TW201127898A - High thermal conductivity, halogen-free flame-retardant resin composition and its pre-impregnated body and coating materials for printed circuit boards - Google Patents

High thermal conductivity, halogen-free flame-retardant resin composition and its pre-impregnated body and coating materials for printed circuit boards Download PDF

Info

Publication number
TW201127898A
TW201127898A TW99102955A TW99102955A TW201127898A TW 201127898 A TW201127898 A TW 201127898A TW 99102955 A TW99102955 A TW 99102955A TW 99102955 A TW99102955 A TW 99102955A TW 201127898 A TW201127898 A TW 201127898A
Authority
TW
Taiwan
Prior art keywords
high thermal
thermal conductivity
epoxy resin
resin composition
printed circuit
Prior art date
Application number
TW99102955A
Other languages
Chinese (zh)
Other versions
TWI400297B (en
Inventor
Dein-Run Fung
Te-Chao Liao
hao-sheng Chen
Original Assignee
Nanya Plastics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanya Plastics Corp filed Critical Nanya Plastics Corp
Priority to TW99102955A priority Critical patent/TWI400297B/en
Publication of TW201127898A publication Critical patent/TW201127898A/en
Application granted granted Critical
Publication of TWI400297B publication Critical patent/TWI400297B/en

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A high thermal conductivity, halogen-free, flame-retardant resin composition for a printed circuit board includes 5 to 70 wt % of phosphorus based epoxy resins, 0 to 50 wt% of multi-functional or bifunctional epoxy resins, 1 to 20 wt% of curing agents; 0.01 to 10 wt% of accelerating agents, 0 to 20 wt% of inorganic powder, 5 to 85 wt% of high thermal conductive powder, 0.1 to 50 wt% of phosphorus flame retardant agents, and 0 to 10 wt% of processing agents. In addition to high thermal conductivity, excellent heat resistance and flame resistance, due to absence of halogen flame retardant agents, combustion of the resin composition does not generate toxic nor corrosive gases and is an environmental friendly material. Moreover the resin composition can be processed into a high thermal conductivity pre-preg by means of impregnation. Alternatively, after forming a high thermal conductivity coating layer by means of coating, it can be applied as a thermal conductive insulated layer for a printed circuit board so that the printed circuit board has features of high thermal conductivity to facilitate rapidly dissipating the heat generated by the operation of the electronic components on the printed circuit board so as to increase the lifespan and stability of the electronic components.

Description

201127898 六、發明說明: 【發明所屬之技術領域】 本發明為-種樹驗成物’尤指-縣具無自難燃及高導熱 特性’且應用於印刷電路板上作為導熱絕緣層使用的樹脂組成物。 【先前技術】 傳統FR4之印刷電路板為達到ul^-vo之難燃標準,會使用 四溴化丙二酚與過量之環氧樹脂反應形成兩末端環氧基之樹脂, 鲁 再加入硬化劑、促進劑後’含浸玻璃纖維加熱硬化賦予其難燃性。 另四溴化丙二酚也可與其他環氧樹脂硬化劑混合,與環氧樹脂進 行固化反應,賦予環氧樹脂固化物之難燃性。而由於四溴化丙二 酚屬i素難燃劑,在燃燒時會產生戴奥辛(di〇xin)或苯喃 (benzofUmn)及刺激性、腐蝕性之有害氣體,而且小分子抑煙劑常 導致機械性質降低及光分解作用,而使材料劣化,同時抑煙劑在 材料中遷移與揮發現象’也會降低材料物性及難燃效果。 春 耆積體電路的電路也、度越來越尚,電子元件所產生的熱量 也來越大,傳統環氧樹脂配方的熱導係數已逐漸不符合需求。 在曰本專利特開平5-267808號揭示了一種用於金屬基板之導熱 絕緣層’雖符合高導熱需求,但並未揭露此材料是否具有 之難燃特性,且僅適合用於單層板;另外美國專利第6 187416 號雖為一無鹵無磷樹脂,但並未提及其是否具有高導熱特性及符 合UL94-V0之難燃標準。 有鑑於此,申請人開發出一種印刷電路板用高導熱、無齒難燃樹 201127898 脂組成物及其預浸潰體及塗層物(申請號·· 〇97151158),朝無卤難 燃且兼具高導熱特性發展,以因應電子產品輕薄短小及高度整合 之需求。 然而,後來發明人針對前述高導熱、無鹵難燃樹脂組成物進 行檢討,認為應該針對組成物物理性質,如玻璃轉移溫度等進一 步提昇,並兼顧其原有之導熱特性及無齒耐燃等之特性。 ®【發咖容】 本發明的主要目的即在揭示一種樹脂組成物’包含碟系環氧 樹脂,佔組成物5〜70 wt % ;多官能基或雙官能基之環氧樹脂,佔 組成物0〜50 wt % ;硬化劑,佔組成物uo榭% ;促進劑,佔組 成物0.01〜10 wt %,無機粉體’佔組成物〇〜2〇加% ;高導熱粉體, 佔組成物5〜85wt% ;磷系阻燃劑,佔組成物〇1〜5〇wt% ;及加工 助劑,佔組成物0〜10 Wt %。 • 而且,所述的樹脂組成物的特性,除鱗系環氧樹脂外,構系 阻燃劑搭配無機粉體耐燃劑,具備優異的導熱性及耐燃性外,還 能確保良好的玻璃轉移溫度等物性,且因不含函素耐燃劑,燃燒 時不會產生有毒或腐蝕性之氣體,為一環境友好之環保材料,其 可藉含浸方式製成高導熱預浸潰體或藉塗佈方式製成高導熱塗層 物後,再應用為印刷電路板的導熱絕緣層,使得印刷電路板具有 高導熱特性,有助於將印刷電路板上的電子元件運作時所產生的 熱量快速逸散’以提升電子元件的使用壽命及穩定性。 201127898 【實施方式】 本發明的樹脂組成物,兼具無鹵難燃及高導熱特性,可以使 用為高導熱印刷電路板的導熱絕緣層,使得高導熱印刷電路板具 有將電子元件運作時所產生的熱量快速逸散的功能,以提升電子 元件的壽命及穩定性。 本發明的樹脂組成物的成份,包括: (1) 磷系環氧樹脂,佔樹脂組成物5〜70 wt % ; (2) 多官能基或雙官能基之環氧樹脂,佔樹脂組成物〇〜5〇槭%。 春 上述磷系環氧樹脂及環氧樹脂之選用可視加工性、物性、絕 緣層形式(例如預浸潰體或背平銅猪;)等,選擇其中一種或一種以 上樹脂使用,惟多官能基或雙官能基之環氧樹脂不可單獨使用。 (3) 硬化劑,佔樹脂組成物1〜2〇 wi % ; (4) 促進劑,佔樹脂組成物o.oi〜1〇 ❶;加入促進劑的目的在於 促進環氧樹脂與硬化劑之間的交聯反應(Cr〇sslinking),且添加 量的多寡會影響其反應速率; • (5)無機粉體,佔樹脂組成物之〇〜20 Wt;加入無機粉體可以搭 配磷系具奸瓶敝果,並且可贼細旨域物硬化 之後更具有剛性; (6) 咼導熱粉體,佔樹脂組成物之5〜85 wt % ;其中,當樹脂組成 物的高導熱粉體含量低於5wt%時,樹脂組成物無法得到較佳 的熱傳導餘,但高於85邊時,旨域物的加I性及物性 會受到影響; (7) 磷系阻燃劑’佔樹脂組成物之0.^0加% ;提昇耐燃性具有 201127898 覆蓋作用; (8)加工助劑,選自偶合劑、強化填料,增塑劑、分散劑抗氧化 劑、熱及光安定劑、阻燃劑、填料、顏料或染料的的其中一種或 一種以上。加工助劑佔樹脂組成物之0.01〜1〇斯%,其中所添加之 偶合劑是用來改善無機粉體及高導熱粉體與樹脂間的界面親合 性。其他助劑用於改善樹脂組成物的加工性質、機械及電氣性質、 熱性質及光安定性等。 本發明的樹驗成物中的穩環氧概,麵含视合物的 反應性氳’利用附加型(addition)的方式,直接鍵結雙官能基或多 官能基環氧樹脂的環氧基反應而成,其為選自下列(a)至(d)式中一 種或一種以上所組成族群之化學結構:201127898 VI. Description of the Invention: [Technical Field of the Invention] The present invention is a tree-like test object 'in particular, the county has no self-flammable and high thermal conductivity characteristics' and is applied to a printed circuit board as a thermally conductive insulating layer. Resin composition. [Prior Art] In order to achieve the flame retardant standard of ul^-vo, the printed circuit board of the conventional FR4 will react with an excess of epoxy resin to form a resin with two terminal epoxy groups, and then add a hardener. After the accelerator, the impregnated glass fiber is heat-hardened to impart flame retardancy. The other tetrabromide phenol can also be mixed with other epoxy resin hardeners to cure with the epoxy resin to impart flame retardancy to the cured epoxy resin. However, due to the flame retardant of tetrabromide bisphenol i, it can produce dioxin or benzofUmn and irritating and corrosive harmful gases during combustion, and small molecule smoke suppressants often lead to The reduction of mechanical properties and photolysis, and the deterioration of materials, while the migration and volatilization of smoke suppressants in the material will also reduce the physical properties and flame retardant effects of materials. The circuit of the spring hoarding circuit is also more and more, and the heat generated by the electronic components is also larger. The thermal conductivity of the conventional epoxy resin formulation has gradually failed to meet the demand. It is disclosed in Japanese Patent Laid-Open No. Hei 5-267808 that a thermally conductive insulating layer for a metal substrate meets high thermal conductivity requirements, but does not disclose whether or not the material has flame retardant properties, and is only suitable for use in a single-layer board; In addition, U.S. Patent No. 6,187,416 is a halogen-free, phosphorus-free resin, but does not mention whether it has high thermal conductivity and meets the flame retardant standard of UL94-V0. In view of this, the applicant developed a high thermal conductivity, toothless flame retardant tree 201127898 grease composition for printed circuit boards and its prepreg and coating (application number ·97151158), which is flame retardant and halogen-free. It combines the development of high thermal conductivity to meet the needs of light, short, and highly integrated electronic products. However, the inventors later reviewed the high thermal conductivity and halogen-free flame-retardant resin composition, and considered that the physical properties of the composition, such as the glass transition temperature, should be further improved, taking into account its original thermal conductivity and toothless flame resistance. characteristic. ® [发咖容] The main object of the present invention is to disclose a resin composition comprising a dish-based epoxy resin, constituting 5 to 70 wt% of the composition; a polyfunctional or bifunctional epoxy resin, which constitutes a composition 0~50 wt%; hardener, accounting for uo榭%; accelerator, accounting for 0.01~10 wt% of composition, inorganic powder 'accounting for composition 〇~2〇 plus %; high thermal conductivity powder, accounting for composition 5~85wt%; phosphorus-based flame retardant, accounting for 1~5〇wt% of the composition; and processing aid, accounting for 0~10 Wt% of the composition. • Moreover, the characteristics of the resin composition, in addition to the squash epoxy resin, the flame retardant is combined with an inorganic powder flame retardant, which has excellent thermal conductivity and flame resistance, and also ensures good glass transition temperature. It is an environmentally friendly and environmentally friendly material that can be made into a highly thermally conductive prepreg or by coating method because it does not contain toxic or corrosive gases when burned. After being made into a high thermal conductive coating, it is applied as a thermal conductive insulating layer of the printed circuit board, so that the printed circuit board has high thermal conductivity, which helps to quickly dissipate the heat generated when the electronic components on the printed circuit board operate. To improve the service life and stability of electronic components. 201127898 [Embodiment] The resin composition of the present invention has both halogen-free flame retardancy and high thermal conductivity, and can be used as a thermally conductive insulating layer of a high thermal conductive printed circuit board, so that a high thermal conductive printed circuit board has a function of operating electronic components. The fast heat dissipation function enhances the life and stability of electronic components. The composition of the resin composition of the present invention comprises: (1) a phosphorus-based epoxy resin, which accounts for 5 to 70% by weight of the resin composition; (2) a polyfunctional or bifunctional epoxy resin, which accounts for the resin composition. ~5〇 maple%. The selection of the above-mentioned phosphorus epoxy resin and epoxy resin may be in the form of processability, physical properties, and insulating layer (for example, prepreg or back-copper pig; etc.), and one or more resins may be selected, but polyfunctional groups. Or a difunctional epoxy resin cannot be used alone. (3) Hardener, accounting for 1~2〇wi% of the resin composition; (4) Accelerator, which accounts for the resin composition o.oi~1〇❶; the purpose of adding the accelerator is to promote the relationship between the epoxy resin and the hardener Cross-linking reaction (Cr〇sslinking), and the amount of addition will affect the reaction rate; • (5) inorganic powder, accounting for ~20 Wt of the resin composition; adding inorganic powder can be combined with phosphorus-based tablets Capsule, and can be more rigid after hardening of the thief; (6) 咼 thermally conductive powder, accounting for 5~85 wt% of the resin composition; wherein, when the resin composition has a high thermal conductivity powder content of less than 5wt When % is used, the resin composition cannot obtain better heat conduction, but when it is higher than 85, the addition and physical properties of the target are affected; (7) The phosphorus-based flame retardant 'is accounted for 0. ^0 plus%; improve flame resistance with 201127898 coverage; (8) processing aids, selected from coupling agents, reinforcing fillers, plasticizers, dispersant antioxidants, heat and light stabilizers, flame retardants, fillers, pigments Or one or more of the dyes. The processing aid accounts for 0.01 to 1% of the resin composition, and the coupling agent is added to improve the interface affinity between the inorganic powder and the highly thermally conductive powder and the resin. Other additives are used to improve the processing properties, mechanical and electrical properties, thermal properties and light stability of the resin composition. The stable epoxy in the tree assay of the present invention, the reactivity of the surface-containing complex, is directly bonded to the epoxy group of the difunctional or polyfunctional epoxy resin by means of an addition. The reaction is a chemical structure selected from the group consisting of one or more of the following formulas (a) to (d):

〇Cm<12的整數;Ri=H或OC4烴基;吣及R5獨立地為氫、甲基或An integer of 〇Cm<12; Ri=H or OC4 hydrocarbyl; 吣 and R5 are independently hydrogen, methyl or

式中忆的定義同上;及 X=A或B,且至少有一個X為B,其中 Λ 一 ch2-ch-ch2The definition in the formula is the same as above; and X=A or B, and at least one X is B, where Λ a ch2-ch-ch2

6 201127898 B= 其中E為 <qnp 0=fj>—o6 201127898 B= where E is <qnp 0=fj>-o

(b) 式中X的定義同上;及0為(b) where X is as defined above; and 0 is

—H_ X3 _〇_ 一 s-或 j_ ’ 2,心3, , [i (c) xo ox 式中X及Q的定義同上;及 (d)—H_ X3 _〇_ a s- or j_ ’ 2, heart 3, , [i (c) xo ox where X and Q are as defined above; and (d)

式中X的定義同上;及Y為-(CH2)n-或伸苯基,其中0<n<6的整 數。 本發明的樹脂組成物中的環氧樹脂成份可為雙官能基或多官 能基之環氧樹脂,其環氧當量為100〜2000 ;係選自雙酚A環氧樹 脂、雙酚F環氧樹脂、丁二烯型環氧樹脂、諾佛拉克型(Novolac 7 201127898 型’以下同)鄰甲酴曱搭環氧樹脂、諾佛拉克型紛甲經環氧樹脂、 諾佛拉克型紛雙苯甲晴氧樹脂、諾佛拉克型_二甲苯甲路環 氧樹脂、諾佛拉克養亞二苯基帽環氧樹脂、雜拉克型紅 環務二稀帽環氧翻旨、雜減型苯甲_氧細旨、諾佛拉克 型丙二酴曱_氧樹脂、諾佛拉克型間苯二紛環氧樹脂所組成群 組的一種或多種環氧樹脂。 本發明的樹脂組成物中的硬化劑成份,係選自胺類、酸酐類、 _ 酚醛樹脂類、聚硫醇化合物、異氰酸酿化合物、嵌段異氰酸酯化 合物或醇酸樹脂的其中一種或二種以上。但優選為胺類、紛醛樹 脂或酸酐類、或其多種混合物。 所述的胺類硬化劑可以選自脂肪胺(例如.:二乙烯三胺、三乙 烯四胺、四乙烯五胺、二乙氨基丙胺、乙二胺)、聚醯胺·多胺、脂 環族(例如:雙(4-胺基_3_甲基環己基)曱烷、雙(4_胺基環己基)曱 燒)、芳香族(例如:間苯二甲胺、二氨基二苯基曱烷、二氨基二 苯基觸•、間苯二胺)、雙氰胺、己二酸二醯肼、一級胺、二級胺或 •三級胺。 所述的酸酐類硬化劑可以選自苯乙烯-馬來酸酐、鄰苯二曱酸 野、四氫鄰笨二曱酸酐、六氫鄰苯二甲酸酐、曱基四氫鄰苯二曱 酸軒、甲基六氫鄰苯二甲酸酐、甲基納迪克酸酐、十二烯基琥珀 酸軒、綠菌酸酐、均苯四甲酸酐、苯酮四酸二酐、乙二醇雙偏苯 二酸軒、甲基環己烯基四酸二酐、偏苯三曱酸酐或聚壬二酸酐。 所述的酚醛樹脂類硬化劑可選自諾佛拉克型鄰曱酚曱醛樹 脂、諾佛拉克型酚甲醛樹脂、諾佛拉克型酚雙笨甲醛樹脂、諾佛 201127898 拉克型酚對二曱苯甲醛樹脂、諾佛拉克型酚亞二苯基甲醛樹脂、 諾佛拉克型酚二環務二烯甲酸樹脂、諾佛拉克型苯甲醛樹脂、諾 佛拉克型丙二酚甲醛樹脂、諾佛拉克型間苯二酚樹脂或三聚氰胺 酚曱醛樹脂。 本發明的樹脂組成物中的促i劑成份,係選自三級胺及其鹽 類、四級胺鹽化合物、2,4,6-三(二甲胺基曱基)苯酚、节基二曱胺、 咪唑類(例如:2-甲基咪唑、2-乙基-4-甲基咪唑、2-苯基咪唑、^ 苄基-2-甲基咪唑)、三戊基酚酸錄、單或多龄化合物(例如:酚、 水楊酸)、三氟化硼及其有機物之錯合物(例如:三氟化硼醚錯合 物、三氟化硼胺錯合物、BF3/單乙基胺錯合物)、磷酸或亞磷酸三 苯酯的其中一種或一種以上。但優選為三級胺、咪唑類或其混合 物。 本發明的樹脂組成物中的無機粉體搭配磷系阻燃劑具有良好 阻燃效果,並且可以提升樹脂組成物硬化後之剛性;其中氫氧化 鋁具有吸熱作用,在高溫裂解下吸收大量熱量放出結晶水並汽 • 化,降低整體熱量達到阻燃效果;無機粉體係選自球型或不規則 二氧化矽(SiCy、二氧化鈦(Ti〇2)、氫氡化鋁(a1(〇h^3)、氫氧化鎂 (Mg(OH)2)、碳酸約(CaC〇3)或燻矽石的其中一種或一種以上。無 機私體的平均粒控介於0.01-20微东為佳。其中,所述的燦石夕石為 一種多孔奈米級(nano-sized)矽石粒子,其添加比例為〇1〜1〇wt%, 平均粒徑為1至100奈米(nm);當燻;ε夕石添加比例大於, 會造成樹脂組成物黏度提昇,加工困難。 本發明的樹脂組成物中的高導熱粉體成份,係選自金屬氮化 201127898 物、金屬氧化物、碳化物、金剛石或紹粉的其令一種或—種以上。 其中’所述的金屬氮化物可以選自氮化紹、氮化領或氮化石夕,· 所述的金屬氧化物可以選自氧化銘、氧滅或氧化辞;所述的碳 化物可以選自碳化石夕或碳化删。但優選為氧化紹、氧化鎮、氧化 鋅氮化硼、氮化紹、氮化石夕及碳化石夕,更優選為具低介電常數 或低硬度的氧化鋁或氮化硼。 所述的南導熱粉體的形狀,可為粉末狀、球型狀、纖維狀、 片狀或層狀,但不同形狀的高導熱粉體可以摻混使用。 . 當選用粉末狀高導熱粉體時,粉體的平均粒捏(〇5〇)為〇〇5_5〇 微来’但麟為平均粒徑(U_20微米,更優選為平均粒徑〇 ι·ι〇 微米。當選用纖維狀高導熱粉體時,粉體的纖維直徑為〇 ι_ι〇微 米,且纖維長度與纖維直徑的比例為大於3,但優選為纖維直徑 0.1-5微米,且纖維長度與纖維直徑的比例為大於1〇,因為纖維狀 高導熱粉體的纖維直徑小於(Π微米時,可能難於混人樹脂組成物 中’而纖維直徑大於1〇微米時,易造成成品外觀不良。 丨為使本發明的樹脂組成物的高導熱粉體成份達到最佳填充 率,可將不同粒徑的高導熱粉體進行摻混,再利用粉體工程的 Horsfield理想填充數學模型取得高導熱粉體的最密堆積模型和最 密堆積曲線,以實現本發明的樹脂組成物因為達到高導熱粉體的 最佳填充率而具有最佳熱傳導係數。 本發明的樹脂組成物中的磷系阻燃劑為有機磷系阻燃劑,在 高溫下能形成穩定的交聯狀固體物質或碳化層,碳化層能阻止聚 合物進一步熱裂解,隔絕氧氣,具有隔熱、隔氧,、阻止可燃氣體 201127898 向外逸出的覆蓋作用,並能阻止其内部的熱分解產生物進入氣相 參與燃燒過程’達到阻然的目的。有機攝系阻燃劑選自鱗酸脂類, 如:三苯基填酸脂(TPP)、間苯二酚雙磷酸脂(RDP)、雙酚A二(二 苯基)磷酸脂(BPAPP)、雙酚A二(二甲基)磷酸脂(BBC)、.二鱗 酸間苯二酚酯(CR—733S)、間苯二酚-雙(二一2, 6-二甲基苯基碟酸 酯)(PX-200);聚磷酸銨類、磷酸三聚氰胺類(贻丨测土脱 Polyphosphate)、氰尿酸三聚氰胺類(Melamine cyanurate)、鱗 腈類(phosphazene)等 β — 本發明的樹脂組成物中的加工助劑,選自偶合劑、增塑劑、 分散劑、抗氧化劑、熱及光安定劑、阻燃劑、填料、顏料或染料 的的其中一種或一種以上。其中所添加之偶合劑是用來改善無機 氣體及局導熱粉體與樹脂間的界面親合性。偶合劑可以直接添加 入树月曰組成物中’或事先將無機粉體或高導熱粉體以偶合劑預先 處理後再製成本發明的樹脂組成物。其他助劑之選用視印刷電路 板用途,如:物理性質、電氣性質、熱性質及光安定性等,或改善 樹脂組成物的加工性質。 上述偶合劑選自三曱氧基石夕烷(TMS)、二甲氧基矽烷(DMS)、 鈦紹酸酯;增塑劑選自鄰苯二甲酸二曱酯(Dimethyl ph〇sphate)、 苯三酸三辛酯(Trioctyl Trimellitate)、鄰苯二甲酸二壬醋 (Dinonyl Phosphate);分散劑選自苯乙烯一馬來酸酐高分子共聚 物、長鏈脂肪醇;抗氧化劑選自硫二丙酸_二月桂酯(Dilauryl Thi〇dipr〇pi〇nate)、二叔 丁基羥基甲苯(Di—tertiary butyl-hydroxyl toluene);熱及光安定劑選自二苯甲阻燃劑選 201127898 自三甲苯基磷酸酯(Tricresy! Ph〇sphate)、三苯基磷酸醋 (Triphenyl Phosphate)、甲苯基-苯基磷酸酯(Cresyl phenyl Phosphate);填料選自碳酸詞、氧化鋁、二硫化鉬。 本發明的樹脂組成物的用途,包括藉含浸方式製成無鹵難燃 高_預浸潰體(Prepreg)或藉塗佈方式製成無齒難燃高導熱塗層 物後,再應用為印刷電路板的導熱絕緣層,使得印刷電路板具有 高導熱及無鹵難燃之特性。 .所述的無齒難燃尚導熱預浸潰體P>repreg),係以玻璃纖維布 (廣)、有機纖維布(蓆)或紙為基材,經過浸潰本發明的樹脂混合物 後而製得。所述的無鹵難燃高導熱塗層物,係以金屬箔(板)或塑膠 薄膜為基材,經過塗佈上申請專利範圍第i項的樹脂組成物而得 的塗層物。其中,金屬飢板)可選自FR_4基板、鋪(板)、銘笛(板) 或錫箔(板);塑膠薄膜可選自聚酯薄臈、聚烯烴薄臈、聚氣乙烯薄 膜、鐵氟龍薄膜或聚氨脂類薄膜等。 將所述的無鹵難燃尚導熱預浸潰體^)repreg)或無鹵難燃高導 熱塗層物應用於印刷電路板上成為導熱絕緣層時,印刷電路板具 有高導熱特性。這種具高導熱特性的印刷電路板,還具有以下優 點: 1·可以減少印刷電路板的尺寸; 2. 增加電流密度; 3. 改善產品熱及機械性質; 4. 提南產品耐久性; 5·降低散熱鰭片及其他散熱元件之使用量,減少產品體積; 12 201127898 6.取代較脆之陶瓷基板,提供較佳之機械耐久性。 茲列舉以下實施例及比較例來闡明本發明的效果,但本發明 的權利範圍不是僅限於實施例的範圍。 本發明之尚導熱、無鹵難燃樹脂組成物可藉由業界已知的方 法製成銅箔基板’例如該組合物’以常用雙氰胺(dicydianmide)或 多元酚(polyhydricphenolic)為硬化劑’當使用雙氰胺為硬化劑時, 雙亂胺使用篁為2-8 phr,最宜為2-4 phr,而使用多元紛為硬化劑 時’多元酴用置為紛性OH基與環氧基當量比值=〇.5·ι.5,最適當 ® 量比值=0.9-1.1,咪唑(imidazole)或三級胺類作促進劑,以及溶劑(適 當溶劑有N,N^甲基甲酿胺(DMF),丙_,丁_)調整黏度下,然 後含浸玻纖布或塗佈銅箔,經巧加熱乾燥後形成預浸潰體(prepreg) 或背膠銅箔(RCC),之後在一面或二面放置銅箔,加壓加熱製成銅 箱基板。 發明人就以下所示之實施例係依本發明方法製得,為具體揭示其 内容之例示,惟並不以此為限。 _ [實施例1] 將固型份75重量份之填系環氧樹脂(EEW=350g/eq,南亞塑膠 公司,品名:NPEP-200LA70,磷含量=2.6wt%) ’ 25重量份之雙酚 A型環氧樹脂(EEW=186g/eq,南亞塑膠公司,品名:NPEL-182E), 34.87重量份之酚醛樹脂及〇.〇5重量份之2-曱基咪唑,溶於丁酮 207.5重量份後’摻混250.5重量份之高導熱粉體,即得高導熱無 鹵難燃組成物(高導熱粉體佔65%)。 其中,摻混入上述樹脂液中的高導熱粉體(250.5重量份),利 13 201127898 用Horsfield模型取得高導熱粉體的最密堆積模型,其具體比例為 45.09重量份之球型氧化鋁A (平均粒徑、5 〇1重量份之 球型氧化紹B (平均粒徑D5〇=0.5㈣及2〇〇.4重量份之氮化蝴(平 均粒徑 ϋ5()=5.5μιη;)。 將玻纖布(南亞塑膠公司,布種型號106),含浸上述樹脂液, 然後於160 C(含浸機)乾燥數分鐘,並調整乾燥時間將預浸潰體之 最低熔融黏度調整為2000〜10000 p〇ise間,最後將膠片疊於二片 35μιη後之銅箔間,在3〇kg/cm2壓力及溫度85<>c下以5艺/瓜^的 加溫速率,加溫到185艺後,再保持恒溫12〇分鐘,接著慢慢冷卻 到130°C以取得銅箔基板。 測試所製成的銅箔基板的物性,其結果詳如表】所示。 [實施例2] 將實施例1的樹脂液配方改為摻混539·5重量份之高導熱粉體 (佔高賴無_驗成物之·),_細麵翻取得高導 丨熱粉體的最密堆積模型,其具體比例為9711重量份之球型氧化紹 Α (平均粒控D5〇々m)、10.79重量份之球型氧化铭Β (平均粒徑 D50=0.5_及431.6重量份之氮化蝴(平均粒徑,其 中,氧化織體實際堆積曲線與理論最密堆積曲線比較如第!圖。 測試所製成的銅絲板的物性,其結果詳如表工所示。 [實施例3] 樹脂液配方同實施例2,但將樹脂液固形份調整為75加%後塗 . [Si 14 201127898 佈於35μιη之銅箔上,形成塗^厚度ι〇〇μιη的背膠銅箔(Rcc),之 後再於樹脂面疊上35μηι之銅箔if行壓合,壓合條件同實施例1, 最後將銅箔蝕刻後測試銅箔基板的物性,其結果詳如表1所示。 [實施例4] 樹脂液配方及成品同實施例2,但改變高導熱粉體的成份,將 實施例2摻混1 〇7.9重量份之球型氧化鋁粉體更改為市售不同粒徑 摻混之球型氧化銘DAW-300 (電氣化學,DAW-45/DAW-5=l/l,平 均粒徑〇5〇=4·4μιη),加上431.6重量份之氮化硼。其中,市售之氧 化銘粉體實際堆積曲線與理論最密堆積曲線比較如第2圖。 測試所製成的銅箔基板的物性,其結果詳如表1所示。 [實施例5] 將固型份15重量份之磷系環氧樹脂(EEW=350g/eq,南亞塑 膠公司,品名:NPEP-200LA70,鱗含量=2.6wt%), 15重量份之雙 酚A型環氧樹脂(EEW==i86g/eq,南亞塑膠公司,品名: NPEL-128E),70重量份之鄰甲酚甲醛環氧樹脂(EEW=210g/eq,南 亞塑膠公司,品名:NPCN-703) ’ 45.68重量份之酚醛樹脂,1〇 重量份之磷系耐燃劑(SPB-100)及0.05重量份之2-曱基咪唑,溶於 丁酮473重量份後,摻混562.1重量份之氮化硼(平均粒徑 〇5〇=5.5μιη)及140.6重量份之氳氧化紹’即得高導熱無鹵難燃組成 物(高導熱粉體佔80%)。測試所製成的銅箔基板的物性,其結果詳 如表1所示。 15 201127898 [比較例1] 將75重量份之鄰曱酚甲醛環氧樹脂南亞塑膠 公司’品名:NPCN-703) ’ 25重量份之雙酚a型環氧樹脂 (EEW=186g/eq ’南亞塑膠公司,品名:,4915重量 份之酚醛樹脂及0.05重量份之2_甲基咪唑,溶於丁酮4〇16重量 份後’摻混596.61重量份之高導熱粉體,即得高導熱無齒難燃組 成物(尚導熱粉體佔80%);上述高導熱組成物添加之高導熱粉體, 包括107.4重量份之球型氧化鋁a (平均粒徑仏❶^哗)、n.93重 量伤之球型氧化紹B (平均粒徑p^o^jLun)及477.28重量份之氮化 硼(平均粒徑〇5〇=5.5μιη),之後,同實施例i製法製得銅箔基板。 測試所製成的銅箔基板的物性,其結果詳如表丨所示。 [比較例2] 樹脂液配方同實施例卜但樹脂液配方改為摻混539 5重量份 之二氧化矽’之後,同實施例1製法製得銅箱基板。 測式所製成的銅基板的物性,其結果詳如表1所示。 [比較例3] 樹脂液配方及樣品同實施例1 ’但將539.5重量份之高導熱粉 體更改為全量氮化棚。刺斌所製成的銅络基板的物性,其结果詳 如表1所示。 結果 比較表1的實施例1〜5及比較例1〜3的結果後,可以得到以下 16 201127898 結論: 1. 由實施例1及實施例2可知,將樹脂分別充填250.5重量份 數、5:39.5重量份數的高導熱粉體後,樹脂組成物的熱傳導係數可 長:尚為5.2 W/m.K (實施例1)及8.1 w/m.K (實施例2)。若使用RCC 製程,樹脂組成物的熱傳導係數更可提高至9 9 w/m K (實施例3)。 2. 由實施例2與比較例卜2可知,⑴將磷系環氧樹脂以鄰曱 酚甲醛環氧樹脂取代後,雖可達高導熱特性,但無法達到 .之難燃性β (2)將尚導熱粉體以二氧化石夕取代後,雖可達ul94_v〇 之難燃性,但並無法達到良好之熱傳導性。由此顯示,依本發明 所調製之配方不但具有優異之熱傳導性,且能兼具無鹵難燃之特 性’符合電子產品UL94-V0之需求。 3·另由第1圖及第2圖比較可知,自行利用H〇rsfield模型資 選的球型氧化铭粒子搭配氮化侧所掺混的高導熱配方(實施例2), 其堆積曲線較接近理論最密堆積曲線(第丨圖),因此高導熱粉體粒 子彼此靠得更緊密,熱傳效果更佳,熱傳導係數可達8.1W/m.K, 且較全量使用氮化硼6.2 W/m.K為高(比較例3);而使用市售已摻 混好之氧化鋁粉體(實施例4),其堆積曲線則與理論最密堆積曲線 (第2圖)差距較大’其熱傳導係數僅達5.9 w/m.K ;由此可知越接 近理論最密堆積者,粉體之接觸點較多,其粉體之填充率亦可較 高,故熱導係數也較高。 4·實施例5顯示,將磷系環氧樹脂降量後搭配磷系阻燃劑及 氫氧化鋁可維持UL94V0耐燃性及高導熱之特性外,並且維持高玻 螭轉移溫度(Tg)。 17 201127898Wherein X is as defined above; and Y is -(CH2)n- or phenyl, wherein 0 < n < The epoxy resin component in the resin composition of the present invention may be a difunctional or polyfunctional epoxy resin having an epoxy equivalent of from 100 to 2000; selected from the group consisting of bisphenol A epoxy resin and bisphenol F epoxy resin. Resin, butadiene type epoxy resin, Norfolk type (Novolac 7 201127898 'same as below'), phthalate epoxy resin, Norfolk type enamel epoxy resin, Norfolk type bis-benzene Alkaline Oxygen Resin, Norfolk Type _ xylene Road Epoxy Resin, Norfolk Acrylic Diphenyl Cap Epoxy Resin, Miscellaneous Red Circulating Dirt Cap Epoxy Resin, Hybrid Benzo _ One or more epoxy resins of the group consisting of oxygen thinner, Norfolk type propylene oxide _ oxy resin, and Norfolk type benzophenone epoxy resin. The hardener component in the resin composition of the present invention is one or two selected from the group consisting of amines, acid anhydrides, phenolic resins, polythiol compounds, isocyanuric compounds, blocked isocyanate compounds or alkyd resins. More than one species. However, it is preferably an amine, an aldehyde resin or an acid anhydride, or a mixture thereof. The amine hardener may be selected from the group consisting of fatty amines (for example: diethylenetriamine, triethylenetetramine, tetraethylenepentamine, diethylaminopropylamine, ethylenediamine), polyamines, polyamines, and alicyclic rings. Family (eg bis(4-amino-3-methylcyclohexyl)decane, bis(4-aminocyclohexyl) oxime), aromatic (eg m-xylylenediamine, diaminodiphenyl) Decane, diaminodiphenylate, m-phenylenediamine, dicyandiamide, diammonium adipate, primary amine, secondary amine or tertiary amine. The acid anhydride hardener may be selected from the group consisting of styrene-maleic anhydride, phthalic acid wild, tetrahydro o-benzoic anhydride, hexahydrophthalic anhydride, and mercaptotetrahydrophthalic acid , methyl hexahydrophthalic anhydride, methyl nadic anhydride, dodecenyl succinate, chloric anhydride, pyromellitic anhydride, benzophenone tetraacid dianhydride, ethylene glycol terephthalic acid Xuan, methylcyclohexenyltetracarboxylic dianhydride, trimellitic anhydride or polysebacic anhydride. The phenolic resin hardener may be selected from the group consisting of Norfolk type o-quinone phenolic formaldehyde resin, Norfolk type phenol formaldehyde resin, Norfolk type phenolic bisphenol formaldehyde resin, and Norfolk 201127898 gram phenol p-terephthalic acid Formaldehyde resin, Norfolk phenol phenylene diphenyl formaldehyde resin, Norfolk phenol dicyclopentadiene formic acid resin, Norfolk type benzaldehyde resin, Norfolk type propylene glycol formaldehyde resin, Norfolk type Resorcinol resin or melamine phenol furfural resin. The component of the resin composition of the present invention is selected from the group consisting of a tertiary amine and a salt thereof, a quaternary amine salt compound, 2,4,6-tris(dimethylaminodecyl)phenol, and a nodal group II. Indoleamine, imidazoles (eg 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, benzyl-2-methylimidazole), tripentylphenolic acid, single Or complex compounds of multiple ages (eg, phenol, salicylic acid), boron trifluoride, and organic compounds thereof (eg, boron trifluoride ether complex, boron trifluoride amine complex, BF3/single B One or more of a base amine complex), phosphoric acid or triphenyl phosphite. However, it is preferably a tertiary amine, an imidazole or a mixture thereof. The inorganic powder in the resin composition of the invention has a good flame retardant effect with the phosphorus-based flame retardant, and can improve the rigidity of the resin composition after hardening; wherein the aluminum hydroxide has an endothermic effect, and absorbs a large amount of heat under high temperature cracking. The crystallization water is vaporized to reduce the overall heat to achieve the flame retardant effect; the inorganic powder system is selected from spherical or irregular cerium oxide (SiCy, titanium dioxide (Ti〇2), aluminum hydride (a1 (〇h^3)) One or more of magnesium hydroxide (Mg(OH)2), carbonic acid (CaC〇3) or smoked vermiculite. The average particle size of the inorganic private body is preferably between 0.01 and 20 micro-east. The calcite stone is a porous nano-sized vermiculite particle, the addition ratio is 〇1~1〇wt%, and the average particle diameter is 1 to 100 nanometers (nm); when smoked; ε If the addition ratio of the smectite is larger than that, the viscosity of the resin composition is increased and the processing is difficult. The high thermal conductivity powder component of the resin composition of the present invention is selected from the group consisting of metal nitridation 201127898, metal oxide, carbide, diamond or slag. One or more of the powders. The metal oxide may be selected from the group consisting of oxidized, nitrided or nitrided, and the metal oxide may be selected from the group consisting of oxidized, oxidized or oxidized; the carbide may be selected from carbon carbide or carbonized. Preferably, it is oxidized, oxidized, zinc oxynitride, nitriding, nitriding, and carbon carbide, more preferably alumina or boron nitride having a low dielectric constant or low hardness. The shape of the powder may be powdery, spherical, fibrous, flake or layered, but high-heat-conducting powders of different shapes may be blended. When powdery high-heat-conducting powder is used, the powder is The average grain pinch (〇5〇) is 〇〇5_5〇微来' but the average particle size is U_20 microns, more preferably the average particle size 〇ι·ι〇μm. When fiber-like high thermal conductivity powder is used, the powder The fiber diameter of the body is 〇ι_ι〇 micron, and the ratio of the fiber length to the fiber diameter is more than 3, but preferably the fiber diameter is 0.1-5 μm, and the ratio of the fiber length to the fiber diameter is more than 1 〇 because of the fibrous high thermal conductivity. When the fiber diameter of the powder is less than (Π micron, it may be difficult to mix In the resin composition, when the fiber diameter is larger than 1 μm, the appearance of the finished product is liable to be poor. In order to achieve the optimum filling rate of the high thermal conductive powder component of the resin composition of the present invention, high thermal conductivity powders of different particle sizes can be used. The body is blended, and the most closely packed model and the closest packing curve of the high thermal conductive powder are obtained by using the Fursfield ideal filling mathematical model of the powder engineering to realize the optimal filling of the resin composition of the present invention because of high thermal conductivity powder. The phosphorus-based flame retardant in the resin composition of the present invention is an organic phosphorus-based flame retardant capable of forming a stable crosslinked solid substance or a carbonized layer at a high temperature, and the carbonized layer can prevent polymerization. Further thermal cracking, oxygen isolation, heat insulation, oxygen barrier, prevent the flammable gas 201127898 from escaping outward, and prevent the internal thermal decomposition products from entering the gas phase to participate in the combustion process. . The organic photo-based flame retardant is selected from the group consisting of squaric acid esters such as triphenyl acid fat (TPP), resorcinol diphosphate (RDP), and bisphenol A bis(diphenyl) phosphate (BPAPP). , bisphenol A bis(dimethyl)phosphate (BBC), resorcinol diphosphate (CR-733S), resorcinol-bis (di- 2,6-dimethylphenyl dish) Acid ester) (PX-200); ammonium polyphosphate, melamine phosphate (polyphosphate), melamine cyanurate, phosphazene, etc. β - the resin composition of the present invention The processing aid is selected from one or more of a coupling agent, a plasticizer, a dispersant, an antioxidant, a heat and light stabilizer, a flame retardant, a filler, a pigment or a dye. The coupling agent added therein is used to improve the interface affinity between the inorganic gas and the thermally conductive powder and the resin. The coupling agent may be directly added to the composition of the tree sputum or the inorganic powder or the highly thermally conductive powder may be previously treated with a coupling agent to prepare the resin composition of the present invention. The choice of other additives depends on the printed circuit board application, such as physical properties, electrical properties, thermal properties, and light stability, or improves the processing properties of the resin composition. The coupling agent is selected from the group consisting of trioxane oxalate (TMS), dimethoxy decane (DMS), and titanium phthalate; the plasticizer is selected from the group consisting of dimethyl ph〇sphate and benzene. Trioctyl Trimellitate, Dinonyl Phosphate; dispersant selected from the group consisting of styrene-maleic anhydride polymer copolymer, long-chain fatty alcohol; antioxidant selected from thiodipropionic acid Dilauryl Thi〇dipr〇pi〇nate, Di-tertiary butyl-hydroxyl toluene; heat and light stabilizer selected from the group consisting of diphenyl flame retardant selected 201127898 from tricresyl phosphate Tricresy! Ph〇sphate, Triphenyl Phosphate, Cresyl phenyl Phosphate; the filler is selected from the group consisting of carbonated acid, alumina, and molybdenum disulfide. The use of the resin composition of the present invention comprises: preparing a halogen-free flame retardant high-prepreg by an impregnation method or forming a toothless flame-retardant high thermal conductive coating by a coating method, and then applying it as printing The thermal insulation layer of the circuit board enables the printed circuit board to have high thermal conductivity and halogen-free flame retardant properties. The toothless flame-retardant heat-conducting prepreg P> repreg) is a glass fiber cloth (wide), an organic fiber cloth (seat) or paper as a substrate, after being impregnated with the resin mixture of the invention be made of. The halogen-free flame-retardant high-thermal-conducting coating material is a coating material obtained by coating a resin composition of the patent application scope i with a metal foil (plate) or a plastic film as a base material. Among them, metal stark) can be selected from FR_4 substrate, paving (plate), din (plate) or tin foil (plate); plastic film can be selected from polyester enamel, polyolefin thin enamel, polyethylene film, iron fluoride Dragon film or polyurethane film. The printed circuit board has high thermal conductivity when the halogen-free flame-retardant thermally conductive pre-impregnated body repreg) or the halogen-free flame-retardant high thermal conductive coating is applied to a printed circuit board to form a thermally conductive insulating layer. This printed circuit board with high thermal conductivity also has the following advantages: 1. It can reduce the size of the printed circuit board; 2. Increase the current density; 3. Improve the thermal and mechanical properties of the product; 4. Duran product durability; · Reduce the use of heat sink fins and other heat dissipating components to reduce product volume; 12 201127898 6. Replace the brittle ceramic substrate to provide better mechanical durability. The following examples and comparative examples are given to illustrate the effects of the present invention, but the scope of the present invention is not limited to the scope of the examples. The still thermally conductive, halogen-free flame-retardant resin composition of the present invention can be made into a copper foil substrate by a method known in the art, for example, the composition is made of a commonly used dicydianmide or polyhydricphenolic as a hardener. When dicyandiamide is used as a hardener, the use of hydrazine is 2-8 phr, preferably 2-4 phr, and when multiple sclerosing agents are used, 'multiple hydrazines are used as sulphur OH groups and epoxy. Base equivalent ratio = 〇.5·ι.5, most appropriate ratio = 0.9-1.1, imidazole or tertiary amine as accelerator, and solvent (suitable solvent N, N^ methyl amide) (DMF), propylene _, butyl _) adjust the viscosity, then impregnated glass fiber cloth or coated copper foil, after heating and drying to form prepreg or backing copper foil (RCC), then on one side Or copper foil is placed on both sides and heated to form a copper box substrate. The inventors have made the following examples in accordance with the method of the present invention, and the examples thereof are specifically disclosed, but are not limited thereto. _ [Example 1] 75 parts by weight of a solid epoxy resin (EEW = 350 g / eq, Nanya Plastics Co., Ltd., product name: NPEP-200LA70, phosphorus content = 2.6 wt%) '25 parts by weight of bisphenol Type A epoxy resin (EEW = 186g / eq, South Asia Plastics Company, product name: NPEL-182E), 34.87 parts by weight of phenolic resin and 〇. 〇 5 parts by weight of 2-mercaptoimidazole, soluble in butanone 207.5 parts by weight After the 'mixing 250.5 parts by weight of the high thermal conductivity powder, that is, a high thermal conductivity halogen-free flame retardant composition (high thermal conductivity powder accounts for 65%). Among them, the high thermal conductive powder (250.5 parts by weight) blended into the above resin liquid, benefit 13 201127898 The most dense packing model of the high thermal conductive powder is obtained by the Horsfield model, and the specific ratio thereof is 45.09 parts by weight of the spherical alumina A ( The average particle diameter, 5 〇 1 part by weight of spherical oxidized B (average particle diameter D5 〇 = 0.5 (four) and 2 〇〇. 4 parts by weight of nitriding butterfly (average particle size ϋ 5 () = 5.5 μιη;) Glass fiber cloth (Nanya Plastics Co., Ltd., model 106), impregnated with the above resin liquid, and then dried at 160 C (impregnation machine) for several minutes, and adjust the drying time to adjust the minimum melt viscosity of the prepreg to 2000~10000 p 〇ise, finally stack the film between two pieces of 35μιη copper foil, under the pressure of 3〇kg/cm2 and temperature 85<> The temperature was kept at a constant temperature for 12 minutes, and then slowly cooled to 130 ° C to obtain a copper foil substrate. The physical properties of the prepared copper foil substrate were examined, and the results are shown in the table. [Example 2] Examples The resin liquid formulation of 1 is changed to blend 539. 5 parts by weight of high thermal conductivity powder (accounting for high 无 _ _ test substance), _ Fine-stacking to obtain the most densely packed model of high-conducting hot powder, the specific proportion of which is 9711 parts by weight of spherical oxidized sputum (average particle size D5〇々m), 10.79 parts by weight of spherical oxidized inscription (average Particle size D50=0.5_ and 431.6 parts by weight of nitriding butterfly (average particle size, wherein the actual accumulation curve of the oxidized texture is compared with the theoretical closest packing curve as shown in Fig. Fig. The physical properties of the copper wire plate produced by the test, The results are as shown in the table. [Example 3] The resin liquid formulation was the same as in Example 2, but the resin liquid solid content was adjusted to 75 % by weight and then coated. [Si 14 201127898 cloth on 35 μιη copper foil to form a coating ^ 〇〇 〇〇 〇〇 的 的 背 铜 的 的 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 Physical properties, the results are shown in Table 1. [Example 4] Resin liquid formulation and finished product were the same as in Example 2 except that the composition of the high thermal conductive powder was changed, and Example 2 was blended with 1 〇 7.9 parts by weight of spherical oxidation. The aluminum powder was changed to a commercially available spherical type oxidized DAW-300 with different particle size blending (Electrical Chemistry, DAW-45/DAW) -5=l/l, average particle size 〇5〇=4·4μιη), plus 431.6 parts by weight of boron nitride. Among them, the actual accumulation curve of the commercially available oxidized powder is compared with the theoretical closest packing curve. Fig. 2 The physical properties of the copper foil substrate produced were tested, and the results are shown in Table 1. [Example 5] 15 parts by weight of a solid epoxy resin (EEW = 350 g/eq, South Asia Plastic) Company, product name: NPEP-200LA70, scale content = 2.6wt%), 15 parts by weight of bisphenol A type epoxy resin (EEW == i86g / eq, South Asia Plastics Company, product name: NPEL-128E), 70 parts by weight O-cresol formaldehyde epoxy resin (EEW=210g/eq, South Asia Plastics Co., Ltd., product name: NPCN-703) '45.68 parts by weight of phenolic resin, 1 part by weight of phosphorus-based flame retardant (SPB-100) and 0.05 parts by weight 2-mercaptoimidazole, after dissolving 473 parts by weight of methyl ethyl ketone, blending 562.1 parts by weight of boron nitride (average particle size 〇 5 〇 = 5.5 μιη) and 140.6 parts by weight of bismuth oxide, which gives high thermal conductivity. Halogen flame retardant composition (80% of high thermal conductivity powder). The physical properties of the prepared copper foil substrate were tested, and the results are shown in Table 1. 15 201127898 [Comparative Example 1] 75 parts by weight of o-nonylphenol formaldehyde epoxy resin Nanya Plastics Co., Ltd. 'product name: NPCN-703' 25 parts by weight of bisphenol a-type epoxy resin (EEW=186g/eq 'Nanya Plastics Company, product name: 4915 parts by weight of phenolic resin and 0.05 parts by weight of 2-methylimidazole, dissolved in 4 to 16 parts by weight of methyl ethyl ketone, 'mixed 596.61 parts by weight of high thermal conductivity powder, that is, high thermal conductivity without teeth The flame retardant composition (80% of the thermal conductive powder); the high thermal conductive powder added by the above high thermal conductivity composition, comprising 107.4 parts by weight of spherical alumina a (average particle size 、^哗), n.93 weight A spherical oxidized B (average particle diameter p^o^jLun) and 477.28 parts by weight of boron nitride (average particle diameter 〇5 〇 = 5.5 μm) were obtained, and thereafter, a copper foil substrate was obtained in the same manner as in Example i. The physical properties of the prepared copper foil substrate were tested, and the results are shown in Table 。. [Comparative Example 2] The resin liquid formulation was the same as in the example, but the resin liquid formulation was changed to blend 539 5 parts by weight of cerium oxide'. A copper box substrate was prepared in the same manner as in Example 1. The physical properties of the copper substrate produced by the measurement were as shown in Table 1. 3] The resin liquid formulation and sample were the same as those in Example 1 'but 539.5 parts by weight of the high thermal conductive powder was changed to the full amount of the nitriding shed. The physical properties of the copper matrix substrate made by the thorns were as shown in Table 1. As a result, after comparing the results of Examples 1 to 5 and Comparative Examples 1 to 3 of Table 1, the following 16 201127898 conclusions were obtained. 1. From Example 1 and Example 2, the resin was filled with 250.5 parts by weight and 5: After 39.5 parts by weight of the high thermal conductive powder, the heat transfer coefficient of the resin composition can be long: 5.2 W/mK (Example 1) and 8.1 w/mK (Example 2). If an RCC process is used, the resin composition The heat transfer coefficient can be further increased to 9 9 w/m K (Example 3). 2. From Example 2 and Comparative Example 2, (1) after replacing the phosphorus-based epoxy resin with o-nonylphenol formaldehyde epoxy resin, Although it can reach high thermal conductivity, it can not reach the flame retardancy of β. (2) After the thermal conductive powder is replaced by sulphur dioxide, it can reach the flame retardancy of ul94_v〇, but it can not achieve good thermal conductivity. It is thus shown that the formulation prepared according to the invention not only has excellent thermal conductivity, but also has no The characteristics of halogen flame retardant ' meet the requirements of electronic products UL94-V0. 3. According to the comparison of Figure 1 and Figure 2, the ball-shaped oxidized Ming particles selected by H〇rsfield model are blended with the nitriding side. The high thermal conductivity formula (Example 2) has a stacking curve closer to the theoretical closest packing curve (Fig. 2), so the high thermal conductivity powder particles are closer to each other, and the heat transfer effect is better, and the heat transfer coefficient can reach 8.1 W. /mK, and the use of boron nitride 6.2 W/mK is higher than the full amount (Comparative Example 3); and using the commercially available alumina powder (Example 4), the stacking curve is the closest to the theoretical packing. The curve (Fig. 2) has a large gap, and its heat transfer coefficient is only 5.9 w/mK. It can be seen that the closer to the theoretical densest packing, the more contact points of the powder, and the filling rate of the powder can be higher. Therefore, the thermal conductivity coefficient is also high. 4. Example 5 shows that the phosphorus-based epoxy resin is reduced in proportion to a phosphorus-based flame retardant and aluminum hydroxide to maintain UL94V0 flame resistance and high heat conductivity, and to maintain a high glass transition temperature (Tg). 17 201127898

表1實施例及比較例配方及預浸潰體與基板物性表 項目 實施例1 實施例2 實施例 3 實施例 4 實施例 5 比較例1 比較例2 比較例3 製程方式 Prepreg Prepreg RCC Prepreg Prepreg Prepreg Prepreg Prepreg 磷系環氧樹脂 75 75 75 75 15 一 75 75 雙鹼A型環氧樹脂 25 25 25 25 15 25 25 25 鄰甲酚气 9醛環氧樹脂 一 — 一 — 70 75 一 一 硬化劑 酚醛樹脂 34.87 34.87 34.87 34.87 45.68 49.15 34.87 34.87 促進劑 2-甲基咪唑 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 磷系阻斧 S劑 — — — — 10 一 一 一 溶劑 丁酮 207.5 363.1 363.1 363.1 473 401.6 363.1 363.1 高導熱 粉體 氧化鋁A 45.09 97.11 97.11 — — 107.4 — — 氧化鋁B 5.01 10.79 10.79 — — 11.93 一. —— 氧化鋁DAW-300 一 — — 107.9 — — 一 一. 氬化硼 200.4 431.6 431.6 431.6 562.1 477.28 — 539.5 無機 粉體 二氧化矽 — — — — — — 539.5 — 氫氧化鋁 140.6 加工助劑 2.5 5.4 5.4 5.4 7.0 5.9 5.4 5.4 粉體佔組成物比例(〇/0) 65 80 80 80 80 80 80 80 熱傳導係數 (W/m.K)*1 5.2 8.1 9.9 5.9 8.5 9.7 1.2 6.2 耐燃性(UL-94) V0 V0 V0 V0 VO V2 V0 V0 磷含量PX (佔樹脂量) 1.45 1.45 1.45 1.45 1.1 0 1.45 1.45 玻璃轉移溫度(Tg) (r) 121 122 120 122 148 145 120 121 註:*1.使用 Laser Flash LFA-447 測試,Modify ASTME1461。 18 201127898 【圖式簡單說明】 第1圖為不同粒徑之球型氧化鋁A/B=9/l複合組成最密堆積 與理論最密堆積曲線圖。 第2圖為市售不同粒徑摻混之球型氧化鋁DAW-300最密堆積 與理論最密堆積曲線圖 【主要元件符號說明】Table 1 Example and Comparative Example Formulation and Prepreg and Substrate Property Table Item Example 1 Example 2 Example 3 Example 4 Example 5 Comparative Example 1 Comparative Example 2 Comparative Example 3 Process Method Prepreg Prepreg RCC Prepreg Prepreg Prepreg Prepreg Prepreg Phosphorus Epoxy Resin 75 75 75 75 15 -75 75 Double Base A Type Epoxy Resin 25 25 25 25 15 25 25 25 o-cresol 9-aldehyde Epoxy Resin 1- - 70 75 One-One Hardener Phenolic Resin 34.87 34.87 34.87 34.87 45.68 49.15 34.87 34.87 Accelerator 2-methylimidazole 0.05 0.05 0.05 0.05 0.05 0.05 0.05 Phosphorus axillary S agent — — — — 10 —1 Solvent butanone 207.5 363.1 363.1 363.1 473 401.6 363.1 363.1 High Thermally Conductive Powder Alumina A 45.09 97.11 97.11 — — 107.4 — — Alumina B 5.01 10.79 10.79 — — 11.93 I. — Alumina DAW-300 I — 107.9 — — One. Boron argon 200.4 431.6 431.6 431.6 562.1 477.28 — 539.5 Inorganic powder cerium oxide — — — — — — 539.5 — Aluminum hydroxide 140.6 Processing aid 2.5 5.4 5.4 5.4 7.0 5. 9 5.4 5.4 Powder to composition ratio (〇/0) 65 80 80 80 80 80 80 80 Thermal conductivity (W/mK)*1 5.2 8.1 9.9 5.9 8.5 9.7 1.2 6.2 Flame resistance (UL-94) V0 V0 V0 V0 VO V2 V0 V0 Phosphorus content PX (resin amount) 1.45 1.45 1.45 1.45 1.1 0 1.45 1.45 Glass transition temperature (Tg) (r) 121 122 120 122 148 145 120 121 Note: *1. Test using Laser Flash LFA-447, Modify ASTME1461. 18 201127898 [Simple description of the diagram] Figure 1 is the most densely packed and theoretically densely packed plot of spherical alumina A/B=9/l composites with different particle sizes. Figure 2 is the most densely packed and theoretically densely packed graph of spherical alumina DAW-300 blended with different particle sizes. [Main component symbol description]

no

1919

Claims (1)

201127898 七、申請專利範圍: 1. 一種印刷電路板用高導熱、無函難燃之樹脂組成物,其樹脂組 成物係包含: (1) 磷系環氧樹脂,佔樹脂組成杨5〜7〇 wt % ; (2) 多官能基或雙官能基之環氧樹脂,佔樹脂組成物〇~5〇财% ; (3) 硬化劑,佔組成物丨〜加树% ; (4) 促進劑’佔組成物〇 〇1〜1〇树0/〇;201127898 VII. Patent application scope: 1. A resin composition with high thermal conductivity and no flame resistance for printed circuit boards. The resin composition includes: (1) Phosphorus epoxy resin, which accounts for 5~7〇 of resin composition. Wt % ; (2) Polyfunctional or difunctional epoxy resin, accounting for 5% of the resin composition; (3) Hardener, accounting for the composition 丨 ~ plus tree %; (4) accelerator ' Occupy composition 〇〇1~1〇树0/〇; (5) 無機粉體’佔組成物之〇〜2〇诚〇/〇; (6) 高導熱粉體,佔組成物之5〜85wt〇/〇; (7) 磷系阻燃劑,佔組成物之0jdo加% ; (8) 加工助劑,佔組成物之0.01〜10 wt %。 2.如申請專利範圍第1項所述之印刷電路板用高導熱、無產難燃 之樹脂組成物,其中,所述的磷系環氧樹脂,係為含磷化合物 的反應性氫’利用附加型(addition)的方式,直接鍵結雙官能基 或多官能基環氧樹脂的環氧基反應而成,其為選自下列(a)至(d) 式中一種或一種以上所組成族群之化學結構: (a)(5) Inorganic powder 'accounting for composition 〇~2〇cheng〇/〇; (6) High thermal conductivity powder, accounting for 5~85wt〇/〇 of composition; (7) Phosphorus-based flame retardant, accounting for composition 0jdo plus %; (8) processing aid, accounting for 0.01~10 wt% of the composition. 2. The resin composition according to claim 1, wherein the phosphorus-based epoxy resin is a reactive hydrogen of a phosphorus-containing compound. The addition method is a direct bonding of an epoxy group of a difunctional or polyfunctional epoxy resin, which is selected from one or more of the following groups (a) to (d); Chemical structure: (a) 式中: 〇<m<12的整數;R1=H或Ci〜G烴基;忆及r5獨立地為氫、甲基Wherein: 〇<m<12 integer; R1=H or Ci~G hydrocarbon group; recall that r5 is independently hydrogen, methyl 或 式中忆的定義同上;及 201127898 X=A或B,且至少有一個X為B,其中 Λ Λ A= -CH2-CH-CH2 OH B= —CH2~ct(H~CHg~E 其中E為 0=P—o (b) ,x X 式中X的定義同上;及Q為 O II ?H3 -CH— -C-2 ihl3 _s—或一s— II o (c) 式中X及Q的定義同上;及 (d)Or the definition in the formula is the same as above; and 201127898 X=A or B, and at least one X is B, where Λ Λ A= -CH2-CH-CH2 OH B= —CH2~ct(H~CHg~E where E 0 = P - o (b) , x X where X is as defined above; and Q is O II ? H3 -CH - -C-2 ihl3 _s - or a s - II o (c) where X and Q As defined above; and (d) ,其中0<n<6的 21 201127898 整數。 3·如申請專利範圍第1項所述之印刷電路板用高導熱、無鹵難燃 之樹脂組成物,其中,所述的多官能基或雙官能基之環氧樹脂, 其環氧當量為100〜2000 ;係選自雙酚Α環氧樹脂、雙酚F環氧 樹脂、丁二烯型環氧樹脂、諾佛拉克型鄰甲酚甲醛環氧樹脂、 諾佛拉克型紛甲酸環氧樹脂、諾佛拉克型驗雙苯甲經環氧樹 脂、諾佛拉克型酚對二甲苯甲醛環氧樹脂、諾佛拉克型酚亞二 苯基甲醛環氧樹脂、諾佛拉克型酚二環務二烯曱醛環氧樹脂、 諾佛拉克型本曱酿環氧樹脂、諾佛拉克型丙二紛曱酸環氧樹 脂、諾佛拉克型間苯二酚環氧樹脂所組成群組的一種或多種環 氧樹脂。 4.如申請專利範圍第1項所述之印刷電路板用高導熱、無鹵難燃 之樹脂組成物,其中,所述的硬化劑選自胺類、酸酐類、酚醛 樹月曰類、^^硫醇化合物、異亂酸醋化合物、嵌段異氰酸自旨化合 物或醇酸樹脂的其中一種或一種以上。 春 5.如申請專利範圍第1項所述之印刷電路板用高導熱、無鹵難燃 之樹脂組成物,其中,所述的促進劑選自三級胺及其鹽類、四 級胺鹽化合物、2,4, 6-三(二甲胺基甲基)苯酚、节基二甲胺、 咪°坐類、二戊基紛酸錢、單或多紛化合物、三氟化棚及其有機 物之錯合物、磷酸或亞磷酸三苯酯的其中一種或一種以上。 6.如申請專利範圍第1項所述之印刷電路板用高導熱、無鹵難燃 之樹脂組成物,其中,所述的無機粉體選自球型或不規則二氧 化矽(Si〇2)、二氧化鈦(Ti〇2)、氫氧化鋁(A1(〇H)3)、氫氧化鎂 22 201127898 (Mg(OH)2)或碳酸辦(CaC03)。 7.如申請專利範圍第1項所述之印刷電路板用高導熱、無鹵難燃 之樹脂組成物,其中,所述的高導熱粉體選自金屬氣化物、金 屬氧化物、碳化物、金剛石或鋁粉的其中一種或一種以上。, where 0 <n<6 of 21 201127898 integer. 3. The high thermal conductivity, halogen-free flame-retardant resin composition for a printed circuit board according to claim 1, wherein the polyfunctional or bifunctional epoxy resin has an epoxy equivalent of 100~2000; selected from bisphenol oxime epoxy resin, bisphenol F epoxy resin, butadiene type epoxy resin, Norfolk type o-cresol formaldehyde epoxy resin, Norfolk type carboxylic acid epoxy resin , Norfolk type double benzoic acid epoxy resin, Norfolk phenol p-xylene formaldehyde epoxy resin, Norfolk phenol phenylene diphenyl formaldehyde epoxy resin, Norfolk phenol dicyclopentene One or more groups of olefinic aldehyde epoxy resin, Norfolk-type enamel epoxy resin, Norfolk-type propylene dicarboxylic acid epoxy resin, and Norfolk-type resorcinol epoxy resin Epoxy resin. 4. The high thermal conductivity, halogen-free flame-retardant resin composition for a printed circuit board according to claim 1, wherein the hardener is selected from the group consisting of amines, acid anhydrides, phenolic tree scorpions, and ^ One or more of a thiol compound, a heterologous acid vinegar compound, a blocked isocyanate compound or an alkyd resin. The invention relates to a high thermal conductivity, halogen-free and flame-retardant resin composition for a printed circuit board according to claim 1, wherein the accelerator is selected from the group consisting of tertiary amines and salts thereof, and quaternary amine salts. Compound, 2,4,6-tris(dimethylaminomethyl)phenol, benzyl dimethylamine, imipenoid, dipentyl acid, single or multiple compounds, trifluoride shed and organic matter thereof One or more of the complex, phosphoric acid or triphenyl phosphite. 6. The high thermal conductivity, halogen-free flame-retardant resin composition for a printed circuit board according to claim 1, wherein the inorganic powder is selected from the group consisting of spherical or irregular cerium oxide (Si〇2). ), titanium dioxide (Ti〇2), aluminum hydroxide (A1 (〇H) 3), magnesium hydroxide 22 201127898 (Mg (OH) 2) or carbonated (CaC03). 7. The high thermal conductivity, halogen-free flame-retardant resin composition for a printed circuit board according to claim 1, wherein the high thermal conductive powder is selected from the group consisting of metal vapors, metal oxides, carbides, One or more of diamond or aluminum powder. 如申請專利範圍第1項所述之·印刷電路板用高導熱、無_難燃 之樹脂組成物,其中,所述的磷系阻燃劑為聚磷酸錢類、碟酸 三聚氰胺類(Melamine Polyphosphate)、氰尿酸三聚氛胺類 (Melamine cyanurate)、填腈類(phosphazene)的其中一種或 一種以上。 9. 如申請專利範圍第1項所述之印刷電路板用高導熱、無卣難燃之 樹脂組成物,其中,所述的加工助劑選自填料、偶合劑、強化 填料’增塑劑、分散劑、抗氧化劑、熱及光安定劑、阻燃劑、 顏料或染料的其中一種或一種以上。 10. —種印刷電路板用高導熱、無鹵難燃之樹脂組成物及其預浸潰 體及塗層物’其中’樹脂組成物用途包括藉含浸方式製成無齒 難燃高導熱預浸潰體(Prepreg)或藉塗佈方式製成無鹵難燃高導 熱塗層物後’經過加熱乾燥後形成預浸潰體(prepreg)或背膠銅箔 (RCC) ’再應用為印刷電路板的導熱絕緣層。 11. 如申請專利範圍第10項所述之無齒難燃高導熱預浸潰體 (Prepreg)基材包含玻璃纖維布(屬)、有機纖維布(篇)或紙。 12. 如申請專利範圍第1〇項所述之無鹵難燃高導熱塗層物,其中, 該塗層物之基材包含金屬箔(板)或塑膠薄膜。 IS1 23A high thermal conductivity, non-flammable resin composition for a printed circuit board according to the first aspect of the invention, wherein the phosphorus-based flame retardant is a polyphosphoric acid melamine or a melamine polyphosphate. ) one or more of Melamine cyanurate and phosphazene. 9. The high thermal conductivity, flame retardant resin composition for a printed circuit board according to claim 1, wherein the processing aid is selected from the group consisting of a filler, a coupling agent, a reinforcing filler, a plasticizer, One or more of a dispersant, an antioxidant, a heat and light stabilizer, a flame retardant, a pigment or a dye. 10. A highly thermally conductive, halogen-free and flame-retardant resin composition for a printed circuit board and a prepreg and coating thereof. The use of the resin composition includes a toothless flame retardant high thermal conductivity prepreg by impregnation. Prepreg or by coating method to form a halogen-free flame-retardant high thermal conductive coating, after heating and drying to form a prepreg or a backing copper foil (RCC), and then apply it as a printed circuit board. Thermally conductive insulation layer. 11. The toothless flame retardant high thermal conductivity prepreg substrate according to claim 10, which comprises a glass fiber cloth (genus), an organic fiber cloth (piece) or paper. 12. The halogen-free flame-retardant high thermal conductive coating material according to claim 1, wherein the substrate of the coating material comprises a metal foil (plate) or a plastic film. IS1 23
TW99102955A 2010-02-02 2010-02-02 High thermal conductivity, halogen-free flame-retardent resin composition and its pre-impregnated and coating materials for printed circuit boards TWI400297B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99102955A TWI400297B (en) 2010-02-02 2010-02-02 High thermal conductivity, halogen-free flame-retardent resin composition and its pre-impregnated and coating materials for printed circuit boards

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99102955A TWI400297B (en) 2010-02-02 2010-02-02 High thermal conductivity, halogen-free flame-retardent resin composition and its pre-impregnated and coating materials for printed circuit boards

Publications (2)

Publication Number Publication Date
TW201127898A true TW201127898A (en) 2011-08-16
TWI400297B TWI400297B (en) 2013-07-01

Family

ID=45024975

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99102955A TWI400297B (en) 2010-02-02 2010-02-02 High thermal conductivity, halogen-free flame-retardent resin composition and its pre-impregnated and coating materials for printed circuit boards

Country Status (1)

Country Link
TW (1) TWI400297B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105820353A (en) * 2015-05-18 2016-08-03 南亚塑胶工业股份有限公司 Preparation method of polyphenyl ether microspore dispersion liquid
US11319406B2 (en) * 2017-11-14 2022-05-03 Eneos Corporation Prepreg, fiber-reinforced composite material, and molded article

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070295607A1 (en) * 2005-11-29 2007-12-27 Ajinomoto Co. Inc Resin composition for interlayer insulating layer of multi-layer printed wiring board
TWI307707B (en) * 2006-07-10 2009-03-21 Nanya Plastics Corp Syntheses of dihydrobenzoxazine thermosetting resins and its applications

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105820353A (en) * 2015-05-18 2016-08-03 南亚塑胶工业股份有限公司 Preparation method of polyphenyl ether microspore dispersion liquid
CN105820353B (en) * 2015-05-18 2018-04-17 南亚塑胶工业股份有限公司 Preparation method of polyphenyl ether microspore dispersion liquid
US11319406B2 (en) * 2017-11-14 2022-05-03 Eneos Corporation Prepreg, fiber-reinforced composite material, and molded article

Also Published As

Publication number Publication date
TWI400297B (en) 2013-07-01

Similar Documents

Publication Publication Date Title
TW201026174A (en) High thermal conductivity, halogen-free flame-retardant resin composition and its pre-impregnated and coating materials for printed circuit boards
Hu et al. Preparation and properties of dopamine reduced graphene oxide and its composites of epoxy
CN101343402B (en) Resin composition with high-heat, high-glass transition temperature for printed circuit board, prepreg and coating substance
JP5234584B2 (en) Epoxy resin curable composition
JP2013189625A (en) High thermal conductive resin cured product, high thermal conductive semicured resin film, and high thermal conductive resin composition
CN105418970B (en) Inorganic filler and composition epoxy resin comprising the inorganic filler
TWI673310B (en) Toughening masterblends
TW201319158A (en) Resin composition, resin sheet, resin sheet with metal foil, cured resin sheet, structure, and semiconductor device for power or luminous source
CN101580626A (en) Resin composition with high thermal conductivity, no halogen and difficult fire retardance and pre-impregnated body and coating material thereof
JP2017128476A (en) Composite filler and thermosetting material
JP5547032B2 (en) Thermally conductive resin composition, resin sheet, prepreg, metal laminate and printed wiring board
JP2014193965A (en) High thermal conductive resin composition, high thermal conductive semi-cured resin film and high thermal conductive resin cured product
WO2017086226A1 (en) Thermosetting material and cured product
JP2019108516A (en) Thermosetting resin composition, and cured product thereof, prepreg, laminate, metal base substrate and power module
CN103347924B (en) For electric laminated material, high density interconnection and the high-performance thermosetting material of interconnection substrate application
CN110204862A (en) Resin combination, prepreg, laminate, metal-clad laminate and printed wiring board
WO2018180470A1 (en) Resin composition, resin sheet, cured resin product, resin substrate, and laminate substrate
JPS6230215B2 (en)
JP2018188350A (en) Boron nitride particle aggregate and thermosetting material
WO2016175295A1 (en) Resin composition, resin sheet, resin cured product and resin substrate
Birong et al. Polyhedral oligomeric silsesquioxane hybrided with DOPO and phenylboronic acid for flame‐retarded epoxy resin
JPH08183875A (en) Highly heat-conductive composite filler and highly heat-conductive resin composition
TW201127898A (en) High thermal conductivity, halogen-free flame-retardant resin composition and its pre-impregnated body and coating materials for printed circuit boards
CN116004008A (en) Resin composition and use thereof
JP2010090182A (en) Flame-retardant epoxy resin composition, prepreg, laminate sheet, and wiring board

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees