WO2014136330A1 - 空調制御装置及び記憶媒体 - Google Patents

空調制御装置及び記憶媒体 Download PDF

Info

Publication number
WO2014136330A1
WO2014136330A1 PCT/JP2013/082096 JP2013082096W WO2014136330A1 WO 2014136330 A1 WO2014136330 A1 WO 2014136330A1 JP 2013082096 W JP2013082096 W JP 2013082096W WO 2014136330 A1 WO2014136330 A1 WO 2014136330A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
air conditioning
load distribution
types
control device
Prior art date
Application number
PCT/JP2013/082096
Other languages
English (en)
French (fr)
Inventor
慎悟 田丸
村山 大
雅彦 村井
花田 雄一
木村 浩二
高木 康夫
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to US14/382,245 priority Critical patent/US20160290667A1/en
Priority to EP13876080.6A priority patent/EP2966372A4/en
Priority to SG11201405339PA priority patent/SG11201405339PA/en
Priority to CN201380010842.9A priority patent/CN104160217B/zh
Publication of WO2014136330A1 publication Critical patent/WO2014136330A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • F24F11/58Remote control using Internet communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/81Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the air supply to heat-exchangers or bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0205Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
    • G05B13/021Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system in which a variable is automatically adjusted to optimise the performance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/01Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station in which secondary air is induced by injector action of the primary air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/26Arrangements for air-circulation by means of induction, e.g. by fluid coupling or thermal effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • F24F2110/22Humidity of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • F24F2110/72Carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/50Load
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • Embodiments described herein relate generally to an air conditioning control device and a storage medium.
  • the technique described in Patent Document 1 proposes a technique that efficiently saves energy while considering the comfort of the occupants.
  • the technology described in Patent Document 1 is a total value of energy consumption of a refrigerator, a cooling tower, an outside air coil, a return air coil, a water supply pump, and a blower fan, within a preset target setting range of a comfort index.
  • the temperature setting value and humidity setting value of the blast supplied from the air conditioner to the air conditioning control target are calculated, and the setting values are transmitted to the air conditioning and heat source device.
  • Patent Document 2 relates to a commercial air conditioning control system, which captures the state of each part of the system that changes from moment to moment, obtains the target instruction value that allows the entire system to save the most energy, and The technology to control
  • the technique of this patent document 2 is a target instruction value for cooling water operation, a target instruction value for cold water operation, and a target instruction value for a commercial air conditioner for cold air operation.
  • a configuration is adopted in which target instruction values relating to two or more operations are transmitted to the control device of the system component device.
  • Patent Documents 1 and 2 mix the outside air whose temperature and humidity are adjusted by the outside air coil and the return air whose temperature and humidity are adjusted by the return air coil and supply the air conditioning control target.
  • Met a part of the return air from the air-conditioning control target is mixed with the outside air via the damper, cooled by the direct expansion coil, and further, the cooled air and the return air are mixed.
  • the air whose temperature and humidity are adjusted by the cold / hot water coil is supplied to the air conditioning control target.
  • the air conditioning system subject to air conditioning control is a combination of an outside air introduction air conditioner and a return air introduction air conditioner (for example, an external air conditioner and a building multi air conditioner), the introduction of each air conditioner Since the air to be used is different and the same air-conditioning control target has a plurality of supply air, the setting value related to air-conditioning cannot be determined.
  • the air-conditioning method to be controlled is a configuration in which an outside air introduction air conditioner and a return air introduction air conditioner are combined, the efficiency and load distribution of each air conditioner are considered in order to save energy. There was a need.
  • the air-conditioning control device of the embodiment is an air-conditioning control device that performs air-conditioning control of an air-conditioning zone using a plurality of types of air-conditioners with different air supply systems.
  • the setting unit is configured to reduce the overall energy consumption of the multiple types of air conditioners within the comfort range of the air conditioning zone set by the user based on the optimum load distribution function generated based on the models of the multiple types of air conditioners.
  • the air conditioning load distribution is set for a plurality of types of air conditioners so as to be reduced.
  • the output unit outputs control values for controlling a plurality of types of air conditioners to control devices for the plurality of types of air conditioners based on the air conditioning load distribution set by the setting unit.
  • FIG. 1 is a schematic configuration diagram of the air conditioning system according to the first embodiment.
  • FIG. 2 is a schematic configuration block diagram of the air conditioning control device.
  • FIG. 3 is an operation explanatory diagram of the optimum load distribution set value calculation unit.
  • FIG. 4 is an operation explanatory diagram of the optimum load distribution setting value calculation unit when the PMV range of the optimum load distribution function is different from the PMV range set by the user.
  • FIG. 5 is a process flowchart of the air-conditioning control apparatus according to the first embodiment.
  • FIG. 6 is a schematic configuration block diagram of the air conditioning system of the second embodiment.
  • FIG. 7 is an explanatory diagram of a modification of the second embodiment.
  • FIG. 8 is a schematic configuration block diagram of the air conditioning system of the third embodiment.
  • FIG. 9 is a schematic configuration block diagram of the air conditioning system of the fourth embodiment.
  • a comfort index is used when calculating setting values related to air conditioning.
  • the comfort index include PMV, effective temperature, corrected effective temperature obtained by correcting this effective temperature, and the like.
  • PMV effective temperature
  • the like a case where PMV is used will be described as an example.
  • air conditioning is often in the cooling mode throughout the year. Therefore, in the following description of each embodiment, a case where air conditioning control is performed in the cooling mode will be described as an example.
  • FIG. 1 is a schematic configuration diagram of an air conditioning system according to a first embodiment.
  • the air conditioning system 1 of the first embodiment includes an air conditioning control device 10 that controls the entire air conditioning system 1, an air conditioning zone (air-conditioned area) 11 as an air conditioning target, and a heat source (in this embodiment).
  • a heat source device 12 for supplying cooling air an outside air introducing air conditioner 13 that is an air conditioner that introduces outside air to perform air conditioning, and a return air introducing air conditioner that introduces air in the air conditioning zone 11 and performs air conditioning. 14.
  • the air-conditioning zone 11 is an air-conditioned room that is a control zone of each air conditioner.
  • a control zone of each air conditioner for example, in the case of a large building, it is too large to collectively control the entire room. For this reason, a plurality of control zones are divided into a room, and a plurality of air conditioners are controlled for each control zone.
  • each control zone is referred to as an air-conditioning zone for simplification.
  • the air conditioning zone 11 includes an air supply by a plurality of air conditioners with different introduced air, an indoor thermometer 54 that measures the indoor temperature of the air conditioning zone 11, and an indoor hygrometer 55 that measures indoor humidity.
  • the comfort of the occupants is maintained by the supply of air from the outside air introducing air conditioner 13 and the return air introducing air conditioner 14.
  • the heat source device 12 includes a refrigerant 31 and a cold water valve 62.
  • the temperature of the refrigerant 31 is lowered by exchanging heat with the outside air 21.
  • the heat source device 12 generates cold water 32 by heat exchange with the refrigerant 31, and supplies the generated cold water 32 to the outside air introduction air conditioner 13.
  • the heat source device control device 42 supplies the air supply temperature setting value of the outside air introduction air conditioner 13 received from the air conditioning control device 10 and the air supply zone 11 of the outside air introduction air conditioner 13 measured by the supply air thermometer 53.
  • An opening degree control signal is generated on the basis of the current temperature value (supply air temperature current value) and is output to the cold water valve 62.
  • the chilled water valve 62 When the opening degree control signal is input, the chilled water valve 62 has an opening degree corresponding to the opening degree control signal, and controls the supply air temperature of the outside air introducing air conditioner 13.
  • the heat source device 12 In order to distinguish from the refrigerant 31, the heat source device 12 generates the cold water 32, but a refrigerant such as hot water may be used.
  • the outside air introducing air conditioner 13 includes an outside air cooling coil 15, an air supply fan 64, and an exhaust fan 65.
  • the outside air cooling coil 15 of the outside air introduction air conditioner 13 sets the outside air 21 introduced by heat exchange with the cold water 32 generated by the heat source device 12 to a set temperature.
  • the air supply fan 64 supplies the outside air 21 cooled by the outside air cooling coil 15 to the air conditioning zone 11. Therefore, the air supply amount into the air conditioning zone 11 is controlled by the air supply fan 64.
  • the exhaust fan 65 exhausts the air in the air conditioning zone 11 to the outside of the building as the exhaust 23.
  • the flow rate of the exhaust 23 discharged from the air conditioning zone 11 by the outside air introduction air conditioner 13 is determined by the set value of the supply air flow rate received from the air conditioning control device 10. That is, the relationship between the air supply amount by the air supply fan 64 and the exhaust amount by the exhaust fan 65 is set to 1: 1 so as not to cause a pressure difference. Note that the amount of air supplied to the air conditioning zone 11 of the outside air introduction air conditioner 13 may be controlled by the air supply fan 64 so that the CO 2 concentration in the air conditioning zone 11 is constant.
  • the return air introduction air conditioner 14 includes a return air cooling coil 16, a refrigerant 33, a refrigerant valve 63, and an air supply fan 66.
  • the return air cooling coil 16 of the return air introduction air conditioner 14 is returned from the air conditioning zone 11 by driving the refrigerant 33 cooled (lowered in temperature) by heat exchange with the outside air 21 and the supply fan 66.
  • the temperature of the return air 22 is set to a set temperature by heat exchange with the air 22.
  • the controller 41 for the return air introduction air conditioner receives the indoor temperature setting value and the indoor humidity setting value received from the air conditioning control device 10 and the indoor thermometer 54 for measuring the indoor temperature and humidity in the air conditioning zone 11 and The current value of the indoor hygrometer 55 is acquired, and an opening degree control signal is output to the refrigerant valve 63.
  • the refrigerant valve 63 to which the opening degree control signal is input from the control device 41 for the return air introduction air conditioner has an opening degree corresponding to the input opening degree control signal, and the temperature and humidity of the return air 22, that is, the air conditioning zone 11. Adjust the temperature and humidity of the air supply to the.
  • the air supply fan 66 supplies the return air 22 cooled by the return air cooling coil 16 to the air conditioning zone 11.
  • FIG. 2 is a schematic configuration block diagram of the air conditioning control device.
  • the air conditioning control device 10 includes a current value acquisition unit 111, a comfort range setting unit 112, an optimum load distribution setting value calculation unit 113, and an optimum load distribution setting value transmission unit 114. ing.
  • the present value acquisition unit 111 is connected to an outside air thermometer 51, an outside air hygrometer 52, an air supply thermometer 53, an indoor thermometer 54, an indoor hygrometer 55, and an air flow meter 56.
  • the current value acquisition unit 111 is configured to supply the air conditioning zone 11 with the outside air temperature, the outside air humidity, the supply air temperature, the temperature of the air conditioning zone 11 (indoor temperature), the humidity of the air conditioning zone 11 and the outside air introduction air conditioner 13. Get the current value of each airflow.
  • the comfort range setting unit 112 is for the user to set the comfort range (PMV range) of the air conditioning zone 11. In the first embodiment, the user sets the PMV range.
  • the optimum load distribution set value calculation unit 113 includes the outside air temperature, the outside air humidity, the supply air temperature, the temperature of the air conditioning zone 11 (indoor temperature) acquired by the current value acquisition unit 111, the humidity of the air conditioning zone 11, and the outside air introduction air conditioner 13. Operation that optimizes load distribution between the outside air introduction air conditioner 13 and the return air introduction air conditioner 14 by using the current value of the air flow when supplying air to the air conditioning zone 11 and the PMV range acquired from the comfort range setting unit 112. The setting value for is calculated.
  • the optimal load distribution set value calculation unit 113 introduces the outside air 21 introduced into the air conditioning zone 11 by introducing the outside air while maintaining the CO 2 concentration in the air conditioning zone 11 within a predetermined range. Necessary for obtaining the desired temperature and desired humidity in the air conditioning zone 11 when returning the energy required for obtaining the desired temperature and desired humidity in the air and the return air 22 taken from the air conditioning zone 11 to the air conditioning zone 11 again.
  • the setting value for operation is calculated so that the sum of the energy and the energy is minimized.
  • the optimal load distribution set value calculation unit 113 optimizes the load distribution of the outside air introduction air conditioner 13 and the return air introduction air conditioner 14.
  • the optimum load distribution set value transmission unit 114 sends the setting values related to the air conditioning related to the operation for optimizing the load distribution acquired from the optimum load distribution set value calculation unit 113 to the heat source device control device 42 and the return air introduction air conditioning. It transmits to the machine control device 41.
  • the indoor temperature setting value and the indoor humidity setting value are transmitted to the return air introduction air conditioner control device 41 as the setting values related to the air conditioning-related operation, and the supply air temperature to the heat source device control device 42. Setting value is being transmitted.
  • the indoor temperature setting value and the indoor humidity setting value are transmitted to the return air-introducing air conditioner control device 41 as the setting values related to the air conditioning-related operation, and the heat source device control device
  • the supply air temperature setting value is transmitted to 42.
  • the present invention is not limited to this, and any set value can be applied as long as the load distribution can be optimized.
  • the technique disclosed in Japanese Patent Application Laid-Open No. 2011-27301 can be applied to the air conditioning related set value calculation method in the optimum load distribution set value calculation unit 113.
  • air conditioning control that minimizes the value related to the required power of air conditioning control within the set PMV range for each combination of a plurality of outside air conditions and a plurality of environmental conditions of the plurality of air conditioning zones.
  • an optimal operation function that passes through the set values under all conditions is created.
  • the setting value relevant to an air conditioning is specified with the optimal operation function created beforehand and the present environmental condition, and it transmits to an air conditioner.
  • this technique it is possible to calculate a setting value related to air conditioning that minimizes energy consumption within a range in which the occupant feels comfortable (comfort: PMV).
  • FIG. 3 is an operation explanatory diagram of the optimum load distribution set value calculation unit.
  • the optimum load distribution setting value calculation unit 113 acquires the optimum load distribution function created by the offline processing unit 131 and calculates the optimum load distribution setting value.
  • the offline processing unit 131 normally generates an optimal load distribution function in an offline state separated from the optimal load distribution set value calculation unit 113. This is because the creation of the optimal load distribution function has a high calculation load and cannot be performed in real time.
  • the offline processing unit 131 includes an optimal load distribution calculation unit 132, an optimal load distribution function creation unit 133, and an air conditioning model storage unit 134.
  • the air conditioning model storage unit 134 stores information related to the configurations of the heat source device 12, the outside air introduction air conditioner 13, and the return air introduction air conditioner 14 that are air conditioning related devices. Therefore, in the air conditioning model storage unit 134 of the present embodiment, the heat source device model 135 corresponding to the configuration of the heat source device 12, the outside air introducing air conditioner model 136 corresponding to the configuration of the outside air introducing air conditioner 13, and the return air introducing air conditioning.
  • the return air introduction air conditioner model 137 corresponding to the configuration of the machine 14 is stored.
  • the optimum load distribution calculating unit 132 is set by the user for each combination of the outside air temperature, the outside air humidity, the supply air temperature, the room temperature, the room humidity, and the air volume of the outside air introduction air conditioner 13 under a plurality of conditions.
  • the indoor temperature setting value, the indoor humidity setting value, and the supply air temperature setting value that optimize the load distribution of each air conditioner that minimizes the energy consumption related to air conditioning within the PMV range are calculated.
  • the energy consumption value related to air conditioning is expressed by the following formula (1).
  • the outside air introduction air conditioner 13 has only one air supply fan
  • the return air introduction air conditioner 14 is for the building multi-air conditioner
  • the energy consumption related to the air conditioning is expressed by Equation (1).
  • Q heat is the heat source load
  • COP is the heat source performance coefficient
  • F out is the outside air introduction amount
  • H is the pressure
  • is the efficiency
  • E bmoutrat is the outdoor unit rated power consumption
  • f 1 is the first function
  • f 2 is The second function
  • Q bm is the load factor of the building multi-system
  • T amb is the outside air temperature
  • T r_wb is the air-conditioning zone wet bulb temperature
  • E bmin is the indoor unit power consumption.
  • the optimum load distribution function creation unit 133 includes all set values calculated by the optimum load distribution calculation unit 132 for each indoor temperature set value, room humidity set value, and supply air temperature set value that can be set by the user. Is generated as an optimal load distribution function. As for combinations of setting values that can be set by the user, it is possible to use combinations of some sampled setting values as long as they can be applied without problems in practical use in the optimal load distribution function after generation. It is.
  • the optimum load distribution function creating unit 133 generates a plurality of optimum load distribution functions with the PMV range changed. Thereby, the user can freely change the PMV range, and the energy consumption related to the air conditioning is reduced with the PMV within the predetermined range, and the room temperature for optimizing the load distribution of the outside air introducing air conditioner 13 and the return air introducing air conditioner 14 is optimized. This is because the set value, the indoor humidity set value, and the supply air temperature set value can be calculated.
  • the optimum load distribution set value calculation unit 113 receives the outside air temperature and the outside air acquired from the current value acquisition unit 111. Based on the humidity, the supply air temperature, the room temperature, the room humidity, the air volume, and the PMV range acquired from the comfort range setting unit 112, the optimal load distribution function acquired from the optimal load distribution function creation unit 133 is appropriately selected. Then, the optimum load distribution set value calculation unit 113 calculates the room temperature set value, the room humidity set value, and the supply air temperature set value using the selected optimum load distribution function. In addition, when the capacity for storing a plurality of optimum load distribution functions is insufficient, the optimum load distribution function can be obtained from the optimum load distribution function creating unit 133 each time.
  • the optimum load distribution function creating unit 133 sets the PMV range to ⁇ 0.5 ⁇ PMV ⁇ 0.5 and the PMV range to ⁇ 0.9 ⁇ PMV ⁇ 0.
  • the optimal load distribution function F2 is set to .9 will be described.
  • the optimum load distribution set value calculation unit 113 receives the optimum load distribution function F1 and the optimum load distribution function F2 created by the optimum load distribution function creation unit 133.
  • FIG. 4 is an operation explanatory diagram of the optimum load distribution set value calculation unit when the PMV range of the optimum load distribution function is different from the PMV range set by the user.
  • the optimum load distribution set value calculation unit 113 is as shown in FIG. Furthermore, using the indoor temperature setting value in the optimum load distribution function F1 (26 ° C. in the example of FIG. 4) and the indoor temperature setting value in the optimum load distribution function F2 (28 ° C. in the example of FIG. 4), In the case of the example of FIG. 4, the room temperature setting value (27 ° C. in the case of the example of FIG. 4) when the PMV range is set to ⁇ 0.7 ⁇ PMV ⁇ 0.7 is calculated by interpolation. To do.
  • the above description is based on the room temperature set value as an example, but the room humidity set value and the supply air temperature set value or other set values related to air conditioning are calculated in the same manner.
  • the optimum load distribution set value transmission unit 114 performs all the air conditioning related operations necessary for controlling the room temperature set value, the room humidity setting type, the supply air temperature set value, and the like calculated by the optimum load distribution set value calculation unit 113.
  • the set value is acquired from the optimum load distribution set value calculation unit 113 and transmitted to the heat source device control device 42 and the return air introduction air conditioner control device 41.
  • FIG. 5 is a process flowchart of the air-conditioning control apparatus according to the first embodiment.
  • the air-conditioning control apparatus 10 acquires the current value acquired from each sensor (step S11).
  • the air-conditioning control apparatus 10 acquires the optimal load distribution function necessary for the calculation (step S13) when the user sets the comfort range (PMV range in this embodiment) of the air-conditioning zone (step S12). .
  • the air conditioning control device 10 calculates and acquires the optimum load distribution setting value based on the acquired optimum load distribution function (step S14). As a result, the air conditioning control device 10 transmits the acquired optimum load distribution set value to the return air introducing air conditioner control device 41 and the heat source device control device 42, and ends the process (step S15).
  • control device 41 for the return air introduction air conditioner and the control device 42 for the heat source device each perform air conditioning control based on the received setting value corresponding to the optimum load distribution.
  • an optimal load distribution function related to air conditioning is created with a comfort index value within a predetermined range. Even if there are multiple air supply systems, such as a combination of an air conditioner to be introduced (outside air introduction air conditioner) and an air conditioner to introduce return air from the air conditioning zone (return air introduction air conditioner)
  • setting values relating to the operation of each air conditioner can be set individually, and load distribution of each air conditioner can be optimized.
  • air conditioning can be operated within the comfort index value range, energy consumption can be reduced to the maximum within the comfort range of the occupants.
  • the air conditioning zone 11 shown in FIG. 1 includes the air supply from the outside air introduction air conditioner 13 and the air supply from the return air introduction air conditioner 14.
  • a plurality of outside air introduction air conditioners 13 and a plurality of return air introduction air conditioners 14 may be provided in the same air conditioning zone 11.
  • the same supply air temperature setting value is set for the outside air introduction air conditioner and the same for the return air introduction air conditioner.
  • the room temperature set value and room humidity set value are output.
  • the heat source device 12 uses a heat source device that does not have a cooling tower, such as an air-cooled heat pump chiller, as a control target of the air-conditioning control device 10.
  • the comfort index is PMV, but it may be an effective temperature, an action temperature, a corrected effective temperature, or the like. Regardless of the index, if there is air supply from multiple air conditioners with different air introductions in the same air conditioning zone, use the comfort index to reduce energy consumption within the range of comfort (more preferably It is possible to determine various air conditioning related setting values for optimizing the load distribution of each air conditioner.
  • FIG. 6 is a schematic configuration block diagram of the air conditioning system of the second embodiment.
  • the air conditioning system 1A of the second embodiment includes an air conditioning control device 10, an air conditioning zone 11, a heat source device 12, an air conditioner 201 that replaces the outside air introducing air conditioner 13, and a return air introducing air conditioner 14. .
  • the air conditioner 201 includes a damper 202, a cooling coil 203, an air supply fan 64, and an exhaust fan 65.
  • the damper 202 controls the ratio at which the outside air 21 taken from outside the building by the air conditioner 201 and the air taken out from the air conditioning zone 11 by the exhaust fan 65 are mixed. That is, the outside air ratio of the air supplied by the air conditioner 201 is determined. The amount of air supplied from the air conditioner 201 to the air conditioning zone 11 is controlled by the air supply fan 64.
  • the cooling coil 203 controls the air mixed by the damper 202 to a set temperature by heat exchange with the cold water 32 generated by the heat source device 12.
  • the air volume supplied to the air-conditioning zone 11 by the air conditioner 201 is taken so that the outside air 21 is taken in by the damper 202 so that the CO 2 concentration in the air-conditioning zone 11 is constant, and the pressure of the air supply duct is constant. It may be controlled by the air fan 64.
  • the model stored in the air conditioning model storage unit 134 is stored in the outside air introduction air conditioner model 136 of the first embodiment. Instead, an air conditioner model that mixes outside air and return air is stored.
  • the optimum load distribution calculation unit 132 performs a plurality of conditions of the outside air temperature, the outside air humidity, the supply air temperature, the room temperature, and the room humidity for the air conditioner model that mixes the stored outside air and return air. And the room temperature for optimizing the load distribution of each air conditioner so that the energy consumption related to air conditioning is less and more preferably within the range of PMV set by the user for each combination of airflows. A set value, indoor humidity set value, and supply air temperature set value are calculated.
  • the temperature and humidity of the air to be cooled are closer to the temperature and humidity of the air conditioning zone 11 than the outside air. Therefore, the amount of cooling heat in the cooling coil 203 can be reduced. Thereby, compared with 1st Embodiment, energy consumption can be reduced further.
  • the operation of the air conditioning control device 10 is the same as that of the first embodiment, and it is possible to determine a setting value related to the air conditioning related to the operation for optimizing the load distribution of each air conditioner. Furthermore, since air conditioning is operated within the comfort index value range, energy consumption can be reduced within the comfort range of the occupants.
  • FIG. 7 is an explanatory diagram of a modified example of the second embodiment.
  • the outside air 21 and the air taken out from the air-conditioning zone 11 are mixed, and this air is controlled to the temperature and humidity set by the cooling coil 203, but a modification of the second embodiment.
  • the air conditioner 201A used in place of the air conditioner 201 is mixed with the outside air 21 cooled by the outside air cooling coil 15 and the air taken out from the air conditioning zone 11.
  • a configuration for supplying air to the air conditioning zone 11 may be adopted.
  • the comfort index value (for example, PMV) set by the user is provided even when there is air supply from a plurality of air conditioners with different air systems to be introduced in the same air conditioning zone.
  • the energy consumption can be reduced within the range, and preferably can be minimized.
  • FIG. 8 is a schematic configuration block diagram of the air conditioning system of the third embodiment.
  • the air conditioning system 1C of the third embodiment includes an air conditioning control device 10, an air conditioning zone 11, a heat source device 221 replacing the heat source device 12, an outside air introduction air conditioner 13, and a return air introduction air conditioner 14. .
  • the heat source device 221 includes the refrigerant 31, the cold water valve 62, and the refrigerant valve 222.
  • the heat source device control device 42 acquires the temperature setting value of the cold water 32 transmitted from the air conditioning control device 10 and the current value of the cold water temperature transmitted by the cold water thermometer 223 that measures the temperature of the refrigerant 31,
  • An opening degree control signal for controlling the opening degree of the refrigerant valve 222 is output to the refrigerant valve 222.
  • the refrigerant valve 222 changes the valve opening based on the opening control signal input from the heat source device controller 42, and controls the temperature of the refrigerant 31.
  • the model stored in the air conditioning model storage unit 134 is stored in the outside air introduction air conditioner model 136 of the first embodiment. Instead, an outside air introduction air conditioner model having the refrigerant valve 222 is stored.
  • the optimum load distribution calculation unit 132 is set by the user for each combination of the outside air temperature, the outside air humidity, the supply air temperature, the room temperature, the room humidity, and the air volume under a plurality of conditions.
  • the optimum load distribution function creation unit 133 calculates all the set values calculated by the optimum load distribution calculation unit 132 for each of the room temperature set value, the room humidity set value, the supply air temperature set value, and the cold water temperature set value. A function that passes is generated as an optimal load distribution function. Even in this case, a plurality of optimum load distribution functions in which the PMV range is changed are generated as in the first embodiment.
  • the optimum load distribution set value calculation unit 113 is based on the PMV range acquired from the outside air temperature, the outside air humidity, the supply air temperature, the room temperature, the room humidity, and the comfort range setting unit 112 acquired from the current value acquisition unit 111. Then, the optimum load distribution function is acquired from the optimum load distribution function creating unit 133, and the indoor temperature set value, the indoor humidity set value, the supply air temperature set value, and the cold water temperature set value are calculated as in the first embodiment.
  • the optimum load distribution set value transmission unit 114 acquires the set value calculated by the optimum load distribution set value calculation unit 113 and transmits the set value to the heat source device control device 42 and the return air introduction air conditioner control device 41.
  • the temperature of the cold water 32 can be controlled by using the refrigerant valve 222 of the heat source device 221.
  • the air-conditioning-related setting value can be determined in consideration of the energy consumed by the heat source device 221 to generate cold water.
  • energy consumption can be further reduced as compared with the first embodiment.
  • FIG. 9 is a schematic configuration block diagram of the air conditioning system of the fourth embodiment.
  • the air conditioning system 1D of the fourth embodiment includes an air conditioning control device 10, an air conditioning zone 11, a heat source device 12, an outside air introducing air conditioner 13, a return air introducing air conditioner 14, and a cooling tower 261. .
  • the cooling tower 261 includes the fan 262 and the pump 263, and supplies the cooling water 264 cooled by heat exchange with the outside air 21, and supplies a certain amount of cooling water 264 to the heat source device 12 by the pump 263. is doing.
  • the temperature of the refrigerant 31 of the heat source device 12 is lowered by heat exchange with the cooling water 264 sent from the cooling tower 261.
  • the cooling tower control device 266 receives the temperature setting value of the cooling water 264 transmitted from the air conditioning control device 10 and the current value of the cooling water thermometer 265 that measures the temperature of the cooling water 264 to be sent to the heat source device 12.
  • the fan control signal for obtaining and controlling the temperature of the cooling water 264 is output to the fan 262. Thereby, the fan 262 controls the temperature of the cooling water 264 based on the input fan control signal.
  • the models stored in the air conditioning model storage unit 134 are the heat source device model 135, the outside air introduction air conditioner model 136, In addition to the return air introduction air conditioner model 137, the cooling tower model is stored.
  • the optimum load distribution calculation unit 132 applies each of the combinations of the outdoor air temperature, the outdoor air humidity, the supply air temperature, the indoor temperature, the indoor humidity, and the air volume with respect to the stored air conditioning model.
  • the energy consumption related to air conditioning is further reduced, more preferably, the indoor temperature setting value, the indoor humidity setting value for optimizing the load distribution of each air conditioner, which is minimized, A supply air temperature setting value and a cooling water temperature setting value are calculated.
  • the energy consumption value related to air conditioning is expressed by the following formula (2).
  • Total energy consumption value (E) heat source device energy consumption (E heat ) + Consumption energy of outside air introduction air conditioner (E out ) + Return air introduction air conditioner consumption energy (E ra ) + Cooling tower energy consumption (E c) (2)
  • Cooling tower energy consumption (E c ) E fan + E pump
  • E fan is the cooling tower fan consumption energy
  • E pump is the cooling water pump consumption energy.
  • the air conditioning control device 10 of the fourth embodiment obtains the optimum load distribution setting value from the optimum load distribution function created in advance based on the current value obtained from each sensor and the comfort range of the air conditioning zone set by the user. To do.
  • the air conditioning control device 10 transmits the acquired optimum load distribution setting value to the return air introducing air conditioner control device 41, the heat source device control device 42, and the cooling tower control device 266.
  • the air conditioner related equipment including the cooling tower 261 is provided for each air conditioner.
  • the setting value related to the air conditioning related to the operation for optimizing the load distribution can be determined. Furthermore, since air conditioning is operated within the comfort index value range, energy consumption can be reduced within the comfort range of the occupants.
  • control program executed by the air-conditioning control apparatus of this embodiment is a file in an installable format or executable format, and is a CD-ROM, flexible disk (FD), CD-R, DVD. (Digital Versatile Disk) or the like stored in a computer-readable storage medium.
  • control program executed by the air conditioning control device of the present embodiment may be stored on a computer connected to a network such as the Internet and provided by being downloaded via the network.
  • control program performed with the air-conditioning control apparatus of this embodiment may be provided or distributed via networks, such as the internet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 実施形態の空調制御装置は、給気系が異なる複数種類の空調機により空調ゾーンの空調制御を行う空調制御装置である。設定部は、複数種類の空調機のそれぞれのモデルに基づいて生成された最適負荷配分関数に基づいてユーザにより設定された空調ゾーンの快適性範囲内で複数種類の空調機全体の消費エネルギーがより低減されるように、複数種類の空調機に空調負荷配分を設定する。出力部は、設定部により設定された負荷配分に基づいて、複数種類の空調機を制御する制御値を複数種類の空調機の制御装置にそれぞれ出力する。

Description

空調制御装置及び記憶媒体
 本発明の実施形態は、空調制御装置及び記憶媒体に関する。
 オフィスや住居等の建築設備全体で消費されるエネルギーのうち、空調関連の消費エネルギーが約半分を占めている。そのため、空調関連の省エネルギー化の推進が建築設備の省エネルギーに大きく貢献する。これまで、空調の省エネルギーの観点から、数多くの空調制御装置が提案されている。
 例えば、特許文献1記載の技術は、在室者の快適性を考慮しつつ、効率よく消費エネルギーの省エネルギー化を図る技術について提案している。
 この特許文献1記載の技術は、予め設定された快適性指標の目標設定範囲の中で、冷凍機、冷却塔、外気用コイル、還気用コイル、送水ポンプ、送風ファンの消費エネルギーの合計値が最小になるように、空調機から空調制御対象へ供給される送風の温度設定値及び湿度設定値を算出し、空調及び熱源装置にこれらの設定値を送信する構成を採っている。
 また、特許文献2記載の技術は、業務用空調制御システムに関するものであり、時々刻々変化するシステム各所の状態を取り込み、システム全体が最も省エネ化可能な目標指示値を取得し、業務用空調システムを制御する技術を提案している。
 この特許文献2の技術は、冷却水の運用に関する目標指示値、冷水の運用に関する目標指示値及び冷風の運用に関する業務用空調機の目標指示値のうち、最適連携省エネ制御装置で得られた少なくとも2つ以上の運用に関する目標指示値をシステム構成機器の制御装置に送信する構成を採っている。
特開2009-174825号公報 特開2008-75977号公報 特開2007-285579号公報
 しかし、特許文献1、2記載の技術は、外気用コイルにより温湿度が調整された外気と、還気用コイルにより温湿度が調整された還気を混合し、空調制御対象に給気するものであった。
 また、特許文献3記載の技術は、空調制御対象からの還気の一部がダンパを介して外気と混合し、直膨コイルにより冷却され、さらに、この冷却された空気と還気が混合し、冷温水コイルにより温湿度が調整された空気を空調制御対象に給気するものである。
 これらの技術は、空調制御対象の空調方式が、外気導入空調機と還気導入空調機(例えば外調機とビル用マルチエアコン)を組み合わせた構成とされた場合には、各空調機の導入する空気が異なっており、同一の空調制御対象に複数の給気があるため、空調関連の設定値を決定することができなかった。
 また、上述した技術は、空調制御対象の空調方式が、外気導入空調機と還気導入空調機を組み合わせた構成の場合、省エネを図るためには、各空調機の効率と負荷配分を考慮する必要があった。
 実施形態の空調制御装置は、給気系が異なる複数種類の空調機により空調ゾーンの空調制御を行う空調制御装置である。
 設定部は、複数種類の空調機のそれぞれのモデルに基づいて生成された最適負荷配分関数に基づいてユーザにより設定された空調ゾーンの快適性範囲内で複数種類の空調機全体の消費エネルギーがより低減されるように、複数種類の空調機に空調負荷配分を設定する。
 出力部は、設定部により設定された空調負荷配分に基づいて、複数種類の空調機を制御する制御値を複数種類の空調機の制御装置にそれぞれ出力する。
図1は、第1実施形態の空調システムの概要構成図である。 図2は、空調制御装置の概要構成ブロック図である。 図3は、最適負荷配分設定値算出部の動作説明図である。 図4は、最適負荷配分関数のPMV範囲がユーザの設定したPMV範囲と異なる場合の最適負荷配分設定値算出部の動作説明図である。 図5は、第1実施形態の空調制御装置の処理フローチャートである。 図6は、第2実施形態の空調システムの概要構成ブロック図である。 図7は、第2実施形態の変形例の説明図である。 図8は、第3実施形態の空調システムの概要構成ブロック図である。 図9は、第4実施形態の空調システムの概要構成ブロック図である。
 次に実施形態について図面を参照して説明する。
 以下の説明においては、空調関連の設定値を算出する際に、快適性指標を利用するものとする。
 快適性指標として、PMV、有効温度、この有効温度を修正した修正有効温度などが挙げられるが、以下においては、PMVを用いた場合を例として説明する。
 また、最近のオフィスビル等は断熱性が良くパソコンやOA機器が多い。このため、年間を通じて空調が冷房モードであることが多い。したがって、以下の各実施形態の説明においては冷房モードで空調制御を行う場合を例として説明する。
[1]第1実施形態
 図1は、第1実施形態の空調システムの概要構成図である。
 第1実施形態の空調システム1は、図1に示すように、空調システム1全体を制御する空調制御装置10と、空調対象としての空調ゾーン(被空調エリア)11と、熱源(本実施形態では、冷却用熱源)を供給する熱源装置12と、外気を導入して空調を行う空調機である外気導入空調機13と、空調ゾーン11内の空気を導入して空調を行う還気導入空調機14と、を備えている。
 上記構成において、空調ゾーン11とは、各空調機の制御ゾーンである被空調室内のことである。
 この場合において、例えば、大型ビルの場合、室内全体を一括して制御するには、大きすぎる。このため、室内を複数の制御ゾーンを分けて、それぞれの制御ゾーンに対して複数の空調機を制御するようにしている。しかしながら、このような場合でも簡略化のため各制御ゾーンを空調ゾーンと呼ぶものとする。
 次に第1実施形態の動作を説明する。
 空調ゾーン11は、導入する空気が異なる複数の空調機による給気と、空調ゾーン11の室内温度を計測する室内温度計54と、室内湿度を計測する室内湿度計55を有する。空調ゾーン11では、外気導入空調機13と還気導入空調機14による給気で、在室者の快適性を維持する。
 熱源装置12は、冷媒31と、冷水バルブ62と、を備えている。
 ここで、冷媒31は、外気21と熱交換を行うことにより、温度が低下される。
 さらに熱源装置12は、冷媒31との熱交換により冷水32を生成し、生成した冷水32を外気導入空調機13に供給する。
 熱源装置用制御装置42は、空調制御装置10から受信した外気導入空調機13の給気温度設定値と、給気温度計53が計測した外気導入空調機13の空調ゾーン11へ供給する給気の温度の現在値(給気温度現在値)と、に基づいて、開度制御信号を生成し、冷水バルブ62に出力する。
 開度制御信号が入力されると、冷水バルブ62は、開度制御信号に対応する開度となり、外気導入空調機13の給気温度を制御する。ここでは、冷媒31と区別するため、熱源装置12が冷水32を生成するとしたが、温水等の冷媒でもよい。
 外気導入空調機13は、外気用冷却コイル15と、給気ファン64と、排気ファン65と、を備えている。
 外気導入空調機13の外気用冷却コイル15は、熱源装置12で生成された冷水32との熱交換により導入した外気21を設定された温度とする。
 給気ファン64は、外気用冷却コイル15によって冷却された外気21を、空調ゾーン11に給気する。したがって、空調ゾーン11内への給気量は、給気ファン64により制御されることとなる。
 排気ファン65は、空調ゾーン11の空気を建物外に排気23として排出する。
 ここで、外気導入空調機13が空調ゾーン11から排出する排気23の流量は、空調制御装置10から受信した給気流量の設定値により決定される。
 すなわち、給気ファン64による給気量と、排気ファン65による排気量と、の関係は、圧力差を生じないように1対1とする。なお、外気導入空調機13の空調ゾーン11への給気量は、空調ゾーン11内のCO濃度が一定となるように給気ファン64によって制御されてもよい。
 還気導入空調機14は、還気用冷却コイル16と、冷媒33と、冷媒バルブ63と、給気ファン66と、を備えている。
 還気導入空調機14の還気用冷却コイル16は、外気21と熱交換により冷却した(温度を下げた)冷媒33と、給気ファン66を駆動することにより空調ゾーン11から導入された還気22と、の熱交換により、還気22の温度を設定された温度とする。
 これと並行して、還気導入空調機用制御装置41は、空調制御装置10から受信した室内温度設定値及び室内湿度設定値と、空調ゾーン11の室内温湿度を計測する室内温度計54及び室内湿度計55の現在値とを取得し、冷媒バルブ63に開度制御信号を出力する。還気導入空調機用制御装置41から開度制御信号が入力された冷媒バルブ63は、入力された開度制御信号に対応する開度となり、還気22の温度及び湿度、すなわち、空調ゾーン11への給気の温度及び湿度を調整する。
 これにより、給気ファン66は、還気用冷却コイル16によって冷却された還気22を空調ゾーン11に給気する。
 図2は、空調制御装置の概要構成ブロック図である。
 空調制御装置10は、図2に示すように、現在値取得部111と、快適性範囲設定部112と、最適負荷配分設定値算出部113と、最適負荷配分設定値送信部114と、を備えている。
 現在値取得部111は、外気温度計51、外気湿度計52、給気温度計53、室内温度計54、室内湿度計55及び風量計56が接続されている。これにより、現在値取得部111は、外気温度、外気湿度、給気温度、空調ゾーン11の温度(室内温度)、空調ゾーン11の湿度及び外気導入空調機13が空調ゾーン11に給気する際の風量のそれぞれの現在値を取得する。
 快適性範囲設定部112は、空調ゾーン11の快適性範囲(PMV範囲)をユーザが設定するものである。本第1実施形態においては、PMV範囲をユーザが設定することとなる。
 最適負荷配分設定値算出部113は、現在値取得部111が取得した外気温度、外気湿度、給気温度、空調ゾーン11の温度(室内温度)、空調ゾーン11の湿度及び外気導入空調機13が空調ゾーン11に給気する際の風量の現在値と、快適性範囲設定部112から取得したPMV範囲を用いて、外気導入空調機13と還気導入空調機14の負荷配分を最適化する運用に関する設定値を算出する。
 より具体的には、最適負荷配分設定値算出部113は、空調ゾーン11内のCO濃度を所定範囲に維持した状態で、外気導入をして空調ゾーン11に導入する外気21を空調ゾーン11における所望温度及び所望湿度にするために必要とされるエネルギーと、空調ゾーン11から取り込んだ還気22を空調ゾーン11に再び戻す際に、空調ゾーン11における所望温度及び所望湿度にするために必要とされるエネルギーと、の総和が最小となるように運用に関する設定値を算出する。これにより、最適負荷配分設定値算出部113は、外気導入空調機13と還気導入空調機14の負荷配分を最適化することとなる。
 そして、最適負荷配分設定値送信部114は、最適負荷配分設定値算出部113より取得した負荷配分を最適化する運用に関する空調関連の設定値を、熱源装置用制御装置42と、還気導入空調機用制御装置41に送信する。本実施形態においては、空調関連の運用に関する設定値として、還気導入空調機用制御装置41に対し室内温度設定値と室内湿度設定値を送信し、熱源装置用制御装置42に対し給気温度設定値を送信している。
 本実施形態においては、上述したように、空調関連の運用に関する設定値として、還気導入空調機用制御装置41に対して室内温度設定値と室内湿度設定値を送信し、熱源装置用制御装置42に対して給気温度設定値を送信している。しかしながら、これに限られるものではなく、負荷配分を最適化することができるのであれば、いかなる設定値でも適用可能である。
 最適負荷配分設定値算出部113における空調関連の設定値算出方法は、例えば、特開2011-27301号公報に開示されている技術を適用することが可能である。具体的には、複数の外気条件と、複数の空調ゾーンの環境条件との組み合わせごとにそれぞれ、設定されたPMVの範囲内で空調制御の所要動力に関する値が最小となるような空調制御のための設定値を最適化演算で予め算出し、全ての条件における設定値を通る最適運用関数を作成する。そして、予め作成した最適運用関数と、現在の環境条件により空調関連の設定値を特定し、空調機に送信する。
 この手法(技術)によれば、在室者が快適と感じる(快適性:PMV)範囲で消費エネルギーが最小となる空調関連の設定値を算出できる。
 次に本実施形態における最適負荷配分設定値算出部113の動作を説明する。
 図3は、最適負荷配分設定値算出部の動作説明図である。
 最適負荷配分設定値算出部113は、オフライン処理部131で作成した最適負荷配分関数を取得し、最適負荷配分設定値を算出する。
 ここで、オフライン処理部131について説明する。
 オフライン処理部131は、通常は、最適負荷配分設定値算出部113と切り離されたオフライン状態で最適負荷配分関数を生成する。
 これは、最適負荷配分関数の作成は演算負荷が高く、リアルタイムで演算が行えないからである。
 オフライン処理部131は、最適負荷配分演算部132と、最適負荷配分関数作成部133と、空調モデル記憶部134と、を備えている。
 空調モデル記憶部134は、本実施形態の場合、空調関連装置である熱源装置12、外気導入空調機13及び還気導入空調機14の構成に関する情報が記憶されている。
 したがって、本実施形態の空調モデル記憶部134においては、熱源装置12の構成に対応する熱源装置モデル135と、外気導入空調機13の構成に対応する外気導入空調機モデル136と、還気導入空調機14の構成に対応する還気導入空調機モデル137と、が記憶されている。
 最適負荷配分演算部132は、複数の条件の外気温度と、外気湿度と、給気温度と、室内温度と、室内湿度と、外気導入空調機13の風量の組み合わせごとにそれぞれ、ユーザにより設定されたPMV範囲内で空調関連の消費エネルギーが最小となる、各空調機の負荷配分を最適化する室内温度設定値、室内湿度設定値及び、給気温度設定値を算出する。
 本第1実施形態では、空調関連の消費エネルギー値は、下記式(1)で表せられる。ここでは、外気導入空調機13は給気ファンを一つだけ有しているとし、還気導入空調機14はビルマルチ空調装置を対象とし、空調関連の消費エネルギーを式(1)に示す。
 ・全消費エネルギー値(E)=熱源装置12の消費エネルギー(Eheat
          +外気導入空調機13の消費エネルギー(Eout
           +還気導入空調機14の消費エネルギー(Era
                           ……(1)
 ・熱源装置消費エネルギー(Eheat)=Qheat/COP
 ・外気導入空調機消費エネルギー(Eout
        =(Fout×H)/(η×6120×9.81)
 ・還気導入空調機消費エネルギー(Era
        =Ebmoutrat×f(Qbm)×f(Tamb,Tr_wb
                              +Ebmin
 ここで、Qheatは熱源負荷、COPは熱源成績係数、Foutは外気導入量、Hは圧力、ηは効率、Ebmoutratは室外機定格消費電力、fは第1の関数、fは第2の関数、Qbmはビルマルチシステムの負荷率、Tambは外気温度、Tr_wbは空調ゾーン湿球温度、Ebminは室内機消費電力である。
 この場合において、式(1)の全消費エネルギーを最小化する作動流体の力学的な平衡状態の探索については、例えば、特開2008-256258号公報に記載のアルゴリズム(消費エネルギー最小化アルゴリズム)を用いることができる。
 最適負荷配分関数作成部133は、ユーザが設定可能な室内温度設定値、室内湿度設定値及び給気温度設定値毎に、最適負荷配分演算部132で算出された全ての設定値を包含する関数を最適負荷配分関数として生成する。なお、ユーザが設定可能な設定値の組み合わせについては、生成後の最適負荷配分関数において実用上問題なく適用が可能であれば、サンプリングした一部の設定値の組み合わせを用いるようにすることも可能である。
 さらに、最適負荷配分関数作成部133においては、PMV範囲を変更させた最適負荷配分関数を複数生成するようにしている。これにより、ユーザが自由にPMV範囲を変更でき、所定範囲内のPMVで空調関連の消費エネルギーがより少なくなる、外気導入空調機13及び還気導入空調機14の負荷配分を最適化する室内温度設定値、室内湿度設定値、給気温度設定値を算出できるようにするためである。
 最適負荷配分関数作成部133において、生成されたPMV範囲を変更させた複数の最適負荷配分関数を受け取ると、最適負荷配分設定値算出部113は、現在値取得部111から取得した外気温度、外気湿度、給気温度、室内温度、室内湿度、風量と、快適性範囲設定部112から取得したPMV範囲に基づいて、最適負荷配分関数作成部133から取得した最適負荷配分関数を適宜選択する。そして、最適負荷配分設定値算出部113は、選択した最適負荷配分関数を用いて室内温度設定値、室内湿度設定値及び給気温度設定値を算出する。なお、複数の最適負荷配分関数を記憶する容量が不足するような場合には、その都度、最適負荷配分関数作成部133から最適負荷配分関数を取得するように構成することも可能である。
 次にユーザがPMV範囲を変更した場合の最適負荷配分設定値算出部113の動作をより具体的に説明する。
 以下の説明においては、最適負荷配分関数作成部133が、PMVの範囲を-0.5≦PMV≦0.5とした最適負荷配分関数F1と、PMVの範囲を-0.9≦PMV≦0.9とした最適負荷配分関数F2と、を生成している場合について説明する。
 これにより、最適負荷配分設定値算出部113は、最適負荷配分関数作成部133で作成された最適負荷配分関数F1と最適負荷配分関数F2とを受け取る。
 図4は、最適負荷配分関数のPMV範囲がユーザの設定したPMV範囲と異なる場合の最適負荷配分設定値算出部の動作説明図である。
 ここで、快適性範囲設定部112を介してユーザにより、PMVの範囲が-0.7≦PMV≦0.7と設定されると、最適負荷配分設定値算出部113は、図4に示すように、最適負荷配分関数F1における室内温度設定値(図4の例の場合、26℃)と、最適負荷配分関数F2における室内温度設定値(図4の例の場合、28℃)を用いて、図4の例の場合には、内挿法により、PMVの範囲が-0.7≦PMV≦0.7と設定したときの室内温度設定値(図4の例の場合、27℃)を算出する。
 以上の説明は、室内温度設定値を例としたものであるが、室内湿度設定値と給気温度設定値またはその他空調関連の設定値も同様に算出する。
 この結果、最適負荷配分設定値送信部114は、最適負荷配分設定値算出部113により算出した室内温度設定値、室内湿度設定種、給気温度設定値等の制御に必要な全ての空調関連の設定値を最適負荷配分設定値算出部113から取得して、熱源装置用制御装置42及び還気導入空調機用制御装置41へ送信する。
 次に本第1実施形態の空調制御装置の動作を説明する。
 図5は、第1実施形態の空調制御装置の処理フローチャートである。
 まず、空調制御装置10は、各センサから取得した現在値を取得する(ステップS11)。
 次に空調制御装置10は、ユーザが空調ゾーンの快適性範囲(本実施形態では、PMV範囲)を設定することにより(ステップS12)、演算に必要な最適負荷配分関数を取得する(ステップS13)。
 続いて空調制御装置10は、取得した最適負荷配分関数に基づいて最適負荷配分設定値を算出し、取得する(ステップS14)。
 これらの結果、空調制御装置10は、取得した最適負荷配分設定値を、還気導入空調機用制御装置41と、熱源装置用制御装置42に送信して、処理を終了する(ステップS15)。
 この結果、還気導入空調機用制御装置41及び熱源装置用制御装置42は、受信した最適負荷配分に対応する設定値に基づいてそれぞれ空調制御を行うこととなる。
 以上の説明のように、本第1実施形態によれば、予め熱源装置モデルと、外気導入空調機モデルと、還気導入空調機モデルを用いて、複数の外気温度と、外気湿度と、給気温度と、室内温度と、室内湿度と、風量の組み合わせごとにそれぞれ、所定範囲内の快適性指標値で空調関連の最適負荷配分関数を作成しておくので、同一の空調ゾーンにおいて、外気を導入する空調機(外気導入空調機)と、空調ゾーンからの還気を導入する空調機(還気導入空調機)と、の組み合わせのように、複数の給気系統がある場合であっても、各空調機の運用に関する設定値をそれぞれ設定することができ、各空調機の負荷配分を最適化することができる。
 また、快適性指標値の範囲内で空調を運用できるので、在室者の快適性の範囲内で最大限、消費エネルギーを削減することができる。
[1.1]第1実施形態の変形例
 上記第1実施形態の説明においては、図1に示す空調ゾーン11は、外気導入空調機13からの給気と、還気導入空調機14からの給気のように、2つの給気を有しているが、例えば、同一の空調ゾーン11に外気導入空調機13及び還気導入空調機14がそれぞれ複数あってもよい。外気導入空調機13及び還気導入空調機14が複数ある場合は、同一の空調ゾーンであれば、外気導入空調機には同一の給気温度設定値を、還気導入空調機には同一の室内温度設定値及び室内湿度設定値を出力する。また、本実施形態では、図1に示すように熱源装置12は、冷却塔を有さない熱源装置、例えば空冷ヒートポンプチラー等を空調制御装置10の制御対象としている。
 また、上記第1実施形態の説明においては、快適性指標をPMVとしたが、有効温度、作用温度、修正有効温度等でもよい。何れの指標であっても、同一の空調ゾーンに、導入する空気が異なる複数の空調機による給気がある場合において、快適性指標を利用して快適性の範囲で消費エネルギーを低減(より好ましくは最小化)することが可能となるように、各空調機の負荷配分を最適化するための各種空調関連の設定値を決定することができる。
[2]第2実施形態
 次に第2実施形態について説明する。
 図6は、第2実施形態の空調システムの概要構成ブロック図である。
 図6において、図1と同様の部分には、同一の符号を付すものとする。
 第2実施形態の空調システム1Aは、空調制御装置10と、空調ゾーン11と、熱源装置12と、外気導入空調機13に代わる空調機201と、還気導入空調機14と、を備えている。
 上記構成において、空調機201は、ダンパ202と、冷却コイル203と、給気ファン64と、排気ファン65と、を備えている。
 ダンパ202は、空調機201が建物外から取り入れた外気21と、排気ファン65によって空調ゾーン11から取り出した空気とを混合させる割合を制御するものである。つまり、空調機201が給気する空気の外気比率を決定する。空調機201が空調ゾーン11に給気する風量は、給気ファン64によって制御される。
 冷却コイル203は、熱源装置12で生成された冷水32との熱交換により、ダンパ202により混合された空気を設定された温度に制御する。なお、空調機201が空調ゾーン11に給気する風量は、空調ゾーン11内のCO濃度が一定となるように外気21をダンパ202により取り込み、給気ダクトの圧力が一定となるように給気ファン64によって制御されてもよい。
 本第2実施形態の空調制御装置10においては、オフライン処理部131で最適負荷配分関数を生成するに際して、空調モデル記憶部134に記憶するモデルを、第1実施形態の外気導入空調機モデル136に代えて、外気と還気を混合させる空調機モデルを記憶させる。
 これにより、最適負荷配分演算部132は、記憶した外気と還気を混合させる空調機モデルに対して、複数の条件の外気温度と、外気湿度と、給気温度と、室内温度と、室内湿度と、風量の組み合わせごとにそれぞれ、ユーザにより設定されたPMVの範囲内で空調関連の消費エネルギーがより少なくなり、より好ましくは、最小となるような各空調機の負荷配分を最適化する室内温度設定値、室内湿度設定値及び給気温度設定値を算出する。
 本第2実施形態の動作については、図5に示した第1実施形態と同様であるので、その詳細な説明を援用する。
 本第2実施形態によれば、外気21と、空調ゾーン11から取り出された空気を混合させることにより、外気と比べて、冷却する空気の温度及び湿度は、空調ゾーン11の温度及び湿度に近いため、冷却コイル203における冷却熱量を減少させることができる。これにより、第1実施形態と比較して、より一層、消費エネルギーを削減することができる。また、空調制御装置10の動作は、第1実施形態と同様であり、各空調機の負荷配分を最適化する運用に関する空調関連の設定値を決定することができる。さらに、快適性指標値の範囲内で空調を運用することから、在室者の快適性の範囲内で消費エネルギーを削減することができる。
[2.1]第2実施形態の変形例
 図7は、第2実施形態の変形例の説明図である。
 上記第2実施形態の説明においては、外気21と、空調ゾーン11から取り出した空気を混合し、この空気を冷却コイル203によって設定された温湿度に制御しているが第2実施形態の変形例の空調システム1Bにおいては、、図7に示すように、空調機201に代えて用いる空調機201Aを、外気用冷却コイル15によって冷却された外気21と、空調ゾーン11から取り出した空気を混合し、空調ゾーン11に給気する構成を採るようにしてもよい。
 本第2実施形態の変形例によっても、同一の空調ゾーンに、導入する空気系統が異なる複数の空調機による給気がある場合においても、ユーザにより設定された快適性指標値(たとえば、PMV)の範囲内で消費エネルギーを低減でき、好ましくは、最小とすることができる。また、各空調機の負荷配分を最適化する運用に関する空調関連の設定値を確実に決定することができる。
[3]第3実施形態
 次に第3実施形態について説明する。
 図8は、第3実施形態の空調システムの概要構成ブロック図である。
 図8において、図1の第1実施形態と同様の部分には、同一の符号を付すものとする。
 第3実施形態の空調システム1Cは、空調制御装置10と、空調ゾーン11と、熱源装置12に代わる熱源装置221と、外気導入空調機13と、還気導入空調機14と、を備えている。
 上記構成において、熱源装置221は、冷媒31と、冷水バルブ62と、冷媒バルブ222と、を備えている。
 熱源装置用制御装置42は、空調制御装置10から送信された冷水32の温度設定値と、冷媒31の温度を計測する冷水温度計223により送信された冷水温度の現在値と、を取得し、冷媒バルブ222の開度を制御する開度制御信号を冷媒バルブ222に出力する。
 冷媒バルブ222は、熱源装置用制御装置42から入力された開度制御信号に基づいてバルブ開度を変更し、冷媒31の温度を制御する。
 次に本第3実施形態における最適負荷配分設定値算出部113の動作を説明する。
 本第3実施形態の空調制御装置10においては、オフライン処理部131で最適負荷配分関数を生成するに際して、空調モデル記憶部134に記憶するモデルを、第1実施形態の外気導入空調機モデル136に代えて、冷媒バルブ222を有する外気導入空調機モデルを記憶させる。
 これにより、最適負荷配分演算部132は、複数の条件の外気温度と、外気湿度と、給気温度と、室内温度と、室内湿度と、風量と、の組み合わせごとにそれぞれ、ユーザにより設定されたPMVの範囲内で空調関連の消費エネルギーがより低減される、より好ましくは最小となる、各空調機の負荷配分を最適化する室内温度設定値、室内湿度設定値、給気温度設定値及び、冷水温度設定値を算出する。
 一方、最適負荷配分関数作成部133は、室内温度設定値、室内湿度設定値、給気温度設定値及び、冷水温度設定値ごとに、最適負荷配分演算部132で算出された全ての設定値を通る関数を最適負荷配分関数として生成する。この場合においても、第1実施形態と同様に、PMV範囲を変更させた複数の最適負荷配分関数を生成しておく。
 この結果、最適負荷配分設定値算出部113は、現在値取得部111から取得した外気温度、外気湿度、給気温度、室内温度、室内湿度及び快適性範囲設定部112から取得したPMV範囲に基づいて、最適負荷配分関数作成部133から最適負荷配分関数を取得し、第1実施形態と同様に、室内温度設定値、室内湿度設定値、給気温度設定値及び冷水温度設定値を算出する。
 そして、最適負荷配分設定値送信部114は、最適負荷配分設定値算出部113により算出した設定値を取得して熱源装置用制御装置42及び還気導入空調機用制御装置41へ送信する。
 本第3実施形態によれば、熱源装置221の冷媒バルブ222を利用することにより、冷水32の温度を制御可能となる。このため、熱源装置221が冷水を生成する消費エネルギーも考慮したうえで、空調関連の設定値を決定することができる。また、第1実施形態と比較してより消費エネルギーを削減することができる。
[4]第4実施形態
 次に第4実施形態について説明する。
 図9は、第4実施形態の空調システムの概要構成ブロック図である。
 図9において、図1の第1実施形態と同様の部分には、同一の符号を付すものとする。
 第4実施形態の空調システム1Dは、空調制御装置10と、空調ゾーン11と、熱源装置12と、外気導入空調機13と、還気導入空調機14と、冷却塔261と、を備えている。
 上記構成において、冷却塔261は、ファン262と、ポンプ263を有しており、外気21と熱交換により冷却された冷却水264を、ポンプ263によって一定量の冷却水264を熱源装置12に送水している。
 熱源装置12の冷媒31は、冷却塔261から送水された冷却水264との熱交換により温度を下げられる。
 冷却塔用制御装置266は、空調制御装置10から送信された冷却水264の温度設定値と、熱源装置12に送水する冷却水264の温度を計測する冷却水温度計265の現在値と、を取得し、冷却水264の温度を制御するためのファン制御信号をファン262に出力する。
 これにより、ファン262は、入力されたファン制御信号に基づいて、冷却水264の温度を制御する。
 次に本第4実施形態における最適負荷配分設定値算出部113の動作を説明する。
 本第4実施形態の空調制御装置10においては、オフライン処理部131で最適負荷配分関数を生成するに際して、空調モデル記憶部134に記憶するモデルを、熱源装置モデル135、外気導入空調機モデル136、還気導入空調機モデル137に加えて、冷却塔モデルを記憶させる。
 これにより、最適負荷配分演算部132は、記憶した空調モデルに対して、複数の条件の外気温度と、外気湿度と、給気温度と、室内温度と、室内湿度と、風量の組み合わせごとにそれぞれ、ユーザにより設定されたPMVの範囲内で空調関連の消費エネルギーがより低減される、より好ましくは、最小となる、各空調機の負荷配分を最適化する室内温度設定値、室内湿度設定値、給気温度設定値及び、冷却水温度設定値を算出する。
 本実施形態においては、空調関連の消費エネルギー値は、下記式(2)で表せられる。
 ・全消費エネルギー値(E)=熱源装置消費エネルギー(Eheat
             +外気導入空調機消費エネルギー(Eout
              +還気導入空調機消費エネルギー(Era
               +冷却塔消費エネルギー(E
                      ・・・・・・(2)
 ・冷却塔消費エネルギー(E)=Efan + Epump
 ここで、Efanは、冷却塔ファン消費エネルギーであり、Epumpは、冷却水ポンプ消費エネルギーである。
 また、本第4実施形態の空調制御装置10は、各センサから取得した現在値と、ユーザが設定した空調ゾーンの快適性範囲により、予め作成した最適負荷配分関数から最適負荷配分設定値を取得する。そして空調制御装置10は、取得した最適負荷配分設定値を、還気導入空調機用制御装置41、熱源装置用制御装置42及び冷却塔用制御装置266に送信する。
 上記構成を採ることにより、本第4実施形態によれば、熱源装置11、外気導入空調機13、還気導入空調機14に加え、冷却塔261を備えた空調関連の設備について、各空調機の負荷配分を最適化する運用に関する空調関連の設定値を決定することができる。さらに、快適性指標値の範囲内で空調を運用することから、在室者の快適性の範囲内で消費エネルギーを削減することができる。
[5]実施形態の効果
 以上の説明のように、各実施形態によれば、ユーザが望む(設定した)快適性指標の範囲内で、空調装置における消費エネルギーを低減することが可能となる。
[6]実施形態の変形例
 本実施形態の空調制御装置で実行される制御プログラムは、インストール可能な形式又は実行可能な形式のファイルでCD-ROM、フレキシブルディスク(FD)、CD-R、DVD(Digital Versatile Disk)等のコンピュータで読み取り可能な記憶媒体に記憶されて提供される。
 また、本実施形態の空調制御装置で実行される制御プログラムを、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成しても良い。また、本実施形態の空調制御装置で実行される制御プログラムをインターネット等のネットワーク経由で提供または配布するように構成しても良い。
 また、本実施形態の空調制御装置の制御プログラムを、ROM等の記憶媒体に予め組み込んで提供するように構成してもよい。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (11)

  1.  給気系が異なる複数種類の空調機により空調ゾーンの空調制御を行う空調制御装置において、
     前記複数種類の空調機のそれぞれのモデルに基づいて生成された最適負荷配分関数に基づいてユーザにより設定された前記空調ゾーンの快適性範囲内で前記複数種類の空調機全体の消費エネルギーがより低減されるように、前記複数種類の空調機に空調負荷配分を設定する設定部と、
     前記設定部により設定された空調負荷配分に基づいて、前記複数種類の空調機を制御する制御値を前記複数種類の空調機の制御装置にそれぞれ出力する出力部と、
     を備えた空調制御装置。
  2.  前記複数種類の空調機は、還気導入空調機を含む、
     請求項1記載の空調制御装置。
  3.  前記複数種類の空調機は、外気導入空調機を含む、
     請求項1または請求項2記載の空調制御装置。
  4.  前記外気導入空調機は、外気と前記空調ゾーン内の空気と、を混合するダンパを有する空調機である、
     請求項3記載の空調制御装置。
  5.  前記設定部は、外気温度、外気湿度、前記外気導入空調機の給気温度、前記空調ゾーン内の温度、前記空調ゾーン内の湿度、外気導入空調機の給気風量及び前記複数種類の空調機のそれぞれのモデルに基づいて生成された最適負荷配分関数を生成する関数生成部が接続されて前記最適負荷配分関数を取得する取得部を備えた、
     請求項3または請求項4記載の空調制御装置。
  6.  前記制御値は、前記外気導入空調機の給気温度設定値と、前記還気導入空調機の室内温度設定値及び室内湿度設定値と、
     を含む、
     請求項3乃至請求項5のいずれかに記載の空調制御装置。
  7.  前記設定部は、前記複数種類の空調機のそれぞれのモデルに加えて、前記外気導入空調装置に供給する冷水の温度を制御するための熱源装置のモデルに基づいて生成された最適負荷配分関数に基づいて空調負荷配分を設定する、
     請求項3乃至請求項6のいずれかに記載の空調制御装置。
  8.  前記設定部は、前記複数種類の空調機のそれぞれのモデル及び前記熱源装置のモデルに加えて、前記熱源装置の冷却を行う冷却塔のモデルに基づいて生成された最適負荷配分関数に基づいて空調負荷配分を設定する、
     請求項1乃至請求項7のいずれかに記載の空調制御装置。
  9.  前記快適性を表す快適性指標として、PMV、有効温度あるいは修正有効温度のいずれか一つを用いる、
     請求項1乃至請求項8のいずれかに記載の空調制御装置。
  10.  前記設定部は、前記空調ゾーンの快適性範囲内で前記複数種類の空調機全体の消費エネルギーが最低となるように前記複数種類の空調機に空調負荷配分を設定する、
     請求項1乃至請求項9のいずれかに記載の空調制御装置。
  11.  給気系が異なる複数種類の空調機により空調ゾーンの空調制御を行う空調制御装置をコンピュータにより制御するための制御プログラムを記録したコンピュータ読取可能な記憶媒体であって、
     前記コンピュータを、
     前記複数種類の空調機のそれぞれのモデルに基づいて生成された最適負荷配分関数に基づいてユーザにより設定された前記空調ゾーンの快適性範囲内で前記複数種類の空調機全体の消費エネルギーがより低減されるように、前記複数種類の空調機に空調負荷配分を設定する設定機能と、
     前記設定機能において設定された空調負荷配分に基づいて、前記複数種類の空調機を制御する制御値を前記複数種類の空調機の制御装置にそれぞれ出力する出力機能と、
     して機能させる制御プログラムを記憶した記憶媒体。
PCT/JP2013/082096 2013-03-04 2013-11-28 空調制御装置及び記憶媒体 WO2014136330A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/382,245 US20160290667A1 (en) 2013-03-04 2013-11-28 Air-conditioning control device and storage medium
EP13876080.6A EP2966372A4 (en) 2013-03-04 2013-11-28 Air-conditioning control device and storage medium
SG11201405339PA SG11201405339PA (en) 2013-03-04 2013-11-28 Air-conditioning control device and storage medium
CN201380010842.9A CN104160217B (zh) 2013-03-04 2013-11-28 空调控制装置以及存储介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-042153 2013-03-04
JP2013042153A JP5951526B2 (ja) 2013-03-04 2013-03-04 空調制御装置及び制御プログラム

Publications (1)

Publication Number Publication Date
WO2014136330A1 true WO2014136330A1 (ja) 2014-09-12

Family

ID=51490875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082096 WO2014136330A1 (ja) 2013-03-04 2013-11-28 空調制御装置及び記憶媒体

Country Status (6)

Country Link
US (1) US20160290667A1 (ja)
EP (1) EP2966372A4 (ja)
JP (1) JP5951526B2 (ja)
CN (1) CN104160217B (ja)
SG (1) SG11201405339PA (ja)
WO (1) WO2014136330A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021084568A1 (ja) * 2019-10-28 2021-05-06 三菱電機株式会社 制御装置、空気調和システム及び空気調和システムの制御方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3604954B1 (en) * 2017-03-31 2022-05-25 Daikin Industries, Ltd. Air conditioning system
TWI644062B (zh) * 2017-06-26 2018-12-11 群光電能科技股份有限公司 調整系統
CN109539432B (zh) * 2018-10-15 2021-09-28 平安科技(深圳)有限公司 空调冷却水循环***和空调冷却水回路控制方法
JP6849028B2 (ja) * 2019-08-23 2021-03-24 ダイキン工業株式会社 空調制御システム、空気調和機、および、機械学習装置
KR20210074919A (ko) * 2019-12-12 2021-06-22 삼성전자주식회사 서버 및 이의 제어 방법
EP4080130A4 (en) * 2020-01-17 2023-04-05 Mitsubishi Electric Corporation INFORMATION PROCESSING DEVICE, INFORMATION PROCESSING METHOD AND INFORMATION PROCESSING PROGRAM
JP7502728B2 (ja) 2020-03-23 2024-06-19 日本キヤリア株式会社 熱源システム
CN112254287B (zh) * 2020-09-01 2022-06-14 深圳达实智能股份有限公司 变权重多模型综合预测中央空调末端送风控制方法
CN112413823A (zh) * 2020-10-15 2021-02-26 南京淳宁电力科技有限公司 一种需求响应模式下中央空调***的分布式能量优化管理方法
US11739967B1 (en) * 2021-12-21 2023-08-29 Kentuckiana Curb Company, Inc. System and method for evaluating air conditioner performance at part-load conditions
CN114440404B (zh) * 2022-02-09 2023-09-19 重庆美的通用制冷设备有限公司 空调***的负荷分配方法、装置和电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285579A (ja) 2006-04-14 2007-11-01 Toshiba Corp 空調制御装置
JP2008075977A (ja) 2006-09-21 2008-04-03 Shinko Kogyo Co Ltd 業務用空調制御システム
JP2008256258A (ja) 2007-04-04 2008-10-23 Toshiba Corp 空調システム制御装置
JP2009174825A (ja) 2008-01-28 2009-08-06 Toshiba Corp 空調制御システム
JP2011027301A (ja) 2009-07-23 2011-02-10 Toshiba Corp 空調制御装置
JP2012037159A (ja) * 2010-08-09 2012-02-23 Mitsubishi Electric Corp 空気調和機の制御装置および冷凍装置の制御装置
JP2012063117A (ja) * 2010-09-17 2012-03-29 Kajima Corp 空調システム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2914096B2 (ja) * 1993-06-25 1999-06-28 ダイキン工業株式会社 空気調和装置
JPH07145982A (ja) * 1993-11-25 1995-06-06 Matsushita Refrig Co Ltd 空気調和機
JPH07198186A (ja) * 1993-12-29 1995-08-01 Daikin Ind Ltd 空気調和機の冷暖切替装置
JP3327158B2 (ja) * 1997-02-07 2002-09-24 松下電器産業株式会社 多室形空気調和装置
CN1796884A (zh) * 2004-12-30 2006-07-05 杭州华碧能源科技有限公司 中央空调节能控制***的冷水主机现场控制装置
US9677777B2 (en) * 2005-05-06 2017-06-13 HVAC MFG, Inc. HVAC system and zone control unit
JP4151727B2 (ja) * 2006-12-22 2008-09-17 ダイキン工業株式会社 空調管理装置
JP5312055B2 (ja) * 2009-01-07 2013-10-09 三菱電機株式会社 空気調和システム
JP5525465B2 (ja) * 2011-01-31 2014-06-18 アズビル株式会社 空調機運転制御装置および方法
US8560126B2 (en) * 2011-03-11 2013-10-15 Honeywell International Inc. Setpoint optimization for air handling units
US9612591B2 (en) * 2012-01-23 2017-04-04 Earth Networks, Inc. Optimizing and controlling the energy consumption of a building

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285579A (ja) 2006-04-14 2007-11-01 Toshiba Corp 空調制御装置
JP2008075977A (ja) 2006-09-21 2008-04-03 Shinko Kogyo Co Ltd 業務用空調制御システム
JP2008256258A (ja) 2007-04-04 2008-10-23 Toshiba Corp 空調システム制御装置
JP2009174825A (ja) 2008-01-28 2009-08-06 Toshiba Corp 空調制御システム
JP2011027301A (ja) 2009-07-23 2011-02-10 Toshiba Corp 空調制御装置
JP2012037159A (ja) * 2010-08-09 2012-02-23 Mitsubishi Electric Corp 空気調和機の制御装置および冷凍装置の制御装置
JP2012063117A (ja) * 2010-09-17 2012-03-29 Kajima Corp 空調システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2966372A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021084568A1 (ja) * 2019-10-28 2021-05-06 三菱電機株式会社 制御装置、空気調和システム及び空気調和システムの制御方法
JPWO2021084568A1 (ja) * 2019-10-28 2021-05-06
JP7329613B2 (ja) 2019-10-28 2023-08-18 三菱電機株式会社 制御装置、空気調和システム及び空気調和システムの制御方法

Also Published As

Publication number Publication date
US20160290667A1 (en) 2016-10-06
JP2014169833A (ja) 2014-09-18
CN104160217A (zh) 2014-11-19
EP2966372A4 (en) 2017-05-17
SG11201405339PA (en) 2014-10-30
JP5951526B2 (ja) 2016-07-13
CN104160217B (zh) 2017-10-13
EP2966372A1 (en) 2016-01-13

Similar Documents

Publication Publication Date Title
JP5951526B2 (ja) 空調制御装置及び制御プログラム
JP5185319B2 (ja) サーバ室管理用の空調システムおよび空調制御方法
JP4936961B2 (ja) 空調システム制御装置
JP5085716B2 (ja) サーバ室管理用の空調システム、およびこれを利用したサーバ管理用システム、空調制御方法
WO2017002245A1 (ja) 空調システム制御装置及び空調システム
JP5759808B2 (ja) サーバ室管理用の空調システムおよび空調制御方法
JP6005304B2 (ja) 換気制御装置および換気制御方法
WO2014050227A1 (ja) 換気装置のコントローラ
JP5611910B2 (ja) 空調制御システムおよび空調制御方法
JP2009030820A (ja) 空調制御装置および空調制御方法
JP2007132537A (ja) 空調制御システム
JP6125696B2 (ja) 空調制御装置及び制御プログラム
JP5082585B2 (ja) 空調システム
JP5602072B2 (ja) サーバ室管理用の空調システム
JP2008075978A (ja) 空調制御システム
JP6843941B2 (ja) 空調システム
JP2019086246A (ja) 換気システム、空調システム、換気方法及びプログラム
JP5451566B2 (ja) 空調制御装置、空調制御システムおよび空調制御方法
JP4834503B2 (ja) 業務用空調制御システム
JP2013015314A (ja) 空調システム、空調制御装置、および空調制御用プログラム
JP2017003135A (ja) 熱源設備及び熱源設備制御方法
JP6982146B2 (ja) 空調システムの制御装置、制御方法、制御プログラムおよび空調システム
JP5318446B2 (ja) 外気取入システム
JP4594146B2 (ja) 空調システムの変風量最適制御方法
JP2019032101A (ja) 熱源システム制御方法及びその装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14382245

Country of ref document: US

Ref document number: 2013876080

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE