WO2014121707A1 - 一种结构紧凑的光源*** - Google Patents

一种结构紧凑的光源*** Download PDF

Info

Publication number
WO2014121707A1
WO2014121707A1 PCT/CN2014/071522 CN2014071522W WO2014121707A1 WO 2014121707 A1 WO2014121707 A1 WO 2014121707A1 CN 2014071522 W CN2014071522 W CN 2014071522W WO 2014121707 A1 WO2014121707 A1 WO 2014121707A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
mirror
excitation light
source system
collimating lens
Prior art date
Application number
PCT/CN2014/071522
Other languages
English (en)
French (fr)
Inventor
胡飞
杨毅
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Publication of WO2014121707A1 publication Critical patent/WO2014121707A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/76Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/12Combinations of only three kinds of elements
    • F21V13/14Combinations of only three kinds of elements the elements being filters or photoluminescent elements, reflectors and refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/503Cooling arrangements characterised by the adaptation for cooling of specific components of light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/008Combination of two or more successive refractors along an optical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam

Definitions

  • the present invention relates to the field of illumination and display technology, and more particularly to a compact light source system.
  • laser light source is being gradually applied to various fields such as illumination and projection.
  • the light source using the laser excitation phosphor technology has the advantages of small optical expansion, high brightness, long life, and the like, and has attracted widespread attention.
  • Figure 1 shows a prior art source system utilizing laser-excited phosphor technology.
  • the light source system includes an excitation source 110, a heat sink 120, a first mirror 130, a collimating lens 140, a collecting lens 150, a phosphor layer 160, and a second mirror 170.
  • the excitation source 110 The laser diode is soldered to the heat sink 120, which is used to dissipate heat.
  • the excitation light 180 generated by the excitation light source 110 is incident on the first mirror 130 first. It is reflected by it, and the reflected light is then transmitted through the collimator lens 140 and the collecting lens 150, and finally incident on the phosphor layer 160.
  • Phosphor layer 160 is coated on second mirror 170 On.
  • the excitation light is incident from the front surface of the phosphor layer 160 and is converted into a laser light emission of another wavelength range.
  • the function of the mirror 170 is to reflect the light output backwards back to the front surface.
  • the outgoing output light 190 includes a laser that is absorbed and converted by the phosphor layer and residual excitation light that is not absorbed by the phosphor layer, and the output light 190 passes through the lenses 150 and 160.
  • the collection and collimation are finally emitted from the periphery of the mirror 130.
  • the mirror 130 is in the output beam path, so it blocks some of the output light, but because of its small area, this part of the light can be ignored.
  • FIG 2 shows another light source system using laser excitation phosphor technology in the prior art.
  • the light source system includes an excitation light source 210, a heat sink 220, a first mirror 230, a collimating lens 240, a collecting lens 250, a phosphor layer 260, and a second mirror 270.
  • the excitation source 210 The laser diode is bonded to the heat sink 220, and the heat sink 220 is used to dissipate heat. It differs from the light source system shown in Figure 1 in that the small mirror 130 in Figure 1 is replaced with an opening.
  • the mirror 230 of the 231 at this time, the excitation light 280 emitted from the excitation light source 210 is incident on the phosphor layer 260 through the opening 231.
  • the front surface while the laser light exiting from the phosphor layer and the remaining excitation light that is not absorbed will combine the output light 290, collected and collimated by lenses 250 and 240, and finally mirrored 230 Reflected output.
  • the opening 231 leaks part of the output light, it is negligible because of its small area.
  • the final output light is the mixed light of the excitation light and the laser.
  • the spectroscopic device such as a small mirror in the light source system
  • a monolithic spectroscopic filter as shown in FIG.
  • the spectroscopic filter reflects the excitation light and transmits the laser light;
  • the spectroscopic filter transmits excitation light and reflects the laser light.
  • the excitation light emitted from the excitation light source must pass through the optical components such as the collecting lens and the collimating lens before being incident on the phosphor, resulting in the phosphor.
  • the optical path between the excitation source and the phosphor layer is too long, and the volume of the spectroscopic device placed must be considered, making the entire system bulky.
  • the excitation light power is large, it is also necessary to separately design heat dissipation of the excitation light source and the phosphor.
  • the problem to be solved by the present invention is to simplify the structure of the light source system of the laser-excited phosphor, thereby reducing the volume of the light source system; and optimizing the heat dissipation design of the excitation light source and the phosphor layer, the entire light source system is more compact.
  • an embodiment of the present invention provides a compact light source system, including:
  • a first excitation light source for emitting the first excitation light
  • a first mirror for reflecting the first excitation light emitted by the first excitation light source
  • a wavelength conversion layer for absorbing the first excitation light to emit the laser light comprising an opposite first surface and a second surface, wherein the first surface is configured to receive the first excitation light reflected by the first mirror, and the first An excitation light or a mixed light of the first excitation light and the laser light is emitted;
  • a second mirror located on the second surface of the wavelength conversion layer, for reflecting the laser light generated by the wavelength conversion layer
  • a collimating lens having a first surface facing the wavelength conversion layer for receiving the exiting light of the collecting lens and collimating it;
  • the first excitation light source and the wavelength conversion layer are located on the same side of the first surface of the collimating lens, the first mirror is fixed on the first surface of the collimating lens, and the outgoing light in the collecting lens is in the collimating lens Within the range of spots formed by a surface.
  • the first mirror of the present invention functions as an original spectroscopic device, but the volume occupied by the original spectroscopic device is omitted, and the excitation light source and the phosphor layer are disposed on the collimating lens. On the side, the distance between them is no longer limited by the collecting lens and the collimating lens, so that the volume of the entire light source system is greatly reduced.
  • FIG. 1 is a schematic structural view of a light source system of a laser-excited phosphor in the prior art
  • FIG. 2 is a schematic structural view of another light source system for laser-excited phosphor in the prior art
  • FIG. 3a is a schematic structural view of a first embodiment of a light source system according to the present invention.
  • FIG. 3b is another schematic structural view of the first embodiment of the light source system of the present invention.
  • FIG. 4a is a schematic structural view of a second embodiment of a light source system according to the present invention.
  • 4b is another schematic structural view of a second embodiment of the light source system of the present invention.
  • 4c is another schematic structural view of a second embodiment of the light source system of the present invention.
  • Figure 5 is a schematic structural view of a third embodiment of the light source system of the present invention.
  • FIG. 6a is a schematic structural view of a fourth embodiment of a light source system according to the present invention.
  • 6b is another schematic structural view of a fourth embodiment of the light source system of the present invention.
  • Fig. 3a is a schematic structural view of a first embodiment of a light source system of the present invention.
  • the light source system includes an excitation source 310
  • Collimating lens 340 There is a first surface 341 facing the phosphor layer 360.
  • the excitation light source 310 and the phosphor layer 360 are disposed on the same side of the first surface 341 of the collimating lens 340, and the first mirror 330 It is fixed on the first surface 341.
  • the collection lens 350 is located between the collimating lens 340 and the phosphor layer 360.
  • the excitation light source 310 is tilted and fixed to emit the excitation light 380.
  • the optical axis of the collimator lens 340 is tilted to ensure that the excitation light 380 emitted from the excitation light source 310 can be incident on the first mirror 330 and reflected to the phosphor layer 360.
  • the excitation source 310 is fixed (most commonly soldered) on the heat sink 320, and the heat sink 320 Used to dissipate heat.
  • the first mirror 330 is fixed to the first surface 341 of the collimating lens 340 for reflecting the excitation light 380 emitted from the excitation light source 310 to the phosphor layer 360. , so it should be in a suitable position: the position must be at the first surface of the collimating lens 340 from the exiting light of the collecting lens 350 341 Within the range of spots formed above.
  • the full-angle illumination emitted from the phosphor layer 360 can be irradiated to the first mirror 330, then there must be an optical path so that the first mirror is passed through.
  • the reflected excitation light of 330 can also be incident on the phosphor layer 360. Since the first mirror 330 is located in the light path of the output light, the phosphor layer 360
  • the output light (including the laser and the remaining excitation light not absorbed by the phosphor layer) is partially incident on the first mirror 330 Above, the portion of the light will be reflected and cannot be outputted.
  • the area of the first mirror 330 must be designed to be sufficiently small; at the same time, to ensure the first mirror 330
  • the excitation light 380 emitted from the excitation light source 310 can be reflected to the utmost extent, and its area cannot be too small. Therefore, the size of the first mirror 330 should be compromised, and a light source with a small amount of optical expansion is selected as the excitation light source.
  • the excitation source 310 is a laser diode
  • the first mirror 330 is sized to reflect exactly all of the excitation light emerging from the laser diode.
  • the first mirror is provided 330 is located at the edge of the spot range formed by the light emerging from the collection lens 350 on the first surface 341 of the collimating lens 340 such that the excitation light emitted by the excitation source 310 380 After being reflected by the first mirror 330, it is incident on the collecting lens 350 at an incident angle as large as possible, and finally incident on the phosphor layer 360 at an incident angle as large as possible.
  • the advantage of this layout is because of the layer from the phosphor
  • the intensity distribution of the light emitted by 360 in space will roughly exhibit the Lambertian cosine distribution: the intensity at the center normal is the strongest, and the greater the angle, the weaker the light intensity, fixing the first mirror 330 to the collecting lens 350.
  • the emitted light is on the first surface of the collimating lens 340 341
  • the edge of the spot range formed on the upper surface can minimize the light intensity blocked by the mirror and reduce the loss of output light, thereby improving the efficiency of the output light.
  • the collection lens 350 functions to collect from the phosphor layer 360 Output the light and reduce its divergence angle.
  • the collection lens 350 should be located in front of the phosphor layer 360 and in close proximity to the phosphor layer.
  • the collection lens 350 For the meniscus lens, the concave surface faces the phosphor layer 360, which has the advantage of: from the phosphor layer 360
  • the incident angle of the emitted light incident on the concave surface is smaller than the incident angle incident on the plane or the convex surface, so the Fresnel reflection loss is small and the transmittance is high.
  • the radius of curvature of the concave surface should be greater than the radius of curvature of the convex surface.
  • the collimating lens 340 is located on the optical path of the output light 390 and is located behind the collecting lens 350.
  • the light exiting 350 is collimated and has a first surface 341 facing the phosphor layer 360.
  • the first surface 341 is planar, so that the first reflection 330 can be conveniently performed. Paste on it.
  • the first mirror 330 can also pass through the first surface 341 of the collimating lens 340.
  • the reflective film is used to achieve: other areas that do not need to be coated are covered with a jig, and the reflective film is only plated in a small partial area.
  • its disadvantage is that the output of the coating is low, and the cost is high.
  • the excitation light source 310 is obliquely fixed relative to the second mirror such that it emits the excitation light 380. It is obliquely incident on and reflected by the first mirror 330, and the reflected light passes through the collecting lens 350 and is incident on the phosphor layer 360. Phosphor layer 360 absorbs excitation light 380 And partially converting it into a laser, and the converted laser light and the excitation light synthesized by the phosphor are used to synthesize the output light 390 from the surface of the phosphor layer 360.
  • the phosphor layer 360 The back side is attached to the second mirror 370, so that the light output from the back surface of the phosphor layer is reflected back to the phosphor layer and finally outputted from the front surface.
  • Second mirror 370 Preferably, the surface is a silver-plated metal substrate, including an aluminum substrate, a copper substrate, etc., and the metal substrate has a relatively high hardness and a high thermal conductivity, which is advantageous for heat dissipation of the phosphor layer 360.
  • the first mirror 330 It can also be replaced by a spectroscopic filter that reflects the excitation light and transmits the laser, so that there is no first mirror 330 due to the laser being received.
  • the loss of laser light caused by occlusion can further improve the output light efficiency.
  • the first mirror 330 is a spectral filter
  • its area can be designed to be sufficiently large, for example, to completely cover the first surface of the collimating lens 340. 341, such that each portion of the output light 390 must exit through the spectroscopic filter.
  • the spectroscopic filter reflects the excitation light and transmits the characteristics of the laser, so that the output light 390 Only the laser component is contained, which is equivalent to filtering the output light 390; and some of the reflected light that is reflected back is again incident on the phosphor layer 360 and reused.
  • the phosphor layer 360 and the excitation light source 310 can be made. Sharing a heat sink simplifies the thermal design of the entire system, further reducing the system size, as shown in Figure 3b.
  • Figure 3b differs from Figure 3a in that the excitation source 310 and the second mirror are The 370 is fixed to the same heat sink 320 by a heat transfer medium 321 .
  • the thermally conductive medium is made of a high thermal conductivity material and is designed with a sloped bevel to ensure that the exiting light from the excitation source 310 is relative to the collimating lens
  • the optical axis of 340 is tilted.
  • the heat transfer medium 321 is not essential, and the excitation light source 310 and the second mirror 370 can be directly soldered to the heat sink 320.
  • the phosphor layer 360 It can also be driven by the driving device to periodically move, so that the local phosphor can be prevented from being excited and overheated for a long time to cause thermal quenching.
  • the phosphor layer 360 can be It is coated on a rotatable substrate (which may be the second mirror described above) which is rotated at a high speed by a driving device such as a motor to help dissipate the phosphor.
  • the phosphor layer 360 It can also be replaced with other wavelength converting materials, such as quantum dot materials or fluorescent dyes, etc., as long as it can absorb the excitation light and generate a laser, which is a common knowledge of those skilled in the art and should also be included in the protection of the present invention. Within the scope.
  • the first mirror 330 is opposite to the prior art. It functions as the original spectroscopic device, but the volume occupied by the original spectroscopic device is eliminated, and the excitation light source 310 and the phosphor layer 360 are located at the collimating lens 340. On the same side, the distance between them is no longer limited by the collecting lens and the collimating lens, so that the volume of the entire light source system is greatly reduced.
  • the excitation light source in order to reflect the excitation light emitted from the excitation light source to the phosphor layer by using the first mirror, the excitation light source is tilted and fixed so that the emitted light is inclined with respect to the optical axis of the collimating lens; In an embodiment, the excitation source is always vertically fixed, and the exiting light is kept parallel with respect to the optical axis of the collimating lens.
  • the light source system includes an excitation source 410
  • collimating lens 440 is a plano-convex lens
  • the first surface 441 facing the phosphor layer 460 is a plane
  • the excitation light source 410 and the phosphor layer 460 are disposed on the same side of the first surface 441, and the excitation light source 410 And the second mirror 470 is fixed on the same heat sink 420.
  • the first mirror 430 is fixed on the first surface 441 and is located at the first surface of the light emitted from the collecting lens 450. Within the range of spots formed on 441.
  • the collection lens 450 is located between the collimating lens 440 and the phosphor layer 460 and in close proximity to the phosphor layer 460.
  • the excitation light source 410 is vertically fixed on the heat sink 420 in order to make the excitation light source
  • the exiting excitation light 480 of 410 can be obliquely incident on the first mirror 430, and a prism 431 is disposed between the excitation light source 410 and the first mirror, as shown in Fig. 4a.
  • the prism 431 is located in the outgoing light path of the excitation light 480 and functions to deflect the excitation light 480 to be incident on the first mirror 430.
  • optical elements that achieve optical path deflection to meet the requirements, including lenses, mirrors, and the like.
  • the advantage of this structure is that the excitation light source can be vertically fixed on the heat sink, the installation is more convenient, the heat sink is easier to process, and the cost is lower.
  • the disadvantage is that additional optical components are required to achieve deflection of the excitation light, and the fixing and adjustment of the deflection optical element can make the light source system more complicated.
  • the first mirror can also be tilted so that the normal of the first mirror is tilted relative to the optical axis of the collimating lens, such as Figure 4b shows.
  • Figure 4b differs from FIG. 4a in that the collimating lens 440 is a meniscus lens that is concave toward the first surface 441 of the phosphor layer 460.
  • the first mirror 430 is fixed to the first surface 441 Above, and in the range of spots formed by the light emerging from the collecting lens 450 on the first surface 441.
  • the optical axis will have a certain tilt which is capable of reflecting the excitation light 480 which is emitted vertically upward to the phosphor layer 460.
  • Disadvantages of this configuration are: limitations on the position of the excitation source 410 and the collimating lens
  • the curvature of the first surface 441 of the 440 is more stringent, and the excitation light 480 that is vertically upwardly emitted from the excitation light source 410 is ensured to pass through the first mirror 430.
  • the present light source system configuration requires that the size of the collimating lens 440 is sufficiently large relative to the front light source system, and that the excitation light source 410 and the second mirror are The distance between 470 is small enough to ensure that excitation light 480 exiting vertically from excitation source 410 can be incident into collimating lens 440.
  • FIG. 4c Another structure for implementing vertical mounting of the excitation source is shown in Figure 4c.
  • a collimating lens 440 Still being a plano-convex lens, the first surface 441 facing the phosphor layer 460 is planar, but it differs from FIG. 4a in that it corresponds to the excitation light 480 on the first surface 441.
  • the incident portion is provided with a groove 442 having a slanted inner surface, and the first mirror 430 is fixedly fixed on the inclined inner surface thereof to form a certain inclination angle which can vertically upwardly enter the excitation light.
  • 480 is reflected to the phosphor layer 460.
  • the present light source system also requires that the size of the collimating lens 440 is sufficiently large, and the excitation source 410 and the second mirror 470 The distance between them is small enough to ensure that the excitation light 480 emerging vertically upward from the excitation light source 410 can be incident into the collimating lens 440.
  • the phosphor layer 460 It is also possible to keep stationary or moving, and this change is identical to the first embodiment and will not be described again.
  • excitation light source can be mounted vertically on the heat sink, and the light source layout is more conducive to volume reduction.
  • the excitation light source can also share a heat sink with the phosphor layer, making the design of the heat sink and the fixing of the excitation light source simpler.
  • Figure 5 A schematic structural view of a third embodiment of the light source system of the present invention.
  • the difference between the first embodiment and the first embodiment is that the excitation light source in the first embodiment is replaced by an excitation light source group, and the excitation light source group includes a plurality of independent excitation light sources respectively disposed on the collimating lens.
  • the first mirror group 530 there is a first mirror group 530, the first mirror group 530 It is composed of a plurality of mirrors, and the number of mirrors is the same as the number of excitation light sources included in the excitation light source group, ensuring that each excitation light source corresponds to one mirror, and the mirror can excite the corresponding excitation light source.
  • Light 580 Reflected onto the phosphor layer 560.
  • the first mirror group 530 When there are many mirrors included, all the mirrors can be connected together to form an axisymmetric reflection structure.
  • the reflective structure can be located at the edge or center of the first surface of the collimating lens.
  • the collimating lens 540 In the configuration shown in FIG. 5, the collimating lens 540 is a plano-convex lens facing the first surface 541 of the phosphor layer 560. In the plane, a conical projection is designed in the center of the plane, and a reflective film is formed on the surface of the conical projection to form a central reflection structure.
  • the central reflective structure 530 can emit excitation light 580 from four weeks. Reflected down to the phosphor layer 560. Of course, the light emitted from the phosphor layer 560 is also partially blocked by the central reflective structure 530 and cannot be emitted, but as long as the reflective structure 530
  • the area of the collection lens 550 is at the first surface of the collimating lens 540 541. The area of the spot formed on the surface is much smaller, and the loss of output light caused by it is negligible.
  • This integrated design not only eliminates the inconvenience of fixing the first mirror, but also makes the fixed position of the excitation light source more flexible: due to the reflective structure
  • the circumferential symmetry of 530 eliminates the need to consider the angle of incidence of the excitation source in the circumferential direction about the optical axis of the collimating lens.
  • the advantage of the embodiment is that the brightness of the light source can be further improved due to the set of excitation light sources composed of a plurality of excitation light sources, and at the same time, the first mirror is arranged as an integral reflective structure to excite The fixed position of the light source is more flexible, and the entire light source system is more compact and compact.
  • Figure 6a is a schematic view showing the structure of a fourth embodiment of the light source system of the present invention.
  • the difference between this embodiment and the first embodiment is that the phosphor layer
  • the 660 has an opposite first surface 661 and a second surface 662, and the second surface 662 is provided with a second mirror 671 at which the second mirror 671 Further disposed below is a second excitation light source 670.
  • the second mirror 671 can transmit the second excitation light emitted by the second excitation light source 670 and reflect the phosphor layer 660.
  • the emitted laser light is transmitted.
  • the first excitation light 680 emitted by the first excitation light source 610 is reflected by the first mirror 630 and then transmitted through the collection lens 650 from the first surface of the phosphor layer 660.
  • the second excitation light emitted from the second excitation light source 670 is transmitted through the second mirror 671 and then incident on the phosphor layer from the second surface 662 of the phosphor layer 660, so the phosphor layer Both surfaces of 660 will be excited to emit light at the same time.
  • the second mirror 671 can reflect the laser light emitted from the phosphor, the final laser will only be from the upper surface of the phosphor layer 660. Exit.
  • the first excitation light source 610 is set as a laser diode
  • the second excitation light source 670 is set as a laser diode or
  • the LED, phosphor layer 660 is applied directly to the surface of the laser diode or LED, which further eliminates the presence of the second mirror 671, as shown in Figure 6b.
  • the laser diode or LED as the second excitation light source has an active region 671, and under the active region 671 is a substrate 672, and a mirror surface is formed between the active region 671 and the substrate 672. 673, the mirror 673 acts as a second mirror in FIG. 6a for reflecting light emerging from the second surface 662 of the phosphor layer 660 back to the first surface of the phosphor layer 660
  • the 661 exits such that all of the light is output from the first surface 661 of the phosphor layer 660.
  • the first excitation light emitted from the first excitation light source 610 and the second excitation light source 670 The wavelength of light emitted by the second excitation light may be the same or different.
  • the second surface 662 of the phosphor layer 660 may be further A spectroscopic filter is disposed, the filter reflecting the first excitation light and the received laser light while transmitting the second excitation light.
  • the phosphor layer may be set to be stationary or moving, and the first excitation source and the second excitation source may share a heat dissipation device for heat dissipation design, and have the same beneficial effects as the previous embodiment.
  • the phosphor is excited from both sides of the phosphor layer at the same time, and the luminous intensity per unit area of the phosphor is further increased with respect to the case of the single-sided excitation phosphor, thereby making the output brightness higher.
  • the first mirror is fixed on the first surface of the collimating lens
  • the mirror can be fixed away from the surface of the collimating lens by a certain distance, and the same does not change.
  • the volume of the entire light source system is only required to add additional fixtures, and the effect is not as good as fixing directly on the collimating lens.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Semiconductor Lasers (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

一种利用激光激发荧光粉的光源***,包括第一激发光源(310,410,610)、第一反射镜(330,430,530,630)、收集透镜(350,450,550,650)、准直透镜(340,440,540,640)、荧光粉层(360,460,560,660)和第二反射镜(370,470,570,670)。荧光粉层(360,460,560,660)涂覆在第二反射镜(370,470,570,670)上。准直透镜(340,440,540,640)具有朝向荧光粉层(360,460,560,660)的第一表面,第一反射镜(330,430,530,630)位于该第一表面上。第一激发光源(310,410,610)和荧光粉层(360,460,560,660)位于准直透镜(340,440,540,640)的同侧。该光源***具有体积小,结构紧凑,散热设计容易等优点。

Description

一种结构紧凑的光源*** 技术领域
本发明涉及照明及显示技术领域,特别是涉及一种结构紧凑的光源***。
背景技术
激光光源作为一种高亮度、高准直的新型光源,正被逐步应用到照明、投影等各个领域。其中,利用激光激发荧光粉技术的光源,具有光学扩展量小、亮度高、寿命长等优点,引起人们广泛关注。
图 1 为现有技术中利用了激光激发荧光粉技术的一种光源***。如图 1 所示,该光源***包括激发光源 110 ,散热装置 120 ,第一反射镜 130 ,准直透镜 140 ,收集透镜 150 ,荧光粉层 160 ,第二反射镜 170 。典型地,激发光源 110 为激光二极管,焊接在散热装置 120 上,散热装置 120 用来对其进行散热。激发光源 110 产生的激发光 180 先入射到第一反射镜 130 上并被其反射,反射光然后透过准直透镜 140 和收集透镜 150 ,最终入射到荧光粉层 160 上。荧光粉层 160 涂覆在第二反射镜 170 上。激发光从荧光粉层 160 的前表面入射,并被转换为另一波长范围的受激光出射。反射镜 170 的作用在于将向后输出的光反射回前表面出射。从荧光粉层 160 出射的输出光 190 包括被荧光粉层吸收转化的受激光以及没有被荧光粉层吸收的剩余激发光,该输出光 190 先后经透镜 150 和 160 的收集和准直,最后从反射镜 130 的四周出射。反射镜 130 处于输出光路中,所以会挡住部分输出光,但由于其面积很小,该部分光可以忽略。
图 2 为现有技术中利用激光激发荧光粉技术的另一种光源***。该光源***包括激发光源 210 ,散热装置 220 ,第一反射镜 230 ,准直透镜 240 ,收集透镜 250 ,荧光粉层 260 ,第二反射镜 270 。典型地,激发光源 210 为激光二极管,粘接在散热装置 220 上,散热装置 220 用来对其进行散热。它和图 1 所示光源***的区别在于,将图 1 中的小反射镜 130 换成了带开孔 231 的反射镜 230 ,此时,激发光源 210 发出的激发光 280 将透过该开孔 231 入射到荧光粉层 260 的前表面,而从荧光粉层出射的受激光以及没有被吸收的剩余激发光将合成输出光 290 ,先后经透镜 250 和 240 的收集和准直,最后被反射镜 230 反射输出。这种结构中,虽然开孔 231 会漏掉部分输出光,但由于其面积很小,可以忽略。
以上两个例子中,最后的输出光都是激发光和受激光的混合光。实际上也可将光源***中的小反射镜等分光装置替换为整块的分光滤光片,对图 1 所示光源***而言,该分光滤光片反射激发光而透射受激光;对图 2 所示光源***而言,该分光滤光片透射激发光而反射受激光。这样,通过分光滤光片的滤光,可以阻止激发光出射,使输出光中只有受激光。
然而,在现有的激光激发荧光粉技术的光源***结构中存在着一个缺陷,那就是激发光源发出的激发光必须先经过收集透镜和准直透镜等光学元件后才能入射到荧光粉上,导致激发光源和荧光粉层之间的光路太长,同时需考虑所放置的分光装置的体积,使得整个***体积庞大。此外,当激发光功率很大时,还需要分别设计激发光源和荧光粉的散热。
技术问题
本发明所要解决的问题是,简化激光激发荧光粉的光源***的结构,从而缩小光源***的体积;同时优化激发光源和荧光粉层的散热设计,整个光源***结构更紧凑。
为解决以上问题,本发明实施例提出了一种结构紧凑的光源***, 包括:
第一激发光源,用于出射第一激发光;
第一反射镜,用于反射第一激发光源出射的第一激发光;
波长转换层,用于吸收第一激发光以出射受激光,它包括相对的第一表面和第二表面,其中第一表面用于接收第一反射镜反射的第一激发光,并将该第一激发光或者第一激发光与受激光的混合光出射;
第二反射镜,位于波长转换层的第二表面,用于反射波长转换层产生的受激光;
收集透镜,用于收集波长转换层第一表面的出射光;
准直透镜,具有朝向波长转换层的第一表面,用于接收收集透镜的出射光,并对其进行准直出射;
其中,第一激发光源和波长转换层位于准直透镜的第一表面的同侧,第一反射镜固定于准直透镜的第一表面上,且处于收集透镜的出射光在准直透镜的第一表面所形成的光斑范围内。
相对于现有技术,本发明的第一反射镜起到了原有的分光装置的作用,却省去了原分光装置所占的体积,同时将激发光源和荧光粉层设置于准直透镜的同侧,使他们之间的距离也不再受到收集透镜和准直透镜的限制,从而使得整个光源***的体积大大减小。
附图说明
图 1 是现有技术中一种激光激发荧光粉的光源***的结构示意图;
图 2 是现有技术中另一种激光激发荧光粉的光源***的结构示意图;
图 3a 为本发明的光源***的第一实施例的一种结构示意图;
图 3b 为本发明的光源***的第一实施例的另一种结构示意图;
图 4a 为本发明的光源***的第二实施例的一种结构示意图;
图 4b 为本发明的光源***的第二实施例的另一种结构示意图;
图 4c 为本发明的光源***的第二实施例的另一种结构示意图;
图 5 为本发明的光源***的第三实施例的结构示意图;
图 6a 为本发明的光源***的第四实施例的结构示意图;
图 6b 为本发明的光源***的第四实施例的另一种结构示意图;
本发明的实施方式
下面结合附图和实施例对本发明的实施方式进行详细说明。
第一实施例
图 3a 为本发明的光源***的第一实施例的结构示意图。在图 3a 中,光源***包括激发光源 310 ,散热装置 320 ,第一反射镜 330 ,准直透镜 340 ,收集透镜 350 ,荧光粉层 360 ,第二反射镜 370 。 准直透镜 340 具有朝向荧光粉层 360 的第一表面 341 。激发光源 310 和荧光粉层 360 设置在准直透镜 340 的第一表面 341 的同侧,第一反射镜 330 固定在该第一表面 341 上。收集透镜 350 位于准直透镜 340 和荧光粉层 360 之间。此外,激发光源 310 倾斜固定来使其出射的激发光 380 相对于准直透镜 340 的光轴倾斜,从而保证激发光源 310 出射的激发光 380 能入射到第一反射镜 330 上,并被其反射至荧光粉层 360 。
在本实施例中,激发光源 310 固定(最常用的是焊接)在散热装置 320 上,散热装置 320 用来对其进行散热。第一反射镜 330 固定在准直透镜 340 的第一表面 341 上,其作用是将激发光源 310 发出的激发光 380 反射至荧光粉层 360 ,所以它应位于一个合适的位置:该位置须处于收集透镜 350 的出射光在准直透镜 340 的第一表面 341 上所形成的光斑范围内。因为根据光路可逆的原理,如果从荧光粉层 360 出射的全角发光能够照射到第一反射镜 330 ,那么也必然存在一个光路,使得经第一反射镜 330 反射的激发光也能够入射到荧光粉层 360 上。由于第一反射镜 330 位于输出光的光路中,所以从荧光粉层 360 输出的光(包括受激光和没被荧光粉层吸收的剩余激发光)会有一部分入射到第一反射镜 330 上,该部分光将被反射而无法输出,为了使该反射损失最大程度地减小,必须将第一反射镜 330 的面积设计得足够小;而同时,为保证第一反射镜 330 能最大程度反射从激发光源 310 发出的激发光 380 ,其面积又不能太小。故第一反射镜 330 的尺寸应该折中考虑,且选择光学扩展量小的光源作为激发光源 310 。优选地,激发光源 310 选用激光二极管,第一反射镜 330 的尺寸设置为正好全部反射从该激光二极管出射的所有激发光。
为了最大程度减小第一反射镜 330 对输出光 390 的遮挡造成的损失,优选地,设置该第一反射镜 330 位于从收集透镜 350 出射的光在准直透镜 340 的第一表面 341 上所形成的光斑范围的边缘,使得激发光源 310 发出的激发光 380 经第一反射镜 330 反射后,以尽可能大的入射角入射于收集透镜 350 ,最终以尽可能大的入射角入射于荧光粉层 360 上。这样布局的好处在于,因为从荧光粉层 360 出射的光在空间的光强分布将大致呈现朗伯余弦分布:中心法线处的光强最强,角度越大的地方光强越弱,将第一反射镜 330 固定在从收集透镜 350 出射的光在准直透镜 340 的第一表面 341 上所形成的光斑范围的边缘,可以最大程度降低反射镜遮挡住的光强度,减小输出光的损失,从而提高输出光的效率。
收集透镜 350 的 作用是收集从荧光粉层 360 输出的光,并缩小其发散角度。为了实现较好的收光效果,收集透镜 350 应位于荧光粉层 360 的前方且紧紧靠近荧光粉层。优选地,收集透镜 350 为凹凸透镜,其凹面朝向荧光粉层 360 ,这样的好处在于:从荧光粉层 360 出射的光入射于凹面的入射角比入射于平面或者凸面的入射角小,故菲涅尔反射损失小,透过率较高。为了实现光束会聚的作用,其凹面的曲率半径应大于凸面的曲率半径。
准直透镜 340 位于输出光 390 的光路上且位于收集透镜 350 之后,其作用是将从收集透镜 350 出射的光进行准直出射,它具有朝向荧光粉层 360 的第一表面 341 。在本实施例中,该第一表面 341 为平面,这样可以方便的将第一反射 330 粘贴在其上。实际上,第一反射镜 330 也可通过在准直透镜 340 的第一表面 341 镀反射膜来实现:将其它不需要镀膜的区域使用夹具遮挡住,只在一个小的局部区域镀反射膜。但它的缺点在于镀膜的产量低,进而成本较高。
在本实施例中,激发光源 310 相对于第二反射镜倾斜固定,使得其出射的激发光 380 斜入射到第一反射镜 330 上并被其反射,反射光透过收集透镜 350 后入射至荧光粉层 360 上。荧光粉层 360 吸收激发光 380 ,并将其部分转换为受激光,转化的受激光和未被荧光粉吸收利用的激发光合成输出光 390 从荧光粉层 360 表面输出。其中,荧光粉层 360 的背面粘贴在第二反射镜 370 上,可使从荧光粉层背面输出的光再次反射回荧光粉层,最终从前表面输出。第二反射镜 370 优选为表面镀银的金属基板,包括铝基板,铜基板等,这类金属基板具有相当的硬度,同时具有较高的热导率,有利于荧光粉层 360 的散热。
在本实施例中,第一反射镜 330 也可替换为分光滤光片,该分光滤光片反射激发光而透射受激光,这样就不存在因受激光被第一反射镜 330 遮挡造成的受激光的损失,可进一步提高输出光效率。在第一反射镜 330 为分光滤光片的情况下,可将其面积设计得足够大,例如完全覆盖准直透镜 340 的第一表面 341 ,使得输出光 390 的每一部分都必须透过该分光滤光片出射。分光滤光片反射激发光而透射受激光的特性,使得输出光 390 中仅含有受激光成分,这就相当于对输出光 390 起到滤波的作用;同时被反射回去的激发光又有部分会再次入射到荧光粉层 360 上而被重复利用。
在本实施例中,可使荧光粉层 360 与激发光源 310 共用一个散热装置,这可简化整个***的散热设计,进一步缩小***体积,如图 3b 所示。图 3b 相对于图 3a 的区别在于,将激发光源 310 和第二反射镜 370 通过导热介质 321 固定在了同一个散热装置 320 上。导热介质由高热导率材料制成,并设计一个倾斜斜面保证激发光源 310 的出射光相对于准直透镜 340 的光轴倾斜。实际上,该导热介质 321 并非必须的,也可直接将激发光源 310 和第二反射镜 370 焊接在散热装置 320 上。
在本实施例中,荧光粉层 360 也可以被驱动装置驱动而周期性运动,这样可以避免局部荧光粉长时间受激发而过热发生热猝灭现象。优选地,可将荧光粉层 360 涂覆在一个可旋转的基板上(该基板可以是上述的第二反射镜),该基板在驱动装置(如马达)的驱动下高速旋转从而帮助荧光粉散热。
在本实施例中,荧光粉层 360 也可换成其他波长转换材料,例如,量子点材料或者荧光染料等,只要其能吸收激发光并产生受激光,这种替换为本领域技术人员的公知常识,也应包含在本发明的保护范围内。
相对于现有技术,在本实施例中,第一反射镜 330 起到了原有的分光装置的作用,却省去了原分光装置所占的体积,同时使激发光源 310 和荧光粉层 360 位于准直透镜 340 的同侧,他们之间的距离也不再受到收集透镜和准直透镜的限制,从而使得整个光源***的体积大大减小。
第二实施例
在第一实施例中,为了利用第一反射镜将激发光源发出的激发光反射至荧光粉层,通过将激发光源倾斜固定来使其出射光相对于准直透镜的光轴倾斜;而在本实施例中,激发光源始终垂直固定,其出射光相对于准直透镜的光轴保持平行。
图 4a 为本实施例的光源***的第一种结构示意图。在图 4a 中,光源***包括激发光源 410 ,散热装置 420 ,第一反射镜 430 ,棱镜 431 ,准直透镜 440 ,收集透镜 450 ,荧光粉层 460 ,第二反射镜 470 。其中, 准直透镜 440 为平凸透镜,朝向荧光粉层 460 的第一表面 441 为平面,激发光源 410 和荧光粉层 460 设置在第一表面 441 的同侧,且激发光源 410 和第二反射镜 470 固定在同一个散热装置 420 上。第一反射镜 430 固定在该第一表面 441 上,且位于从收集透镜 450 出射的光在该第一表面 441 上所形成的光斑范围内。收集透镜 450 位于准直透镜 440 和荧光粉层 460 之间且紧密靠近荧光粉层 460 。
本实施例相对于第一实施例的区别在于:激发光源 410 垂直固定在散热装置 420 上,为了使激发光源 410 出射的激发光 480 能倾斜入射到第一反射镜 430 上,在激发光源 410 和第一反射镜之间设置了一个棱镜 431 ,如图 4a 所示。其中,棱镜 431 位于激发光 480 的出射光路中,其作用是偏转激发光 480 使其能入射到第一反射镜 430 。对本领域技术人员来说,只要能实现光路偏转的光学元件都可满足要求,包括透镜、反射镜等,这种光学元件的替换也应在本发明的保护范围之内。这种结构的优点是激发光源可以垂直固定在散热装置上,安装更方便,散热装置加工更容易,成本更低。但缺点是需增加额外的光学元件来实现激发光的偏转,该偏转光学元件的固定和调整都会使光源***更复杂。
为了实现激发光源的垂直安装而又不需要额外的光学元件来使激发光偏转,还可将第一反射镜倾斜固定,使第一反射镜的法线相对于准直透镜的光轴倾斜,如图 4b 所示。图 4b 和图 4a 的区别在于,准直透镜 440 为凹凸透镜,朝向荧光粉层 460 的第一表面 441 为凹面。第一反射镜 430 固定在该第一表面 441 上,且位于从收集透镜 450 出射的光在该第一表面 441 上所形成的光斑范围内。在本实施例中,由于准直透镜 440 的第一表面 441 被加工成凹面,这样,将第一反射镜 430 粘贴在准直透镜 440 的第一表面 441 时,其法线相对于准直透镜 440 的光轴就会有一定的倾斜,该倾斜角正好能将垂直向上出射的激发光 480 反射至荧光粉层 460 。这种结构的缺点是:对激发光源 410 的位置的限制以及准直透镜 440 的第一表面 441 的曲率的要求较为严格,保证从激发光源 410 出射的垂直向上传输的激发光 480 经第一反射镜 430 的反射后能正好入射到荧光粉层 460 上。此外,相对于前面的光源***,本光源***结构要求准直透镜 440 的尺寸足够大,且激发光源 410 和第二反射镜 470 之间的距离足够小,以保证从激发光源 410 垂直向上出射的激发光 480 能入射到准直透镜 440 内。
另一种实现激发光源的垂直安装的结构如图 4c 所示。在图 4c 中,准直透镜 440 仍为平凸透镜,朝向荧光粉层 460 的第一表面 441 为平面,但它和图 4a 的不同之处在于:在该第一表面 441 上对应于激发光 480 入射的地方设有一个凹槽 442 ,该凹槽具有倾斜的内表面,第一反射镜 430 正是固定在其倾斜内表面上形成一定的倾斜角,该倾斜角能将垂直向上入射的激发光 480 反射至荧光粉层 460 。本光源***同样要求准直透镜 440 的尺寸足够大,且激发光源 410 和第二反射镜 470 之间的距离足够小,以保证从激发光源 410 垂直向上出射的激发光 480 能入射到准直透镜 440 内。
在本实施例中,荧光粉层 460 同样可以保持静止或运动,这种改变和第一实施例完全相同,故不再赘述。
本实施例相对于第一实施例的优点在于:激发光源可垂直安装在散热装置上,光源布局方正更有助于体积的减小。激发光源还可以和荧光粉层共用一个散热装置,使得散热装置的设计和激发光源的固定更加简单。
第三实施例
图 5 为本发明的光源***的第三实施例的结构示意图。本实施例中与第一实施例的区别在于:第一实施例中的激发光源被换成了激发光源组,该激发光源组包括多个独立的激发光源,分别设置于准直透镜 540 的周围。与之对应的,存在一个第一反射镜组 530 ,该第一反射镜组 530 由多个反射镜组成,且反射镜的数目与激发光源组中所包含的激发光源的数目相同,保证每个激发光源都对应一个反射镜,该反射镜能将其对应的激发光源发出的激发光 580 反射至荧光粉层 560 上。通过分别设计每个反射镜 530 的位置,可保证使所有激发光源发出的激发光 580 都被反射至荧光粉层 560 的同一位置,从而最大限度提高单位面积荧光粉的亮度。
当第一反射镜组 530 中所包含的反射镜较多时,可将所有反射镜连成一个整体,从而形成一个轴对称的反射结构。该反射结构可以位于准直透镜第一表面的边缘或中央。虽然前面的实施例都是将第一反射镜固定于准直透镜第一表面的四周,实际上第一反射镜也可以固定在准直透镜的中央,如图 5 所示。在图 5 所示的结构中,准直透镜 540 为平凸透镜,朝向荧光粉层 560 的第一表面 541 为平面,在该平面的中央设计有一个圆锥凸起,在该圆锥凸起的表面镀反射膜形成中央反射结构。该中央反射结构 530 可将从四周入射的激发光 580 向下反射至荧光粉层 560 。当然,从荧光粉层 560 出射的光也会有部分被该中央反射结构 530 所遮挡而无法出射,但只要该反射结构 530 的面积比收集透镜 550 的出射光在准直透镜 540 的第一表面 541 上所形成的光斑面积小得多,其造成的输出光的损失就可以忽略不计。这种一体化设计,不仅省去了固定第一反射镜的不便,而且使激发光源的固定位置更灵活:由于反射结构 530 的圆周对称性,不必再考虑激发光源在以准直透镜光轴为轴的圆周方向上的入射角。
相对于第一实施例,本实施例的优点在于:由于设置有多个激发光源组成的激发光源组,可进一步提升光源亮度,同时,将第一反射镜设置成一个整体的反射结构,使激发光源的固定位置更灵活,整个光源***结构更加紧凑小巧。
可以理解,本实施例的扩展也可用于第二实施例中,且具有同样的有益效果,所以也应在本发明的保护范围之内
第四实施例
图 6a 为本发明的光源***的第四实施例的结构示意图。本实施例相对于第一实施例的区别在于:荧光粉层 660 具有相对的第一表面 661 和第二表面 662 ,第二表面 662 上设置有第二反射镜 671 ,在该第二反射镜 671 的下方进一步设置有第二激发光源 670 。该第二反射镜 671 能透射第二激发光源 670 出射的第二激发光,并反射荧光粉层 660 所发出的受激光。这样,第一激发光源 610 出射的第一激发光 680 经过第一反射镜 630 反射,然后透过收集透镜 650 从荧光粉层 660 的第一表面 661 入射至荧光粉层,第二激发光源 670 出射的第二激发光经第二反射镜 671 透射后从荧光粉层 660 的第二表面 662 入射至荧光粉层,所以荧光粉层 660 的两个表面将同时被激发发光。同时,由于第二反射镜 671 能反射荧光粉出射的受激光,所以最终受激光将只从荧光粉层 660 的上表面 661 出射。
优选地,将本实施例中第一激发光源 610 设为激光二极管,第二激发光源 670 设置为激光二极管或 LED , 荧光粉层 660 直接涂覆在该激光二极管或 LED 的表面,这可进一步省去第二反射镜 671 的存在,如图 6b 所示 。在图 6b 中,作为第二激发光源的激光二极管或 LED 有一个有源区 671 ,有源区 671 下面是衬底 672 ,在有源区 671 和衬底 672 之间会形成一个镜面 673 ,该镜面 673 正好充当了图 6a 中第二反射镜的功能,用于将从荧光粉层 660 的第二表面 662 出射的光反射回荧光粉层 660 的第一表面 661 出射,从而使所有光都从荧光粉层 660 的第一表面 661 输出。
在本实施例中,从第一激发光源 610 出射的第一激发光和从第二激发光源 670 出射的第二激发光的光波长可以相同,也可以不同。当第一激发光波长和第二激发光波长不同时,可进一步在荧光粉层 660 的第二表面 662 设置一分光滤光片,该滤光片反射第一激发光和受激光,同时透射第二激发光。
本实施例中,荧光粉层可设置为静止或运动,第一激发光源和第二激发光源也可共用一个散热装置来进行散热设计,同样具有和前面实施例相同的有益效果。
相对于前面的实施例,在本实施例中同时从荧光粉层的两面来激发荧光粉,相对于单面激发荧光粉的情况,进一步提高了单位面积荧光粉的发光强度,因而使输出光亮度更高。
以上实施例中,虽然都是将第一反射镜固定在准直透镜的第一表面上,实际上,也可使该反射镜离开准直透镜的表面一定的距离来固定,同样也不会改变整个光源***的体积,只是需要增加额外的固定装置,效果不如直接固定在准直透镜上好。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (17)

  1. 一种光源***,其特征在于,包括:
    第一激发光源,用于出射第一激发光;
    第一反射镜,用于反射所述第一激发光源出射的第一激发光;
    波长转换层,包括相对的第一表面和第二表面,所述波长转换层用于吸收第一激发光以出射受激光,所述第一表面用于接收所述第一反射镜反射的第一激发光,并将所述第一激发光或者第一激发光与受激光的混合光出射;
    第二反射镜,位于所述波长转换层的第二表面;
    收集透镜,用于收集所述波长转换层的第一表面的出射光;
    准直透镜,具有朝向波长转换层的第一表面,所述准直透镜用于接收所述收集透镜的出射光,并对其进行准直;
    所述第一激发光源和波长转换层位于准直透镜的第一表面的同侧,所述第一反射镜固定于准直透镜的第一表面上,且处于收集透镜的出射光在准直透镜的第一表面所形成的光斑范围内。
  2. 根据权利要求 1 所述的光源***,其特征在于:所述第一反射镜位于收集透镜的出射光在准直透镜的第一表面所形成的光斑范围的边缘。
  3. 根据权利要求 1 所述的光源***,其特征在于:所述第一激发光源的光轴相对于准直透镜的光轴倾斜。
  4. 根据权利要求 1 所述的光源***,其特征在于:所述第一激发光源的光轴相对于准直透镜的光轴平行。
  5. 根据权利要求 4 所述的光源***,其特征在于:在第一激发光的出射光路中设置偏转光学元件,所述偏转光学元件使第一激发光倾斜入射到所述第一反射镜上。
  6. 根据权利要求 4 所述的光源***,其特征在于:第一反射镜的法线相对于准直透镜的光轴倾斜。
  7. 根据权利要求 6 所述的光源***,其特征在于:所述准直透镜的第一表面为凹面,第一反射镜固定于该凹面内。
  8. 根据权利要求 6 所述的光源***,其特征在于:所述准直透镜的第一表面具有凹槽,第一反射镜固定于该凹槽内。
  9. 根据权利要求 1 所述的光源***,其特征在于:所述第一激发光源为第一激发光源组,所述第一反射镜为第一反射镜组,第一激发光源组和第一反射镜组中的第一激发光源和反射镜相互对应。
  10. 根据权利要求 9 所述的光源***,其特征在于:所述第一反射镜连成一体形成轴对称结构,固定在准直透镜第一表面的四周或中央。
  11. 根据权利要求 1 所述的光源***,其特征在于:所述第一激发光源和所述第二反射镜共用同一个散热装置。
  12. 根据权利要求 1 所述的光源***,其特征在于:所述第一反射镜为分光滤光片,所述分光滤光片反射第一激发光源产生的第一激发光而透射波长转换层产生的受激光。
  13. 根据权利要求 1 所述的光源***,其特征在于:所述第一反射镜通过在所述准直透镜的第一表面内镀反射膜而形成。
  14. 根据权利要求 1 所述的光源***,其特征在于:还包括第二激发光源,用于发射第二激发光,该第二激发光透射所述第二反射镜并激发所述波长转换层,其中第二反射镜为透射第二激发光并反射受激光的分光滤光片。
  15. 根据权利要求 1 所述的光源***,其特征在于:所述第二反射镜为具有反射功能的 LED 芯片或 LED 芯片组,所述波长转换层涂覆在该 LED 芯片或 LED 芯片组的表面。
  16. 根据权利要求 1 至 14 中任一项所述的光源***,其特征在于:还包括驱动装置,驱动波长转换层周期性运动。
  17. 一种投影***,其特征在于,包括权利要求 1 至 16 中任一项所述的光源***。
PCT/CN2014/071522 2013-02-05 2014-01-27 一种结构紧凑的光源*** WO2014121707A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310046130.4A CN103969934B (zh) 2013-02-05 2013-02-05 一种结构紧凑的光源***
CN201310046130.4 2013-02-05

Publications (1)

Publication Number Publication Date
WO2014121707A1 true WO2014121707A1 (zh) 2014-08-14

Family

ID=51239603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/071522 WO2014121707A1 (zh) 2013-02-05 2014-01-27 一种结构紧凑的光源***

Country Status (2)

Country Link
CN (2) CN105911805B (zh)
WO (1) WO2014121707A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3021368A1 (en) * 2014-11-11 2016-05-18 LG Innotek Co., Ltd. Light-emitting apparatus
EP3228925A1 (en) * 2016-03-29 2017-10-11 LG Electronics Inc. Lighting device for vehicle
EP3228927A1 (en) * 2016-03-29 2017-10-11 LG Electronics Inc. Lighting apparatus for vehicle
EP3228926A1 (en) * 2016-03-29 2017-10-11 LG Electronics Inc. Lighting device for vehicle
EP3267093A1 (en) * 2016-07-04 2018-01-10 LG Electronics Inc. Lighting apparatus for vehicle
EP3282172A1 (en) * 2016-06-14 2018-02-14 LG Electronics Inc. Lighting device for vehicle
EP3287688A1 (en) * 2016-08-02 2018-02-28 LG Electronics Inc. Lighting device for vehicle
EP3321724A1 (en) * 2016-11-09 2018-05-16 Christie Digital Systems USA, Inc. Apparatus for wavelength conversion
US10106073B2 (en) 2016-03-29 2018-10-23 Lg Electronics Inc. Lighting apparatus for vehicle
EP3627037A4 (en) * 2017-05-18 2021-01-13 Stanley Electric Co., Ltd. VEHICLE LAMP

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104345535B (zh) * 2014-10-12 2016-06-22 杨毅 激光光源和投影装置
CN104330947B (zh) * 2014-10-12 2016-01-27 杨毅 激光光源和投影装置
CN105629645B (zh) * 2014-11-07 2018-08-28 深圳市光峰光电技术有限公司 一种投影仪及其光源***
CN109838751A (zh) * 2017-11-27 2019-06-04 深圳市绎立锐光科技开发有限公司 光源***及使用该光源***的汽车照明装置
CN110005985B (zh) * 2018-01-04 2021-08-24 深圳市绎立锐光科技开发有限公司 激光照明装置
CN110658669A (zh) * 2018-06-29 2020-01-07 深圳市绎立锐光科技开发有限公司 光源装置
WO2020024595A1 (zh) * 2018-08-01 2020-02-06 深圳市绎立锐光科技开发有限公司 光源装置及前照灯***
CN111306512A (zh) * 2018-12-11 2020-06-19 深圳市绎立锐光科技开发有限公司 激光照明灯具
EP3913409A4 (en) * 2019-01-15 2022-03-09 Sony Group Corporation COLLIMATOR LENS, LIGHT SOURCE DEVICE AND IMAGE DISPLAY DEVICE
MX2021013864A (es) * 2019-05-16 2022-03-22 Hubbell Lighting Inc Lámpara con iluminación en los bordes.
CN110107826A (zh) * 2019-06-13 2019-08-09 广州光联电子科技有限公司 一种折叠多光轴的激光手电筒光学***及激光手电筒
CN110185955A (zh) * 2019-06-13 2019-08-30 广州光联电子科技有限公司 一种存在多光轴的激光手电筒光学***及激光手电筒
CN110360473A (zh) * 2019-08-20 2019-10-22 苏州晶清光电科技有限公司 一种激光照明灯
CN112835254B (zh) * 2019-11-22 2022-05-06 刘雪婷 光源模块
TWI734621B (zh) * 2019-11-22 2021-07-21 劉雪婷 光源模組
CN114063375B (zh) * 2020-08-10 2024-01-23 成都极米科技股份有限公司 一种光源***
CN114613253B (zh) * 2020-12-09 2024-01-23 极米科技股份有限公司 一种光学***及显示设备
CN116991025A (zh) * 2022-04-26 2023-11-03 西安炬光科技股份有限公司 一种白光照明装置和终端
CN115528532A (zh) * 2022-09-16 2022-12-27 深圳市佑明光电有限公司 一种基于二极管和荧光粉膜的组合式白光激光光源模组

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102466187A (zh) * 2010-10-29 2012-05-23 夏普株式会社 发光装置、照明装置、车辆用前照灯和车辆
WO2012066654A1 (ja) * 2010-11-17 2012-05-24 Necディスプレイソリューションズ株式会社 光源装置、照明装置および投射型表示装置
EP2461090A2 (en) * 2010-12-01 2012-06-06 Stanley Electric Co., Ltd. Vehicle light
CN102540675A (zh) * 2010-12-14 2012-07-04 台达电子工业股份有限公司 光源***及包含该光源***的投影装置
WO2012091975A1 (en) * 2010-12-29 2012-07-05 3M Innovative Properties Company Phosphor reflector assembly for remote phosphor led device
CN102691905A (zh) * 2011-03-18 2012-09-26 斯坦雷电气株式会社 发光装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7445340B2 (en) * 2005-05-19 2008-11-04 3M Innovative Properties Company Polarized, LED-based illumination source
JP4900736B2 (ja) * 2009-03-31 2012-03-21 カシオ計算機株式会社 光源装置及びプロジェクタ
CN102141721B (zh) * 2010-02-01 2012-07-18 鸿富锦精密工业(深圳)有限公司 投影机
JP5770433B2 (ja) * 2010-06-18 2015-08-26 ソニー株式会社 光源装置及び画像投影装置
JP5331156B2 (ja) * 2011-04-28 2013-10-30 シャープ株式会社 投光ユニットおよび投光装置
JP5722702B2 (ja) * 2011-05-19 2015-05-27 スタンレー電気株式会社 車両用灯具
CN104880899B (zh) * 2011-12-04 2017-06-20 深圳市光峰光电技术有限公司 发光装置及其应用的投影***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102466187A (zh) * 2010-10-29 2012-05-23 夏普株式会社 发光装置、照明装置、车辆用前照灯和车辆
WO2012066654A1 (ja) * 2010-11-17 2012-05-24 Necディスプレイソリューションズ株式会社 光源装置、照明装置および投射型表示装置
EP2461090A2 (en) * 2010-12-01 2012-06-06 Stanley Electric Co., Ltd. Vehicle light
CN102540675A (zh) * 2010-12-14 2012-07-04 台达电子工业股份有限公司 光源***及包含该光源***的投影装置
WO2012091975A1 (en) * 2010-12-29 2012-07-05 3M Innovative Properties Company Phosphor reflector assembly for remote phosphor led device
CN102691905A (zh) * 2011-03-18 2012-09-26 斯坦雷电气株式会社 发光装置

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3021368A1 (en) * 2014-11-11 2016-05-18 LG Innotek Co., Ltd. Light-emitting apparatus
CN105588011A (zh) * 2014-11-11 2016-05-18 Lg伊诺特有限公司 发光装置
CN105588011B (zh) * 2014-11-11 2019-09-06 Lg伊诺特有限公司 发光装置
US10191185B2 (en) 2014-11-11 2019-01-29 Lg Innotek Co., Ltd. Light-emitting apparatus
EP3228926A1 (en) * 2016-03-29 2017-10-11 LG Electronics Inc. Lighting device for vehicle
US10071677B2 (en) 2016-03-29 2018-09-11 Lg Electronics Inc. Lighting device for vehicle
US10106073B2 (en) 2016-03-29 2018-10-23 Lg Electronics Inc. Lighting apparatus for vehicle
EP3228927A1 (en) * 2016-03-29 2017-10-11 LG Electronics Inc. Lighting apparatus for vehicle
US10267471B2 (en) 2016-03-29 2019-04-23 Lg Electronics Inc. Lighting device for vehicle with lens with reflecting unit
EP3228925A1 (en) * 2016-03-29 2017-10-11 LG Electronics Inc. Lighting device for vehicle
EP3282172A1 (en) * 2016-06-14 2018-02-14 LG Electronics Inc. Lighting device for vehicle
EP3267093A1 (en) * 2016-07-04 2018-01-10 LG Electronics Inc. Lighting apparatus for vehicle
EP3287688A1 (en) * 2016-08-02 2018-02-28 LG Electronics Inc. Lighting device for vehicle
EP3321724A1 (en) * 2016-11-09 2018-05-16 Christie Digital Systems USA, Inc. Apparatus for wavelength conversion
EP3321723A1 (en) * 2016-11-09 2018-05-16 Christie Digital Systems USA, Inc. Apparatus for wavelength conversion
US10215367B2 (en) 2016-11-09 2019-02-26 Christie Digital Systems Usa, Inc. Apparatus for wavelength conversion
EP3627037A4 (en) * 2017-05-18 2021-01-13 Stanley Electric Co., Ltd. VEHICLE LAMP

Also Published As

Publication number Publication date
CN105911805B (zh) 2018-05-08
CN103969934B (zh) 2016-03-16
CN105911805A (zh) 2016-08-31
CN103969934A (zh) 2014-08-06

Similar Documents

Publication Publication Date Title
WO2014121707A1 (zh) 一种结构紧凑的光源***
US11163226B2 (en) Light source system and projection display apparatus
US9170475B2 (en) Light valve projector with laser-phosphor light converter
JPWO2002056110A1 (ja) プロジェクタ
US20170099467A1 (en) Wavelength converter, illuminator, and projector
WO2016185850A1 (ja) 光変換装置および光源装置、ならびにプロジェクタ
US10474016B2 (en) Wavelength converter, light source apparatus, and projector
WO2016167110A1 (ja) 照明装置および投影型表示装置
CN113433784B (zh) 照明装置以及投影仪
WO2007099781A1 (ja) 発光モジュールとそれを用いた画像投影装置
US10863152B2 (en) Projector
TW201925673A (zh) 光源裝置及投射型顯示裝置
US20190129287A1 (en) Lighting device and projection display apparatus
US20200209723A1 (en) Light source device and projector
JP2007250295A (ja) 小型の画像投影装置
US20200142287A1 (en) Heat dissipation device and projector
CN111142324A (zh) 固定式波长转换装置及应用其的投影机
WO2019205737A1 (zh) 光源***
US20230305376A1 (en) Light source apparatus and projector
CN113448153B (zh) 光源装置和投影仪
US11662653B1 (en) Light source device and projector
TWI712848B (zh) 固定式波長轉換裝置及應用其之投影機
JP7306538B2 (ja) プロジェクター
JP2002214585A (ja) 投射型表示装置
JP2023072374A (ja) 光源装置および投射型表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14748887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/12/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 14748887

Country of ref document: EP

Kind code of ref document: A1