WO2014155960A1 - 光塩基発生剤 - Google Patents

光塩基発生剤 Download PDF

Info

Publication number
WO2014155960A1
WO2014155960A1 PCT/JP2014/001003 JP2014001003W WO2014155960A1 WO 2014155960 A1 WO2014155960 A1 WO 2014155960A1 JP 2014001003 W JP2014001003 W JP 2014001003W WO 2014155960 A1 WO2014155960 A1 WO 2014155960A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
represented
photobase generator
general formula
Prior art date
Application number
PCT/JP2014/001003
Other languages
English (en)
French (fr)
Inventor
卓也 池田
篤志 白石
古田 剛志
Original Assignee
サンアプロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンアプロ株式会社 filed Critical サンアプロ株式会社
Priority to KR1020157027074A priority Critical patent/KR20150138220A/ko
Priority to EP14773431.3A priority patent/EP2980180A4/en
Priority to US14/771,942 priority patent/US20160009737A1/en
Priority to JP2015507991A priority patent/JPWO2014155960A1/ja
Publication of WO2014155960A1 publication Critical patent/WO2014155960A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/62Quaternary ammonium compounds
    • C07C211/63Quaternary ammonium compounds having quaternised nitrogen atoms bound to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • C07D233/58Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • C07D233/60Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with hydrocarbon radicals, substituted by oxygen or sulfur atoms, attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/06Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors

Definitions

  • the present invention relates to a photobase generator that generates a base by light irradiation. More specifically, a material that is cured using a base generated by light irradiation (for example, a coating agent or a paint), or a product formed through patterning using a difference in solubility in a developer in an exposed area or an unexposed area, or The present invention relates to a photobase generator suitably used for producing a member (for example, electronic component, optical product, optical component forming material, layer forming material or adhesive).
  • a member for example, electronic component, optical product, optical component forming material, layer forming material or adhesive
  • a photobase generator that generates a base upon exposure a photobase generator that generates a primary amine or a secondary amine (Patent Document 1 and Non-Patent Document 1), a strong base (tertiary amine, pKa 8 to 11) ) And photobase generators (Patent Documents 2 to 5 and Non-Patent Document 2 etc.) that generate super strong bases (guanidine, amidine, and the like, pKa11 to 13) are known.
  • the photobase generators described in Patent Document 1 and Non-Patent Document 1 have low basicity of the generated base (pKa ⁇ 8) and are not suitable as a catalyst for polymerization reaction or crosslinking reaction.
  • these amines have active hydrogen atoms, if they are used for polymerization reaction or crosslinking reaction of epoxides or isocyanates, they react with each other, so that a large amount of photobase generator is required to perform a sufficient reaction. There was a problem of becoming.
  • base generators such as Patent Documents 2 to 5 and Non-Patent Document 2 have low photoactivity and low photosensitizer combined effect, so that photolatency of polymerization reaction and crosslinking reaction of epoxide and isocyanate is low.
  • this base catalyst has a problem of low performance.
  • the problem to be solved by the present invention is that a photobase generator having higher sensitivity to light than a conventional photobase generator and having a large combined effect of a sensitizer and a photosensitive resin composition containing the base generator To provide things.
  • this invention is a photobase generator characterized by containing the ammonium salt represented by General formula (1).
  • R 1 to R 4 are each independently an alkyl group having 1 to 18 carbon atoms or Ar, provided that at least one is Ar, and Ar is 6 to 6 carbon atoms.
  • R 10 ⁇ R 11 is hydrogen Or an aryl group having 1 to 18 carbon atoms or an aryl group having 6 to 14 carbon atoms, which may be bonded to each other to form a ring structure;
  • E is represented by a hydrogen atom or the following general formula (5)
  • R 12 to R 16 are independently of each other an alkyl group having 1 to 18 carbon atoms, a nitro group, a hydroxyl group, a cyano group, an alkoxy group represented by —OR 21 , or R 22 CO—.
  • R 23 COO— An acyloxy group represented by R 23 COO—, an alkylthio group represented by —SR 24 , an amino group represented by —NR 25 R 26 , or a halogen atom, wherein R 12 to R 16 are the same R 17 and R 18 may be a hydrogen atom or an alkyl group having 1 to 18 carbon atoms, and may be the same or different.
  • this invention is a photobase generator which contains the photosensitizer as an active ingredient in the above-mentioned ammonium salt.
  • the present invention is a photocurable composition
  • a photocurable composition comprising the photobase generator described above and a base-reactive compound.
  • the present invention is a cured product obtained by curing the photocurable composition.
  • the photobase generator of the present invention can efficiently generate amines (tertiary amines or amidines) with high catalytic activity by exposing light.
  • the photobase generator of the present invention since the photobase generator of the present invention has a higher effect of using a sensitizer compared to conventional photobase generators, it can generate amines (tertiary amines and amidines) with higher catalytic activity more efficiently. it can.
  • the photobase generator of the present invention does not contain a halogen ion or the like as a counter anion, there is no concern about metal corrosion.
  • the photobase generator of the present invention is not basic before exposure, even if it is contained in the reactive composition, the storage stability of the reactive composition is not reduced.
  • the photobase generator of the present invention is stable against heat, and it is difficult to generate a base even when heated unless it is irradiated with light.
  • the photobase generator is a compound that decomposes its chemical structure upon irradiation with light and generates a base (amine).
  • the generated base can act as a catalyst for epoxy resin curing reaction, polyimide resin curing reaction, isocyanate and polyol urethanization reaction, acrylate crosslinking reaction, and the like.
  • the photobase generator of the present invention is characterized by containing an ammonium salt represented by the general formula (1).
  • R 1 to R 4 are each independently an alkyl group having 1 to 18 carbon atoms or Ar, provided that at least one is Ar, and Ar is 6 to 6 carbon atoms.
  • R 10 ⁇ R 11 is hydrogen Or an aryl group having 1 to 18 carbon atoms or an aryl group having 6 to 14 carbon atoms, which may be bonded to each other to form a ring structure;
  • E is represented by a hydrogen atom or the following general formula (5)
  • R 12 to R 16 are independently of each other an alkyl group having 1 to 18 carbon atoms, a nitro group, a hydroxyl group, a cyano group, an alkoxy group represented by —OR 21 , or R 22 CO—.
  • R 23 COO— An acyloxy group represented by R 23 COO—, an alkylthio group represented by —SR 24 , an amino group represented by —NR 25 R 26 , or a halogen atom, wherein R 12 to R 16 are the same R 17 and R 18 may be a hydrogen atom or an alkyl group having 1 to 18 carbon atoms, and may be the same or different.
  • the alkyl group having 1 to 18 carbon atoms in R 1 to R 4 is a linear alkyl group (methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-octyl, n-decyl, n-dodecyl, n-tetradecyl, n-hexadecyl, n-octadecyl, etc.), branched alkyl groups (isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, neopentyl, tert-pentyl, isohexyl, 2-hexyl Ethylhexyl and 1,1,3,3-tetramethylbutyl), cycloalkyl groups (cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, etc.
  • the aryl group of 6 to 14 carbon atoms (not including the carbon number of the following substituents) in R 1 to R 4 is a monocyclic aryl group (such as phenyl) or a condensed polycycle Monocyclic heterocycles such as formula aryl groups (naphthyl, anthracenyl, phenanthrenyl, anthraquinolyl, fluorenyl and naphthoquinolyl) and aromatic heterocyclic hydrocarbon groups (thienyl, furanyl, pyranyl, pyrrolyl, oxazolyl, thiazolyl, pyridyl, pyrimidyl, pyrazinyl; And indolyl, benzofuranyl, isobenzofuranyl, benzothienyl, isobenzothienyl, quinolyl, isoquinolyl, quinoxalinyl, quinazolinyl, carbazolyl, acri
  • the hydrogen atoms in the aryl group are alkyl groups having 1 to 18 carbon atoms, alkenyl groups having 2 to 18 carbon atoms, alkynyl groups having 2 to 18 carbon atoms, and 6 carbon atoms.
  • the alkylthio group or arylthio group represented by —SR 24 , the amino group represented by —NR 25 R 26 , or a halogen atom may be substituted.
  • the alkenyl group having 2 to 18 carbon atoms includes a straight-chain or branched alkenyl group (vinyl, allyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1- Methyl-1-propenyl, 1-methyl-2-propenyl, 2-methyl-1-propenyl and 2-methyl-2-propenyl, etc.), cycloalkenyl groups (such as 2-cyclohexenyl and 3-cyclohexenyl) and An arylalkenyl group (styryl, cinnamyl, etc.) is mentioned.
  • the alkynyl group having 2 to 18 carbon atoms is a linear or branched alkynyl group (ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-methyl- 2-propynyl, 1,1-dimethyl-2-propynyl, 1-pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 1-methyl-2-butynyl, 3-methyl-1-butynyl, 1-decynyl 2-decynyl, 8-decynyl, 1-dodecynyl, 2-dodecynyl and 10-dodecynyl) and arylalkynyl groups (phenylethynyl etc.).
  • alkynyl group ethynyl, 1-propynyl, 2-propynyl,
  • a part of the hydrogen atoms of the alkynyl group may be a hydroxyl group, a nitro group, a cyano group, a halogen atom, an alkoxy group having 1 to 18 carbon atoms, and / or an alkylthio group having 1 to 18 carbon atoms.
  • a substituted alkynyl group substituted with may be used.
  • an alkoxy group represented by —OR 21 an acyl group represented by R 22 CO—, an acyloxy group represented by R 23 COO—, an alkylthio group represented by —SR 24 , —NR 25 the amino group represented by R 26,
  • R 21 ⁇ R 26 include an alkyl group having 1 to 8 carbon atoms and an alkyl group having 1 to 8 carbon atoms among the alkyl groups mentioned specifically .
  • an aryloxy group represented by —OR 21 an acyl group represented by R 22 CO—, an acyloxy group represented by R 23 COO—, an arylthio group represented by —SR 24 , —NR
  • R 21 to R 26 of the amino group represented by 25 R 26 an aryl group having 6 to 14 carbon atoms can be mentioned, and specifically, an aryl group having 6 to 14 carbon atoms can be mentioned.
  • Examples of the alkoxy group represented by —OR 21 include methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, sec-butoxy, tert-butoxy, n-pentoxy, iso-pentoxy, neo-pentoxy and 2- Examples include methylbutoxy.
  • Examples of the aryloxy group represented by —OR 21 include phenoxy and naphthoxy.
  • Examples of the acyl group represented by R 22 CO— include acetyl, propanoyl, butanoyl, pivaloyl and benzoyl.
  • Examples of the acyloxy group represented by R 23 COO— include acetoxy, butanoyloxy and benzoyloxy.
  • Examples of the alkylthio group represented by —SR 24 include methylthio, ethylthio, butylthio, hexylthio and cyclohexylthio.
  • Examples of the arylthio group represented by —SR 24 include phenylthio and naphthylthio.
  • Examples of the amino group represented by —NR 25 R 26 include methylamino, ethylamino, propylamino, dimethylamino, diethylamino, methylethylamino, dipropylamino, dipropylamino and piperidino.
  • Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • E is hydrogen or a group represented by the following general formula (5).
  • an alkyl group having 1 to 18 carbon atoms an alkoxy group represented by —OR 21 , an acyl group represented by R 22 CO—, an acyloxy group represented by R 23 COO—, Examples of the alkylthio group represented by SR 24 and the amino group represented by —NR 25 R 26 are the same as described above.
  • the ammonio group (Y + ) is eliminated as a corresponding amine (Y) by light irradiation, and functions as various reaction catalysts.
  • the ammonio group (Y + ) has no basicity before being irradiated with light, and therefore the storage stability of the reactive composition does not decrease even if it is contained in the reactive composition.
  • the ammonio group (Y + ) is represented by either the following general formula (2) or general formula (3).
  • the alkyl group having 1 to 18 carbon atoms is the same as the above alkyl group
  • the aryl group having 6 to 14 carbon atoms is the same as the above aryl group. It is. These substituents may be bonded to each other to form a ring structure.
  • Q is a methylene group (—CH 2 —) m or a group represented by the following general formula (4), and m is an integer of 2 or 3.
  • Formula (4) in the substituents R 10 ⁇ R 11 is a hydrogen atom, an alkyl group, and aryl group having 6 to 14 carbon atoms having 1 to 18 carbon atoms, the alkyl group having 1 to 18 carbon atoms, the The aryl group having 6 to 14 carbon atoms is the same as the above aryl group. These substituents may be bonded to each other to form a ring structure.
  • the substituents R 7 to R 9 in the general formula (3) are alkyl groups having 1 to 18 carbon atoms, alkenyl groups having 2 to 18 carbon atoms, and aryl groups having 6 to 14 carbon atoms, which are bonded to each other to form a ring.
  • a structure may be formed.
  • the alkyl group having 1 to 18 carbon atoms, the alkenyl group having 2 to 18 carbon atoms, and the aryl group having 6 to 14 carbon atoms are the alkyl group having 1 to 18 carbon atoms, the alkenyl group having 2 to 18 carbon atoms, and the carbon number, respectively.
  • 6 to 14 aryl groups are the alkyl group having 1 to 18 carbon atoms, the alkenyl group having 2 to 18 carbon atoms, and the carbon number, respectively. The same as 6 to 14 aryl groups.
  • ammonio group represented by the general formula (2) examples include 1,8-diazabicyclo [5.4.0] -7-undecen-8-yl ⁇ group represented by the chemical formula (6) ⁇ , 1,5- Diazabicyclo [4.3.0] -5-nonen-5-yl ⁇ group represented by the chemical formula (7) ⁇ and a group represented by the general formula (8).
  • Specific examples include 1-methylimidazol-3-yl, 1,2-dimethylimidazol-3-yl, 1-methyl-2-ethylimidazol-3-yl and the like.
  • the substituent R 20 is an alkyl group having 1 to 18 carbon atoms
  • R 19 is an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, or an aryl group having 6 to 14 carbon atoms. And may be bonded to each other to form a ring structure.
  • Examples of the alkyl group having 1 to 18 carbon atoms include the same alkyl groups listed above.
  • Examples of the alkenyl group having 2 to 18 carbon atoms include the above alkenyl groups.
  • Examples of the aryl group having 6 to 14 carbon atoms include the above aryl groups.
  • ammonio group represented by the general formula (3) examples include 1-azabicyclo [2.2.2] octan-1-yl ⁇ group represented by the chemical formula (9) ⁇ , 3-hydroxy-1-azabicyclo [2 2.2.2] Octan-1-yl ⁇ group represented by chemical formula (10) ⁇ and 1,4-diazabicyclo [2.2.2] octane-1-yl ⁇ group represented by chemical formula (11) ⁇ , Tributylammonio, trioctylammonio, octyldimethylammonio and diisopropylethylammonio.
  • 1,8-diazabicyclo [5.4.0] -7-undecen-8-yl group represented by the chemical formula (6)
  • 1,5-diazabicyclo [4.3.0 ] -5-Nonen-5-yl group represented by the chemical formula (7)
  • 1-methylimidazol-3-yl 1,2-dimethylimidazol-3-yl
  • 1-methyl-2-ethylimidazole 3-yl 1-azabicyclo [2.2.2] octane-1-yl (group represented by the chemical formula (9)), 3-hydroxy-1-azabicyclo [2.2.2] octane-1-yl (Group represented by chemical formula (10)), 1,4-diazabicyclo [2.2.2] octan-1-yl (group represented by chemical formula (11)) trioctylammonio and diisopropylethylammonio Preferred, more preferred Or 1,8-diazabicyclo [5.4.0] -7-undecen
  • Preferred examples of the anion structure of the photobase generator represented by the general formula (1) include those represented by the following chemical formulas (A-1) to (A-8).
  • Preferred examples of the cation structure of the photobase generator represented by the general formula (1) include those represented by the following chemical formulas (CA-1) to (CA-9).
  • the photobase generator of the present invention is more effective as a photosensitizer than conventional photobase generators, and can be further improved in photocurability when used in combination with a photosensitizer.
  • known sensitizers Japanese Patent Laid-Open Nos. 11-279212 and 09-183960
  • benzoquinone ⁇ 1,4-benzoquinone, 1,2-benzoquinone, etc. ⁇
  • anthraquinone ⁇ 2-methylanthraquinone, 2-ethylanthraquinone, etc. ⁇
  • anthracene ⁇ anthracene, 9,10-dibutoxyanthracene, 9,10-dimethoxyanthracene, 9 , 10-diethoxyanthracene, 2-ethyl-9,10-dimethoxyanthracene, 9,10-dipropoxyanthracene, etc. ⁇
  • pyrene 1,2-benzanthracene
  • perylene tetracen
  • the photobase generator of the present invention can be produced by a known method.
  • An example is shown in the following chemical reaction formula. Reaction of compound (G) having a substituent corresponding to the target photobase generator and substituted with leaving group (Z) and amine (Y) corresponding to ammonio group (Y + ) directly or in a solvent To obtain a cation intermediate having Z ⁇ as a counter anion. An anion exchange of this cation intermediate and a borate metal salt having a substituent corresponding to the target photobase generator produced separately by a known method in an organic solvent or water can give the target photobase generator. it can.
  • R 1 to R 4 , R 12 to R 18 , Y + are the same as those in formula (1), Z is a leaving group, and Z ⁇ is a counter anion generated by elimination. , Y is an amine corresponding to ammonium, and M + is a metal cation. ]
  • cyclic amines such as 1-azabicyclo [2.2.2] octane, 3-hydroxy-1-azabicyclo [2.2.2] octane and 1,4-diazabicyclo [2.2.2] octane and trialkylamines (Such as tributylamine, trioctylamine, octyldimethylamine and diisopropylethylamine), trialkenylamine (such as triallylamine) and triarylamine (such as chain amines such as triphenylamine, tri-p-tolylamine and diphenyl-p-tolylamine) and An amine represented by the chemical formula (15) ⁇ each symbol is the same as in the chemical formula (8). For example, 1-methylimidazole, 1,2-dimethylimidazole, 1-methyl-2-ethylimidazole, etc.) ⁇ is included.
  • the leaving group (Z) includes halogen atoms (such as chlorine and bromine atoms), sulfonyloxy groups (such as trifluoromethylsulfonyloxy, 4-methylphenylsulfonyloxy, and methylsulfonyloxy) and acyloxy (acetoxy and trifluoromethyl). Carbonyloxy and the like). Of these, a halogen atom and a sulfonyloxy group are preferred from the viewpoint of ease of production.
  • Organic solvent can be used as the solvent.
  • Organic solvents include hydrocarbons (hexane, heptane, toluene, xylene, etc.), cyclic ethers (tetrahydrofuran, dioxane, etc.), chlorinated solvents (chloroform, dichloromethane, etc.), alcohols (methanol, ethanol, isopropyl alcohol, etc.), ketones ( Acetone, methyl ethyl ketone and methyl isobutyl ketone), nitriles (acetonitrile, etc.) and polar organic solvents (dimethyl sulfoxide, dimethylformamide, N-methylpyrrolidone, etc.). These solvents may be used alone or in combination of two or more.
  • the reaction temperature (° C.) between the compound (G) used as a raw material for the cation intermediate and the amine (Y) is preferably ⁇ 10 to 100, and more preferably 0 to 80. It is preferable to dissolve the compound (G) in an organic solvent and add an amine thereto.
  • the amine may be added dropwise or may be added dropwise after dilution with an organic solvent.
  • the compound (G) can be produced by a known method.
  • Compound (G) can be obtained by halogenating (preferably brominating) the ⁇ -position carbon substituted with an aromatic ring group.
  • Halogenation bromination is preferred
  • a method using halogen (preferably bromine) or a method using N-bromosuccinimide in combination with a radical generator is simple and preferred (No. 4 Edition Experimental Chemistry Lecture 19 Japanese Chemical Society, p422).
  • the borate metal salt that is an anionic component is an alkyl or aryl organometallic compound and alkyl or aryl using known methods (for example, Journal of Polymer Science: Part A: Polymer Chemistry, vol 34, 2817 (1996), etc.). It can be obtained by reacting a boron compound or a boron halide compound in an organic solvent.
  • organometallic compound to be used lithium compounds such as alkyl lithium and aryl lithium, and magnesium compounds (Grignard reagent) such as alkyl magnesium halide and aryl magnesium halide are preferably used.
  • the reaction between the boron compound and the organometallic compound is ⁇ 80 ° C. to 100 ° C., preferably ⁇ 50 ° C. to 50 ° C., and most preferably ⁇ 30 ° C. to 30 ° C.
  • organic solvent to be used, hydrocarbons (hexane, heptane, toluene, xylene, etc.), cyclic ethers (tetrahydrofuran, dioxane, etc.), and chlorinated solvents (chloroform, dichloromethane, etc.) are preferably used.
  • the borate metal salt obtained above is preferably an alkali metal salt from the viewpoint of stability and solubility.
  • a Grignard reagent it is preferable to perform metal exchange during or after the reaction by adding sodium hydrogen carbonate, sodium chloride, potassium chloride, lithium chloride, sodium bromide, potassium bromide, lithium bromide or the like.
  • Anion exchange is performed by mixing the borate metal salt obtained above with an organic solvent or an aqueous solution containing an intermediate.
  • the anion exchange may be carried out after the intermediate is obtained, or the intermediate may be isolated and purified and then dissolved in an organic solvent again to carry out the anion exchange.
  • the photobase generator obtained as described above may be purified after being separated from the organic solvent. Separation from the organic solvent can be carried out by adding a poor solvent directly to the organic solvent solution containing the photobase generator (or after concentration) to precipitate the photobase generator.
  • a poor solvent directly to the organic solvent solution containing the photobase generator (or after concentration) to precipitate the photobase generator.
  • the poor solvent used here include chain ethers (such as diethyl ether and dipropyl ether), esters (such as ethyl acetate and butyl acetate), aliphatic hydrocarbons (such as hexane and cyclohexane), and aromatic hydrocarbons (toluene and Xylene and the like).
  • the photobase generator is an oily substance
  • the precipitated oily substance is separated from the organic solvent solution, and the organic solvent contained in the oily substance is distilled off to obtain the photobase generator of the present invention.
  • the photobase generator is a solid
  • the precipitated solid is separated from the organic solvent solution, and the organic solvent contained in the solid is distilled off to obtain the photobase generator of the present invention.
  • Purification can be performed by recrystallization (a method using a difference in solubility due to cooling, a method of adding a poor solvent to precipitate, and a combination thereof). Further, when the photobase generator is an oily substance (when it is not crystallized), it can be purified by a method of washing the oily substance with water or a poor solvent.
  • the photobase generator of the present invention can be applied to a latent base catalyst (a catalyst that does not have a catalytic action before irradiation with light, but develops an action of a basic catalyst by light irradiation), etc.
  • a latent base catalyst a catalyst that does not have a catalytic action before irradiation with light, but develops an action of a basic catalyst by light irradiation
  • it can be used as a curing catalyst for a photosensitive resin composition such as a photocurable resin composition, and is suitable as a curing catalyst for a photocurable resin composition that cures when irradiated with light.
  • a photocurable resin composition comprising a basic resin that promotes curing with a base, the photobase generator of the present invention, and, if necessary, a solvent and / or an additive can be easily configured.
  • a photocurable resin composition contains the photobase generator of the present invention, it is excellent in storage stability and curability. That is, a cured product can be obtained by generating a base by irradiating the photocurable resin composition containing the photobase generator of the present invention with light having a wavelength of 350 to 500 nm to promote the curing reaction. . Therefore, the method for producing such a cured product preferably includes a step of generating a base by irradiating the photobase generator of the present invention with light having a wavelength of 350 to 500 nm. In addition, you may heat as needed in the case of hardening reaction.
  • the photosensitive resin composition whose curing is accelerated by a base generated by light irradiation is not limited as long as it is a photocurable resin that is cured by a base.
  • a curable urethane resin ⁇ (poly) isocyanate and a curing agent polyol and Thiol etc.
  • curable epoxy resin ⁇ from (poly) epoxide and curing agent (acid anhydride, carboxylic acid, (poly) epoxide, thiol, etc.), epichlorohydrin and carboxylic acid Resin, etc. ⁇
  • curable acrylic resin ⁇ acrylic monomer and / or acrylic oligomer and curing agent thiol, malonic acid ester, acetylacetonate, etc.
  • polysiloxane cured into a crosslinked polysiloxane
  • polyimide resin the resin described in Patent Document 3.
  • the photobase generator of the present invention includes not only a high-pressure mercury lamp that is generally used, but also an ultra-high pressure mercury lamp, a metal halide lamp, a high-power metal halide lamp, etc. (the latest trend of UV / EB curing technology, edited by Radtech Research Group, CMC) Publishing, 138 pages, 2006) can be used.
  • % means “% by weight”.
  • Example 1 Synthesis of Compound B-1 (1) Synthesis of Intermediate (a) 23 g of benzyl chloride was dissolved in 100 g of chloroform, and 1,8-diazabicyclo [5.4.0] -7-undecene (DBU, 27 g of San Apro) was added dropwise and stirred at room temperature. After 2 hours, disappearance of the raw material was confirmed by HPLC, and a 50% chloroform solution of intermediate (a) was obtained.
  • DBU 1,8-diazabicyclo [5.4.0] -7-undecene
  • Example 2 Synthesis of compound B-2 In place of 6.1 g of sodium tetraphenylborate (manufactured by Nacalai Tesque), 7.0 g of sodium 2-naphthyltriphenylborate obtained in Production Example 1 was used. Prepared according to the method described. The structure of Compound B-2 is shown in Table 1.
  • Example 3 Synthesis of Compound B-3 In place of 6.1 g of sodium tetraphenylborate (manufactured by Nacalai Tesque), 9.3 g of sodium 4-biphenylyltriphenylborate obtained in Production Example 2 was used. Prepared according to the method described. The structure of Compound B-3 is shown in Table 1.
  • Example 4 Synthesis of Compound B-4 Example 1 was repeated except that 10.7 g of sodium 2-anthracenyl triphenylborate obtained in Production Example 3 was used instead of 6.1 g of sodium tetraphenylborate (manufactured by Nacalai Tesque). Prepared according to the method described. The structure of Compound B-4 is shown in Table 1.
  • Example 5 Synthesis of Compound B-5 As described in Example 1, 5.9 g of lithium n-butyltriphenylborate obtained in Preparation Example 6 was used instead of 6.1 g of sodium tetraphenylborate (manufactured by Nacalai Tesque). Prepared according to the method described. The structure of Compound B-5 is shown in Table 1.
  • Example 6 Synthesis of Compound B-6 In place of 6.1 g of sodium tetraphenylborate (manufactured by Nacalai Tesque), 8.6 g of lithium n-butyltri (2-naphthyl) borate obtained in Production Example 7 was used. Prepared according to the method described in 1. The structure of Compound B-6 is shown in Table 1.
  • Example 7 Synthesis of Compound B-7 In place of 6.1 g of sodium tetraphenylborate (manufactured by Nacalai Tesque), 10.0 g of lithium n-butyltri (4-biphenylyl) borate obtained in Production Example 8 was used. Prepared according to the method described in 1. The structure of Compound B-7 is shown in Table 1.
  • Example 8 Synthesis of Compound B-8 In place of 6.1 g of sodium tetraphenylborate (manufactured by Nacalai Tesque), 11.3 g of lithium n-butyltri (2-anthracenyl) borate obtained in Production Example 9 was used. Prepared according to the method described in 1. The structure of Compound B-8 is shown in Table 1.
  • Example 9 Synthesis of Compound B-9 In place of 6.1 g of sodium tetraphenylborate (manufactured by Nacalai Tesque), 6.6 g of sodium (4-methoxyphenyl) triphenylborate obtained in Production Example 4 was used. Prepared according to the method described in 1. The structure of Compound B-9 is shown in Table 1.
  • Example 10 Synthesis of Compound B-10 Instead of 6.1 g of sodium tetraphenylborate (manufactured by Nacalai Tesque), 8.1 g of sodium (4-n-octylphenyl) triphenylborate obtained in Production Example 5 was used. Prepared according to the method described in Example 1. The structure of Compound B-10 is shown in Table 1.
  • Example 11 Synthesis of Compound B-11 Conducted by using 6.4 g of lithium n-butyltri (4-fluorophenyl) borate obtained in Production Example 10 instead of 6.1 g of sodium tetraphenylborate (manufactured by Nacalai Tesque). Prepared according to the method described in Example 1. The structure of Compound B-11 is shown in Table 1.
  • Example 12 Synthesis of Compound B-12 Described in Example 1 using 6.3 g of sodium benzyltriphenylborate obtained in Preparation Example 11 instead of 6.1 g of sodium tetraphenylborate (manufactured by Nacalai Tesque). Prepared according to method. The structure of compound B-12 is shown in Table 1.
  • Example 13 Synthesis of Compound B-13 (1) Synthesis of Intermediate (b) 30 g of benzyl chloride was dissolved in 100 g of chloroform, and 20 g of 1-methylimidazole was added dropwise thereto and stirred at room temperature. After 5 hours, disappearance of the raw material was confirmed by HPLC, and a 50% chloroform solution of intermediate (b) was obtained.
  • Example 14 Synthesis of Compound B-14 As described in Example 13, using 7.0 g of sodium 2-naphthyltriphenylborate obtained in Production Example 1 instead of 6.1 g of sodium tetraphenylborate (manufactured by Nacalai Tesque). Prepared according to the method described. The structure of compound B-14 is shown in Table 1.
  • Example 15 Synthesis of Compound B-15 In place of 6.1 g of sodium tetraphenylborate (manufactured by Nacalai Tesque), 9.3 g of sodium 4-biphenylyltriphenylborate obtained in Production Example 2 was used. Prepared according to the method described. The structure of compound B-15 is shown in Table 1.
  • Example 16 Synthesis of Compound B-16 In place of 6.1 g of sodium tetraphenylborate (manufactured by Nacalai Tesque), 10.7 g of sodium 2-anthracenyltriphenylborate obtained in Production Example 3 was used. Prepared according to the method described. The structure of compound B-16 is shown in Table 1.
  • Example 17 Synthesis of Compound B-17 As described in Example 13, 5.9 g of lithium n-butyltriphenylborate obtained in Preparation Example 6 was used instead of 6.1 g of sodium tetraphenylborate (manufactured by Nacalai Tesque). Prepared according to the method described. The structure of compound B-17 is shown in Table 1.
  • Example 18 Synthesis of Compound B-18 In place of 6.1 g of sodium tetraphenylborate (manufactured by Nacalai Tesque), 8.6 g of lithium n-butyltri (2-naphthyl) borate obtained in Production Example 7 was used. Prepared according to the method described in 13. The structure of compound B-18 is shown in Table 1.
  • Example 19 Synthesis of Compound B-19 In place of 6.1 g of sodium tetraphenylborate (manufactured by Nacalai Tesque), 10.0 g of lithium n-butyltri (4-biphenylyl) borate obtained in Production Example 8 was used. Prepared according to the method described in 13. The structure of compound B-19 is shown in Table 1.
  • Example 20 Synthesis of Compound B-20 In place of 6.1 g of sodium tetraphenylborate (manufactured by Nacalai Tesque), 11.3 g of lithium n-butyltri (2-anthracenyl) borate obtained in Production Example 9 was used. Prepared according to the method described in 13. The structure of Compound B-20 is shown in Table 1.
  • Example 21 Synthesis of Compound B-21 In place of 6.1 g of sodium tetraphenylborate (manufactured by Nacalai Tesque), 6.6 g of sodium (4-methoxyphenyl) triphenylborate obtained in Production Example 4 was used. Prepared according to the method described in 13. The structure of Compound B-21 is shown in Table 1.
  • Example 22 Synthesis of Compound B-22 Instead of 6.1 g of sodium tetraphenylborate (manufactured by Nacalai Tesque), 8.1 g of sodium (4-n-octylphenyl) triphenylborate obtained in Production Example 5 was used. Prepared according to the method described in example 13. The structure of compound B-22 is shown in Table 1.
  • Example 23 Synthesis of Compound B-23 Conducted by using 6.4 g of lithium n-butyltri (4-fluorophenyl) borate obtained in Production Example 10 instead of 6.1 g of sodium tetraphenylborate (manufactured by Nacalai Tesque). Prepared according to the method described in Example 13. The structure of compound B-23 is shown in Table 1.
  • Example 24 Synthesis of Compound B-24 Described in Example 13 by using 6.3 g of sodium benzyltriphenylborate obtained in Preparation Example 11 instead of 6.1 g of sodium tetraphenylborate (manufactured by Nacalai Tesque). Prepared according to method. The structure of compound B-24 is shown in Table 1.
  • Table 3 shows the types of photobase generators and photosensitizers used.
  • This curable composition is applied to a glass substrate (76 mm ⁇ 52 mm) using an applicator (40 ⁇ m), and then exposed with a belt conveyor type UV irradiation apparatus (Eye Graphics Co., ECS-151U) to generate a base. Subsequently, the sample was immediately placed on a hot plate heated to 120 ° C., and the time until tacking of the coated surface disappeared was measured. These results are shown in Table 3.
  • a curable composition was prepared by uniformly mixing 0.25 g) (not added in Examples 13 to 15).
  • Table 3 shows the types of photobase generators and photosensitizers used.
  • This curable composition is applied to a glass substrate (76 mm ⁇ 52 mm) using an applicator (40 ⁇ m), and then exposed with a belt conveyor type UV irradiation apparatus (Eye Graphics Co., ECS-151U) to generate a base.
  • the gel time at 150 ° C. was measured according to the method of JISK5909. These results are shown in Tables 4 and 5.
  • the photobase generator of the present invention has higher sensitivity to light and higher effect of using the photosensitizer than the photobase generator for comparison. It turns out that it is useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials For Photolithography (AREA)
  • Epoxy Resins (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)

Abstract

従来の光塩基発生剤よりも光に対する感度が高く、また、増感剤の併用効果が大きい光塩基発生剤及び当該塩基発生剤を含有する感光性樹脂組成物を提供する。本発明は、一般式(1)で表されるアンモニウム塩を含有することを特徴とする光塩基発生剤である。 〔式(1)中、R~R4は、互いに独立して、炭素数1~18のアルキル基またはArであるが、但し、少なくとも1つが、Arであり、Arは、炭素数6~14(以下の置換基の炭素数は含まない)のアリール基であって、アリール基中の水素原子の一部が、炭素数1~18のアルキル基等で置換されていてもよく、Yは一般式(2)又は(3)で表されるアンモニオ基であり;Eは水素原子又は一般式(5)で表される基である。〕

Description

光塩基発生剤
本発明は光照射によって塩基を発生させる光塩基発生剤に関する。さらに詳しくは光照射によって発生する塩基を利用して硬化させる材料(たとえば、コーティング剤や塗料)、又は露光部、未露光部の現像液への溶解性差を利用したパターニングを経て形成される製品若しくは部材(たとえば、電子部品、光学製品、光学部品の形成材料、層形成材料又は接着剤)の製造に好適に用いられる光塩基発生剤に関する。
露光によって塩基を発生する光塩基発生剤として、第1級アミン又は第2級アミンを発生させる光塩基発生剤(特許文献1及び非特許文献1)、強塩基(第3級アミン、pKa8~11)や超強塩基(グアニジンやアミジン等、pKa11~13)を発生させる光塩基発生剤(特許文献2~5及び非特許文献2等)などの様々な光塩基発生剤が知られている。
しかしながら、特許文献1及び非特許文献1に記載の光塩基発生剤は発生する塩基の塩基性が低く(pKa<8)、重合反応用や架橋反応用の触媒としては活性が低く適さない。またこれらのアミンは活性水素原子をもつので、エポキシドやイソシアネートの重合反応や架橋反応に用いると、自らが反応してしまうため、十分な反応を行うためには多量の光塩基発生剤が必要となるという問題があった。
 また、特許文献2~5及び非特許文献2等の塩基発生剤は、光に対する活性が低く、また光増感剤の併用効果も低いため、エポキシドやイソシアネートの重合反応や架橋反応の光潜在性の塩基触媒としては、性能が低いという問題点を有していた。
このような状況下、エポキシ樹脂を十分に硬化させるための触媒活性を有する光塩基発生剤、すなわち、従来の光塩基発生剤よりも、光に対する感度の向上した光塩基発生剤の開発が望まれている。
特開平10-7709号公報 特開2005-107235号公報 特開2005-264156号公報 特開2007-119766号公報 特開2009-280785号公報 WO2005-014696号公報 WO2009-122664号公報
光応用技術・材料事典、株式会社産業技術サービスセンター、2006年、130頁 J.Photopolym.Sci.Tech.,vol.19.,No.1(81)2006
本発明が解決しようとする課題は、従来の光塩基発生剤よりも光に対する感度が高く、また、増感剤の併用効果が大きい光塩基発生剤及び当該塩基発生剤を含有する感光性樹脂組成物を提供することにある。
本発明者らは、前記問題点を解決すべく鋭意研究した結果、優れた特性を有する光塩基発生剤を見出すに至った。
 すなわち本発明は、一般式(1)で表されるアンモニウム塩を含有することを特徴とする光塩基発生剤である。
Figure JPOXMLDOC01-appb-C000001
〔式(1)中、R~R4は、互いに独立して、炭素数1~18のアルキル基またはArであるが、但し、少なくとも1つが、Arであり、Arは、炭素数6~14(以下の置換基の炭素数は含まない)のアリール基であって、アリール基中の水素原子の一部が、炭素数1~18のアルキル基、炭素数2~18のアルケニル基、炭素数2~18のアルキニル基、炭素数6~14のアリール基、ニトロ基、水酸基、シアノ基、-OR21で表されるアルコキシ基若しくはアリールオキシ基、R22CO-で表されるアシル基、R23COO-で表されるアシロキシ基、-SR24で表されるアルキルチオ基若しくはアリールチオ基、-NR2526で表されるアミノ基、又はハロゲン原子で置換されていてもよく、R21~R24は炭素数1~8のアルキル基又は炭素数6~14のアリール基、R25及びR26は水素原子、炭素数1~8のアルキル基又は炭素数6~14のアリール基であり;Yは下記一般式(2)又は(3)で表されるアンモニオ基であり;式(2)中、R、Rは炭素数1~18のアルキル基、炭素数2~18のアルケニル基又は炭素数6~14のアリール基であり、互いに結合して環構造を形成していてもよく;Qはメチレン基(-CH-)m、又は下記一般式(4)で表される基であり、mは2又は3の整数であり;式(3)中、R~Rは炭素数1~18のアルキル基、炭素数2~18のアルケニル基又は炭素数6~14のアリール基であり、互いに結合して環構造を有していてもよく;式(4)中、R10~R11は水素原子、炭素数1~18のアルキル基、炭素数6~14のアリール基であり、互いに結合して環構造を形成していてもよく;Eは水素原子又は下記一般式(5)で表される基であり、R12~R16は互いに独立して、炭素数1~18のアルキル基、ニトロ基、水酸基、シアノ基、-OR21で表されるアルコキシ基、R22CO-で表されるアシル基、R23COO-で表されるアシロキシ基、-SR24で表されるアルキルチオ基、-NR2526で表されるアミノ基又はハロゲン原子を表し、R12~R16は同一であっても異なっていてもよく、R17、R18は水素原子、又は炭素数1~18のアルキル基であり、同一であっても異なっていてもよい。〕
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
更に本発明は、上記記載のアンモニウム塩に、さらに光増感剤を有効成分として含有する光塩基発生剤である。
更に本発明は、上記記載の光塩基発生剤と塩基反応性化合物とを含有することを特徴とする光硬化性組成物である。
 更に本発明は、上記光硬化性組成物を硬化して得られることを特徴とする硬化体である。
本発明の光塩基発生剤は、光を感光して効率よく触媒活性の高いアミン(第3級アミンやアミジン)を発生させることができる。
 また、本発明の光塩基発生剤は、増感剤の併用効果が従来の光塩基発生剤に比べ高いため、より効率よく触媒活性の高いアミン(第3級アミンやアミジン)を発生させることができる。
また、本発明の光塩基発生剤は、カウンターアニオンとしてハロゲンイオン等を含まないため、金属腐食の懸念がない。
 また、本発明の光塩基発生剤は、感光前において、塩基性がないため、反応性組成物中に含有させておいても、反応性組成物の貯蔵安定性を低下するということがない。
また、本発明の光塩基発生剤は、熱に対しても安定であり、光を照射しない限り、加熱しても塩基を発生しにくい。
 また、本発明の光硬化性組成物を使った硬化物の製造方法によると、上記の光塩基発生剤を用い、光を照射することで、効率よく触媒活性の高いアミン(第3級アミンやアミジン)を発生させることができ、効率よく硬化物を製造することができる。
 以下、本発明の実施形態について詳細に説明する。
光塩基発生剤とは、光照射によりその化学構造が分解し、塩基(アミン)を発生するものをいう。発生した塩基は、エポキシ樹脂の硬化反応、ポリイミド樹脂の硬化反応、イソシアネートとポリオールのウレタン化反応、アクリレートの架橋反応等の触媒として作用することができる。
本発明の光塩基発生剤は、一般式(1)で表されるアンモニウム塩を含有することを特徴とする。
Figure JPOXMLDOC01-appb-C000006
〔式(1)中、R~R4は、互いに独立して、炭素数1~18のアルキル基またはArであるが、但し、少なくとも1つが、Arであり、Arは、炭素数6~14(以下の置換基の炭素数は含まない)のアリール基であって、アリール基中の水素原子の一部が、炭素数1~18のアルキル基、炭素数2~18のアルケニル基、炭素数2~18のアルキニル基、炭素数6~14のアリール基、ニトロ基、水酸基、シアノ基、-OR21で表されるアルコキシ基若しくはアリールオキシ基、R22CO-で表されるアシル基、R23COO-で表されるアシロキシ基、-SR24で表されるアルキルチオ基若しくはアリールチオ基、-NR2526で表されるアミノ基、又はハロゲン原子で置換されていてもよく、R21~R24は炭素数1~8のアルキル基又は炭素数6~14のアリール基、R25及びR26は水素原子、炭素数1~8のアルキル基又は炭素数6~14のアリール基であり;Yは下記一般式(2)又は(3)で表されるアンモニオ基であり;式(2)中、R、Rは炭素数1~18のアルキル基、炭素数2~18のアルケニル基又は炭素数6~14のアリール基であり、互いに結合して環構造を形成していてもよく;Qはメチレン基(-CH-)m、又は下記一般式(4)で表される基であり、mは2又は3の整数であり;式(3)中、R~Rは炭素数1~18のアルキル基、炭素数2~18のアルケニル基又は炭素数6~14のアリール基であり、互いに結合して環構造を有していてもよく;式(4)中、R10~R11は水素原子、炭素数1~18のアルキル基、炭素数6~14のアリール基であり、互いに結合して環構造を形成していてもよく;Eは水素原子又は下記一般式(5)で表される基であり、R12~R16は互いに独立して、炭素数1~18のアルキル基、ニトロ基、水酸基、シアノ基、-OR21で表されるアルコキシ基、R22CO-で表されるアシル基、R23COO-で表されるアシロキシ基、-SR24で表されるアルキルチオ基、-NR2526で表されるアミノ基又はハロゲン原子を表し、R12~R16は同一であっても異なっていてもよく、R17、R18は水素原子、又は炭素数1~18のアルキル基であり、同一であっても異なっていてもよい。〕
一般式(1)中、R~R4における、炭素数1~18のアルキル基としては、直鎖アルキル基(メチル、エチル、n-プロピル、n-ブチル、n-ペンチル、n-オクチル、n-デシル、n-ドデシル、n-テトラデシル、n-ヘキサデシル及びn-オクタデシル等)、分岐アルキル基(イソプロピル、イソブチル、sec-ブチル、tert-ブチル、イソペンチル、ネオペンチル、tert-ペンチル、イソヘキシル、2-エチルヘキシル及び1,1,3,3-テトラメチルブチル等)、シクロアルキル基(シクロプロピル、シクロブチル、シクロペンチル及びシクロヘキシル等)及び架橋環式アルキル基(ノルボルニル、アダマンチル及びピナニル等)が挙げられる。
一般式(1)中、R~R4における、炭素数6~14(以下の置換基の炭素数は含まない)のアリール基としては、単環式アリール基(フェニル等)、縮合多環式アリール基(ナフチル、アントラセニル、フェナンスレニル、アントラキノリル、フルオレニル及びナフトキノリル等)及び芳香族複素環炭化水素基(チエニル、フラニル、ピラニル、ピロリル、オキサゾリル、チアゾリル、ピリジル、ピリミジル、ピラジニル等単環式複素環;及びインドリル、ベンゾフラニル、イソベンゾフラニル、ベンゾチエニル、イソベンゾチエニル、キノリル、イソキノリル、キノキサリニル、キナゾリニル、カルバゾリル、アクリジニル、フェノチアジニル、フェナジニル、キサンテニル、チアントレニル、フェノキサジニル、フェノキサチイニル、クロマニル、イソクロマニル、クマリニル、ジベンゾチエニル、キサントニル、チオキサントニル、ジベンゾフラニル等縮合多環式複素環)が挙げられる。
アリール基としては、以上の他に、アリール基中の水素原子の一部が炭素数1~18のアルキル基、炭素数2~18のアルケニル基、炭素数2~18のアルキニル基、炭素数6~14のアリール基、ニトロ基、水酸基、シアノ基、-OR21で表されるアルコキシ基若しくはアリールオキシ基、R22CO-で表されるアシル基、R23COO-で表されるアシロキシ基、-SR24で表されるアルキルチオ基若しくはアリールチオ基、-NR2526で表されるアミノ基、又はハロゲン原子で置換されていてもよい。
上記置換基において、炭素数2~18のアルケニル基としては、直鎖又は分岐のアルケニル基(ビニル、アリル、1-プロペニル、2-プロペニル、1-ブテニル、2-ブテニル、3-ブテニル、1-メチル-1-プロペニル、1-メチル-2-プロペニル、2-メチル-1-プロペニル及び2-メチル-2-プロぺニル等)、シクロアルケニル基(2-シクロヘキセニル及び3-シクロヘキセニル等)及びアリールアルケニル基(スチリル及びシンナミル等)が挙げられる。
上記置換基において、炭素数2~18のアルキニル基としては、直鎖又は分岐のアルキニル基(エチニル、1-プロピニル、2-プロピニル、1-ブチニル、2-ブチニル、3-ブチニル、1-メチル-2-プロピニル、1,1-ジメチル-2-プロピニル、1-ぺンチニル、2-ペンチニル、3-ペンチニル、4-ペンチニル、1-メチル-2-ブチニル、3-メチル-1-ブチニル、1-デシニル、2-デシニル、8-デシニル、1-ドデシニル、2-ドデシニル及び10-ドデシニル等)及びアリールアルキニル基(フェニルエチニル等)が挙げられる。アルキニル基としては、以上の他に、アルキニル基の水素原子の一部を水酸基、ニトロ基、シアノ基、ハロゲン原子、炭素数1~18のアルコキシ基及び/又は炭素数1~18のアルキルチオ基等で置換した置換アルキニル基を用いてもよい。
上記置換基において、-OR21で表されるアルコキシ基、R22CO-で表されるアシル基、R23COO-で表されるアシロキシ基、-SR24で表されるアルキルチオ基、-NR2526で表されるアミノ基の、R21~R26としては炭素数1~8のアルキル基が挙げられ、具体的には上記のアルキル基のうち炭素数1~8のアルキル基が挙げられる。
上記置換基において、-OR21で表されるアリールオキシ基、R22CO-で表されるアシル基、R23COO-で表されるアシロキシ基、-SR24で表されるアリールチオ基、-NR2526で表されるアミノ基の、R21~R26としては炭素数6~14のアリール基が挙げられ、具体的には上記の炭素数6~14のアリール基が挙げられる。
-OR21で表されるアルコキシ基としては、メトキシ、エトキシ、n-プロポキシ、iso-プロポキシ、n-ブトキシ、sec-ブトキシ、tert-ブトキシ、n-ペントキシ、iso-ペントキシ、neo-ペントキシ及び2-メチルブトキシ等が挙げられる。
-OR21で表されるアリールオキシ基としては、フェノキシ、ナフトキシ等が挙げられる。
22CO-で表されるアシル基としては、アセチル、プロパノイル、ブタノイル、ピバロイル及びベンゾイル等が挙げられる。
23COO-で表されるアシロキシ基としては、アセトキシ、ブタノイルオキシ及びベンゾイルオキシ等が挙げられる。
-SR24で表されるアルキルチオ基としては、メチルチオ、エチルチオ、ブチルチオ、ヘキシルチオ及びシクロヘキシルチオ等が挙げられる。
-SR24で表されるアリールチオ基としては、フェニルチオ、ナフチルチオ等が挙げられる。
-NR2526で表されるアミノ基としては、メチルアミノ、エチルアミノ、プロピルアミノ、ジメチルアミノ、ジエチルアミノ、メチルエチルアミノ、ジプロピルアミノ、ジプロピルアミノ及びピペリジノ等が挙げられる。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子等が挙げられる。
 Eは水素又は下記一般式(5)で表される基である。
Figure JPOXMLDOC01-appb-C000007
12~R18の内、炭素数1~18のアルキル基、-OR21で表されるアルコキシ基、R22CO-で表されるアシル基、R23COO-で表されるアシロキシ基、-SR24で表されるアルキルチオ基、-NR2526で表されるアミノ基は前記と同じものが挙げられる。
アンモニオ基(Y)は、光照射によって、対応するアミン(Y)となって脱離し、各種反応触媒として機能する。一方、アンモニオ基(Y)は、光照射する前は塩基性がないため、反応性組成物中に含有させておいても反応性組成物の貯蔵安定性が低下するということがない。
アンモニオ基(Y)は、下記一般式(2)又は一般式(3)の何れかで表される。
一般式(2)におけるR~Rのうち炭素数1~18のアルキル基としては、上記のアルキル基と同様であり、炭素数6~14のアリール基としては、上記のアリール基と同様である。またこれら置換基が互いに結合して環構造を形成していてもよい。      
一般式(2)において、Qはメチレン基(-CH-)m、又は下記一般式(4)で表される基であり、mは2又は3の整数である。
 一般式(4)における置換基R10~R11は水素原子、炭素数1~18のアルキル基、及び炭素数6~14のアリール基であり、炭素数1~18のアルキル基としては、上記のアルキル基と同様であり、炭素数6~14のアリール基としては、上記のアリール基と同様である。またこれら置換基が互いに結合して環構造を形成していてもよい。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
一般式(3)における置換基R~Rとしては、炭素数1~18のアルキル基、炭素数2~18のアルケニル基、炭素数6~14のアリール基であり、互いに結合して環構造を形成していてもよい。炭素数1~18のアルキル基、炭素数2~18のアルケニル基、炭素数6~14のアリール基はそれぞれ上記の炭素数1~18のアルキル基、炭素数2~18のアルケニル基、炭素数6~14のアリール基と同様である。
一般式(2)で表されるアンモニオ基としては、1,8-ジアザビシクロ〔5.4.0〕-7-ウンデセン-8-イル{化学式(6)で表される基}、1,5-ジアザビシクロ〔4.3.0〕-5-ノネン-5-イル{化学式(7)で表される基}、及び一般式(8)で表される基である。具体的には1-メチルイミダゾール-3-イル、1,2-ジメチルイミダゾール-3-イル、1-メチル-2-エチルイミダゾール-3-イル等が挙げられる。
Figure JPOXMLDOC01-appb-C000011
一般式(8)における置換基R20は炭素数1~18のアルキル基、R19は炭素数1~18のアルキル基、炭素数2~18のアルケニル基又は炭素数6~14のアリール基であり、互いに結合して環構造を形成していてもよい。炭素数1~18のアルキル基としては、上記で挙げられたアルキル基と同じものが挙げられる。
炭素数2~18のアルケニル基としては、上記のアルケニル基が挙げられる。
炭素数6~14のアリール基としては、上記のアリール基が挙げられる。
一般式(3)で表されるアンモニオ基としては、1-アザビシクロ〔2.2.2〕オクタン-1-イル{化学式(9)で表される基}、3-ヒドロキシ-1-アザビシクロ〔2.2.2〕オクタン-1-イル{化学式(10)で表される基}及び1,4-ジアザビシクロ〔2.2.2〕オクタン-1-イル{化学式(11)で表される基}、トリブチルアンモニオ、トリオクチルアンモニオ、オクチルジメチルアンモニオ及びジイソプロピルエチルアンモニオ等が挙げられる。
Figure JPOXMLDOC01-appb-C000012
 これらのアンモニオ基のうち、1,8-ジアザビシクロ〔5.4.0〕-7-ウンデセン-8-イル(化学式(6)で表される基)、1,5-ジアザビシクロ〔4.3.0〕-5-ノネン-5-イル(化学式(7)で表される基)、1-メチルイミダゾール-3-イル、1,2-ジメチルイミダゾール-3-イル、1-メチル-2-エチルイミダゾール-3-イル、1-アザビシクロ〔2.2.2〕オクタン-1-イル(化学式(9)で表される基)、3-ヒドロキシ-1-アザビシクロ〔2.2.2〕オクタン-1-イル(化学式(10)で表される基)、1,4-ジアザビシクロ〔2.2.2〕オクタン-1-イル(化学式(11)で表される基)トリオクチルアンモニオ及びジイソプロピルエチルアンモニオが好ましく、さらに好ましくは1,8-ジアザビシクロ〔5.4.0〕-7-ウンデセン-8-イル(化学式(6)で表される基)及び1,5-ジアザビシクロ〔5.4.0〕-5-ノネン-5-イル(化学式(7)で表される基)1-メチルイミダゾール-3-イル、1,2-ジメチルイミダゾール-3-イルである。
一般式(1)で表される光塩基発生剤のアニオン構造としては、たとえば、以下の化学式(A-1)~(A-8)で表されるものが好ましく例示できる。
Figure JPOXMLDOC01-appb-C000013
一般式(1)で表される光塩基発生剤のカチオン構造としては、たとえば、以下の化学式(CA-1)~(CA-9)で表されるものが好ましく例示できる。
Figure JPOXMLDOC01-appb-C000014
本発明の光塩基発生剤は、従来の光塩基発生剤に比べ、光増感剤の効果が高く、光増感剤との併用では、更に光硬化性を向上することができる。
光増感剤としては、公知(特開平11-279212号及び特開平09-183960号等)の増感剤等が使用でき、ベンゾキノン{1,4-ベンゾキノン、1,2-ベンゾキノン等};ナフトキノン{1,4-ナフトキノン、1,2-ナフトキノン等};アントラキノン{2-メチルアントラキノン、2-エチルアントラキノン、等};アントラセン{アントラセン、9,10-ジブトキシアントラセン、9,10-ジメトキシアントラセン、9,10-ジエトキシアントラセン、2-エチル-9,10-ジメトキシアントラセン、9,10-ジプロポキシアントラセン等};ピレン;1,2-ベンズアントラセン;ペリレン;テトラセン;コロネン;チオキサントン{チオキサントン、2-メチルチオキサントン、2-エチルチオキサントン、2-クロロチオキサントン、2-イソプロピルチオキサントン及び2,4-ジエチルチオキサントン等};フェノチアジン{フェノチアジン、N-メチルフェノチアジン、N-エチルフェノチアジン、N-フェニルフェノチアジン等};キサントン;ナフタレン{1-ナフトール、2-ナフトール、1-メトキシナフタレン、2-メトキシナフタレン、1,4-ジヒドロキシナフタレン、及び4-メトキシ-1-ナフトール等};ケトン{ジメトキシアセトフェノン、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、4’-イソプロピル-2-ヒドロキシ-2-メチルプロピオフェノン及び4-ベンゾイル-4’-メチルジフェニルスルフィド等};カルバゾール{N-フェニルカルバゾール、N-エチルカルバゾール、ポリ-N-ビニルカルバゾール及びN-グリシジルカルバゾール等};クリセン{1,4-ジメトキシクリセン及び1,4-ジ-α-メチルベンジルオキシクリセン等};フェナントレン{9-ヒドロキシフェナントレン、9-メトキシフェナントレン、9-ヒドロキシ-10-メトキシフェナントレン及び9-ヒドロキシ-10-エトキシフェナントレン等}等が挙げられる。
特に、電子受容性の観点から、ナフトキノン系、ベンゾフェノン系、キサントン系、アントラキノン系、チオキサントン系の増感剤を使用したときに、高い増感効果が得られるため、好ましい。
 本発明の光塩基発生剤は、公知の方法により製造できる。以下の化学反応式で一例を示す。目的の光塩基発生剤に対応した置換基を有する、脱離基(Z)が置換した化合物(G)と、アンモニオ基(Y)に対応するアミン(Y)とを直接又は溶媒中で反応させることにより、Zを対アニオンとするカチオン中間体を得る。このカチオン中間体と、別途公知の方法で製造した目的の光塩基発生剤に対応した置換基を有するボレート金属塩とを有機溶媒もしくは水中でアニオン交換して目的の光塩基発生剤を得ることができる。
Figure JPOXMLDOC01-appb-C000015
[式中、R~R 12~R18、Y、は一般式(1)と同様であり、Zは脱離基であり、Zは脱離により生成する対アニオンであり、Yはアンモニウムに相当するアミンであり、Mは金属カチオンである。]
 アミン(Y)としては、化学式(12)で示されるアミン{1,8-ジアザビシクロ[5,4,0]-ウンデセン-7(DBU;「DBU」はサンアプロ株式会社の登録商標である。)}、化学式(13)で示されるアミン{1,5-ジアザビシクロ[4,3,0]-ノネン-5(DBN)}、化学式(14)で示されるアミン{各記号は化学式(3)と同じである。たとえば、1-アザビシクロ〔2.2.2〕オクタン、3-ヒドロキシ-1-アザビシクロ〔2.2.2〕オクタン及び1,4-ジアザビシクロ〔2.2.2〕オクタン等環状アミン及びトリアルキルアミン(トリブチルアミン、トリオクチルアミン、オクチルジメチルアミン及びジイソプロピルエチルアミン等)、トリアルケニルアミン(トリアリルアミン等)及びトリアリールアミン(トリフェニルアミン、トリp-トリルアミン及びジフェニルp-トリルアミン等鎖状アミン等}及び化学式(15)で表されるアミン{各記号は化学式(8)と同じである。たとえば1-メチルイミダゾール、1,2-ジメチルイミダゾール、1-メチル-2-エチルイミダゾール)等}が含まれる。
Figure JPOXMLDOC01-appb-C000016
 脱離基(Z)としては、ハロゲン原子(塩素原子及び臭素原子等)、スルホニルオキシ基(トリフルオロメチルスルホニルオキシ、4-メチルフェニルスルホニルオキシ及びメチルスルホニルオキシ等)及びアシロキシ(アセトキシ及びトリフルオロメチルカルボニルオキシ等)が含まれる。これらのうち、製造しやすさ等の観点から、ハロゲン原子及びスルホニルオキシ基が好ましい。
 溶媒としては、水や有機溶剤を使用できる。有機溶剤としては、炭化水素(ヘキサン、ヘプタン、トルエン、キシレン等)、環状エーテル(テトラヒドロフラン及びジオキサン等)、塩素系溶剤(クロロホルム及びジクロロメタン等)、アルコール(メタノール、エタノール及びイソプロピルアルコール等)、ケトン(アセトン、メチルエチルケトン及びメチルイソブチルケトン等)、ニトリル(アセトニトリル等)及び極性有機溶剤(ジメチルスルホキシド、ジメチルホルムアミド及びN-メチルピロリドン等)が含まれる。これらの溶剤は、単独で使用してもよく、また2種以上を併用してもよい。
 カチオン中間体の原料となる化合物(G)とアミン(Y)との反応温度(℃)としては、-10~100が好ましく、さらに好ましくは0~80である。化合物(G)を有機溶剤に溶解しておいて、これにアミンを加えることが好ましい。アミンの加え方は、滴下してもよいし、有機溶剤で希釈してから滴下してもよい。
上記化合物(G)は公知の方法により製造できる。化合物(G)は芳香環基が置換したα位炭素をハロゲン化(好ましくは臭素化)することにより得ることができる。ハロゲン化(臭素化が好ましい)は種々の方法で行うことができるが、ハロゲン(臭素が好ましい)を用いる方法又はラジカル発生剤を併用したN-ブロモスクシンイミドを用いた方法が簡便で好ましい(第4版実験化学講座19日本化学会編p422)。
 アニオン成分であるボレート金属塩は公知の方法(例えば、Journal of Polymer Science:PartA:Polymer Chemistry、vol34、2817(1996)等が参考となる)を用いて、アルキル又はアリール有機金属化合物とアルキル又はアリールホウ素化合物、あるいはハロゲン化ホウ素化合物とを有機溶媒中で反応させることにより得られる。用いる有機金属化合物としては、アルキルリチウムやアリールリチウムなどのリチウム化合物、アルキルマグネシウムハライドやアリールマグネシウムハライドなどのマグネシウム化合物(グリニヤール試薬)が好適に用いられる。
ホウ素化合物と有機金属化合物の反応は、-80℃~100℃、好ましくは-50℃~50℃、最も好ましくは-30℃~30℃である。用いる有機溶媒としては、炭化水素(ヘキサン、ヘプタン、トルエン、キシレン等)、環状エーテル(テトラヒドロフラン及びジオキサン等)、塩素系溶剤(クロロホルム及びジクロロメタン等)が好適に用いられる。
 上記で得られるボレート金属塩は安定性や溶解性の観点からアルカリ金属塩であることが好ましい。グリニヤール試薬で反応させる場合は反応中もしくは反応後に、炭酸水素ナトリウム、塩化ナトリウム、塩化カリウム、塩化リチウム、臭化ナトリウム、臭化カリウム、臭化リチウム等を加え、金属交換を行うことが好ましい。
アニオン交換は、上記で得られたボレート金属塩と、中間体を含む有機溶剤又は水溶液と混合することにより行われる。
 なお、中間体を得てから引き続き、アニオン交換を行ってもよいし、中間体を単離・精製してから、再度、有機溶剤に溶解して、アニオン交換を行ってもよい。
 以上のようにして得られる光塩基発生剤は、有機溶剤から分離してから精製してもよい。有機溶剤からの分離は、光塩基発生剤を含む有機溶剤溶液に対して直接(又は濃縮した後)、貧溶剤を加えて光塩基発生剤を析出させることにより行うことができる。ここで用いる貧溶剤としては、鎖状エーテル(ジエチルエーテル及びジプロピルエーテル等)、エステル(酢酸エチル及び酢酸ブチル等)、脂肪族炭化水素(へキサン及びシクロヘキサン等)及び芳香族炭化水素(トルエン及びキシレン等)が含まれる。
 光塩基発生剤が油状物の場合、析出した油状物を有機溶剤溶液から分離し、さらに油状物に含有する有機溶剤を留去することにより、本発明の光塩基発生剤を得ることができる。一方、光塩基発生剤が固体の場合、析出した固体を有機溶剤溶液から分離し、さらに、固体に含有する有機溶剤を留去することにより、本発明の光塩基発生剤を得ることができる。
 精製は、再結晶(冷却による溶解度の差を利用する方法、貧溶剤を加えて析出させる方法及びこれらの併用)によって精製することができる。また、光塩基発生剤が油状物である場合(結晶化しない場合)、油状物を水又は貧溶媒で洗浄する方法により精製できる。
本発明の光塩基発生剤は、潜在性塩基触媒(光が照射される前は、触媒作用はないが、光照射によって塩基触媒の作用を発現する触媒)等に適用でき、塩基反応性化合物、たとえば、光硬化性樹脂組成物等の感光性樹脂組成物の硬化触媒として使用でき、光を照射すると、硬化する光硬化性樹脂組成物用の硬化触媒として好適である。たとえば、塩基で硬化が促進する基本樹脂及び本発明の光塩基発生剤、並びに必要に応じて、溶剤及び/又は添加剤を含んでなる光硬化性樹脂組成物を容易に構成できる。このような光硬化性樹脂組成物は、本発明の光塩基発生剤を含有するため、保存安定性に優れている他、硬化性にも優れている。すなわち、本発明の光塩基発生剤を含有する光硬化性樹脂組成物に350~500nmの波長の光を照射することによって塩基を発生させ、硬化反応を促進させて、硬化物を得ることができる。したがって、このような硬化物の製造方法としては、本発明の光塩基発生剤に対し、350~500nmの波長の光を照射することによって塩基を発生させる工程を含むことが好ましい。なお、硬化反応の際には必要に応じて加熱してもよい。
光照射により発生する塩基で硬化が促進する感光性樹脂組成物は、塩基によって硬化する光硬化性樹脂であれば制限がなく、たとえば、硬化性ウレタン樹脂{(ポリ)イソシアネートと硬化剤(ポリオール及びチオール等)とからなる樹脂等}、硬化性エポキシ樹脂{(ポリ)エポキシドと硬化剤(酸無水物、カルボン酸、(ポリ)エポキシド及びチオール等)とからなる樹脂や、エピクロルヒドリンとカルボン酸とからなる樹脂等}、硬化性アクリル樹脂{アクリルモノマー及び/又はアクリルオリゴマーと硬化剤(チオール、マロン酸エステル及びアセチルアセトナート等)}、ポリシロキサン(硬化して架橋ポリシロキサンとなる。)、ポリイミド樹脂、及び特許文献3に記載された樹脂である。
本発明の光塩基発生剤は、一般的に使用されている高圧水銀灯の他、超高圧水銀灯、メタルハライドランプ及びハイパワーメタルハライドランプ等(UV・EB硬化技術の最新動向、ラドテック研究会編、シーエムシー出版、138頁、2006)が使用できる。
 以下、実施例により本発明を更に説明するが、本発明はこれに限定されることは意図するものではない。なお、以下特記しない限り、%は重量%を意味する。
製造例1 ナトリウム2-ナフチルトリフェニルボレートの合成
 窒素置換した4つ口反応容器に0.25molL-1トリフェニルボランテトラヒドロフラン溶液(アルドリッチ製)を100mL加え、-20℃まで冷却した。そこへ2-ブロモナフタレンから常法により作成した1.0molL-12-ナフチルマグネシウムブロマイド溶液26mLを徐々に滴下した。滴下後室温で2時間攪拌した後、この溶液に飽和炭酸水素ナトリウム水溶液100mlを加え、有機層を分取し、脱溶剤し、残渣をヘキサンで2回洗浄後の残渣を減圧乾燥し、目的物を得た。
製造例2 ナトリウム4-ビフェニリルトリフェニルボレートの合成 
 2-ブロモナフタレンの代わりに4-ブロモビフェニルを用いて、製造例1に記載された方法に従って調製した。
製造例3 ナトリウム2-アントラセニルトリフェニルボレートの合成 
 2-ブロモナフタレンの代わりに2-ブロモアントラセンを用いて、製造例1に記載された方法に従って調製した。
製造例4 ナトリウム(4-メトキシフェニル)トリフェニルボレートの合成 
 2-ブロモナフタレンの代わりに4-ブロモアニソールを用いて、製造例1に記載された方法に従って調製した。
製造例5 ナトリウム(4-n-オクチルフェニル)トリフェニルボレートの合成 
 2-ブロモナフタレンの代わりに4-n-オクチルブロモベンゼンを用いて、製造例1に記載された方法に従って調製した。
製造例6 リチウムn-ブチルトリフェニルボレートの合成
 4つ口反応容器に三フッ化ホウ素エーテル錯体3.5g(0.025mol)を加え、さらにテトラヒドロフラン100mLを加え攪拌した。-20℃へ冷却し、そこへブロモベンゼンから常法により作成した1.0molL-1フェニルマグネシウムブロマイド溶液74mLを徐々に滴下した。NMRによりトリフェニルボランの生成と反応の完結を確認した後、2.0molL-1n-ブチルリチウムシクロヘキサン溶液(アルドリッチ製)12mLを滴下した。滴下後室温で2時間攪拌し、ヘキサン100mLを加え濾過を行い、減圧乾燥し、目的物を得た。
製造例7 リチウムn-ブチルトリ(2-ナフチル)ボレートの合成 
 ブロモベンゼンの代わりに2-ブロモナフタレンを用いて、製造例6に記載された方法に従って調製した。
製造例8 リチウムn-ブチルトリ(4-ビフェニリル)ボレートの合成 
 ブロモベンゼンの代わりに4-ブロモビフェニルを用いて、製造例6に記載された方法に従って調製した。
製造例9 リチウムn-ブチルトリ(2-アントラセニル)ボレートの合成 
 ブロモベンゼンの代わりに2-ブロモアントラセンを用いて、製造例6に記載された方法に従って調製した。
製造例10 リチウムn-ブチルトリ(4-フルオロフェニル)ボレートの合成 
 ブロモベンゼンの代わりにp-ブロモフルオロベンゼンを用いて、製造例6に記載された方法に従って調製した。
製造例11 ナトリウムベンジルトリフェニルボレートの合成 
 1.0molL-12-ナフチルマグネシウムブロマイド溶液を調製する代わりに、1.0molL-1ベンジルマグネシウムクロリド溶液(アルドリッチ製)を用いて、製造例1に記載された方法に従って調製した。
実施例1 化合物B-1の合成
(1)中間体(a)の合成
 クロロホルム100gに塩化ベンジル23gを溶解させ、これに1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU、サンアプロ製)27gを滴下し、室温下で攪拌した。2時間後、HPLCで原料の消失を確認し、中間体(a)の50%クロロホルム溶液を得た。
(2)化合物B-1の合成
 (1)で得た、中間体(a)の50%クロロホルム溶液10gにナトリウムテトラフェニルボレート(ナカライテスク製)の6.1g、イオン交換水50gを加え、室温で3時間攪拌した。有機層をイオン交換水50gで3回洗浄した。有機層を濃縮し、溶媒を蒸発させた後、残渣をシリカゲルのクロマトグラフィーに付して、白色固体を得た。1H-NMRによりこの白色固体が化合物B-1であることを確認した。化合物B-1の構造は表1に記載した。
実施例2  化合物B-2の合成
ナトリウムテトラフェニルボレート(ナカライテスク製)6.1gの代わりに、製造例1で得たナトリウム2-ナフチルトリフェニルボレート7.0gを用いて、実施例1に記載された方法に従って調製した。化合物B-2の構造は表1に記載した。
実施例3  化合物B-3の合成
ナトリウムテトラフェニルボレート(ナカライテスク製)6.1gの代わりに、製造例2で得たナトリウム4-ビフェニリルトリフェニルボレート9.3gを用いて、実施例1に記載された方法に従って調製した。化合物B-3の構造は表1に記載した。
実施例4  化合物B-4の合成
ナトリウムテトラフェニルボレート(ナカライテスク製)6.1gの代わりに、製造例3で得たナトリウム2-アントラセニルトリフェニルボレート10.7gを用いて、実施例1に記載された方法に従って調製した。化合物B-4の構造は表1に記載した。
実施例5  化合物B-5の合成
ナトリウムテトラフェニルボレート(ナカライテスク製)6.1gの代わりに、製造例6で得たリチウムn-ブチルトリフェニルボレート5.9gを用いて、実施例1に記載された方法に従って調製した。化合物B-5の構造は表1に記載した。
実施例6  化合物B-6の合成
ナトリウムテトラフェニルボレート(ナカライテスク製)6.1gの代わりに、製造例7で得たリチウムn-ブチルトリ(2-ナフチル)ボレート8.6gを用いて、実施例1に記載された方法に従って調製した。化合物B-6の構造は表1に記載した。
実施例7  化合物B-7の合成
ナトリウムテトラフェニルボレート(ナカライテスク製)6.1gの代わりに、製造例8で得たリチウムn-ブチルトリ(4-ビフェニリル)ボレート10.0gを用いて、実施例1に記載された方法に従って調製した。化合物B-7の構造は表1に記載した。
実施例8  化合物B-8の合成
ナトリウムテトラフェニルボレート(ナカライテスク製)6.1gの代わりに、製造例9で得たリチウムn-ブチルトリ(2-アントラセニル)ボレート11.3gを用いて、実施例1に記載された方法に従って調製した。化合物B-8の構造は表1に記載した。
実施例9  化合物B-9の合成
ナトリウムテトラフェニルボレート(ナカライテスク製)6.1gの代わりに、製造例4で得たナトリウム(4-メトキシフェニル)トリフェニルボレート6.6gを用いて、実施例1に記載された方法に従って調製した。化合物B-9の構造は表1に記載した。
実施例10  化合物B-10の合成
ナトリウムテトラフェニルボレート(ナカライテスク製)6.1gの代わりに、製造例5で得たナトリウム(4-n-オクチルフェニル)トリフェニルボレート8.1gを用いて、実施例1に記載された方法に従って調製した。化合物B-10の構造は表1に記載した。
実施例11  化合物B-11の合成
ナトリウムテトラフェニルボレート(ナカライテスク製)6.1gの代わりに、製造例10で得たリチウムn-ブチルトリ(4-フルオロフェニル)ボレート6.4gを用いて、実施例1に記載された方法に従って調製した。化合物B-11の構造は表1に記載した。
実施例12  化合物B-12の合成
ナトリウムテトラフェニルボレート(ナカライテスク製)6.1gの代わりに、製造例11で得たナトリウムベンジルトリフェニルボレート6.3gを用いて、実施例1に記載された方法に従って調製した。化合物B-12の構造は表1に記載した。
実施例13  化合物B-13の合成
 (1)中間体(b)の合成
 クロロホルム100gに塩化ベンジル30gを溶解させ、これに1-メチルイミダゾール20gを滴下し、室温下で攪拌した。5時間後HPLCで原料の消失を確認し、中間体(b)の50%クロロホルム溶液を得た。
(2)化合物B-13の合成
 (1)で得た、中間体(b)の50%クロロホルム溶液6.3gにナトリウムテトラフェニルボレート(ナカライテスク製)の6.1g、イオン交換水50gを加え、室温で3時間攪拌した。有機層をイオン交換水50gで3回洗浄した。有機層を濃縮し、溶媒を蒸発させた後、残渣をシリカゲルのクロマトグラフィーに付して、白色固体を得た。1H-NMRによりこの白色固体が化合物B-13であることを確認した。化合物B-13の構造は表1に記載した。
実施例14  化合物B-14の合成
ナトリウムテトラフェニルボレート(ナカライテスク製)6.1gの代わりに、製造例1で得たナトリウム2-ナフチルトリフェニルボレート7.0gを用いて、実施例13に記載された方法に従って調製した。化合物B-14の構造は表1に記載した。
実施例15  化合物B-15の合成
ナトリウムテトラフェニルボレート(ナカライテスク製)6.1gの代わりに、製造例2で得たナトリウム4-ビフェニリルトリフェニルボレート9.3gを用いて、実施例13に記載された方法に従って調製した。化合物B-15の構造は表1に記載した。
実施例16  化合物B-16の合成
ナトリウムテトラフェニルボレート(ナカライテスク製)6.1gの代わりに、製造例3で得たナトリウム2-アントラセニルトリフェニルボレート10.7gを用いて、実施例13に記載された方法に従って調製した。化合物B-16の構造は表1に記載した。
実施例17  化合物B-17の合成
ナトリウムテトラフェニルボレート(ナカライテスク製)6.1gの代わりに、製造例6で得たリチウムn-ブチルトリフェニルボレート5.9gを用いて、実施例13に記載された方法に従って調製した。化合物B-17の構造は表1に記載した。
実施例18  化合物B-18の合成
ナトリウムテトラフェニルボレート(ナカライテスク製)6.1gの代わりに、製造例7で得たリチウムn-ブチルトリ(2-ナフチル)ボレート8.6gを用いて、実施例13に記載された方法に従って調製した。化合物B-18の構造は表1に記載した。
実施例19  化合物B-19の合成
ナトリウムテトラフェニルボレート(ナカライテスク製)6.1gの代わりに、製造例8で得たリチウムn-ブチルトリ(4-ビフェニリル)ボレート10.0gを用いて、実施例13に記載された方法に従って調製した。化合物B-19の構造は表1に記載した。
実施例20  化合物B-20の合成
ナトリウムテトラフェニルボレート(ナカライテスク製)6.1gの代わりに、製造例9で得たリチウムn-ブチルトリ(2-アントラセニル)ボレート11.3gを用いて、実施例13に記載された方法に従って調製した。化合物B-20の構造は表1に記載した。
実施例21  化合物B-21の合成
ナトリウムテトラフェニルボレート(ナカライテスク製)6.1gの代わりに、製造例4で得たナトリウム(4-メトキシフェニル)トリフェニルボレート6.6gを用いて、実施例13に記載された方法に従って調製した。化合物B-21の構造は表1に記載した。
実施例22  化合物B-22の合成
ナトリウムテトラフェニルボレート(ナカライテスク製)6.1gの代わりに、製造例5で得たナトリウム(4-n-オクチルフェニル)トリフェニルボレート8.1gを用いて、実施例13に記載された方法に従って調製した。化合物B-22の構造は表1に記載した。
実施例23 化合物B-23の合成
ナトリウムテトラフェニルボレート(ナカライテスク製)6.1gの代わりに、製造例10で得たリチウムn-ブチルトリ(4-フルオロフェニル)ボレート6.4gを用いて、実施例13に記載された方法に従って調製した。化合物B-23の構造は表1に記載した。
実施例24 化合物B-24の合成
ナトリウムテトラフェニルボレート(ナカライテスク製)6.1gの代わりに、製造例11で得たナトリウムベンジルトリフェニルボレート6.3gを用いて、実施例13に記載された方法に従って調製した。化合物B-24の構造は表1に記載した。
Figure JPOXMLDOC01-appb-T000001
 なお、表1中のY、Ar、Rは下記一般式中の記号である。
Figure JPOXMLDOC01-appb-C000017
比較例1 下記光塩基発生剤(H-1)の合成
特許文献7(WO2009-122664号公報)に記載の方法に従って、合成した。
Figure JPOXMLDOC01-appb-C000018
比較例2 下記光塩基発生剤(H-2)の合成
特許文献7(WO2009-122664号公報)に記載の方法に従って、合成した。
Figure JPOXMLDOC01-appb-C000019
比較例3 下記光塩基発生剤(H-3)の合成
特許文献7(WO2009-122664号公報)に記載の方法に従って、合成した。
Figure JPOXMLDOC01-appb-C000020
比較例4 下記光塩基発生剤(H-4)の合成
特許文献7(WO2009-122664号公報)に記載の方法に基づいて、合成した。
Figure JPOXMLDOC01-appb-C000021
比較例5 下記光塩基発生剤(H-5)の合成
特許文献7(WO2009-122664号公報)に記載の方法に基づいて、合成した。
Figure JPOXMLDOC01-appb-C000022
比較例6 下記光塩基発生剤(H-6)の合成
特許文献7(WO2009-122664号公報)に記載の方法に基づいて、合成した。
Figure JPOXMLDOC01-appb-C000023
実施例25~36、比較例1~3
 ビスフェノールA型エポキシ樹脂(エピコート828、三菱化学株式会社製)10g、酸無水物(HN5500E、日立化成株式会社製)9g及び光塩基発生剤0.5gを均一混合し、ガラス基板(76mm×52mm)に、アプリケーター(40μm)を用いて塗布した後、ベルトコンベア式UV照射装置(アイグラフィックス株式会社、ECS-151U)で露光して塩基を発生させ、引き続き直ちに、120℃に加熱したホットプレート上に載せて、塗布面のタックがなくなるまでの時間を測定した。これらの結果を表2に示した。
Figure JPOXMLDOC01-appb-T000002
実施例37~72、比較例4~12
 ビスフェノールA型エポキシ樹脂(エピコート828、三菱化学株式会社製)10g、酸無水物(HN5500E、日立化成株式会社製)9g及び光塩基発生剤0.5g、光増感剤(表3中、○印のものを使用)0.25gを均一混合し硬化性組成物を調整した。使用した光塩基発生剤ならびに、光増感剤の種類は、表3に記載した。
この硬化性組成物をガラス基板(76mm×52mm)に、アプリケーター(40μm)を用いて塗布した後、ベルトコンベア式UV照射装置(アイグラフィックス株式会社、ECS-151U)で露光して塩基を発生させ、引き続き直ちに、120℃に加熱したホットプレート上に載せて、塗布面のタックがなくなるまでの時間を測定した。これらの結果を表3に示した。
Figure JPOXMLDOC01-appb-T000003
実施例73~120、比較例13~24
 ビスフェノールA型エポキシ樹脂(エピコート828、三菱化学株式会社製)10g、及び光塩基発生剤0.5g、光増感剤(表3中、○印のものを使用、ただし実施例73~84および比較例13~15では添加せず)0.25gを均一混合し硬化性組成物を調製した。使用した光塩基発生剤ならびに、光増感剤の種類は、表3に記載した。
この硬化性組成物をガラス基板(76mm×52mm)に、アプリケーター(40μm)を用いて塗布した後、ベルトコンベア式UV照射装置(アイグラフィックス株式会社、ECS-151U)で露光して塩基を発生させ、JISK5909の手法に準じて150℃でのゲルタイムを測定した。これらの結果を表4、5に示した。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
表2~表5の結果から、本発明の光塩基発生剤は比較用の光塩基発生剤に比べて、光に対する感度が高く、また光増感剤の併用効果も高いため、光塩基発生剤として有用であることが分かる。
 

Claims (8)

  1. 一般式(1)で表されるアンモニウム塩を含有することを特徴とする光塩基発生剤。
    Figure JPOXMLDOC01-appb-C000024
    〔式(1)中、R~R4は、互いに独立して、炭素数1~18のアルキル基またはArであるが、但し、少なくとも1つが、Arであり、Arは、炭素数6~14(以下の置換基の炭素数は含まない)のアリール基であって、アリール基中の水素原子の一部が、炭素数1~18のアルキル基、炭素数2~18のアルケニル基、炭素数2~18のアルキニル基、炭素数6~14のアリール基、ニトロ基、水酸基、シアノ基、-OR21で表されるアルコキシ基若しくはアリールオキシ基、R22CO-で表されるアシル基、R23COO-で表されるアシロキシ基、-SR24で表されるアルキルチオ基若しくはアリールチオ基、-NR2526で表されるアミノ基、又はハロゲン原子で置換されていてもよく、R21~R24は炭素数1~8のアルキル基又は炭素数6~14のアリール基、R25及びR26は水素原子、炭素数1~8のアルキル基又は炭素数6~14のアリール基であり;Yは下記一般式(2)又は(3)で表されるアンモニオ基であり;式(2)中、R、Rは炭素数1~18のアルキル基、炭素数2~18のアルケニル基又は炭素数6~14のアリール基であり、互いに結合して環構造を形成していてもよく;Qはメチレン基(-CH-)m、又は下記一般式(4)で表される基であり、mは2又は3の整数であり;式(3)中、R~Rは炭素数1~18のアルキル基、炭素数2~18のアルケニル基又は炭素数6~14のアリール基であり、互いに結合して環構造を有していてもよく;式(4)中、R10~R11は水素原子、炭素数1~18のアルキル基、炭素数6~14のアリール基であり、互いに結合して環構造を形成していてもよく;Eは水素原子又は下記一般式(5)で表される基であり、R12~R16は互いに独立して、炭素数1~18のアルキル基、ニトロ基、水酸基、シアノ基、-OR21で表されるアルコキシ基、R22CO-で表されるアシル基、R23COO-で表されるアシロキシ基、-SR24で表されるアルキルチオ基、-NR2526で表されるアミノ基又はハロゲン原子を表し、R12~R16は同一であっても異なっていてもよく、R17、R18は水素原子、又は炭素数1~18のアルキル基であり、同一であっても異なっていてもよい。〕
    Figure JPOXMLDOC01-appb-C000025
    Figure JPOXMLDOC01-appb-C000026
    Figure JPOXMLDOC01-appb-C000027
    Figure JPOXMLDOC01-appb-C000028
  2. さらに光増感剤を有効成分として含有する請求項1に記載の光塩基発生剤。
  3. 光増感剤が芳香族ケトンである請求項2に記載の光塩基発生剤。
  4. 一般式(1)中におけるR~RのArがフェニル基、ナフチル基、ビフェニリル基又はアントラセニル基である請求項1~3のいずれかに記載の光塩基発生剤。
  5. 一般式(1)中のYが、一般式(2)で表されるアンモニオ基である請求項1~4のいずれかに記載の光塩基発生剤。
  6. 一般式(1)中のYが、下記一般式(6)~(8)の群より選ばれるアンモニオ基である請求項5に記載の光塩基発生剤。
    Figure JPOXMLDOC01-appb-C000029
    [式(8)中、R19は炭素数1~18のアルキル基、R20は炭素数1~18のアルキル基、炭素数2~18のアルケニル基又は炭素数6~14のアリール基であり、互いに結合して環構造を形成していてもよい。] 
  7. 請求項1~6のいずれかに記載の光塩基発生剤と塩基反応性化合物とを含有することを特徴とする光硬化性組成物。
  8. 請求項7に記載の光硬化性組成物を硬化して得られることを特徴とする硬化体。
     
PCT/JP2014/001003 2013-03-28 2014-02-26 光塩基発生剤 WO2014155960A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157027074A KR20150138220A (ko) 2013-03-28 2014-02-26 광염기 발생제
EP14773431.3A EP2980180A4 (en) 2013-03-28 2014-02-26 PHOTO BASE GENERATOR
US14/771,942 US20160009737A1 (en) 2013-03-28 2014-02-26 Photobase generator
JP2015507991A JPWO2014155960A1 (ja) 2013-03-28 2014-02-26 光塩基発生剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013068722 2013-03-28
JP2013-068722 2013-03-28

Publications (1)

Publication Number Publication Date
WO2014155960A1 true WO2014155960A1 (ja) 2014-10-02

Family

ID=51622983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001003 WO2014155960A1 (ja) 2013-03-28 2014-02-26 光塩基発生剤

Country Status (5)

Country Link
US (1) US20160009737A1 (ja)
EP (1) EP2980180A4 (ja)
JP (1) JPWO2014155960A1 (ja)
KR (1) KR20150138220A (ja)
WO (1) WO2014155960A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016132703A (ja) * 2015-01-16 2016-07-25 セメダイン株式会社 光硬化性組成物
EP3078717A4 (en) * 2013-12-04 2017-05-24 San-Apro Limited Photobase generator
JP2018504510A (ja) * 2014-12-22 2018-02-15 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA エポキシ基を含有する樹脂を硬化するための触媒組成物
WO2018105537A1 (ja) * 2016-12-08 2018-06-14 株式会社日本触媒 光ルイス酸発生剤

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9958776B2 (en) * 2015-12-28 2018-05-01 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
EP3402897A4 (en) * 2015-12-28 2019-06-19 Vibrant Holdings, LLC SUBSTRATES, SYSTEMS AND METHODS FOR NUCLEINE ACIDIFICATION SYNTHESIS
EP3656824A1 (en) * 2018-11-26 2020-05-27 Agfa-Gevaert Nv Radiation curable inkjet for manufacturing printed circuit boards
JP2022075179A (ja) * 2020-11-06 2022-05-18 東京応化工業株式会社 感エネルギー性組成物、硬化物、硬化物の形成方法、熱塩基発生剤及び化合物

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62246925A (ja) * 1986-04-18 1987-10-28 Sanapuro Kk エポキシ硬化促進剤
JPH09183960A (ja) 1995-12-28 1997-07-15 Toyo Ink Mfg Co Ltd 感エネルギー線酸発生剤、感エネルギー線酸発生剤組成物および硬化性組成物
JPH09227854A (ja) * 1996-02-26 1997-09-02 Toyo Ink Mfg Co Ltd 感エネルギー線酸発生剤、感エネルギー線酸発生剤組成物、硬化性組成物およびその硬化物
JPH09241614A (ja) * 1996-03-04 1997-09-16 Toyo Ink Mfg Co Ltd 感エネルギー線酸発生剤、感エネルギー線酸発生剤組成物、硬化性組成物およびその硬化物
JPH107709A (ja) 1996-06-24 1998-01-13 Toyo Ink Mfg Co Ltd 感エネルギー線活性剤組成物、それを用いた感応性組成物ならびに画像形成用組成物
JPH11279212A (ja) 1998-02-02 1999-10-12 Nippon Soda Co Ltd 新規ヨードニウム塩化合物を含有する光硬化性組成物
WO2005014696A1 (ja) 2003-08-06 2005-02-17 Mitsubishi Gas Chemical Company, Inc. 光硬化性組成物及びコーティング剤組成物
JP2005107235A (ja) 2003-09-30 2005-04-21 Tdk Corp ホログラム用記録材料、ホログラム用記録媒体、及び、ホログラム用記録媒体の製造方法
JP2005264156A (ja) 2004-02-16 2005-09-29 Mitsubishi Gas Chem Co Inc 光塩基発生剤
JP2007119766A (ja) 2005-09-30 2007-05-17 Dainippon Printing Co Ltd 感光性樹脂組成物及び物品
WO2009122664A1 (ja) 2008-03-31 2009-10-08 サンアプロ株式会社 光塩基発生剤
JP2009280785A (ja) 2008-04-23 2009-12-03 Tokyo Univ Of Science 塩基発生剤及び当該塩基発生剤を含有する感光性樹脂組成物
WO2010095390A1 (ja) * 2009-02-18 2010-08-26 サンアプロ株式会社 感光性樹脂組成物
JP2013091724A (ja) * 2011-10-26 2013-05-16 San Apro Kk 塩基発生剤

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257248A (ja) * 2005-03-17 2006-09-28 Fuji Photo Film Co Ltd インク組成物、インクジェット記録方法、印刷物、平版印刷版の製造方法及び平版印刷版
JP5757421B2 (ja) * 2011-09-02 2015-07-29 スリーボンドファインケミカル株式会社 光硬化性組成物

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62246925A (ja) * 1986-04-18 1987-10-28 Sanapuro Kk エポキシ硬化促進剤
JPH09183960A (ja) 1995-12-28 1997-07-15 Toyo Ink Mfg Co Ltd 感エネルギー線酸発生剤、感エネルギー線酸発生剤組成物および硬化性組成物
JPH09227854A (ja) * 1996-02-26 1997-09-02 Toyo Ink Mfg Co Ltd 感エネルギー線酸発生剤、感エネルギー線酸発生剤組成物、硬化性組成物およびその硬化物
JPH09241614A (ja) * 1996-03-04 1997-09-16 Toyo Ink Mfg Co Ltd 感エネルギー線酸発生剤、感エネルギー線酸発生剤組成物、硬化性組成物およびその硬化物
JPH107709A (ja) 1996-06-24 1998-01-13 Toyo Ink Mfg Co Ltd 感エネルギー線活性剤組成物、それを用いた感応性組成物ならびに画像形成用組成物
JPH11279212A (ja) 1998-02-02 1999-10-12 Nippon Soda Co Ltd 新規ヨードニウム塩化合物を含有する光硬化性組成物
WO2005014696A1 (ja) 2003-08-06 2005-02-17 Mitsubishi Gas Chemical Company, Inc. 光硬化性組成物及びコーティング剤組成物
JP2005107235A (ja) 2003-09-30 2005-04-21 Tdk Corp ホログラム用記録材料、ホログラム用記録媒体、及び、ホログラム用記録媒体の製造方法
JP2005264156A (ja) 2004-02-16 2005-09-29 Mitsubishi Gas Chem Co Inc 光塩基発生剤
JP2007119766A (ja) 2005-09-30 2007-05-17 Dainippon Printing Co Ltd 感光性樹脂組成物及び物品
WO2009122664A1 (ja) 2008-03-31 2009-10-08 サンアプロ株式会社 光塩基発生剤
JP2009280785A (ja) 2008-04-23 2009-12-03 Tokyo Univ Of Science 塩基発生剤及び当該塩基発生剤を含有する感光性樹脂組成物
WO2010095390A1 (ja) * 2009-02-18 2010-08-26 サンアプロ株式会社 感光性樹脂組成物
JP2013091724A (ja) * 2011-10-26 2013-05-16 San Apro Kk 塩基発生剤

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Dictionary of Optical Application Technologies and Materials", 2006, SANGYO-GIJUTSU SERVICE CENTER CO., LTD., pages: 130
"Recent Advances in UV/EB Radiation Curing Technology", 2006, CMC PUBLISHING CO., LTD., pages: 138
"The Fourth Series of Experimental Chemistry", vol. 19, pages: 422
J. PHOTOPOLYM. SCI. TECH., vol. 19, no. 1, 2006, pages 81
JOURNAL OF POLYMER SCIENCE: PART A: POLYMER CHEMISTRY, vol. 34, 1996, pages 2817
See also references of EP2980180A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3078717A4 (en) * 2013-12-04 2017-05-24 San-Apro Limited Photobase generator
JP2018504510A (ja) * 2014-12-22 2018-02-15 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA エポキシ基を含有する樹脂を硬化するための触媒組成物
JP2016132703A (ja) * 2015-01-16 2016-07-25 セメダイン株式会社 光硬化性組成物
WO2018105537A1 (ja) * 2016-12-08 2018-06-14 株式会社日本触媒 光ルイス酸発生剤

Also Published As

Publication number Publication date
EP2980180A4 (en) 2016-09-14
US20160009737A1 (en) 2016-01-14
JPWO2014155960A1 (ja) 2017-02-16
KR20150138220A (ko) 2015-12-09
EP2980180A1 (en) 2016-02-03

Similar Documents

Publication Publication Date Title
WO2014155960A1 (ja) 光塩基発生剤
JP6498127B2 (ja) 光塩基発生剤
JP5801052B2 (ja) 光塩基発生剤
EP3345951B1 (en) Curable composition and cured article using same
JP5120029B2 (ja) 感光性樹脂組成物、およびこれを用いた物品、及びネガ型パターン形成方法
JP6011956B2 (ja) 感光性樹脂組成物
JP2016531953A (ja) 化学種発生向上試剤
TW201630973A (zh) 超分枝聚合物及其製造方法,以及組成物
JP5224016B2 (ja) 感活性エネルギー線塩基発生剤、感活性エネルギー線塩基発生剤組成物、塩基反応性組成物及びパターン形成方法
Okamura et al. Photocrosslinking system based on a poly (vinyl phenol)/thermally degradable diepoxy crosslinker blend
JP2014097930A (ja) 熱塩基発生剤
JP2013076000A (ja) 樹脂組成物および硬化物
JP6088799B2 (ja) 光塩基発生剤
WO2019216322A1 (ja) 硬化性組成物、化合物、塩基変換増殖剤及び硬化物
JP7126344B2 (ja) 硬化性組成物及びそれを用いた光学素子
JP6046540B2 (ja) スルホニウム塩、光酸発生剤、硬化性組成物およびレジスト組成物
WO2002034714A1 (fr) Prepolymeres de proliferation de bases
JP5780919B2 (ja) 塩基発生剤
JP2002006481A (ja) 有機超強酸発生剤
EP4067453A1 (en) Photobase generator, compound, photoreactive composition, and reaction product
JP6877791B2 (ja) 塩基変換増殖剤
JP6959245B2 (ja) 光塩基発生剤および感光性組成物
JP2012162639A (ja) 光塩基発生剤
JP2016204636A (ja) 両性イオン型ボレート塩、及びこれを含んでなる硬化性樹脂組成物
Chen et al. Synthesis and study of novel polyol‐bound photosensitizers for cationic UV‐curable systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14773431

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015507991

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14771942

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014773431

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157027074

Country of ref document: KR

Kind code of ref document: A