制御されて、各電池ユニットからの放電を停止する工程と
     各電池ユニットからの放電を停止する状態で、前記電池ユニットのセル電圧が所定値以下になると、前記制御部が、各接続部の前記第一スイッチをOFF、前記第二スイッチをOFF、前記第三スイッチをOFFとする工程と
    で複数の電池ユニットを充放電することを特徴とする電源システムの充放電制御方法。
PCT/JP2014/001503 2013-03-29 2014-03-17 電源システム及び電源システムの充放電制御方法 WO2014156041A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014530036A JP5615995B1 (ja) 2013-03-29 2014-03-17 電源システム及び電源システムの充放電制御方法
CN201480000968.2A CN104247198B (zh) 2013-03-29 2014-03-17 电源***以及电源***的充放电控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013074115 2013-03-29
JP2013-074115 2013-03-29

Publications (1)

Publication Number Publication Date
WO2014156041A1 true WO2014156041A1 (ja) 2014-10-02

Family

ID=51623058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001503 WO2014156041A1 (ja) 2013-03-29 2014-03-17 電源システム及び電源システムの充放電制御方法

Country Status (3)

Country Link
JP (1) JP5615995B1 (ja)
CN (1) CN104247198B (ja)
WO (1) WO2014156041A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016082764A (ja) * 2014-10-20 2016-05-16 株式会社豊田自動織機 給電路遮断装置及び給電路遮断方法
WO2019013176A1 (ja) * 2017-07-11 2019-01-17 株式会社ジェイ・エム・エス 点滴監視装置
CN111245043A (zh) * 2018-11-28 2020-06-05 丰田自动车株式会社 电源***
CN111245041A (zh) * 2018-11-28 2020-06-05 丰田自动车株式会社 电源***
CN111293754A (zh) * 2020-03-20 2020-06-16 Oppo广东移动通信有限公司 充电***、方法、电子设备和计算机可读存储介质
JP2020155274A (ja) * 2019-03-19 2020-09-24 本田技研工業株式会社 予測装置、二次電池、予測方法およびプログラム
JP2020530255A (ja) * 2017-08-10 2020-10-15 ズークス インコーポレイテッド スマートバッテリ回路
CN112491130A (zh) * 2020-11-20 2021-03-12 贵州电网有限责任公司 一种直流充电机电气闭锁装置
US20210399557A1 (en) * 2020-06-19 2021-12-23 Yazaki Corporation Battery control unit and battery system
WO2022055566A1 (en) * 2020-09-09 2022-03-17 Microsoft Technology Licensing, Llc Balanced discharge in multi-battery system
CN114421028A (zh) * 2020-10-28 2022-04-29 中车时代电动汽车股份有限公司 一种电池***及电池包梯次利用的重组方法
US11342009B2 (en) 2017-11-06 2022-05-24 Lg Energy Solution, Ltd. Cell module equalization and precharge device and method
EP4020752A1 (en) 2020-12-23 2022-06-29 Prime Planet Energy & Solutions, Inc. Battery control device and mobile battery
EP4020751A1 (en) 2020-12-23 2022-06-29 Prime Planet Energy & Solutions, Inc. Battery control device and mobile battery
WO2022264485A1 (ja) * 2021-06-15 2022-12-22 Fdk株式会社 電源システム及び蓄電装置

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6174084B2 (ja) 2015-06-30 2017-08-02 株式会社東芝 電池パックおよびその制御方法
EP3319196B1 (en) * 2015-06-30 2022-04-27 SZ DJI Technology Co., Ltd. Charging control circuit, charging device, charging system and charging control method
CN107706963A (zh) * 2015-08-03 2018-02-16 成都宇能通能源开发有限公司 一种电池组并联电路
CN107492931A (zh) * 2015-08-03 2017-12-19 成都宇能通能源开发有限公司 一种电池组并联工作方法
CN106816652B (zh) * 2015-11-27 2019-08-13 比亚迪股份有限公司 电池***及其启动控制方法
US20170366019A1 (en) * 2016-06-16 2017-12-21 EcoReco Global Corporation Battery Switching System and Method Thereof
CN106451623B (zh) 2016-10-14 2020-07-03 宁德时代新能源科技股份有限公司 热插拔方法及热插拔控制装置、电压平衡方法及装置
KR102311510B1 (ko) * 2016-11-02 2021-10-08 삼성에스디아이 주식회사 배터리 팩
CN106774761A (zh) * 2016-11-25 2017-05-31 郑州云海信息技术有限公司 一种供电装置及其供电方法、服务器
CN108242842B (zh) * 2016-12-26 2021-06-29 山东兆宇电子股份有限公司 一种不同类型蓄电池组并联的管理装置及其方法
CN106655393A (zh) * 2017-01-05 2017-05-10 奇酷互联网络科技(深圳)有限公司 充电装置和移动终端
JP2018152285A (ja) 2017-03-14 2018-09-27 株式会社東芝 蓄電池パック
CN107069928B (zh) * 2017-03-28 2024-04-16 浙江特康电子科技有限公司 一种用于多电池包割草机的主开关控制电路
JP6789910B2 (ja) * 2017-10-18 2020-11-25 株式会社東芝 電池ユニットおよび電池ユニットの制御方法
CN110198058A (zh) * 2018-02-27 2019-09-03 加百裕工业股份有限公司 并联电池***及方法
CN108512269A (zh) * 2018-03-14 2018-09-07 深圳市爱克斯达电子有限公司 一种电池并联平衡装置及充放电控制方法
CN110323818A (zh) * 2018-03-30 2019-10-11 加百裕工业股份有限公司 并联电池***及方法
JP7106946B2 (ja) * 2018-04-02 2022-07-27 トヨタ自動車株式会社 複数電池の評価装置
EP3598605B1 (en) * 2018-07-19 2022-09-14 Yazaki Corporation Battery system
JPWO2020026664A1 (ja) * 2018-07-30 2021-07-01 工機ホールディングス株式会社 充電装置
JP6898904B2 (ja) * 2018-10-31 2021-07-07 株式会社豊田中央研究所 電源装置
JP7025716B2 (ja) * 2018-11-29 2022-02-25 トヨタ自動車株式会社 電源システム
JP7129008B2 (ja) * 2018-11-29 2022-09-01 トヨタ自動車株式会社 電源システム
JP7054453B2 (ja) * 2018-11-29 2022-04-14 トヨタ自動車株式会社 電源システム
CN110098608A (zh) * 2019-03-12 2019-08-06 国网山西省电力公司晋中供电公司 变电站分布式直流电源***
CN210224193U (zh) * 2019-06-28 2020-03-31 北京石头世纪科技股份有限公司 一种可充电电池组及手持真空吸尘设备
CN112848969A (zh) * 2019-11-27 2021-05-28 光阳工业股份有限公司 电动车辆的电池并联控制方法
CN112886153A (zh) * 2021-01-20 2021-06-01 宁波中科孚奇能源科技有限公司 一种储能电池模块、储能电池簇与储能电池***
JP7350026B2 (ja) * 2021-03-25 2023-09-25 本田技研工業株式会社 制御装置及び車両
CN113541258A (zh) * 2021-07-21 2021-10-22 研祥智能科技股份有限公司 充放电装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043723A1 (ja) * 2010-10-01 2012-04-05 三洋電機株式会社 電源装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997006591A1 (en) * 1995-08-10 1997-02-20 Sony Corporation Charging method, charging device and integrated circuit
US6850039B2 (en) * 2003-05-02 2005-02-01 O2Micro International Limited Battery pack and a battery charging/discharging circuit incorporating the same
CN101425678B (zh) * 2007-10-30 2011-11-23 比亚迪股份有限公司 电池保护方法和***
JP5274046B2 (ja) * 2008-02-21 2013-08-28 三洋電機株式会社 車両用の電源装置
WO2012053426A1 (ja) * 2010-10-19 2012-04-26 三洋電機株式会社 電源装置及びこれを用いた車両並びに蓄電装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043723A1 (ja) * 2010-10-01 2012-04-05 三洋電機株式会社 電源装置

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016082764A (ja) * 2014-10-20 2016-05-16 株式会社豊田自動織機 給電路遮断装置及び給電路遮断方法
WO2019013176A1 (ja) * 2017-07-11 2019-01-17 株式会社ジェイ・エム・エス 点滴監視装置
JP2019017407A (ja) * 2017-07-11 2019-02-07 株式会社ジェイ・エム・エス 点滴監視装置
JP2020530255A (ja) * 2017-08-10 2020-10-15 ズークス インコーポレイテッド スマートバッテリ回路
JP7191086B2 (ja) 2017-08-10 2022-12-16 ズークス インコーポレイテッド スマートバッテリ回路
US11342009B2 (en) 2017-11-06 2022-05-24 Lg Energy Solution, Ltd. Cell module equalization and precharge device and method
CN111245043A (zh) * 2018-11-28 2020-06-05 丰田自动车株式会社 电源***
CN111245041A (zh) * 2018-11-28 2020-06-05 丰田自动车株式会社 电源***
CN111245041B (zh) * 2018-11-28 2023-07-07 丰田自动车株式会社 电源***
JP2020155274A (ja) * 2019-03-19 2020-09-24 本田技研工業株式会社 予測装置、二次電池、予測方法およびプログラム
JP7227808B2 (ja) 2019-03-19 2023-02-22 本田技研工業株式会社 予測装置、二次電池、予測方法およびプログラム
CN111293754B (zh) * 2020-03-20 2021-11-09 Oppo广东移动通信有限公司 充电***、方法、电子设备和计算机可读存储介质
CN111293754A (zh) * 2020-03-20 2020-06-16 Oppo广东移动通信有限公司 充电***、方法、电子设备和计算机可读存储介质
US11843267B2 (en) * 2020-06-19 2023-12-12 Yazaki Corporation Battery control unit and battery system
US20210399557A1 (en) * 2020-06-19 2021-12-23 Yazaki Corporation Battery control unit and battery system
WO2022055566A1 (en) * 2020-09-09 2022-03-17 Microsoft Technology Licensing, Llc Balanced discharge in multi-battery system
US11901749B2 (en) 2020-09-09 2024-02-13 Microsoft Technology Licensing, Llc Balanced discharge in multi-battery system
CN114421028A (zh) * 2020-10-28 2022-04-29 中车时代电动汽车股份有限公司 一种电池***及电池包梯次利用的重组方法
CN112491130A (zh) * 2020-11-20 2021-03-12 贵州电网有限责任公司 一种直流充电机电气闭锁装置
KR20220091392A (ko) 2020-12-23 2022-06-30 프라임 플래닛 에너지 앤드 솔루션즈 가부시키가이샤 배터리 제어 장치 및 모바일 배터리
KR20220091393A (ko) 2020-12-23 2022-06-30 프라임 플래닛 에너지 앤드 솔루션즈 가부시키가이샤 배터리 제어 장치 및 모바일 배터리
EP4020751A1 (en) 2020-12-23 2022-06-29 Prime Planet Energy & Solutions, Inc. Battery control device and mobile battery
EP4020752A1 (en) 2020-12-23 2022-06-29 Prime Planet Energy & Solutions, Inc. Battery control device and mobile battery
WO2022264485A1 (ja) * 2021-06-15 2022-12-22 Fdk株式会社 電源システム及び蓄電装置

Also Published As

Publication number Publication date
CN104247198A (zh) 2014-12-24
JPWO2014156041A1 (ja) 2017-02-16
JP5615995B1 (ja) 2014-10-29
CN104247198B (zh) 2017-07-28

Similar Documents

Publication Publication Date Title
JP5615995B1 (ja) 電源システム及び電源システムの充放電制御方法
EP2882065B1 (en) Battery charging management system of automated guided vehicle and battery charging management method
JP6026226B2 (ja) 蓄電システム及び電源システム
US8581557B2 (en) Direct-current power source apparatus
JP4602471B1 (ja) 電池パックおよび電池パックシステム
US20120025768A1 (en) Power supply device having precharging circuit for charging capacitor
US8350535B2 (en) Battery charging and electrical energy delivery system for delivering electrical energy to consumers and charging current to a battery and a battery operated system
KR20120015895A (ko) 2차 전지 관리 장치
US9815541B2 (en) Boat with electric drive
JP4763660B2 (ja) 電源システム
US10199844B2 (en) Power-supplying device
US20170338678A1 (en) Vehicle electrical power system for jumpstarting
JP2012182857A (ja) 直流電源装置
JP4015126B2 (ja) 直流電力供給システム
JP2009071922A (ja) 直流バックアップ電源装置およびその制御方法
JP2009148110A (ja) 充放電器とこれを用いた電源装置
JP6214131B2 (ja) 組電池充電システムおよび組電池充電方法
CN108886249B (zh) 蓄电池装置、蓄电池装置的控制方法及记录介质
JP5488085B2 (ja) 直流電源装置
KR101546046B1 (ko) 전동카트의 배터리 방전 방지장치 및 방법
JP2009118683A (ja) 充電器とその充電方法および電源システム
CN113054734A (zh) 备份电源
WO2016075616A2 (en) Aid module for electrically starting an internal combustion engine

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014530036

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14776494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14776494

Country of ref document: EP

Kind code of ref document: A1