WO2014135040A1 - 发光装置及相关投影*** - Google Patents

发光装置及相关投影*** Download PDF

Info

Publication number
WO2014135040A1
WO2014135040A1 PCT/CN2014/072779 CN2014072779W WO2014135040A1 WO 2014135040 A1 WO2014135040 A1 WO 2014135040A1 CN 2014072779 W CN2014072779 W CN 2014072779W WO 2014135040 A1 WO2014135040 A1 WO 2014135040A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength conversion
scattering
laser
region
Prior art date
Application number
PCT/CN2014/072779
Other languages
English (en)
French (fr)
Inventor
胡飞
Original Assignee
深圳市绎立锐光科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市绎立锐光科技开发有限公司 filed Critical 深圳市绎立锐光科技开发有限公司
Priority to EP14760901.0A priority Critical patent/EP2966502B1/en
Priority to JP2015559416A priority patent/JP6096937B2/ja
Priority to KR1020157023553A priority patent/KR101709647B1/ko
Priority to US14/773,303 priority patent/US9778553B2/en
Publication of WO2014135040A1 publication Critical patent/WO2014135040A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/08Combinations of only two kinds of elements the elements being filters or photoluminescent elements and reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/12Combinations of only three kinds of elements
    • F21V13/14Combinations of only three kinds of elements the elements being filters or photoluminescent elements, reflectors and refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/007Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light
    • G02B26/008Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light in the form of devices for effecting sequential colour changes, e.g. colour wheels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0905Dividing and/or superposing multiple light beams
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0087Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for illuminating phosphorescent or fluorescent materials, e.g. using optical arrangements specifically adapted for guiding or shaping laser beams illuminating these materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3158Modulator illumination systems for controlling the spectrum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3164Modulator illumination systems using multiple light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0071Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for beam steering, e.g. using a mirror outside the cavity to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength

Definitions

  • the present invention relates to the field of illumination and display technology, and in particular to a light-emitting device and related projection system.
  • the blue light is excited by blue light to generate yellow light, and then the yellow light is split into green light and red light, or the yellow light and blue light are mixed to form white light, which is commonly used in the field of projection display and the like in the prior art.
  • Light source scheme the yellow phosphor currently used is basically YAG (yttrium aluminum garnet) phosphor, YAG The proportion of the red light band in the yellow light generated by the phosphor is low. When applied to fields such as projection display, the display effect of red light or white light splitting light will be poor.
  • FIG. 1 As a schematic structural diagram of a light-emitting device in the prior art, as shown in FIG. 1, the light-emitting device includes a blue laser light source 110, a red laser light source 120, and filters 130 and 140. Reflective color wheel device 150, lens 160 and square bar 170. The filter 130 is for reflecting blue light and transmitting other light, and the filter 140 is for transmitting yellow light and reflecting red light. Blue laser source The emitted excitation light of 110 is reflected by the filter 130 to the wavelength conversion device 150.
  • the wavelength conversion device 150 includes a yellow phosphor for absorbing the excitation light and emitting the yellow laser to the filter 130 The upper transmission is emitted to distinguish it from the optical path of the excitation light.
  • the filter 140 is located on the outgoing light path of the filter 130 that emits the yellow laser light for respectively from the filter 140.
  • the yellow incident on both sides is combined into a combined light by a laser and a red laser.
  • the combined light is collected by the lens 160 into the square rod 170 for uniform light.
  • the laser light emitted by the phosphor is distributed by the Lambertian and the laser is Gaussian, the combined light of the two beams is not uniform, even after the square rod 170 is homogenized, the uniformity is still very good. difference.
  • the blue laser source 110 The higher the required power, the more the blue light source is required to include more laser diodes, resulting in a much larger illumination area for the blue light source.
  • a red laser source 120 as a supplemental source The required amount is small to meet the requirements, so the cross-sectional area of the beam emitted by the red laser source 120 is small.
  • the technical problem to be solved by the present invention is to provide a light-emitting device with a simple structure.
  • Embodiments of the present invention provide a lighting apparatus, including:
  • a first supplemental laser source for generating the first light
  • a wavelength conversion device comprising: a wavelength conversion layer for absorbing the excitation light to generate a laser light and not absorbing the first light; one side of the wavelength conversion layer receives the excitation light and the first light, and emits at least on the same side a portion of the first light, and at least a portion of the light being mixed by the laser or at least a portion of the laser and the unabsorbed excitation light;
  • a light guiding device comprising: a first region and a second region, wherein the first region is smaller than the second region, and the first light from the laser light source and the excitation light from the excitation light source are respectively incident from the first light channel to the light guiding device a first region and at least a second region, and are respectively guided to the wavelength conversion device by the first region and the at least second region; the second region of the light guiding device is further configured to receive a laser beam from the wavelength conversion device And the reflected first light is directed to the second light channel to exit.
  • the light guiding device comprises a first filter and a first reflective element
  • the first filter comprises a first position and a second position
  • the first reflective element is laminated and fixed in the first position of the first filter on;
  • the first position of the first filter and the first reflective element constitute a first region of the light guiding device for reflecting the first light incident from the first light channel to the wavelength conversion device;
  • a second position of the first filter constituting a second region of the light guiding means for reflecting excitation light incident from the first optical path to the wavelength conversion device and transmitting the laser light from the wavelength conversion device And the first light to the second light channel exits.
  • the light guiding device comprises a first filter
  • the first filter comprises a first position and a second position, wherein the first position is defined as a through hole;
  • a second position of the first filter constituting a second region of the light guiding device for transmitting excitation light incident from the first optical channel to the wavelength conversion device and reflecting the laser light from the wavelength conversion device And the first light to the second light channel exits.
  • the wavelength conversion layer is for generating a yellow laser light, and the first light is a red laser light.
  • the light emitting device further includes a second supplemental laser light source and a scattering device for generating the second light, the scattering device for scattering the second light from the second supplemental laser light source;
  • the light guiding device faces away from the side on which the laser light is incident for receiving the second light scattered by the scattering device and guiding it to the second light channel to exit.
  • the scattering device comprises opposing first and second surfaces
  • the second light from the second supplemental laser source and the first light from the first supplemental laser source are incident from the first optical channel to the first region of the light guiding device, and the first region of the light guiding device is further used And guiding the second light to the first surface of the scattering device, the second light is scattered by the scattering device, and then emitted from the first surface of the scattering device to the side of the light guiding device facing away from the laser light incident .
  • the scattering device and the wavelength conversion device are fixed to each other;
  • the light emitting device further comprises a driving device for driving the wavelength conversion device and the scattering device such that the first light and the second light are respectively at the wavelength
  • the spot formed on the conversion device and the scattering device moves in a predetermined path;
  • the light guiding device further includes second reflecting means for guiding at least a portion of the second light that is scatter-reflected to the side of the light guiding device facing away from the laser light.
  • the second reflecting means is further for directing the second light from the second supplemental laser source to the scattering means.
  • the second light from the second supplemental laser source is incident from the first light channel to the light guiding device and is guided by the light guiding device to the second reflecting device.
  • the wavelength conversion device further includes a scattering reflection layer disposed in a layered manner with the wavelength conversion layer, wherein a side of the wavelength conversion layer facing away from the scattering reflection layer is for receiving the excitation light and the first light.
  • Embodiments of the present invention also provide a projection apparatus including the above-described illumination apparatus.
  • the present invention includes the following beneficial effects:
  • the cross-sectional area of the supplemental light beam emitted by the supplemental laser source is small, the smaller first region on the light guiding device can direct the supplemental light to the wavelength conversion device; and the excitation beam generated by the laser source and the wavelength conversion device are exposed
  • the cross-sectional area of the laser beam and at least a portion of the supplemental light that is reflected and scattered by the wavelength conversion layer is greater, such that the larger second region can direct the excitation light to the wavelength conversion device while still being exposed to at least a portion of the laser and the reflected scattering
  • the supplemental light is guided to the second optical channel to be distinguished from the optical path of the excitation light, so that the light splitting and the combining light can be completed only by using the light guiding device, so that the structure of the light emitting device is simple.
  • FIG. 1 is a schematic structural view of a light-emitting device in the prior art
  • FIG. 2 is a schematic structural view of an embodiment of a light-emitting device of the present invention.
  • Figure 3 is a schematic structural view of still another embodiment of the light-emitting device of the present invention.
  • FIG. 4 is a schematic structural view of still another embodiment of a light-emitting device of the present invention.
  • Figure 5 is a schematic structural view of still another embodiment of the light-emitting device of the present invention.
  • Fig. 6 is a schematic structural view showing still another embodiment of the light-emitting device of the present invention.
  • FIG. 2 is a schematic structural view of an embodiment of a light-emitting device of the present invention.
  • the light emitting device includes an excitation light source 1, a first supplemental laser light source 2, a wavelength conversion device 3, and a light guiding device 4.
  • the excitation light source 1 is used to generate excitation light.
  • First supplemental laser source 2 Used to generate the first light.
  • the excitation light source 1 A larger number of arrays of light-emitting devices are included, and the amount of first light used as a supplemental light for improving color is much less than that of the excitation light, so the number of laser diodes in the first supplemental laser source 2 is higher than that of the excitation source 1 The number of light emitting device arrays is much smaller.
  • the excitation light source 1 is a blue laser light source, and the first complementary laser light source 2 The red laser source is arranged in an array on the same plane, wherein the excitation source 1 surrounds the first supplemental laser source 2 .
  • the laser source 1 and the first supplemental laser source 2 may also be other colors, and is not limited to the above examples, but the former is preferably a 445 nm blue laser source with higher excitation efficiency; the excitation light source 1 Light emitting diodes or other solid state light emitting device arrays may also be included, and are not limited to laser diodes.
  • the first light and the excitation light are incident together to the light guiding device 4 from the first light channel.
  • the light guiding device 4 includes a first filter 41 And a first reflective element 42, wherein the first filter 41 is for reflecting excitation light and transmitting the received laser light and the first light; the first filter 41 includes a first position and a second position, the first reflective element 42 Fixed in the first position for reflecting the first light.
  • the first reflective element 42 is specifically a small mirror.
  • the light guiding device 4 includes a first region and a second region, wherein the first filter 41 The first position and the first reflective element 42 form a first region, and the second position of the first filter 41 constitutes a second region.
  • a through hole may be formed in the first position of the first filter 41, and then the first reflective member 42 Fixed in the through hole.
  • the first reflective member 42 can be directly laminated to the first position of the first filter 41.
  • the first reflective element 42 can be fixed to the first filter 41
  • the second area surrounding the first area so that the first light emitted by the first supplementary laser light source 2 is incident from the first light path to the first area of the light guiding device 4, and is first reflected Element 42 Reflected to the wavelength conversion device 3, the excitation light emitted from the excitation light source 1 is incident on the second region of the light guiding device 4 from the first optical channel, and is reflected by the first filter 41 to the wavelength conversion device 3. . Since the light-emitting device in the laser light source 1 is larger than the light-emitting device in the first supplemental laser light source 2, the first region of the light guiding device 4 is smaller than the second region.
  • the wavelength conversion device 3 includes a wavelength conversion layer 31 and a scattering reflection substrate 32 which are stacked.
  • Wavelength conversion layer 31 An opposing first surface 31a and a second surface 31b are included, wherein the first surface 31a faces away from the scattering reflective substrate 32 for receiving excitation light and first light.
  • Wavelength conversion layer 31 A wavelength conversion material is provided for absorbing the excitation light and emitting the mixed light of the laser or the laser and the unabsorbed excitation light; at the same time, the wavelength conversion material does not absorb the first light, and thus is from the light guiding device 4 The first light passes directly through the wavelength conversion layer 31 to the scattering reflective substrate 32.
  • the wavelength converting material is specifically a yellow light wavelength converting material for receiving the excitation light and converting it into a yellow laser light emitting medium, wherein the laser light is distributed in a Lambertian distribution.
  • the wavelength converting material may be a material having wavelength conversion capability such as a phosphor, a quantum dot or a fluorescent dye.
  • the wavelength converting materials are generally bonded together by a bonding agent, and the most commonly used ones are silicone adhesives, which are chemically stable and have high mechanical strength. However, silicone adhesives can withstand lower temperatures, generally 300 degrees Celsius to 500 degrees Celsius .
  • an inorganic binder to bond the wavelength converting material into a whole, such as water glass or glass frit, to realize a high-temperature resistant reflective phosphor wheel.
  • phosphor and glass powder if low temperature requirements, low-temperature glass powder can be used melt and mix under a certain inert atmosphere to re-form.
  • the scattering reflective substrate 32 includes a stacked reflective reflective layer 321 and a substrate 322.
  • the scattering reflection layer 321 is located on the substrate The surface between the 322 and the wavelength conversion layer 31 and adjacent to the wavelength conversion layer 31 is the third surface 321a.
  • the scattering reflective layer 321 includes a scattering material or a scattering structure for the first light and wavelength conversion layer that will penetrate the wavelength conversion layer 31.
  • the laser light emitted from the second surface 31b is totally scattered and the scattered light is all emitted from the third surface 321a, so that the third surface 321a is emitted.
  • the distribution of the first light emitted is approximately a Lambertian distribution.
  • the scattering reflective layer 321 in this embodiment The thickness needs to be large enough so that the light emitted from the second surface 31b of the wavelength conversion layer 31 passes through the scattering reflection layer 321 without considering the loss caused by the slight absorption of light by the scattering material.
  • the scattered reflections all return to the wavelength conversion layer 31 and eventually exit from the first surface 31a of the wavelength conversion layer 31. And finally from the first surface 31a of the wavelength conversion layer 31
  • the emitted first light and the combined light received by the laser are uniformly combined due to the angular distribution of the two kinds of light.
  • the scattering reflection substrate 32 is further provided with a substrate 322 to support the scattering reflection layer 321 .
  • the substrate 322 can also be omitted when the scattering reflective layer itself is sufficiently rigid (e.g., by doping the scattering material in the transparent glass).
  • a reflection film is plated thereon to ensure that all of the light scattered by the scattering reflection layer 321 is emitted from the second surface 321a.
  • the above-described stacked wavelength conversion layer 31 and scattering reflection substrate 32 The contact is in close contact to enhance the bonding force between the wavelength conversion layer 31 and the scattering reflection substrate 32.
  • the close contact between the two can reduce the light exit surface and the scattering reflective substrate 32 The distance between them reduces the degree of diffusion of light in the wavelength conversion layer 31.
  • the relationship between the scattering reflective layer 321 and the substrate 322 in the scattering reflective substrate 32 is also the same.
  • the scattering reflective substrate 32 is thick enough if the wavelength conversion layer 31 is sufficiently thick and its own rigidity is sufficient. It can also be omitted.
  • the first light is diffused and reflected by the wavelength conversion layer 31, and then exits from the first surface 31a, and from the first surface 31a. At least a portion of the exit is photo-coupled by the laser or by at least partial mixing of the laser and the unabsorbed excitation light into a beam of light. This will lose some of the light, but it can be used without considering the light loss.
  • the collection path of the wavelength conversion device 3 is preferably provided with a collecting lens 33. It is used to collect the outgoing light of the wavelength conversion device 3 to the light guiding device 4 to improve the light utilization efficiency.
  • the combined light of the laser light and the first light emitted from the wavelength conversion device 3 is collected and incident on the light guiding device 4 Wherein the combined light incident on the second region is transmitted through the first optical filter 41 and exits from the second optical channel, and the combined light incident on the first region is used by the first reflective member 42 Loss of reflection, since the area of the first area is much smaller than that of the second area, this part of the loss is negligible. If the light emitted from the wavelength conversion device 3 further contains unabsorbed excitation light, the first filter 41 The excitation light is reflected, so that part of the excitation light is reflected and lost. Therefore, the wavelength conversion device 3 preferably contains a sufficient amount of wavelength converting material to totally absorb the excitation light to avoid causing loss of this portion of the light.
  • the first supplemental laser source 2 It is used to emit laser light, and the laser has a Gaussian distribution, and the laser is distributed in a Lambertian manner. Therefore, the combined light generated by the direct combination of the laser and the first light as the supplemental light in the background art is not uniform.
  • the wavelength conversion layer 31 is passed through. The first light is scattered and reflected by the scattering reflection layer to be close to the Lambertian distribution, so that the received laser light and the first light emitted from the first surface 31a of the wavelength conversion layer 31 are uniformly mixed due to the angular distribution matching.
  • the difference between the optical spread amounts is used to distinguish the first light incident on the wavelength conversion device 3 and the optical path of the first light emitted from the wavelength conversion device 3, while the light guiding device 4
  • the difference in wavelength range is also utilized to distinguish the excitation light from the optical path of the laser light, so that the structure of the light-emitting device is simple.
  • the scattering reflection layer 321 It preferably comprises a white porous ceramic or white scattering material, wherein the white scattering material is a salt or an oxide such as barium sulfate powder, alumina powder or silicon oxide powder, etc., these materials do not substantially absorb light, and white The properties of the scattering material are stable and do not oxidize at high temperatures.
  • the white scattering material is a salt or an oxide such as barium sulfate powder, alumina powder or silicon oxide powder, etc.
  • the first reflective element 42 may also be a filter for reflecting the first light and transmitting the received laser light.
  • the wavelength conversion device 3 When the combined light is incident on the first region of the light guiding device 4, only the first light in the combined light is reflected and lost, and the laser light in the combined light is transmitted through the first reflective member 42. And exiting from the second optical channel. Then, the first reflective element 42 and the first filter 41 may also be combined into the same filter, wherein the filter is plated.
  • the light emitted by the excitation light source 1 and the first supplementary laser light source 2 may not be illuminated.
  • the geometrical combination shown in the figure is first passed through a second filter (not shown) or the polarizing plate is combined and then incident on the light guiding device 4. It should be noted that the area where the first light is incident on the second filter or the polarizing plate and the light guiding device are required.
  • the first region of 4 corresponds to such that the first light transmitted or reflected by the second filter or the polarizing plate is incident on the light guiding device 4 In the upper case, all of them can be incident on the first region.
  • the excitation light and the first light are wavelength combined or polarized, the excitation light is incident on the light guiding device in the combined light emitted by the second filter or the polarizing plate.
  • the first reflective element 42 also needs to reflect the excitation light at the same time.
  • the optical power density of the excitation light incident on the wavelength conversion device 3 can be increased.
  • the light guiding device 4 The relationship between the first area and the second area may not be the latter surrounding the former, but other positional relationships may be adopted as long as the arrangement position of the first supplementary laser light source 2 and the light guiding device are enabled.
  • the arrangement position of the first region in the corresponding one is such that the first light is incident on the first region.
  • the first area is preferably located at the center of the light guiding means 4, so that the first light emitted from the light guiding means 4 can pass through the collecting lens
  • the center of 33 is more efficient on the wavelength conversion device 3.
  • the wavelength conversion device 3 may further include a driving device 34 for driving the wavelength conversion layer 31.
  • a driving device 34 for driving the wavelength conversion layer 31. Moving so that a spot formed on the wavelength conversion layer 31 of the excitation light acts on the wavelength conversion layer 31 along a predetermined path to prevent the excitation light from acting on the same position of the wavelength conversion layer 31 for a long time. 31 The problem of elevated temperature.
  • the driving device 34 is configured to drive the wavelength conversion layer 31 to rotate so that the excitation light is in the wavelength conversion layer 31.
  • the spot formed thereon acts on the wavelength conversion layer 31 along a predetermined circular path.
  • the wavelength conversion device 230 has a disk shape
  • the wavelength conversion layer 231 has a ring shape concentric with the disk
  • the driving device 34 It is a cylindrical motor
  • the driving device 34 is coaxially fixed to the wavelength conversion layer 31.
  • the drive unit 34 can also drive the wavelength conversion layer 31. Move in other ways, such as horizontal reciprocating motion.
  • the wavelength converting device 3 may not be provided with a driving device.
  • FIG. 3 is a schematic structural view of still another embodiment of the light-emitting device of the present invention.
  • Illuminating device includes excitation light source 1
  • the first supplemental laser source 2, the wavelength conversion device 3 and the light guiding device 4 are provided.
  • the light guiding device 4 includes a first filter 41, and the first filter 41 The first position and the second position are included, wherein the first position is defined as a through hole 41a.
  • the first filter 41 is for transmitting the excitation light and reflecting the received laser light and the first light.
  • the first position of the first filter constitutes a light guiding device In the first region of 4, the second position of the first filter constitutes the second region of the light guiding means 4.
  • the excitation light emitted by the excitation light source 1 and the first light emitted by the first supplementary laser light source 2 are incident from the first optical channel to the light guiding device 4 Wherein the first light is entirely incident on the first region (i.e., the through hole 41a) and transmitted to the wavelength conversion device 3, and the excitation light is transmitted through the first filter 41 to the wavelength conversion device 3.
  • the laser light and the first light emitted from the wavelength conversion device 3 are incident on the light guiding device 4
  • the light incident on the second region is reflected to the second optical channel, and the light incident on the first region (i.e., the through hole 41a) is transmitted and lost.
  • FIG. 4 is a schematic structural view of still another embodiment of the light emitting device of the present invention.
  • Illuminating device includes excitation light source 1
  • the first supplemental laser source 2, the wavelength conversion device 3 and the light guiding device 4 are provided.
  • the illumination device further includes a second supplemental laser source 5 and a scattering device 6, the scattering device 6 comprising a scattering layer 61 And for scattering the second light generated by the second supplementary laser light source 5.
  • the first filter 41 in the light guiding device 4 is also used to reflect the second light.
  • the scattered second light is incident on the first filter in the light guiding device 4 41 is facing away from the side on which the laser light is incident, and is reflected to the second optical path, and the laser light transmitted through the light guiding device 4 and the first light are combined into one beam of light.
  • the second supplemental laser source 5 can be used to generate blue light and the wavelength conversion device 3
  • the yellow light that emerges is a white light. Therefore, the present embodiment can solve the disadvantage that the excitation light in the embodiment shown in Fig. 2 cannot be combined with the laser light from the second optical channel.
  • the second light is in the wavelength range Blue light from 460nm to 480nm, so that the blue color displayed during projection display is more in line with the REC709 standard.
  • a collecting lens 7 is preferably provided on the exiting optical path of the scattering means 6 The second light for emitting the scattering device 6 is collected onto the first filter 41 of the light guiding device 4.
  • the scattering device 6 may further include a driving device 62 for driving the scattering layer 61.
  • the movement is such that the spot formed by the second light on the scattering means 6 acts on the scattering means 6 along a predetermined path to prevent heat from being concentrated in the same area.
  • the driving device 62 due to the presence of the driving device 62, the scattering layer 61 Rotation occurs, so the laser is incident on the scattering layer.
  • the position of the spot changes with time, so the position of the bright spot of the area projected by the illuminating device is constantly changing. When the changing speed is fast enough, the human eye cannot detect the presence of the bright spot, thereby having a relative scattering device. Better eliminate the effect of speckle.
  • a second supplemental laser source and a scattering device can also be added to the illumination device shown in FIG.
  • Figure 3 A filter with a through hole in the illustrated illumination device is also used to transmit the second light.
  • the second light scattered by the scattering device is incident on a side of the filter facing away from the laser light, transmitted through the through hole to the second light channel, and the laser light reflected by the filter and the first light are combined A beam of light emerges.
  • FIG. 5 is a schematic structural view of still another embodiment of the light emitting device of the present invention.
  • Illuminating device includes excitation light source 1 a first supplemental laser source 2, a wavelength conversion device 3, a light guiding device 4, a second supplemental laser source 5, and a scattering device 6.
  • the first reflective element 42 in the light guiding means 4 is a filter for reflecting the first light and transmitting the second light.
  • Second supplementary laser source 5 The generated second light is incident on the first reflective element 42 from the first optical path together with the first light generated by the first supplemental laser source 2, wherein the first light is reflected by the first reflective element 42 to the wavelength conversion device 3 The second light is transmitted through the first reflective element 42 to the scattering device 6.
  • the scattering device 6 includes a reflective substrate 63 and a scattering layer 61 disposed on the reflective substrate 63. Scattering layer 61 The first surface 61a and the second surface 61b are opposite, wherein the second surface 61b is in contact with the reflective substrate 63, and the first surface 61a is for receiving the light guiding device 4 Transmitted second light.
  • the second light is scattered by the scattering layer 61, wherein the second light emerging from the second surface 61b of the scattering layer 61 is reflected by the reflective substrate 63 and then enters the scattering layer 61 again and directly from the first surface
  • the second light emitted by 61a is emitted together and exits to the side of the light guiding device 4 facing away from the laser light, where it is incident on the light guiding device 4
  • the second light of the second region is reflected to the second light channel, and the second light incident on the first region is transmitted and lost. Since the second light lost is less, it can be ignored.
  • the reflective substrate 63 can also be omitted if it is thick enough.
  • the transmissive scattering device used in the illuminating device shown in Fig. 4 Since the outgoing light propagates in the direction of the incident light, there is always a local area where the scattering is small and even a pin hole exists in the scattering device.
  • the incident laser can be made to emit light with little or no scattering (directly through the pinhole), and this part of the light still has strong directivity and does not obey the Lambertian distribution.
  • the thickness or density of the scattering device is increased to completely prevent the occurrence of pinholes, the transmittance of incident light is greatly reduced to reduce the efficiency of the scattering device.
  • the emitted light is opposite to the incident light, and the incident light must be deflected and reflected to change direction to form the outgoing light, and increasing the density or thickness of the reflective device does not reduce the efficiency. Therefore, the scattering effect on the laser beam is better and closer to the Lambertian distribution.
  • the second reflective element 42 It is also possible to transmit the first light and reflect the second light as long as the filter curve in the optical path and the light guiding device is adjusted accordingly. A person skilled in the art can clearly know how to adjust according to the optical path description in the above embodiment, and details are not described herein again.
  • the second reflective element 42 It may also be a polarizing plate, and the polarization states of the first light and the second light incident on the polarizing plate from the first light channel are different, so that the polarizing plate can distinguish the optical paths of the two beams.
  • the first supplemental laser source 2 and the second supplemental laser source 5 In the case where the required amount is relatively small, the two light sources can be directly arranged side by side on the same plane to form an array, and the light guiding device 4 The first area corresponds. If the amount of the two complementary laser light sources is large, the first light and the second light may be combined by the wavelength combining light or the polarized light, and then the excitation light source is combined. Geometrically combined, wavelength combined or polarized.
  • FIG. 6 is a schematic structural view of still another embodiment of the light emitting device of the present invention.
  • Illuminating device includes excitation light source 1 a first supplemental laser source 2, a wavelength conversion device 3, a light guiding device 4, and a second supplemental laser source 5 .
  • the wavelength conversion device 3 and the scattering device 6 By being on the same circular base (not shown) to be fixed to each other, and both are annularly concentric with the circular base, wherein the diameters of the two rings are different, so that the wavelength conversion device 3 and the scattering device 6 Located on different annular regions of the circular base.
  • the illuminating device further includes a driving device 9 And coaxially fixed with the circular base for driving the circular substrate to rotate.
  • the illumination device further includes a second reflective device comprising a second reflective element 8 for receiving light from the light guide 4 The second light is reflected to the scattering device 6 .
  • the second reflective element 8 can be a mirror or a filter for reflecting the second light.
  • the scattering device and the wavelength conversion device are driven by the same driving device, compared with FIG. 5
  • the illustrated illumination device can use less than one drive, resulting in reduced cost and a more compact structure.
  • the wavelength conversion device 3 and the scattering device 6 Other shapes are also possible, and the driving means can also drive the two to move in other ways as long as the spots formed by the first light and the second light on the wavelength conversion means and the scattering means are respectively moved in a predetermined path.
  • a wavelength conversion device 3 and the scattering device 6 may also be in the form of two adjacent strips for driving the horizontal reciprocating motion of the two.
  • the wavelength conversion layer and the scattering reflection layer are arranged in a stacked manner. Therefore, the scattering reflection layer can be divided into two adjacent annular regions, and the wavelength conversion layer is laminated on one of the annular reflection regions of the scattering reflection layer, and the other The annular region acts as a scattering device. Further, the circular substrate in this embodiment can also be omitted when the scattering reflection layer itself is sufficiently rigid.
  • the second reflective element 8 may further be provided with a through hole (not shown), and correspondingly, the second supplementary laser light source 5
  • the illuminating light may not be transmitted from the first filter 41 in the light guiding device 4 to the second reflecting member 8, but may be incident from the side of the second reflecting member 8 away from the scattering device 6 to the second reflecting member 8
  • the through hole is transmitted to the scattering device 6 .
  • Due to the second supplemental laser source 5 The second light emitted has a Gaussian distribution, and the optical expansion is small, and the second light after the scattering reflection has an approximate Lambertian distribution, and the optical expansion amount is large, so the second complementary laser light source can be obtained by the difference of the optical expansion amount.
  • the illuminating and the light path of the light scattered by the scattering means 6 are distinguished. Although some of the second light scattered by the scattering means 6 is reflected from the second reflecting element 8 The upper through hole is transmitted and lost, but the area of the through hole is much smaller than the area of the second reflective member 8, so that the partial loss can be neglected.
  • the second reflecting means may further comprise a third reflecting element (not shown) located at the second reflecting element 8 and the scattering means 6
  • the third reflective element may be a small mirror or a small filter that reflects the second light
  • the second complementary laser light source 5 is incident from the side of the third reflective element facing the scattering device 6 and is reflected to the scattering device. 6 on.
  • the scattering means 6 is arranged to be transmissive, correspondingly, the second complementary laser source 5 is illuminated from the scattering means 6 The side facing away from the second reflecting member 8 is incident on the scattering device 6. At least a portion of the second light scattered by the scattering device 6 exits from the side of the scattering device 6 facing the second reflective member 8 to the second reflective member 8 On.
  • the projection system includes a light emitting device that can have the structure and function of the various embodiments described above.
  • the projection system can use various projection technologies, such as liquid crystal displays (LCD, Liquid) Crystal Display ) projection technology, digital optical path processor ( DLP , Digital Light Processor ) Projection technology.
  • LCD liquid crystal displays
  • DLP digital optical path processor
  • the above-described lighting device can also be applied to lighting systems, such as stage lighting.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Projection Apparatus (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种发光装置及相关投影***,该发光装置包括产生激发光的激发光源(1)和产生第一光的第一补光激光光源(2);波长转换装置(3),包括用于吸收激发光以产生受激光且不吸收第一光的波长转换层(31);该波长转换层(31)的一侧接收激发光和第一光,并于同一侧出射至少部分第一光;导光装置(4),包括第一区域和第二区域,其中第一区域小于第二区域,来自所述激光光源(2)的第一光和来自激发光源(1)的激发光从第一光通道分别入射至该导光装置(4)的第一区域和至少第二区域,并分别被第一区域和至少第二区域引导至所述波长转换装置(3);该导光装置(4)的第二区域还用于将来自所述波长转换装置(3)的受激光和被反射的第一光引导至第二光通道出射。

Description

发光装置及相关投影*** 技术领域
本发明涉及照明及显示技术领域,特别是涉及一种发光装置及相关投影***。
背景技术
利用蓝光激发黄光荧光粉以产生黄光,再将该黄光分光成绿光和红光,或者再将该黄光与蓝光混合而成白光,是现有技术的投影显示等领域中常用的光源方案。但是目前使用的黄光荧光粉基本为 YAG (钇铝石榴石)荧光粉, YAG 荧光粉受激产生的黄光中红光波段的成分比例偏低,应用于投影显示等领域时,分光成的红光或者合光成的白光的显示效果会差一些。
现有技术中的一种解决方法是在荧光粉出射的黄光中加入红光。例如,图 1 为现有技术中一种发光装置的结构示意图,如图 1 所示,发光装置包括蓝光激光光源 110 、红光激光光源 120 、滤光片 130 和 140 、反射式的色轮装置 150 、透镜 160 和方棒 170 。滤光片 130 用于反射蓝光并透射其他光,滤光片 140 用于透射黄光并反射红光。蓝光激光光源 110 出射的激发光经滤光片 130 反射至波长转换装置 150 。波长转换装置 150 包含黄光荧光粉,用于吸收激发光并出射黄色受激光至滤光片 130 上透射出射,以和激发光的光路区分开来。滤光片 140 位于滤光片 130 出射黄色受激光的出射光路上,用于将分别从该滤光片 140 两侧入射的黄色受激光和红色激光合为一束合光。该合光经透镜 160 收集至方棒 170 内进行匀光。
然而,在该方案中,由于荧光粉出射的受激光为朗伯分布的,而激光为高斯分布的,该两束光的合光并不均匀,即使经过方棒 170 匀光后均匀度还是很差。
同时,随着发光装置的亮度需求越来越高,蓝光激光光源 110 所需的功率越来越高,就会要求蓝光光源包括更多的激光二极管,导致蓝光光源的发光面积会很大。而作为补充光源的红光激光光源 120 需要的量很少就可以达到要求,因此红光激光光源 120 出射的光束的横截面积很小。
技术问题
本发明主要解决的技术问题是提供一种结构简洁的发光装置。
本发明实施例提供 一种发光装置,包括:
激发光源,用于产生激发光;
第一补光激光光源,用于产生第一光;
波长转换装置,包括用于吸收所述激发光以产生受激光且不吸收第一光的波长转换层;该波长转换层的一侧接收所述激发光和第一光,并于同一侧出射至少部分第一光,以及至少部分受激光或者受激光和未被吸收的激发光的至少部分混合光;
导光装置,包括第一区域和第二区域,其中第一区域小于第二区域,来自所述激光光源的第一光和来自激发光源的激发光从第一光通道分别入射至该导光装置的第一区域和至少第二区域,并分别被第一区域和至少第二区域引导至所述波长转换装置;该导光装置的第二区域还用于将来自所述波长转换装置的受激光和被反射的第一光引导至第二光通道出射。
优选地,所述导光装置包括第一滤光片与第一反射元件,第一滤光片包括第一位置与第二位置,第一反射元件层叠固定在第一滤光片的第一位置上;
第一滤光片的第一位置与第一反射元件构成所述导光装置的第一区域,用于反射从第一光通道入射的第一光至所述波长转换装置;
第一滤光片的第二位置构成所述导光装置的第二区域,用于反射从第一光通道入射的激发光至所述波长转换装置,并透射来自所述波长转换装置的受激光和第一光至第二光通道出射。
优选地,所述导光装置包括第一滤光片,该第一滤光片包括第一位置与第二位置,其中第一位置上设为通孔;
第一滤光片的第一位置构成所述导光装置的第一区域,用于透射从第一光通道入射的第一光至所述波长转换装置;
第一滤光片的第二位置构成所述导光装置的第二区域,用于透射从第一光通道入射的激发光至所述波长转换装置,并反射来自所述波长转换装置的受激光和第一光至第二光通道出射。
优选地,所述波长转换层用于产生黄色受激光,第一光为红色激光。
优选地,所述发光装置还包括用于产生第二光的第二补充激光光源和散射装置,该散射装置用于对来自第二补充激光光源的第二光进行散射;
所述导光装置背向所述受激光入射的一侧用于接收经所述散射装置散射后的第二光并将其引导至第二光通道出射。
优选地,所述散射装置包括相对的第一表面和第二表面;
来自第二补充激光光源的第二光和来自第一补充激光光源的第一光从第一光通道一起入射至所述导光装置的第一区域上,该导光装置的第一区域还用于引导第二光至所述散射装置的第一表面,该第二光经该散射装置散射后从该散射装置的第一表面出射至所述导光装置背向所述受激光入射的一侧。
优选地,所述散射装置和所述波长转换装置相互固定;所述发光装置还包括驱动装置,用于对该波长转换装置和散射装置进行驱动,使得第一光和第二光分别在该波长转换装置和散射装置上形成的光斑按预定路径运动;
所述导光装置还包括第二反射装置,用于将经散射反射后的至少部分第二光引导至所述导光装置背向所述受激光入射的一侧。
优选地,第二反射装置还用于将来自第二补充激光光源的第二光引导至所述散射装置。
优选地,来自第二补充激光光源的第二光从第一光通道入射至所述导光装置,并被该导光装置引导至第二反射装置。
优选地,所述波长转换装置还包括与所述波长转换层层叠设置的散射反射层,其中该波长转换层背向该散射反射层的一侧用于接收来自所述激发光和第一光。
本发明实施例还提供一种投影装置,包括上述发光装置。
与现有技术相比,本发明包括如下有益效果:
由于补充激光光源发出的补充光光束的横截面积较小,导光装置上较小的第一区域可以将补充光引导至波长转换装置;而激光光源产生的激发光束和波长转换装置出射的受激光光束以及经波长转换层反射散射的至少部分补充光的横截面积较大,因此较大的第二区域可以将激发光引导至波长转换装置的同时还将受激光和经反射散射的至少部分补充光引导至第二光通道,以和激发光的光路区分开来,这样,分光和合光只采用导光装置即可完成,使得发光装置的结构简洁。
附图说明
图 1 是 现有技术中一种发光装置的结构示意图;
图 2 是本发明的发光装置的一个实施例的结构示意图;
图 3 是本发明的发光装置的又一个实施例的结构示意图;
图 4 是本发明的发光装置的又一实施例的结构示意图;
图 5 是本发明的发光装置的又一实施例的结构示意图;
图 6 是本发明的发光装置的又一实施例的结构示意图。
本发明的实施方式
下面结合附图和实施方式对本发明实施例进行详细说明。
实施例一
请参阅图 2 ,图 2 是本发明的发光装置的一个实施例的结构示意图。
发光装置包括激发光源 1 、第一补充激光光源 2 、波长转换装置 3 和导光装置 4 。
激发光源 1 用于产生激发光。第一补充激光光源 2 用于产生第一光。为提供具有高亮度的发光装置,激发光源 1 中包括数量较多的发光器件阵列,而作为补充光用于改善颜色的第一光需要的量相比激发光少很多,因此第一补充激光光源 2 中激光二极管的数量相比激发光源 1 中的发光器件阵列的数量要少得多。在本实施例中,激发光源 1 为蓝光激光光源,第一补充激光光源 2 为红光激光光源,该两个光源位于同一平面上排列成一个阵列,其中激发光源 1 环绕第一补充激光光源 2 。当然,在实际运用中,激光光源 1 和第一补充激光光源 2 所产生的颜色也可以是其他颜色,并不限于上述举例,但前者优选为激发效率较高的 445nm 蓝光激光光源;激发光源 1 中也可以包括发光二极管或者其他固态发光器件阵列,并不限于激光二极管。
第一光和激发光从第一光通道一起入射至导光装置 4 。导光装置 4 包括 第一滤光片 41 与第一反射元件 42 ,其中第一滤光片 41 用于反射激发光并透射受激光和第一光;第一滤光片 41 包括第一位置与第二位置,第一反射元件 42 固定在第一位置上,用于反射第一光。本实施例中,第一反射元件 42 具体为小反射镜。导光装置 4 包括第一区域和第二区域,其中 第一滤光片 41 的第一位置与第一反射元件 42 构成第一区域,第一滤光片 41 的第二位置构成第二区域。
可在第一滤光片 41 的第一位置上设有一通孔,然后将第一反射元件 42 固定于该通孔内。为加工方便,优选直接将第一反射元件 42 层叠固定在第一滤光片 41 的第一位置上。第一反射元件 42 可以固定于第一滤光片 41 背向或者面向第一补充激光光源 2 的一侧,优选为后者,这样可以避免第一光在经第一反射元件 42 反射前后都需经过第一滤光片 41 而造成的光损失。
为使导光装置 4 的两个区域分别和第一补充激光光源 2 与激发光源 1 的排布位置一一对应,第二区域环绕第一区域,使得第一补充激光光源 2 出射的第一光从第一光通道入射至导光装置 4 的第一区域上,并被第一反射元件 42 反射至波长转换装置 3 ,而激发光源 1 出射的激发光从第一光通道入射至导光装置 4 的第二区域上,并被第一滤光片 41 反射至波长转换装置 3 。由于激光光源 1 中的发光器件多于第一补充激光光源 2 中的发光器件,进而导光装置 4 的第一区域小于第二区域。
波长转换装置 3 包括 层叠设置的波长转换层 31 和散射反射基底 32 。波长转换层 31 包括相对的第一表面 31a和第二表面 31b,其中第一表面 31a背向散射反射基底 32,用于接收激发光和第一光。波长转换层 31 设有波长转换材料,用于吸收激发光并出射受激光或者受激光和未被吸收的激发光的混合光;同时,该波长转换材料不吸收第一光,因此来自导光装置 4 的第一光直接穿过波长转换层 31 到达散射反射基底 32 上。
本实施例中,波长转换材料具体为黄光波长转换材料,用于接收激发光并将其转化为黄色受激光出射,其中该受激光呈朗伯分布。在实际运用中,波长转换材料可以是荧光粉、量子点或荧光染料等具有波长转换能力的材料。波长转换材料一般会用粘接剂粘接成一个整体,最常用的是硅胶粘接剂,其化学性质稳定、有较高的机械强度。但是硅胶粘接剂的可耐受温度较低,一般在 300 摄氏度 至 500 摄氏度 。为了应用于大功率的发光装置中,优选地,可以用无机粘接剂来将波长转换材料粘接成一个整体,例如水玻璃或者玻璃粉,以实现耐高温的反射式荧光粉轮。例如将荧光粉与玻璃粉(若温度要求低,可以使用低温玻璃粉)在一定的惰性气氛保护下融化混合再成型。
散射反射基底 32 包括层叠设置的散射反射层 321 和基板 322 。散射反射层 321 位于基板 322 和波长转换层 31 之间,且靠近波长转换层 31 的表面为第三表面 321a 。
散射反射层 321 包括散射材料或者散射结构,用于将穿透波长转换层 31 的第一光和波长转换层 31 从第二表面 31b出射的受激光全部散射并将散射后的光全部从第三表面 321a 出射,使得从第三表面 321a 出射的第一光的分布近似朗伯分布。为此,本实施例中的散射反射层 321 的厚度需要足够大,以使得在不考虑散射材料对光轻微的吸收作用所造成的损耗的情况下,从波长转换层 31 的第二表面 31b 出射的光经散射反射层 321 的散射反射又全部回到波长转换层 31 ,并最终都从波长转换层 31 的第一表面 31a 出射。而最终从波长转换层 31 的第一表面 31a 出射的第一光和受激光的合光由于该两种光的角分布匹配而合光均匀。
为了固定散射反射层 321 ,散射反射基底 32 还设置了基板 322 以支撑散射反射层 321 。但是在散射反射层自身刚性足够时 ( 例如通过将散射材料掺杂在透明玻璃中形成的 ) ,基板 322 也是可以省略的。本实施例中,还可以在基底 322 上镀有一层反射膜,以保证经散射反射层 321 散射的光全部从第二表面 321a 出射。
值得指出的是,上述层叠设置的波长转换层 31 和散射反射基底 32 之间是紧密接触的,以增强波长转换层 31 和散射反射基底 32 之间的结合力。另外,二者紧密接触可以减小光出射面与散射反射基底 32 之间的距离,减小光在波长转换层 31 中的扩散程度。类似地,对于散射反射基底 32 中的散射反射层 321 和基板 322 之间的关系也是如此。
当然,在波长转换层 31 足够厚以及自身刚性足够的情况下,散射反射基底 32 也是可以省略的。这样,至少部分第一光经波长转换层 31 散射反射后从第一表面 31a 出射,和从第一表面 31a 出射的至少部分受激光或者受激光与未被吸收的激发光的至少部分混合光合为一束光出射。这样会损失部分光,但在不考虑光损失的场合下也是可以采用的。
由于波长转换装置 3 出射的光呈朗伯分布,因此波长转换装置 3 的出射光路上优选还设有一收集透镜 33 ,用于将波长转换装置 3 的出射光收集至导光装置 4 ,以提高光利用率。
波长转换装置 3 出射的受激光和第一光的合光经收集后入射至导光装置 4 ,其中入射于第二区域的合光透射第一滤光片 41 并从第二光通道出射,而入射于第一区域的合光被第一反射元件 42 反射而损失掉,由于第一区域的面积比第二区域的小很多,因此这部分损失可以忽略不计。若波长转换装置 3 出射的光中还包含有未被吸收的激发光,由于第一滤光片 41 反射激发光,因此这部分激发光被反射而损失掉。因此,波长转换装置 3 优选包含足够量的波长转换材料,以全部吸收激发光,避免造成这部分光的损失。
由于第一补充激光光源 2 用于出射激光,激光呈高斯分布,而受激光呈朗伯分布,因此背景技术中的受激光和作为补充光的第一光直接合光产生的合光并不均匀。本实施例中,穿过波长转换层 31 的第一光经散射反射层散射反射后接近朗伯分布,这样,从波长转换层 31 的第一表面 31a 出射的受激光和第一光由于角分布匹配而混合均匀。且导光装置 4 利用光学扩展量的区别来区分入射于波长转换装置 3 的第一光和从波长转换装置 3 出射的第一光的光路,同时该导光装置 4 还利用波长范围的区别来区分激发光和受激光的光路,使得发光装置的结构简洁。
本实施例中,散射反射层 321 优选包括白色多孔陶瓷或白色散射材料,其中该白色散射材料为盐类或氧化物类,例如硫酸钡粉末、氧化铝粉末或者氧化硅粉末等,这些材料基本上不会对光进行吸收,并且白色散射材料的性质稳定,不会在高温下氧化。
本实施例中,第一反射元件 42 还可以是滤光片,用于反射第一光并透射受激光。这样,波长转换装置 3 出射的合光在入射导光装置 4 的第一区域时,只有该合光中的第一光被反射而损失掉,而合光中的受激光透射该第一反射元件 42 并从第二光通道出射。那么,该第一反射元件 42 和第一滤光片 41 也可以合为同一滤光片,其中该滤光片分区镀膜。
本实施例中,激发光源 1 所发光和第一补充激光光源 2 所发光也可以不是图 2 所示中的几何合光,而是先经过第二滤光片(图未示)或者偏振片合光后再入射至导光装置 4 上。其中需注意的是,第一光入射于第二滤光片或者偏振片上的区域需和导光装置 4 的第一区域相对应,以使得经第二滤光片或者偏振片透射或者反射的第一光入射至导光装置 4 上时,能够全部入射于第一区域上。在该实施例中,由于激发光和第一光为波长合光或偏振合光,在第二滤光片或者偏振片出射的合光中也有激发光入射于导光装置 4 的第一区域上的情况中,第一反射元件 42 还需同时反射激发光。这样,能够提高入射于波长转换装置 3 上的激发光的光功率密度。
本实施例中,导光装置 4 的第一区域和第二区域的关系也可以不是后者环绕前者,而是采用其他位置关系,只要使得第一补充激光光源 2 的排布位置能够和导光装置 4 中的第一区域的排布位置对应,使得第一光入射于第一区域上即可。当然,第一区域优选位于导光装置 4 的中心处,这样,从导光装置 4 出射的第一光可以经过收集透镜 33 的中心至波长转换装置 3 上,效率更高些。
本实施例中,波长转换装置 3 还可以包括驱动装置 34 ,驱动装置 34 用于驱动波长转换层 31 运动,以使激发光在该波长转换层 31 上形成的光斑沿预定路径作用于该波长转换层 31 ,以避免激发光长时间作用于波长转换层 31 的同一位置导致的该波长转换层 31 温度升高的问题 。具体地,本实施例中, 驱动装置 34 用于驱动波长转换层 31 转动,以使激发光在该波长转换层 31 上形成的光斑沿预定的圆形路径作用于该波长转换层 31 。优选地,波长转换装置 230 呈圆盘状,波长转换层 231 呈与该圆盘同心的环状,驱动装置 34 为呈圆柱形的马达,并且驱动装置 34 与波长转换层 31 同轴固定。在本发明其它实施方式中,驱动装置 34 也可以驱动波长转换层 31 以其它方式运动,例如水平往复运动等。在波长转换层 31 的波长转换材料可以耐受较高温度的情况下,波长转换装置 3 也可以不设置驱动装置。
请参阅图 3 ,图 3 是本发明的发光装置的又一个实施例的结构示意图。发光装置包括激发光源 1 、第一补充激光光源 2 、波长转换装置 3 和导光装置 4 。
本实施例与图 2 所示的实施例的区别在于:
导光装置 4 包括第一滤光片 41 ,该第一滤光片 41 包括第一位置和第二位置,其中第一位置上设为通孔 41a 。第一滤光片 41 用于透射激发光并反射受激光和第一光。在本实施中,第一滤光片的第一位置构成导光装置 4 的第一区域,第一滤光片的第二位置构成导光装置 4 的第二区域。激发光源 1 发出的激发光和第一补充激光光源 2 发出的第一光从第一光通道入射至导光装置 4 ,其中第一光全部入射至第一区域(也即通孔 41a )并透射至波长转换装置 3 ,而激发光经第一滤光片 41 透射至波长转换装置 3 。
波长转换装置 3 出射的受激光和第一光入射至导光装置 4 ,其中入射于第二区域的光被反射至第二光通道出射,而入射于第一区域(也即通孔 41a )上的光则透射而损失掉。
实施例二
请参阅图 4 ,图 4 是本发明的发光装置的又一实施例的结构示意图。发光装置包括激发光源 1 、第一补充激光光源 2 、波长转换装置 3 和导光装置 4 。
本实施例与图 2 所示实施例的区别在于:
发光装置还包括第二补充激光光源 5 和散射装置 6 ,该散射装置 6 包括散射层 61 ,用于对第二补充激光光源 5 产生的第二光进行散射。导光装置 4 中的第一滤光片 41 还用于反射第二光。经散射后的第二光入射于导光装置 4 中第一滤光片 41 背向受激光入射的一侧,并被反射至第二光通道,和经导光装置 4 透射的受激光以及第一光合为一束光出射。
具体举例来说,第二补充激光光源 5 可以用于产生蓝光,以和波长转换装置 3 出射的黄光合为一束白光出射。因此,本实施例能够解决图 2 所示实施例中激发光不能和受激光一起从第二光通道合光出射的缺点。优选地,第二光为波长位于范围 460nm 至 480nm 内的蓝光,以使得投影显示时显示的蓝色更加符合 REC709 标准。
由于经散射装置 6 散射后的第二光的光学扩展量变大,散射装置 6 的出射光路上优选还设有一收集透镜 7 ,用于将散射装置 6 出射的第二光收集至导光装置 4 的第一滤光片 41 上。
本实施例中, 散射装置 6 还可以包括驱动装置 62 ,驱动装置 62 用于驱动散射层 61 运动,以使第二光在该散射装置 6 上形成的光斑沿预定路径作用于该散射装置 6 ,避免热量集中在同一区域。另外, 本实施例中,由于驱动装置 62 的存在,散射层 61 发生转动,因此激光入射到散射层 61 的光斑的位置是随时间变化的,因此发光装置所投影的区域的亮点的位置是不断变化,这个变化速度足够快的时候,人眼就不能察觉亮点的存在,从而相对于静止的散射装置具有更好的消除散斑的效果。
容易理解的是,图 3 所示的发光装置中也能添加第二补充激光光源和散射装置。相对应地,图 3 所示发光装置中带有通孔的滤光片还用于透射第二光。经散射装置散射后的第二光入射至该滤光片背向受激光入射的一侧,并经通孔透射至第二光通道,和经该滤光片反射的受激光以及第一光合为一束光出射。
请参阅图 5 ,图 5 是本发明的发光装置的又一实施例的结构示意图。发光装置包括激发光源 1 、第一补充激光光源 2 、波长转换装置 3 、导光装置 4 、第二补充激光光源 5 和散射装置 6 。
本实施例与图 4 所示实施例的区别在于:
导光装置 4 中的第一反射元件 42 为滤光片,用于反射第一光并透射第二光。第二补充激光光源 5 产生的第二光和第一补充激光光源 2 产生的第一光一起从第一光通道入射至第一反射元件 42 上,其中第一光被第一反射元件 42 反射至波长转换装置 3 ,第二光经第一反射元件 42 透射至散射装置 6 上。
散射装置 6 包括反射衬底 63 和设置在该反射衬底 63 上的散射层 61 。散射层 61 包括相对的第一表面 61a 和第二表面 61b ,其中第二表面 61b 与反射衬底 63 相接触,第一表面 61a 用于接收经导光装置 4 透射的第二光。第二光经散射层 61 散射,其中从散射层 61 的第二表面 61b 出射的第二光经反射衬底 63 反射后再次进入散射层 61 并和直接从第一表面 61a 出射的第二光一起出射,并出射至导光装置 4 背向受激光入射的一侧,其中入射于导光装置 4 的第二区域的第二光被反射至第二光通道出射,入射于第一区域的第二光透射而损失掉。由于该损失掉的第二光较少,可以忽略不计。当然,在散射层 61 足够厚的情况下,反射衬底 63 也是可以省略的。
图 4 所示发光装置采用的透射式散射装置中, 由于出射光沿着入射光的方向传播,而散射装置中总是存在散射很小的局部区域甚至存在针孔 (pin hole) 使得入射的激光可以经过很少的散射甚至没有散射(直接穿过针孔)而形成出射光,这部分光仍然具有很强的方向性,不服从朗伯分布。而如果增大散射装置的厚度或密度来完全杜绝针孔的出现,则会大幅度的降低入射光的透射率从而降低散射装置的效率。
而本实施例中采用的反射式的散射装置的出射光与入射光方向相反,入射光必须要经过散射反射后改变方向才能够形成出射光,而且增大反射装置的密度或厚度并不降低效率,因此对激光光束的散射效果更好,更接近朗伯分布。
本实施例中,第二反射元件 42 也可以是透射第一光并反射第二光,只要对光路和导光装置中的滤光曲线做出相应调整即可。本领域技术人员根据以上实施例中的光路描述可清楚知道如何调整,在此不再赘述。
本实施例中,第二反射元件 42 也可以是偏振片,且从第一光通道入射于该偏振片的第一光和第二光的偏振态不同,以使得该偏振片能够将该两束光的光路区分开。
本实施例中,在第一补光激光光源 2 和第二补光激光光源 5 所需要的量均比较少的情况下,可直接将该两个光源在同一平面上并排形成阵列,并与导光装置 4 的第一区域相对应。若该两个补光激光光源需要的量较多时,可先通过波长合光或者偏振合光将第一光和第二光合光后再和激发光源 1 几何合光、波长合光或者偏振合光。
请参阅图 6 ,图 6 是本发明的发光装置的又一实施例的结构示意图。 发光装置包括激发光源 1 、第一补充激光光源 2 、波长转换装置 3 、导光装置 4 和第二补充激光光源 5 。
本实施例与图 5 所示实施例的区别在于:
在本实施例中,波长转换装置 3 和散射装置 6 通过均位于同一圆形基底(图未示)上以相互固定,且均呈与该圆形基底同心的环状,其中该两个环状的直径不同,使得波长转换装置 3 和散射装置 6 位于该圆形基底的不同环状区域上。发光装置还包括驱动装置 9 ,与该圆形基底同轴固定,用于驱动该圆形基底转动。发光装置还包括第二反射装置,该第二反射装置包括第二反射元件 8 ,用于将来自导光装置 4 的第二光反射至散射装置 6 。该第二反射元件 8 可以为反射镜或者用于反射第二光的滤光片。
本实施例中,由于散射装置和波长转换装置由同一驱动装置驱动,相比图 5 所示的发光装置可以少用一个驱动装置,使得成本减少且结构更加简洁。
在实际运用中,波长转换装置 3 和散射装置 6 也可以呈其他形状,驱动装置也可以驱动该两者以其他方式运动,只要使得第一光和第二光分别在该波长转换装置和散射装置上形成的光斑按预定路径运动即可。例如,波长转换装置 3 和散射装置 6 也可以呈相邻的两个带状,该驱动装置用于驱动该两者水平往复运动。
本实施例中,由于波长转换装置 3 包括层叠设置的波长转换层和散射反射层,因此,该散射反射层可以分为相邻的两个环状区域,而波长转换层叠设在该散射反射层的其中一个环状区域上,另一环状区域则充当散射装置。进一步地,在该散射反射层自身刚性足够时,本实施例中的圆形基底也是可以省略的。
本实施例中,第二反射元件 8 上还可以设有一个通孔(图未示),相对应地,第二补充激光光源 5 所发光可以不是从导光装置 4 中的第一滤光片 41 透射至第二反射元件 8 ,而是从第二反射元件 8 背向散射装置 6 的一侧入射至第二反射元件 8 的通孔上并透射至散射装置 6 。由于第二补充激光光源 5 出射的第二光呈高斯分布,光学扩展量较小,而经散射反射后的第二光呈近似朗伯分布,光学扩展量较大,因此可通过光学扩展量的差异将第二补充激光光源 5 所发光和经散射装置 6 散射反射的光的光路区分开来。虽然有部分经散射装置 6 散射反射的第二光会从第二反射元件 8 上的通孔透射而损失掉,但该通孔的面积相比第二反射元件 8 的面积小很多,因此该部分损失可以忽略掉。
或者,第二反射装置还可以包括第三反射元件(图未示),位于第二反射元件 8 和散射装置 6 之间的光路上。该第三反射元件可以为小反射镜或者反射第二光的小滤光片,第二补充激光光源 5 所发光从第三反射元件面向散射装置 6 的一侧入射并被反射至散射装置 6 上。虽然有部分经散射装置 6 散射反射的第二光被该第三反射元件反射而不能至第二反射元件 8 以致损失掉,但该小反射镜的面积相比经散射装置 6 散射反射的第二光的横截面积小很多,因此该部分损失可以忽略掉。
或者,散射装置 6 设置为透射式的,相对应地,第二补充激光光源 5 所发光从散射装置 6 背向第二反射元件 8 的一侧入射至散射装置 6 上。经散射装置 6 散射的至少部分第二光从该散射装置 6 面向第二反射元件 8 的一侧出射至第二反射元件 8 上。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
本发明实施例还提供一种 投影***,包括发光装置,该发光装置可以具有上述各实施例中的结构与功能。该投影***可以采用各种投影技术,例如液晶显示器( LCD , Liquid Crystal Display )投影技术、数码光路处理器( DLP , Digital Light Processor )投影技术。此外,上述发光装置也可以应用于照明***,例如舞台灯照明。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (11)

  1. 一种发光装置,其特征在于,包括:
    激发光源,用于产生激发光;
    第一补光激光光源,用于产生第一光;
    波长转换装置,包括用于吸收所述激发光以产生受激光且不吸收第一光的波长转换层;该波长转换层的一侧接收所述激发光和第一光,并于同一侧出射至少部分第一光,以及至少部分受激光或者受激光和未被吸收的激发光的至少部分混合光;
    导光装置,包括第一区域和第二区域,其中第一区域小于第二区域,来自所述激光光源的第一光和来自激发光源的激发光从第一光通道分别入射至该导光装置的第一区域和至少第二区域,并分别被第一区域和至少第二区域引导至所述波长转换装置;该导光装置的第二区域还用于将来自所述波长转换装置的受激光和被反射的第一光引导至第二光通道出射。
  2. 根据权利要求 1 所述的发光装置,其特征在于,所述导光装置包括第一滤光片与第一反射元件,第一滤光片包括第一位置与第二位置,第一反射元件层叠固定在第一滤光片的第一位置上;
    第一滤光片的第一位置与第一反射元件构成所述导光装置的第一区域,用于反射从第一光通道入射的第一光至所述波长转换装置;
    第一滤光片的第二位置构成所述导光装置的第二区域,用于反射从第一光通道入射的激发光至所述波长转换装置,并透射来自所述波长转换装置的受激光和第一光至第二光通道出射。
  3. 根据权利要求 1 所述的发光装置,其特征在于,所述导光装置包括第一滤光片,该第一滤光片包括第一位置与第二位置,其中第一位置上设为通孔;
    第一滤光片的第一位置构成所述导光装置的第一区域,用于透射从第一光通道入射的第一光至所述波长转换装置;
    第一滤光片的第二位置构成所述导光装置的第二区域,用于透射从第一光通道入射的激发光至所述波长转换装置,并反射来自所述波长转换装置的受激光和第一光至第二光通道出射。
  4. 根据权利要求 1 至 3 中任一项所述的发光装置,其特征在于,所述波长转换层用于产生黄色受激光,第一光为红色激光。
  5. 根据权利要求 1 至 3 中任一项所述的发光装置,其特征在于,所述发光装置还包括用于产生第二光的第二补充激光光源和散射装置,该散射装置用于对来自第二补充激光光源的第二光进行散射;
    所述导光装置背向所述受激光入射的一侧用于接收经所述散射装置散射后的第二光并将其引导至第二光通道出射。
  6. 根据权利要求 5 所述的发光装置,其特征在于,所述散射装置包括相对的第一表面和第二表面;
    来自第二补充激光光源的第二光和来自第一补充激光光源的第一光从第一光通道一起入射至所述导光装置的第一区域上,该导光装置的第一区域还用于引导第二光至所述散射装置的第一表面,该第二光经该散射装置散射后从该散射装置的第一表面出射至所述导光装置背向所述受激光入射的一侧。
  7. 根据权利要求 5 所述的发光装置,其特征在于,所述散射装置和所述波长转换装置相互固定;所述发光装置还包括驱动装置,用于对该波长转换装置和散射装置进行驱动,使得第一光和第二光分别在该波长转换装置和散射装置上形成的光斑按预定路径运动;
    所述导光装置还包括第二反射装置,用于将经散射反射后的至少部分第二光引导至所述导光装置背向所述受激光入射的一侧。
  8. 根据权利要求 7 所述的发光装置,其特征在于,第二反射装置还用于将来自第二补充激光光源的第二光引导至所述散射装置。
  9. 根据权利要求 8 所述的发光装置,其特征在于,来自第二补充激光光源的第二光从第一光通道入射至所述导光装置,并被该导光装置引导至第二反射装置。
  10. 根据权利要求 1 至 3 中任一项所述的发光装置,其特征在于,所述波长转换装置还包括与所述波长转换层层叠设置的散射反射层,其中该波长转换层背向该散射反射层的一侧用于接收来自所述激发光和第一光。
  11. 一种投影***,包括如权利要求 1 至 10 任一项所述的发光装置。
PCT/CN2014/072779 2013-03-06 2014-03-03 发光装置及相关投影*** WO2014135040A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14760901.0A EP2966502B1 (en) 2013-03-06 2014-03-03 Light emitting device and projection system including the same
JP2015559416A JP6096937B2 (ja) 2013-03-06 2014-03-03 発光装置及び関連する投影システム
KR1020157023553A KR101709647B1 (ko) 2013-03-06 2014-03-03 발광 장치 및 관련 프로젝션 시스템
US14/773,303 US9778553B2 (en) 2013-03-06 2014-03-03 Light-emitting apparatus and a related projection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310071414.9A CN104020633B (zh) 2013-02-28 2013-03-06 发光装置及相关投影***
CN201310071414.9 2013-03-06

Publications (1)

Publication Number Publication Date
WO2014135040A1 true WO2014135040A1 (zh) 2014-09-12

Family

ID=51490689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072779 WO2014135040A1 (zh) 2013-03-06 2014-03-03 发光装置及相关投影***

Country Status (7)

Country Link
US (1) US9778553B2 (zh)
EP (1) EP2966502B1 (zh)
JP (1) JP6096937B2 (zh)
KR (1) KR101709647B1 (zh)
CN (1) CN104020633B (zh)
TW (1) TWI477884B (zh)
WO (1) WO2014135040A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016224304A (ja) * 2015-06-01 2016-12-28 Necディスプレイソリューションズ株式会社 光源装置、投写型表示装置及び光生成方法
JP2017009690A (ja) * 2015-06-18 2017-01-12 セイコーエプソン株式会社 光源装置およびプロジェクター
JP2017040778A (ja) * 2015-08-19 2017-02-23 セイコーエプソン株式会社 波長変換素子、照明装置およびプロジェクター
JP2018514916A (ja) * 2015-04-29 2018-06-07 深▲せん▼市光峰光電技術有限公司Appotronics Corporation Limited 光案内手段及び光源装置
RU2721996C2 (ru) * 2015-04-01 2020-05-25 Филипс Лайтинг Холдинг Б.В. Светоизлучающее устройство высокой яркости
US11920752B2 (en) 2019-12-25 2024-03-05 Sony Group Corporation Light source device, headlight, display apparatus, and illumination apparatus

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9648291B2 (en) * 2013-04-22 2017-05-09 Hitachi Maxell, Ltd. Light source device and projection type image display device
JP6503710B2 (ja) * 2013-12-27 2019-04-24 日本電気硝子株式会社 プロジェクター用蛍光ホイール、その製造方法及びプロジェクター用発光デバイス
DE102014202090B4 (de) * 2014-02-05 2024-02-22 Coretronic Corporation Beleuchtungsvorrichtung mit einer Wellenlängenkonversionsanordnung
CN108073021B (zh) 2016-11-10 2020-08-18 中强光电股份有限公司 光源模组以及投影装置
US10962871B2 (en) 2014-05-02 2021-03-30 Coretronic Corporation Light source module and projection apparatus
CN105319819B (zh) * 2014-07-28 2019-09-20 深圳光峰科技股份有限公司 发光装置及投影***
DE102014224934A1 (de) * 2014-12-04 2016-06-09 Osram Gmbh Lichtmodul für eine Projektions- oder Beleuchtungsanordnung
CN106154713B (zh) * 2015-04-09 2018-05-15 深圳市光峰光电技术有限公司 光源***和投影***
CN106154712B (zh) * 2015-04-09 2020-07-03 深圳光峰科技股份有限公司 发光装置和投影显示设备
CN106154715B (zh) * 2015-04-09 2018-12-11 深圳市光峰光电技术有限公司 拼接显示装置和拼接显示控制方法
JPWO2016170966A1 (ja) * 2015-04-20 2018-03-08 ソニー株式会社 光源装置、投射型表示装置および表示システム
CN106371272B (zh) * 2015-07-20 2019-04-23 深圳光峰科技股份有限公司 合光的控制***及投影机
CN106383428B (zh) * 2015-08-06 2019-12-20 深圳光峰科技股份有限公司 光源***和投影***
TWI605295B (zh) 2015-12-02 2017-11-11 中強光電股份有限公司 投影機及波長轉換裝置
US10544911B2 (en) * 2015-12-15 2020-01-28 Signify Holding B.V. Multiple pumping luminescent rod configuration for obtaining ultra-high brightness
CN107272314B (zh) * 2016-04-06 2022-01-18 上海蓝湖照明科技有限公司 发光装置及相关投影***与照明***
CN107561836B (zh) * 2016-07-01 2019-10-25 深圳光峰科技股份有限公司 一种光源和投影***
CN106385739B (zh) * 2016-10-09 2018-08-21 超视界激光科技(苏州)有限公司 激光光源模组和光源***
JP6946651B2 (ja) * 2017-02-01 2021-10-06 セイコーエプソン株式会社 光源装置及びプロジェクター
CN108535943B (zh) * 2017-03-03 2021-07-06 深圳光峰科技股份有限公司 一种光源装置及其投影显示***
CN110928124A (zh) 2017-03-14 2020-03-27 深圳光峰科技股份有限公司 光源装置及投影***
CN108572497B (zh) * 2017-03-14 2019-12-17 深圳光峰科技股份有限公司 光源装置及投影***
JP6977285B2 (ja) * 2017-03-28 2021-12-08 セイコーエプソン株式会社 波長変換素子、光源装置およびプロジェクター
CN108736304A (zh) * 2017-04-14 2018-11-02 广州市新晶瓷材料科技有限公司 小角度激光光源获得装置及其实现方法
CN108736298A (zh) * 2017-04-14 2018-11-02 广州市新晶瓷材料科技有限公司 激光激发设备及其激发方法
DE102017212411A1 (de) * 2017-07-19 2019-01-24 Osram Gmbh Lichtmodul, scheinwerfer und verfahren zur bereitstellung von polychromatischem licht
US10261401B2 (en) * 2017-08-01 2019-04-16 Panasonic Intellectual Property Management Co. Ltd. Light source device and projection display apparatus
CN109411486B (zh) * 2017-08-16 2020-12-08 胜丽国际股份有限公司 感测器封装结构
CN109521633A (zh) * 2017-09-19 2019-03-26 中强光电股份有限公司 照明***与投影装置
JP7271516B2 (ja) 2017-09-20 2023-05-11 マテリオン プレシジョン オプティクス (シャンハイ) リミテッド 無機結合剤を伴う蛍光体ホイール
CN109557754B (zh) * 2017-09-26 2024-05-28 深圳光峰科技股份有限公司 光源***及投影设备
CN109654385A (zh) * 2017-10-10 2019-04-19 深圳光峰科技股份有限公司 一种发光装置
CN118242571A (zh) * 2017-10-18 2024-06-25 深圳市绎立锐光科技开发有限公司 光源***及照明设备
CN109696791B (zh) * 2017-10-23 2021-08-03 深圳光峰科技股份有限公司 色轮、光源***及显示设备
US20200292743A1 (en) * 2017-11-02 2020-09-17 Bambu Vault Llc Waveguide energy conversion illumination system
JP7057107B2 (ja) * 2017-11-28 2022-04-19 キヤノン株式会社 光源装置および画像投射装置
WO2019130520A1 (ja) * 2017-12-27 2019-07-04 マクセル株式会社 プロジェクタ
CN109991798B (zh) * 2017-12-29 2022-01-25 中强光电股份有限公司 投影装置以及光源装置
CN109991803B (zh) * 2018-01-03 2022-02-22 深圳光峰科技股份有限公司 色轮组件、光源装置及投影***
CN109991800B (zh) * 2018-01-03 2022-11-11 深圳光峰科技股份有限公司 光源装置及投影***
JP7234943B2 (ja) 2018-01-19 2023-03-08 ソニーグループ株式会社 光源装置および投射型表示装置
CN108761981B (zh) * 2018-04-28 2020-10-20 苏州佳世达光电有限公司 投影机
CN110471244A (zh) 2018-05-10 2019-11-19 中强光电股份有限公司 照明***及投影装置
CN110888290B (zh) * 2018-09-07 2022-03-04 深圳光峰科技股份有限公司 光源***及投影***
CN111077720B (zh) * 2018-10-18 2022-05-13 深圳光峰科技股份有限公司 光源***及显示设备
CN111089231B (zh) * 2018-10-23 2022-08-19 深圳市绎立锐光科技开发有限公司 光源装置
CN111308841A (zh) 2018-12-11 2020-06-19 深圳光峰科技股份有限公司 波长转换装置及光源***
CN111381426B (zh) * 2018-12-29 2021-12-31 深圳光峰科技股份有限公司 光源***及投影设备
CN111381425B (zh) * 2018-12-29 2022-04-15 深圳光峰科技股份有限公司 光源***及投影装置
CN110083003B (zh) * 2019-04-22 2021-10-22 苏州佳世达光电有限公司 投影机
CN112015037B (zh) * 2019-05-30 2022-06-03 无锡视美乐激光显示科技有限公司 激光光源
JP7341740B2 (ja) * 2019-06-12 2023-09-11 キヤノン株式会社 光源装置および画像投射装置
CN110568706A (zh) * 2019-08-22 2019-12-13 苏州佳世达光电有限公司 投影机
WO2021084449A1 (en) * 2019-11-01 2021-05-06 Ricoh Company, Ltd. Light-source device, image projection apparatus, and light-source optical system
CN113495412A (zh) * 2020-03-19 2021-10-12 深圳光峰科技股份有限公司 光源***和投影设备
CN112283609B (zh) * 2020-09-30 2023-08-18 赫尔曼·友瀚·范·贝赫库姆 一种光源设备
CN114563903B (zh) 2020-11-27 2023-10-24 中强光电股份有限公司 投影装置以及照明***
CN113238442B (zh) * 2021-04-21 2022-04-26 无锡视美乐激光显示科技有限公司 一种光源装置及投影***
TWI777575B (zh) * 2021-05-25 2022-09-11 台達電子工業股份有限公司 雷射光源共軸設備
CN116794919B (zh) * 2023-08-28 2023-12-12 宜宾市极米光电有限公司 一种光源***及投影设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5900640A (en) * 1996-06-18 1999-05-04 Fuji Photo Film Co., Ltd. Image reading apparatus
CN101131834A (zh) * 2006-08-24 2008-02-27 船井电机株式会社 光学拾取装置
CN101140407A (zh) * 2006-09-06 2008-03-12 冲电气工业株式会社 投影仪、终端以及图像通信***
CN202615106U (zh) * 2012-01-14 2012-12-19 深圳市光峰光电技术有限公司 发光装置及投影***
CN102937773A (zh) * 2011-12-02 2013-02-20 深圳市光峰光电技术有限公司 光源装置及使用该光源装置的投影装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5456688B2 (ja) * 2007-11-30 2014-04-02 ポイボス ビジョン オプト−エレクトロニクス テクノロジー リミテッド 投影システムに用いる光源装置並びに投影表示装置
JP5424367B2 (ja) * 2010-01-29 2014-02-26 Necディスプレイソリューションズ株式会社 照明光学系とこれを用いたプロジェクタ
DE102010001942B4 (de) * 2010-02-15 2012-03-29 Osram Ag Lichtquelleneinheit und Projektor mit einer derartigen Lichtquelleneinheit
CN102213384A (zh) * 2010-04-01 2011-10-12 中强光电股份有限公司 光源模组与投影装置
JP2012014972A (ja) * 2010-07-01 2012-01-19 Seiko Epson Corp 光源装置及びプロジェクター
JP5592953B2 (ja) * 2010-09-29 2014-09-17 日立コンシューマエレクトロニクス株式会社 投射型映像表示装置
DE102010063756A1 (de) * 2010-12-21 2012-06-21 Osram Ag Herstellung von Leuchtstoffschichten unter Verwendung von Alkalisilikaten
TWI432780B (zh) * 2011-01-19 2014-04-01 台達電子工業股份有限公司 光源系統
JP5979416B2 (ja) * 2011-04-20 2016-08-24 パナソニックIpマネジメント株式会社 光源装置および画像表示装置
JP5261543B2 (ja) * 2011-06-30 2013-08-14 シャープ株式会社 レーザ光利用装置および車両用前照灯
CN102411205B (zh) * 2011-08-29 2015-04-08 深圳市绎立锐光科技开发有限公司 光源、合光装置及带该光源的投影装置
TWM426048U (en) * 2011-10-07 2012-04-01 Benq Corp Light source module and projector using the same
TWM423266U (en) * 2011-10-13 2012-02-21 Young Optics Inc Light source module and projection apparatus
US9816683B2 (en) * 2011-10-20 2017-11-14 Appotronics Corporation Limited Light sources system and projection device using the same
CN104991406B (zh) * 2011-11-10 2017-01-25 深圳市光峰光电技术有限公司 一种光源***、照明装置及投影装置
DE102012201790A1 (de) * 2012-02-07 2013-08-08 Osram Gmbh Beleuchtungsvorrichtung mit einer pumplasermatrix und verfahren zum betreiben dieser beleuchtungsvorrichtung
CN102662301B (zh) * 2012-03-11 2015-05-27 深圳市光峰光电技术有限公司 光源***及相关投影***
CN102789121A (zh) * 2012-04-10 2012-11-21 海信集团有限公司 一种投影显示光源
JP6311219B2 (ja) * 2012-07-26 2018-04-18 株式会社リコー 照明光形成装置、照明光源装置および画像表示装置
JP5974867B2 (ja) * 2012-11-30 2016-08-23 旭硝子株式会社 照明光学系、投影装置、偏向素子、偏光非解消拡散素子および波長選択発散状態変換素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5900640A (en) * 1996-06-18 1999-05-04 Fuji Photo Film Co., Ltd. Image reading apparatus
CN101131834A (zh) * 2006-08-24 2008-02-27 船井电机株式会社 光学拾取装置
CN101140407A (zh) * 2006-09-06 2008-03-12 冲电气工业株式会社 投影仪、终端以及图像通信***
CN102937773A (zh) * 2011-12-02 2013-02-20 深圳市光峰光电技术有限公司 光源装置及使用该光源装置的投影装置
CN202615106U (zh) * 2012-01-14 2012-12-19 深圳市光峰光电技术有限公司 发光装置及投影***

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2721996C2 (ru) * 2015-04-01 2020-05-25 Филипс Лайтинг Холдинг Б.В. Светоизлучающее устройство высокой яркости
JP2018514916A (ja) * 2015-04-29 2018-06-07 深▲せん▼市光峰光電技術有限公司Appotronics Corporation Limited 光案内手段及び光源装置
US10830416B2 (en) 2015-04-29 2020-11-10 Appotronics Corporation Limited Light guide component and light source device
JP2016224304A (ja) * 2015-06-01 2016-12-28 Necディスプレイソリューションズ株式会社 光源装置、投写型表示装置及び光生成方法
JP2017009690A (ja) * 2015-06-18 2017-01-12 セイコーエプソン株式会社 光源装置およびプロジェクター
JP2017040778A (ja) * 2015-08-19 2017-02-23 セイコーエプソン株式会社 波長変換素子、照明装置およびプロジェクター
US11920752B2 (en) 2019-12-25 2024-03-05 Sony Group Corporation Light source device, headlight, display apparatus, and illumination apparatus

Also Published As

Publication number Publication date
EP2966502A4 (en) 2016-12-07
CN104020633B (zh) 2015-12-09
EP2966502B1 (en) 2020-07-08
JP2016510160A (ja) 2016-04-04
KR101709647B1 (ko) 2017-02-24
US9778553B2 (en) 2017-10-03
JP6096937B2 (ja) 2017-03-15
CN104020633A (zh) 2014-09-03
KR20150115848A (ko) 2015-10-14
TWI477884B (zh) 2015-03-21
US20160026076A1 (en) 2016-01-28
EP2966502A1 (en) 2016-01-13
TW201435470A (zh) 2014-09-16

Similar Documents

Publication Publication Date Title
WO2014135040A1 (zh) 发光装置及相关投影***
WO2014135041A1 (zh) 一种波长转换装置、发光装置及投影***
CN104020632B (zh) 发光装置及相关投影***
WO2014135039A1 (zh) 发光装置及投影***
USRE48753E1 (en) Projection image display device including optical system
WO2017121233A1 (zh) 一种波长转换装置、光源***以及投影装置
WO2013091384A1 (zh) 光源***及投影装置
WO2014121707A1 (zh) 一种结构紧凑的光源***
WO2018028240A1 (zh) 光源***及投影设备
WO2015149700A1 (zh) 一种光源***及投影***
WO2016197888A1 (zh) 投影***、光源***以及光源组件
WO2018107634A1 (zh) 光源***及投影装置
JP2011221504A (ja) 照明装置及びそれを用いた投写型画像表示装置
WO2018028277A1 (zh) 光源装置及投影***
WO2018233187A1 (zh) 背光模组及显示装置
WO2018010487A1 (zh) 光源及投影仪
TW202008065A (zh) 波長轉換模組、波長轉換模組的形成方法以及投影裝置
US11579519B2 (en) Light source device, illumination device, and projector
WO2018137313A1 (zh) 一种光源装置
CN109426050B (zh) 波长转换元件、光源装置和投影仪
WO2018196195A1 (zh) 光源***及显示设备
WO2018095019A1 (zh) 光源***、投影***及照明装置
WO2013097478A1 (zh) 半导体光源和发光装置
WO2021208668A1 (zh) 光源装置、光源装置的驱动方法以及投影仪
JP2020122833A (ja) 波長変換素子、照明装置およびプロジェクター

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14760901

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157023553

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2015559416

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14773303

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014760901

Country of ref document: EP