WO2014155975A1 - 絶縁熱伝導性樹脂組成物 - Google Patents

絶縁熱伝導性樹脂組成物 Download PDF

Info

Publication number
WO2014155975A1
WO2014155975A1 PCT/JP2014/001135 JP2014001135W WO2014155975A1 WO 2014155975 A1 WO2014155975 A1 WO 2014155975A1 JP 2014001135 W JP2014001135 W JP 2014001135W WO 2014155975 A1 WO2014155975 A1 WO 2014155975A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic filler
resin
diameter inorganic
small
phase
Prior art date
Application number
PCT/JP2014/001135
Other languages
English (en)
French (fr)
Inventor
友規 小谷
浩好 余田
岸 肇
崇史 猿渡
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2015507999A priority Critical patent/JP6025967B2/ja
Priority to US14/778,837 priority patent/US9779853B2/en
Priority to EP14772690.5A priority patent/EP2980161B1/en
Priority to CN201480017822.9A priority patent/CN105051115B/zh
Publication of WO2014155975A1 publication Critical patent/WO2014155975A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/40Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/06Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/002Inhomogeneous material in general
    • H01B3/006Other inhomogeneous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/301Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen or carbon in the main chain of the macromolecule, not provided for in group H01B3/302
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/222Magnesia, i.e. magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium

Definitions

  • the present invention relates to an insulating heat conductive resin composition. Specifically, the present invention relates to an insulating heat conductive resin composition used for a heat conductive component for cooling an electronic component or the like, for example, a heat radiating body.
  • a heat radiator is usually attached to an electronic component that generates heat.
  • a thermal conductivity is improved by forming a co-continuous phase separation structure using a plurality of resins and forming a heat conduction path by unevenly distributing the heat conductive filler in one resin phase or resin interface.
  • a method is disclosed (see, for example, Patent Documents 6 and 7).
  • Patent Documents 6 and 7 if only the thermally conductive filler is unevenly distributed as in Patent Documents 6 and 7, a certain amount of filling is required for high thermal conductivity, and the moldability may be deteriorated. In addition, it is difficult to continuously form the heat conduction path, and it may be divided by the resin phase. Therefore, the materials of Patent Documents 6 and 7 still have insufficient heat conductivity.
  • An object of the present invention is to provide an insulating thermally conductive resin composition having high thermal conductivity and excellent moldability.
  • the insulating thermally conductive resin composition according to the first aspect of the present invention is different from the first resin phase in which the first resin is three-dimensionally continuous and the first resin phase, and is formed of the second resin.
  • a phase separation structure having two resin phases is provided.
  • a small-diameter inorganic filler unevenly distributed in the first resin phase, and a large-diameter inorganic filler straddling the first resin phase and the second resin phase and thermally connecting the small-diameter inorganic filler unevenly distributed in the first resin phase are provided.
  • the average particle diameter of the small-diameter inorganic filler is 0.1 to 15 ⁇ m.
  • the average particle diameter of the large-diameter inorganic filler is larger than the average particle diameter of the small-diameter inorganic filler and is 1 to 100 ⁇ m.
  • the insulating thermally conductive resin composition according to the second aspect of the present invention relates to the resin composition according to the first aspect, and a small-diameter inorganic filler is present at the interface between the first resin phase and the second resin phase.
  • the insulating thermally conductive resin composition according to the third aspect of the present invention relates to the resin composition according to the first or second aspect, wherein the small-diameter inorganic filler is at the interface between the first resin phase and the second resin phase. Touching or straddling the interface.
  • the insulating thermally conductive resin composition according to the fourth aspect of the present invention relates to the resin composition according to any one of the first to third aspects, and in the first resin phase, heat is generated by contact with the small-diameter inorganic filler. A conduction path is formed.
  • the insulated thermal conductive resin composition according to the fifth aspect of the present invention relates to the resin composition according to any one of the first to fourth aspects, and relates to the small-diameter inorganic filler and the large-diameter inorganic filler in the insulated thermal conductive resin composition.
  • the total proportion of the filler is 10 to 80% by volume.
  • the ratio of the large-diameter inorganic filler in the total of the small-diameter inorganic filler and the large-diameter inorganic filler is 5 to 60% by volume.
  • the insulating thermally conductive resin composition according to the sixth aspect of the present invention is the resin composition according to any one of the first to fifth aspects, wherein the small-diameter inorganic filler and the large-diameter inorganic filler are MgO, Al 2 O. 3 , containing at least one selected from the group consisting of BN and AlN.
  • the insulating thermally conductive resin composition according to the seventh aspect of the present invention is the resin composition according to any one of the first to sixth aspects, wherein the first resin phase is any one of a thermosetting resin and a thermoplastic resin.
  • the second resin phase is formed by the other of the thermosetting resin and the thermoplastic resin.
  • the thermosetting resin is an epoxy resin
  • the thermoplastic resin is polyethersulfone.
  • the insulating thermally conductive resin composition according to the eighth aspect of the present invention is the resin composition according to the seventh aspect, wherein the phase separation structure is a co-continuous structure, and the small-diameter inorganic filler and the large-diameter inorganic filler are MgO, It contains at least one of Al 2 O 3 and BN. Further, the total proportion of the small-diameter inorganic filler and the large-diameter inorganic filler in the insulating heat conductive resin composition is 20 to 80% by volume, and the heat conductivity of the insulating heat conductive resin composition is 3 W / m ⁇ K or more. is there.
  • FIG. 1 is a schematic view showing an insulating thermally conductive resin composition according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing a state in which the large-diameter inorganic filler is removed from the insulating thermally conductive resin composition according to the embodiment of the present invention.
  • FIG. 3 is a schematic diagram for explaining a phase separation structure, in which (a) shows a sea-island structure, (b) shows a continuous spherical structure, (c) shows a composite dispersion structure, and (d) shows A co-continuous structure is shown.
  • FIG. 4 is a scanning electron micrograph showing a cross section of the insulating thermally conductive resin composition of Example 6.
  • FIG. 5 is a scanning electron micrograph showing a cross section of the insulating thermally conductive resin composition of Example 7.
  • the insulating thermally conductive resin composition 1 according to the embodiment of the present invention is different from the first resin phase 2 in which the first resin is three-dimensionally continuous as shown in FIG. A phase separation structure having a second resin phase 3 formed of the second resin is provided. Further, the first resin phase 2 is unevenly distributed with a small-diameter inorganic filler 4 having an average particle diameter of 0.1 ⁇ m to 15 ⁇ m. And a small-diameter inorganic filler that is spread over the first resin phase and the second resin phase and is unevenly distributed in the first resin phase, and further includes a large-diameter inorganic filler having an average particle diameter of 1 ⁇ m to 100 ⁇ m. Yes.
  • the insulating thermally conductive resin composition 1 of the present embodiment has a first resin phase 2 and a second resin phase 3, and further has a structure in which these resin phases are mixed and phase separated. Further, the small-diameter inorganic filler 4 is unevenly distributed in the first resin phase 2, and the small-diameter inorganic fillers 4 are continuously in contact with each other. For this reason, since the heat conduction path 6 for transmitting heat energy is formed inside the first resin phase 2, the heat conductivity of the insulating heat conductive resin composition 1 can be improved.
  • the insulating thermally conductive resin composition 1 has a large-diameter inorganic filler 5 arranged so as to straddle the first resin phase 2 and the second resin phase 3.
  • the large-diameter inorganic filler 5 forms the heat conduction path 7 by contacting the unevenly distributed small-diameter inorganic filler 4. Therefore, the adjacent heat conduction paths 6 formed by the small diameter inorganic filler 4 are thermally connected by the heat conduction paths 7 formed by the large diameter inorganic filler 5.
  • the heat conduction path increases inside the insulating heat conductive resin composition 1, so that high heat conductivity can be achieved.
  • FIG. 2 shows a state in which the large-diameter inorganic filler is removed from the insulating thermally conductive resin composition according to the present embodiment.
  • 2 has a structure in which the first resin phase 2 and the second resin phase 3 are phase-separated, and the inorganic filler 4 is unevenly distributed in the first resin phase 2 so that the inorganic fillers are in contact with each other.
  • the heat conduction path 6 is formed. Therefore, it is easier to form a heat conduction path than in the case where no phase separation structure is used.
  • a large amount of the small-diameter inorganic filler 4 is required for high thermal conductivity.
  • the large-diameter inorganic filler 5 is disposed in the insulating thermally conductive resin composition 1 according to this embodiment.
  • the 2nd resin phase 3 exists between the heat conductive paths 6 formed of the small diameter inorganic filler 4, the heat which connects the heat conductive paths 6 by containing the large diameter inorganic filler 5 is shown.
  • a conduction path 7 is formed. Therefore, since heat conduction inside the resin composition is performed not only in the heat conduction path 6 but also in the heat conduction path 7, the heat conductivity can be greatly improved.
  • the heat conduction path 7 is formed by the large-diameter inorganic filler 5, so the heat inside the resin composition A conduction path is ensured and thermal conductivity can be improved.
  • the small-diameter inorganic filler 4 is unevenly distributed in the first resin phase 2, but may be unevenly distributed in the second resin phase 3.
  • the small-diameter inorganic filler 4 does not necessarily have to be disposed inside the first resin phase 2, and a part thereof may be disposed in the second resin phase 3.
  • the phase separation structure refers to any of a sea-island structure, a continuous spherical structure, a composite dispersion structure, and a co-continuous structure.
  • the sea-island structure means a structure in which a small volume of dispersed phase 3A is dispersed in continuous phase 2A, and a structure in which fine particles or spherical dispersed phases 3A are scattered in continuous phase 2A.
  • the continuous spherical structure is a structure in which approximately spherical dispersed phases 3A are connected and dispersed in the continuous phase 2A.
  • the composite dispersed structure is a structure in which the dispersed phase 3A is dispersed in the continuous phase 2A, and the resin constituting the continuous phase is further dispersed in the dispersed phase 3A.
  • the co-continuous structure is a structure in which the continuous phase 2A and the dispersed phase 3A form a complicated three-dimensional network.
  • the first resin phase 2 in which the small-diameter inorganic filler 4 is unevenly distributed needs to be three-dimensionally continuous.
  • the heat conduction path 6 can be formed by disposing the small-diameter inorganic filler 4 inside the first resin phase 2. Therefore, in the case of the sea-island structure, the continuous spherical structure, and the composite dispersion structure, the continuous phase 2A needs to be the first resin phase 2.
  • the continuous phase 2A and the dispersed phase 3A are three-dimensionally continuous, one of them may constitute the first resin phase 2.
  • phase separation structure such as the sea-island structure, continuous spherical structure, composite dispersion structure, and co-continuous structure is achieved by controlling the curing conditions such as the curing speed and reaction temperature of the resin composition, the compatibility of the resin, and the blending ratio. Obtainable.
  • the small-diameter inorganic filler 4 is unevenly distributed in the first resin phase 2, and the small-diameter inorganic filler is in contact with each other to form the heat conduction path 6. Therefore, as long as the heat conduction path 6 is formed, the small-diameter inorganic filler 4 may exist at a substantially uniform density inside the first resin phase 2 or may exist in an uneven manner.
  • the small-diameter inorganic filler 4 may exist at the interface between the first resin phase 2 and the second resin phase 3. That is, in the first resin phase 2, the small-diameter inorganic filler 4 may be present more in the vicinity of the interface between the first resin phase 2 and the second resin phase 3 than in the central portion of the first resin phase 2. .
  • the small-diameter inorganic filler 4 is preferably arranged so as to be in contact with the interface between the first resin phase 2 and the second resin phase 3. Further, some of the particles constituting the small-diameter inorganic filler 4 may be disposed so as to straddle the interface between the first resin phase 2 and the second resin phase 3.
  • the small-diameter inorganic filler 4 is present at the interface between the first resin phase and the second resin phase, the small-diameter inorganic fillers 4 are likely to contact each other in the vicinity of the interface inside the first resin phase 2. Become. Therefore, it is possible to form a continuous heat conduction path 6 in the vicinity of the interface between the first resin phase and the second resin phase.
  • the first resin phase 2 is preferably formed of one of a thermosetting resin and a thermoplastic resin
  • the second resin phase 3 is preferably formed of the other of the thermosetting resin and the thermoplastic resin.
  • the first resin phase 2 is made of a thermosetting resin
  • the second resin phase 3 is preferably made of a thermoplastic resin.
  • the first resin phase 2 is made of a thermoplastic resin
  • the second resin phase 3 is preferably made of a thermosetting resin.
  • thermosetting resins examples include epoxy resins, unsaturated polyester resins, vinyl ester resins, phenol resins, urethane resins, urea resins, melamine resins, maleimide resins, cyanate ester resins, alkyd resins, and addition-curable polyimide resins. It is done.
  • One of these thermosetting resins may be used alone, or two or more may be used in combination.
  • an epoxy resin is preferable because it is excellent in heat resistance, electrical insulation, and mechanical properties.
  • thermosetting resin When an epoxy resin is used as the thermosetting resin, a known one can be used.
  • bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, naphthalenediol type epoxy resin, phenol novolac type epoxy resin can be used.
  • a cresol novolac type epoxy resin, a bisphenol A novolak type epoxy resin, a cyclic aliphatic epoxy resin, or a heterocyclic epoxy resin (triglycidyl isocyanurate, diglycidyl hydantoin, etc.) can also be used.
  • modified epoxy resins obtained by modifying these epoxy resins with various materials can be used.
  • halides such as bromides and chlorides of these epoxy resins can also be used.
  • One of these epoxy resins may be used alone, or two or more of them may be used in combination.
  • any compound can be used as long as it has an active group capable of reacting with an epoxy group.
  • Known epoxy curing agents can be used as appropriate, but compounds having an amino group, an acid anhydride group, or a hydroxyphenyl group are particularly suitable.
  • curing agent may be used individually by 1 type of these, and may be used in combination of 2 or more type.
  • the tertiary accelerator is a tertiary amine curing accelerator, a urea derivative curing accelerator, an imidazole curing accelerator, or a diazabicycloundecene (DBU) curing.
  • Accelerators can be mentioned.
  • organophosphorus curing accelerators for example, phosphine curing accelerators
  • onium salt curing accelerators for example, phosphonium salt curing accelerators, sulfonium salt curing accelerators, ammonium salt curing accelerators, etc.
  • group hardening accelerator, an acid, and a metal salt type hardening accelerator etc. can be mentioned.
  • the thermoplastic resin generally has at least one bond selected from the group consisting of carbon-carbon bond, amide bond, imide bond, ester bond and ether bond in the main chain. Further, the thermoplastic resin may have at least one bond selected from the group consisting of a carbonate bond, a urethane bond, a urea bond, a thioether bond, a sulfone bond, an imidazole bond, and a carbonyl bond in the main chain.
  • thermoplastic resin examples include polyolefin resin, polyamide resin, elastomeric resin (styrene, olefin, polyvinyl chloride (PVC), urethane, ester, amide), acrylic resin, polyester Examples thereof include resins. Further, engineering plastics, polyethylene, polypropylene, nylon resin, acrylonitrile-butadiene-styrene (ABS) resin, acrylic resin, ethylene acrylate resin, ethylene vinyl acetate resin, and polystyrene resin can be used.
  • thermoplastic resin may be used individually by 1 type, and may be used in combination of 2 or more type.
  • thermoplastic resin from the viewpoint of heat resistance.
  • polyethersulfone which is excellent in various points such as mechanical properties, insulating properties and solubility in a solvent is more preferable.
  • thermoplastic resins may have a functional group capable of reacting with an epoxy resin.
  • functional groups include amino groups, hydroxyl groups, chlorine atoms, and alkoxy groups.
  • thermosetting resin examples include the following.
  • thermosetting resin examples include the thermosetting resin.
  • polyethersulfone or polyetherimide can be used as the thermoplastic resin.
  • unsaturated polyester resin when used as the thermosetting resin, polystyrene can be used as the thermoplastic resin.
  • the small-diameter inorganic filler 4 has an average particle diameter of 0.1 ⁇ m to 15 ⁇ m.
  • the average particle size of the small-diameter inorganic filler 4 is 0.1 ⁇ m to 15 ⁇ m, it becomes easy to be unevenly distributed in the first resin phase 2 (continuous phase) in the phase separation structure, and the insulating heat conduction has good workability and moldability.
  • Resin composition can be obtained. That is, when the average particle size is 0.1 ⁇ m or more, the viscosity of the resin can be prevented from becoming excessively high, and the fluidity of the resin is ensured, so that workability and moldability are improved.
  • the average particle diameter is 15 ⁇ m or less, the small-diameter inorganic filler 4 is easily unevenly distributed in the first resin phase 2, so that the heat conduction path 6 can be formed and high heat conduction can be achieved.
  • the average particle size of the small-diameter inorganic filler 4 is preferably 1 ⁇ m to 15 ⁇ m, more preferably 3 ⁇ m to 10 ⁇ m.
  • the average particle diameter of the large-diameter inorganic filler 5 is larger than the average particle diameter of the small-diameter inorganic filler 4. Specifically, the large-diameter inorganic filler 5 has an average particle diameter of 1 ⁇ m to 100 ⁇ m. Since the average particle diameter of the large-diameter inorganic filler 5 is 1 ⁇ m to 100 ⁇ m, the large-diameter inorganic filler 5 can exist across the first resin phase 2 and the second resin phase 3.
  • the heat conduction path 7 is formed by contacting with the unevenly distributed small-diameter inorganic filler 4 and the heat conduction paths 6 are connected to each other, thereby effectively providing the heat conduction path inside the insulating heat conductive resin composition 1.
  • the heat conduction path is increased, and the insulating heat conductive resin composition 1 can be made highly heat conductive. That is, when the average particle diameter is 1 ⁇ m or more, the small-diameter inorganic filler 4 can be efficiently contacted, and high thermal conductivity can be achieved. Moreover, it can suppress that a shaping
  • the average particle size of the large-diameter inorganic filler 5 is preferably 20 ⁇ m to 100 ⁇ m, more preferably 20 ⁇ m to 90 ⁇ m.
  • the small-diameter inorganic filler 4 has an average particle diameter of 0.1 ⁇ m to 15 ⁇ m
  • the large-diameter inorganic filler 5 has an average particle diameter of 1 ⁇ m to 100 ⁇ m.
  • the large-diameter inorganic filler 5 needs to have a particle diameter that spans the first resin phase 2 and the second resin phase 3 and that thermally connects the small-diameter inorganic fillers 4 that are unevenly distributed in the first resin phase 2. is there. Therefore, the average particle diameter of the large-diameter inorganic filler 5 is preferably 2 times or more, more preferably 3 or more times the average particle diameter of the small-diameter inorganic filler 4. Thereby, the heat conductive paths 6 made of the small-diameter inorganic filler 4 are thermally connected to each other, and the thermal conductivity of the insulating heat conductive resin composition 1 as a whole can be further increased.
  • average particle diameter means median diameter.
  • the median diameter means a particle diameter (d50) at which an integrated (cumulative) weight percentage is 50%.
  • the median diameter can be measured using, for example, a laser diffraction particle size distribution measuring apparatus “SALD2000” (manufactured by Shimadzu Corporation).
  • SALD2000 laser diffraction particle size distribution measuring apparatus
  • the average particle diameter of the small diameter inorganic filler 4 and the large diameter inorganic filler 5 contained in the inside of the insulating heat conductive resin composition 1 is obtained by baking the insulating heat conductive resin composition 1 and the small diameter inorganic filler 4. It can be measured by isolating the large-diameter inorganic filler 5.
  • the total ratio of the small-diameter inorganic filler 4 and the large-diameter inorganic filler 5 in the insulating thermal conductive resin composition 1 ([total volume of the small-diameter inorganic filler and large-diameter inorganic filler] / [insulating thermal conductive resin] The volume of the composition]) is preferably 10 to 80% by volume.
  • the total volume ratio of the small-diameter inorganic filler 4 and the large-diameter inorganic filler 5 is 10% by volume or more, the effect of increasing the thermal conductivity due to the contact between the small-diameter inorganic filler 4 and the large-diameter inorganic filler 5 can be sufficiently expected.
  • the total volume ratio of the small-diameter inorganic filler 4 and the large-diameter inorganic filler 5 is 80% by volume or less, there is no hindrance to the formation of the heat conduction path 6 by the small-diameter inorganic filler 4, and the viscosity of the resin at the time of molding. Can be prevented from becoming excessively high.
  • the volume ratio can be measured by the method described later.
  • the total ratio of the small-diameter inorganic filler 4 and the large-diameter inorganic filler 5 in the insulating heat conductive resin composition 1 is more preferably 15 to 80% by volume, further preferably 20 to 80% by volume, and 30 to 70% by volume. % Is particularly preferable, and 30 to 60% by volume is most preferable. By being in such a range, it becomes possible to achieve both high thermal conductivity and moldability.
  • the ratio of the large-diameter inorganic filler 5 in the sum of the small-diameter inorganic filler 4 and the large-diameter inorganic filler 5 is preferably 5 to 60% by volume.
  • the volume ratio of the large-diameter inorganic filler 5 is 5% by volume or more, high thermal conductivity can be achieved by contact with the small-diameter inorganic filler 4.
  • the volume ratio of the large-diameter inorganic filler 5 is 60% by volume or less, the heat conduction path 6 by the small-diameter inorganic filler 4 can be formed.
  • the ratio of the large-diameter inorganic filler 5 to the total of the small-diameter inorganic filler 4 and the large-diameter inorganic filler 5 is more preferably 20 to 50% by volume.
  • the insulating thermally conductive resin composition 1 of the present embodiment can provide a resin composition having electrical insulation by using a material exhibiting electrical insulation. And in the insulating heat conductive resin composition 1, it is preferable that the constituent material of the small diameter inorganic filler 4 and the large diameter inorganic filler 5 uses the inorganic compound which has heat conductivity and electrical insulation.
  • an inorganic compound having thermal conductivity for example, an inorganic compound having a thermal conductivity of 1 W / m ⁇ K or more can be used.
  • the thermal conductivity of an inorganic compound having thermal conductivity is preferably 10 W / m ⁇ K or more, more preferably 30 W / m ⁇ K or more.
  • an inorganic compound having electrical insulation an inorganic compound having a volume resistivity of 10 ⁇ ⁇ cm or more at room temperature (25 ° C.) can be used as the inorganic compound having electrical insulation.
  • the volume resistivity of the inorganic compound having electrical insulation is preferably 10 5 ⁇ ⁇ cm or more, more preferably 10 8 ⁇ ⁇ cm or more, and particularly preferably 10 13 ⁇ ⁇ cm or more.
  • inorganic compounds having both thermal conductivity and electrical insulation include borides, carbides, nitrides, oxides, silicides, hydroxides, carbonates, and the like.
  • Specific examples include magnesium oxide (MgO), aluminum oxide (Al 2 O 3 ), boron nitride (BN), aluminum nitride (AlN), and aluminum hydroxide (Al (OH) 3 ).
  • the small-diameter inorganic filler 4 and the large-diameter inorganic filler 5 preferably include at least one selected from the group consisting of MgO, Al 2 O 3 , BN, and AlN. Moreover, it is especially preferable that the small diameter inorganic filler 4 and the large diameter inorganic filler 5 contain at least one of MgO, Al 2 O 3 and BN.
  • the small-diameter inorganic filler 4 and the large-diameter inorganic filler 5 are subjected to a surface treatment such as a coupling treatment or a dispersant is added to the insulating thermally conductive resin composition 1. Dispersibility may be improved. Moreover, the small diameter inorganic filler 4 can be unevenly distributed more effectively in the phase separation structure by appropriately selecting the surface treatment agent.
  • organic surface treatment agents such as fatty acids, fatty acid esters, higher alcohols, and hardened oils can be used.
  • an inorganic surface treatment agent such as a silicone oil, a silane coupling agent, an alkoxysilane compound, or a silylated material can also be used for the surface treatment.
  • water resistance may be improved, and dispersibility in the resin may be further improved.
  • a processing method There exist (1) dry method, (2) wet method, (3) integral blend method etc.
  • the dry method means that the surface treatment agent is dropped on the surface while stirring the small-diameter inorganic filler and large-diameter inorganic filler by mechanical stirring such as Henschel mixer, Nauter mixer, and vibration mill. This is a method of processing.
  • silane is used as the surface treatment agent, a solution obtained by diluting silane with an alcohol solvent, a solution obtained by diluting silane with an alcohol solvent, further adding water, diluting silane with an alcohol solvent, and further adding water and an acid.
  • a preparation method of a surface treating agent is described in the catalog of the manufacturer of a silane coupling agent, etc., a preparation method is suitably determined according to the hydrolysis rate of silane and the kind of inorganic filler.
  • the wet method is a method in which a small-diameter inorganic filler and a large-diameter inorganic filler are directly immersed in a surface treatment agent.
  • the surface treatment agent that can be used is the same as in the dry method.
  • the method for preparing the surface treatment agent is the same as the dry method.
  • Integral blend method is a method of diluting a surface treatment agent with a stock solution or alcohol, etc., and directly adding it into a mixer when stirring the resin and filler.
  • the preparation method of the surface treatment agent is the same as that of the dry method and wet method, but the amount of the surface treatment agent in the case of the integral blend method is generally larger than that of the dry method and wet method.
  • the surface treatment agent is dried as necessary.
  • a surface treatment agent using alcohol or the like it is necessary to volatilize the alcohol. If alcohol eventually remains in the formulation, the alcohol is generated as a gas that adversely affects the polymer content. Therefore, it is preferable that the drying temperature be equal to or higher than the boiling point of the solvent used.
  • silane when used as the surface treatment agent, it can be heated to a high temperature (eg, 100 ° C. to 150 ° C.) using an apparatus in order to quickly remove silane that has not reacted with the inorganic filler. preferable. However, considering the heat resistance of the silane, it is preferable to keep the temperature below the decomposition point of the silane.
  • the treatment temperature is preferably about 80 to 150 ° C., and the treatment time is preferably 0.5 to 4 hours.
  • silane amount (g)] [Amount of inorganic filler (g)] ⁇ [Specific surface area of inorganic filler (m 2 / g)] / [Minimum coverage area of silane (m 2 / g)]
  • the necessary amount of silane is 0.5 times or more and less than 1.0 times the amount of silane calculated by this formula. Even if the amount of silane is 1.0 times or more, the effect of the present invention can be exhibited. However, when the amount of silane is 1.0 times or more, an unreacted component remains, which may cause deterioration of physical properties such as deterioration of mechanical properties and water resistance. Therefore, the upper limit is preferably less than 1.0 times. Moreover, the reason why the lower limit value is set to 0.5 times the amount calculated by the above formula is that even this amount is sufficiently effective in improving the filler filling property into the resin.
  • Insulating thermal conductive resin composition 1 is a colorant, a flame retardant, a flame retardant aid, a fiber reinforcement, a viscosity reducing agent for viscosity adjustment in production, as long as the effect of the present invention is not impaired.
  • a dispersion adjusting agent, a release agent and the like for improving dispersibility of the toner (colorant) may be contained. These may be known ones, and examples thereof include the following.
  • an inorganic pigment such as titanium oxide, an organic pigment or the like, or a toner containing them as a main component
  • a toner containing them as a main component can be used. These may be used individually by 1 type and may be used in combination of 2 or more types.
  • flame retardants examples include organic flame retardants, inorganic flame retardants, and reactive flame retardants. These may be used individually by 1 type and may be used in combination of 2 or more types.
  • a flame retardant aid examples include antimony trioxide, antimony tetraoxide, antimony pentoxide, sodium antimonate, antimony compounds such as antimony tartrate, zinc borate, and barium metaborate.
  • hydrated alumina, zirconium oxide, ammonium polyphosphate, tin oxide, iron oxide, and the like are also included. These may be used individually by 1 type and may be used in combination of 2 or more types.
  • the thermal conductivity of the insulating thermally conductive resin composition 1 of the present embodiment is preferably 3 W / m ⁇ K or more. Even if the thermal conductivity is less than 3 W / m ⁇ K, the effect of the present invention can be exhibited. However, with such a thermal conductivity, when the insulating thermally conductive resin composition 1 is used as a heat radiator for an electronic component, the electronic component can be efficiently cooled even if it is reduced in size.
  • thermosetting resin constituting the first resin a thermoplastic resin constituting the second resin, an inorganic filler, and a curing agent are added and kneaded to produce an uncured resin composition.
  • the kneading of each component may be performed in a single stage, or may be performed in multiple stages by sequentially adding each component. When adding each component sequentially, it can add in arbitrary orders.
  • thermoplastic resin As a method of kneading and adding each component, for example, first, a part or all of a thermoplastic resin is kneaded with a thermosetting resin to adjust the viscosity. Next, kneading is performed while sequentially adding the remaining thermoplastic resin, inorganic filler, and curing agent.
  • the order of addition is not particularly limited, but the curing agent is preferably added last from the viewpoint of the storage stability of the resin composition.
  • additives such as a colorant, a flame retardant, a flame retardant aid, a fiber reinforcement, a viscosity reducer, a dispersion regulator, and a release agent are added to the resin composition as necessary. Also good. Also, the order of addition of these additives is not particularly limited and can be added at an arbitrary stage. However, as described above, the curing agent is preferably added last.
  • the kneading machine used for the production of the resin composition conventionally known ones can be used. Specific examples include a roll mill, a planetary mixer, a kneader, an extruder, a Banbury mixer, a mixing vessel provided with a stirring blade, and a horizontal mixing vessel.
  • the kneading temperature at the time of producing the resin composition is not particularly limited as long as it can be kneaded, but for example, a range of 10 to 150 ° C. is preferable. When it exceeds 150 degreeC, a partial hardening reaction will start and the storage stability of the resin composition obtained may fall. If it is lower than 10 ° C., the viscosity of the resin composition is high, and it may be difficult to knead substantially.
  • the temperature is preferably 20 to 120 ° C, and more preferably 30 to 100 ° C.
  • the molding method of the uncured resin composition can be any method, and the molding shape can be any shape.
  • various means such as compression molding (direct pressure molding), transfer molding, injection molding, extrusion molding, and screen printing can be used as the molding means.
  • the insulating thermally conductive resin composition of the present embodiment is different from the first resin phase 2 in which the first resin is three-dimensionally continuous and the first resin phase 2 and is formed from the second resin phase. And a phase separation structure having three. Further, the small-diameter inorganic filler 4 unevenly distributed in the first resin phase 2 and the small-diameter inorganic filler 4 unevenly distributed in the first resin phase 2 across the first resin phase 2 and the second resin phase 3 are thermally connected. A diameter inorganic filler 5 is provided. The average particle size of the small-diameter inorganic filler 4 is 0.1 to 15 ⁇ m.
  • the average particle diameter of the large-diameter inorganic filler 5 is larger than the average particle diameter of the small-diameter inorganic filler 4 and is 1 to 100 ⁇ m.
  • the insulated heat conductive resin composition of this embodiment is comprised with the material which has electrical insulation as mentioned above, even the whole resin composition can be equipped with high electrical insulation.
  • Epoxy resin (“jER (registered trademark) 828” manufactured by Mitsubishi Chemical Corporation, epoxy equivalent 189 g / eq, hereinafter also referred to as DGEBA (bisphenol A diglycidyl ether))
  • Example 1 To 2.3 parts by mass of DGEBA, 22.3 parts by mass of PES pulverized so as to have an average particle diameter of 10 ⁇ m was added. Further, this mixture was stirred in an oil bath warmed to 120 ° C., thereby completely dissolving PES in DGEBA to obtain an epoxy resin solution.
  • the resin composition was put into a mold heated to 150 ° C., held in a drying oven at 150 ° C. for 2 hours, and further heated at 180 ° C. for 2 hours to obtain a test piece of this example.
  • Examples 2, 6, and 7 and Comparative Examples 1, 2, 5, and 6 A test piece of each example was obtained in the same manner as in Example 1 except that the small-diameter inorganic filler, the large-diameter inorganic filler, and the blending amounts thereof were changed as shown in Table 1.
  • Example 3 To 2.3 parts by mass of DGEBA, 22.3 parts by mass of PES pulverized so as to have an average particle diameter of 10 ⁇ m was added. Next, this mixture was stirred in an oil bath warmed to 120 ° C. to completely dissolve PES in DGEBA, thereby obtaining an epoxy resin solution.
  • the resin composition was put into upper and lower molds set at 150 ° C., and pressure-pressed at a molding pressure of 1 MPa and a mold temperature of 150 ° C. for 2 hours. Then, the test piece of a present Example was obtained by taking out the hardened
  • Examples 4 to 5 Comparative Examples 3 to 4
  • a test piece of each example was obtained in the same manner as in Example 3 except that the small-diameter inorganic filler, the large-diameter inorganic filler, and the blending amounts thereof were changed as shown in Table 1.
  • volume ratio of inorganic filler First, the volume of the test piece of each example was calculated by the Archimedes method. Next, each test piece was baked at 625 degreeC using the muffle furnace, and the ash weight was measured. And since the ash is an inorganic filler, the total volume ratio of the small diameter and large diameter inorganic filler in the test piece and the large diameter inorganic from the blending ratio and density of the small and large diameter inorganic filler, the weight of the ash, and the volume of the test piece. The volume ratio of the filler was measured.
  • the density is, MgO is 3.65 g / cm 3
  • BN is 2.27g / cm 3
  • Al 2 O 3 is 3.9g / cm 3
  • Al (OH ) 3 was a 2.42 g / cm 3. Further, Al (OH) 3 was calculated in consideration of dehydration.
  • Thermal conductivity was obtained from the product of thermal diffusivity, heat capacity (product of specific gravity and specific heat) and density. At that time, the thermal diffusivity was measured by the Xenon flash method using Xe flash analyzer LFA447 Nanoflash manufactured by NETZSCH, and the specific gravity and density were measured by the Archimedes method (submerged substitution method). Moreover, specific heat was measured by DSC method using DSC6220 by Seiko Instruments Inc.
  • Molding workability was determined according to the following criteria from the molding conditions of the plate-like test pieces when the resin compositions of Examples and Comparative Examples were put into a mold having a length and width of 100 mm and a thickness of 2.0 mm. The determination was made by visual observation or observing the cross section with a scanning electron microscope (SEM). ⁇ : Molding was not observed and molding was possible. X: Short shot and could not be molded. Alternatively, molding defects such as voids were observed.
  • Examples 1 to 7 showed higher thermal conductivity than Comparative Examples 1 to 6, despite the same volume ratio of the inorganic filler.
  • Example 5 the reason why the thermal conductivity of Example 5 was lower than that of Example 4 was that the volume ratio of the large-diameter inorganic filler was large, and the thermal conduction path of the small-diameter inorganic filler due to phase separation was not sufficiently formed. It is considered that the formation of the phase separation structure was adversely affected. However, it can be seen that Comparative Example 4 in which the volume ratio of the inorganic filler is the same is useful in Example 5 considering that the viscosity has increased and molding has failed.
  • FIG. 4 the result of having observed the cross section of the insulation heat conductive resin composition of Example 6 with the scanning electron microscope is shown.
  • the small-diameter inorganic filler 4 is unevenly distributed in the first resin phase 2, and the large-diameter inorganic filler 5 straddles the first resin phase 2 and the second resin phase 3. And it can confirm that the large diameter inorganic filler 5 contacts the heat conduction path which consists of the small diameter inorganic filler 4, and is thermally connected.
  • FIG. 5 shows the result of observing the cross section of the insulating thermally conductive resin composition of Example 7 with a scanning electron microscope.
  • the small-diameter inorganic filler 4 is present at the interface between the first resin phase 2 and the second resin phase 3. It can also be seen that the small-diameter inorganic filler 4 is present more at the interface between the first resin phase 2 and the second resin phase 3 than at the central portion of the first resin phase 2.
  • the small-diameter inorganic filler 4 is disposed so as to be in contact with the interface between the first resin phase 2 and the second resin phase 3, and as a result, it is confirmed that a continuous heat conduction path 6 is formed. it can.
  • the first resin phase is formed of polyethersulfone, and the polyethersulfone further contains sulfur. Therefore, when the obtained resin composition is observed with a scanning electron microscope, the first resin phase containing sulfur turns gray compared to the second resin phase. Therefore, the first resin phase, the second resin phase, and their interfaces can be discriminated from the scanning electron micrograph.
  • the small-diameter inorganic filler is unevenly distributed in the first resin phase, and there is a large-diameter inorganic filler straddling the first resin phase and the second resin phase. Therefore, in order to thermally connect the plurality of heat conduction paths made of the small diameter inorganic filler with the large diameter inorganic filler, a large number of heat conduction paths are generated. As a result, the thermal conductivity is improved even though the filling amount of the thermally conductive inorganic filler is small. Furthermore, since the fluidity

Abstract

 本発明の絶縁熱伝導性樹脂組成物(1)は、第1樹脂が三次元的に連続する第1樹脂相(2)と、第1樹脂相と相違し、第2樹脂により形成される第2樹脂相(3)とを有する相分離構造を備える。さらに、第1樹脂相に偏在する小径無機フィラー(4)と、第1樹脂相と第2樹脂相にまたがり、第1樹脂相に偏在する小径無機フィラー同士を熱的に接続する大径無機フィラー(5)とを備える。そして、小径無機フィラーの平均粒子径は0.1~15μmである。また、大径無機フィラーの平均粒子径は小径無機フィラーの平均粒子径より大きく、かつ、1~100μmである。

Description

絶縁熱伝導性樹脂組成物
 本発明は、絶縁熱伝導性樹脂組成物に関する。詳細には本発明は、電子部品等を冷却する熱伝導部品、例えば放熱体に使用される絶縁熱伝導性樹脂組成物に関する。
 コンピュータ(中央処理装置:CPU)、トランジスタ、発光ダイオード(LED)等の半導体は、使用中に発熱し、その熱のために電子部品の性能が低下することがある。そのため、通常、発熱するような電子部品には放熱体が取り付けられる。
 従来、そのような放熱体には、熱伝導率の高い金属が用いられてきた。ただ、近年、形状選択の自由度が高く、軽量化及び小型化の容易な絶縁熱伝導性樹脂組成物が用いられつつある。このような絶縁熱伝導性樹脂組成物は、熱伝導率を向上させるために、バインダー樹脂に熱伝導性無機フィラーを大量に含有させなければならない。しかしながら、熱伝導性無機フィラーの配合量を単純に増加させると、様々な問題が生じることが知られている。例えば、配合量を増加させることにより硬化前の樹脂組成物の粘度が上昇し、成形性及び作業性が大きく低下し、成形不良を起こしてしまう。また、無機フィラーを充填できる量には限界があるため、得られる樹脂組成物は熱伝導性が充分でない場合が多い(例えば、特許文献1乃至5参照)。
 そこで、複数の樹脂を用いて共連続型の相分離構造を形成し、一方の樹脂相又は樹脂界面に熱伝導性フィラーを偏在させて熱伝導パスを形成することで、熱伝導率を向上させる方法が開示されている(例えば、特許文献6及び7参照)。
特開昭63-10616号公報 特開平4-342719号公報 特開平4-300914号公報 特開平4-211422号公報 特開平4-345640号公報 特開2010-65064号公報 特開2010-132894号公報
 しかしながら、特許文献6及び7のように熱伝導性フィラーを偏在させるだけでは、高熱伝導化にはある程度の充填量が必要となり、成形性が悪化する恐れがある。また、熱伝導パスを連続して形成することは難しく、さらに樹脂相により分断されることもある。そのため、特許文献6及び7の材料では依然として熱伝導性が不十分であった。
 本発明は、このような従来技術の有する課題に鑑みてなされたものである。そして、本発明の目的は、高い熱伝導性を有しつつも成形性に優れた絶縁熱伝導性樹脂組成物を提供することにある。
 本発明の第1の態様に係る絶縁熱伝導性樹脂組成物は、第1樹脂が三次元的に連続する第1樹脂相と、第1樹脂相と相違し、第2樹脂により形成される第2樹脂相とを有する相分離構造を備える。さらに、第1樹脂相に偏在する小径無機フィラーと、第1樹脂相と第2樹脂相にまたがり、第1樹脂相に偏在する小径無機フィラー同士を熱的に接続する大径無機フィラーとを備える。そして、小径無機フィラーの平均粒子径は、0.1~15μmである。また、大径無機フィラーの平均粒子径は、小径無機フィラーの平均粒子径より大きく、かつ、1~100μmである。
 本発明の第2の態様に係る絶縁熱伝導性樹脂組成物は、第1の態様に係る樹脂組成物に関し、小径無機フィラーが、第1樹脂相と第2樹脂相との界面に存在する。
 本発明の第3の態様に係る絶縁熱伝導性樹脂組成物は、第1又は第2の態様に係る樹脂組成物に関し、小径無機フィラーは、第1樹脂相と第2樹脂相との界面に接触している、又は当該界面をまたいでいる。
 本発明の第4の態様に係る絶縁熱伝導性樹脂組成物は、第1乃至第3のいずれか一つの態様の樹脂組成物に関し、第1樹脂相では、小径無機フィラーが接触することにより熱伝導パスが形成されている。
 本発明の第5の態様に係る絶縁熱伝導性樹脂組成物は、第1乃至第4のいずれか一つの態様の樹脂組成物に関し、絶縁熱伝導性樹脂組成物における小径無機フィラー及び大径無機フィラーの合計の割合が10~80体積%である。さらに、小径無機フィラー及び大径無機フィラーの合計における大径無機フィラーの割合が5~60体積%である。
 本発明の第6の態様に係る絶縁熱伝導性樹脂組成物は、第1乃至第5のいずれか一つの態様の樹脂組成物において、小径無機フィラー及び大径無機フィラーが、MgO、Al、BN及びAlNからなる群より選ばれる少なくとも一種を含有する。
 本発明の第7の態様に係る絶縁熱伝導性樹脂組成物は、第1乃至第6のいずれか一つの態様の樹脂組成物において、第1樹脂相が熱硬化性樹脂及び熱可塑性樹脂のいずれか一方により形成され、第2樹脂相が熱硬化性樹脂及び熱可塑性樹脂の他方により形成される。さらに、熱硬化性樹脂がエポキシ樹脂であり、熱可塑性樹脂がポリエーテルスルホンである。
 本発明の第8の態様に係る絶縁熱伝導性樹脂組成物は、第7の態様に係る樹脂組成物において、相分離構造が共連続構造であり、小径無機フィラー及び大径無機フィラーがMgO、Al及びBNの少なくともいずれか一方を含有する。さらに、絶縁熱伝導性樹脂組成物における小径無機フィラー及び大径無機フィラーの合計の割合が20~80体積%であり、絶縁熱伝導性樹脂組成物の熱伝導率が3W/m・K以上である。
図1は、本発明の実施形態に係る絶縁熱伝導性樹脂組成物を示す概略図である。 図2は、本発明の実施形態に係る絶縁熱伝導性樹脂組成物から大径無機フィラーを除いた状態を示す概略図である。 図3は、相分離構造を説明するための概略図であり、(a)は海島構造を示し、(b)は連続球状構造を示し、(c)は複合分散構造を示し、(d)は共連続構造を示す。 図4は、実施例6の絶縁熱伝導性樹脂組成物の断面を示す走査型電子顕微鏡写真である。 図5は、実施例7の絶縁熱伝導性樹脂組成物の断面を示す走査型電子顕微鏡写真である。
 以下、本発明の実施形態に係る絶縁熱伝導性樹脂組成物について詳細に説明する。なお、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。
 本発明の実施形態に係る絶縁熱伝導性樹脂組成物1は、図1に示すように、第1樹脂が三次元的に連続する第1樹脂相2と、第1樹脂相2と相違し、第2樹脂により形成される第2樹脂相3とを有する相分離構造を備えている。さらに、第1樹脂相2には、平均粒子径が0.1μm~15μmである小径無機フィラー4が偏在している。そして、第1樹脂相と第2樹脂相にまたがり、第1樹脂相に偏在する小径無機フィラー同士を熱的に接続し、さらに平均粒子径が1μm~100μmである大径無機フィラーを含有している。
 本実施形態の絶縁熱伝導性樹脂組成物1は第1樹脂相2と第2樹脂相3とを有し、さらにこれらの樹脂相が混合し、相分離した構造を有している。さらに、小径無機フィラー4が第1樹脂相2に偏在し、小径無機フィラー4同士が連続的に接触している。このため、第1樹脂相2の内部に、熱エネルギーを伝達するための熱伝導パス6が形成されることから、絶縁熱伝導性樹脂組成物1の熱伝導性を向上させることができる。
 さらに図1に示すように、絶縁熱伝導性樹脂組成物1は、第1樹脂相2と第2樹脂相3にまたがるように配置されている大径無機フィラー5を有している。大径無機フィラー5は、偏在している小径無機フィラー4と接触することで熱伝導パス7を形成する。そのため、小径無機フィラー4により形成されて隣接する熱伝導パス6が、大径無機フィラー5により形成される熱伝導パス7により熱的に接続される。その結果、絶縁熱伝導性樹脂組成物1の内部で熱伝導の経路が増加することから、高熱伝導化することが可能となる。
 ここで、図2では、本実施形態に係る絶縁熱伝導性樹脂組成物から大径無機フィラーを除いた状態を示す。図2の樹脂組成物11では、第1樹脂相2と第2樹脂相3が相分離した構造をとり、さらに小径無機フィラー4が第1樹脂相2に偏在することで無機フィラー同士が接触し、熱伝導パス6を形成している。そのため、相分離構造を用いない場合と比べて、熱伝導パスを形成しやすい。ただ、小径無機フィラー4を第1樹脂相2に配置するだけでは、高熱伝導化するために多量の小径無機フィラー4が必要となる。さらに、熱伝導パス6を完全に連続して形成することは難しく、また熱伝導パス6は第2樹脂相3により分断されることもあるため、依然として熱伝導性が不十分となる。
 これに対し、本実施形態に係る絶縁熱伝導性樹脂組成物1では、大径無機フィラー5を配置している。そして、小径無機フィラー4により形成される熱伝導パス6の間には第2樹脂相3が存在しているが、大径無機フィラー5を含有することにより、熱伝導パス6同士を接続する熱伝導パス7が形成される。そのため、樹脂組成物内部での熱伝導が熱伝導パス6だけでなく、熱伝導パス7でも行われるため、熱伝導性を大幅に向上させることができる。
 また、上述のように、第1樹脂相2の内部で小径無機フィラー4同士を全て接触させ、熱伝導パス6を完全に連続して形成することは難しい。仮に小径無機フィラー4同士を全て接触させようとした場合、小径無機フィラー4を多量に添加する必要があるため、樹脂組成物の粘度が上昇し、成形性が悪化する恐れがある。これに対し、本実施形態では、小径無機フィラー4だけでなく大径無機フィラー5が添加されている。そのため、小径無機フィラー4の一部が分断し、熱伝導パス6が完全に連続していない場合でも、大径無機フィラー5によって熱伝導パス7が形成されるため、樹脂組成物内部での熱伝導パスが確保され、熱伝導性を向上させることができる。
 なお、図1では、小径無機フィラー4は第1樹脂相2に偏在しているが、第2樹脂相3に偏在していてもよい。また、小径無機フィラー4は全てが第1樹脂相2の内部に配置されている必要はなく、一部が第2樹脂相3に配置されていても構わない。
 本実施形態における相分離構造とは、海島構造、連続球状構造、複合分散構造、共連続構造のいずれかをいう。海島構造は、図3(a)に示すように、体積の小さい分散相3Aが連続相2Aに分散された構造をいい、微粒子状や球状の分散相3Aが連続相2Aの中に散在する構造である。連続球状構造は、図3(b)に示すように、略球状の分散相3Aが連結し、連続相2A中に分散した構造である。複合分散構造は、図3(c)に示すように、分散相3Aが連続相2Aの中に散在し、さらに分散相3A中に連続相を構成する樹脂が散在している構造である。共連続構造は、図3(d)に示すように、連続相2Aと分散相3Aとが複雑な三次元の網目状を形成している構造である。
 本実施形態では、小径無機フィラー4が偏在する第1樹脂相2が三次元的に連続している必要がある。これにより、第1樹脂相2の内部に小径無機フィラー4が配置されることで、熱伝導パス6を形成することができる。そのため、上記海島構造、連続球状構造及び複合分散構造の場合には、連続相2Aが第1樹脂相2である必要がある。ただ、共連続構造の場合は、連続相2Aと分散相3Aの両方が三次元的に連続しているため、いずれか一方が第1樹脂相2を構成すればよい。
 なお、海島構造、連続球状構造、複合分散構造及び共連続構造のような相分離構造は、樹脂組成物の硬化速度や反応温度等の硬化条件、樹脂の相溶性、配合比を制御することにより得ることができる。
 上述のように、本実施形態では、小径無機フィラー4が第1樹脂相2に偏在し、小径無機フィラー同士が接触することにより熱伝導パス6を形成している。そのため、熱伝導パス6を形成する限り、小径無機フィラー4は、第1樹脂相2の内部で略均一な密度で存在してもよく、偏って存在してもよい。
 また、小径無機フィラー4は、第1樹脂相2と第2樹脂相3との界面に存在してもよい。つまり、第1樹脂相2の内部において、小径無機フィラー4は、第1樹脂相2の中心部分よりも、第1樹脂相2と第2樹脂相3との界面近傍に多く存在してもよい。この際、小径無機フィラー4は、第1樹脂相2と第2樹脂相3との界面に接触するように配置されていることが好ましい。また、小径無機フィラー4を構成する粒子の一部が、第1樹脂相2と第2樹脂相3との界面をまたぐように配置されていてもよい。このように、小径無機フィラー4が第1樹脂相と第2樹脂相との界面に存在することにより、第1樹脂相2の内部における当該界面の近傍で、小径無機フィラー4同士が接触しやすくなる。そのため、第1樹脂相と第2樹脂相との界面近傍に、連続的な熱伝導パス6を形成することが可能となる。
 本実施形態において、第1樹脂相2は熱硬化性樹脂及び熱可塑性樹脂のいずれか一方により形成され、第2樹脂相3は熱硬化性樹脂及び熱可塑性樹脂の他方により形成されることが好ましい。つまり、第1樹脂相2が熱硬化性樹脂からなる場合には、第2樹脂相3は熱可塑性樹脂からなることが好ましい。また、第1樹脂相2が熱可塑性樹脂からなる場合には、第2樹脂相3は熱硬化性樹脂からなることが好ましい。これにより、上記相分離構造を形成し易くなる。
 熱硬化性樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、ウレタン樹脂、尿素樹脂、メラミン樹脂、マレイミド樹脂、シアン酸エステル樹脂、アルキド樹脂、付加硬化型ポリイミド樹脂などが挙げられる。熱硬化性樹脂は、これらのうちの一種を単独で使用してもよく、二種以上を組み合わせて使用してもよい。なかでも、エポキシ樹脂は、耐熱性、電気絶縁性及び機械特性に優れるため好ましい。
 熱硬化性樹脂としてエポキシ樹脂を用いる場合は、公知のものを用いることができる。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレンジオール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂を用いることができる。また、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、環状脂肪族エポキシ樹脂、複素環式エポキシ樹脂(トリグリシジルイソシアヌレート、ジグリシジルヒダントイン等)を用いることもできる。さらに、これらのエポキシ樹脂を種々の材料で変性させた変性エポキシ樹脂等を使用することができる。また、これらのエポキシ樹脂の臭素化物、塩素化物等のハロゲン化物も用いることができる。エポキシ樹脂は、これらのうちの一種を単独で使用してもよく、二種以上を組み合わせて使用してもよい。
 エポキシ樹脂を硬化させるための硬化剤としては、エポキシ基と反応し得る活性基を有する化合物であれば、如何なる化合物も用いることができる。公知のエポキシ硬化剤を適宜用いることができるが、特にアミノ基、酸無水物基、ヒドロキシフェニル基を有する化合物が適している。例えば、ジシアンジアミド及びその誘導体、有機酸ヒドラジット、アミンイミド、脂肪族アミン、芳香族アミン、3級アミン、ポリアミンの塩、マイクロカプセル型硬化剤、イミダゾール型硬化剤、酸無水物、フェノールノボラック等が挙げられる。硬化剤は、これらのうちの一種を単独で使用してもよく、二種以上を組み合わせて使用してもよい。
 また、上記の硬化剤と併用して各種の硬化促進剤を用いることができる。例えば熱硬化性樹脂としてエポキシ樹脂を用いる場合、硬化促進剤としては、第3級アミン系硬化促進剤、尿素誘導体系硬化促進剤、イミダゾール系硬化促進剤、ジアザビシクロウンデセン(DBU)系硬化促進剤を挙げることができる。また、有機りん系硬化促進剤(例えば、ホスフィン系硬化促進剤等)、オニウム塩系硬化促進剤(例えば、ホスホニウム塩系硬化促進剤、スルホニウム塩系硬化促進剤、アンモニウム塩系硬化促進剤等)を挙げることができる。さらに、金属キレート系硬化促進剤、酸及び金属塩系硬化促進剤等も挙げることができる。
 熱可塑性樹脂は、一般に、炭素-炭素結合、アミド結合、イミド結合、エステル結合、エーテル結合からなる群より選ばれる少なくとも一つの結合を主鎖に有するものである。また、熱可塑性樹脂は、カーボネート結合、ウレタン結合、尿素結合、チオエーテル結合、スルホン結合、イミダゾール結合、カルボニル結合からなる群より選ばれる少なくとも一つの結合を主鎖に有していてもよい。
 熱可塑性樹脂としては、例えば、ポリオレフィン系樹脂、ポリアミド系樹脂、エラストマー系(スチレン系、オレフィン系、ポリ塩化ビニル(PVC)系、ウレタン系、エステル系、アミド系)樹脂、アクリル系樹脂、ポリエステル系樹脂等が挙げられる。また、エンジニアリングプラスチック、ポリエチレン、ポリプロピレン、ナイロン樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂、アクリル樹脂、エチレンアクリレート樹脂、エチレン酢酸ビニル樹脂、ポリスチレン樹脂が挙げられる。さらに、ポリフェニレンサルファイド樹脂、ポリカーボネート樹脂、ポリエステルエラストマー樹脂、ポリアミドエラストマー樹脂、液晶ポリマー、ポリブチレンテレフタレート樹脂等も挙げられる。熱可塑性樹脂は、これらのうちの一種を単独で使用してもよく、二種以上を組み合わせて使用してもよい。
 なかでも耐熱性の観点から、熱可塑性樹脂としては、ポリエーテルスルホン、ポリスルホン、ポリイミド、ポリエーテルイミドなどのエンジニアリングプラスチックが好ましい。さらに、力学的特性、絶縁性、溶媒への溶解性など、種々の点で優れたポリエーテルスルホンがより好ましい。
 さらに、これら熱可塑性樹脂は、エポキシ樹脂と反応し得る官能基を有していてもよい。このような官能基としては、例えば、アミノ基や水酸基、塩素原子、アルコキシ基などが挙げられる。
 絶縁熱伝導性樹脂組成物1において、相分離構造を形成する熱硬化性樹脂及び熱可塑性樹脂の組み合わせとしては、次のようなものが挙げられる。例えば、熱硬化性樹脂としてエポキシ樹脂を用いた場合、熱可塑性樹脂としてポリエーテルスルホン、ポリエーテルイミドを用いることができる。また、熱硬化性樹脂として不飽和ポリエステル樹脂を用いた場合、熱可塑性樹脂としてポリスチレンを用いることができる。
 絶縁熱伝導性樹脂組成物1において、小径無機フィラー4は平均粒子径が0.1μm~15μmである。小径無機フィラー4の平均粒子径が0.1μm~15μmであることにより、相分離構造における第1樹脂相2(連続相)に偏在させやすくなり、さらに作業性及び成形性が良好な絶縁熱伝導性樹脂組成物を得ることができる。つまり、平均粒子径が0.1μm以上であることにより、樹脂の粘度が過度に高くなることを抑制でき、樹脂の流動性が確保されるため、作業性及び成形性が良好となる。また、平均粒子径が15μm以下であることにより、小径無機フィラー4を第1樹脂相2に偏在させやすくなるため、熱伝導パス6が形成でき、高熱伝導化が可能となる。なお、小径無機フィラー4の平均粒子径は、好ましくは1μm~15μmであり、より好ましくは3μm~10μmである。
 絶縁熱伝導性樹脂組成物1において、大径無機フィラー5の平均粒子径は、小径無機フィラー4の平均粒子径より大きい。具体的には、大径無機フィラー5は平均粒子径が1μm~100μmである。大径無機フィラー5の平均粒子径が1μm~100μmであることにより、大径無機フィラー5は第1樹脂相2及び第2樹脂相3にまたがって存在することができる。そして、偏在している小径無機フィラー4と接触することで熱伝導パス7を形成し、熱伝導パス6同士を結ぶことにより、絶縁熱伝導性樹脂組成物1の内部に効果的に熱伝導パスを形成することができる。その結果、熱伝導の経路が増加し、絶縁熱伝導性樹脂組成物1の高熱伝導化が可能となる。つまり、平均粒子径が1μm以上であることにより、小径無機フィラー4と効率的に接触することができ、高熱伝導化が可能となる。また、平均粒子径が100μm以下であることにより、成形外観性が低下することを抑制することができる。なお、大径無機フィラー5の平均粒子径は、好ましくは20μm~100μmであり、より好ましくは20μm~90μmである。
 上述のように、小径無機フィラー4は平均粒子径が0.1μm~15μmであり、大径無機フィラー5は平均粒子径が1μm~100μmである。ただ、大径無機フィラー5は、第1樹脂相2と第2樹脂相3にまたがり、さらに第1樹脂相2に偏在する小径無機フィラー4同士を熱的に接続するだけの粒子径が必要である。そのため、大径無機フィラー5の平均粒子径は、小径無機フィラー4の平均粒子径の2倍以上であることが好ましく、3倍以上であることがより好ましい。これにより、小径無機フィラー4からなる熱伝導パス6同士を熱的に接続し、絶縁熱伝導性樹脂組成物1全体の熱伝導率をより高めることが可能となる。
 なお、本明細書において、「平均粒子径」はメジアン径を意味する。また、メジアン径は、積算(累積)重量百分率が50%となる粒子径(d50)を意味する。メジアン径は、例えば、レーザー回折式粒度分布測定装置「SALD2000」(株式会社島津製作所製)を用いて測定することができる。なお、絶縁熱伝導性樹脂組成物1の内部に含まれている小径無機フィラー4と大径無機フィラー5の平均粒子径は、絶縁熱伝導性樹脂組成物1を焼成して小径無機フィラー4と大径無機フィラー5を単離することにより、測定することができる。
 本実施形態において、絶縁熱伝導性樹脂組成物1における小径無機フィラー4と大径無機フィラー5との合計の割合([小径無機フィラーと大径無機フィラーの合計体積]/[絶縁熱伝導性樹脂組成物の体積])は、10~80体積%であることが好ましい。小径無機フィラー4と大径無機フィラー5の合計の体積比率が10体積%以上であることにより、小径無機フィラー4と大径無機フィラー5との接触による高熱伝導化の効果が充分に期待できる。また、小径無機フィラー4と大径無機フィラー5の合計の体積比率が80体積%以下であることにより、小径無機フィラー4による熱伝導パス6の形成に支障がなく、さらに成形時の樹脂の粘度が過度に高くなることを抑制できる。なお、当該体積比率は、後述する方法により測定することができる。
 また、絶縁熱伝導性樹脂組成物1における小径無機フィラー4と大径無機フィラー5との合計の割合は、15~80体積%がより好ましく、20~80体積%がさらに好ましく、30~70体積%が特に好ましく、30~60体積%が最も好ましい。このような範囲であることにより、高い熱伝導率と成形性を両立することが可能となる。
 絶縁熱伝導性樹脂組成物1において、小径無機フィラー4及び大径無機フィラー5の合計における大径無機フィラー5の割合([大径無機フィラーの体積]/[小径無機フィラーと大径無機フィラーの合計体積])が、5~60体積%であることが好ましい。大径無機フィラー5の体積比率が5体積%以上であることにより、小径無機フィラー4との接触により高熱伝導化することが可能となる。また、大径無機フィラー5の体積比率が60体積%以下であることにより、小径無機フィラー4による熱伝導パス6を形成することが可能となる。なお、小径無機フィラー4及び大径無機フィラー5の合計における大径無機フィラー5の割合は、20~50体積%であることがより好ましい。
 ここで、本実施形態の絶縁熱伝導性樹脂組成物1は、電気絶縁性を示す材料を用いることで、電気絶縁性を有する樹脂組成物を提供することができる。そして、絶縁熱伝導性樹脂組成物1において、小径無機フィラー4と大径無機フィラー5の構成材料は、熱伝導性と電気絶縁性を兼ね備える無機化合物を使用することが好ましい。
 熱伝導性を備える無機化合物としては、例えば熱伝導率が1W/m・K以上の無機化合物を使用することができる。なお、熱伝導性を備える無機化合物の熱伝導率は、好ましくは10W/m・K以上であり、より好ましくは30W/m・K以上である。また、電気絶縁性を備える無機化合物としては、室温(25℃)での体積抵抗率が10Ω・cm以上の無機化合物を使用することができる。なお、電気絶縁性を備える無機化合物の体積抵抗率は、好ましくは10Ω・cm以上であり、より好ましくは10Ω・cm以上であり、特に好ましくは1013Ω・cm以上である。
 熱伝導性と電気絶縁性を兼ね備える無機化合物としては、例えば、ホウ化物、炭化物、窒化物、酸化物、ケイ化物、水酸化物、炭酸塩などを挙げることができる。具体的には、例えば、酸化マグネシウム(MgO)、酸化アルミニウム(Al)、窒化ホウ素(BN)、窒化アルミニウム(AlN)、水酸化アルミニウム(Al(OH))などが挙げられる。また、二酸化ケイ素(SiO)、炭酸マグネシウム(MgCO)、水酸化マグネシウム(Mg(OH))、炭酸カルシウム(CaCO)、クレー、タルク、マイカ、酸化チタン(TiO)、酸化亜鉛(ZnO)なども挙げられる。熱伝導性と充填のし易さ等の観点から、小径無機フィラー4及び大径無機フィラー5は、MgO、Al、BN及びAlNからなる群より選ばれる少なくとも一種を含むことが好ましい。また、小径無機フィラー4及び大径無機フィラー5は、MgO、Al及びBNの少なくともいずれか一方を含有することが特に好ましい。
 小径無機フィラー4と大径無機フィラー5は、樹脂との相溶性を向上させるために、カップリング処理などの表面処理を行ったり分散剤などを添加して、絶縁熱伝導性樹脂組成物1中への分散性を向上させてもよい。また、表面処理剤を適宜選択することにより、相分離構造において、より効果的に小径無機フィラー4を偏在させることができる。
 表面処理には、脂肪酸、脂肪酸エステル、高級アルコール、硬化油等の有機系表面処理剤を用いることができる。また、表面処理には、シリコーンオイル、シランカップリング剤、アルコキシシラン化合物、シリル化材等の無機系表面処理剤も用いることができる。これらの表面処理剤を用いることにより、耐水性が向上する場合があり、さらに樹脂中への分散性が向上する場合がある。処理方法としては特に限定されないが、(1)乾式法、(2)湿式法、(3)インテグラルブレンド法等がある。
(1)乾式法
 乾式法とは、ヘンシェルミキサー、ナウターミキサー、振動ミルのような機械的な攪拌により小径無機フィラー及び大径無機フィラーを攪拌しながら、これに表面処理剤を滴下して表面処理を行う方法である。表面処理剤としてシランを用いる場合には、シランをアルコール溶剤で希釈した溶液や、シランをアルコール溶剤で希釈し、さらに水を添加した溶液、シランをアルコール溶剤で希釈し、さらに水及び酸を添加した溶液等が使用できる。表面処理剤の調製方法はシランカップリング剤の製造会社のカタログ等に記載されているが、シランの加水分解速度や無機フィラーの種類によって、調製方法を適宜決定する。
(2)湿式法
 湿式法とは、小径無機フィラー及び大径無機フィラーを表面処理剤に直接浸漬して行う方法である。使用できる表面処理剤は、上記乾式法と同様である。また、表面処理剤の調製方法も乾式法と同様である。
(3)インテグラルブレンド法
 インテグラルブレンド法は、樹脂とフィラーとを混合するときに、表面処理剤を原液又はアルコール等で希釈して混合機の中に直接添加し、攪拌する方法である。表面処理剤の調製方法は乾式法及び湿式法と同様であるが、インテグラルブレンド法で行う場合の表面処理剤の量は、乾式法及び湿式法に比べて多くすることが一般的である。
 乾式法及び湿式法においては、表面処理剤の乾燥を必要に応じて行う。アルコール等を使用した表面処理剤を添加した場合は、アルコールを揮発させる必要がある。アルコールが最終的に配合物に残ると、アルコールがガスとして発生しポリマー分に悪影響を及ぼす。したがって、乾燥温度は、使用した溶剤の沸点以上にすることが好ましい。さらに、表面処理剤としてシランを用いた場合には、無機フィラーと反応しなかったシランを迅速に除去するために、装置を用いて高い温度(例えば、100℃~150℃)に加熱することが好ましい。ただ、シランの耐熱性も考慮し、シランの分解点未満の温度に保つことが好ましい。処理温度は約80~150℃、処理時間は0.5~4時間が好ましい。乾燥温度と時間を処理量により適宜選択することによって、溶剤や未反応シランも除去することが可能となる。
 表面処理剤としてシランを用いる場合、無機フィラーの表面を処理するのに必要なシラン量は次式で計算することができる。
 [シラン量(g)]=[無機フィラーの量(g)]×[無機フィラーの比表面積(m/g)]/[シランの最小被覆面積(m/g)]
 「シランの最小被覆面積」は次の計算式で求めることができる。
 [シランの最小被覆面積(m/g)]=(6.02×1023)×(13×10-20(m))/[シランの分子量]
 式中、「6.02×1023」はアボガドロ定数であり、「13×10-20」は1分子のシランが覆う面積(0.13nm)である。
 必要なシラン量は、この計算式で計算されるシラン量の0.5倍以上1.0倍未満であることが好ましい。シラン量が1.0倍以上であっても本発明の効果を発揮することができる。しかし、シラン量が1.0倍以上の場合には未反応分が残り、機械物性の低下や耐水性の低下などの物性低下を引き起こす恐れがあるため、上限は1.0倍未満が好ましい。また、下限値を上記計算式で計算される量の0.5倍としたのは、この量であっても樹脂へのフィラー充填性の向上には十分効果があるためである。
 絶縁熱伝導性樹脂組成物1には、本発明の効果を阻害しない程度であれば、着色剤、難燃剤、難燃助剤、繊維強化材、製造上の粘度調整のための減粘剤、トナー(着色剤)の分散性向上のための分散調整剤、離型剤等が含まれていてもよい。これらは公知のものを使用することができるが、例えば、以下のようなものを挙げることができる。
 着色剤としては、例えば、酸化チタン等の無機系顔料、有機系顔料等、あるいはそれらを主成分とするトナーを用いることができる。これらは一種を単独で使用してもよく、二種以上を組み合わせて使用してもよい。
 難燃剤としては、有機系難燃剤、無機系難燃剤、反応系難燃剤などが挙げられる。これらは一種を単独で使用してもよく、二種以上を組み合わせて使用してもよい。なお、絶縁熱伝導性樹脂組成物1に難燃剤を含有させる場合は難燃助剤を併用することが好ましい。難燃助剤としては、三酸化二アンチモン、四酸化二アンチモン、五酸化二アンチモン、アンチモン酸ナトリウム、酒石酸アンチモン等のアンチモン化合物、ホウ酸亜鉛、メタホウ酸バリウムなどが挙げられる。また、水和アルミナ、酸化ジルコニウム、ポリリン酸アンモニウム、酸化スズ、酸化鉄なども挙げられる。これらは一種を単独で使用してもよく、二種以上を組み合わせて使用してもよい。
 本実施形態の絶縁熱伝導性樹脂組成物1の熱伝導率は、3W/m・K以上であることが好ましい。熱伝導率3W/m・K未満であっても本発明の効果を発揮することができる。ただ、このような熱伝導率であることにより、絶縁熱伝導性樹脂組成物1を電子部品の放熱体として使用した場合には、小型化しても電子部品を効率的に冷却することができる。
 次に、本実施形態の絶縁熱伝導性樹脂組成物の製造方法について説明する。まず、第1樹脂を構成する熱硬化性樹脂、第2樹脂を構成する熱可塑性樹脂、無機フィラー、硬化剤を添加して混練し、未硬化状態の樹脂組成物を製造する。各成分の混練は一段で行ってもよく、各成分を逐次添加して多段的に行ってもよい。各成分を逐次添加する場合は、任意の順序で添加することができる。
 各成分の混練及び添加方法としては、例えば、まず熱硬化性樹脂に、熱可塑性樹脂の一部又は全量を混練し粘度を調整する。次に、逐次的に残りの熱可塑性樹脂、無機フィラー、硬化剤を添加しながら混練する。添加順序は特に限定されないが、樹脂組成物の保存安定性の観点から、硬化剤は最後に添加することが好ましい。
 上述のように、樹脂組成物には、必要に応じて、着色剤、難燃剤、難燃助剤、繊維強化材、減粘剤、分散調整剤、離型剤等の添加剤を添加してもよい。また、これらの添加剤の添加順序も特に制限されず、任意の段階で添加することができるが、上述のように硬化剤は最後に添加することが好ましい。
 樹脂組成物の製造に用いる混練機械装置としては、従来公知のものを用いることができる。具体的には、ロールミル、プラネタリーミキサー、ニーダー、エクストルーダー、バンバリーミキサー、攪拌翼を供えた混合容器、横型混合槽などを挙げることができる。
 樹脂組成物を製造する際の混練温度は、混練できれば特に限定されないが、例えば10~150℃の範囲が好ましい。150℃を超えると部分的な硬化反応が開始し、得られる樹脂組成物の保存安定性が低下する場合がある。10℃より低いと樹脂組成物の粘度が高く、実質的に混練が困難となる場合がある。好ましくは20~120℃であり、さらに好ましくは30~100℃の範囲である。
 この未硬化の樹脂組成物の成形方法は任意の方法が可能であり、成形形状は任意の形状が可能である。例えば、成形手段としては、圧縮成形(直圧成形)、トランスファー成形、射出成形、押し出し成形、スクリーン印刷等の各種手段を用いることができる。
 本実施形態の絶縁熱伝導性樹脂組成物は、第1樹脂が三次元的に連続する第1樹脂相2と、第1樹脂相2と相違し、第2樹脂により形成される第2樹脂相3とを有する相分離構造を備える。さらに、第1樹脂相2に偏在する小径無機フィラー4と、第1樹脂相2と第2樹脂相3にまたがり、第1樹脂相2に偏在する小径無機フィラー4同士を熱的に接続する大径無機フィラー5とを備える。そして、小径無機フィラー4の平均粒子径は、0.1~15μmである。また、大径無機フィラー5の平均粒子径は、小径無機フィラー4の平均粒子径より大きく、かつ、1~100μmである。このような構成により、小径無機フィラーよりなる熱伝導パス同士を大径無機フィラーが熱的に接続するため、より効果的に熱伝導パスが形成する。その結果、樹脂組成物内の熱伝導経路が増加するため、熱伝導性無機フィラーの充填量が少ないにもかかわらず、熱伝導性が高くなる。さらに、熱伝導性無機フィラーの充填量が少ないことにより、絶縁熱伝導性樹脂組成物の流動性が確保されるため成形性が向上し、作業性が良好となる。また、本実施形態の絶縁熱伝導性樹脂組成物は、上述のように電気絶縁性を有する材料で構成されているため、樹脂組成物全体でも高い電気絶縁性を備えることができる。
 以下、本発明を実施例及び比較例によりさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
 実施例及び比較例の樹脂組成物を製造するに際し、以下の樹脂、硬化剤及び無機フィラーを用いた。
(熱硬化性樹脂)
 エポキシ樹脂(三菱化学株式会社製「jER(登録商標)828」、エポキシ当量189g/eq、以下、DGEBA(ビスフェノールAジグリシジルエーテル)ともいう。)
(熱可塑性樹脂)
 ポリエーテルスルホン(住友化学株式会社製、「スミカエクセル(登録商標)5003P」、以下、PESともいう。)
(硬化剤)
 4,4’-メチレンジアニリン(和光純薬工業株式会社製、活性水素当量49.5g/eq、以下、MDAともいう。)
(無機フィラー)
 小径無機フィラーA:MgO、平均粒子径(d50)8μm
 小径無機フィラーB:BN、平均粒子径(d50)8μm
 小径無機フィラーC:Al、平均粒子径(d50)5μm
 小径無機フィラーD:Al(OH)、平均粒子径(d50)8μm
 小径無機フィラーE:Al、平均粒子径(d50)1.2μm
 小径無機フィラーF:Al、平均粒子径(d50)0.6μm
 大径無機フィラーA:MgO、平均粒子径(d50)25μm
 大径無機フィラーB:MgO、平均粒子径(d50)80μm
 大径無機フィラーC:Al(OH)、平均粒子径(d50)35μm
 大径無機フィラーD:Al、平均粒子径(d50)10μm
 大径無機フィラーE:Al、平均粒子径(d50)3μm
[実施例1]
 DGEBA100質量部に、平均粒子径が10μmになるように粉砕したPESを22.3質量部添加した。さらに、この混合物を120℃に温めたオイルバス中で攪拌することで、PESをDGEBAに完全に溶解させ、エポキシ樹脂溶液を得た。
 次に、80℃に設定したロールミルを用いて、上述のエポキシ樹脂溶液に、小径無機フィラーAを70質量部、大径無機フィラーAを10質量部混練した。さらに、混練したエポキシ樹脂溶液に、MDAを26質量部混練した。その後、得られた混練物を120℃に設定の真空乾燥機に入れ、5分間減圧脱泡を行うことにより、樹脂組成物を得た。
 この樹脂組成物を150℃に温めた金型に投入し、乾燥オーブンにて150℃で2時間保持し、さらに180℃で2時間加熱することにより、本実施例の試験片を得た。
[実施例2,6及び7、並びに比較例1,2,5及び6]
 小径無機フィラー、大径無機フィラー及びこれらの配合量を表1のように変更したこと以外は実施例1と同様の方法で、各例の試験片を得た。
[実施例3]
 DGEBA100質量部に、平均粒子径が10μmになるように粉砕したPESを22.3質量部添加した。次に、この混合物を120℃に温めたオイルバス中で攪拌することで、PESをDGEBAに完全に溶解させ、エポキシ樹脂溶液を得た。
 次に、120℃に設定したロールミルを用いて、上述のエポキシ樹脂溶液に、小径無機フィラーCを300質量部、大径無機フィラーAを75質量部、大径無機フィラーCを75質量部混練した。その後、混練物を80℃まで徐冷した。さらに、徐冷した混練物に、80℃に設定したロールミルを用いて、MDA26質量部を混練することにより、樹脂組成物を得た。
 この樹脂組成物を150℃に設定した上下金型に投入し、成形圧力1MPa、金型温度150℃で2時間加圧プレスを行った。その後、プレスされた硬化物を金型から取り出し、乾燥オーブンにて180℃で2時間加熱することにより、本実施例の試験片を得た。
[実施例4~5、比較例3~4]
 小径無機フィラー、大径無機フィラー及びこれらの配合量を表1のように変更したこと以外は実施例3と同様の方法で、各例の試験片を得た。
Figure JPOXMLDOC01-appb-T000001
 実施例及び比較例の各試験片における無機フィラーの体積比率、熱伝導率及び成形性を、次の方法で測定・評価した。測定・評価結果を表2に示す。
[無機フィラーの体積比率]
 まず、アルキメデス法により各例の試験片の体積を算出した。次に、マッフル炉を用いて各試験片を625℃で焼成し、灰分重量を測定した。そして、灰分が無機フィラーであるため、小径及び大径無機フィラーの配合比率及び密度、当該灰分重量、並びに試験片の体積から、試験片における小径及び大径無機フィラーの合計体積比率及び大径無機フィラーの体積比率を計測した。なお、密度は、MgOが3.65g/cm、BNが2.27g/cm、Alが3.9g/cm、Al(OH)が2.42g/cmとした。また、Al(OH)については、脱水も考慮して計算を行った。
[熱伝導率]
 熱伝導率は、熱拡散率と熱容量(比重と比熱との積)と密度との積から求めた。その際、熱拡散率は、NETZSCH社製Xeフラッシュアナライザー LFA447 Nanoflashを用いて、キセノンフラッシュ法により測定し、比重及び密度はアルキメデス法(水中置換法)により測定した。また、比熱は、セイコーインスツル株式会社製DSC6220を用いて、DSC法により測定した。
[成形性]
 縦横が100mmで厚みが2.0mmの金型に、各実施例及び比較例の樹脂組成物を投入した際の板状試験片の成形状況から、成形加工性を以下の基準で判定した。なお、判定は目視又は断面を走査型電子顕微鏡(SEM)で観察することにより判定した。
 〇:成形欠陥が観察されず、成形できた。
 ×:ショートショットとなり成形できなかった。または、ボイドなどの成形欠陥が観察された。
Figure JPOXMLDOC01-appb-T000002
 表2より、実施例1~7は、比較例1~6と比べ、それぞれ無機フィラーの体積比率が同じであるにもかかわらず高い熱伝導率を示した。
 ここで、実施例5が実施例4より熱伝導率が低下した理由としては、大径無機フィラーの体積比率が大きいため、相分離による小径無機フィラーの熱伝導パスが充分に形成されなかったことや相分離構造の形成に悪影響を及ぼしたことが考えられる。しかしながら、無機フィラーの体積比率が同じである比較例4は粘度が上昇し成形できなかったことを考えると、実施例5も有用であることが分かる。
 さらに、図4では、実施例6の絶縁熱伝導性樹脂組成物の断面を走査型電子顕微鏡で観察した結果を示す。図4に示すように、小径無機フィラー4が第1樹脂相2に偏在し、さらに大径無機フィラー5が第1樹脂相2と第2樹脂相3をまたいでいることが分かる。そして、大径無機フィラー5が小径無機フィラー4からなる熱伝導パスと接触し、熱的に接続していることが確認できる。
 図5では、実施例7の絶縁熱伝導性樹脂組成物の断面を走査型電子顕微鏡で観察した結果を示す。図5に示すように、実施例7では、小径無機フィラー4が第1樹脂相2と第2樹脂相3との界面に存在していることが分かる。また、小径無機フィラー4が、第1樹脂相2の中心部分よりも、第1樹脂相2と第2樹脂相3との界面に多く存在していることが分かる。特に、小径無機フィラー4は、第1樹脂相2と第2樹脂相3との界面に接触するように配置されており、その結果、連続的な熱伝導パス6が形成されていることが確認できる。
 なお、実施例7では、第1樹脂相はポリエーテルスルホンにより形成されており、さらにポリエーテルスルホンは硫黄を含有している。そのため、得られた樹脂組成物を走査型電子顕微鏡で観察した場合、硫黄を含有している第1樹脂相は第2樹脂相と比べて灰色になる。したがって、走査型電子顕微鏡写真より、第1樹脂相、第2樹脂相及びこれらの界面を判別することができる。
 特願2013-068846号(出願日:2013年3月28日)の全内容は、ここに援用される。
 以上、実施例に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 本発明の絶縁熱伝導性樹脂組成物は、小径無機フィラーが第1樹脂相に偏在し、さらに第1樹脂相と第2樹脂相をまたぐ大径無機フィラーが存在する。そのため、小径無機フィラーからなる複数の熱伝導パスを大径無機フィラーによって熱的に接続するため、多数の熱伝導パスが生成する。その結果、熱伝導性無機フィラーの充填量が少ないにもかかわらず、熱伝導性が向上する。さらに、熱伝導性無機フィラーの充填量が少ないことにより樹脂組成物の流動性が確保されるため、成形性が向上し、それにより作業性が良好となる。
 1 絶縁熱伝導性樹脂組成物
 2 第1樹脂相
 3 第2樹脂相
 4 小径無機フィラー
 5 大径無機フィラー

Claims (8)

  1.  第1樹脂が三次元的に連続する第1樹脂相と、前記第1樹脂相と相違し、第2樹脂により形成される第2樹脂相とを有する相分離構造と、
     前記第1樹脂相に偏在する小径無機フィラーと、
     前記第1樹脂相と第2樹脂相にまたがり、第1樹脂相に偏在する小径無機フィラー同士を熱的に接続する大径無機フィラーと、
     を備え、
     前記小径無機フィラーの平均粒子径は0.1~15μmであり、前記大径無機フィラーの平均粒子径は前記小径無機フィラーの平均粒子径より大きく、かつ、1~100μmであることを特徴とする絶縁熱伝導性樹脂組成物。
  2.  前記小径無機フィラーは、前記第1樹脂相と第2樹脂相との界面に存在することを特徴とする請求項1に記載の絶縁熱伝導性樹脂組成物。
  3.  前記小径無機フィラーは、前記第1樹脂相と第2樹脂相との界面に接触している、又は前記界面をまたいでいることを特徴とする請求項1又は2に記載の絶縁熱伝導性樹脂組成物。
  4.  前記第1樹脂相では、前記小径無機フィラーが接触することにより熱伝導パスが形成されていることを特徴とする請求項1乃至3のいずれか一項に記載の絶縁熱伝導性樹脂組成物。
  5.  前記絶縁熱伝導性樹脂組成物における前記小径無機フィラー及び大径無機フィラーの合計の割合が10~80体積%であり、
     前記小径無機フィラー及び大径無機フィラーの合計における前記大径無機フィラーの割合が5~60体積%であることを特徴とする請求項1乃至4のいずれか一項に記載の絶縁熱伝導性樹脂組成物。
  6.  前記小径無機フィラー及び大径無機フィラーが、MgO、Al、BN及びAlNからなる群より選ばれる少なくとも一種を含有することを特徴とする請求項1乃至5のいずれか一項に記載の絶縁熱伝導性樹脂組成物。
  7.  前記第1樹脂相が熱硬化性樹脂及び熱可塑性樹脂のいずれか一方により形成され、前記第2樹脂相が熱硬化性樹脂及び熱可塑性樹脂の他方により形成され、
     前記熱硬化性樹脂がエポキシ樹脂であり、前記熱可塑性樹脂がポリエーテルスルホンであることを特徴とする請求項1乃至6のいずれか一項に記載の絶縁熱伝導性樹脂組成物。
  8.  前記相分離構造が共連続構造であり、
     前記小径無機フィラー及び大径無機フィラーが、MgO、Al及びBNの少なくともいずれか一方を含有し、
     前記絶縁熱伝導性樹脂組成物における前記小径無機フィラー及び大径無機フィラーの合計の割合が20~80体積%であり、
     前記絶縁熱伝導性樹脂組成物の熱伝導率が3W/m・K以上であることを特徴とする請求項7に記載の絶縁熱伝導性樹脂組成物。
PCT/JP2014/001135 2013-03-28 2014-03-03 絶縁熱伝導性樹脂組成物 WO2014155975A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015507999A JP6025967B2 (ja) 2013-03-28 2014-03-03 絶縁熱伝導性樹脂組成物
US14/778,837 US9779853B2 (en) 2013-03-28 2014-03-03 Insulating thermally conductive resin composition
EP14772690.5A EP2980161B1 (en) 2013-03-28 2014-03-03 Insulating thermally conductive resin composition
CN201480017822.9A CN105051115B (zh) 2013-03-28 2014-03-03 绝缘导热性树脂组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013068846 2013-03-28
JP2013-068846 2013-03-28

Publications (1)

Publication Number Publication Date
WO2014155975A1 true WO2014155975A1 (ja) 2014-10-02

Family

ID=51622996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001135 WO2014155975A1 (ja) 2013-03-28 2014-03-03 絶縁熱伝導性樹脂組成物

Country Status (5)

Country Link
US (1) US9779853B2 (ja)
EP (1) EP2980161B1 (ja)
JP (1) JP6025967B2 (ja)
CN (1) CN105051115B (ja)
WO (1) WO2014155975A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104327460A (zh) * 2014-10-31 2015-02-04 南京工业大学 一种基于聚醚砜和氮化硼的高效制备导热环氧树脂的方法
EP3144350A1 (en) * 2014-05-15 2017-03-22 Panasonic Intellectual Property Management Co., Ltd. Insulating thermally conductive resin composition
EP3310857A4 (en) * 2015-06-18 2019-01-02 Dow Global Technologies LLC Thermally conductive elastomeric composites
JP2020147474A (ja) * 2019-03-15 2020-09-17 株式会社トクヤマ 複合フィラーおよび樹脂組成物
WO2021002232A1 (ja) * 2019-07-02 2021-01-07 住友化学株式会社 樹脂組成物、成形体、飛行機用内装材および飛行機
JP2021105191A (ja) * 2017-01-19 2021-07-26 東亞合成株式会社 有機−無機複合物およびその製造方法
WO2022137686A1 (ja) * 2020-12-21 2022-06-30 昭和電工株式会社 不飽和ポリエステル樹脂組成物及び成形体
WO2022191238A1 (ja) * 2021-03-09 2022-09-15 パナソニックIpマネジメント株式会社 熱伝導性樹脂組成物及び熱伝導性樹脂材料

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112014006446B4 (de) * 2014-03-07 2021-08-05 Mitsubishi Electric Corporation Halbleiteranordnung
JP6575146B2 (ja) * 2015-05-29 2019-09-18 富士ゼロックス株式会社 画像形成装置及び画像形成方法
US9493696B1 (en) * 2015-11-24 2016-11-15 International Business Machines Corporation Multiphase resins with reduced percolation threshold
CN108713042A (zh) * 2016-03-02 2018-10-26 捷恩智株式会社 低热膨胀构件用组合物、低热膨胀构件、电子机器及低热膨胀构件的制造方法
DE102016118193A1 (de) * 2016-09-27 2018-03-29 Phoenix Contact E-Mobility Gmbh Elektrisches Kabel mit einer Kühlmittelleitung
JP6941810B2 (ja) * 2017-04-19 2021-09-29 パナソニックIpマネジメント株式会社 樹脂組成物ならびにそれを用いた電子部品および電子機器
CN108165009A (zh) * 2017-12-29 2018-06-15 无锡天宝电机有限公司 一种电机用导热绝缘材料及其制备方法
EP4006089A4 (en) * 2019-08-19 2022-08-31 LG Chem, Ltd. RESIN COMPOSITION

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310616A (ja) 1986-06-30 1988-01-18 Nippon Steel Chem Co Ltd 封止用樹脂組成物
JPH04211422A (ja) 1990-01-25 1992-08-03 Shin Etsu Chem Co Ltd エポキシ樹脂組成物及び半導体装置
JPH04300914A (ja) 1991-03-29 1992-10-23 Shin Etsu Chem Co Ltd エポキシ樹脂組成物及び半導体装置
JPH04342719A (ja) 1991-05-21 1992-11-30 Shin Etsu Chem Co Ltd エポキシ樹脂組成物及び半導体装置
JPH04345640A (ja) 1991-05-23 1992-12-01 Hitachi Ltd 高圧コイル注型用熱硬化性樹脂組成物、該組成物で注型、硬化してなるモールドコイル、パネル
JPH0959511A (ja) * 1995-08-18 1997-03-04 Tokai Rubber Ind Ltd 熱伝導性樹脂組成物
JP2005255867A (ja) * 2004-03-12 2005-09-22 Mitsuboshi Belting Ltd 熱伝導材料およびその製造方法
JP2009263476A (ja) * 2008-04-24 2009-11-12 Otsuka Chem Co Ltd 高熱伝導性樹脂組成物
JP2010065064A (ja) 2008-09-08 2010-03-25 Tokyo Institute Of Technology 熱伝導性材料、熱伝導シート、層間絶縁膜及びその製造方法
JP2010132838A (ja) * 2008-12-08 2010-06-17 Mitsubishi Electric Corp 高熱伝導性熱硬化性樹脂組成物
JP2010132894A (ja) 2008-10-30 2010-06-17 Nitto Denko Corp 有機−無機複合物およびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1254926A1 (en) 2000-07-21 2002-11-06 Toppan Printing Co., Ltd. Insulating resin composition for multilayer printed wiring boards, multilayer printed wiring boards made by using the composition and process for the production thereof
CN102079864A (zh) * 2009-11-30 2011-06-01 比亚迪股份有限公司 一种绝缘导热树脂组合物及其塑胶制品

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310616A (ja) 1986-06-30 1988-01-18 Nippon Steel Chem Co Ltd 封止用樹脂組成物
JPH04211422A (ja) 1990-01-25 1992-08-03 Shin Etsu Chem Co Ltd エポキシ樹脂組成物及び半導体装置
JPH04300914A (ja) 1991-03-29 1992-10-23 Shin Etsu Chem Co Ltd エポキシ樹脂組成物及び半導体装置
JPH04342719A (ja) 1991-05-21 1992-11-30 Shin Etsu Chem Co Ltd エポキシ樹脂組成物及び半導体装置
JPH04345640A (ja) 1991-05-23 1992-12-01 Hitachi Ltd 高圧コイル注型用熱硬化性樹脂組成物、該組成物で注型、硬化してなるモールドコイル、パネル
JPH0959511A (ja) * 1995-08-18 1997-03-04 Tokai Rubber Ind Ltd 熱伝導性樹脂組成物
JP2005255867A (ja) * 2004-03-12 2005-09-22 Mitsuboshi Belting Ltd 熱伝導材料およびその製造方法
JP2009263476A (ja) * 2008-04-24 2009-11-12 Otsuka Chem Co Ltd 高熱伝導性樹脂組成物
JP2010065064A (ja) 2008-09-08 2010-03-25 Tokyo Institute Of Technology 熱伝導性材料、熱伝導シート、層間絶縁膜及びその製造方法
JP2010132894A (ja) 2008-10-30 2010-06-17 Nitto Denko Corp 有機−無機複合物およびその製造方法
JP2010132838A (ja) * 2008-12-08 2010-06-17 Mitsubishi Electric Corp 高熱伝導性熱硬化性樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2980161A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3144350A1 (en) * 2014-05-15 2017-03-22 Panasonic Intellectual Property Management Co., Ltd. Insulating thermally conductive resin composition
EP3144350A4 (en) * 2014-05-15 2017-05-10 Panasonic Intellectual Property Management Co., Ltd. Insulating thermally conductive resin composition
US9997274B2 (en) 2014-05-15 2018-06-12 Panasonic Intellectual Property Management Co., Ltd. Insulating thermally conductive resin composition
CN104327460A (zh) * 2014-10-31 2015-02-04 南京工业大学 一种基于聚醚砜和氮化硼的高效制备导热环氧树脂的方法
EP3310857A4 (en) * 2015-06-18 2019-01-02 Dow Global Technologies LLC Thermally conductive elastomeric composites
JP7136261B2 (ja) 2017-01-19 2022-09-13 東亞合成株式会社 有機-無機複合物およびその製造方法
JP2021105191A (ja) * 2017-01-19 2021-07-26 東亞合成株式会社 有機−無機複合物およびその製造方法
JP2020147474A (ja) * 2019-03-15 2020-09-17 株式会社トクヤマ 複合フィラーおよび樹脂組成物
JP7233264B2 (ja) 2019-03-15 2023-03-06 株式会社トクヤマ 複合フィラーおよび樹脂組成物
WO2021002232A1 (ja) * 2019-07-02 2021-01-07 住友化学株式会社 樹脂組成物、成形体、飛行機用内装材および飛行機
JP2021008577A (ja) * 2019-07-02 2021-01-28 住友化学株式会社 樹脂組成物、成形体、飛行機用内装材および飛行機
WO2022137686A1 (ja) * 2020-12-21 2022-06-30 昭和電工株式会社 不飽和ポリエステル樹脂組成物及び成形体
WO2022191238A1 (ja) * 2021-03-09 2022-09-15 パナソニックIpマネジメント株式会社 熱伝導性樹脂組成物及び熱伝導性樹脂材料

Also Published As

Publication number Publication date
CN105051115A (zh) 2015-11-11
US9779853B2 (en) 2017-10-03
EP2980161A4 (en) 2016-04-13
CN105051115B (zh) 2018-01-09
JP6025967B2 (ja) 2016-11-16
JPWO2014155975A1 (ja) 2017-02-16
US20160042831A1 (en) 2016-02-11
EP2980161B1 (en) 2018-09-26
EP2980161A1 (en) 2016-02-03

Similar Documents

Publication Publication Date Title
JP6025967B2 (ja) 絶縁熱伝導性樹脂組成物
CN100441619C (zh) 封装用树脂组合物以及树脂封装的半导体装置
CN101899209B (zh) 一种导热绝缘材料及其制备方法
KR101773589B1 (ko) 방열 도료 조성물 및 방열 구조체
JPWO2013100174A1 (ja) 熱伝導性樹脂組成物
WO2015075906A1 (ja) 絶縁樹脂組成物及びこれを有する物品
JP6504472B2 (ja) 絶縁熱伝導性樹脂組成物
JP2006328352A (ja) 絶縁性熱伝導性樹脂組成物及び成形品並びにその製造方法
JP2009280650A (ja) 熱可塑性樹脂組成物及び熱可塑性樹脂成形品
JP2009155370A (ja) モーター封止用エポキシ樹脂成形材料及び成形品
JP6715523B2 (ja) エポキシ樹脂組成物
JP2014159494A (ja) 熱伝導体
WO2013161844A1 (ja) 高熱伝導性樹脂組成物
JP2016088984A (ja) ポリフェニレンスルフィド樹脂組成物および成形品
JP6508508B2 (ja) 樹脂組成物、熱伝導性接着剤及び積層体
JP5847623B2 (ja) 熱伝導性及び難燃性熱可塑性樹脂組成物
WO2013191207A1 (ja) 高放熱性ポリアリーレンスルフィド樹脂組成物および成形体
TW201127898A (en) High thermal conductivity, halogen-free flame-retardant resin composition and its pre-impregnated body and coating materials for printed circuit boards
JP6435604B2 (ja) 高放熱性熱可塑性樹脂組成物および成形体
JP2007197713A (ja) アクリル系樹脂組成物及びそれを用いたシート状成形体
KR20220101220A (ko) 열가소성 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품
JP2010285485A (ja) ホスホニウム変性層状粘土鉱物を含有するエポキシ樹脂組成物
JP2022077613A (ja) 熱硬化性樹脂成形材料および成形品
JP2015199625A (ja) コア−シェル型構造体、その製造方法および熱伝導性樹脂組成物
JP2010174226A (ja) 難燃性樹脂組成物および絶縁電線

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480017822.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14772690

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14778837

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015507999

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014772690

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE