WO2014141436A1 - 電力変換システム及びその制御方法 - Google Patents

電力変換システム及びその制御方法 Download PDF

Info

Publication number
WO2014141436A1
WO2014141436A1 PCT/JP2013/057223 JP2013057223W WO2014141436A1 WO 2014141436 A1 WO2014141436 A1 WO 2014141436A1 JP 2013057223 W JP2013057223 W JP 2013057223W WO 2014141436 A1 WO2014141436 A1 WO 2014141436A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power conversion
conversion system
rotating machine
current
Prior art date
Application number
PCT/JP2013/057223
Other languages
English (en)
French (fr)
Inventor
順弘 楠野
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/057223 priority Critical patent/WO2014141436A1/ja
Priority to JP2015505167A priority patent/JP5855790B2/ja
Priority to TW102146372A priority patent/TWI505625B/zh
Publication of WO2014141436A1 publication Critical patent/WO2014141436A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/538Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration
    • H02M7/53803Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/10Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using transformers
    • H02M5/12Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using transformers for conversion of voltage or current amplitude only

Definitions

  • the present invention relates to a power conversion system and a control method therefor, and in particular, a power suitable for a technique for combining a power converter including a plurality of semiconductor switching elements and an electrical device and continuing operation even when the semiconductor switching element fails.
  • the present invention relates to a conversion system and a control method thereof.
  • Power converters such as inverters and converters are composed of semiconductor switching elements such as power MOSFETs (Metal Oxide Semiconductors Field Field Effect Transistors), IGBTs (Insulated Gate Bipolar Transistors) and GTOs (Gate Turn Off Thyristors).
  • MOSFETs Metal Oxide Semiconductors Field Field Effect Transistors
  • IGBTs Insulated Gate Bipolar Transistors
  • GTOs Gate Turn Off Thyristors
  • Such a power converter can convert electric power into a desired form such as AC / DC conversion by controlling on / off of these semiconductor switching elements.
  • a 50 Hz / 60 Hz frequency conversion station of an AC transmission network in an electric power system an AC / DC conversion station that connects the AC transmission network and the DC transmission network, or natural conditions. It is used in wind power generation systems and solar power generation systems that transmit generated power by matching the power grid frequency.
  • Power converters used in power system systems can continue power conversion operation even when some of the components that make up the power converter fail because a failure of the power converter causes a power failure. Desired. Moreover, in a wind power generation system or a solar power generation system, since a power generation stoppage due to a failure becomes a profit or loss of power sales of a power generation company, it is important to minimize the power generation stoppage period and improve the facility operation rate. In locations where access for maintenance is difficult, such as offshore and mountainous areas, it is particularly important that the power generation system can continue operation when the power converter fails.
  • Patent Document 1 discloses a detection signal for detecting voltage application between main electrodes of a self-extinguishing semiconductor switching element and self Means for detecting a short circuit fault, an open fault, or a drive circuit abnormality of a self-extinguishing semiconductor switching element by comparing drive signals for turning on and off the arc extinguishing semiconductor switching element are disclosed.
  • Patent Document 2 discloses a power having at least two phase modules configured by connecting a large number of single-phase power conversion modules in series. In the converter, when the single-phase power conversion module constituting the phase module fails, the voltage output from the corresponding single-phase power conversion module of other healthy phase modules is controlled to be zero. A technique for continuing power conversion is disclosed.
  • Patent Document 3 discloses that a self-quenching semiconductor switching element and a switching module composed of a rectifying diode element connected in reverse parallel thereto are electrically connected in parallel with a pressure contact switching element, A technique is disclosed in which power conversion is continued by causing a pressure-contact type switching element to be in a short-circuited state when the arc-extinguishing type semiconductor switching element fails.
  • the voltage shared by a healthy module increases as the number of failed modules increases.
  • the maximum voltage (withstand voltage) that can be withstood by the self-extinguishing semiconductor switching element and the free-wheeling diode element used in the module is specified, and even if a failure occurs with respect to the total number of modules constituting the phase
  • the voltage applied to each healthy module at the time of failure is always self-extinguishing semiconductor switching that constitutes the module It is necessary to make it lower than the withstand voltage upper limit value of the element or the like.
  • the present invention has been made in view of the above points, and the object of the present invention is to be applied to a power converter even when a module such as a self-extinguishing semiconductor switching element constituting the power converter fails.
  • An object of the present invention is to provide a power conversion system capable of reducing the generated voltage and a control method thereof.
  • a power conversion system of the present invention includes a switching module including a self-extinguishing semiconductor switching element and a rectifying element connected in reverse parallel to the self-extinguishing semiconductor switching element, A power converter configured by connecting in series a plurality of circuits comprising a failure detection means for detecting a failure of a switching module and a short-circuit device for electrically short-circuiting the switching module detected by the failure detection means.
  • DC unit voltage means for detecting a DC unit voltage of the power converter, an AC unit voltage lowering mechanism for reducing the AC unit voltage of the power converter, and the failure detection unit detects a failure of the switching module. If detected, the voltage command value of the DC voltage of the power converter is lowered to lower the DC voltage than when healthy,
  • a control device for outputting an operation signal to the AC unit voltage drop mechanism is characterized in that a control device for outputting an operation signal to the AC unit voltage drop mechanism.
  • a method for controlling a power conversion system includes a self-extinguishing semiconductor switching element and a rectifying element connected in reverse parallel to the self-extinguishing semiconductor switching element.
  • a circuit comprising a switching module, a failure detector that detects a failure of the switching module, and a short-circuit device that electrically short-circuits the switching module that has detected the failure by the failure detector is connected in series.
  • the DC voltage of the power converter is detected by the DC voltage detection means, and when the failure detector detects a failure of the switching module, the control device uses the voltage command for the DC voltage of the power converter. By reducing the value, the DC voltage is lowered than when healthy, and the operation signal is output to the AC voltage drop means. And wherein the door.
  • the voltage applied to the power converter can be reduced and applied to a healthy module. If the voltage exceeds the withstand voltage, there will be no chain failures and continuation of operation can be realized.
  • FIG. 5 is a schematic configuration diagram of an example in which a load-type tap switching transformer and a permanent magnet type rotating machine or a winding type synchronous machine are used as an AC unit voltage reduction mechanism according to a second embodiment of the power conversion system of the present invention.
  • Example 2 of the power conversion system of this invention is a schematic block diagram of the example which used the tap switching transformer at the time of loading and a winding type
  • FIG. 5 is a characteristic diagram showing the relationship between the rotational speed and the induced voltage in the case of the wound secondary excitation rotating machine shown in FIG. 4.
  • FIG. 7 It is a characteristic view which shows the relationship between the rotation speed and induced voltage in case the 1st and 2nd rotary machine shown in FIG. 7 is a coil
  • FIG. 8 is a characteristic diagram showing the relationship between the rotational speed and the induced voltage when the first rotating machine shown in FIG. 7 is a permanent magnet type rotating machine or a winding type synchronous machine, and the second rotating machine is a winding type secondary excitation rotating machine. is there.
  • FIG. 1 shows a first embodiment of the power conversion system of the present invention.
  • a power converter 1 includes a semiconductor switching module 4 including a self-extinguishing semiconductor switching element 2 and a diode element 3 which is a rectifying element connected in reverse parallel thereto, and the semiconductor switching module 4
  • a plurality of circuits composed of a failure detector 6 for detecting a failure of the device and a short-circuit device 5 that is connected in parallel to the semiconductor switching module 4 and electrically short-circuits the semiconductor switching module 4 that has detected the failure by the failure detector 6 in series.
  • a phase circuit is configured by connection.
  • the short-circuit device 5 may be operated by the short-circuit device alone, or may be operated by the detection value of the failure detector 6.
  • a smoothing capacitor 7 is mounted on the DC portion of the power converter 1, and the voltage across the smoothing capacitor 7 is monitored by the capacitor voltage detector 8.
  • the DC voltage detection is performed by the smoothing capacitor 7 and the capacitor voltage detector 8. Means are formed.
  • the AC section of the power converter 1 is connected to a transformer 12 with a load-on tap changer (AC voltage drop means) 12 that can perform tap switching while a load current is applied by an external signal.
  • the current flowing through the electric circuit connecting the transformer 12 with the time tap changer is monitored by the current detector 9, and the voltage at the connection point 13 between the power converter 1 and the power system 26 is monitored by the voltage detector 10. Yes.
  • the failure detector 6 detects a failure of the semiconductor switching module 4
  • the voltage command value of the DC section voltage of the power converter 1 is decreased to reduce the DC voltage from the normal state, and the on-load tap changer A control device 11 for outputting an operation signal to the attached transformer 12 is provided.
  • the control device 11 that controls the power converter 1 incorporates control means for controlling the voltage of the smoothing capacitor 7 to a predetermined voltage, and detects each of the detection values described above, that is, the capacitor voltage by the capacitor voltage detector 8. Feedback control is performed using the value S1, the current detection value S2 by the current detector 9, and the voltage detection value S3 by the voltage detector 10. The control method in this case is shown in FIG.
  • the capacitor voltage detection value S1, the current detection value S2, the voltage detection value S3 and the state signal S4 of the semiconductor switching module 4 detected by the capacitor voltage detector 8 are input.
  • a semiconductor switching element drive signal S5 for controlling to a predetermined capacitor voltage command value S1 * is calculated by the command value calculator 17 and output.
  • the voltage amplitude and phase of the power system 26 are detected from the voltage detection value S3 by the amplitude phase calculator 27, and the phase detected by the amplitude phase calculator 27 is used as a reference. Then, the dq component calculator 28 decomposes the detected current value S2 into an in-phase component (active current component) and a 90 ° advanced phase component (reactive current component), and the DC voltage controller 14 determines the capacitor voltage command value S1 * and The active current command value S2 * d is calculated using the difference from the detected capacitor voltage value S1 as an input.
  • the voltage command value S3 * is calculated by the AC current controller 15 with the current command value S2 * and the current detection value S2 calculated by the DC voltage controller 14 as inputs, and the voltage command value calculated by the AC current controller 15
  • the semiconductor switching element drive signal S5 is calculated by the pulse calculator 16 from S3 * .
  • the configuration of the two-level power converter is illustrated.
  • the configuration is not limited to this, and the pulse calculator 16 is selected according to the configuration of an arbitrary power converter and the state of the semiconductor switching module 4 that configures the power converter. Shall calculate a suitable pulse.
  • the detected values may be estimated values calculated using other detected values, or may not be limited to feedback control.
  • the reactive current command value S2 * q is set to zero. However, if there is a power factor condition specification or other controlled object by reactive current, it may be an arbitrary value other than zero, which is effective for the present invention. Does not matter.
  • the capacitor voltage command value S1 * is detected from the state signal S4 of the semiconductor switching module 4 output from the failure detector 6 to determine whether or not the semiconductor switching module 4 constituting the phase has failed, and the failure to the total number of the semiconductor switching modules 4 occurs. According to the number of modules, the capacitor voltage command value S1 * is calculated, and an external signal S6 for the mechanism for reducing the voltage generated by the connected device is output.
  • the initial value of the capacitor voltage command value S1 * is S1 * ini
  • the total number of switching modules per phase is N all
  • the maximum number of failed modules in each phase is N
  • the semiconductor elements constituting the semiconductor switching module 4
  • is a number equal to or less than 1
  • MIN is a function that selects the smaller value of the arguments.
  • the transformer 12 with a load tap switcher switches to a tap whose peak value of the AC line voltage does not exceed (N all -N) v / ⁇ 2 upon receipt of the external signal S6.
  • the semiconductor switching module 4 constituting the power converter 1 fails, the voltage applied to the healthy semiconductor switching module 4 can be reduced to a withstand voltage or lower, and chained. It is possible to obtain a power converter system that prevents failure and realizes continuous operation.
  • FIG. 3 and 4 show a second embodiment of the power conversion system of the present invention.
  • FIG. 3 shows a case where the rotating machine with the stator winding 20 of the rotating machine connected to the power converter 1 is a permanent magnet type or a wound type synchronous machine 18, and excitation in the case of the wound type synchronous machine 18. The apparatus is not shown.
  • FIG. 4 shows a case where the rotating machine in which the rotor winding 21 of the rotating machine is connected to the power converter 1 is a wound secondary excitation rotating machine 19.
  • the AC terminal of the power converter 1 is connected to the transformer 12 with a load tap changer, whereas in this embodiment, the AC terminal of the power converter 1 is connected. Is connected to a permanent magnet type or a winding type synchronous machine 18 or a winding type secondary excitation rotating machine 19, and hereinafter, a permanent magnet type or a winding type synchronous machine 18 and a winding type secondary excitation rotation. The part which concerns on the machine 19 is demonstrated.
  • the induced voltage characteristics with respect to the number of rotations vary depending on the type of rotating machine. That is, in the case of the permanent magnet type or winding type synchronous machine 18 shown in FIG. 3, since the time change rate of the magnetic flux interlinked with the stator winding 20 of the rotating machine is determined by the rotational speed, as shown in FIG. The rotational speed and the induced voltage have a substantially linear relationship.
  • the rotation speed control mechanism 22 is a permanent magnet type or winding type synchronous machine 18 detected by the external signal S6 output from the control device 11 of the power converter 1 and the rotation speed detector 25, or winding type secondary excitation.
  • the rotational speed of the rotating machine 19 is received, and the rotational speed range is limited based on the induced voltage characteristics shown in FIGS.
  • the rotation speed In the case of the permanent magnet type or the winding type synchronous machine 18, in order to lower the induced voltage below a predetermined voltage, the rotation speed is limited to a low speed region.
  • the rotational speed is limited to a region near the synchronous rotational speed.
  • the above-described rotation speed control mechanism 22 is, for example, a windmill controller in the case of a wind power generation system, and controls the rotation speed of the rotating machine by controlling the pitch angle of the blade that controls the windmill rotation speed with respect to the wind speed. To do. Moreover, if it is a hydroelectric power generation system, it is a turbine controller, and the rotation speed of a rotating machine is controlled by controlling the guide vane, the runner vane, etc. which control the rotation speed of the turbine with respect to the inflow of water.
  • FIG. 7 shows a third embodiment of the power conversion system of the present invention.
  • a second rotating machine 24 is provided in place of the on-load tap changer transformer 12 of the embodiment 2, and a permanent magnet type or winding type synchronous machine 18 or a winding type secondary excitation rotating machine 19 is provided.
  • the first rotating machine 23 is configured.
  • the first rotating machine 23 and the second rotating machine 24 are both winding-type rotating machines, and the first rotating machine 23 and the first rotating machine 24 rotate coaxially. It is shown.
  • FIG. 8 shows the relationship between the induced voltage applied to the power converter 1 and the rotation speed when the first rotating machine 23 and the second rotating machine 24 of the present embodiment are wound-type rotating machines.
  • the first rotating machine 23 and the second rotating machine 24 it is necessary to limit to a rotation speed region in which each induced voltage is simultaneously equal to or lower than a predetermined voltage.
  • the first rotating machine 23 and the second rotating machine 24 are a permanent magnet type rotating machine and a winding type rotating machine, respectively, it may be limited to the rotation speed region shown in FIG.
  • a predetermined voltage is obtained by voltage control in a system that controls DC voltage instead of voltage control of the smoothing capacitor 7 in the first embodiment.
  • the voltage applied to the power converter 1 is controlled to a predetermined voltage or less according to the failure state of the power converter 1.
  • the present invention can also be applied to the case where the operation is continued without causing the semiconductor switching modules 4 to fail in a chain.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • SYMBOLS 1 Power converter, 2 ... Self-extinguishing type semiconductor switching element, 3 ... Diode element, 4 ... Semiconductor switching module, 5 ... Short circuit device, 6 ... Fault detector, 7 ... Smoothing capacitor, 8 ... Capacitor voltage detector, DESCRIPTION OF SYMBOLS 9 ... Current detector, 10 ... Voltage detector, 11 ... Control device, 12 ... Transformer with load tap changer, 13 ... Connection point, 14 ... DC voltage controller, 15 ... AC current controller, 16 ... Pulse calculator, 17 ... Capacitor voltage command value calculator, 18 ... Winding type synchronous machine, 19 ... Winding type secondary excitation rotating machine, 20 ...
  • Stator winding of rotating machine 21 ... Rotor winding of rotating machine , 22 ... rotational speed control mechanism, 23 ... first rotating machine, 24 ... second rotating machine, 25 ... rotational speed detector, 26 ... power system, 27 ... amplitude phase calculator, 28 ... dq component calculator, S1: Capacitor voltage detection value, S1 *: Con Sensor voltage command value, S2 ... current detection value, S2 * ... current command value, S3 ... voltage detection value, S3 * ... voltage command value, S4 ... status signal of semiconductor switching module, S5 ... semiconductor switching element drive signal, S6 ... External signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

 本発明は、電力変換器を構成するモジュールが故障した場合であっても、電力変換器に印加される電圧を低減できる電力変換システムを提供する。 本発明の電力変換システムは、半導体スイッチング素子及び半導スイッチング素子に逆並列接続される整流素子によって構成されるスイッチングモジュールと、スイッチングモジュールの故障を検出する故障検出器と、故障検出器で故障を検知したスイッチングモジュールを電気的に短絡させる短絡装置とから成る回路を複数直列に接続される電力変換器を有し、この電力変換器の直流部電圧を検出する直流部電圧検出手段、前記電力変換器の交流部電圧を低下させる交流部電圧低下手段、前記故障検知器がスイッチングモジュールの故障を検知したら電力変換器の直流部電圧の電圧指令値を低下させて直流電圧を健全時よりも低下させ、前記交流部電圧低下手段に動作信号を出力する制御装置を備えている。

Description

電力変換システム及びその制御方法
 本発明は電力変換システム及びその制御方法に係り、特に、複数の半導体スイッチング素子を備える電力変換器と電機機器を組み合わせ、半導体スイッチング素子の故障時においても運転を継続するための技術に好適な電力変換システム及びその制御方法に関する。
 インバータやコンバータなどの電力変換器は、パワーMOSFET(Metal Oxide Semiconductor Field Effect Transistor)やIGBT(Insulated Gate Bipolar Transistor)やGTO(Gate Turn Off Thyristor)などの半導体スイッチング素子で構成されている。このような電力変換器は、それらの半導体スイッチング素子のオン・オフを制御することで交流・直流変換など電力を所望の形態に変換することができる。
 これにより、電力の形態を変換する様々な用途、例えば、電力系統における交流送電網の50Hz/60Hz周波数変換所や交流送電網と直流送電網とを接続させる交直変換所、或いは自然条件により変動する発電電力を電力系統周波数に整合させて送電する風力発電システムや太陽光発電システムなどに使用される。
 電力系統システムに使用される電力変換器は、電力変換器の故障が停電の原因となるため、電力変換器を構成する部品の一部が故障した場合においても、電力変換運転を継続することが求められる。また、風力発電システムや太陽光発電システムでは、故障による発電停止は発電事業者の売電損益となるため、発電停止期間を最小化し設備稼働率を向上させることが重要である。洋上や山岳地などの保守のためのアクセスが困難な立地においては、電力変換器の故障時に発電システムが運転継続可能であることは特に重要である。
 電力変換器を構成する自己消孤型半導体スイッチング素子の故障を検知する方法として、例えば、特許文献1には、自己消弧型半導体スイッチング素子の主電極間の電圧印加を検出する検出信号と自己消弧型半導体スイッチング素子をオン・オフする駆動信号を比較することで、自己消弧型半導体スイッチング素子の短絡故障、開放故障または駆動回路異常を検出する手段が開示されている。
 また、電力変換器の故障時にも運転継続可能とする技術として、例えば、特許文献2には、単相の電力変換モジュールを多数直列接続することで構成された相モジュールを少なくとも2つ以上もつ電力変換器において、相モジュールを構成する単相の電力変換モジュールが故障した場合に、その他の健全な相モジュールの対応する単相の電力変換モジュールの出力する電圧を0であるように制御することで、電力変換を継続する技術が開示されている。
 更に、特許文献3には、自己消孤型半導体スイッチング素子とそれに逆並列接続された整流用ダイオード素子によって構成されるスイッチングモジュールに、電気的に並列に圧接型スイッチング素子を接続することで、自己消弧型半導体スイッチング素子が故障した時に、圧接型スイッチング素子が短絡状態となることで、電力変換を継続する技術が開示されている。
特開2008-11608号公報 特表2009-509483号公報 特開2001-238460号公報
 上述した特許文献1に記載の技術で自己消弧型半導体スイッチング素子の故障を検出し、特許文献2や特許文献3に記載の技術によって電力変換器の運転を継続するためには、相を構成するモジュールが多数直列に接続されることで電力変換器が構成されていることが前提となる。なぜなら、多数直列に接続されたモジュールのうち1個乃至2個等が故障した場合に、健全時に故障モジュールで分担していた電圧を故障していないモジュールで分担することが必要となるからである。
 しかしながら、健全なモジュールが分担する電圧は、故障したモジュールが増えれば増加する。モジュールに使用される自己消弧型半導体スイッチング素子や還流用ダイオード素子には、それが耐え得る最大の電圧(耐圧)が規定されており、相を構成するモジュールの全数に対して故障しても運転継続ができるモジュール数には上限がある。この上限数を超えて故障が発生した場合には、健全なモジュールが耐圧不足により連鎖的に故障し、電力変換器が運転を継続することができない。
 また、風力発電システムや太陽光発電システム等は、高圧(600V超7kV以下)下や低圧(600V以下)下での使用が多いため、健全状態での運転を考慮すると前記モジュールの多直列数は多くなく、モジュールの故障時に運転継続を実施するために特許文献1乃至3に記載の技術を適用することは、健全時に各モジュールで分担すべき電圧に対して必要以上に高耐圧の素子を多数直列に接続して構成することになり、導通損失の増加や部品点数の増加となる。
 このように、少ない部品点数で低損失に電力変換器の故障時運転継続を実現するためには、故障時に各健全なモジュールに印加される電圧が、常にモジュールを構成する自己消弧型半導体スイッチング素子等の耐圧上限値以下とすることが必要である。
 本発明は上述の点に鑑みなされたもので、その目的とするところは、電力変換器を構成する自己消弧型半導体スイッチング素子等のモジュールが故障した場合であっても、電力変換器に印加される電圧を低減できる電力変換システム及びその制御方法を提供することにある。
 本発明の電力変換システムは、上記目的を達成するために、自己消弧型半導体スイッチング素子及び該自己消弧型半導スイッチング素子に逆並列接続される整流素子によって構成されるスイッチングモジュールと、該スイッチングモジュールの故障を検出する故障検出手段と、該故障検出手段で故障を検知した前記スイッチングモジュールを電気的に短絡させる短絡装置とから成る回路を複数直列に接続することで構成される電力変換器を有し、前記電力変換器の直流部電圧を検出する直流部電圧手段と、前記電力変換器の交流部電圧を低下させる交流部電圧低下機構と、前記故障検知手段が前記スイッチングモジュールの故障を検知したら前記電力変換器の直流部電圧の電圧指令値を低下させることで直流電圧を健全時よりも低下させ、かつ、前記交流部電圧低下機構に動作信号を出力する制御装置とを備えていることを特徴とする。
 また、本発明の電力変換システムの制御方法は、上記目的を達成するために、自己消弧型半導体スイッチング素子及び該自己消弧型半導スイッチング素子に逆並列接続される整流素子によって構成されるスイッチングモジュールと、該スイッチングモジュールの故障を検出する故障検出器と、該故障検出器で故障を検知した前記スイッチングモジュールを電気的に短絡させる短絡装置とから成る回路を複数直列に接続することで構成される電力変換器の直流部電圧を直流部電圧検出手段で検出すると共に、前記故障検知器が前記スイッチングモジュールの故障を検知した際に、制御装置で前記電力変換器の直流部電圧の電圧指令値を低下させることで直流電圧を健全時よりも低下させ、かつ、前記交流部電圧低下手段に動作信号を出力することを特徴とする。
 本発明によれば、電力変換器を構成する自己消弧型半導体スイッチング素子等のモジュールが故障した場合であっても、電力変換器に印加される電圧を低減でき、健全なモジュールに印加される電圧が耐圧以上となることで連鎖的に故障することがなくなり、運転継続を実現することができる。
本発明の電力変換システムの実施例1を示し、交流部電圧低下機構として負荷時タップ切換変圧器を用いた例の概略構成図である。 図1の電力変換システムにおける制御装置に組み込まれている平滑コンデンサの電圧を所定の電圧に制御する仕方を説明するためのブロック図である。 本発明の電力変換システムの実施例2を示し、交流部電圧低下機構として負荷時タップ切換変圧器と永久磁石型回転機若しくは巻線型同期機を用いた例の概略構成図である。 本発明の電力変換システムの実施例2を示し、交流部電圧低下機構として負荷時タップ切換変圧器と巻線型2次励磁回転機を用いた例の概略構成図である。 図3に示した永久磁石型回転機若しくは巻線型同期機の場合の回転数と誘起電圧の関係を示す特性図である。 図4に示した巻線型2次励磁回転機の場合の回転数と誘起電圧の関係を示す特性図である。 本発明の電力変換システムの実施例3を示し、交流部電圧低下機構として第1の回転機と第2の回転機を用いた例の概略構成図である。 図7に示した第1及び第2の回転機が巻線型2次励磁回転機の場合の回転数と誘起電圧の関係を示す特性図である。 図7に示した第1の回転機が永久磁石型回転機若しくは巻線型同期機、第2の回転機が巻線型2次励磁回転機の場合の回転数と誘起電圧の関係を示す特性図である。
 以下、図示した実施例に基づいて本発明の電力変換システム及びその制御方法を説明する。なお、各図において、共通する部分には同一の符号を付し、重複した説明を省略する。
 図1に、本発明の電力変換システムの実施例1を示す。該図に示す如く、電力変換器1は、自己消弧型半導体スイッチング素子2と、それに逆並列接続された整流素子であるダイオード素子3で構成される半導体スイッチングモジュール4と、この半導体スイッチングモジュール4の故障を検出する故障検出器6と、半導体スイッチングモジュール4に並列接続され、故障検出器6で故障を検出した半導体スイッチングモジュール4を電気的に短絡する短絡装置5とから成る回路を複数直列に接続することで相回路が構成されている。なお、短絡装置5は、短絡装置単独で動作しても良いし、故障検出器6の検出値によって動作するようにしても良い。
 また、電力変換器1の直流部は、平滑コンデンサ7が実装され、コンデンサ電圧検出器8によって平滑コンデンサ7の極間電圧が監視され、この平滑コンデンサ7とコンデンサ電圧検出器8で直流部電圧検出手段が形成されている。
 一方、電力変換器1の交流部は、外部信号によって負荷電流が通電したままタップ切換えができる負荷時タップ切換器付変圧器(交流部電圧低下手段)12と接続され、電力変換器1と負荷時タップ切換器付変圧器12とを接続する電路に流れる電流が電流検出器9によって監視され、電力変換器1と電力系統26の連系点13での電圧が電圧検出器10によって監視されている。
 また、故障検知器6が半導体スイッチングモジュール4の故障を検知したら電力変換器1の直流部電圧の電圧指令値を低下させることで直流電圧を健全時よりも低下させ、かつ、負荷時タップ切換器付変圧器12に動作信号を出力する制御装置11を備えている。
 電力変換器1を制御する制御装置11には、平滑コンデンサ7の電圧を所定の電圧に制御する制御手段が組み込まれており、上記した各検出値、即ち、コンデンサ電圧検出器8によるコンデンサ電圧検出値S1、電流検出器9による電流検出値S2、電圧検出器10による電圧検出値S3を用いてフィードバック制御を実施する。この場合の制御の仕方を図2に示す。
 図2に示す如く、制御装置11では、コンデサ電圧検出器8によって検出されたコンデンサ電圧検出値S1と電流検出値S2及び電圧検出値S3と半導体スイッチングモジュール4の状態信号S4を入力として、コンデンサ電圧指令値演算器17で演算されて、所定のコンデンサ電圧指令値S1に制御するための半導体スイッチング素子駆動信号S5を出力する。
 前述の半導体スイッチング素子駆動信号S5を算出するために、電圧検出値S3から電力系統26の電圧振幅及び位相が振幅位相演算器27で検出され、この振幅位相演算器27で検出された位相を基準にdq成分演算器28により、電流検出値S2が同位相成分(有効電流成分)と90°進相成分(無効電流成分)とに分解され、直流電圧制御器14によってコンデンサ電圧指令値S1とコンデンサ電圧検出値S1との差分を入力として、有効電流指令値S2 dが演算される。直流電圧制御器14で算出された電流指令値S2と電流検出値S2を入力として、交流電流制御器15によって電圧指令値S3が演算され、交流電流制御器15で演算された電圧指令値S3からパルス演算器16によって半導体スイッチング素子駆動信号S5が演算される。
 なお、図1では、2レベル電力変換器構成を図示しているが、これに限らず、任意の電力変換器の構成及びそれを構成する半導体スイッチングモジュール4の状態に応じて、パルス演算器16は、適したパルスを演算するものとする。
 また、図2を用いてコンデンサ電圧の制御の仕方を説明したが、各検出値のいくつかは他の検出値を用いて演算された推定値でも良いし、フィードバック制御に限らなくても良い。更に、図2において無効電流指令値S2 は零としたが、力率条件等の指定やその他無効電流による制御対象がある場合は、零以外の任意の値として良く、本発明の効果には関係しない。
 また、コンデンサ電圧指令値S1は、故障検出器6が出力する半導体スイッチングモジュール4の状態信号S4から相を構成する半導体スイッチングモジュール4の故障の有無を検知し、半導体スイッチングモジュール4の全数に対する故障モジュール数に応じて、コンデンサ電圧指令値S1を演算し、かつ、接続された機器の発生電圧を低下させる機構に対する外部信号S6を出力する。例えば、コンデンサ電圧指令値S1の初期値をS1 ini、相当たりのスイッチングモジュールの全数をNall、各相の故障したモジュール数の最大値をN、半導体スイッチングモジュール4を構成する半導体素子(自己消弧型半導体スイッチング素子2、ダイオード素子3)のうち耐圧の小さい方の値をv[V]、耐圧に対するマージンをαとすると、コンデンサ電圧指令値S1は、S1=MIN(S1 ini(Nall-N)/Nall,α(Nall-N)v)とすれば良い。ただし、αは1以下の数であり、MINは引数のうち小さい方の値を選択する関数である。
 また、負荷タップ切換器付変圧器12は、外部信号S6の受信により、交流線間電圧のピーク値が(Nall-N)v/√2を超えないタップへ切換る。
 このように本実施例によれば、電力変換器1を構成する半導体スイッチングモジュール4が故障した場合において、健全な半導体スイッチングモジュール4に印加される電圧を耐圧以下とすることができ、連鎖的に故障することを防ぎ、かつ、運転継続を実現する電力変換器システムを得ることができる。
 図3及び図4に、本発明の電力変換システムの実施例2を示す。図3は、回転機の固定子巻線20が電力変換器1と接続している回転機が永久磁石型若しくは巻線型の同期機18の場合であり、巻線型の同期機18の場合の励磁装置は省略して図示している。図4は、回転機の回転子巻線21が電力変換器1と接続している回転機が巻線型2次励磁回転機19の場合である。
 上述した図1に示す実施例1では、電力変換器1の交流端が負荷時タップ切換器付変圧器12に接続しているのに対して、本実施例では、電力変換器1の交流端の一方が永久磁石型若しくは巻線型の同期機18或いは巻線型2次励磁回転機19に接続している点が異なり、以下、永久磁石型若しくは巻線型の同期機18と巻線型2次励磁回転機19に係る部分について説明する。
 通常、回転数に対する誘起電圧特性は、回転機の種類によって異なる。即ち、図3に示す永久磁石型若しくは巻線型の同期機18の場合、回転数によって回転機の固定子巻線20に鎖交する磁束の時間変化率が決まるため、図5に示すように、回転数と誘起電圧が略線形の関係となる。
 一方、図4に示す巻線型2次励磁回転機19の場合、回転機の固定子巻線20が電力系統26の商用周波数電源によって励磁されるため、回転機の極数をp、商用周波数をf[Hz]とすると、(1)式で求まる同期回転数と回転数との差(一般にすべりと呼ばれる)によって誘起電圧の大きさが決まり、図6に示す関係がある。
    同期回転数[rpm]=120f/p    (1)
 従って、回転数制御機構22は、電力変換器1の制御装置11から出力される外部信号S6及び回転数検出器25で検出された永久磁石型若しくは巻線型の同期機18又は巻線型2次励磁回転機19の回転数を受信し、図5及び図6に示される誘起電圧特性に基づいて回転数範囲を制限する。永久磁石型若しくは巻線型の同期機18の場合、所定の電圧以下に誘起電圧を下げるため、その回転数は低速域に制限される。一方、巻線型2次励磁回転機19の場合、所定の電圧以下に誘起電圧を下げるため、その回転数は同期回転数近傍の領域に制限される。
 なお、上述した回転数制御機構22は、例えば、風力発電システムであれば風車制御器であり、風速に対する風車回転数を制御するブレードのピッチ角を制御することで、回転機の回転数を制御する。また、水力発電システムであれば水車制御器であり、水の流入に対する水車回転数を制御するガイドベーンやランナーベーン等を制御することで、回転機の回転数を制御する。
 このような本実施例の構成とすることでも、実施例1と同様な効果を得ることができる。
 図7に、本発明の電力変換システムの実施例3を示す。本実施例は、実施例2の負荷時タップ切換器付変圧器12に代えて第2の回転機24を設け、永久磁石型若しくは巻線型の同期機18又は巻線型2次励磁回転機19を第1の回転機23とした構成である。図7に示す実施例3では、第1の回転機23及び第2の回転機24が共に巻線型回転機であり、第1の回転機23と第の回転機24が同軸で回転する場合を図示している。
 なお、回転軸が異なる場合には第1の回転機23及び第2の回転機24それぞれに対して、回転数制御機構22及び回転数検出器25を備えても良い。また、同期機の場合には、図3に示す回転界磁型であっても、固定界磁型であっても良い。
 本実施例の第1の回転機23及び第2の回転機24が巻線型回転機の場合に、電力変換器1に印加される誘起電圧と回転数の関係を図8に示す。
 実施例2で述べた巻線型励磁機の場合と詳細は同一であり、図8中に示すように、所定の電圧以下に制限する場合、第1の回転機23と第2の回転機24のそれぞれの誘起電圧が同時に所定の電圧以下となる回転数領域に制限する必要がある。第1の回転機23と第2の回転機24がそれぞれ永久磁石型回転機と巻線型回転機であった場合は、図9中に示す回転数領域に制限すれば良い。
 このような本実施例の構成とすることでも、実施例1と同様な効果を得ることができる。
 特に図示しないが、例えば、太陽光発電システム等の直流電圧を制御するシステムに対して、実施例1における平滑コンデンサ7の電圧制御に代えて、直流電圧を制御するシステムにおける電圧制御によって所定の電圧以下に制御すれば良く、電力の形態が直流であるか交流であるかに係らず、電力変換器1に印加される電圧を電力変換器1の故障状態に応じて所定の電圧以下に制御することで、半導体スイッチングモジュール4の故障時に、連鎖的に半導体スイッチングモジュール4が故障することなく、運転継続させる場合にも本発明が適用できる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 1…電力変換器、2…自己消弧型半導体スイッチング素子、3…ダイオード素子、4…半導体スイッチングモジュール、5…短絡装置、6…故障検出器、7…平滑コンデンサ、8…コンデンサ電圧検出器、9…電流検出器、10…電圧検出器、11…制御装置、12…負荷時タップ切換器付変圧器、13…連系点、14…直流電圧制御器、15…交流電流制御器、16…パルス演算器、17…コンデンサ電圧指令値演算器、18…巻線型の同期機、19…巻線型2次励磁回転機、20…回転機の固定子巻線、21…回転機の回転子巻線、22…回転数制御機構、23…第1の回転機、24…第2の回転機、25…回転数検出器、26…電力系統、27…振幅位相演算器、28…dq成分演算器、S1…コンデンサ電圧検出値、S1*…コンデンサ電圧指令値、S2…電流検出値、S2*…電流指令値、S3…電圧検出値、S3*…電圧指令値、S4…半導体スイッチングモジュールの状態信号、S5…半導体スイッチング素子駆動信号、S6…外部信号。

Claims (13)

  1.  自己消弧型半導体スイッチング素子及び該自己消弧型半導スイッチング素子に逆並列接続される整流素子によって構成されるスイッチングモジュールと、該スイッチングモジュールの故障を検出する故障検出器と、該故障検出器で故障を検知した前記スイッチングモジュールを電気的に短絡させる短絡装置と、から成る回路を複数直列に接続することで構成される電力変換器を有し、
     前記電力変換器の直流部電圧を検出する直流部電圧検出手段と、前記電力変換器の交流部電圧を低下させる交流部電圧低下手段と、前記故障検知器が前記スイッチングモジュールの故障を検知したら前記電力変換器の直流部電圧の電圧指令値を低下させることで直流電圧を健全時よりも低下させ、かつ、前記交流部電圧低下手段に動作信号を出力する制御装置とを備えていることを特徴とする電力変換システム。
  2.  請求項1に記載の電力変換システムにおいて、
     前記直流部電圧検出手段は、平滑コンデンサと、該平滑コンデンサの極間電圧を検出するコンデンサ電圧検出器とから成ることを特徴とする電力変換システム。
  3.  請求項1又は2に記載の電力変換システムにおいて、
     前記交流部電圧低下手段は、外部信号によって負荷電流が通電したままタップ切換ができる負荷時タップ切換変圧器であることを特徴とする記載の電力変換システム。
  4.  請求項1又は2に記載の電力変換システムにおいて、
     前記交流部電圧低下手段は、前記電力変換システムの一方の交流端子に外部信号によって負荷電流が通電したままタップ切換ができる負荷時タップ切換変圧器が接続され、他方の交流端子に永久磁石型回転機が接続されて構成され、かつ、前記制御装置からの外部信号に基づいて前記永久磁石型回転機の回転数を制御する回転数制御機構を備えていることを特徴とする電力変換システム。
  5.  請求項1又は2に記載の電力変換システムにおいて、
     前記交流部電圧低下手段は、前記電力変換システムの一方の交流端子に外部信号によって負荷電流が通電したままタップ切換ができる負荷時タップ切換変圧器が接続され、他方の交流端子に巻線型同期機が接続されて構成され、かつ、前記制御装置からの外部信号に基づいて前記巻線型同期機の回転数を制御する回転数制御機構を備えていることを特徴とする電力変換システム。
  6.  請求項1又は2に記載の電力変換システムにおいて、
     前記交流部電圧低下手段は、前記電力変換システムの一方の交流端子に外部信号によって負荷電流が通電したままタップ切換ができる負荷時タップ切換変圧器が接続され、他方の交流端子に巻線型2次励磁回転機が接続されて構成され、かつ、前記制御装置からの外部信号に基づいて前記巻線型2次励磁回転機の回転数を制御する回転数制御を備えていることを特徴とする電力変換システム。
  7.  請求項1又は2に記載の電力変換システムにおいて、
     前記交流部電圧低下手段は、前記電力変換システムの一方の交流端子に接続された第1の回転機と、前記電力変換システムの他方の交流端子に接続された第2の回転機とから構成され、かつ、前記制御装置からの外部信号に基づいて前記第1の回転機及び前記第2の回転機の回転数を制御する回転数制御機構を備えていることを特徴とする電力変換システム。
  8.  請求項7に記載の電力変換システムにおいて、
     前記第1の回転機と第2の回転機は、巻線型回転機であることを特徴とする電力変換システム。
  9.  請求項7に記載の電力変換システムにおいて、
     前記第1の回転機は永久磁石型回転機であり、前記第2の回転機は巻線型回転機であることを特徴とする電力変換システム。
  10.  請求項3乃至9のいずれか1項に記載の電力変換システムにおいて、
     前記電力変換器と前記負荷時タップ切換変圧器若しくは回転機とを接続する電路に流れる電流を検出する電流検出器と、前記電力変換器と電力系統との連系点の電圧を検出する電圧検出器とを備えていることを特徴とする電力変換システム。
  11.  自己消弧型半導体スイッチング素子及び該自己消弧型半導スイッチング素子に逆並列接続される整流素子によって構成されるスイッチングモジュールと、該スイッチングモジュールの故障を検出する故障検出器と、該故障検出器で故障を検知した前記スイッチングモジュールを電気的に短絡させる短絡装置とから成る回路を複数直列に接続することで構成される電力変換器の直流部電圧を直流部電圧検出手段で検出すると共に、前記故障検知器が前記スイッチングモジュールの故障を検知した際に、制御装置で前記電力変換器の直流部電圧の電圧指令値を低下させることで直流電圧を健全時よりも低下させ、かつ、前記交流部電圧低下手段に動作信号を出力することを特徴とする電力変換システムの制御方法。
  12.  請求項11に記載の電力変換システムの制御方法において、
     前記直流部電圧検出手段は、平滑コンデンサと、該平滑コンデンサの極間電圧を検出するコンデンサ電圧検出器とから成ると共に、前記交流部電圧低下手段は、外部信号によって負荷電流が通電したままタップ切換ができる負荷時タップ切換変圧器若しくは回転機から成り、かつ、前記電力変換器と前記負荷時タップ切換変圧器若しくは回転機とを接続する電路に流れる電流を検出する電流検出器と、前記電力変換器が前記負荷時タップ切換変圧器若しくは回転機を介してと電力系統と連系する連系点の電圧を検出する電圧検出器とを備え、
     前記制御装置は、前記コンデンサ検出器で検出されたコンデンサ電圧検出値と、前記電流検出器で検出された電流検出値と、前記電圧検出器で検出された電圧検出値と、前記スイッチングモジュールの状態信号とを入力として、所定のコンデンサ電圧指令値に制御するための前記スイッチングモジュールの駆動信号を出力することを特徴とする電力変換システムの制御方法。
  13.  請求項12に記載の電力変換システムの制御方法において、
     前記スイッチングモジュールの駆動信号を出力するために、前記電圧検出値から電力系統の電圧振幅及び位相が振幅位相演算器で検出され、該振幅位相演算器で検出された位相を基準にdq成分演算器により、前記電流検出値が同位相成分と90°進相成分とに分解されると共に、直流電圧制御器によってコンデンサ電圧指令値と前記コンデンサ電圧検出値との差分を入力として有効電流指令値が演算され、この算出された電流指令値と電流検出値を入力として交流電流制御器によって電圧指令値が演算され、前記交流電流制御器で演算された電圧指令値からパルス演算器によって前記スイッチングモジュールの駆動信号が演算されることを特徴とする電力変換システムの制御方法。
PCT/JP2013/057223 2013-03-14 2013-03-14 電力変換システム及びその制御方法 WO2014141436A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2013/057223 WO2014141436A1 (ja) 2013-03-14 2013-03-14 電力変換システム及びその制御方法
JP2015505167A JP5855790B2 (ja) 2013-03-14 2013-03-14 電力変換システム及びその制御方法
TW102146372A TWI505625B (zh) 2013-03-14 2013-12-16 Power conversion system and its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/057223 WO2014141436A1 (ja) 2013-03-14 2013-03-14 電力変換システム及びその制御方法

Publications (1)

Publication Number Publication Date
WO2014141436A1 true WO2014141436A1 (ja) 2014-09-18

Family

ID=51536131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057223 WO2014141436A1 (ja) 2013-03-14 2013-03-14 電力変換システム及びその制御方法

Country Status (3)

Country Link
JP (1) JP5855790B2 (ja)
TW (1) TWI505625B (ja)
WO (1) WO2014141436A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113196641A (zh) * 2019-11-29 2021-07-30 华为技术有限公司 电压调节模块、充电模组和充电桩

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7083687B2 (ja) * 2018-04-18 2022-06-13 株式会社日立製作所 電力変換装置及び電力変換制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000175435A (ja) * 1998-12-09 2000-06-23 Hitachi Ltd 電力変換装置
JP2001238460A (ja) * 2000-02-24 2001-08-31 Hitachi Ltd 電力変換装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005045091B4 (de) * 2005-09-21 2007-08-30 Siemens Ag Steuerverfahren zur Redundanznutzung im Störungsfall eines mehrphasigen Stromrichters mit verteilten Energiespeichern
JP4872485B2 (ja) * 2006-06-28 2012-02-08 株式会社日立製作所 半導体電力変換装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000175435A (ja) * 1998-12-09 2000-06-23 Hitachi Ltd 電力変換装置
JP2001238460A (ja) * 2000-02-24 2001-08-31 Hitachi Ltd 電力変換装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113196641A (zh) * 2019-11-29 2021-07-30 华为技术有限公司 电压调节模块、充电模组和充电桩
CN113196641B (zh) * 2019-11-29 2023-09-12 华为数字能源技术有限公司 电压调节模块、充电模组和充电桩

Also Published As

Publication number Publication date
JP5855790B2 (ja) 2016-02-09
TW201448441A (zh) 2014-12-16
JPWO2014141436A1 (ja) 2017-02-16
TWI505625B (zh) 2015-10-21

Similar Documents

Publication Publication Date Title
Freire et al. A fault-tolerant direct controlled PMSG drive for wind energy conversion systems
Freire et al. Fault-tolerant PMSG drive with reduced DC-link ratings for wind turbine applications
US10063161B2 (en) Active neutral point clamped converter control system and method
CA2810593C (en) Double fed induction generator (dfig) converter and method for improved grid fault ridethrough
US8810179B2 (en) Method and device for controlling a polyphase electrical machine
EP2698894B1 (en) Alternative Power Converter System
US20150249414A1 (en) Wind turbine systems and methods for operating the same
EP3846333A1 (en) Carrier-based pulse width modulation control for back-to-back voltage source converters
US9088150B2 (en) Overvoltage clipping device for a wind turbine and method
CN111971885A (zh) 具有有源滤波器的dfig转换器
US8451573B1 (en) Overvoltage protection device for a wind turbine and method
EP3893383A1 (en) System and method for controlling wind turbine converters during high voltage ride through events
US9494139B2 (en) System and method for controlling a power output of a wind turbine generator
US8854845B2 (en) System and method of over-voltage protection
JP5855790B2 (ja) 電力変換システム及びその制御方法
EP4266580A1 (en) System and method for detecting igbt failure in a multi-level converter using gate-emitter voltage sensing
US20150263508A1 (en) System and method for detecting islanding of electrical machines and protecting same
WO2014021066A1 (ja) 発電システム
JP2017163659A (ja) 風力発電システム
US20120169051A1 (en) Emergency Adjustment Device for Blade Pitch Adjustment Systems for Wind Energy Installations
EP3487066B1 (en) System and method for operating a doubly fed induction generator system to reduce harmonics
US20230353039A1 (en) Fault tolerant system and method for continuous skip-fire pulse width modulation for an active neutral point clamped converter
JP2017163660A (ja) 風力発電システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13877761

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015505167

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13877761

Country of ref document: EP

Kind code of ref document: A1