WO2014140389A1 - Elemento con rigidez variable controlada por presión negativa - Google Patents

Elemento con rigidez variable controlada por presión negativa Download PDF

Info

Publication number
WO2014140389A1
WO2014140389A1 PCT/ES2013/070177 ES2013070177W WO2014140389A1 WO 2014140389 A1 WO2014140389 A1 WO 2014140389A1 ES 2013070177 W ES2013070177 W ES 2013070177W WO 2014140389 A1 WO2014140389 A1 WO 2014140389A1
Authority
WO
WIPO (PCT)
Prior art keywords
layers
layer
fibers
core
friction
Prior art date
Application number
PCT/ES2013/070177
Other languages
English (en)
French (fr)
Inventor
Maxime Bureau
Thierry Keller
Jan F. VENEMAN
Carolina VERA MARTÍN
Original Assignee
Textia Innovative Solutions, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Textia Innovative Solutions, S.L. filed Critical Textia Innovative Solutions, S.L.
Priority to CA2905655A priority Critical patent/CA2905655C/en
Priority to EP13733334.0A priority patent/EP2796114B1/en
Priority to PCT/ES2013/070177 priority patent/WO2014140389A1/es
Priority to US14/369,766 priority patent/US20150369325A1/en
Priority to CN201380006429.5A priority patent/CN104302254B/zh
Priority to BR112015023746-0A priority patent/BR112015023746B1/pt
Priority to ES13733334.0T priority patent/ES2574603T3/es
Priority to JP2015562268A priority patent/JP2016510613A/ja
Priority to KR1020157029780A priority patent/KR102135863B1/ko
Priority to MX2015013019A priority patent/MX2015013019A/es
Publication of WO2014140389A1 publication Critical patent/WO2014140389A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/50Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics
    • F16F9/512Means responsive to load action, i.e. static load on the damper or dynamic fluid pressure changes in the damper, e.g. due to changes in velocity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/01Orthopaedic devices, e.g. splints, casts or braces
    • A61F5/04Devices for stretching or reducing fractured limbs; Devices for distractions; Splints
    • A61F5/05Devices for stretching or reducing fractured limbs; Devices for distractions; Splints for immobilising
    • A61F5/058Splints
    • A61F5/05833Splints rigidified by vacuum evacuation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/01Orthopaedic devices, e.g. splints, casts or braces
    • A61F5/04Devices for stretching or reducing fractured limbs; Devices for distractions; Splints
    • A61F5/05Devices for stretching or reducing fractured limbs; Devices for distractions; Splints for immobilising
    • A61F5/058Splints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/01Orthopaedic devices, e.g. splints, casts or braces
    • A61F5/0102Orthopaedic devices, e.g. splints, casts or braces specially adapted for correcting deformities of the limbs or for supporting them; Ortheses, e.g. with articulations
    • A61F5/012Orthopaedic devices, e.g. splints, casts or braces specially adapted for correcting deformities of the limbs or for supporting them; Ortheses, e.g. with articulations inflatable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/02Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using gas only or vacuum
    • F16F9/04Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using gas only or vacuum in a chamber with a flexible wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/56Damping, energy absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2437/00Clothing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2535/00Medical equipment, e.g. bandage, prostheses, catheter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2553/00Packaging equipment or accessories not otherwise provided for
    • B32B2553/02Shock absorbing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2571/00Protective equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1334Nonself-supporting tubular film or bag [e.g., pouch, envelope, packet, etc.]
    • Y10T428/1341Contains vapor or gas barrier, polymer derived from vinyl chloride or vinylidene chloride, or polymer containing a vinyl alcohol unit

Definitions

  • the invention relates to an element with variable stiffness controlled through negative pressure, such as aspiration or vacuum.
  • negative pressure such as aspiration or vacuum.
  • the present invention is applicable:
  • sporting goods such as skates, ski boots, surfboards and protective equipment for sports, such as helmets or knee pads and chest protectors
  • negative pressure such as aspiration or vacuum
  • the use of negative pressure is known to provide a way of converting an element from a flexible state, in which the element is formed and can be easily adapted to fit a specific desired shape (such as a part of the human body), to a rigid state, in which the element is rigid and provides support, protection and / or stabilization, and vice versa.
  • the basic structure of devices that use negative pressure generally comprises internal charges that are normally mobile particles and a thin, flexible, air-impermeable outer shell. The structure normally allows the device to be installed easily and quickly around the body and the affected limbs. When the device is returned as desired in the desired position, it is subjected to negative pressure and the atmospheric pressure then compresses the flexible outer shell and applies a substantial pressure to the entire mass of particles.
  • a valve is included to tightly close the cover when it is evacuated to maintain the rigidity of the device. From the rigid state the flexible state is normally obtained by opening of the valve and blowing.
  • US Patent 2005/0137513 discloses a structure to maintain a homogeneous thickness in the devices for supporting and stabilizing a person or body parts with injuries.
  • the device has an inner region wrapped by two flexible films and the inner region is divided into two insert bodies that are formed, respectively, with two strips of flexible, air permeable material.
  • Each insertion body is divided into chambers that contain loose particles, by way of intersecting seams formed between the strips of material.
  • the seams in both insertion bodies are staggered together in both directions, such that the particles combine to form a substantially homogeneous thick layer of particles.
  • such a structure composed of granules or particles has the problem of being too thick, which leads to practical limitations, such as transport size, and a high volume that leads to problems such as a long evacuation time. to reach the desired level of negative pressure.
  • the body tightness element with controlled stiffness described in patent document WO 201 1/07985 is made of a gas-tight envelope that encloses a plurality of layers and has a valve adapted to evacuate the inside of the envelope.
  • Each layer is made of a core made of a material with a high Young's modulus and flexibility, coated on both sides with a coating layer made of a material with a high coefficient of friction.
  • this type of body adjustment element presents the following problems: - Once a vacuum has been applied and the body adjustment element is in its rigid state, when the valve opens to enter the flexible state, the layers can remain glued to each other due to its stickiness, and therefore the flexible state does not recover properly.
  • the layers In the rigid state, when under a bending tension, the layers can be delaminated (the core lining being disconnected).
  • the body adjustment element described in WO 201 1/07985 includes some strips of a material with low friction coefficient, in order to correctly recover the flexible state at atmospheric pressure. However, these strips reduce the effective friction surfaces, which consequently reduces the stiffness of the element in a rigid state and therefore affects its correct operation. In summary, an element with controllable stiffness is necessary, which efficiently resolves both stickiness and delamination problems, in the scenario described above. DESCRIPTION OF THE INVENTION
  • the present invention relates to a variable pressure controlled stiffness element according to claim 1.
  • Preferred embodiments of the element are defined in the dependent claims.
  • variable pressure controllable stiffness element that overcomes the problems of stickiness and delamination that existing controllable stiffness elements have.
  • the element with variable stiffness controllable by negative pressure of the present invention is completely reversible between the flexible and rigid states, while maintaining or even improving, the stiffness relationship between the rigid state and the flexible compared to this stiffness ratio of current solutions.
  • the negative pressure controlled variable stiffness element of the present invention comprises:
  • each layer having a first surface and a second surface
  • a valve adapted to evacuate the inside of the envelope.
  • the first and second surfaces of two adjacent layers are identical to a first aspect of the invention.
  • the element of the present invention has a laminar structure comprising several layers and having the following properties:
  • first and second surfaces can slide relative to each other at atmospheric pressure.
  • a further advantage of the present invention is that the layers can be thinner than the layers of prior art elements (which included layers with a core and a lining), due to the fact that the layers can be made of a single material or composite material that has the necessary properties of high coefficient of friction and low adhesion, thus eliminating the need for both coating and core, and the corresponding adhesive layer between them.
  • the layers may be made of a single material, or they may be made of a matrix reinforced with a plurality of fibers. In both cases, the layers can be made of a continuous or homogeneous sheet, or the layer can be made of a woven structure of strips or ribbons.
  • the fibers can be unidirectional, bidirectional or multidirectional. Only composite materials that have unidirectional fibers are suitable for the structure woven with ribbons.
  • the fibers are preferably selected from glass, carbon, aramid or polyester fibers.
  • the matrix is preferably made of a thermosetting polymer or a thermoplastic polymer.
  • the layers may comprise a core coated by at least one coating on one side of the core.
  • the core is coated by respective first and second coatings, a coating on each side of the core.
  • Such coatings are preferably made of a thermoplastic polyurethane elastomer.
  • the adhesion properties of the layers are preferably measured by an adapted version of a standardized method, such as ASTM D2979-01, "Standard test method for pressure sensitive adhesive tack using an inverted probe machine” ⁇ "Standard test method for pressure-sensitive tack of adhesives using an inverted test machine ").
  • the adhesion properties are measured using a probe tack test with a preload equivalent to atmospheric pressure and a preload time of 100 s.
  • the friction coefficient is preferably measured using a standardized procedure such as ASTM D 1894 "Standard test method for static and kinetic friction coefficients of film and plastic sheets” ("Standard test method for static and kinetic coefficients of friction of plastic film and sheeting ").
  • the adhesion and friction properties can be measured using the adapted probe tack test on a specific number of tapes placed adjacent to each other on a flat surface, such that The resulting width is greater than the minimum value set by the standard.
  • the adhesion properties of the layers are measured on layers as they are in their conditions of use, that is, although the standard indicates that the layers must be cleaned before any measurement is made, to measure the adhesion properties of the layers.
  • layers of the element in the present invention it is not necessary to clean the layers previously; Its adhesion and friction properties must be measured under the same conditions as when they are in use inside the element.
  • Figure 1 shows a sectional view of a variable stiffness element according to the invention.
  • Figure 2 is a perspective view of a first embodiment of the layers inside the element.
  • Figures 3, 4, 5, 6 and 7 show perspective views of other possible embodiments of the layers inside the element.
  • Figure 8 is a perspective view of a section of an element according to the invention intended for medical applications.
  • Figure 9 is a top view of a fabric structure of ribbons of the layers according to another embodiment of the element.
  • Figure 10 schematically shows the adapted method used in the present case to measure the adhesion of the layers.
  • Figure 1 shows a preferred embodiment of an element 1 with variable stiffness according to the invention.
  • the element 1 comprises a stretchable hermetic envelope 10 that encloses a plurality of flexible layers 30 and a valve 20 adapted to evacuate the interior of the envelope.
  • the gas-tight envelope 10 is suitable to be subjected to a controlled pressure, and has a valve 20 adapted to evacuate the interior of the envelope.
  • element 1 has variable state possibilities, from a soft state, flexible to atmospheric pressure to a rigid state when depressurized.
  • Each layer 30 is made of a single material or composite material with a first surface 31 on one side and a second surface 32 on the other side.
  • first and second surfaces 31, 32 of the layers are made of materials, thickness and surface finish such that they result in both a high coefficient of friction and a low adhesion connection.
  • the layers are such that the coefficient of friction between the first surface 31 and the second surface 32 of two adjacent layers 30 is greater than that of the materials normally used for lubrication.
  • the coefficient of friction between the surfaces is above 0.6. More preferably the coefficient of friction is greater than 1.
  • Low adhesion means that the tangential adhesion force between the first and second surfaces 31, 32 of two adjacent layers 30 is such that the layers 30 slide relative to each other when there is no normal force.
  • the first and second surfaces of the layers have low adhesion properties, such that a normal force per unit area below 0.07 N / mm 2 is required to separate them (i.e., a compression force normal of -0.07 N / mm 2 ), and / or the energy per unit area required to separate them in the normal direction is below 6.7 J / m 2 .
  • the friction and tack properties of the layers are influenced not only by the layer material, but also by the thickness and surface finish (roughness Ra) of the layer. This is why, to characterize the interface between the first and second surfaces 31, 32 of two adjacent layers 30, the friction and tack tests are made in two flexible layers 30 to take into account the effect of the manufacturing processes.
  • the adhesion properties have been measured by means of an adapted probe tack test with a pre-load equivalent to atmospheric pressure and a waiting time of 100 s, which is the maximum time scale mentioned in the standard for the establishment of adhesive properties.
  • a standardized method for measuring adhesive adhesion is described in ASTM D2979-01, "Standardized Test Method for Pressure Sensitive Tack of adhesives using an inverted probe machine. "In the present case, an adapted version of this method has been used. The standardized method had to be modified since adhesion between non-adhesive layers is being measured; these layers have a Lower adhesion strength, and in these adhesion depends on the material, thickness and roughness of the layers. The layers can be cleaned with alcohol (or any other means) before measurement, as indicated in the standard. It is possible to take the measurements without previously cleaning the surface of the layers, in order not to alter the adhesion properties of the layers in their conditions of use.
  • the measurement method is shown schematically in Figure 10, in which the force (F) is represented with respect to the displacement ( ⁇ ) between the layers.
  • the adhesion measurement method is as follows:
  • a 50 mm circular contact surface is used instead of the 5 probe mm of the norm, because the adhesion forces are inferior.
  • a certain number of tapes must be placed next to each other, so that when aligned together they cover the circular surfaces of 50 mm.
  • a normal vertical probe machine is used instead of an inverted probe machine, due to the lower adhesive forces.
  • the adhesion test is performed between the actual layers of the element, instead of performing the test between a stainless steel probe and the adhesive.
  • the constant speed approach movement stops when the F max value is reached; At this point, the probe machine is programmed to keep the static load constant at F max .
  • the value of F max used is 200 N, which corresponds to a compression load of the order of magnitude of the atmospheric pressure on the surface.
  • the probe rises vertically upward from a resting surface during steps c-f.
  • the static load is maintained for 100 s (instead of 1 s).
  • the values are averaged with at least five measurements of the same sample, without cleaning the surface between measurements.
  • Table 1 shows examples of the layers, whose adhesion properties have been measured with the adapted probe tack test just explained.
  • the maximum tack tension and tack energy values in the table are the maximum values of normal force and energy (per unit area) required to separate two layers. If a higher value, either of normal force or energy, is required to separate the two layers, then those layers are not valid for the element of the present invention.
  • a preferred embodiment of element 1 of the invention, example I, having the flexible layers 30 of Figure 2 includes thirty-seven layers 30, each layer having a thickness of 80 ⁇ .
  • Each layer is made of thermoplastic polyurethane, in this case, from Epurex® 4201 AU (supplied by Epurex Films GmbH).
  • the resulting element allows switching between a rigid state with a Young's module of 167 MPa (obtained at a negative pressure of -0.86 bar) and a flexible state with a Young's module of 22 MPa (measured at atmospheric pressure). Young's modulus has been obtained for a deformation of 0.2% -0.4%.
  • the element of the invention have a certain degree of stiffness.
  • the layers of the element can be improved, as shown in any of Figures 3-7.
  • Figure 3 shows another possible embodiment of layer 30a.
  • the layer 30a comprises a core 40 coated by a first coating 41 on one side and a second coating 42, these first and second coatings constituting the first and second surfaces of the layer.
  • the first and second coatings 41, 42 are glued to the respective sides of the core 40.
  • the core 40 is essentially a continuous sheet of a flexible material having a high Young's modulus. Having a high Young's modulus means that the Young's modulus of the nucleus is larger than Young's modulus of the materials used due to its elasticity (eg rubbers). Furthermore, the Young's modulus of the material constituting the core 40 is larger than the Young's modulus of the material of the linings 41, 42.
  • the material forming the core 40 preferably has a Young's modulus greater than 0.2 GPa, such as low density polyethylene, LDPE, which gives the element the stiffness valid for certain applications.
  • Young's modulus of core material 40 is greater than 0.8 GPa.
  • the core can be manufactured from any of the following materials:
  • Thermoplastics such as ABS, PEEK, PP, PEHD or PVC.
  • Metals such as aluminum, brass or iron.
  • first and second coatings 41, 42 on each side of the core 40 are made of the same material, including a specific layer thickness and surface finish, resulting in high friction coefficient and low adhesion properties, such as case of the layer shown in Figure 3. It is also possible that they are manufactured from different materials, including a specific layer thickness and surface finish, so that, when in mutual contact, each of the layers has the corresponding high friction and low adhesion properties.
  • Figure 4 shows another possible layer 30b for the element of the invention.
  • the layer 30b comprises a core 40 and a first coating 41 only on one side of the core 40.
  • the core 40 is made of a material having a high Young's modulus
  • the coating 41 is made of a material with a minor Young's module.
  • the thickness of the core 40 is greater than the thickness of the first coating 41.
  • the coating 41 has a smooth surface finish, while the surface finish of the core 40 is rough.
  • the tangential adhesion force between the layers 30a that is, the tangential adhesion force between the coatings 41, 42 of two adjacent layers (which they are the surfaces in contact) be less than the maximum tangential adhesion force due to the gluing between the coatings 41, 42 and the core 40 in each layer 30a. This is also an important feature, since otherwise the delamination of the layers may occur during flexion.
  • the tangential adhesion force between the layers 30b that is, the tangential adhesion force between the core 40 of a layer 30b and the coating 41 of the adjacent layer 30b (which are the surfaces in contact), is less than the maximum tangential adhesion force due to the gluing between the coating 41 and the core 40 in each layer 30b.
  • Suitable materials for coatings are: some polyurethanes thermoplastics, Acronal / Styrofan resin (40% Acronal® 12 DE with 60% Styrofan® D422, BASF), polyurea resin, silicone, rubber, silicone rubber, latex.
  • the layers may comprise a fiber reinforced matrix.
  • layer 30c comprises a plurality of fibers 301 embedded in a matrix 302.
  • Figure 6 shows another layer 30d.
  • This layer 30d is similar to the layers 30c shown in Figure 5. The difference is that the matrix 302 in the layer 30d has two portions 303 that do not have reinforcing fibers; These two portions 303 are only made of the matrix material.
  • the matrix material in the case of Figures 5 and 6 has the corresponding high friction and low adhesion properties.
  • a preferred embodiment of the element 1 of the invention, example II, having the flexible layers 30c or 30d of Figures 5 or 6 includes six layers, each layer having a thickness of 250 ⁇ .
  • Each layer is made of thermoplastic polyurethane (from Epurex® 4201 AU) reinforced with 204 g / mm 2 fiberglass (FG) fabric. The proportion of fibers is 73%.
  • the resulting element allows switching between a rigid state with a Young module of 2876 MPa (obtained at a negative pressure of -0.86 bar) and a flexible state with a Young module of 84 MPa (measured at atmospheric pressure). Young's modulus was obtained for a deformation of 0.2% -0.4%.
  • Figure 7 shows another possible additional embodiment of the layers that constitute the laminar structure of the element.
  • the layer 30e in Figure 7 is similar to that of Figures 5 or 6, but in this case the matrix 302 reinforced with a plurality of unwoven unidirectional fibers 301 forms a core, which is additionally coated by the coatings 41, 42 both Made of the same material with high friction and low adhesion.
  • the fibers in the layers of Figures 5-7 are unidirectional nonwoven fibers. But it is also possible that the fibers are multidirectional or that the fibers are part of a woven fabric.
  • the fibers 301 in the embodiments shown in Figures 5-7 can be any of the following: glass fibers, carbon fibers, aramid fibers or polyester fibers.
  • the matrix material 302 may be a thermosetting polymer, such as epoxy, polyester, polyuria, vinyl ester, phenolic, polyimide, polyamide, or thermoplastic polymer, such as ABS, PP, PEHD, PEEK, PVC , PU, etc.
  • the rest of the conditions used during the test of the materials are those described in ASTM 1894:
  • element 1 When element 1 is used as an orthopedic device, it is able to adapt to the individual shape of the patient's limb. In its flexible state, element 1 adapts to the shape of the limb, and when vacuum is applied to element 1 it is locked in its rigid state to provide support and stabilization. For this purpose, it is important to have a high stiffness relationship between the flexible and rigid states, in addition to each layer being preferably made of a material with a high Young's modulus. In an ideal case, the layers 30, when in the rigid state, are completely glued to each other through the negative pressure applied, the stiffness of the element is n 2 times greater than in the flexible state under atmospheric conditions, where n is the number of layers in the element.
  • this increase in stiffness factor of n 2 approximates, depending on the actual coefficient of friction that can still allow some slippage between the layers.
  • the stiffness ratio to be achieved by the element depends on the type of application. For example, a ratio of 4 is not sufficient in the case of orthotic adjustment. For orthosis adjustment, an element with twelve thin layers - and therefore a ratio of 144 - works. But it is also possible to double the thickness of the layers, include only six layers, and the resulting element is flexible enough and is capable of achieving a similar stiffness suitable for orthotic applications.
  • the element 10 further comprises an air permeable layer 50, such as a crosslinked structure, inserted in parallel with the layers 30a inside the flexible envelope 10.
  • the layer 50 permeable to Air allows the vacuum to be distributed evenly.
  • a plastic mesh made of 100 ⁇ diameter fiber and open cells of approximately 3x3 mm, provides a uniform pressure distribution.
  • the valve 20 is inserted into the casing 10 on the side next to the air permeable layer 50. This prevents blockage of the air flow by a layer 30a that sticks to the valve hole. Additionally, the air-permeable layer 50 prevents the outer layer from adhering to the envelope, which could lead to loss of flexibility in the flexible state.
  • the layers be manufactured from a material with a high Young's modulus to manufacture an element with a high stiffness state, but materials that have a high Young's modulus generally have low extensibility. Because they are not extensible, they cannot be adapted to any 3D shape.
  • the layer 30f is provided in the form of woven tapes or strips for Add degrees of freedom to the layer. To keep this structure organized after repeated use and avoid overlapping and losing the tapes, the edges of any 2D pattern can be sewn and cut, taking care to ensure that both ends of each tape have been sewn into the pattern.
  • any of the flexible layers 30, 30a, 30b, 30c, 30d or 30e of the above embodiments is cut into tapes or strips of desired width, which are then woven.
  • the layer is a composite material made of a fiber reinforced polymer matrix, such as layers 30c, 30d or 30e, of Figures 5-7, it is also possible to directly fabricate the composite material with the width specific.
  • the 3x1 twill fabric made with a tape or strip with a width of 4 mm and with a separation of 1 mm between the tapes / strips provides a good result.
  • the tapes or strips can be manufactured with a 600tex fiberglass wick (PPG) flattened with a width of 4 mm.
  • the fiber wicks are then impregnated with thermoplastic polyurethane (such as BASF Elastollan® 890 A10), respecting a matrix / fiber volume ratio of approximately 30/70.
  • the surface roughness should be approximately 1, 27 to achieve the correct friction and tack properties of the first and second surfaces.
  • a preferred embodiment of element 1 of the invention, example III, which has the flexible layers 30f shown in Figure 9, includes six layers, each layer having a total thickness of 450 ⁇ .
  • Each layer is made of tapes or strips with a thickness of 160 ⁇ , woven in a 3x1 twill fabric.
  • the tapes are made with an Epurex® 4201 AU thermoplastic polyurethane matrix reinforced with 600tex fiberglass (FG) wicks that are embedded in a matrix.
  • the fiber ratio in this case, is 60%.
  • the resulting element allows switching between a rigid state with a Young's module of 546 MPa (obtained at a negative pressure of -0.86 bar) and a flexible state with a Young's module of 24 MPa (measured at atmospheric pressure). Young's modulus was obtained for a deformation of 0.2% -0.4%.
  • Twill fabric has the advantage of being more flexible and draping more than normal tissue.
  • Lizo fabric is also a good option in terms of fall capacity.
  • Table 2 summarizes the main characteristics of the three examples I, II, III provided above for the layers inside the element, and their properties.
  • the layers of the element are enclosed in a sealed PP / HDPE bag.
  • the element also contains a nylon mesh for the distribution of the vacuum, adding a total of 0.6 mm in the thickness of the element.
  • the term “approximately” and the terms of your family should be understood as indicating values very close to those that accompany the term mentioned above. That is, a deviation within reasonable limits with respect to an exact value should be accepted, since a person skilled in the art will understand that such deviation from the indicated values is inevitable due to measurement inaccuracies, etc. The same applies to the terms “over” and “around” and “substantially.”

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nursing (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Laminated Bodies (AREA)
  • Prostheses (AREA)
  • Fluid-Damping Devices (AREA)
  • Orthopedics, Nursing, And Contraception (AREA)

Abstract

Elemento con rigidez variable controlada por presión negativa. Elemento (1) con rigidez variable controlada por presión negativa, comprendiendo el elemento: - una envoltura (10) hermética; - una pluralidad de capas (30, 30a, 30b, 30c, 30d, 30e) flexibles en la envoltura, teniendo cada capa (30, 30a, 30b, 30c 30d, 30e) una primera superficie (31, 41) y una segunda superficie (32, 42); y, - una válvula (20) adaptada para evacuar el interior de la envoltura (10); caracterizado por que: - las primera y segunda superficies (31, 41, 32, 42) de dos capas adyacentes tienen un coeficiente de rozamiento entre sí que es superior a 0,5; - las primera y segunda superficies (31, 41, 32, 42) de dos capas adyacentes tienen propiedades de adhesión tales que es necesaria una fuerza normal por unidad de área por debajo de 0,07 N/mm2 para separarlas y/o la energía por unidad de área requerida para separarlas en la dirección normal es inferior a 6,7 J/m2.

Description

Elemento con rigidez variable controlada por presión negativa
CAMPO TÉCNICO
La invención se refiere a un elemento con rigidez variable controlada a través de presión negativa, tal como aspiración o vacío. La presente invención es aplicable:
a ciertos dispositivos médicos (tales como yesos, escayolas, ortesis funcionales, plantillas y dispositivos médicos de emergencia, tales como férulas para extremidades y elementos de prestación de primeros auxilios para todo el cuerpo),
a artículos deportivos (como patines, botas de esquí, tablas de surf y equipos de protección para deportes, tales como cascos o rodilleras y protectores pectorales),
a elementos de seguridad que se endurecen en caso de un choque o accidente, a elementos constructivos, por ejemplo, a utilizarse para la fabricación de mobiliario de acampada reconfigurable o de juguetes,
a elementos de molde para la producción de materiales compuestos,
- a elementos de embalaje, o
a elementos de seguridad que se endurecen en caso de un choque o accidente, por ejemplo, en el campo de la automoción.
ESTADO DE LA TÉCNICA
Se conoce la utilización de presión negativa, tal como aspiración o vacío, para proporcionar una forma de convertir un elemento de un estado flexible, en el que el elemento se forma y puede adaptarse fácilmente para ajustarse a una forma específica deseada (tal como una parte del cuerpo humano), a un estado rígido, en el que el elemento es rígido y proporciona soporte, protección y/o estabilización, y viceversa. La estructura básica de los dispositivos que utilizan presión negativa comprende generalmente cargas internas que son partículas normalmente móviles y una fina cubierta externa flexible, impermeable al aire. La estructura permite normalmente que el dispositivo se instale fácil y rápidamente alrededor del cuerpo y de las extremidades afectadas. Cuando el dispositivo se vuelve de la forma deseada en la posición deseada, se somete a presión negativa y la presión atmosférica comprime entonces la cubierta exterior flexible y aplica una presión sustancial a la totalidad de la masa de partículas. La fuerza de rozamiento entre las partículas y la cubierta resiste el movimiento relativo entre las mismas, proporcionando de este modo rigidez. Por lo general, se incluye una válvula para cerrar herméticamente la cubierta cuando se evacúa para mantener la rigidez del dispositivo. A partir del estado rígido el estado flexible se obtiene normalmente abriendo de la válvula y soplando.
Se han publicado varias patentes sobre dispositivos ortopédicos que emplean presión negativa. El documento de Patente US 2005/0137513 desvela una estructura para mantener un espesor homogéneo en los dispositivos para soportar y estabilizar una persona o partes del cuerpo con lesiones. El dispositivo tiene una región interior envuelta por dos películas flexibles y la región interior se divide en dos cuerpos de inserción que están formados, respectivamente, con dos tiras de material flexible, permeables al aire. Cada cuerpo de inserción está dividido en cámaras que contienen partículas sueltas, a modo de costuras que se cruzan formadas entre las tiras de material. Las costuras en ambos cuerpos de inserción están escalonadas entre sí en ambas direcciones, de tal manera que las partículas se combinan para formar una capa de partículas gruesa de forma sustancialmente homogénea. Sin embargo, una estructura de este tipo compuesta de gránulos o partículas tiene el problema de ser demasiado gruesa, lo que conduce a limitaciones prácticas, tales como el tamaño de transporte, y un alto volumen que conduce a problemas tales como un largo tiempo de evacuación para alcanzar el nivel deseado de presión negativa.
Con el fin de resolver el problema del espesor y volumen indeseados, el elemento de ajuste corporal a con rigidez controlada descrito en el documento de patente WO 201 1/07985 está fabricado de una envoltura hermética a gases que encierra una pluralidad de capas y que tiene una válvula adaptada para evacuar el interior de la envoltura. Cada capa se fabrica de un núcleo fabricado de un material con un módulo de Young y flexibilidad elevados, revestido por ambas caras con una capa de recubrimiento o revestimiento fabricada de un material con un alto coeficiente de rozamiento. Sin embargo, este tipo de elemento de ajuste corporal presenta los siguientes problemas: - Una vez que se ha aplicado vacío y el elemento de ajuste corporal está en su estado rígido, cuando la válvula se abre para pasar al estado flexible, las capas pueden quedarse pegadas una a la otra debido a su pegajosidad, y por tanto el estado flexible no se recupera apropiadamente.
En el estado rígido, cuando está bajo una tensión de flexión, las capas pueden deslaminarse (desconectándose el revestimiento del núcleo).
El elemento de ajuste corporal que se describe en el documento WO 201 1 /07985 incluye algunas tiras de un material con bajo coeficiente de rozamiento, con el fin de recuperar correctamente el estado flexible a presión atmosférica. Sin embargo, estas tiras reducen las superficies de rozamiento eficaces, lo que reduce consecuentemente la rigidez del elemento en estado rígido y afecta, por lo tanto, a su correcto funcionamiento. En resumen, es necesario un elemento con rigidez controlable, que resuelva de forma eficiente tanto los problemas de pegajosidad como de deslaminación, en el escenario descrito anteriormente. DESCRIPCIÓN DE LA INVENCIÓN
La presente invención se refiere a un elemento de rigidez variable controlada por presión negativa según la reivindicación 1 . Realizaciones preferidas del elemento se definen en las reivindicaciones dependientes.
Es un objeto de la presente invención proporcionar un elemento de rigidez variable controlable por presión negativa que supere los problemas de pegajosidad y deslaminación que tienen los elementos de rigidez controlable existentes. Con el fin de hacerlo, el elemento con rigidez variable controlable por presión negativa de la presente invención es totalmente reversible entre los estados flexible y rígido, a la vez que se mantiene o incluso se mejora, la relación de rigidez entre el estado rígido y el flexible en comparación con esta relación de rigidez de las soluciones actuales.
El elemento de rigidez variable controlada por presión negativa de la presente invención comprende:
una envoltura impermeable a gases;
una pluralidad de capas flexibles dentro de la envoltura, teniendo cada capa una primera superficie y una segunda superficie; y,
una válvula adaptada para evacuar el interior de la envoltura.
De acuerdo con un primer aspecto de la invención, las superficies primera y segunda de dos capas adyacentes:
tienen un coeficiente de rozamiento entre sí que es superior a 0,5; y
- tienen unas determinadas propiedades de adhesión, tales que se requiere una fuerza normal por unidad de área de no más de 0,07 N/mm2 para separarlas y/o la energía por unidad de área requerida para separarlas en la dirección normal está por debajo de 6,7 J/m2.
Por lo tanto, el elemento de la presente invención tiene una estructura laminar que comprende varias capas y que tiene las siguientes propiedades:
alto coeficiente de rozamiento entre las capas debido a la selección de los materiales utilizados y al hecho de que toda la superficie de las capas soporta rozamiento; y,
baja adhesión entre capas, especialmente cuando no hay fuerza normal alguna. De esta manera las superficies primera y segunda pueden deslizar una con respecto a la otra a presión atmosférica.
Una ventaja adicional de la presente invención es que las capas pueden ser más delgadas que las capas de elementos de la técnica anterior (que incluían capas con un núcleo y un revestimiento), debido al hecho de que las capas pueden estar fabricadas de un único material o material compuesto que tenga las propiedades necesarias de alto coeficiente de rozamiento y de baja adhesión, eliminando de este modo la necesidad de tener tanto revestimiento como núcleo, y la capa adhesiva correspondiente entre los mismos.
Con esta configuración específica del elemento de la invención, se mejora la relación de rigidez del elemento entre sus estados flexible y rígido:
en primer lugar, debido a que las capas no se pegan entre sí a presión atmosférica, lo que hace que el elemento sea más flexible y más fácil de conformar en su estado flexible; y
- en segundo lugar, dado que no hay necesidad de tiras de bajo rozamiento o de costuras, se aumenta la superficie de rozamiento lo que hace que el elemento sea más rígido en su estado rígido.
Dependiendo de las aplicaciones del elemento, las capas pueden estar fabricadas de un único material, o pueden fabricarse de una matriz reforzada con una pluralidad de fibras. En ambos casos, las capas se pueden fabricar de una lámina continua u homogénea, o la capa se puede fabricar de una estructura tejida de tiras o cintas.
Cuando las capas se fabrican de una matriz reforzada con fibras, las fibras pueden ser unidireccionales, bidireccionales o multidireccionales. Sólo los materiales compuestos que tienen fibras unidireccionales son adecuados para la estructura tejida con cintas.
Las fibras se seleccionan preferiblemente de fibras de vidrio, de carbono, de aramida o de poliéster. Y la matriz se fabrica preferiblemente de un polímero termoestable o de un polímero termoplástico.
De acuerdo con otra realización preferida, las capas pueden comprender un núcleo revestido por al menos un recubrimiento en un lado del núcleo. Preferiblemente el núcleo se reviste por respectivos primer y un segundo recubrimientos, un recubrimiento en cada lado del núcleo.
Tales revestimientos se fabrican preferiblemente de un elastómero de poliuretano termoplástico. Las propiedades de adhesión de las capas se miden preferiblemente mediante una versión adaptada de un método normalizado, tal como el ASTM D2979-01 , "Método de ensayo normalizado para pegajosidad sensible a presión de adhesivos utilizando una máquina de sonda invertida" {"Standard test method for pressure-sensitive tack of adhesives using an ¡nverted probé machine"). Preferiblemente, las propiedades de adhesión se miden utilizando un ensayo de pegajosidad por sonda con una pre-carga equivalente a la presión atmosférica y un tiempo de pre-carga de espera de 100 s.
El coeficiente de rozamiento se mide preferiblemente usando un procedimiento estandarizado tal como el ASTM D 1894 "Método de ensayo normalizado para coeficientes de rozamiento estáticos y cinéticos de película y láminas de plástico" (" Standard test method for static and kinetic coefficients of friction of plástic film and sheeting").
En el caso de las capas fabricadas de cintas tejidas, las propiedades de adhesión y de fricción se pueden medir utilizando el ensayo adaptado de pegajosidad por sonda sobre un número específico de cintas colocadas de forma adyacente entre sí sobre una superficie plana, de tal manera que la anchura resultante es mayor que el mínimo valor fijado por la norma.
Las propiedades de adhesión de las capas se miden sobre capas a medida que están en sus condiciones de uso, es decir, aunque la norma indica que las capas se deben limpiar antes de que se realice medición alguna, para medir las propiedades de adhesión de las capas del elemento en la presente invención no es necesario limpiar las capas previamente; sus propiedades de adhesión y fricción se deben medir en las mismas condiciones que cuando están en uso en el interior del elemento.
Otras ventajas y características de la invención serán evidentes a partir de la siguiente descripción detallada y se señalan particularmente en las reivindicaciones adjuntas.
BREVE DESCRIPCIÓN DE LOS DIBUJOS
Para completar la descripción y con el fin de proporcionar una mejor comprensión de la invención, se proporciona un conjunto de dibujos. Dichos dibujos forman parte integral de la descripción e ilustran una realización de la invención, que no debe interpretarse como restrictiva del alcance de la invención, sino sólo como un ejemplo de cómo puede llevarse a cabo la invención. Los dibujos comprenden las siguientes figuras:
La Figura 1 muestra una vista en sección de un elemento de rigidez variable de acuerdo con la invención. La Figura 2 es una vista en perspectiva de una primera realización de las capas en el interior del elemento.
Las Figuras 3, 4, 5, 6 y 7 muestran vistas en perspectiva de otras realizaciones posibles de las capas en el interior del elemento.
La Figura 8 es una vista en perspectiva de una sección de un elemento de acuerdo con la invención destinado a aplicaciones médicas.
La Figura 9 es una vista superior de una estructura de tejido de cintas de las capas de acuerdo con otra realización del elemento.
La Figura 10 muestra esquemáticamente el método adaptado utilizado en el presente caso para medir la adhesión de las capas.
DESCRIPCIÓN DE UNA REALIZACIÓN PREFERIDA
La siguiente descripción no debe ser tomada en un sentido limitativo sino que se proporciona únicamente con el propósito de describir los principios generales de la invención. Las siguientes realizaciones de la invención se describirán a modo de ejemplo, con referencia a los dibujos mencionados anteriormente que muestran los elementos y los resultados de acuerdo con la invención.
La Figura 1 muestra una realización preferida de un elemento 1 con rigidez variable de acuerdo con la invención. El elemento 1 comprende una envoltura 10 hermética estirable que encierra una pluralidad de capas flexibles 30 y una válvula 20 adaptada para evacuar el interior de la envoltura. La envoltura 10 estanca a gases es apta para ser sometida a una presión controlada, y tiene una válvula 20 adaptada para evacuar el interior de la envoltura.
De una manera conocida, cuando el interior de la envoltura 10 está a presión atmosférica, las capas 30 están descomprimidas. Cuando se aplica vacío, las capas flexibles 30 se comprimen entre sí aumentando el rozamiento entre las mismas, lo que a su vez aumenta la rigidez del elemento 1 en su conjunto. De esta manera, el elemento 1 tiene posibilidades de estado variables, de un estado blando, flexible a la presión atmosférica a un estado rígido cuando se despresuriza.
La novedad del presente elemento 1 reside en la estructura específica y en el material de las capas 30, como se muestra en la Figura 2; cada capa 30 se fabrica de un único material o material compuesto con una primera superficie 31 en un lado y una segunda superficie 32 en el otro lado.
Con el fin de que el elemento 1 funcione correctamente y que su estado flexible o blando se recupere adecuadamente una vez que el vacío se aplica y se libera posteriormente, es importante que las superficies primera y segunda 31 , 32 de las capas se fabriquen de materiales, grosor y acabado superficial tales que resulten tanto en un alto coeficiente de rozamiento como en una conexión de baja adhesión.
Las capas son tales que el coeficiente de rozamiento entre la primera superficie 31 y la segunda superficie 32 de dos capas adyacentes 30 es mayor que el de los materiales utilizados normalmente para lubricar. El coeficiente de rozamiento entre las superficies está por encima de 0,6. Más preferiblemente el coeficiente de rozamiento es superior a 1 .
Con el fin de medir el coeficiente de rozamiento se puede utilizar un procedimiento normalizado, tal como el ASTM D 1894 "Método de ensayo normalizado para coeficientes de rozamiento estáticos y cinéticos de película y láminas de plástico".
Un requisito esencial de las capas es que tengan propiedades de baja adhesión. Por baja adhesión se entiende que la fuerza de adhesión tangencial entre las primera y segunda superficies 31 , 32 de dos capas adyacentes 30 sea tal que las capas 30 deslicen una en relación con la otra cuando no existe una fuerza normal. De hecho, las primera y segunda superficies de las capas tienen propiedades de baja adhesión, de tal manera que se requiere una fuerza normal por unidad de área por debajo de 0,07 N/mm2 para separarlas (es decir, una fuerza de compresión normal de -0,07 N/mm2), y/o la energía por unidad de área requerida para separarlas en la dirección normal está por debajo de 6,7 J/m2.
Esta es una característica importante para evitar que las diferentes capas permanezcan pegadas entre sí una vez que ya no se aplica vacío y el elemento 1 recupera su estado flexible.
Se debe considerar que las propiedades de rozamiento y pegajosidad de las capas no sólo están influenciadas por el material de la capa, sino también por el espesor y el acabado superficial (rugosidad Ra) de la capa. Esto es por lo que, para caracterizar la interfaz entre las superficies primera y segunda 31 , 32 de dos capas adyacentes 30, los ensayos de rozamiento y pegajosidad se hacen en dos capas flexibles 30 para tener en cuenta el efecto de los procesos de fabricación.
Las propiedades de adhesión se han medido por medio de un ensayo adaptado de pegajosidad por sonda con una pre-carga equivalente a la presión atmosférica y un tiempo de pre-carga de espera de 100 s, que es la escala de tiempo máxima mencionada en la norma para que se establezcan las propiedades adhesivas.
Un método normalizado para medir la adhesión de los adhesivos se describe en ASTM D2979-01 , "Método de ensayo normalizado para la pegajosidad sensible a presión de adhesivos utilizando una máquina de sonda invertida". En el presente caso, se ha utilizado una versión adaptada de este método. El método normalizado tuvo que ser modificado puesto que se está midiendo la adhesión entre capas que no son adhesivas; estas capas tienen una fuerza de adhesión inferior, y en las mismas la adhesión depende del material, espesor y rugosidad de las capas. Las capas se pueden limpiar con alcohol (o cualquier otro medio) antes de la medición, como se indica en la norma. Sin embargo, es posible tomar las medidas sin limpiar previamente la superficie de las capas, con el fin de no alterar las propiedades de adhesión de las capas en sus condiciones de uso.
Lo que es importante es que el método adaptado se repita varias veces, a fin de tener un número estadísticamente significativo de mediciones, de tal manera que sea posible ignorar los valores atípicos.
El método de medición se muestra esquemáticamente en la Figura 10, en la que la fuerza (F) se representa con respecto al desplazamiento (δ) entre las capas. El método de medición de adhesión es el siguiente:
a-c) Las superficies de las capas se acercan a una velocidad constante, y en algún punto entran en contacto entre sí y se comprimen hasta que se alcanza la fuerza de compresión Fmax.
c-f) Las superficies de las capas se separan a una velocidad constante de 5 mm/min. (La norma establece una velocidad de 10 mm/s, pero se ha utilizado una velocidad de 5 mm/min para proporcionar mayor precisión).
Más específicamente:
a-b) Las superficies se mueven una hacia la otra a una velocidad constante, no existiendo contacto entre las mismas.
b-c) Una vez que hay contacto entre las superficies, se desarrolla una fuerza de compresión por el movimiento, hasta que alcanza su valor pico de Fmax. Después, el movimiento entre las capas se detiene, y la fuerza se mantiene al nivel constante Fmax. c-d) Las superficies salen una de la otra a una velocidad constante. Inicialmente se elimina la fuerza de compresión, hasta un punto en el que se desarrolla una fuerza de adhesión entre las capas hasta que se alcanza un valor máximo Fadh. Esta fuerza de adhesión tiene una dirección opuesta a la fuerza de compresión inicial.
d-e) La fuerza de adhesión entre las capas desaparece a través de la desconexión de superficies.
e-f) Las superficies se separan una de otra sin contacto, a una velocidad constante.
Las adaptaciones específicas al ensayo normalizado son:
- Se utiliza una superficie de contacto circular de 50 mm en lugar de la sonda de 5 mm de la norma, debido a que las fuerzas de adhesión son inferiores. En el caso de la realización que comprende cintas, se deben poner un número determinado de cintas una junto a la otra, de modo que al alinearse juntas cubren las superficies circulares de 50 mm.
- Se utiliza una máquina de sonda vertical normal en lugar de una máquina de sonda invertida, debido a las fuerzas adhesivas más bajas.
El ensayo de adhesión se realiza entre las capas reales del elemento, en vez de realizar el ensayo entre una sonda de acero inoxidable y el adhesivo.
El movimiento de aproximación a velocidad constante se detiene cuando se alcanza el valor Fmax; en este punto, la máquina de sonda se programa para mantener la carga estática constante en Fmax. El valor de Fmax utilizado es 200 N, lo que corresponde a una carga de compresión del orden de magnitud de la presión atmosférica en la superficie.
La sonda se eleva verticalmente hacia arriba desde una superficie de reposo durante las etapas c-f.
La carga estática se mantiene durante 100 s (en lugar de 1 s).
Se utilizan capas reales en el ensayo, en lugar del espesor de la capa superficial de adhesivo especificado en la norma.
Los valores se promedian con al menos cinco mediciones de la misma muestra, sin limpiar la superficie entre mediciones.
La adhesión se caracteriza por:
- Fadh ASUperf¡c¡e, en donde Fadh es la fuerza máxima medida mientras se desconectan las superficies y Asuperflcie es el área de la superficie de contacto, y
- Por wadh ASUperf¡c¡e, en donde ooadh es la energía requerida para desconectar las dos capas.
La siguiente Tabla 1 muestra ejemplos de las capas, cuyas propiedades de adhesión se han medido con el ensayo de pegajosidad por sonda adaptado que se acaba de explicar. Los valores de tensión máxima de pegajosidad y de energía de pegajosidad en la tabla son los valores máximos de la fuerza normal y de la energía (por unidad de superficie) requeridos para separar dos capas. Si se requiere un valor superior, bien de la fuerza normal o de la energía, para separar las dos capas, entonces esas capas no son válidas para el elemento de la presente invención. Tabla 1
Figure imgf000011_0001
Una realización preferida del elemento 1 de la invención, ejemplo I, que tiene las capas 30 flexibles de la Figura 2, incluye treinta y siete capas 30, teniendo cada capa un espesor de 80 μηι. Cada capa se fabrica de poliuretano termoplástico, en este caso, de Epurex® 4201 AU (suministrado por Epurex Films GmbH). El elemento resultante permite la conmutación entre un estado rígido con un módulo de Young de 167 MPa (obtenido a una presión negativa de -0,86 bar) y un estado flexible con un módulo de Young de 22 MPa (medido a presión atmosférica). El módulo de Young se ha obtenido para una deformación de 0,2%-0,4%.
Para ciertas aplicaciones, es necesario que el elemento de la invención tenga un cierto grado de rigidez. Con el fin de obtener tal rigidez las capas del elemento se pueden mejorar, como se muestra en cualquiera de las Figuras 3-7.
La Figura 3 muestra otra posible realización de la capa 30a. En este caso, la capa 30a comprende un núcleo 40 revestido por un primer revestimiento 41 en un lado y un segundo revestimiento 42, constituyendo estos primer y segundo revestimientos las superficies primera y segunda de la capa. Por lo general, los revestimientos primero y segundo 41 , 42 se pegan a los lados respectivos del núcleo 40.
El núcleo 40 es esencialmente una lámina continua de un material flexible que tiene un módulo de Young elevado. Tener un módulo de Young elevado significa que el módulo de Young del núcleo es mayor que el módulo de Young de los materiales utilizados debido a su elasticidad (por ejemplo, cauchos). Además, el módulo de Young del material que constituye el núcleo 40 es mayor que el módulo de Young del material de los revestimientos 41 , 42. El material que forma el núcleo 40 tiene preferiblemente un módulo de Young superior a 0,2 GPa, tal como polietileno de baja densidad, LDPE, lo que le proporciona al elemento la rigidez válida para ciertas aplicaciones.
Preferiblemente, el módulo de Young del material del núcleo 40 es mayor que 0,8 GPa.
El núcleo se puede fabricar de cualquiera de los siguientes materiales:
Termoplásticos tales como ABS, PEEK, PP, PEHD o PVC.
Metales tales como aluminio, latón o hierro.
- Madera, papel.
Es posible que los primer y segundo revestimientos 41 , 42 a cada lado del núcleo 40 se fabriquen del mismo material, incluyendo un espesor de capa y un acabado superficial específicos, resultando en propiedades de alto coeficiente de rozamiento y de baja adhesión, como es el caso de la capa que se muestra en la Figura 3. También es posible que se fabriquen de diferentes materiales, incluyendo un espesor de capa y acabado superficial específicos, de forma que, cuando están en contacto mutuo, cada una de las capas tiene las correspondientes propiedades de alto rozamiento y de baja adhesión.
La Figura 4 muestra otra posible capa 30b para el elemento de la invención. En este caso, la capa 30b comprende un núcleo 40 y un primer revestimiento 41 sólo en un lado del núcleo 40. El núcleo 40 se fabrica de un material que tiene un módulo de Young elevado, y el revestimiento 41 se fabrica de un material con un módulo de Young menor. El espesor del núcleo 40 es mayor que el espesor del primera revestimiento 41 . Asimismo, con el fin de lograr completamente las propiedades de baja adhesión y de alto rozamiento entre las capas 30b en esta realización, el revestimiento 41 tiene un acabado superficial liso, mientras que el acabado superficial del núcleo 40 es rugoso.
Adicionalmente, en la realización de la capa 30a que se muestra en la Figura 3, es importante que la fuerza de adhesión tangencial entre la capas 30a, es decir, la fuerza de adhesión tangencial entre los revestimientos 41 , 42 de dos capas adyacentes (que son las superficies en contacto), sea menor que la fuerza de adhesión tangencial máxima debido al encolado entre los revestimientos 41 , 42 y el núcleo 40 en cada capa 30a. Esto es también una característica importante, ya que de lo contrario puede ocurrir la deslaminación de las capas durante la flexión.
Del mismo modo, en la realización de la capa 30b de la Figura 4, es importante que la fuerza de adhesión tangencial entre las capas 30b, es decir, la fuerza de adhesión tangencial entre el núcleo 40 de una capa 30b y el revestimiento 41 de la capa 30b adyacente (que son las superficies en contacto), sea menor que la fuerza de adhesión tangencial máxima debido al encolado entre el revestimiento 41 y el núcleo 40 en cada capa 30b.
Materiales adecuados para los revestimientos son: algunos poliuretanos termoplásticos, resina Acronal/Styrofan (40% de Acronal® 12 DE con 60% de Styrofan® D422, de BASF), resina de poliurea, silicona, caucho, caucho de silicona, látex.
Para mejorar aún más las propiedades de rigidez del elemento 1 para aquellas aplicaciones que lo requieran (tales como elementos de construcción), las capas pueden comprender una matriz reforzada con fibras.
Como se muestra en la Figura 5, la capa 30c comprende una pluralidad de fibras 301 incrustadas en una matriz 302.
La Figura 6 muestra otra capa 30d. Esta capa 30d es similar a las capas 30c mostradas en la Figura 5. La diferencia es que la matriz 302 en la capa 30d tiene dos porciones 303 que no tienen fibras de refuerzo; estas dos porciones 303 sólo se fabrican del material de la matriz.
El material de la matriz en el caso de las Figuras 5 y 6 tiene las correspondientes propiedades de alto rozamiento y de baja adhesión.
Una realización preferida del elemento 1 de la invención, ejemplo II, que tiene las capas 30c o 30d flexibles de las Figuras 5 o 6 incluye seis capas, teniendo cada capa un espesor de 250 μηι. Cada capa se fabrica de poliuretano termoplástico (de Epurex® 4201 AU) reforzado con tejido de fibra de vidrio (FG) de 204 g/mm2. La proporción de fibras es del 73%. El elemento resultante permite conmutar entre un estado rígido con un módulo de Young de 2876 MPa (obtenido a una presión negativa de -0,86 bar) y un estado flexible con un módulo de Young de 84 MPa (medido a presión atmosférica). El módulo de Young se obtuvo para una deformación del 0,2%-0,4%.
La Figura 7 muestra otra posible realización adicional de las capas que constituyen la estructura laminar del elemento.
La capa 30e en la Figura 7 es similar a la de las Figuras 5 o 6, pero en este caso la matriz 302 reforzada con una pluralidad de fibras 301 unidireccionales no tejidas forma un núcleo, que se reviste adicionalmente por los revestimientos 41 , 42 ambos fabricados de un mismo material con un rozamiento alto y baja adhesión.
Las fibras en las capas de las Figuras 5-7 son fibras unidireccionales no tejidas. Pero también es posible que las fibras sean multidireccionales o que las fibras formen parte de una tela tejida.
La fibras 301 en las realizaciones que se muestran las Figuras 5-7 pueden ser cualquiera de las siguientes: fibras de vidrio, fibras de carbono, fibras de aramida o fibras de poliéster. El material de la matriz 302 puede ser un polímero termoestable, tal como resinas epoxi, de poliéster, de poliuria, de viniléster, fenólicas, de poliimida, de poliamida, o un polímero termoplástico, tal como ABS, PP, PEHD, PEEK, PVC, PU, etc. En los siguientes ejemplos, se ha determinado el coeficiente de rozamiento entre superficies fabricadas de una resina PUR (poliol) con un endurecedor PUR (isocianato) con un trineo de bloque de metal de 60x54 mm, con un peso 268 g, y una pre-carga de 0,2 N. El resto de las condiciones utilizadas durante el ensayo de los materiales son las descritas en la norma ASTM 1894:
* Poliurea (resina RAKU-TOOL® PC-341 1 con Isocianato RAKU-TOOL® PH-391 1 de RAMPF®), reforzada con tejido de fibra de carbono bidireccional (200 g/m2). Su coeficiente de rozamiento medido era de 2,25.
* Poliurea (resina RAKU-TOOL® PC-341 1 con Isocianato RAKU-TOOL® PH-391 1 de RAMPF®), reforzada con tejido de fibra de vidrio bidireccional (204 g/m2). Su coeficiente de rozamiento medido era 2de ,20.
Estos dos ejemplos se utilizan para medir el coeficiente de rozamiento de las poliureas en la capa 30c en la que las superficies se fabrican con el mismo material que la matriz 302 reforzada con fibras 301 (Figura 5).
Cuando se utiliza el elemento 1 como un dispositivo ortopédico, es capaz de adaptarse a la forma individual de la extremidad del paciente. En su estado flexible, el elemento 1 se adapta a la forma de la extremidad, y cuando se aplica vacío al elemento 1 se bloquea en su estado rígido para proporcionar soporte y estabilización. Para este fin, es importante tener una alta relación de rigidez entre los estados flexible y rígido, además de que cada capa esté fabricada preferiblemente de un material con un módulo de Young elevado. En un caso ideal, las capas 30, cuando están en el estado rígido, están completamente pegadas entre sí a través de la presión negativa aplicada, la rigidez del elemento es n2 veces mayor que en el estado flexible bajo condiciones atmosféricas, siendo n el número de capas en el elemento. En el caso real, este factor de aumento de rigidez de n2 se aproxima, en función del coeficiente real de rozamiento que todavía puede permitir algún deslizamiento entre las capas. Por ejemplo, un elemento que tiene un espesor de 2,4 mm, fabricado de 6 capas de 0,4 mm cada una, tiene una relación de rigidez entre los estados rígido y flexible de 36 (= 62). La relación de rigidez a alcanzarse por el elemento depende del tipo de aplicación. Por ejemplo, una proporción de 4 no es suficiente en el caso de ajuste de ortesis. Para el ajuste de ortesis, un elemento con doce capas finas -y, por lo tanto, una relación de 144- funciona. Pero también es posible doblar el espesor de las capas, incluir sólo seis capas, y el elemento resultante es lo suficientemente flexible y es capaz de alcanzar una rigidez similar adecuada para aplicaciones de ortesis.
Con el fin de aplicar una fuerza homogénea durante la compresión de las diferentes capas, como se muestra en la Figura 8, el elemento 10 comprende además una capa 50 permeable al aire, tal como una estructura reticulada, insertada en paralelo con las capas 30a en el interior de la envoltura flexible 10. La capa 50 permeable al aire permite que el vacío se distribuya uniformemente. Por ejemplo, una malla de plástico fabricada con fibra de 100 μηι de diámetro y celdas abiertas de aproximadamente 3x3 mm, proporciona una distribución uniforme de la presión.
La válvula 20 se inserta en la envoltura 10 en el lado próximo a la capa 50 permeable al aire. Esto evita el bloqueo del flujo de aire por una capa 30a que se pega al orificio de la válvula. Adicionalmente, la capa 50 permeable al aire impide que la capa exterior se adhiera a la envoltura, lo que podría conducir a la pérdida de flexibilidad en el estado flexible.
Como se ha indicado anteriormente, es deseable que las capas se fabriquen de un material con un módulo de Young elevado para fabricar un elemento con un estado de rigidez elevado, pero los materiales que tienen un módulo de Young elevado tienen, por lo general, baja extensibilidad. Debido a que no son extensibles, no se pueden adaptar a cualquier forma 3D. Con el fin de adaptarse a cualquier conformación o forma 3D, especialmente aquellas que tienen superficies irregulares, en otra realización posible de la invención (como se muestra en la Figura 9), la capa 30f se proporciona en la forma de cintas o tiras tejidas para añadir grados de libertad a la capa. Para mantener esta estructura organizada tras usos repetidos y evitar el solapamiento y la pérdida de las cintas, los bordes de cualquier patrón 2D se pueden coser y cortar, teniendo cuidado para asegurar que se hayan cosido ambos extremos de cada cinta en el patrón.
Con el fin de fabricar las cintas -las cintas de urdimbre 60 y trama 65- que forman la capa 30f, cualquiera de las capas 30, 30a, 30b, 30c, 30d o 30e flexibles de las realizaciones anteriores se corta en cintas o tiras de anchura deseada, que se tejen después.
En los casos en los que la capa es un material compuesto fabricado de una matriz de polímero reforzado con fibras, tal como las capas 30c, 30d o 30e, de las figuras 5-7, también es posible fabricar directamente el material compuesto con la anchura específica.
Fabricar el tejido más pequeño, es decir, con cintas de menor anchura, permite un mejor ajuste. Para el ajuste del cuerpo humano, el tejido de sarga 3x1 fabricado con una cinta o tira con una anchura de 4 mm y con una separación de 1 mm entre las cintas/tiras proporciona un buen resultado. Pero cualquier anchura de cinta se puede utilizar dependiendo de la finalidad. Las cintas o tiras se pueden fabricar con una mecha de fibra de vidrio de 600tex (de PPG) aplanada con una anchura de 4 mm. Las mechas de fibra se impregnan después con poliuretano termoplástico (tal como Elastollan® 890 A10 de BASF), respetando una relación de volumen de matriz/fibra de aproximadamente 30/70. En este caso, la rugosidad superficial debe ser aproximadamente 1 ,27 para lograr las propiedades de rozamiento y de pegajosidad correctas de las superficies primera y segunda.
También es posible fabricar un tejido más pequeño utilizando una mecha de fibra de vidrio de 300tex (de PPG) aplanada a una anchura de 2,5 mm.
Una realización preferida del elemento 1 de la invención, ejemplo III, que tiene las capas flexibles 30f que se muestran en la Figura 9, incluye seis capas, teniendo cada capa un espesor total de 450 μηι. Cada capa se fabrica de cintas o tiras con un espesor de 160 μηι, tejidas en un tejido de sarga 3x1 . Las cintas se fabrican con una matriz de poliuretano termoplástico de Epurex® 4201 AU reforzada con mechas de fibra de vidrio (FG) de 600tex que se incrustan en una matriz. La relación de fibras, en este caso, es del 60%. El elemento resultante permite conmutar entre un estado rígido con un módulo de Young de 546 MPa (obtenido a una presión negativa de -0,86 bar) y un estado flexible con un módulo de Young de 24 MPa (medido a presión atmosférica). El módulo de Young se obtuvo para una deformación del 0,2%-0,4%.
En cuanto a los tejidos, muchas soluciones son posibles: lizo normal, de cinco puntos, lizo de 16 puntos, sarga 2x2 o sarga 3x1 .
El tejido de sarga tiene la ventaja de ser más flexible y drapear más que el tejido normal. El tejido de lizo es también una buena opción en cuanto a capacidad de caída.
En cualquier caso, independientemente del tejido utilizado (normal, sarga, lizo,...) en la realización preferida existe una separación -de 1 mm aproximadamente- entre cada cinta tanto en las direcciones de urdimbre como de trama, con el fin de permitir cierto grado de libertad entre cintas separadas y obtener de este modo suficiente capacidad de caída para encajar el cuerpo humano.
La siguiente Tabla 2 resume las características principales de los tres ejemplos I, II, III proporcionadas anteriormente para las capas en el interior del elemento, y sus propiedades. En los tres ejemplos, las capas del elemento se encierran en una bolsa hermética de PP/HDPE. El elemento contiene además una malla de nylon para el reparto del vacío, añadiendo un total de 0,6 mm en el espesor del elemento. Tabla 2
Figure imgf000017_0001
* U=unidireccional
En este texto, el término "comprende" y sus derivaciones (tales como "comprendiendo/que comprende", etc.) no debe entenderse en un sentido excluyente, es decir, estos términos no deben interpretarse como que excluyen la posibilidad que lo que se describe y define pueda incluir elementos, etapas, etc. adicionales.
En el contexto de la presente invención, el término "aproximadamente" y los términos de su familia (como "aproximado", etc.) deben entenderse como que indican valores muy cercanos a aquellos que acompañan al término mencionado anteriormente. Es decir, una desviación dentro de los límites razonables con respecto a un valor exacto debería ser aceptada, ya que un experto en la materia entenderá que tal desviación de los valores indicados es inevitable debido a las inexactitudes de medición, etc. Lo mismo se aplica a los términos "sobre" y "alrededor" y "sustancialmente".

Claims

REIVINDICACIONES
1 . Elemento (1 ) con rigidez variable controlada por presión negativa, comprendiendo el elemento:
- una envoltura (10) hermética;
una pluralidad de capas (30, 30a, 30b, 30c, 30d, 30e) flexibles en la envoltura, teniendo cada capa (30, 30a, 30b, 30c 30d, 30e) una primera superficie (31 , 41 ) y una segunda superficie (32, 42); y,
una válvula (20) adaptada para evacuar el interior de la envoltura (10);
caracterizado por que:
las primera y segunda superficies (31 , 41 , 32, 42) de dos capas adyacentes tienen un coeficiente de rozamiento entre sí que es superior a 0,5;
las primera y segunda superficies (31 , 41 , 32, 42) de dos capas adyacentes tienen propiedades de adhesión tales que es necesaria una fuerza normal por unidad de área por debajo de 0,07 N/mm2 para separarlas y/o la energía por unidad de área requerida para separarlas en la dirección normal es inferior a 6,7 J/m2.
2. Elemento (1 ) según la reivindicación 1 , en el que las capas (30, 30f) están fabricadas de un solo material.
3. Elemento (1 ) según la reivindicación 1 , en el que las capas (30c, 30d, 30e, 30f) están fabricadas de una matriz (302) reforzadas por una pluralidad de fibras (301 ).
4. Elemento (1 ) según la reivindicación 3, en el que las fibras (301 ) son unidireccionales.
5. Elemento (1 ) según la reivindicación 3, en el que las fibras (301 ) son bidireccionales o multidireccionales.
6. Elemento (1 ) según cualquiera de las reivindicaciones 3-5, en el que las fibras (301 ) son seleccionadas a partir de fibras de fibra de vidrio, de carbono, de aramida o de poliéster.
7. Elemento (1 ) según cualquiera de las reivindicaciones 3-6, en el que la matriz (302) es fabricada de un polímero termoestable o un polímero termoplástico.
8. Elemento (1 ) según cualquiera de las reivindicaciones 1 -7, en el que cada capa (30a, 30b, 30d) comprende además un núcleo (40) revestido por al menos un revestimiento (41 , 42) en un lado del núcleo (40).
9. Elemento (1 ) según cualquiera de las reivindicaciones 1 -7, en el que cada capa (30a, 30d) comprende además un núcleo (40) revestido por unos primer y segundo revestimientos (41 , 42) respectivos, un revestimiento a cada lado del núcleo (40).
10. Elemento (1 ) según cualquiera de las reivindicaciones 8-9, en el que los revestimientos (41 , 42) están fabricados de un elastómero de poliuretano termoplástico.
1 1 . Elemento (1 ) según cualquiera de las reivindicaciones 1 -10, en el que las capas (30a, 30b, 30c, 30d, 30e) están fabricadas en una lámina continua.
12. Elemento (1 ) según cualquiera de las reivindicaciones 1 -4 y 6-10 cuando dependen de la reivindicación 4, en el que la capa (30f) está fabricada de una estructura tejida de cintas (60, 65).
13. Elemento (1 ) según cualquier reivindicación anterior, en el que las propiedades de adhesión de las capas son medidas utilizando un ensayo adaptado de pegajosidad por sonda con una pre-carga equivalente a la presión atmosférica y un tiempo de pre-carga de espera de 100 s.
14. Elemento (1 ) según la reivindicación 12, en el que las propiedades de adhesión de las capas son medidas utilizando un ensayo adaptado de pegajosidad por sonda con una pre-carga equivalente a la presión atmosférica y un tiempo de pre-carga de espera de 100 s, realizándose tales mediciones sobre un número determinado de cintas (60, 65) colocadas adyacentes entre sí sobre una superficie plana.
15. Elemento (1 ) según cualquier reivindicación anterior, en el que las propiedades de adhesión de las capas se miden sobre capas en sus condiciones de uso.
PCT/ES2013/070177 2013-03-15 2013-03-15 Elemento con rigidez variable controlada por presión negativa WO2014140389A1 (es)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CA2905655A CA2905655C (en) 2013-03-15 2013-03-15 Element with variable stiffness controlled by negative pressure
EP13733334.0A EP2796114B1 (en) 2013-03-15 2013-03-15 Element with variable stiffness controlled by negative pressure
PCT/ES2013/070177 WO2014140389A1 (es) 2013-03-15 2013-03-15 Elemento con rigidez variable controlada por presión negativa
US14/369,766 US20150369325A1 (en) 2013-03-15 2013-03-15 Element with variable stiffness controlled by negative pressure
CN201380006429.5A CN104302254B (zh) 2013-03-15 2013-03-15 具有通过负压控制的刚度可变的元件
BR112015023746-0A BR112015023746B1 (pt) 2013-03-15 2013-03-15 elemento com rigidez variável controlada por pressão negativa
ES13733334.0T ES2574603T3 (es) 2013-03-15 2013-03-15 Elemento con rigidez variable controlada por presión negativa
JP2015562268A JP2016510613A (ja) 2013-03-15 2013-03-15 負圧によって制御される可変の剛度を有する要素
KR1020157029780A KR102135863B1 (ko) 2013-03-15 2013-03-15 음압에 의해 조절되는 가변 강성 부재
MX2015013019A MX2015013019A (es) 2013-03-15 2013-03-15 Elemento con rigidez variable controlada por presion negativa.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2013/070177 WO2014140389A1 (es) 2013-03-15 2013-03-15 Elemento con rigidez variable controlada por presión negativa

Publications (1)

Publication Number Publication Date
WO2014140389A1 true WO2014140389A1 (es) 2014-09-18

Family

ID=48745979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2013/070177 WO2014140389A1 (es) 2013-03-15 2013-03-15 Elemento con rigidez variable controlada por presión negativa

Country Status (10)

Country Link
US (1) US20150369325A1 (es)
EP (1) EP2796114B1 (es)
JP (1) JP2016510613A (es)
KR (1) KR102135863B1 (es)
CN (1) CN104302254B (es)
BR (1) BR112015023746B1 (es)
CA (1) CA2905655C (es)
ES (1) ES2574603T3 (es)
MX (1) MX2015013019A (es)
WO (1) WO2014140389A1 (es)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9664210B2 (en) 2013-10-19 2017-05-30 Massachusetts Institute Of Technology Methods and apparatus for layer jamming
EP3232994B1 (en) * 2014-12-19 2022-03-09 3M Innovative Properties Company Methods of using a shape-formable apparatus comprising locking sheets
EP3234245B1 (en) * 2014-12-19 2020-01-29 3M Innovative Properties Company Shape-formable apparatus comprising fibrous material
JP6745271B2 (ja) 2014-12-19 2020-08-26 スリーエム イノベイティブ プロパティズ カンパニー ロック用シートを含む形状成形可能な装置
EP3234246B1 (en) * 2014-12-19 2020-01-29 3M Innovative Properties Company Methods of using a shape-formable apparatus comprising fibrous material
WO2017055222A2 (en) * 2015-10-02 2017-04-06 Helmut-Schmidt-Universität, Universität Der Bundeswehr Hamburg Conformable structural element
WO2017157941A1 (de) 2016-03-14 2017-09-21 Helmut-Schmidt-Universität / Universität Der Bundeswehr Hamburg Exoskelett für einen menschen
US11122971B2 (en) 2016-08-18 2021-09-21 Neptune Medical Inc. Device and method for enhanced visualization of the small intestine
DE102016122282A1 (de) 2016-11-18 2018-05-24 Helmut-Schmidt-Universität Universität der Bundeswehr Hamburg System und verfahren zur reduktion von auf eine wirbelsäule wirkenden kräften
DE102016123153A1 (de) 2016-11-30 2018-05-30 Helmut-Schmidt-Universität Universität der Bundeswehr Hamburg Vorrichtung und verfahren zur muskelkraftunterstützung
US11504108B2 (en) 2017-06-23 2022-11-22 The Regents Of The University Of California Programmable stiffness tissue displacement device
WO2019010159A1 (en) * 2017-07-03 2019-01-10 Ossur Iceland Ehf STRUCTURE COMPRISING STACKABLE LAYERS
US10308101B2 (en) 2017-10-09 2019-06-04 Gm Global Technology Operations Llc. Hybrid tonneau cover
US10286764B2 (en) * 2017-10-09 2019-05-14 GM Global Technology Operations LLC Removable roof panel for a vehicle
US10597917B2 (en) * 2017-10-09 2020-03-24 GM Global Technology Operations LLC Stretchable adjustable-stiffness assemblies
DE102018103893A1 (de) 2018-02-21 2019-08-22 Deutsches Zentrum für Luft- und Raumfahrt e.V. Objekt mit variabler Steifigkeit
US20210387439A1 (en) * 2018-03-21 2021-12-16 The Regents Of The University Of California Reversibly stiffening material with conformal surface
AU2019307743A1 (en) 2018-07-19 2021-01-28 Neptune Medical Inc. Dynamically rigidizing composite medical structures
FR3087401B1 (fr) 2018-10-23 2022-02-11 Faurecia Interieur Ind Element de garnissage comprenant un panneau deformable formant une surface d'appui dans une position deployee
US11793392B2 (en) 2019-04-17 2023-10-24 Neptune Medical Inc. External working channels
US11299084B2 (en) * 2019-10-16 2022-04-12 GM Global Technology Operations LLC Selectively rigidizable membrane
KR20230007343A (ko) 2020-03-30 2023-01-12 넵튠 메디컬 인코포레이티드 디바이스를 강성화하기 위한 적층된 벽
JP2024509582A (ja) * 2021-03-17 2024-03-04 ケーシーアイ マニュファクチャリング アンリミテッド カンパニー 固定化用ロックシートを有する陰圧療法システム
WO2023133403A1 (en) * 2022-01-04 2023-07-13 Neptune Medical Inc. Reconfigurable rigidizing structures
US20230346204A1 (en) 2022-04-27 2023-11-02 Neptune Medical Inc. Endoscope sheath apparatuses

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5093388A (en) * 1989-03-28 1992-03-03 The United States Of America As Represented By The Secretary Of The Air Force Very high friction eleastomer formulation for use in static braking applications
US20050137513A1 (en) 2002-07-09 2005-06-23 Kohlbrat & Bunz Gessellschaft M.B.H. Device for supporting and stabilizing an injured person or injured body part and method for producing the device
WO2011007985A2 (ko) 2009-07-16 2011-01-20 엘지전자 주식회사 무선 통신 시스템에서 수신 장치가 제어 정보를 전송하는 방법
WO2011079865A1 (en) * 2009-12-30 2011-07-07 Fundacion Fatronik Fitting element with controlled stiffness

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3930091A (en) * 1972-09-13 1975-12-30 Kaiser Glass Fiber Corp Unidirectional webbing material
US4657003A (en) * 1983-10-03 1987-04-14 Cramer Products, Inc. Immobilizer device
US4613547A (en) * 1984-12-19 1986-09-23 Mobil Oil Corporation Multi-layer oriented polypropylene films
DE4121785A1 (de) * 1991-07-02 1993-01-07 Bayer Ag Verfahren zur herstellung thermoplastischer polyurethan-elastomere
US5312669A (en) * 1992-01-03 1994-05-17 Becker Orthopedic Appliance Company Thermoplastic composite reinforcement and method for orthotic, prosthetic and other devices
JP3665879B2 (ja) * 1995-05-13 2005-06-29 克治 武藤 特殊形状網の組合せによる真空固体板
US7094212B2 (en) * 2002-10-11 2006-08-22 Ossur Hf Rigid dressing
FR2848227B1 (fr) * 2002-12-09 2005-04-22 Chomarat Composites Etoffe textile apte a etre integree dans une armature de renforcement, et machine pour la realisation de telles etoffes
US7055683B2 (en) * 2002-12-20 2006-06-06 E. I. Du Pont De Nemours And Company Multiple compartment pouch and beverage container with smooth curve frangible seal
WO2005062993A2 (en) * 2003-12-23 2005-07-14 Vacuity, Inc. Orthopedic brace having a vacuum chamber and associated methods
US20050220534A1 (en) * 2004-04-02 2005-10-06 Ober James R Mounting device
DE102005000832A1 (de) 2004-06-04 2005-12-29 Huhtamaki Ronsberg, Zweigniederlassung Der Huhtamaki Deutschland Gmbh & Co. Kg Behälter für eine Mehrkomponentenreaktion
TR201813053T4 (tr) * 2006-04-26 2018-09-21 Dsm Ip Assets Bv Çok katmanlı materyal levhası.
US20080269653A1 (en) * 2007-04-25 2008-10-30 Bing-Tang Zhong Casting Apparatus and Method for Using the Same
KR20120001869U (ko) * 2010-09-03 2012-03-13 정재은 팽창/진공 겸용 부목

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5093388A (en) * 1989-03-28 1992-03-03 The United States Of America As Represented By The Secretary Of The Air Force Very high friction eleastomer formulation for use in static braking applications
US20050137513A1 (en) 2002-07-09 2005-06-23 Kohlbrat & Bunz Gessellschaft M.B.H. Device for supporting and stabilizing an injured person or injured body part and method for producing the device
WO2011007985A2 (ko) 2009-07-16 2011-01-20 엘지전자 주식회사 무선 통신 시스템에서 수신 장치가 제어 정보를 전송하는 방법
WO2011079865A1 (en) * 2009-12-30 2011-07-07 Fundacion Fatronik Fitting element with controlled stiffness

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SARAH YANG: "08.22.2006 - Engineers create gecko-inspired high-friction micro-fibers", 22 June 2006 (2006-06-22), XP055091012, Retrieved from the Internet <URL:http://www.berkeley.edu/news/media/releases/2006/08/22_microfiber.shtml> [retrieved on 20131202] *

Also Published As

Publication number Publication date
MX2015013019A (es) 2016-07-05
CA2905655A1 (en) 2014-09-18
KR102135863B1 (ko) 2020-07-21
EP2796114A1 (en) 2014-10-29
EP2796114B1 (en) 2016-03-02
US20150369325A1 (en) 2015-12-24
BR112015023746A2 (pt) 2017-07-18
CN104302254A (zh) 2015-01-21
KR20160005691A (ko) 2016-01-15
ES2574603T3 (es) 2016-06-21
CN104302254B (zh) 2018-01-23
BR112015023746B1 (pt) 2021-02-02
CA2905655C (en) 2020-04-14
JP2016510613A (ja) 2016-04-11

Similar Documents

Publication Publication Date Title
ES2574603T3 (es) Elemento con rigidez variable controlada por presión negativa
JP5668199B2 (ja) 制御される剛性を有する適合要素
ES2922809T3 (es) Un panel hecho de material composite que tiene una estructura en capas
US8986235B2 (en) Ankle brace
ES2260608T3 (es) Pala de zapato y calzado formado con ella y procedimiento para su fabricacion.
ES2498672T3 (es) Recubrimiento de venda médica, venda médica, y producto para obtener una venda médica
WO2011088151A1 (en) Patient transporter with inflatable chambers
US20150352813A1 (en) Rigidized Inflatable Structures
ES2681847T3 (es) Dispositivo de soporte
JP5174316B2 (ja) 簡易軽量ギブス
US11357422B2 (en) Gradated composite material for impact protection
EP2329732A2 (en) Size fitting device and wearable article including said device
CN203074955U (zh) 一种骨折固定复合夹板
JP2018149277A (ja) 負圧によって制御される可変の剛度を有する要素
WO2021081070A1 (en) Expanding foam-fabric orthopedic limb stabilization device
CZ33891U1 (cs) Elastický chránič kloubu
DK201901049A1 (en) An ostomy wafer construction
ITPI20060072A1 (it) Protesi antiurto, in gomma o altro materiale di uguali caratteristiche, da inserire all&#39;interno, oppure all&#39;esterno, di qualsiasi tipo di guanto
GB2478369A (en) Therapeutic joint support with non-parallel straps
CN110151396A (zh) 一种带有敷料的医用弹性胶带

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14369766

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013733334

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2905655

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2015562268

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/013019

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157029780

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015023746

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015023746

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150915