WO2014132536A1 - 蓄電ユニット及び蓄電モジュール - Google Patents

蓄電ユニット及び蓄電モジュール Download PDF

Info

Publication number
WO2014132536A1
WO2014132536A1 PCT/JP2013/084206 JP2013084206W WO2014132536A1 WO 2014132536 A1 WO2014132536 A1 WO 2014132536A1 JP 2013084206 W JP2013084206 W JP 2013084206W WO 2014132536 A1 WO2014132536 A1 WO 2014132536A1
Authority
WO
WIPO (PCT)
Prior art keywords
power storage
conductive path
storage element
path
branch
Prior art date
Application number
PCT/JP2013/084206
Other languages
English (en)
French (fr)
Inventor
高橋 秀夫
正邦 春日井
澤田 尚
洋樹 下田
正人 筒木
中川 謙治
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Publication of WO2014132536A1 publication Critical patent/WO2014132536A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • H01M50/529Intercell connections through partitions, e.g. in a battery casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power storage unit and a power storage module.
  • Patent Document 1 a power storage module that is configured by stacking a plurality of flat-shaped power storage elements having positive and negative terminals has been known.
  • Patent Document 1 a plurality of secondary batteries are assembled by laminating a flat secondary battery having a positive electrode tab and a negative electrode tab, and welding or the like to the bus bar of the side holder. Connected in series or parallel.
  • Patent Document 1 a plurality of flat storage elements are stacked vertically, but unlike this, it is also conceivable that the storage elements are arranged side by side so that the flat surfaces are continuous.
  • the conductive path is arranged so that the storage elements arranged side by side are connected in parallel, it is necessary to branch the conductive path into a plurality of paths between a pair of terminals connected to the outside and the electrode of the storage element. There is.
  • the resistance is different for each of the paths branched in parallel, the charge / discharge current for each power storage element may not be balanced, and the amount of heat generated by each power storage element may be unbalanced.
  • the temperature variation of each power storage element increases, and the life of the assembled battery is shortened or a failure is induced.
  • the present invention has been completed based on the above situation, and an object thereof is to suppress variation in resistance of a plurality of paths of power storage elements connected in parallel.
  • the power storage unit of the present invention has a flat shape, a plurality of power storage elements having positive and negative terminals arranged side by side in a direction along the flat surface, and a positive terminal of the power storage element electrically A first terminal part to be connected, a second terminal part electrically connected to the negative terminal of the power storage element, and the first terminal part and the positive terminal of each power storage element connected in parallel
  • a plurality of first conductive paths having a plurality of first branch paths branched so as to connect the second terminal portion and each negative electrode terminal of each of the power storage elements in parallel.
  • a second conductive path having two branch paths, wherein the first branch path connected to one of the plurality of power storage elements is connected to a power storage element other than the one power storage element.
  • the second branch having a resistance larger than that of one branch path and connected to the one power storage element There has a characteristic where smaller resistance than the second branch passage connected to the storage element other than the one of the storage element.
  • the first branch path connected to one power storage element among the plurality of power storage elements has a larger resistance than the first branch path connected to power storage elements other than one power storage element. Since the second branch path connected to the element has a smaller resistance than the second branch path connected to a power storage element other than one power storage element, the difference in resistance between the shunt paths on the first conductive path side is This can be offset by the difference in resistance on the second conductive path side in the same shunt path. Therefore, it is possible to suppress variation in resistance of a plurality of paths of power storage elements connected in parallel.
  • the first branch path connected to the one power storage element is longer than the first branch path connected to a power storage element other than the one power storage element, and is connected to the one power storage element.
  • the second branch path is shorter than the second branch path connected to a power storage element other than the one power storage element. In this way, variation in resistance can be suppressed by changing the length of the conductive path.
  • At least one of the first conductive path and the second conductive path is formed by a bus bar.
  • the conductive path is an electric wire
  • the bus bar when at least one of the first conductive path and the second conductive path is formed by the bus bar, it is not easy to change the length of only one of the first conductive path and the second conductive path. Even so, variations in resistance can be suppressed.
  • each said electrical storage element has arranged the terminal of the said positive electrode and a negative electrode along with one side of the flat main body, The said 1st conductive path And the second conductive path are overlapped via an insulating member. In this way, when the first conductive path and the second conductive path are overlaid due to restrictions, variation in resistance of the path can be suppressed.
  • the first terminal portion is disposed on one side in the arrangement direction of the plurality of power storage elements, and the second terminal portion is disposed on the other side in the arrangement direction of the plurality of power storage elements.
  • a plurality of power storage units are provided, and the plurality of power storage units are connected in series. If multiple storage units are formed by connecting multiple storage elements in parallel and the storage units are connected in series to achieve the required capacity and voltage, the continuity of one storage element is lost for some reason. Even in this case, since the failure is compensated by other power storage elements connected in parallel, there is an advantage that the entire conduction failure does not immediately occur. According to this configuration, in a configuration in which such advantages can be obtained, it is possible to suppress variation in resistance of a plurality of paths of power storage elements connected in parallel.
  • the perspective view which shows a laminated body Perspective view showing the lowermost power storage unit The perspective view which shows an electrical storage element
  • the perspective view which shows the some electrical storage element of the lowermost electrical storage unit, a 1st conductive path, and a 2nd conductive path The top view which shows the some electrical storage element of a lowermost electrical storage unit, a 1st conductive path, and a 2nd conductive path
  • Front view showing a plurality of power storage elements, a first conductive path, and a second conductive path of a lowermost power storage unit
  • the figure which shows the electrical constitution between a 1st terminal part and a 2nd terminal part The perspective view which shows the 1st conductive path of the electrical storage unit of the lowest layer
  • the top view which shows the 1st conductive path of the electrical storage unit of the lowest layer The perspective view which shows the 2nd conductive path of the electrical storage unit of the lowest layer
  • the perspective view which shows the some electrical storage element, 1st conductive path, and 2nd conductive path of the electrical storage unit of the 2nd layer from the bottom The top view which shows the some electrical storage element of the electrical storage unit of the 2nd layer from the bottom, the 1st conductive path, and the 2nd conductive path Front view showing a plurality of power storage elements, a first conductive path, and a second conductive path of a second power storage unit from the bottom
  • the perspective view which shows the 1st conductive path of the electrical storage unit of the 2nd layer from the bottom The top view which shows the 1st conductive path of the electrical storage unit of the 2nd layer from the bottom
  • the power storage module 10 is used for an integrated starter generator (ISG) of a vehicle such as an automobile.
  • ISG integrated starter generator
  • the lower side of FIG. 14 is the front
  • the upper side is the rear
  • the left side of FIG. 14 is the left side
  • the right side is the right side
  • the stacking direction of the power storage units 22A to 22F is the upper side.
  • the power storage module 10 has a substantially rectangular parallelepiped shape as a whole, and a stacked body 21 configured by stacking a plurality of power storage units 22A to 22F in a substantially rectangular parallelepiped case 11 is accommodated.
  • the terminals 30 and 32 of the laminate 21 are led out through the case 11.
  • the case 11 includes a cylindrical case body 12 in which the laminated body 21 is disposed, and a closing member 19 that closes the left and right openings 14 of the case body 12.
  • the case body 12 is made of metal, and includes a box-shaped lower case 13 in which the stacked body 21 is accommodated, and an upper case 15 that covers the lower case 13.
  • the lower case 13 is open at the top and front and partly open at the rear.
  • a fastening hole (not shown) for penetrating and fastening the bolt 17 ⁇ / b> A through which the laminated body 21 is penetrated is formed in the peripheral edge portion of the bottom surface of the lower case 13.
  • the upper case 15 has a substantially rectangular shape, and a heat radiating surface 16 that is recessed in a step shape is formed on the inner side of the case 11, and the inner surface of the heat radiating surface 16 is the uppermost power storage layer.
  • a fastening hole for fastening with a bolt 17 ⁇ / b> A and a nut 17 ⁇ / b> B is formed through the periphery of the upper case 15.
  • a locking hole 18 for locking the closing member 19 is formed at the front end of the upper case 15.
  • the closing member 19 is made of synthetic resin and has a shape that fits into the left and right openings 14 of the case 11.
  • the left side closing member 19 (the right closing member is not shown) has a terminal 30. , 32 are led out to the outside of the case 11.
  • the stacked body 21 is configured by stacking a plurality of layers (six layers in this embodiment) of power storage units 22A to 22F vertically.
  • the power storage units 22A to 22F are stacked so that the front and rear directions of the power storage units 22A to 22F adjacent to each other in the vertical direction are opposite to each other.
  • the first conductive path 33 connecting the first terminal portion 29 and the positive terminal 27A of each of the storage elements 23-25 in parallel, and the negative terminal 27B of the second terminal portion 31 and each of the storage elements 23-25. are arranged along the bottom surfaces of the storage elements 23 to 25, the second conductive path 38 that connects the storage elements 23 to 25 in parallel, the synthetic resin holding member 43 that holds the plurality of storage elements 23 to 25, and the storage elements 23 to 25. Dissipate 25 heat to the outside That comprises a plate-shaped heat radiating member 52.
  • the plurality of power storage elements 23 to 25 have the same configuration, and are flat-type laminate-type batteries as shown in FIG.
  • Each of the power storage elements 23 to 25 includes a main body 26 in which power storage elements (not shown) are accommodated in upper and lower laminate films and welded at the ends, and positive and negative terminals 27A protruding outward from the end portions of the laminate film, 27B (lead terminal).
  • the laminate film has a resin layer laminated on the outside of the metal foil.
  • the metal foil include aluminum foil, and examples of the resin layer include polyethylene terephthalate and nylon.
  • a heat welding layer made of polyethylene, polypropylene, or the like is provided inside the metal foil (on the electricity storage element side). The side end portion 28 to which the laminate film is welded is bent toward the main body 26 side.
  • the pair of terminals 27 ⁇ / b> A and 27 ⁇ / b> B are led out of the main body 26 from between the upper and lower laminate films so as to overlap the upper surface of the lower laminate film.
  • the plurality of power storage elements 23 to 25 are arranged in a line on the left and right on the same plane (along a flat surface) to form a power storage element array. There is a slight gap between the adjacent power storage elements 23 to 25.
  • the first terminal portion 29 is the positive electrode terminal 30 of the entire power storage module 10 and is connected to a terminal (not shown) of an external electric wire terminal, as shown in FIG. .
  • First terminal portions 29 of power storage units 22B to 22F of other layers (2 to 6 layers) are connected to second terminal portions 31 of power storage units 22A to 22E that are vertically adjacent.
  • the connection between the first terminal portion 29 and the second terminal portion 31 of different layers is a first connection terminal 55 formed by bending a thin metal plate (copper plate or the like) into a crank shape.
  • the first terminal portion 29 and the second terminal portion 31 of different layers are connected by ultrasonic welding to both the terminal portion 29 and the second terminal portion 31.
  • the second terminal unit 31 is connected to the first terminal unit 29 of the second to sixth layers of power storage units 22B to 22F for the first to fifth layers of power storage units 22A to 22E. As shown in FIG. 2, the second terminal portion 31 of the uppermost power storage unit 22F is the negative terminal 32 of the entire power storage module 10, and is connected to a terminal (not shown) of an external electric wire terminal. .
  • the first terminal portion 29 and the second terminal portion 31 are connected by a first conductive path 33, power storage elements 23 to 25, and a second conductive path 38.
  • a plurality of (three in this embodiment) shunt paths corresponding to the number of 23 to 25 are formed (in FIG. 8, the length of the conductive path is longer than the other branch paths depending on the length).
  • Resistors RA1, RA2, RB1, and RB2 are generated).
  • the first conductive path 33 and the second conductive path 38 are formed by punching a metal plate material and bending it, for example, pure aluminum, aluminum alloy, copper or copper alloy. It consists of conductive materials such as.
  • the first conductive paths 33A and 33B and the second conductive path 38A of the lower and second power storage units 22A and 22B ( The second conductive path has the same shape for the first and second layers), and the description of the first conductive path 33 and the second conductive path 38 of the other three to six layers of power storage units 22C to 22F is omitted.
  • the first conductive path 33 ⁇ / b> A of the power storage unit 22 ⁇ / b> A is formed integrally with the first terminal portion 29 and the first terminal portion 29, and is a flat plate-shaped first conductive path that is continuous with the first terminal portion 29.
  • the first conductive path body 35 includes a plurality of first branch paths branched so as to connect the first terminal portion 29 and the positive terminals 27A of the power storage elements 23 to 25 in parallel. 34A to 34C.
  • the first terminal portion 29 is formed at a height different from that of the first conductive path main body 35 by bending the end portion of the first conductive path main body 35 into a crank shape.
  • the first conductive path main body 35 extends from the first terminal portion 29 to the left and right along the direction in which the power storage elements 23 to 25 are arranged, and is slightly raised by a bent portion 54 that is bent in a step shape on the path.
  • the connecting portions 36A to 36C connected to the positive terminals 27A of the power storage elements 23 to 25 are formed at one side edge in the extending direction before the bent portion 54.
  • the first branch path 34A is a part of the connecting portion 36A where the current of the first conductive path main body 35 diverges, and the first branch path 34B is the current of the first conductive path main body 35 diverges from the right end side of the connecting portion 36A.
  • the first branch path 34C is a part from the right end side of the connection part 36B to the connection part 36C.
  • the first conductive path 33 ⁇ / b> B of the power storage unit 22 ⁇ / b> B includes a first terminal portion 29 and a first conductive path main body 35 formed integrally with the first terminal portion 29.
  • the path body 35 has a plurality of first branch paths 34A to 34C branched so as to connect the first terminal portion 29 and the positive terminals 27A of the respective storage elements 23 to 25 in parallel.
  • the first conductive path main body 35 of the power storage unit 22B extends rearward from the first terminal portion 29, is bent at a right angle from the rear end portion thereof, and extends left and right along the direction in which the power storage elements 23 to 25 are arranged.
  • Connection portions 36A to 36C connected to the terminals 27A of the storage elements 23 to 25 are formed on one side edge portion in the extending direction.
  • the first branch path 34A is a part of the connecting portion 36A where the current of the first conductive path main body 35 is shunted
  • the first branch path 34B is the current of the first conductive path main body 35 shunted from the left end side of the connecting portion 36A
  • the first branch path 34C is a part from the left end side of the connection part 36B to the connection part 36C.
  • a predetermined range extending along the power storage elements 23 to 25 (a region where the second conductive path 38 overlaps) is provided from other members to the first conductive path 33.
  • An insulating sheet (insulating member) (not shown) for insulating the path 33 is attached.
  • the second conductive path 38 includes a second terminal portion 31 and a second conductive path main body 40 formed integrally with the second terminal portion 31, and the second conductive path main body 40 is The second terminal section 31 and a plurality of second branch paths 39A to 39C branched so as to connect the negative terminal 27B of each of the storage elements 23 to 25 in parallel.
  • the second conductive path main body 40 has a portion extending left and right along the direction in which the power storage elements 23 to 25 are arranged from the second terminal portion 31, and the power storage elements 23 to 25 are disposed on one side edge in the extending direction. Connection portions 41A to 41C connected to the negative terminal 27B are formed.
  • the second branch path 39A is a part of the connecting portion 41A where the current of the second conductive path main body 40 is shunted
  • the second branch path 39B is the current of the second conductive path main body 40 is shunted from the left end side of the connecting portion 41A
  • the second branch path 39C is a part from the left end side of the connection part 41B to the connection part 41C.
  • a predetermined range extending along the power storage elements 23 to 25 (region where the first conductive path 33 overlaps) is used to insulate the first conductive path 33 from the first conductive path 33.
  • An insulating sheet (insulating member) not shown is attached.
  • the second branch path 39A connected to the negative terminal 27B of the storage element 25 in which the positive terminal 27A is connected to the first branch path 34C having the highest resistance among the plurality of first branch paths 34A to 34C is obtained.
  • the resistance is the smallest.
  • the conductive paths 33 and 38 are formed with holding claws 53 that hold the power storage units 22B to 22F stacked above.
  • the holding member 43 is made of synthetic resin, and as shown in FIG. 3, a central separator 44 disposed on the heat radiating member 52 and side separators 49 ⁇ / b> A and 49 ⁇ / b> B respectively disposed on the left and right sides of the heat radiating member 52.
  • a bus bar including the first conductive path 33 and the second conductive path 38 is disposed and held across the central separator 44 and the side separators 49A and 49B.
  • the central separator 44 is provided with a partition section 46 that is partitioned into rectangles in order to fit and hold the power storage elements 23 to 25 inside.
  • the partition part 46 can be fitted with the power storage elements 23 to 25 arranged side by side.
  • terminals 27A and 27B of the power storage elements 23 to 25 are arranged, and a long cover 51 is placed thereon so as to cover the terminals 27A and 27B.
  • the heat radiating member 52 has a plate shape having a size corresponding to the size of the central separator 44 and the side separators 49A and 49B, and is made of a heat conductive material such as aluminum or aluminum alloy.
  • the central separator 44 protrudes from the left and right sides thereof with a fixing portion 47 that overlaps the side separators 49 ⁇ / b> A and 49 ⁇ / b> B.
  • the fixing portion 47 is fitted into a fixed protrusion 50 that protrudes from the upper surface of the central separator 44. Separators 49A and 49B are fixed.
  • the side separators 49A and 49B extend along the plate surface of the heat radiating member 52 to the left and right of the heat radiating member 52, and fit and hold the bus bar including the first conductive path 33 and the second conductive path 38 on the upper surface thereof.
  • the first branch path 34C connected to one power storage element 25 among the plurality of power storage elements 23 to 25 is connected to the power storage elements 23 and 24 other than the one power storage element 25.
  • the second branch path 39A connected to one power storage element 25 and the second branch paths 39C and 39B connected to the power storage elements 23 and 24 other than the one power storage element 25 has higher resistance than the paths 34A and 34B. Since the resistance is small, the difference in resistance between the shunt paths on the first conductive path 33 side can be offset by the difference in resistance on the second conductive path 38 side in the same shunt path. Therefore, it is possible to suppress variations in resistance of a plurality of paths connected in parallel.
  • the first branch path 34C connected to one power storage element 25 is longer in length than the first branch paths 34A and 34B connected to power storage elements 23 and 24 other than one power storage element 25.
  • the second branch path 39A connected to the power storage element 25 is shorter than the second branch paths 39C and 39B connected to the power storage elements 23 and 24 other than the one power storage element 25. In this way, variation in resistance can be suppressed by changing the length of the conductive path.
  • first conductive path 33 and the second conductive path 38 are formed by bus bars.
  • the conductive path is an electric wire, it is relatively easy to suppress variations in resistance by changing the length of the first conductive path 33 and the second conductive path 38 as necessary. It is not easy to change the length.
  • the first conductive path 33 and the second conductive path 38 are formed by the bus bar, only one of the first conductive path 33 and the second conductive path 38 is provided. Even if it is not easy to change the length, variation in resistance can be suppressed.
  • the first conductive path 33 and the second conductive path 38 are both bus bars, and the power storage elements 23 to 25 are arranged such that the positive and negative terminals 27A and 27B are arranged on one side of the flat main body 26.
  • the first conductive path 33 and the second conductive path 38 are overlapped via an insulating sheet (insulating member). In this way, when the first conductive path 33 and the second conductive path 38 are overlapped due to the restriction of the arrangement, the resistance variation of the path can be suppressed.
  • first terminal portion 29 is arranged on one side in the arrangement direction of the plurality of power storage elements 23 to 25, and the second terminal portion 31 is arranged on the other side in the arrangement direction of the plurality of power storage elements 23 to 25.
  • the resistance of the branch path is likely to vary depending on the position of the first terminal portion 29 and the second terminal portion 31, it is possible to suppress the resistance variation of each path with a simple configuration. .
  • a plurality of power storage units 22A to 22F are provided, and a plurality of power storage units 22A to 22F are connected in series. If a plurality of power storage units 22A to 22F in which a plurality of power storage elements 23 to 25 are connected in parallel are formed and the plurality of power storage units 22A to 22F are connected in series to obtain a required capacity and voltage, for some reason, Even when the conduction of one power storage element 23 to 25 is lost, the failure is compensated by the other power storage elements 23 to 25 connected in parallel, so that there is an advantage that the whole conduction failure does not immediately occur. According to the present embodiment, it is possible to suppress variations in resistance of a plurality of paths of the power storage elements 23 to 25 connected in parallel in a configuration capable of obtaining such advantages.
  • the present invention is not limited to the embodiments described with reference to the above description and drawings.
  • the following embodiments are also included in the technical scope of the present invention.
  • the variation in resistance of one conductive path 33 is canceled by the other conductive path 38 by the length of the branch path of each conductive path 33, 38, thereby suppressing variation in resistance of the path.
  • the resistance variation of each path may be suppressed by changing the width of the branch path or changing the resistivity of the conductive material constituting the branch path.
  • the power storage elements 23 to 25 are batteries.
  • the power storage elements 23 to 25 may be capacitors.
  • a voltage detection line may be connected to the power storage units 22A to 22F to detect the voltages of the power storage elements 23 to 25.
  • a voltage detection terminal may be connected to the first conductive path 33 and the second conductive path 38, and an electric wire connected to the voltage detection terminal may be led out to the outside.
  • power storage module 21 laminates 22A to 22F: power storage units 23 to 25: power storage element 27A: positive terminal 27B: negative terminal 29: first terminal section 30: + terminal 31: second terminal section 32: -terminal 33 (33A, 33B): first conductive paths 34A to 34C: first branch path 38 (38A): second conductive paths 39A to 39C: second branch path 43: holding member 52: heat dissipation member

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

【要約書】第1端子部29と各蓄電素子23~25の各正極の端子27Aとを並列に接続するように分岐された複数の第1分岐路34A~34Cを有する第1導電路33と、第2端子部31と各蓄電素子23~25の各負極の端子27Bとを並列に接続するように分岐された複数の第2分岐路39A~39Cを有する第2導電路38と、を備え、複数の蓄電素子23~25のうち一の蓄電素子25と接続される第1分岐路34Cが一の蓄電素子25以外の蓄電素子23,24と接続される第1分岐路34A,34Bよりも抵抗が大きく、一の蓄電素子25と接続される第2分岐路39Aが一の蓄電素子25以外の蓄電素子23,24と接続される第2分岐路39C,39Bよりも抵抗が小さい。

Description

蓄電ユニット及び蓄電モジュール
 本発明は、蓄電ユニット及び蓄電モジュールに関する。
 従来、正極及び負極の端子を有する扁平な形状の複数の蓄電素子を積み重ねて構成した蓄電モジュールが知られている。
 特許文献1では、正極タブ及び負極タブを有する扁平な形状の2次電池を積層し、これら積層された2次電池のタブをサイドホルダのバスバーに溶接等することで、複数の2次電池を直列や並列に接続している。
特開2013-12458号公報
 ところで、特許文献1では、扁平な形状の複数の蓄電素子を縦に積み重ねていたが、これとは異なり、蓄電素子を扁平な面が連なるように横並びに配置することも考えられる。
 ここで、横並びに配した蓄電素子を並列に接続するように導電路を配する場合、外部と接続される一対の端子と蓄電素子の電極との間で導電路を複数の経路に分岐させる必要がある。
 この場合、並列に分岐された経路毎に抵抗が異なると、各蓄電素子についての充放電電流がバランスせず、各蓄電素子の発熱量にアンバランスが生ずることがある。この結果、各蓄電素子毎の温度バラツキが大きくなり、組電池の寿命を縮めたり、故障を誘発したりする問題がある。
 本発明は上記のような事情に基づいて完成されたものであって、並列に接続された蓄電素子の複数の経路の抵抗のばらつきを抑制することを目的とする。
 本発明の蓄電ユニットは、扁平な形状であって、扁平な面に沿う方向に並んで配された正極及び負極の端子を有する複数の蓄電素子と、前記蓄電素子の正極の端子と電気的に接続される第1端子部と、前記蓄電素子の負極の端子と電気的に接続される第2端子部と、前記第1端子部と各前記蓄電素子の各前記正極の端子とを並列に接続するように分岐された複数の第1分岐路を有する第1導電路と、前記第2端子部と各前記蓄電素子の各前記負極の端子とを並列に接続するように分岐された複数の第2分岐路を有する第2導電路と、を備え、前記複数の蓄電素子のうち一の蓄電素子と接続される前記第1分岐路が前記一の蓄電素子以外の蓄電素子と接続される前記第1分岐路よりも抵抗が大きく、前記一の蓄電素子と接続される前記第2分岐路が前記一の蓄電素子以外の蓄電素子と接続される前記第2分岐路よりも抵抗が小さいところに特徴を有する。
 本構成によれば、複数の蓄電素子のうち一の蓄電素子と接続される第1分岐路が一の蓄電素子以外の蓄電素子と接続される第1分岐路よりも抵抗が大きく、一の蓄電素子と接続される第2分岐路が一の蓄電素子以外の蓄電素子と接続される第2分岐路よりも抵抗が小さくなっているため、第1導電路側の分流経路間の抵抗の相違を、同じ分流経路における第2導電路側の抵抗の相違で相殺することができる。よって、並列に接続された蓄電素子の複数の経路の抵抗のばらつきを抑制することが可能になる。
 上記構成の実施態様として以下の構成を有すれば好ましい。
・前記一の蓄電素子と接続される前記第1分岐路は、前記一の蓄電素子以外の蓄電素子と接続される前記第1分岐路よりも長さが長く、前記一の蓄電素子と接続される前記第2分岐路は、前記一の蓄電素子以外の蓄電素子と接続される前記第2分岐路よりも長さが短い。
 このようにすれば、導電路の長さを変えれば、抵抗のばらつきを抑制できる。
・前記第1導電路及び前記第2導電路の少なくとも一方は、バスバーによって形成されている。
 例えば、導電路が電線であれば、第1導電路や第2導電路を必要に応じて長さを変える等により抵抗のばらつきを抑制することが比較的容易であるが、バスバーの場合には、長さを変えることが容易ではない。本構成によれば、第1導電路及び第2導電路の少なくとも一方がバスバーによって形成されているため、第1導電路及び第2導電路の一方のみの長さを変えることが容易ではない場合であっても抵抗のばらつきを抑制できる。
・前記第1導電路及び前記第2導電路は、共にバスバーであり、前記各蓄電素子は、前記正極及び負極の端子が扁平な本体の片側に並んで配されており、前記第1導電路と前記第2導電路とは絶縁部材を介して重ねられている。
 このようにすれば、第1導電路と第2導電路の配置の制約により重ねられる場合に、経路の抵抗のばらつきを抑制することができる。
・前記第1端子部は、前記複数の蓄電素子の並び方向の一方の側に配され、前記第2端子部は、前記複数の蓄電素子の並び方向の他方の側に配されている。
 このようにすれば、第1端子部及び第2端子部の位置により分岐路の抵抗にばらつきが生じやすい場合に、簡素な構成で各経路の抵抗のばらつきを抑制することが可能になる。
・蓄電ユニットを複数備え、前記複数の蓄電ユニットが直列に接続されて構成されている。
 複数の蓄電素子を並列接続した蓄電ユニットを複数形成し、複数の蓄電ユニットを直列接続することで、所要の容量・電圧とすれば、万一、何らかの原因によって一つの蓄電素子の導通が失われた場合でも、その故障分を並列接続された他の蓄電素子により補うため、直ちに全体の導通不良には至らないという利点がある。
 本構成によれば、このような利点を得ることができる構成において、並列に接続された蓄電素子の複数の経路の抵抗のばらつきを抑制することが可能になる。
 本発明によれば、並列に接続された蓄電素子の複数の経路の抵抗のばらつきを抑制することが可能になる。
実施形態1の蓄電モジュールを示す斜視図 積層体を示す斜視図 最下層の蓄電ユニットを示す斜視図 蓄電素子を示す斜視図 最下層の蓄電ユニットの複数の蓄電素子、第1導電路及び第2導電路を示す斜視図 最下層の蓄電ユニットの複数の蓄電素子、第1導電路及び第2導電路を示す平面図 最下層の蓄電ユニットの複数の蓄電素子、第1導電路及び第2導電路を示す正面図 第1端子部と第2端子部との間の電気的構成を示す図 最下層の蓄電ユニットの第1導電路を示す斜視図 最下層の蓄電ユニットの第1導電路を示す平面図 最下層の蓄電ユニットの第2導電路を示す斜視図 最下層の蓄電ユニットの第2導電路を示す平面図 最下層の蓄電ユニットに2層目の蓄電ユニットが重ねられた状態を示す斜視図 最下層の蓄電ユニットに2層目の蓄電ユニットが重ねられた状態を示す平面図 図4のA-A断面図 下から2層目の蓄電ユニットの複数の蓄電素子、第1導電路及び第2導電路を示す斜視図 下から2層目の蓄電ユニットの複数の蓄電素子、第1導電路及び第2導電路を示す平面図 下から2層目の蓄電ユニットの複数の蓄電素子、第1導電路及び第2導電路を示す正面図 下から2層目の蓄電ユニットの第1導電路を示す斜視図 下から2層目の蓄電ユニットの第1導電路を示す平面図
 <実施形態1>
 実施形態1を図1ないし図20を参照して説明する。
 本実施形態の蓄電モジュール10は、例えば自動車等の車両のIntegrated Starter Generator(ISG)に用いられる。以下では、図14の下方を前方、上方を後方とし、図14の左方を左方、右方を右方とし、蓄電ユニット22A~22Fの積層方向を上方、反対側を下方として説明する。
 (蓄電モジュール10)
 蓄電モジュール10は、図1に示すように、全体として略直方体形状をなしており、略直方体状のケース11に複数の蓄電ユニット22A~22Fが積層されて構成された積層体21が収容されており、積層体21の端子30,32がケース11を貫通して外部に導出されている。
(ケース11)
 ケース11は、積層体21が内部に配される筒状のケース本体12と、ケース本体12の左右の開口部14を閉塞する閉塞部材19とを備えている。
 ケース本体12は、金属製であって、積層体21が収容される箱形のロアケース13と、ロアケース13の上方を覆うアッパーケース15とを備えている。
 ロアケース13は、上方及び前方が開放されるとともに後方の一部が開放されている。
 ロアケース13の底面の周縁部には、積層体21を貫通させたボルト17Aを貫通して締結するための留め孔(図示しない)が貫通形成されている。
 アッパーケース15は、略長方形状であって、その中央部には、ケース11の内方側に段差状に陥没する放熱面16が形成されており、この放熱面16の内面が最上層の蓄電ユニット22Fにおける蓄電素子23~25と接触することで蓄電素子23~25の熱が放熱面16を介して外部に放散される。
 アッパーケース15の周縁部には、ボルト17Aとナット17Bで締結するための留め孔が貫通形成されている。
 また、アッパーケース15の前端部には、閉塞部材19を係止するための係止孔18が形成されている。
 閉塞部材19は、合成樹脂製であって、ケース11の左右の開口部14に嵌め入られる形状であり、左方側の閉塞部材19(右方の閉塞部材は図示しない)には、端子30,32をケース11の外部に導出する端子導出口20が形成されている。閉塞部材19の上面には、係止孔18に嵌め入れられる係止凸部が形成されている。
(積層体21)
 積層体21は、図2に示すように、複数層(本実施形態では6層)の蓄電ユニット22A~22Fを上下に積み重ねて構成されている。
(蓄電ユニット22A~22F)
 各蓄電ユニット22A~22Fは、上下に隣り合う蓄電ユニット22A~22Fの前後の向きが反対になるように重ねられており、共に、正極及び負極の端子27A,27Bを有する複数の蓄電素子23~25と、蓄電素子23~25の正極の端子27Aと電気的に接続される第1端子部29と、蓄電素子23~25の負極の端子27Bと電気的に接続される第2端子部31と、第1端子部29と各蓄電素子23~25の各正極の端子27Aとを並列に接続する第1導電路33と、第2端子部31と各蓄電素子23~25の各負極の端子27Bとを並列に接続する第2導電路38と、複数の蓄電素子23~25を保持する合成樹脂製の保持部材43と、蓄電素子23~25の底面に沿うように配され、蓄電素子23~25の熱を外部に放散させる板状の放熱部材52とを備える。
 複数の蓄電素子23~25は、共に、同一構成であり、図4に示すように、扁平な形状のラミネート型の電池である。
 各蓄電素子23~25は、上下のラミネートフィルム内に図示しない蓄電要素が収容されて端部が溶着された本体26と、ラミネートフィルムの端部から外方に突出する正極及び負極の端子27A,27B(リード端子)とを有する。
 ラミネートフィルムは、金属箔の外側に樹脂層を積層している。金属箔としてはアルミニウム箔等があげられ、樹脂層としては、ポリエチレンテレフタレート、ナイロン等があげられる。金属箔の内側(蓄電要素側)には、ポリエチレンまたはポリプロピレン等からなる熱溶着層が設けられている。
 ラミネートフィルムの溶着された側端部28は、本体26側に折り曲げられている。
 一対の端子27A,27Bは、下側のラミネートフィルムの上面に重なるように上下のラミネートフィルムの間から本体26の外部に導出されている。
 複数の蓄電素子23~25は、同一平面上に(扁平な面に沿うように)左右に一列に並べられて蓄電素子列を形成している。
 隣り合う蓄電素子23~25の間はわずかな隙間を有している。
 第1端子部29は、最下層の蓄電ユニット22Aについては、図3に示すように、蓄電モジュール10の全体の正極の端子30とされ、外部の電線端末の端子(図示しない)に接続される。他の層(2~6層)の蓄電ユニット22B~22Fの第1端子部29は上下に隣り合う蓄電ユニット22A~22Eの第2端子部31と接続される。なお、異なる層の第1端子部29と第2端子部31との接続は、図15に示すように、薄肉の金属板(銅板等)をクランク状に曲げて形成した接続端子55を第1端子部29及び第2端子部31の双方に超音波溶接することにより、異なる層の第1端子部29と第2端子部31とが接続されている。
 第2端子部31は、1~5層の蓄電ユニット22A~22Eについては、2~6層の蓄電ユニット22B~22Fの第1端子部29と接続される。なお、最上層の蓄電ユニット22Fの第2端子部31は、図2に示すように、蓄電モジュール10の全体の負極の端子32とされ、外部の電線端末の端子(図示しない)に接続される。
 第1端子部29と第2端子部31の間は、図8に示すように、第1導電路33,蓄電素子23~25,第2導電路38によって接続されており、これにより、蓄電素子23~25の数に応じた複数(本実施形態では3つ)の分流経路が形成されている(図8では、導電路の長い分岐路には他の分岐路よりも余分に長さに応じた抵抗RA1,RA2,RB1,RB2が生じている)。
 図5に示すように、第1導電路33及び第2導電路38は、金属板材をプレスにより打ち抜いて曲げ加工を施して形成したものであり、例えば、純アルミ、アルミ合金、銅または銅合金などの導電性材料からなる。
 以下では、蓄電ユニット22A~22Fの第1導電路33及び第2導電路38について、下側の1,2層の蓄電ユニット22A,22Bの第1導電路33A,33B及び第2導電路38A(第2導電路は1,2層は同一形状)について説明し、他の3~6層の蓄電ユニット22C~22Fの第1導電路33及び第2導電路38についての説明は省略する。
 蓄電ユニット22Aの第1導電路33Aは、図10に示すように、第1端子部29と、第1端子部29と一体に形成され、第1端子部29に連なる平板状の第1導電路本体35とを有し、第1導電路本体35は、第1端子部29と各蓄電素子23~25の各正極の端子27Aとを並列に接続するように分岐された複数の第1分岐路34A~34Cを有する。
 第1端子部29は、第1導電路本体35の端部がクランク状に屈曲されることで、第1導電路本体35とは異なる高さに形成されている。
 第1導電路本体35は、第1端子部29から蓄電素子23~25の並び方向に沿って左右に延びており、その経路上で段差状に曲げ加工された曲げ部54によりわずかに高さが変えられ、曲げ部54よりも先には、延出方向の一方の側縁部に蓄電素子23~25の各正極の端子27Aに接続される接続部36A~36Cが形成されている。
 第1分岐路34Aは、第1導電路本体35の電流が分流する接続部36Aの部分であり、第1分岐路34Bは、接続部36Aの右端側から第1導電路本体35の電流が分流する接続部36Bまでの部分であり、第1分岐路34Cは、接続部36Bの右端側から接続部36Cまでの部分である。
 蓄電ユニット22Bの第1導電路33Bは、図20に示すように、第1端子部29と、第1端子部29と一体に形成された第1導電路本体35とを有し、第1導電路本体35は、第1端子部29と各蓄電素子23~25の各正極の端子27Aとの間を並列に接続するように分岐された複数の第1分岐路34A~34Cを有する。
 蓄電ユニット22Bの第1導電路本体35は、第1端子部29から後方に延びているとともに、その後端部から直角に屈曲され、蓄電素子23~25の並び方向に沿って左右に延びており、その延出方向の一方の側縁部に蓄電素子23~25の端子27Aに接続される接続部36A~36Cが形成されている。
 第1分岐路34Aは、第1導電路本体35の電流が分流する接続部36Aの部分であり、第1分岐路34Bは、接続部36Aの左端側から第1導電路本体35の電流が分流する接続部36Bまでの部分であり、第1分岐路34Cは、接続部36Bの左端側から接続部36Cまでの部分である。
 蓄電ユニット22A,22Bの第1導電路33の上面のうち、蓄電素子23~25に沿って延びる所定の範囲(第2導電路38が下に重なる領域)には、他の部材から第1導電路33を絶縁するための図示しない絶縁シート(絶縁部材)が貼り付けられている。
 第2導電路38は、図12に示すように、第2端子部31と、第2端子部31と一体に形成された第2導電路本体40とを有し、第2導電路本体40は、第2端子部31と各蓄電素子23~25の各負極の端子27Bとを並列に接続するように分岐された複数の第2分岐路39A~39Cを有する。
 第2導電路本体40は、第2端子部31から蓄電素子23~25の並び方向に沿って左右に延びる部分を有し、その延出方向の一方の側縁部に蓄電素子23~25の負極の端子27Bに接続される接続部41A~41Cが形成されている。
 第2分岐路39Aは、第2導電路本体40の電流が分流する接続部41Aの部分であり、第2分岐路39Bは、接続部41Aの左端側から第2導電路本体40の電流が分流する接続部41Bまでの部分であり、第2分岐路39Cは、接続部41Bの左端側から接続部41Cまでの部分である。
 第2導電路38の上面のうち、蓄電素子23~25に沿って延びる所定の範囲(第1導電路33が上に重なる領域)には、第1導電路33との間を絶縁するための図示しない絶縁シート(絶縁部材)が貼り付けられている。
 これにより、複数の第1分岐路34A~34Cのうち最も抵抗が大きい第1分岐路34Cに正極の端子27Aが接続された蓄電素子25の負極の端子27Bに接続される第2分岐路39Aは、最も抵抗が小さくなっている。
 なお、導電路33,38には、上方に積層される蓄電ユニット22B~22Fを保持する保持爪53が形成されている。
 (保持部材43)
 保持部材43は、合成樹脂製であって、図3に示すように、放熱部材52の上に配される中央セパレータ44と、放熱部材52の左右にそれぞれ配されるサイドセパレータ49A,49Bとを備え、中央セパレータ44とサイドセパレータ49A,49Bとに亘って第1導電路33及び第2導電路38からなるバスバーが配されて保持される。
 中央セパレータ44は、各蓄電素子23~25を内側に嵌め入れて保持するために矩形に区画された区画部46を備えている。
 区画部46は、蓄電素子23~25を左右に並べて嵌め入れることが可能である。
 区画部46とバスバー保持部45の間には、蓄電素子23~25の端子27A,27Bが配されるとともに、この上には端子27A,27Bを覆うように長尺のカバー51が被せられている。
 放熱部材52は、中央セパレータ44及びサイドセパレータ49A,49Bの大きさに応じた大きさの板状であって、例えば、アルミニウムやアルミニウム合金等の熱伝導性材料からなる。
 中央セパレータ44は、その左右にサイドセパレータ49A,49Bに重ねられる固定部47が突出しており、固定部47が中央セパレータ44の上面に突出する被固定突部50に嵌められて中央セパレータ44とサイドセパレータ49A,49Bとが固定される。
 サイドセパレータ49A,49Bは、放熱部材52の板面に沿って放熱部材52の左右に延びており、その上面に第1導電路33及び第2導電路38からなるバスバーを嵌め入れて保持する。
 本実施形態によれば、以下の作用及び効果を奏する。
 本実施形態によれば、複数の蓄電素子23~25のうち一の蓄電素子25と接続される第1分岐路34Cが一の蓄電素子25以外の蓄電素子23,24と接続される第1分岐路34A,34Bよりも抵抗が大きく、一の蓄電素子25と接続される第2分岐路39Aが一の蓄電素子25以外の蓄電素子23,24と接続される第2分岐路39C,39Bよりも抵抗が小さくなっているため、第1導電路33側の分流経路間の抵抗の相違を、同じ分流経路における第2導電路38側の抵抗の相違で相殺することができる。よって、並列に接続された複数の経路の抵抗のばらつきを抑制することが可能になる。
 また、一の蓄電素子25と接続される第1分岐路34Cは、一の蓄電素子25以外の蓄電素子23,24と接続される第1分岐路34A,34Bよりも長さが長く、一の蓄電素子25と接続される第2分岐路39Aは、一の蓄電素子25以外の蓄電素子23,24と接続される第2分岐路39C,39Bよりも長さが短い。
 このようにすれば、導電路の長さを変えれば、抵抗のばらつきを抑制できる。
 さらに、第1導電路33及び第2導電路38(の少なくとも一方)は、バスバーによって形成されている。
 例えば、導電路が電線であれば、第1導電路33や第2導電路38を必要に応じて長さを変える等により抵抗のばらつきを抑制することが比較的容易であるが、バスバーの場合には、長さを変えることが容易ではない。本実施形態によれば、第1導電路33及び第2導電路38(の少なくとも一方)がバスバーによって形成されているため、第1導電路33及び第2導電路38の一方のみの導電路の長さを変えることが容易ではない場合であっても抵抗のばらつきを抑制できる。
 また、第1導電路33及び第2導電路38は、共にバスバーであり、各蓄電素子23~25は、正極及び負極の端子27A,27Bが扁平な本体26の片側に並んで配されており、第1導電路33と第2導電路38とは絶縁シート(絶縁部材)を介して重ねられている。
 このようにすれば、第1導電路33と第2導電路38の配置の制約により重ねられる場合に、経路の抵抗のばらつきを抑制することができる。
 さらに、第1端子部29は、複数の蓄電素子23~25の並び方向の一方の側に配され、第2端子部31は、複数の蓄電素子23~25の並び方向の他方の側に配されている。
 このようにすれば、第1端子部29及び第2端子部31の位置により分岐路の抵抗にばらつきが生じやすい場合に、簡素な構成で各経路の抵抗のばらつきを抑制することが可能になる。
 また、蓄電ユニット22A~22Fを複数備え、複数の蓄電ユニット22A~22Fが直列に接続されて構成されている。
 複数の蓄電素子23~25を並列接続した蓄電ユニット22A~22Fを複数形成し、複数の蓄電ユニット22A~22Fを直列接続することで、所要の容量・電圧とすれば、万一、何らかの原因によって一つの蓄電素子23~25の導通が失われた場合でも、その故障分を並列接続された他の蓄電素子23~25により補うため、直ちに全体の導通不良には至らないという利点がある。
 本実施形態によれば、このような利点を得ることができる構成において、並列に接続された蓄電素子23~25の複数の経路の抵抗のばらつきを抑制することが可能になる。
 <他の実施形態>
 本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
(1)上記実施形態では、各導電路33,38の分岐路の長さによって一方の導電路33の抵抗のばらつきを他方の導電路38で相殺して経路の抵抗のばらつきを抑制することとしたが、これに限られない。例えば、分岐路の幅を変えたり、分岐路を構成する導電性材料の抵抗率を変えたりして、各経路の抵抗のばらつきを抑制するようにしてもよい。
(2)上記実施形態では、蓄電素子23~25が電池である例を示したが、蓄電素子23~25は、コンデンサなどであってもよい。
(3)上記実施形態では、ISG用の蓄電モジュール10としたが、他の用途の蓄電モジュールに用いてもよい。
(4)蓄電ユニット22A~22Fに電圧検知線を接続して蓄電素子23~25の電圧を検知するようにしてもよい。例えば、第1導電路33及び第2導電路38に電圧検知端子を接続し、この電圧検知端子に接続された電線が外部に導出されるようにしてもよい。
10:蓄電モジュール
21:積層体
22A~22F:蓄電ユニット
23~25:蓄電素子
27A:正極の端子
27B:負極の端子
29:第1端子部
30:+端子
31:第2端子部
32:-端子
33(33A,33B):第1導電路
34A~34C:第1分岐路
38(38A):第2導電路
39A~39C:第2分岐路
43:保持部材
52:放熱部材

Claims (6)

  1. 扁平な形状であって、扁平な面に沿う方向に並んで配された正極及び負極の端子を有する複数の蓄電素子と、
     前記蓄電素子の正極の端子と電気的に接続される第1端子部と、
     前記蓄電素子の負極の端子と電気的に接続される第2端子部と、
     前記第1端子部と各前記蓄電素子の各前記正極の端子とを並列に接続するように分岐された複数の第1分岐路を有する第1導電路と、
     前記第2端子部と各前記蓄電素子の各前記負極の端子とを並列に接続するように分岐された複数の第2分岐路を有する第2導電路と、を備え、
     前記複数の蓄電素子のうち一の蓄電素子と接続される前記第1分岐路が前記一の蓄電素子以外の蓄電素子と接続される前記第1分岐路よりも抵抗が大きく、前記一の蓄電素子と接続される前記第2分岐路が前記一の蓄電素子以外の蓄電素子と接続される前記第2分岐路よりも抵抗が小さい蓄電ユニット。
  2. 前記一の蓄電素子と接続される前記第1分岐路は、前記一の蓄電素子以外の蓄電素子と接続される前記第1分岐路よりも長さが長く、前記一の蓄電素子と接続される前記第2分岐路は、前記一の蓄電素子以外の蓄電素子と接続される前記第2分岐路よりも長さが短い請求項1に記載の蓄電ユニット。
  3. 前記第1導電路及び前記第2導電路の少なくとも一方は、バスバーによって形成されている請求項1又は請求項2に記載の蓄電ユニット。
  4. 前記第1導電路及び前記第2導電路は、共にバスバーであり、
    前記各蓄電素子は、前記正極及び負極の端子が扁平な本体の片側に並んで配されており、
     前記第1導電路と前記第2導電路とは絶縁部材を介して重ねられている請求項3に記載の蓄電ユニット。
  5. 前記第1端子部は、前記複数の蓄電素子の並び方向の一方の側に配され、前記第2端子部は、前記複数の蓄電素子の並び方向の他方の側に配されている請求項1ないし請求項4のいずれか一項に記載の蓄電ユニット。
  6. 請求項1ないし請求項5のいずれか一項に記載の蓄電ユニットを複数備え、
     前記複数の蓄電ユニットが直列に接続されて構成されている蓄電モジュール。
PCT/JP2013/084206 2013-02-26 2013-12-20 蓄電ユニット及び蓄電モジュール WO2014132536A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-035489 2013-02-26
JP2013035489A JP2014165045A (ja) 2013-02-26 2013-02-26 蓄電ユニット及び蓄電モジュール

Publications (1)

Publication Number Publication Date
WO2014132536A1 true WO2014132536A1 (ja) 2014-09-04

Family

ID=51427821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084206 WO2014132536A1 (ja) 2013-02-26 2013-12-20 蓄電ユニット及び蓄電モジュール

Country Status (2)

Country Link
JP (1) JP2014165045A (ja)
WO (1) WO2014132536A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7247645B2 (ja) * 2018-10-08 2023-03-29 株式会社デンソー 電池パック
JP2020126780A (ja) * 2019-02-05 2020-08-20 株式会社デンソー 電池パック

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004031289A (ja) * 2002-06-28 2004-01-29 Nissan Motor Co Ltd 薄型電池
JP2004087438A (ja) * 2002-03-04 2004-03-18 Nissan Motor Co Ltd 組電池
JP2007506242A (ja) * 2003-10-14 2007-03-15 エルジー・ケム・リミテッド カートリッジ型リチウムイオンポリマー電池パック
JP2010503972A (ja) * 2006-09-18 2010-02-04 エルジー・ケム・リミテッド 等分配型母線、及びそれを使用する中または大型バッテリーパック
JP2010519677A (ja) * 2006-10-23 2010-06-03 エルジー・ケム・リミテッド 等配電型接続部材、及び等配電型接続部材を使用した中型又は大型電池パック

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004087438A (ja) * 2002-03-04 2004-03-18 Nissan Motor Co Ltd 組電池
JP2004031289A (ja) * 2002-06-28 2004-01-29 Nissan Motor Co Ltd 薄型電池
JP2007506242A (ja) * 2003-10-14 2007-03-15 エルジー・ケム・リミテッド カートリッジ型リチウムイオンポリマー電池パック
JP2010503972A (ja) * 2006-09-18 2010-02-04 エルジー・ケム・リミテッド 等分配型母線、及びそれを使用する中または大型バッテリーパック
JP2010519677A (ja) * 2006-10-23 2010-06-03 エルジー・ケム・リミテッド 等配電型接続部材、及び等配電型接続部材を使用した中型又は大型電池パック

Also Published As

Publication number Publication date
JP2014165045A (ja) 2014-09-08

Similar Documents

Publication Publication Date Title
JP6253108B2 (ja) 電池パック
KR101509474B1 (ko) 단일 전극단자 결합부를 가진 전지 조합체
KR20130105596A (ko) 축전 모듈
JP5974622B2 (ja) 電池集合体
JP2012181941A (ja) 二次電池
US10236487B2 (en) Battery module
WO2019124107A1 (ja) バスバー及び電池積層体
US20210036270A1 (en) Battery Pack and Battery Module
EP2874204B1 (en) Battery assembly
JP2013187046A (ja) 組電池
US20150228945A1 (en) Battery pack
JP4590869B2 (ja) ラミネート型二次電池
JP2008159328A (ja) 電池モジュール
JP7028685B2 (ja) 電池構造体
US10910156B2 (en) Power storage module
WO2014132536A1 (ja) 蓄電ユニット及び蓄電モジュール
JP2019186038A (ja) 組電池
JP6314658B2 (ja) 蓄電装置
JP6016031B2 (ja) 蓄電モジュール
JP6016032B2 (ja) 蓄電モジュール
JP5223262B2 (ja) 組電池
JP2016031851A (ja) 蓄電装置
JP6020921B2 (ja) 蓄電モジュール
JP2016031818A (ja) 蓄電モジュール
JP6341026B2 (ja) 蓄電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13876237

Country of ref document: EP

Kind code of ref document: A1